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Abstract

ZnO powders containing from 1-8 atom% aluminium ions were prepared from

aqueous citrate-aminoalcohol-based gels calcined at 500◦C. The powders were

characterized using 27Al NMR, X-ray diffraction (XRD), and scanning electron

microscopy (SEM). Solid state 27Al NMR clearly distinguished between differ-

ent Al environments and was effective in determining the relative amounts

of incorporation of Al dopant ions into the different Zn lattice sites in the

zincite structure. A degree of control over dopant placement is demonstrated

by modifying sol precursors and processing parameters, which allowed a syn-

thesis protocol to be developed to optimise the doping effectiveness. Relatively

minor variations in processing conditions can influence the degree and mode

of Al incorporation.

Thin films (ca 100 nm) were fabricated by spin-coating the Al-doped Zinc

citrate sol-gels onto glass and quartz substrates, followed by a drying step

and annealing at 500◦C. The degree of crystal alignment in thin films, deter-

mined by X-ray diffraction studies, was found to be influenced by both the

dopant level and the heating profile. Resistivity measurements showed films

with 0.5-1atom %Al and multiple layers which had been heated at 90◦C before

annealing at 500◦C, and subjected to post-annealing treatment under vacuum

displayed the lowest resistivities. Further post-annealing treatment at 500◦C

under H2/N2 reduced resistivities by an order of magnitude.

Transparencies for all films were above 80% in the visible range, and thicker

multi-layer films generally demonstrated lower transmittances. Preferential c-

axis orientation was observed for all films, but showed higher intensities with

increasing film thickness, and for films subjected to directional heating on a

hotplate. Increased film thickness gave films with lower resistivities, but also

lower transparencies
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Chapter 1

Introduction

This thesis reports investigations into producing Al-doped ZnO thin films from

sol-gel precursors with optimised electrical and optical properties for use as

transparent conductive materials. An 27Al NMR study of the ZnO:Al bulk

was carried out to determine the effect of processing parameters such as ther-

mal treatment and dopant ion concentrations on the incorporation of Al into

the zincite structure. The results from this study were then applied to thin

films fabricated by spin coating of the same sol-gel precursors onto glass and

quartz substrates. Resistivity and transparency measurements were made to

determine the electrical and optical properties of the films, and conditions for

producing optimised films were determined.

1.1 Zinc Oxide

ZnO is an n-type direct bandgap semiconductor. It possesses a wide bandgap,

(3.3 eV), large free exciton binding energy, high carrier mobility with a wide

range of resistivity (10−4–1012 Ωcm), and high visible light transparency. In-

vestigated as an electronic material since the 1930s, ZnO belongs to the class

of transparent conducting oxides (TCOs). The other important oxides are in-
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dium and tin oxide. Native ZnO is an interesting material due to its ease of

handling, formation and tendency to form high aspect ratio crystallites.

One of the first practical applications of the semiconductor properties of zinc

oxide was in the 1920s as detectors in build-your-own radio sets. The chem-

istry of ZnO is broad and varied, inciting the possibility of applications which

make use of its inherent properties such as a low power threshold for optical

pumping, radiation hardness and bio-compatibility. ZnO has performed better

than GaN in terms of radiation resistance, making it a possible alternative for

devices used in space and nuclear applications [1].

Studies on the properties of zinc oxide (ZnO) have been well reviewed [1–3]

with a recent resurgence of research in this area due to the wide range of ap-

plications for which zinc oxide is suitable. Recently ZnO-based transparent

thin films have generated significant interest for use in applications such as

thin-film transistors, thin-film solar cells, transparent electronic circuits, and

in flat panel displays [4–8].

ZnO films are commonly found in most thin film solar cells. There is a large

focus on developing and improving the properties of these films so as to ad-

vance this technology as a suitable option for renewable energy. ZnO, as a

high band gap semiconductor, shows properties such as larger bandgap and

higher electron mobility, making it suitable for use in high power, high tem-

perature electronic devices [1]. Thin films of ZnO preferentially oriented along

the c-axis have been used as surface acoustic wave (SAW) devices because of

their large piezoelectric constant [9].

ZnO is transparent in the visible light range, operating in the UV to blue wave-
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1.1. Zinc Oxide

lengths as indicated by its direct bandgap energy of 3.3 eV. This makes ZnO a

promising material for applications in transparent electronics, optoelectronics

and spintronic devices [1].

Indium tin oxide (ITO) is currently being used to great effect in these kinds

of applications, with existing technology based on In2O3 films being well uti-

lized. However there is price volatility associated with indium, along with

various supply concerns, which have pushed forward the need for the develop-

ment of ITO substitutes [10]. Owing to better stability in hydrogen plasma

when compared with ITO, zinc oxide thin films can be used in the fabrica-

tion of hydrogenated amorphous silicon solar cells [11]. Zinc is also cheap and

abundant and shows low toxicity. With thin films of ZnO easily grown at rel-

atively low temperatures, and on inexpensive substrates e.g. glass [1], doped

ZnO is a favoured candidate to replace indium tin oxide (ITO) based TCO

films.

Zinc oxide is widely used in non-electronic applications too, such as in white

paints, and as an additive which provides UV stability to plastics. It is used

for activation of the vulcanisation process in rubber, in catalysis, and in phar-

maceuticals and cosmetics for sun protection [2].

ZnO forms a wide range of nanostructures including sheets, rods, flowers, and

stars. These structures are ideal for detection applications due to the large

surface-area to volume ratio [1]. Zinc oxide nanorods can be formed on a wide

variety of substrate materials with varying degrees of c-axis orientation. The

formation of such structures is dominated by anisotropic growth along this

axis as a result of surface energy differences in the highly polar planes of ZnO.

The ZnO nanostructure system has been modelled by colleagues at Industrial

3
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Figure 1.1: SEM micrographs of ZnO crystals

Research Limited using ab initio computation techniques [12, 13]. These re-

sults indicate that certain crystal facets grow faster than others, leading to the

various observed morphologies. Electrochemical deposition of ZnO nanorods

has previously been studied using synchrotron radiation, with the effects of

deposition times, temperatures and other process parameters reported [14–17].

Zinc oxide occurs in nature as the mineral zincite, which crystallises in the

hexagonal wurtzite structure P63mc. The hexagonal unit cell (a=0.325 nm,

c=0.520 nm) contains 2 formula units, where the zinc atoms are surrounded

by oxygen atoms in a nearly tetrahedral configuration, as shown in Figure 1.2.

Along the c-axis the Zn-O distance is somewhat smaller (dZn-O[1] = 0.190nm)

than for the three neighbouring oxygen atoms (dZn-O[2]=0.198nm). When

these tetrahedra pack together to form the crystal structure, the resulting co-

ordination gives rise to a polar symmetry along the hexagonal axis of the unit

cell. This polarity is responsible for some of the inherent properties of ZnO,

namely its piezoelectricity and spontaneous polarisation. It is also important

to consider when addressing processes such as crystal growth and the gener-

ation of defects within the structure [1]. A metastable cubic phase with the

rocksalt (NaCl) structure is also known [2].

4



1.2. Doped Zinc Oxide

It has been established that the n-type conductivity in non-stoichiometric zinc

oxide is due to interstitial zinc atoms and/or oxygen vacancies. Since the

electrical conductivity of ZnO is directly related to the number of electrons,

electrons formed by the ionisation of the interstitial zinc atom and the oxygen

vacancies affect the electrical conductivity of ZnO crystals [18].

Figure 1.2: Hexagonal wurtzite structure of ZnO

1.2 Doped Zinc Oxide

Thin films of pure ZnO are not stable against corrosive environments e.g.

the adsorption of O2 decreases the electrical conductivity of the film, and also

changes the surface morphology. Doping ZnO with different elements has been

investigated [19–22] in the hope of making the ZnO system resistant against

such changes [23], resulting in an interesting family of materials based on doped

ZnO.

A large area of work focused on doped ZnO has investigated the group 13 ele-

ments Al, Ga and In [6,24–29]. These elements can substitute easily for Zn in

5
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the crystal lattice, and this type of doping has been shown to result in high car-

rier concentrations, >1020 cm−3 [24, 30]. In fact, these types of ZnO produce

some of the highest-conductivity transparent material available today. Donor

type behaviour has also been exhibited by F and Cl [31] which replace oxygen

atoms within the lattice. Group 14 elements such as C, Si and Ge have prop-

erties which would suggest they could be electrically active as either donors

or acceptors, however there is no strong evidence to support this occurring [32].

Recently, ferromagnetism has been induced in ZnO by doping with a transition

metal, e.g. Mn. These samples showed practical Curie temperatures, making

them suitable for use in spintronic device applications. ZnO also has the cov-

eted ability for bandgap tuning, by way of divalent substitution at the Zn2+

site which forms heterostructures. Bandgap energies of ∼3.0 eV have been

reported by doping with Cd2+, with Mg2+ increasing the bandgap energy to

∼4.0 eV [1].

ZnO typically exhibits n-type conductivity, where the dopants contribute extra

electrons, creating an excess of negative charge carriers. The fabrication of p-

type ZnO (where the dopant accepts electrons from the host material, leaving

positive holes), for use in p-n junction based devices has encountered difficulties

due to the self-compensation effect from defects such as interstitial zinc atoms

and oxygen vacancies in the native ZnO. Nitrogen is seen as the most promising

candidate for successful p-type doping of ZnO films, because of its similar

radius to the oxygen atom. Several groups report p-type ZnO:N films made via

thermal oxidation of a Zn3N2 precursor [33–35], which addresses the problem

of the low solubility of N acceptors in ZnO, but the resulting films are not

particularly stable, and the mechanism by which N is incorporated is not

clear [36].

6



1.2. Doped Zinc Oxide

1.2.1 Incorporation of Al

Of the studies reporting the inclusion of dopant ions, few have convincingly

looked at the location of the dopant ions [36, 37]. They may reside totally

within the zincite crystals, (substitutionally in the Zn sites), or significant ex-

clusion could occur, leaving the dopant to agglomerate between crystallites.

The latter would result in increased inter-grain resistivity, which is undesir-

able for TCOs. An ability to examine this raises the possibility of improving

and optimizing the dopant location through adjusting the different processing

parameters such as heating profile, precursor chemistry etc.

A dopant ion introduced to modify the electronic properties of a material

needs to be incorporated into the crystal structure of the host material (either

in lattice sites or interstitially). In the case of a ZnO:Al TCO, the Al3+ ion

is required to occupy a Zn2+ lattice site in order to provide a free electron

(charge carrier) and enhance the conductivity of the ZnO [23]. A simplistic

representation is shown in Figure 1.3a, where an Al3+ occupies the site of a

Zn2+, producing a charged defect [38].

