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Abstract

Random Forests have been shown to perform very
well in propositional learning. FORF is an upgrade
of Random Forests for relational data. In this pa-
per we investigate shortcomings of FORF and pro-
pose an alternative algorithm, R*F, for generat-
ing Random Forests over relational data. R*F em-
ploys randomly generated relational rules as fully
self-contained Boolean tests inside each node in a
tree and thus can be viewed as an instance of dy-
namic propositionalization. The implementation of
R*F allows for the simultaneous or parallel growth
of all the branches of all the trees in the ensem-
ble in an efficient shared, but still single-threaded
way. Experiments favorably compare R*F to both
FORF and the combination of static proposition-
alization together with standard Random Forests.
Various strategies for tree initialization and split-
ting of nodes, as well as resulting ensemble size,
diversity, and computational complexity of R*F are
also investigated.

1

In propositional learning Random Forests [Breiman, 2001]
are one of the best performing off-the-shelf methods, com-
petitive with both support vector machines and boosted deci-
sion trees. In relational learning ensemble methods in gen-
eral and Random Forests specifically have not been investi-
gated widely. Both [Quinlan, 2000] and [Assche et al., 2006]
specifically report issues with excessive runtimes, and com-
paratively small increases over non-ensemble approaches. In
this paper we try to address these issues by using a form
of dynamic propositionalization in the spirit of [Landwehr
et al., 2006] using random relational rules [Anderson and
Pfahringer, 2007] as self-contained boolean tests inside de-
cision tree nodes. We introduce a new algorithm that grows
forests in a parallel fashion which minimizes costly cover-
age computation at the potential expense of diversity. Several
variants of the plain algorithm can achieve satisfactory diver-
sity without compromising the parallel generation process.
The next section describes the new algorithm and discusses
its complexity. Experimental results are reported and dis-
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cussed in Section 3. Finally, Section 4 summarises and points
out directions for future research.

2 Random Forests using Random Relational
Rules

Propositional Random Forests [Breiman, 2001] are a combi-
nation of Bagging with randomized decision tree induction:
at each bagging iteration one randomized decision tree is gen-
erated for the respective bootstrap sample of the training data.
Tree induction can be randomized in various different ways;
in Random Forests it is done in the following way: instead of
choosing the best test to split data at internal tree nodes, first a
subset of all possible attributes is drawn at random, and then
the best possible test out of that subset is selected. The size of
this subset is a parameter specified by the user, but generally
a default of v num_attributes has been found to work well.

In [Assche er al., 2006], Random Forests were upgraded
to relational problem domains by replacing the propositional
decision tree learner with a randomized version of a relational
decision tree learner (TILDE). This approach exhibits two
problems:

o Interpretation of relational trees is not straightforward:
every node in a tree is either a test or a predicate, which
might introducing new variables. The scope of these
variables is limited to the successful (or “yes”) branches
of the tree. Each path from the root to a leaf in the tree
can then be interpreted as a logical rule, but care must
be taken with negated (or “no”) branches, which must
be represented by complex negations to ensure proper
variable treatment.

The second and more practical issue is a consequence of
the specific form of randomization chosen in FORF. In
propositional Random Forest generation the total num-
ber of attributes available is a constant known upfront
and it is therefore straightforward to specify the size for
and compute random subsets thereof. When growing
a relational decision tree, the number of possible tests
or predicates at a given node is variable and a function
of the current path from the root to the respective node.
Also, in general this number tends to be both large and
to grow quickly with the depth of the tree. In [Assche
et al., 20061, a sampling approach was taken to estimate
the number of possible tests and predicates applicable



at a node, and then a user-specified percentage of these
literals was actually evaluated to determine the single
“best” literal out of this subset. This approach is prob-
lematic for various reasons. First of all it is computa-
tionally expensive, as both the estimation and the sub-
sequent coverage computation for the subset are expen-
sive and have to be repeated for every single node in
every tree in the ensemble. In their empirical investi-
gation they have found that they need high percentages
(25% and more) to achieve good performance, contrary
to propositional Random Forests, which do well with
much smaller percentages. Not surprisingly, FORF is
therefore much slower than its propositional counterpart,
and also does not seem to yield such impressive accuracy
improvements as Random Forests do. The latter might
be a consequence of the large number of tests and pred-
icates being explored; there is some anecdotal evidence,
but unfortunately no good publication, that suggests that
even Random Forests struggle to cope with very large
numbers of attributes, as tree construction runs out of
examples exponentially fast.