O

Zn O

Zn

Zn

O

O Al O
+1e- Mobile charge 

carrier

(a) Al3+ occupying a Zn2+ site

Zn

O Zn

O

O

Zn

Al Al

No longer 
mobile

(b) Al3+ occupying adja-

cent sites

Figure 1.3: Possible incorporation sites of Al3+ ions into the zincite lattice.

A quantum chemical approach has been applied to the structural, electrical

and electronic properties of ZnO due to the Al doping, and explains the in-

crease in the n-type electrical conductivity [39]. In order to attain optimum

7
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performance, the material would be expected to incorporate a uniform and ho-

mogeneous distribution of dopant ions in the correct locations, up to a limiting

concentration. Too high a concentration could lead to dopant ions occupying

adjacent or proximal lattice sites as in Figure 1.3b, causing ion vacancies, re-

sulting in a neutral defect which would not contribute to conductivity [38].

Jimenez-Gonzalez [23] explains the increase in the conductivity of ZnO when

Al is introduced as a dopant, in terms of donor behaviour from Al. Because Al

has one valence electron more than Zn, substitution of Al for the Zn atom (Fig-

ure 1.3), or Al occupation of the interstitial sites increases the concentration of

charge carriers present in the material. Al doping of ZnO is favoured by both

the small difference in electronegativity values of Zn (1.65) and Al (1.61) and

the smaller ionic radii of Al (0.530, 0.675Å) when compared with Zn, (0.60,

0.710Å) in the tetrahedral and octahedral configurations respectively.

Materials produced using lower temperature processes could be in non-equilibrium

states. i.e. the Al doping in the tetrahedral Zn sites could simply be the result

of kinetic convenience, or alternatively the solubility limits could vary with

temperature. On high temperature annealing, the lower solubility of Al in

ZnO encourages migration of the Al ions toward the surface forming regions

of lower energy compositions. These could be Al-O clusters or amorphous pre-

cursors to, for example ZnAl2O4 [40–42].

In the hexagonal close packed lattice of the ZnO wurtzite structure, half of the

tetrahedral holes and all of the octahedral holes are empty, providing further

possible dopant sites. The Al3+ ion is smaller than the Zn2+ ion and could

easily be accommodated in either hole, however, taking into account geometry

preference rules one would expect a preference of Al for the octahedral hole [43].

8



1.3. Preparation Techniques

Unincorporated dopant could also reside in a non-conductive inter-grain layer

resulting in electrical isolation of the individual crystallites. High temperature

(>800◦C) processing of Al-doped ZnO has previously demonstrated the ready

formation of inter-grain impurity phases [42].

In doped ZnO systems, the dopant has been reported to act as an electrical

dopant at lower doping concentrations, but as an impurity at higher doping

concentrations, which exhibit the lowest electrical resistivities [44].

The importance the dopant ion location has on the optical and electronic

properties of ZnO led to an attempt to more accurately track the fate of the

Al dopant ions, and to determine whether the proportion that are actually

incorporated into the appropriate sites of the crystalline ZnO can be more

accurately quantified. An interesting question arises as to whether the con-

ditions for maximum dopant incorporation coincide with those necessary to

produce highly oriented thin films [40] and/or whether either of these result

in optimum TCO characteristics.

1.3 Preparation Techniques

Doped ZnO as a transparent conducting oxide (TCO) is readily prepared us-

ing physical techniques such as vacuum evaporation, sputtering, CVD, etc [8],

sol-gel dip coating [9, 23, 39, 45, 46], spray pyrolysis [47], and sol-gel spin coat-

ing [11, 18, 26, 48, 49]. This has provided a solid body of knowledge on the

material and its properties [2].

9



Introduction

Physical deposition methods such as pulsed-laser deposition and RF mag-

netron sputtering produce films with good electrical and optical properties at

lower deposition temperature, however it has the disadvantages of a relatively

low deposition rate, and high cost for equipment [44].

1.3.1 Sol-gel Syntheses

The use of wet chemical processing, and sol-gel deposition in particular, offers

an alternative to expensive vacuum deposition techniques for producing large

area thin film coatings. This may also improve manufacturing throughput

since it enables direct patterning, for example using ink-jet printing, micro-

contact and reel to reel printing. The sol-gel route has been used for preparing

various kinds of functional oxide films (including ZnO) such as TiO2, BaTiO3,

LiNbO3, ITO and Li2B4O7 films [9].

A number of studies have examined the influence of processing details (heat-

ing profile, temperature, solvents etc) on film properties and performance

[38–40, 44, 46, 50–55], however, despite identifying optimum processing con-

ditions, there is limited understanding as to why the processing variables in-

fluence electrical properties such as resistivity.

Sol-gel synthesis conditions can be manipulated to ensure the morphology of

ZnO thin film is dominated by c-axis growth [9, 18, 39, 44, 48] which has been

associated with lower resistivity films. This could however be coincidentally

related to other film attributes relating to crystal growth, film density and

inter-grain barrier density. It is not clear why an exclusively c-axis aligned

film should have lower resistivity than a randomly oriented layer, which may

10



1.4. Thin Films

have better inter-grain connectivity. It has also been found that any preferen-

tial orientation of the crystallites is not lost with annealing as it has been in

ZnO films prepared by other techniques [56].

While sol-gel film preparation has been proposed as a cheap, scalable process

suitable for commercialisation, the necessity to apply multiple layers to achieve

the required conductivities remains a weakness.

1.4 Thin Films

The thin films fabricated and characterised in this work are spin-coated, with

sol-gel deposition from organically modified precursor solutions. This method

was designed to deposit active films in a single coat. Films incorporating 1–2

atom% of a dopant such as Al have been shown to result in low resistivity

materials while retaining high transparency [52, 57–61], the two main proper-

ties of a TCO. This was aimed at developing an understanding of the effect

of process parameters on the dopant incorporation, and how the presence of

dopant ion affects the nucleation and growth of the ZnO crystallites. This will

allow the deposition conditions to be fully controlled, in order to optimize the

properties of the thin films.

Previous studies have shown, that the surface texture and resistivity of solu-

tion derived films are sensitive to the concentration of the sol-gel solution [50]

as well as the heating profile(s) used to calcine the films [51, 52]. Rapid ther-

mal annealing appears to result in highly (002) oriented films [52,53] with low

resistivities, agreeing with other observations that higher conductivities and

transmittances occur in films with preferential c-axis orientation [44] while

11
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other studies appear to suggest more random orientations are preferred [54].

Preferential orientation of the crystallites is believed to be a result of at least

two physical conditions of the gel-film: the internal stress and surface en-

ergy [11].

There is general agreement that ZnO : Al TCOs with low resistivities appear

to require around 1 atom% added Al dopant, and post-synthesis annealing at

ca 400-500◦C [44,46,53–55]. However, lattice deformation measurements made

to attempt to quantify the effective dopant concentration suggest that the ef-

fective Al concentration is much lower than the added Al concentration [46].

The n-type conductivity shown by non-stoichiometric ZnO is known to be a

result of interstitial Zn atoms and oxygen vacancies within the crystal struc-

ture [62], and as such, additional electrons formed by the ionisation of inter-

stitial zinc atoms, or resulting from the oxygen vacancies, affect the electri-

cal conductivity of ZnO. These defects are thought to be responsible for the

noted decrease in the resistivity of films heated in a reducing atmosphere post-

annealing, as has been widely reported [30,55,58,61]. A second annealing step

in a reducing atmosphere increases the number of oxygen vacancies, and may

also increase the carrier concentration in the film by releasing carriers trapped

in the grain boundaries via oxygen annihilation from the ZnO crystals [63].

1.4.1 Thin Film Solar Cells

Thin film solar cells show great potential in the continuing development of

photovoltaic energy conversion. The thin film components are produced using

highly favourable methods in terms of the amount and expense of raw materials

12
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used, the simplicity of processing which occurs at relatively low temperatures,

and the ability to deposit films over large areas with little complication. Only

a few micrometers of film thickness is needed to absorb most of the sunlight

required for the film to be effective, and the energy saved during production

processes contributes to shorter energy pay-back times.

A transparent window electrode is needed to allow the transmission of light

through the cell and extraction of the photocurrent. Amorphous silicon [64]

and Cu(In,Ga)(S,Se)2 [65,66] cells make particular use of ZnO containing high

levels of dopant. The incorporation of high levels of trivalent dopants such

as Al, B or Ga contribute to films which exhibit carrier concentrations up to

1.5x10 21cm−3 and resistivities as low as 2x10−4 Ωcm.

The transparent electrode in amorphous silicon cells is degenerately n-doped.

A tunnel junction is formed between the electrode and a highly p- or n- doped

material, while ZnO is a part of the electric p/n junction in Cu(In,Ga)(S,Se)2

cells. A bilayer structure consisting of a thin (∼50nm) nominally undoped ZnO

layer and a highly n-doped layer is typically used to obtain high efficiencies.

The ZnO films predominantly act as a transparent conductive front contact

of the cell, but can also contribute to optical functions such as the scattering

and trapping of light, and enhancing the reflection of light at the back contact

surface of the cell [2].

Improvements to the optical and electronic properties of ZnO thin films holds

great promise in obtaining higher conversion efficiencies in thin film solar cells.

This makes them a more viable option, both technically and financially, as a

sustainable energy source.
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Chapter 2

Characterisation

The formation of doped ZnO materials using a modified sol-gel technique, and

the assessment of the influence of the precursor solution, the thermal process-

ing and the dopant concentration on the material was investigated using X-ray

diffraction (XRD), scanning electron microscopy (SEM) and solid state nuclear

magnetic resonance spinning at the magic angle (MAS NMR). The influence

of dopant concentration on the crystallite sizes and unit cell dimensions was

also examined using XRD Rietveld analysis.

2.1 Solid State 27Al NMR

Magic angle spinning (MAS) is the most commonly used technique in solid

state NMR experiments. It is a method of obtaining highly resolved spec-

tra for nuclei such as 27Al, where the signal in the solid state powder spectra

is broadened significantly by the electric quadrupole interactions of the spin,

I=5/2 nuclei [67]. 27Al has 100% natural abundance, and a fast relaxation time

allowing many pulses to be collected for samples with low Al concentrations,

which is necessary in obtaining a useful and representative spectrum. Collect-
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ing more scans for each sample also reduces the signal to noise ratio, reducing

the background noise which can obscure spectra if left too high. The main

use of aluminium NMR is to detect the presence of aluminium and measure

its relaxation rate in order to determine coordination arrangements and site

occupancy within the different binding sites of the sample. The width of the

27Al signal increases with the asymmetry of its environment.

In a MAS experiment, the sample is spun at high speed (in this case, 10–12

kHz) at an angle of 54.74◦ with respect to the magnetic field direction. This is

known as the magic angle. Away from this angle, only sidebands from second-

order broadening of the central transition can be seen. As the magic angle

is approached, the sidebands from the satellite transitions are observed, and

become progressively narrower. In this way, MAS allows the NMR spectrum

to be narrowed into a visible set of sidebands over a limited but not too re-

strictive range of angles about the magic value [68].

27Al NMR has previously been used to examine the limits of solid solution of Al

in ZnO [38, 69]. This showed a very low (<0.005) Al solubility, however these

studies were carried out on materials subjected to high temperature annealing

(850–1100◦C), far in excess of temperatures used to produce low resistivity

Al-doped conductors [9, 11, 18, 23, 39, 44, 46, 48, 50–55].

Octahedrally coordinated Al is generally observed at 0±15 ppm, while tetra-

hedral Al is seen at 65±15 ppm [68]. The spectra observed for these samples

include a narrow signal at ca 81.2 ppm, (tetrahedral) and a much broader

signal centred at 8.2 ppm (octahedral). A less intense, although broad signal

also appears centred at 75 ppm (tetrahedral).

16
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ppm
−50050100150

Tetrahedral Al ∼ 81ppm

Octahedral Al ∼ 8ppm

Figure 2.1: 27Al NMR spectrum of a typical ZnO:Al sample containing 2

atom% aluminium.

The integration of solid state 27Al NMR signals does not provide reliable quan-

titative data on the relative abundance of each signal type, but the change in

relative intensities between the different signals could be used to provide a

semi-quantitative estimate of the relative Al site occupations of the samples.

The narrow signal observed at ca 81.2 ppm does not appear to exhibit a

quadrupolar line shape. It is indicative of Al in a highly symmetrical tetra-

hedral environment, and is likely to correspond to Al located in isolated Zn2+

sites of crystalline ZnO. The line width varies slightly between samples, but

it could be supposed that this Al is subject to a high degree of local order-

ing such as that proposed in Figure 1.3a having no other dopant ions in the

immediate vicinity, and no adjacent vacancies. The signal is at much lower

field than is normally observed for Al oxides [68], which could reflect the local

charge density or field strength due to being surrounded by four tetrahedral

Zn2+ ions in comparison with more highly charged ions such as other Al3+ ions

in (e.g. in γ-alumina) or Si4+ ions as seen in framework aluminosilicas [68].

Also of interest is a recent study showing 27Al NMR of Al located in the octa-
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hedral Ti sites in crystalline Al doped rutile [70]. This appears at higher field

(δiso = -5 ppm) than the octahedral γ-alumina signal (14.7 ppm) and exhibits

a narrow quadrupolar line shape.

Solid state 27Al MAS NMR data were collected at 11.7 T (Bruker Avance 500

spectrometer with 4 mm Doty MAS probe spun at 10-12 kHz). Spectra were

acquired at 130.245 MHz using a 15◦ pulse of 1 s and a recycle time of 1s, and

referenced to Al(H2O)3+6 .

2.2 X-Ray Diffraction

Powders

ZnO:Al powders were characterised using XRD in order to determine the crys-

tallisation temperature of ZnO, both with and without aluminium, as well as

any effects the amount of aluminium or the different heat treatments had

on the composition and crystallinity of the samples. A zincite phase was al-

most exclusively present in all samples, apart from one containing 8 atom%

Al, heated to 800◦C. This sample showed both zincite (ZnO) and gahnite

(ZnAl2O4/ZnO.Al2O3) phases.

Data for all powder samples were collected on a Philips PW3700 series diffrac-

tometer using Co-Kα radiation.

Quantitative Analyses

XRD data were collected on a range of ZnO powders with differing Al con-

tents in order to accurately calculate the unit cell dimensions, and the changes

18
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in these due to doping. Rietveld analysis was used in order to investigate

the changes in lattice parameters as a function of the Al concentration, by

way of optimising the fit between the XRD data obtained and the computed

model pattern for ZnO with a least squares approach. A disadvantage of using

this technique is that many parameters must be fit to the data set, including

background, peak shape and structural parameters. ZnO displays elongated

crystallites (Figure 1.1). Because of this, two size modes were required to

model the full width at half maximum (FWHM) variations, because of reflec-

tions comprised of the different contributions of c- and a-axis geometry.

The crystallite sizes and unit cell dimensions of the zincite formed were deter-

mined using TOPAS XRD software.

Films

ZnO:Al films were studied using XRD to determine their crystal orientations.

It has been previously reported [58] that films with preferential 002 (c-axis)

orientation show the lowest resistivities. It was found that by modifying the

thermal processing route used, the crystal orientation (with regard to prefer-

ential crystallite orientation) could be easily controlled.

Crystallinity and crystal orientation of films were examined using D8-AVANCE

diffractometer using Co Kα radiation.

2.3 Scanning Electron Microscopy

SEM was used to obtain images of the surface morphology and relative crystal-

lite sizes of ZnO powders containing different amounts of Al. It was observed

that as the Al content of samples increased, the crystallite sizes decreased.

This is the same trend as was found in the XRD data. The accumulation of
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Al at the inter-grain boundaries is also noticeable, with this seen to increase

with higher Al concentrations.

SEM imaging was performed on a JEOL JSM-6500F field-emission scanning

electron microscope. Samples were deposited onto a Si wafer and coated with

10 nm of Pt in a JEOL JFC-1500 ion sputtering device. Standard SEI digital

images were obtained at an accelerating voltage of 10-15 kV and viewed at a

working distance of 9-11 mm.

2.4 UV-Vis Transparency Measurements

Measurements were taken of thin films on quartz substrates, using a Hewlett

Packard 84524 diode array spectrophotometer. These were recorded over the

range of 200-800 nm. Disruptions in the spectra, most noticeably around 650

nm are due to diffraction grating changes and should be ignored. All spectra

show a sharp absorption edge at around 380 nm, corresponding to the band

gap of ZnO. The weak fluctuation in the transmission spectrum has been ob-

served by others [11], and is due to interferences in the thin film from the

air-ZnO and ZnO-quartz interfaces producing reflections.

2.5 Differential Scanning Calorimetry &

Thermogravimetric Analysis (DSC–TGA)

Differential Scanning Calorimetry (DSC) measures the temperature and corre-

sponding heat flows which result from phase transitions occurring in a material,

as it is heated. The information provided by this technique allows the identi-
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fication of endothermic (such as melting) and exothermic (i.e. crystallisation)

processes, and the temperature or applied energy at which these take place.

Thermogravimetric analysis (TGA) measures the change in mass of a sample

as a function of temperature. It can identify temperatures of phase changes

and reactions, and is helpful in determining the composition of both a starting

material and its decomposition products.

The two analytical methods were run together, using the same instrument,

and give insight into the physical and/or chemical changes which occur during

the crystallisation of ZnO from aminoalcohol containing sol-gel solutions.

Thermal analysis was carried out on samples pre-dried at 90◦C. Data were

collected using an Alphatech SDT Q600 thermo-analyser under flowing air

(50mL min−1) at a heating rate of 10◦C min−1.

2.6 Film Thickness Measurements

A DekTak profilometer was used to give a surface profile of the thin films,

providing information on the roughness of the films, as well as giving an indi-

cation of the film thickness. This was achieved by removing a section of the

film from the substrate (either physically, with a scalpel blade, or chemically,

by masking off a section of the films and removing the exposed film in HCl),

and then measuring the difference in vertical height between the coated and

uncoated parts of the substrate.

The profilometer works by moving a small stylus over the surface of the film,

with variations in its vertical height transmitted as a digital signal, giving a
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step-like pattern corresponding to the surface of the film, as shown below;
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Figure 2.2: Surface profile of a typical ZnO:Al film.

2.7 Resistivity Measurements

A 4–point probe utilizing the Hall Effect was used to measure the resistivity

of the thin films. The Hall effect is the production of a voltage difference (the

Hall voltage) across an electrical conductor (in this case the ZnO:Al film),

which is transverse in direction to an electric current in the conductor and a

magnetic field perpendicular to the current [71].

When no magnetic field is present, distribution of the current is uniform and

no potential difference is seen across the output. When a perpendicular mag-

netic field is present, a Lorentz force is exerted on the current. This force

disturbs the current distribution, resulting in a potential difference (voltage)

across the output. This voltage is the Hall voltage (VH).
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V H ∝ I ×B (2.1)

The van der Pauw Method is a commonly used technique for measuring the

resistivity of a sample. It is widely applicable as it allows the properties

of a sample of any arbitrary shape to be accurately measured. The only

stipulations are that the sample must be approximately two-dimensional i.e..

it is much thinner than it is wide, and that the electrodes are placed on its

perimeter. From these measurements, electronic properties of the material

such as resistivity, carrier mobility and doping type (p-type of n-type) can be

determined [72].

Sample preparation

The thickness of the sample to be characterised must be much smaller than

its width and length in order to use the van der Pauw method. Symmetry of

the sample is desirable in reducing any calculation errors, and there cannot be

any isolated holes in the sample in order to obtain accurate results.

To carry out the measurements, four ohmic contacts are placed on the sample.

These contacts must be positioned on the edges of the sample, or as close to

this as is possible, and must be as small as possible - in calculations they are

regarded as being infinitely small. Any errors associated with their non-zero

size will be of the order D/L, where D is the average diameter of the contact

and L is the distance between the contacts.To reduce any errors introduced by

thermoelectric effects, the four contacts should be made of the same material,

and any leads running from the contacts should be made from the same batch

of wire.
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Measurement Definitions

• The contacts are numbered from 1 to 4 in a counter-clockwise order,

beginning at the top-left contact.

• The current I12 is a positive DC current injected into contact 1 and taken

out of contact 2, and is measured in amperes (A).

• The voltage V34 is a DC voltage measured between contacts 3 and 4 with

no externally applied magnetic field, measured in volts (V).

• The sheet resistance RS is measured in ohms (Ω).

Basic measurements

For each measurement, a current is applied along one edge of the sample (for

instance, I12) and the voltage across the opposite edge (in this case, V34) is

measured. From these two values, a resistance (for this example, R12,34) can

be found using Ohm’s law:

R12,34 =
V34

I12
(2.2)

Van der Pauw found that the sheet resistance of samples can be calculated

from two of these resistances - one from along a vertical edge, such as R12,34,

and a another measured along a horizontal edge, such as R23,41. The sheet

resistance is related to these by the van der Pauw formula;

e−πR12,34/Rs + e−πR23,41/Rs = 1 (2.3)
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Reciprocal measurements

The reciprocity theorem [72] states that;

RAB,CD = RCD,AB

So a more precise value of the resistances R12,34 and R23,41 can be found by

taking measurements of their reciprocal values R34,12 and R41,23 and averaging

the results.

If;

Rvertical =
R12,34 +R34,12

2
(2.4)

and

Rhorizontal =
R23,41 +R41,23

2
(2.5)

Then, the van der Pauw formula becomes

e−πRvertical/RS + e−πRhorizontal/RS = 1 (2.6)

Reversed Polarity Measurements

Repeating the resistance measurements after switching the polarities of both

the current source and the voltage meter leads to more accurate determination

of the resistance values. As the same area of the sample is being measured,

but in the opposite direction, the values of Rvertical and Rhorizontal can still be

calculated as the averages of the standard and reversed polarity measurements,

and by doing this, any offset voltages, such as thermoelectric potentials due

to the Seebeck effect, will be cancelled out.

Combining these measurements with the reciprocal measurements from above

gives;

Rvertical =
R12,34 +R34,12 +R21,43 +R43,21

4
(2.7)
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and

Rhorizontal =
R23,41 +R41,23 +R32,14 +R14,32

4
(2.8)

Measurement accuracy

The reciprocal and reversed polarity measurements both serve to check the

repeatability of the results. The reversed polarity measurements should agree

to within 3% of the corresponding standard polarity results, with the same

agreement needed between the reciprocal measurements. Any significant dis-

agreement in values could be due to a source of error within the setup, and

should be addressed in order to gain meaningful results.

Calculating sheet resistance

In general terms, the rearrangement of the van der Pauw equation to give the

sheet resistance RS in terms of known functions is not possible, unless Rvertical

= R = Rhorizontal; in this case the sheet resistance would be given by;

Rs =
πR

ln 2
(2.9)

26



2.8. Reagents

2.8 Reagents

These reagents were used in all following syntheses; Zinc Acetate dihydrate,

Scharlau

Aluminium sec-butoxide, Sigma

Citric acid monohydrate, Scharlau

Citric acid (anhydrous), Scharlau

Methyl diethanolamine, Acros

Diethanolamine, Acros

2-aminoethoxyethanol, Acros

3-amino-1-propanol, Acros

Ethanolamine, Acros

Polyoxyethylene 10-oleoyl ether (Brij 97), Sigma
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Chapter 3

Bulk Powders

3.1 Sol-gel synthesis

A previous synthesis route [73] has been adapted with the eventual aim of cre-

ating thicker films with fewer layers required, making the spin-coating process

more efficient. This route was derived from the Pechini method [74] whereby

citric acid is co-polymerized with glycol, glycerol or aminodiols [75].

Al-doped zinc oxide powders were made via a sol-gel method, where zinc cit-

rate was prepared from the reaction of aqueous zinc acetate with 1 molar

equivalent of citric acid. The liberated acetic acid was removed by rotary evap-

oration to dryness at 80◦C, followed by re-suspending the residue in distilled

water and repeating to remove any further acetic acid. Two molar equiv-

alents of an aminoalcohol chosen from methyl diethanolamine (MDEA), di-

ethanolamine (DEA), aminoethoxyethanol (AEE), 1-amino-3-propanol (PA),

and ethanolamine (EA), were added to the citrate to solubilise the Zn citrate

salt in water.

An aluminium citrate solution was prepared from aluminium sec-butoxide and
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H2N OH

(a) EA

N
HO OH

(b) MDEA
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H

OHHO

(c) DEA
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O

OH
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NH2HO
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Figure 3.1: Structures of the different aminoalcohols used; ethanolamine(EA),

methyl diethanolamine(MDEA), diethanolamine(DEA), 2-amino

ethoxyethanol(AEE ), 3-amino-1-propanol(PA).

anhydrous citric acid (1:1 ratio) in iso-propanol. Removal of the solvents was

carried out by rotary evaporation, and the solid residue was redissolved in

distilled water to prepare a standard solution. This was added to the Zn solu-

tions to form mixtures containing Al in concentrations of 0, 1, 2, 4, 8 atom%

with respect to Zn. The Zn concentration of the solutions was standardized

at 0.5 mol L−1. Aliquots of the solutions were placed in shallow crucibles and

thermally processed via gelation and calcination to form ZnO:Al powders.

A preliminary drying step carried out at between 70-160◦C in an oven was fol-

lowed by heating in air in a furnace up to 500◦C, either at 5◦C min−1 heating

rate and held for 1 hour (Slow heating profile), or by placing in a preheated

oven at 500◦C and held for 1 hour (Fast heating profile). Selected samples

were further annealed at 400, 500, or 600◦C under vacuum.

Powders were then characterised by solid state 27Al NMR, to determine the

end position of the Al, and the relative distribution of the dopant over the
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main coordination environments.

3.2 Influence of Aminoalcohol

A series of samples containing different aminoalcohols were prepared in order

to determine the effect (if any) this had on the end position of the dopant Al3+

ions within the ZnO structure. It was thought that the differing denticity of

the aminoalcohols could alter the coordination of the Al3+ ions in such a way

that the amount of Al incorporated into the ZnO structure could be optimised

by selecting the appropriate aminoalcohol. Structures are shown in Figure 3.1.

It was previously reported [9] that the aminoalcohol used (EA or DEA) in the

precursor solution had a significant impact on the crystallite orientation of the

resulting thin film. The proportion of aminoalcohol present in the sol-gel was

also thought to be important, with at least 2 molar equivalents (with respect

to Zn) required for the aqueous zinc citrate to dissolve.

Ohyama reported that the use of 2-methoxyethanol and EA, solvents with

high boiling points, resulted in transparent ZnO films with strongly preferred

orientation [9] and that better electrical and optical properties had been ob-

tained in 0.5 atom% aluminium doped ZnO thin films heated in a reducing

atmosphere [58].

Samples containing between 2 and 2.2 molar equivalents of each of the aminoal-

cohols were investigated, and showed a slightly improved proportion of tetra-

hedrally coordinated Al up to the 2.1 molar equivalent limit, at which point

any more of an excess had little effect, as shown in Figure 3.3. This trend held
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for all of the aminoalcohols used.

The 27Al NMR of samples containing 2 atom% Al synthesized using aminoalco-

hols EA, PA, AEE, DEA and MDEA are shown in Figure 3.2. These samples

were dried at 90◦C prior to calcination in a 500◦C preheated furnace. The

spectra all exhibit a narrow signal at ca 81.2 ppm, indicative of the tetrahe-

drally coordinated Al, as well as broader signals centred at 75 ppm (partially

obscured by the tetrahedral peak) and at 8.2 ppm (octahedral). The relative

proportions of these signals vary significantly for each aminoalcohol. The sam-

ple showing the largest proportion of the tetrahedral signal and the smallest of

octahedral was that containing EA. This suggested that using this aminoalco-

hol results in the highest level of dopant substitution into the Zn lattice sites.

Because of this, EA was used in all subsequent work.

a.

b.

c.

d.

e.

ppm
−50050100150

Figure 3.2: The 27Al NMR spectra of samples made with a) MDEA, b) PA c)

AEE, d) DEA, e) EA.
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There are two possible ways for EA, a bidentate ligand, to coordinate to the

zinc atoms; one is to act as a chelating ligand, and the other is to bridge two

zinc atoms [9]. EA acts as a complexing agent, also retarding Zn(II) condensa-

tion. However, the presence of this amine also increases the pH, which should

promote the formation of ZnO [48].

a.

b.

c.

d.

ppm
−50050100150

Figure 3.3: The 27Al NMR spectra of samples containing 2 atom% Al and EA

at different mole equivalents; a) 2, b) 2.05 c) 2.1 and d) 2.15

Materials prepared with DEA (b.p. 270◦C) have been seen to contain organic

species after crystallisation had occurred, as a result of incomplete combus-

tion. The presence of these impurities served to inhibit the preferred crystallite

growth along the c-axis perpendicular to the substrate, which is undesirable [9].

Although it is difficult to draw a direct relationship with the chemical nature

and the relative NMR response, it would appear that generally the higher

boiling aminoalcohols result in a less selective speciation of Al ions. It can
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Aminoalcohol Formula Boiling Point (◦C)

N-methyl-diethanolamine CH3N(C2H4OH)2 247

2-(2-amino ethoxy) ethanol C4H11NO2 223

Diethanolamine HN(CH2CH2OH)2 217

Ethanolamine C2H7NO 170

1-Amino-2-propanol C3H9NO 160

Table 3.1: Boiling point data for a range of aminoalcohols

be expected that the structure of the alkanolamine-zinc acetate complexes

formed in the sol-gels is somewhat different between the different aminoalco-

hols, which can be explained by their differing functionalities [9]. A higher

boiling aminoalcohol would presumably allow some decomposition of the Zn

complex and facilitate mobility of the metal ions during heating, before the

organic components are completely removed. In this way, nucleation and se-

lective crystallization of the ZnO could occur.

3.3 Thermal Processing

Effect of Heating Profile

To achieve fully reproducible results, it was observed that heating profiles

must be followed very precisely. Samples were all prepared using EA. The

sol-gels were dried in an oven at 90◦C followed by rapid calcination in a fur-

nace preheated to 500◦C. This treatment resulted in much lower intensities

of the broader NMR signals, indicating a higher proportion of tetrahedrally

coordinated Al compared with samples that were heated slowly in a furnace
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to 500◦C from room temperature at a rate of 2◦C min−1 (Figure 3.4).

It appears that a slow heating rate means the crystallization of the ZnO oc-

curs slowly enough to exclude excess impurity ions, resulting in much broader

NMR signals, and accordingly, lower levels of overall Al incorporation. When

annealed rapidly, kinetics are able to dominate, trapping Al ions in the ZnO

lattice, resulting in a non-equilibrium concentration.

a.

b.

ppm
−50050100150

Figure 3.4: 27Al NMR of samples containing EA and 2 atom% Al annealed

at 500◦C via a) from room temperature at 2◦C min−1 and b) in a preheated

furnace.

Interestingly, samples held at intermediate temperatures (160, 250◦C) prior to

full calcination at 500◦C, also resulted in a less intense 81.2 ppm signal when

compared with samples dried below 100◦C then subjected to rapid calcination

at 500◦C (Figure 3.5).

Although not observable in the 27Al NMR or XRD spectra, there is an impli-

cation that some nucleation is occurring even as low as 160◦C. The mobility of

chemical species in the films heated at 160◦C, for example, allow a solvolysis
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a.

b.

c.

ppm
−50050100150

Figure 3.5: 27Al NMR of samples containing EA and 2 atom% Al pre-heated

at a) 90◦C, b) 160◦C d) 250◦C before calcination at 500◦C.

and condensation crystal growth mechanism to influence crystallisation be-

havior prior to the slower solid state migration of metal ions after the solvents

and organic content of the precursor has combusted or decomposed. To test

this hypothesis, the syntheses were repeated with sol-gels containing 40% v/v

glycerol heated from room temperature at 5◦C min−1, with a 1 hour dwell time

at 160◦C. The 27Al NMR spectra of these samples showed exclusively octahe-

dral aluminium (Figure 3.6). This is an important result, as an intermediate

heating step is often used in sol-gel formation of ZnO films [18, 40, 44, 52–54].

In the case of the citrate based sol-gels at least, this heating profile now looks

to be detrimental to the doping efficiency.

The differential scanning calorimetric (DSC) and thermogravimetric (TG)

curves of a dried Zn(citrate).2EA solution is shown in Figure 3.7. Oven dry-

ing at 90◦C overnight removed all of the water and one mole equivalent of
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ppm
−50050100150

Figure 3.6: 27Al NMR of ZnO:Al with 2 atom% Al and 40% v/v glycerol,

displaying almost exclusively octahedral Al coordination.

the EA, leaving a Zn-citrate-EA gel. Thermal decomposition of the residue

occurred in three main events; firstly at 210◦C, an endothermic weight loss con-

sistent with the dehydration and transformation of the citrate to itaconate [76]

occurred with loss of H2O and CO2. The exothermic decomposition and com-

bustion of the complex occurred in 2 steps, with an initial onset at 350◦C,

and a second event beginning at 425◦C. The combustion is fully completed

by around 500◦C, leaving crystalline ZnO. The weight loss from 250-600◦C is

73.9%, which corresponds to the theoretical weight loss of 74.3% in the case

of complete conversion of Zn(citrate).EA to ZnO.

In order to further examine the differences in materials prepared using differ-

ent heating rates, a sequence of annealed samples quenched at intermediate

temperatures were prepared containing 2 atom% Al. XRD shows that onset of

ZnO crystallisation occurs above 325◦C (Figure 3.8). This parallels the NMR

data which showed that for samples heated rapidly to a range of intermediate

temperatures after drying at 90◦C, the onset of tetrahedral Al formation be-

gins below 350◦C (Figure 3.9).
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Figure 3.7: DSC-TG analysis of sol-gel derived ZnO, pre-dried at 90◦C.

Comparing the XRD data with the TG data, it is seen that some ZnO begins

to crystallise as soon as the combustion step commences. This could be a cru-

cial observation when the events leading up to nucleation and crystal growth

are considered. The observations do not significantly differ from previous XRD

studies of Zn acetate-aminoalcohol studies [9].

Effect of Calcination Temperature

It is apparent from Figure 3.10 that even using optimum processing conditions,

a material containing only 1 atom% added Al still contains some Al that is not
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Figure 3.8: XRD traces of ZnO heated at a) 200◦C, b) 300◦C, c) 350◦C, d)

400◦C

in the Zn sites of the zincite crystal form. Heating the samples at a higher tem-

perature (600◦C) reduces the relative proportion of tetrahedrally coordinated

Al and broadens the sharp NMR signal at 82 ppm (Figure 3.11). At these

higher temperatures oxygen vacancies can occur, reducing the symmetry of

the Al dopant ions, which resulting in more pentacoordinate Al. The presence

of such crystalline defects is likely to assist the migration of Al ions, possi-

bly toward the surface which would be more thermodynamically favourable if

the concentration of Al ions in the ZnO crystal sites is above the solubility

limit [38].

A sample of 8 atom% Al-doped ZnO was heated to 800◦C resulting in the

crystallisation of a minor ZnAl2O4 phase (Figure 3.12). This has been observed

previously [38, 69] and has been shown to occur at the ZnO grain boundaries
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Figure 3.9: 27Al NMR spectra of ZnO heated at a) 200◦C, b) 300◦C, c) 350◦C,

d) 400◦C.

ppm
−50050100150

Figure 3.10: 27Al NMR of ZnO with 1 atom% Al, dried at 90◦C then annealed

at 500◦C in a preheated furnace.

[42].

Vacuum Annealing

Annealing the doped ZnO sample under vacuum is expected to increase the

concentration of oxygen vacancies in the zincite structure. This allows Zn ions

to occupy interstitial sites, producing more free carriers in the material, pro-
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a.

b.
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Figure 3.11: 27Al NMR of ZnO with 2 atom% Al, dried at 90◦C then annealed

at a) 500◦C and b) 600◦C.

2θ

35 40 45 50 55 60 65 70 75 80 85

Figure 3.12: XRD trace of ZnO containing 8 atom% Al showing both the

zincite (blue) and gahnite (red) phases.

viding the source of its n-type semiconductor behavior [77]. However, under

these conditions the Al ions that occupy the zincite Zn sites can easily move to

41



Bulk Powders

a preferred interstitial position [78].The migration to interstitial sites by both

Zn and Al would reduce the symmetry of the crystal resulting in broadened

NMR lines. Furthermore, movement of Al ions from Zn sites to interstitial

sites would reduce the intensity of the 81.2 ppm signal and increase the inten-

sity of the 75 ppm signal. An alternative to heating under vacuum is to anneal

under a reducing atomosphere e.g. H2/N2, to maximise oxygen vacancies.

The NMR spectra of samples heated at a range of temperatures up to 600◦C

for 2 hours under vacuum showed accelerated broadening of the 81.2 ppm line

width compared with those heated in air for an additional hour, and there was

a marked increase in the relative intensities of the 75 ppm and 8 ppm signals

(Figure 3.13). Interestingly the previous thermal history of the sample had a

large influence over its behavior during the vacuum annealing step. Thus sam-

ples heated with slower heating profiles, produced larger and narrower signals

for the tetrahedral signal at 75 ppm, and octahedral signals at 8 ppm.

The annealing temperature under vacuum needs to be high enough to allow

some Zn ions to move to interstitial positions, but if the annealing tempera-

ture is too high, the Al ions can also take up interstitial positions, which would

result in a net removal of carriers [79].As a result there is a small temperature

window where the presence of Al doping increases the ability to provide higher

carrier concentrations. The NMR study therefore suggests that vacuum an-

nealing should be restricted below 600◦C in order to prevent the loss of carrier

density due to the presence of interstitial Al.
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a.

b.

c.
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Figure 3.13: 27Al NMR of ZnO with 2 atom% Al dried at 90◦C then a) annealed

at 500◦C before being post-annealed under vacuum at b) 400◦C and c) 600◦C.

3.4 Variation of Dopant Level

A series of samples was prepared using EA containing 0.5, 1, 2, 4 and 8 atom%

Al respectively. Samples were dried at 90◦C prior to calcination at 500◦C in

a preheated furnace. The 4 atom% Al sample showed a marked broadening

of the 82 ppm signal, compared with the 1 and 2 atom% Al doped samples,

indicating that the higher Al concentration is destroying the symmetry in the

zincite structure. More marked in the 8 atom% sample was the much higher

intensity of the broad tetrahedral signal at 75 ppm and octahedral 8.2 ppm sig-

nal. An additional weaker broad feature centered at ca 45 ppm is also visible in

this sample (Figure 3.14) which has been attributed to pentacoordinate Al [80].

A number of possibilities exist to explain these changes in the spectra. It is

likely that some Al is migrating into the tetrahedral interstitial sites of the
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ppm
−50050100150

Figure 3.14: 27Al NMR of ZnO with 8 atom% Al, dried at 90◦C and annealed

at 500◦C

zincite structure. The behaviour observed on annealing under vacuum previ-

ously (see above) suggested that this could account for some proportion of the

signal observed ca 75 ppm. A second possibility is that these signals are due

(at least in part) to an amorphous phase incorporating Zn as well as Al.

To examine this possibility in more detail, a precursor containing a Zn:Al ratio

of 1:2 which was consistent with the ZnAl2O4 phase was prepared. Calcination

at 500◦C gave a 27Al NMR spectrum consisting of 3 broad peaks, centered at

7, 37.4 and 70 ppm, (Figure 3.15) approximately in proportion to the intensity

of the broader peaks seen in the 8 atom% Al doped samples. This sample was

amorphous to X-rays, however the gahnite phase (JCPDS card No 05-0669)

commenced crystallization on calcining at 600◦C (Figure 3.16) . While no

other phase was observed at this temperature the lines were relatively broad

and weak. Further heating at a higher temperature was necessary to produce

a well crystallised material. Some tetrahedral (75 ppm) Al remained at 600◦C,

but above 700◦C the 27Al NMR spectrum showed a single sharp signal ex-

hibiting a quadrupolar line shape centered at ca 10 ppm (Figure 3.17). Thus
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crystallisation of the spinel structure of gahnite resulted in the Al ions exclu-

sively adopting octahedral lattice sites.

ppm
−50050100150

Figure 3.15: NMR of ZnAl2O4 phase annealed at 500◦C

2θ

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

Figure 3.16: NMR of ZnAl2O4 phase annealed at 500◦C
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ppm
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Figure 3.17: NMR of ZnAl2O4 phase annealed at 800◦C

A further possibility, which is considered to be less likely, is that the broader

signals in the Al-doped Zn samples are due to the tetrahedral and octahedral

Al signals observed in γ-alumina during the thermal evolution of sol-gel derived

alumina [81]. However, the proportion of tetrahedral aluminium in the current

samples is much greater, and the peak positions are shifted slightly to lower

field (5ppm, 65 ppm). No evidence for γ-alumina was observed in the powder

XRD patterns.

3.5 Quantitative Powder X-ray Diffraction

XRD data were collected on a range of ZnO powders containing various Al con-

tents. These samples were produced under conditions to maximize the level of

Al substitution into the Zn lattice sites - as determined by maximization of the

relative peak height of the 81.2 ppm 27Al NMR signal. This method used a sol

precursor containing EA, dried at 90◦C followed by rapid calcination at 500◦C

in a preheated oven. Zincite (JCPDS library file 36-1451) was the only phase

observed. Figure 3.18 shows the crystallite size variations in the series, where

the increase in dopant concentration resulted in smaller crystallite sizes. It
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has previously been shown that incorporation of dopant increases the density

of nucleation sites [82].
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Figure 3.18: Crystallite size variations with respect to Al concentration

Accurate unit cell dimensions were calculated using TOPAS XRD software.

Variation of crystallographic a and c lattice parameters were found with in-

creasing dopant level. The variations are relatively small, with both dimensions

reducing slightly as the Al content increases, as might be expected on substi-

tution of the smaller Al3+ ion into Zn2+ ion lattice sites.

It is worth comparing the variations in synthesis methods between the re-

sults observed here and the results observed in a preliminary study [83] to

explain the anomalies in the X-ray data. In the previous study [83] the sam-

ples were prepared from a precursor containing MDEA, using a 160◦C dwell

time followed by a slow heating (5◦C min−1) to 500◦C. By comparison with the

information discussed above in the current study, it is postulated that these

previous samples contain significant interstitial Al3+ in addition to substituted
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Al3+ ions in tetrahedral Zn2+ sites in the crystal structure. This resulted in

larger variations in cell dimensions across the series and showed that increas-

ing the Al doping levels has the effect of increasing the c-axis dimension while

at the same time decreasing the a-axis length. Above 4 atom%, there is no

further variation in cell dimension, indicating an apparent maximum level of

Al incorporation. However, this does not imply that all of the available Al is

actually incorporated into the ZnO at a given level of concentration; as the

solid state NMR study implies a significant proportion of the available Al is

not incorporated. Figure 3.19 shows sharp signals for the tetrahedral Al in-

corporated into the crystalline zincite structure at 81.2 ppm. Broader peaks

suggestive of gel-like alumina appeared at 75 ppm, 45 ppm, and 8.2 ppm typ-

ical of 4, 5 and 6-coordinate Al respectively.

ppm
−50050100150

Tetrahedral Al ∼ 81ppm

Octahedral Al ∼ 8ppm

Figure 3.19: 27Al NMR of ZnO with 2 atom% Al, dried at 90◦C before anneal-

ing at 500◦C.

The integration of solid state 27Al NMR signals is not reliable in determining

the relative abundance of each signal type, so it can only be estimated that

in this experiment the maximum incorporation of Al into the zincite structure

is somewhat less than the doping concentration. However, optimum dopant

levels required to maximise conductivity have been reported at approximately

the same levels [84]. Excess dopant may be problematic due to the potential
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for accumulation in grain boundaries, resulting in higher resistivity.

A series of SEM micrographs are shown of ZnO samples containing 0, 1, 2

and 4 atom% Al, produced using a sol precursor containing EA, dried at 90◦C

followed by rapid calcination at 500◦C in a preheated oven.

(a) 0 atom% Al (b) 1 atom% Al

(c) 2 (d) 4 atom% Al

Figure 3.20: SEM micrographs of pure and Al-doped ZnO (5mm = 100nm)

100,000x magnification .

These show a reduction in crystallite size with doping level, from around 30nm

for the undoped samples, to approximately 10nm for sampled containing 4

atom% Al. This is consistent with the XRD data (Figure 3.18), as well as

results from high temperature (1200◦C) processed ZnO [42] where the lattice

parameters were both smaller for Al-doped ZnO.
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3.6 Summary

The results from this study of the ZnO:Al bulk material identified several

conditions under which Al incorporation and crystallite orientation can be

optimised.

Of the several aminoalcohols investigated, ethanolamine (EA) was found to be

most effective in terms of encouraging Al incorporation into the tetrahedral

zincite sites. This is thought to be because of its lower boiling point, evapo-

rating more quickly during annealing and facilitating the uptake of Al during

crystallisation.

The concentration of dopant added is important, with the effective doping

concentration being much less than that of the precursor. 0.5-1 atom% Al was

found to be the best doping concentration, as with higher concentrations of

Al, incorporation into the lattice sites slows, and Al is seen to segregate into

the grain boundaries.

A heating profile comprised of a pre-annealing step at 90◦C followed by an-

nealing at 500◦C in air gave the best result in terms of Al incorporation. Post

-annealing under vacuum at 500◦C served to reduce the octahedral resonance,

but resulted in a broad shoulder forming on the tetrahedral peak, making its

effect harder to characterise.

Quantitative XRD shows a reduction in crystallite size with increasing Al con-

centration.

Identifying and understanding these factors was important in order to produce

thin films with desirable optical and electrical properties.
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Chapter 4

Thin-Films

4.1 General

The sols from which the powders in the previous section were derived, were

used to fabricate thin films. The thermal processing conditions shown to max-

imise Al incorporation and encourage preferential c-axis orientation in the bulk

material were used, and while this did not guarantee the same results, it was

thought to show similar trends. The concentrations were all 0.5M, with 2 mole

equivalents of EA (with respect to Zn), and dopant Al concentrations ranged

from 0-4 atom%. The only modification made was the addition of a non-ionic

surfactant, Brij 97 (polyoxyethylene 10-oleoyl ether), at a concentration of 1%

w/w, to aid in the wetting of the substrate.

Film thickness was of the order of 100 nm and nanocrystallites were preferen-

tially aligned along the (002) plane (c-axis) according to XRD (refer to Fig-

ure 4.1). Interestingly, these samples showed that higher dopant levels resulted

in increased c-axis alignment. Given that the levels of inter-grain alumina are

also likely to be high, it is predicted that these are less likely to demonstrate

low resistivities.
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Figure 4.1: 1 layer, 2 atom% Al heated with Hotplate profile.

Initial films were coated onto glass substrates, as these are inexpensive, and

suitable for thermal processing at the low temperatures used. The parameters

for spin coating a suitable film i.e with even coverage of the substrate and

without defects such as streaking or pinholes, were determined using films

coated onto glass substrates. When this process was optimised, films were

then coated onto quartz substrates, which were more suitable for measuring

film properties such as resistivity and transparency.

4.2 Spin-coating

The substrates were cleaned by soaking overnight in a concentrated solution of

mildly alkaline Pyroneg glass-wash powder in distilled water. They were then

rinsed with distilled water, and dried with lint-free tissue. This also removed

any residual particulates on the substrates. The surfactant was added to the

sol gels, which were thoroughly mixed and allowed to settle. Before being

deposited onto the substrate, the sols were filtered through a 0.2 µm syringe

filter. Samples were spun at 3000 rpm for 30 seconds using a spin coater (Lau-

rell Technologies Model WS-400E-6NPP-Lite). A sequential heating treatment
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followed, with several variations investigated (based on the results from the

powders) to better determine the effect of the heating profile on the proper-

ties of the resulting films. Multi layer films were achieved by repeating the

spin-coating process after each heat treatment.

Effect of Ethanolamine

It was demonstrated in the previous chapter that the presence of an aminoal-

cohol has a marked effect on the crystallisation process and incorporation of

Al into the crystal structure of ZnO:Al powders. Accordingly, the choice of

aminoalcohol is thought to play a role in the crystal orientation of thin films, in

terms of influencing any preferential orientation as well as the level of effective

Al incorporation, both of which are factors considered when optimising the

electrical and optical properties.

Structural relaxation of the film before crystallisation occurs has been iden-

tified as an important step in gaining denser films with strong preferential

orientation [9]. Higher boiling point solvents and slower heating rates would

assist this, as evaporation during heating would occur more slowly, allowing

more time for structural relaxation, and avoiding porous films [85]. It would

be expected that preferential alignment of the crystallites could occur much

more easily in denser films compared with those that are more porous.

Ethanolamine has a boiling point of 170◦C, and serves to coordinate Zn atoms.

Because of its high boiling point, it is expected that it remains in the films

both during and after crystallisation, and as such, has an effect on the molec-

ular scale on the behaviour of the film when it crystallises [9].
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4.3 Thermal Processing

It has been well documented [9, 40, 48] that the pre-heating temperature used

when fabricating thin films has effects on both the physical morphology and

crystalline film structure. Specifically, the grain size and density are known

to increase with higher pre-annealing temperature up to a limit of around

300◦C [48]. The porosity was also noted to increase with increasing pre-

treatment temperature [40].

Directional heating using a hotplate was mentioned in the literature as being

assistive in producing films with preferential (002) c-axis orientation, which has

been associated with lower resistivities [40]. This was investigated compared

with non-directional heating methods for both single and multilayer films (Fig-

ure 4.2). Films containing 2 atom%Al were heated at 90◦C for 15 minutes in

a pre-heated oven and on a hotplate respectively. XRD patterns of the films

show the presence of only an (002) peak for both heating methods, but this

is much stronger and sharper for the films subjected to directional heating, as

expected.

The effect of temperature on the extent of preferential alignment aided by di-

rectional heating was also considered, with further films containing 2 atom%

Al heated on a hotplate for 15 minutes at different temperatures. Charac-

terisation with XRD showed 3 peaks, the broad (100) and (101) peaks either

side of the sharper (002) peak. In the single layer films, heating at 160◦C and

250◦C had approximately the same effect on the crystallite orientation, while

heating at 90◦C showed the highest degree of preferential c-axis alignment

(Figure 4.3a). Films with two layers showed an almost random orientation

when heated at 250◦C, while samples heated at 90◦C and 160◦C had sharper
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(a) 1 layer

2θ

35 40 45

(b) 5 layers

Figure 4.2: XRD patterns comparing films pre-heated at 90◦C in an oven

(blue) and on a hotplate (green).

and more intense (002) peaks, but still with some (100) and (101) orientation

(Figure 4.3b).

Films were also heated for 15, 30, 45 and 60 minutes respectively at 90◦C

on a hotplate to determine whether or not the preferential orientation of the

crystallites improved with time. The 1-layer samples showed little variance,

displaying an approximate 1:2:1 ratio of the (100), (002) and (101) signals re-

spectively for each of the heating durations (Figure 4.4a). Films with 2 layers

gave a similar result; with films heated for longer than 15 minutes showing the

same 1:2:1 ratio of peaks. The films heated for 15 minutes however, showed

strong (002) alignment, with little contribution from other orientations (Fig-

ure 4.4b).

With guidance from the analogous powders, four heating profiles were selected

in order to illustrate the effect of the thermal treatment on the properties of

the resulting films. The heating profiles were as follows;

• Ramp: Heating slowly to 500◦C in an oven, at a rate of 2◦C min−1.
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2θ

35 40 45

(a) 1 layer

2θ

35 40 45

(b) 5 layers

Figure 4.3: XRD patterns comparing different hotplate pre-annealing temper-

atures 90◦C (blue), 150◦C (green) and 200◦C (red)

• Fast: Drying at 90◦C (1 hour), then annealing at 500◦C (1 hour), in

preheated furnaces.

• Hotplate: Drying on a hotplate at 90◦C (15 minutes), then annealing at

500◦C (1 hour) in a preheated furnace.

• Slow: Drying at 90◦C (1 hour) with an intermediate step at 150◦C (1

hour), followed by annealing at 500◦C (1 hour) in a preheated furnace.

4.3.1 Post-Annealing Treatment

Many studies have been focused on the control of preferential orientation of

ZnO films by their post-annealing thermal treatment [86–88]. These reports

indicate that post-annealing of films in a reducing atmosphere i.e. under vac-

uum or a reducing gas such as N2, decreased the resistivity of the films by a

marked amount. Lee reports that electrical resistivity values of films decreased

by approximately one order of magnitude after applying a second heat treat-

ment in a reducing atmosphere [44]. In a reducing atmosphere, the number

of oxygen vacancies increases, and the free carrier concentration in the film
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(a) 1 layer
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Figure 4.4: XRD patterns comparing different durations of pre-annealing heat-

ing time on a hotplate;15 minutes (blue), 30 minutes (green), 45 minutes (red)

and 1 hour (cyan).

may also be increased by oxygen annihilation from the ZnO crystals releasing

carriers previously trapped in the grain boundaries [18, 55].

In following with these reports, after the initial heat treatment, films were

heated under vacuum at 500◦C for 1 hour, after which resistivity and trans-

parency measurements were taken. The same films were then post-annealed

again at 500◦C, this time under an H2/N2 atmosphere for 1 hour, and the

characterisation measurements repeated.

4.4 Film Structure

Ideally, films would have a very homogeneous surface so as to reduce any

inelastic scattering processes occurring on the surface which can lead to in-

creased resistivities. This type of surface morphology has been observed [23],

and shows that Al-doped ZnO films are comprised of more dense grains, and
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a larger number of them compared with pure ZnO films. The resulting large

surface area to volume ratio makes these films suitable for gas sensing and

optical applications, as it would lead to higher gas/UV adsorption and more

efficient devices [59].

As seen in the powder system, the annealing temperature the films are sub-

jected to influences the structure of the resulting films. Ohyama reports the

progression from small particles arranged in a pile on top of the substrate at

300◦C, to a layer of homogeneously sized particles aligned perpendicular to the

substrate at 500◦C, right through to random orientation of particles resulting

in high surface roughness for samples heated above 600◦C [9]. A decrease in

this surface roughness was exhibited for one group when higher pre-annealing

temperatures were used [48].

From a study of ZnO:Ga films, it was explained that the c-axis orientation can

be described by Drift’s ”Survival of the fastest” model [89]. By this model,

the initial deposition stage can produce nucleation of varying orientation, but

only crystallites with the fastest growth rates, i.e. those growing away from

from the substrate as opposed to growing across it and into other crystals,

will survive, and in this way, preferential c-axis orientation is observed [29].

Petrov also reported that a random orientation of the crystallites is obtained

during the nucleation process on non-matching substrate surface and later dur-

ing film growth the crystallites are oriented with their fastest growing (001)

planes, thus leading to an axial texture [90].

No other Al phase was seen in the XRD patterns of the films, suggesting that

Al had been substituted for Zn in the crystal lattice, or had separated out into

the grain boundaries, either way introducing little to no change in the zincite
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structure [29, 59]. All films show a strong diffraction peak indication (002)

orientation. The intensity of this peak, as well as of the other orientations, is

shown to be affected by the annealing temperature as well as the Al concen-

tration and film thickness.

Studies have shown a decrease in the FWHM of the (002) peak, implying

more crystalline samples with increased grain size, with an increase in the pre-

annealing temperature [40, 48]. It has also been demonstrated that increases

in the Al concentration have the opposite effect, reducing both the grain size

and crystallinity at higher concentrations [44, 59]. This may be due to the

difference in size of the Zn2+ and Al3+ ions inducing stress into the crystal lat-

tice with higher doping concentrations [44]. Increases in the Al concentration

have also been seen to shift diffraction peaks to lower θ values, confirming the

presence of Al3+ ions [59].

The intensity of the (002) peak was seen to increase with film thickness (Figure

4.5) and can be attributed to larger grain sizes and more crystalline films [29].

A decrease in the FWHM of this peak , indicating an improvement of structural

properties with increasing film thickness is also seen, as reported by several

groups [29, 91].

4.5 Visible Transparency

A table summarising the effects of different heat treatments, film thickness and

dopant concentration is shown below (Table 4.1). The films showed trans-

parency in the visible range, most with transmission above 80%. This region

was of particular interest as it includes the active wavelengths of light that

would be absorbed in a solar cell, and contribute to the conversion of photons
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Figure 4.5: Films containing 2 atom% Al annealed using the Hotplate profile,

with a) 1, b) 2, c) 3, d) 4, and e) 5 layers

to electrons. In this way, the average transmittance of the film, notably when

used as a window layer, is a major determinant in solar cell performance [91].

Islam investigated a larger range in the spectrum, and found that more absorp-

tion occurred in thicker films at longer wavelengths, above 1000nm. This was

thought to be a result of increased carrier concentrations in thicker films [91]

which forecasts problems with optimising both transparency and resistivity in

the same material.

All spectra showed an absorption edge at around 370nm, which corresponds

with the band gap of ZnO (3.3 eV). This absorption edge was seen to shift

to shorter wavelengths with increasing Al concentration, which implied an

increase in the band gap because of the introduction of Al into the zincite

structure [23]. This shift has been explained by way of both the Burstein-
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4.5. Visible Transparency

Moss effect and the compressive strain the Al-doping induced in the film [59].

Variations in transparency were noted in relation to both the thickness of

the sample, and the heating process to which the films had been subjected.

For both single and 4-layer films containing 0 (Figure 4.6) and 0.5 atom% Al

(Figure 4.7), heating following the Hotplate profile obtained the highest trans-

parencies . Films containing 1 atom% Al, showed the highest transparencies

when heated following the Slow profile (Figure 4.8), while films with 2 atom%

Al had the best transparencies when heated with the Ramp profile (Figure 4.9).
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Figure 4.6: Four layer film with 0 atom% Al

From these results, it was determined that the higher the Al concentration of

the film, the slower it needs to be heated in order to obtain optimum trans-

parency. This may be due to the impact of structural relaxation of the film,
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Average

Transmittance (%)

Heating Profile atom %Al 1 layer 4 layers

Slow 0 91 85

Slow 0.5 96 85

Slow 1 84 93

Slow 2 92 92

Hotplate 0 96 85

Hotplate 0.5 97 93

Hotplate 1 94 82

Hotplate 2 96 75

Fast 0 91 82

Fast 0.5 96 87

Fast 1 74 91

Fast 2 91 94

Ramp 0 82 86

Ramp 0.5 90 84

Ramp 1 90 87

Ramp 2 95 94

Table 4.1: Transmittance data for films over a range of Al concentrations and

thermal treatments
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Figure 4.7: Four layer film with 0.5 atom% Al

leading to more ordered crystal orientation, as mentioned previously. The

Slow profile which contained an intermediate 150◦C step as well as the Ramp

profile would facilitate this, with more aligned crystallites in the film serving

to increase the transmittance.

The effect of the rate of heating, rather than the temperature of heating on the

optical transmittance of the films was investigated. This was due to data ob-

tained from the powders system, which showed that optimal incorporation of

Al occurred for samples annealed at 500◦C. An increase in transmittance with

higher temperature treatments had been observed [48], and may be because

of less optical scattering from denser grains, as well as grain growth reducing

the amount of material in the grain boundaries [48].
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Figure 4.8: Four layer films with 1 atom% Al heated with slow profile.

It was found that undoped and 0.5 atom% Al doped films showed much higher

transmittance in the single layer films compared with the 4-layer films, while

higher Al concentrations show little difference between the thicker and thin-

ner films. This may be because of the relatively small difference in thickness

between these two sets of films. In general, thinner films are shown to ex-

hibit higher transmittances on average than thicker films, a trend which has

been commonly observed [29,52,91,92]. This has been attributed to increased

emissions from defects in the films, the intensities of which have been found

to increase with film thickness [92].

Interestingly, the films heated using the Ramp profile clearly showed higher

transmittance with higher amounts of Al. This trend follows with the results of

Periasamy [59] who observed transmittances over 85% with a doping concen-
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Figure 4.9: Four layer films with 2 atom% Al heated with Ramp profile.

tration of 6 atom% Al. In contrast, Lee reported higher transmittances for 1

atom% Al doped films, compared with lower values for the undoped, and more

highly doped films containing 2 and 3 atom% Al [44]. Other heating profiles

studied failed to exhibit any clear trends with regards to Al concentration.

4.6 Resistivity

Resistivity measurements were carried out on a sample of 32 films, each with a

different combination of Al content, thickness and heating profile. Films with

1 and 4 layers were characterised to determine any differences in electrical and

optical properties caused by the amount of material in the film. The electrical

conductivity of the films is dependant on the free carrier concentration within

the material, and thus can be affected by all of these variables.
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These films were all treated post-annealing by heating at 500◦C for an hour

under vacuum after their initial heat treatment. Attempts to make resistivity

measurements on films which had not been subjected to treatment in a reduc-

ing atmosphere resulted in high resistivities.

The general trend with all films was a reduction of resistivity with an increase

in Al doping concentration up to 1 atom% Al, after which the resistivity began

to climb. This has been well explored [58,59,93] and is a result of the addition

of Al providing more free carriers in the material, up to a point where the ad-

dition of more Al leads to segregation of Al in the grain boundaries with higher

doping concentration, which serves to increase the resistivity of the films.

Of the single layer films, those with 0.5 and 1atom% Al and subjected to di-

rectional heating, following the Hotplate profile, showed the lowest resistivities

(Figure 4.10). The four layer films also gave the best result when doped with

0.5 and 1 atom% Al, but in contrast, when heated following the Fast profile

(Figure 4.11). These observations can be explained by the structural prop-

erties of the films, in terms of crystallite size and orientation. It has been

established that resistivities are lower when the film is more crystalline and

highly (002) oriented [11, 18].

In general, the 4-layer films showed lower resistivities compared with their 1

layer equivalents. This behaviour is well documented [23,29,46]. It can be at-

tributed to the increase in carrier concentration with increasing thickness, due

to increasing grain size incorporating previously ’trapped’ material from the

grain boundaries and thus reducing their negative contributions [18]. Thinner

films are likely to have more surface defects such as pinholes, as a result of

incomplete atomic bonding, which can act as carrier traps, in a similar way to
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Figure 4.10: Resistivity, 1 layer, diff heating.

grain boundaries. These immobilise a proportion of the carriers, and so take

on an electrical charge, which reduces mobility further by acting as a potential

barrier in the film [91]. Previous work has noted the complex effect of film

thickness on resistivity values [92], with wide variance in the resistivities of

pure ZnO films observed with increasing thickness [23].

Of the 4-layer films, the lowest resistivities were demonstrated by films heated

non-directionally, which implies a lesser degree of preferential c-axis orienta-

tion, while the highest resistivities were found for films heated on a hotplate,

as shown below. This may be a result of the influence structural relaxation of

the film has over the crystallisation process. Films heated slowly have more

time to crystallise, and solvents can evaporate less rapidly, and thus have less

effect on the composition and molecular structure of the final film [23]. Higher
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Figure 4.11: Resistivity, 4 layers, diff heating

crystallite orientation has been shown to be effective in reducing the resistivity

of ZnO:Al thin films [58].

Effect of Post-annealing under H2/N2

Post-annealing treatment under a reducing atmosphere of H2/N2 proved to

reduce the resistivity of the films by around an order of magnitude, as has

been seen in other work [44].This was best exemplified for films heated with

the Hotplate profile, as shown below (Figure 4.12);

4.7 Summary

For films post annealed under vacuum, the lowest resistivity was shown by a

film containing 1 atom% Al, heated using the Fast profile. The highest was
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Figure 4.12: Resistivity as a function of Al content for samples heated on a

hotplate.

seen for a sample with 1 atom %Al, heated with the Hotplate profile.

When films were subjected to further post-annealing under H2N2, the resis-

tivities dropped by around an order of magnitude, with the lowest resistivity

shown for a sample containing 1 atom%Al, heated using the Slow profile, while

the highest was shown with 0.5 atom%Al heated with the Hotplate profile.

Transparencies for all films were above 80% in the visible range, and thicker

films generally demonstrated lower transmittances. Films with higher Al

concentrations gave higher transmittances when heated using slower profiles,

which allowed more time for structural relaxation and incorporation of dopant

into the film. Films with lower Al concentrations gave higher transmittances
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Resistivity (Ωcm)

Heating Profile Al (atom%) Vacuum H2N2

Fast 0.5 1.97x100 2.02x100

Ramp 0.5 2.23x100 —

Slow 0.5 2.56x100 5.84x100

Hotplate 0.5 1.89x102 9.50x100

Fast 1 1.83x100 1.69x100

Ramp 1 2.06x100 —

Slow 1 2.47x100 8.98x10−1

Hotplate 1 1.27x101 3.36x100

Table 4.2: Resistivity data for films over a range of Al concentrations and

thermal treatments

when heated following the Hotplate profile, which implies preferential c-axis

orientation of the crystallites is important for films with 0.5-1 atom% dopant.

Increased film thickness gave films with lower resistivities, but also lower trans-

parencies. This results in a trade-off between optical and electrical properties

in terms of film thickness.

The most successful films produced, exhibiting the best balance of desirable

characteristics such as low resistivity and high transparency contained 0.5

atom% Al and were heated following the Fast profile, which comprised pre-

annealing at 90◦C for an hour before annealing at 500◦C, followed by vacuum

and H2/N2 post-annealing treatments.
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Chapter 5

Synchrotron Experiments

Figure 5.1: Setup of the powder diffraction beamline at The Australian Syn-

chrotron

The kinetics of nucleation of crystalline ZnO, and dopant incorporation of

Al into the zincite structure were investigated using X-ray diffraction in an

attempt to provide insight into the dynamics of the crystallisation and coa-

lescence effects in Al-doped ZnO gels. As a prelude to studies on thin films,



Synchrotron Experiments

detailed crystallographic analysis of the materials formed from gels as a func-

tion of the deposition conditions and dopant species were carried out, with the

aim of capturing the nucleation process, (in particular, the point at which the

dopant begins to be incorporated into the growing crystallite) as a function of

thermal treatments, dopant concentration, etc. There is no reason to suggest

that the nucleation effects observed here will be any different to what occurs

in a thin film.

These experiments were conducted on the powder diffraction beam line at the

Australian Synchrotron, using the Cyberstar hot air blower with the Mythen

detector. Gel samples in quartz capillaries were mounted in the standard

fashion Figure 5.2b. Using this setup data was obtained in real-time during

annealing at temperatures up to 800◦C.

The synchrotron XRD experiments complement ongoing NMR and electrical

measurements to give a more complete picture of the ZnO:Al system and how

the processing conditions affect the structure and hence the electrical and op-

tical properties of Al-doped ZnO thin films.

The experiments fall into two series: in situ calcination studies of pre-dried

gels, and thermal treatment of pre-calcined materials. For the calcination

studies, 5 different doping levels (0, 1, 2, 4, 8 atom% Al) were investigated

under each condition, and a range of heating experiments were performed.

Pre-calcined samples with doping levels of 0, 1, 2 and 4 atom% Al were in-

vestigated, and were mounted in quartz capillaries sealed under vacuum. The

thermal history of the samples covered a range of different heating conditions,

and included samples treated pre-annealing by slow or rapid heating, followed
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Figure 5.2: Setup of the Powder Diffraction Beamline

by rapid heating to anneal at 500 or 600◦C for 2 hrs.

Synchrotron radiation was essential for these experiments because the changes

of interest in the ZnO lattice parameters were very subtle, as the doping levels

of Al are very low (1-2 atom%). It also facilitated in situ measurements as a

function of temperature so as to observe the formation of ZnO nuclei, which

are small and weakly scattering. The speed of collection was also much more

efficient, with analyses made in the lab taking 4 hours compared with just a

few minutes at the synchrotron.
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Synchrotron Experiments

At the time of publication, only limited data, mainly on the ex-situ series had

been processed, but this gives a clearer picture of the effect of both dopant con-

centration and thermal treatment on these materials than had previously been

obtained using lab techniques. Also shown is a time series observation of the

nucleation of a sample of undoped ZnO at different temperatures (Figure 5.3).
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Figure 5.3: The nucleation of undoped ZnO over time at 500◦C, 600◦C and

800◦C.

Full pattern fitting was carried out for all samples using TOPAS software.

Samples annealed at 500◦C, with range of Al concentrations are shown below

(Figure 5.4). These show a slight increase in the FWHM of the (002) peak

with increasing Al concentration, demonstrating decreased crystallinity in the

material and smaller grain sizes (Figure 5.5) This agrees with XRD data ob-
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tained in the lab, but provides more accuracy and reliability.

The effect of annealing temperature on these materials was also investigated,

with samples annealed between 5-800◦C . Results show a steady increase in

crystallite size with increasing annealing temperature (Figure 5.6).

The lattice parameters for the a- and c- axes were calculated with respect

to changes in the Al concentration (Figure 5.7) and annealing temperature

(Figure 5.8). As shown by the error bars on the plots, there is little significant

change in the lattice parameters both as a function of Al concentration and

annealing temperature.

These synchrotron experiments allowed a more detailed investigation into the

nucleation of Al-doped ZnO, and coupled with other results, give a greater

understanding of this system, in particular the effect of different variables

with regards to structure and physical properties.
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Figure 5.4: XRD patterns of ZnO with various amounts of Al-dopant
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Figure 5.5: Effect of Al doping on Crystallite Size
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Figure 5.6: Effect of annealing temperature on crystallite size.
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Figure 5.7: Effect of Al concentration on the lattice parameters.
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Chapter 6

Conclusions

The research undertaken over the course of this thesis was an investigation into

optimising the structural, optical and electrical properties of aluminium-doped

zinc oxide thin films prepared via a sol-gel route, for use as a transparent con-

ductive material. Possible applications include incorporation in thin film solar

cells, flat panel displays and in gas-sensing devices.

The first section (Chapter 3) focused on a 27Al NMR study of the bulk material,

to understand the way in which Al is incorporated into the zincite structure.

Two main environments were identified as incorporation sites for the Al - either

substituting for Zn in the Zn lattice sites, or incorporating in interstitial sites.

The NMR signals for these environments were seen at ∼ 81 ppm (tetrahedral

Al) and ∼ 8 ppm (octahedral Al) respectively. By substituting for a Zn2+ ion,

Al3+ incorporation results in a free electron, increasing the conductivity of the

sample, so optimisation was directed at increasing the proportion of this type

of coordination.

In samples with higher dopant concentration, broad, weak signals were also

observed at 75 ppm, 45 ppm, and 8.2 ppm, which are typical of 4, 5 and 6-
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coordinate Al respectively. It has been established that the effective doping

concentration is in fact much less than the dopant concentration in the pre-

cursor. This has been attributed to agglomeration of excess Al in the grain

boundaries, which has a negative effect on electrical properties of the material.

The incorporation of an aminoalcohol species in the precursor solution served

to solubilise the ZnO:citrate complex, and also contributed to the way in

which Al was incorporated into the structure. Ethanolamine, diethanolamine,

methyl-diethanolamine, 2-amino-ethoxy ethanol and 1-amino-3-propanol were

investigated. Lower boiling point aminoalcohols gave better result in terms

of maximising tetrahedral Al coordination and minimising contributions from

other coordinations. This is thought to be a result of the aminoalcohol evapo-

rating more quickly on heating and/or remaining in the gel during crystallisa-

tion, serving to include more Al in the crystallised product, and to minimise

stresses in the film during crystallisation. For these reasons, ethanolamine

(EA) was chosen to be used in all further syntheses.

The thermal treatment of the bulk material was also shown to effect the incor-

poration of Al. The optimum annealing temperature was found to be 500◦C,

with a pre-annealing drying step at 90◦C. Both steps involved heating pre-

heated furnaces in air for an hour. Slower heating profiles such as heating at

5◦C/min up to 500◦C gave NMR spectra showing much lower signal for tetra-

hedral Al, and higher signal for octahedral and amorphous Al. Faster profiles

such as annealing at 500◦C with no drying step also resulted in lower signal for

tetrahedral Al. These results show that a balance must be obtained in terms of

heating speed - too slow or too fast and less of the dopant will be incorporated

into a tetrahedral environment which is optimal for good electronic properties.
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Post annealing treatment of the material under vacuum was effective in re-

ducing the octahedral signal, but this was not translated to an increase in

the tetrahedral signal, implying the migration of Al into higher coordination

states, or out of the crystal lattice completely.

Varying the concentration of dopant between 1–8 atom% showed good incor-

poration up to 2 atom%, but with higher concentrations, a larger proportion of

dopant was excluded, incorporated instead into the grain boundaries. Quanti-

tative powder XRD showed a decrease in crystallite size with increasing dopant

concentration.

The second section (Chapter 4) made use of the optimised processing param-

eters for Al incorporation, as determined for the bulk material, and applied

these to the fabrication of thin films. The main focus was to create films with

optimised electrical and optical properties, specifically low resistivity and high

transparency. Films with 0.5-1atom %Al and multiple layers showed the low-

est resistivities. All films were subjected to post annealing under vacuum at

500◦C. Without this step, resistivities were high and measurements gave unre-

liable results in terms of the Hall effect. Further post annealing under H2/N2

at 500◦C decreased resistivity by an order of magnitude.

Transparencies for all films were above 80% in the visible range, and the thicker

multi-layer films generally demonstrated lower transmittances. Films with

higher Al concentrations gave higher transmittances when heated more slowly,

while films with lower Al concentrations gave higher transmittances when sub-

jected to rapid directional heating. Preferential c-axis orientation was observed

for all films, but was increased with increasing film thickness, and for films sub-

jected to directional heating on a hotplate. Increased film thickness gave films
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with lower resistivities, but also lower transparencies. This results in a trade-

off between optical and electrical properties in terms of film thickness.The best

films, as with the bulk material, were dried at 90◦C before annealing at 500◦C.

This was followed by post annealing treatments under vacuum and H2/N2.

6.1 Future Work

To further the understanding of the processing conditions required to produce

optimised thin films of Al-doped ZnO, further research should be carried out

in the following areas;

• Greater insight into the nucleation process of ZnO will provide more

information on optimising the incorporation of Al into these materials.

This may be possible using synchrotron radiation and carrying out in

situ experiments to observe and characterise the nucleation process as a

function of time. This could be applied to both bulk materials and/or

films.

• While it is known that thermal treatment under a reducing atmosphere

maximises oxygen vacancies in the material, further investigation should

be carried out as to the end position of dopant ions as a result of this

treatment, by means of 27Al NMR.

• Adjustments to the sol-gel solution should be looked into for creating

thicker films in fewer layers. Based on the current results, this would

reduce resistivities and may lessen the drop in transparency seen for

films with multiple layers.
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