To combat these issues, R*F takes a very different ap-
proach to relational Random Forest construction inspired by
propositionalization. Each node in the tree uses one fully
self-contained logical rule as a boolean test. If an example
is covered by the rule, the test succeeds, and the example is
passed down the “yes” branch; otherwise the test fails, and
the example is passed down the “no” branch. This immedi-
ately alleviates the interpretation problem mentioned above
and also simplifies and speeds up the randomized tree con-
struction: every node simply needs to choose the best of a
number of random relational rules, which from the tree con-
struction point of view is simply choosing one boolean at-
tribute from a random set of boolean attributes. Thus R*F
can be viewed as a Random Forest, where split attribute se-
lection has been replaced with selecting one out of a small set
of boolean features which are generated by some form of or-
acle on the fly as needed. Every one of these random features
or rules is only evaluated for coverage once on the full dataset,
and can then be used by any split node in any of all the trees
of the ensemble, thus cutting down drastically on coverage
computation compared to FORF. Such coverage computation
is the single most expensive step in most relational learning
systems.

The following subsections will explain the construction of
random relational rules, detail the construction of the random
forests based on these random rules, and discuss its computa-
tional complexity.

2.1 Rule Construction

The random relational rules employed here are definite
clauses, which comprise both predicates containing variables,
as well as tests on and comparisons between these variables
and so-called theory constants. Neither functors nor recursion
are permitted. For example, the Mutagenesis dataset [Srini-
vasan et al., 1994] comprises the following three predicates:

molecule (MolID,
atom (MolID, AtmID,

Class)

El, Quanta, Charge)
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bond (MolID, AtmIDI1,

A molecule is described by two parameters: a unique iden-
tifier and a class label (active or inactive). An atom is de-
scribed by five parameters: the identifier of the molecule it
belongs to, a unique identifier, its element type, its quanta
type, and its electrical charge. A bond is described by four
parameters: the identifier of the molecule that it belongs to,
the unique identifiers for the two atoms it is linking, as well
as its own bond type. An example of a rule generated on that
dataset is:

active (MolID) : -
atom(MolID,_,_,_,Charge),
Charge >= 0.078,
bond (Mol1ID,_,AtomID1,BondTypel),
bond (Mol1ID, _,AtomID2,BondType?2),
BondTypel != BondTypeZ2,
AtomID1 AtomID2.

AtmID2, BondType)

This rule describes all compounds that contain an atom
with a charge above 0.078 and two bonds of different types
that both include a particular atom. Underscores are used here
for clarity, to denote variables not used in this rule.

Such random rules are generated in the following way: ev-
ery rule has a user-specified length; at each stage a predicate
or test is chosen uniformly at random with the following re-
strictions: for a predicate exactly one variable (or parameter)
must already appear in the rule; all other variables are new.
This ensures that clauses are linked. Tests on the other hand
may not add any new variables. Tests include the usual equal
and not-equal comparisons to other variables or theory con-
stants, as well as range comparisons for numeric arguments.
All prefixes of a rule can also be used as (shorter) random
rules. Coverage computation can produce coverage informa-
tion for all prefixes of the full rule at no additional cost.

2.2 Forest Construction

We apply Random Relational Rules to random forests by us-
ing randomly generated rules as the splitting condition or
boolean test in internal tree nodes. As the rule generation
process is independent of the current tree state it is straight-
forward to parallelize tree and indeed forest generation. The
pseudocode for the simplified Random Relational Forest al-
gorithm (Random Relational Rules - Random Forests, or
R*F) is given in Algorithm 1.

Usually cover computation is the most time-consuming op-
eration a relational learner needs to perform. This costly op-
eration is executed exactly once for each random rule on the
full dataset, and then every node on the waiting list can effi-
ciently check whether the current rule actually properly splits
its subset of the full data. This way all nodes of all trees of
the ensemble can be grown in parallel. Clearly this opera-
tion would lead to identical trees, if all trees would be started
simultaneously on the full dataset. To introduce the diver-
sity necessary for good ensemble performance the algorithm
staggers the start of individual trees, therefore different tree
nodes see different subsets of random rules before making a
split decision. Additional diversity is ensured by the use of
bagging, i.e. each root node is initialized with a randomly
drawn bootstrap sample instead of the full training set. Other



Algorithm 1 Pseudocode for the R*F algorithm

Initialize the forest
while #(open leaves) > 0 do
Generate a Rule and compute total cover
if #(root nodes) < Maximum #(trees) then
Initialize the next root node and add to open leaves
end if
for all Open Leaves do
for all possible prefixes do
Calculate infomation gain for the prefix
end for
if prefix with best infogain splits the leaf then
if said prefix is better than current best then
update current best prefix
end if
end if
increment Rule Count
if Rule Count == Maximum Rule Count then
if bestPrefix == NULL then
Close the leaf
else
Split the leaf using bestPrefix
add children to open leaves
end if
end if
end for
end while

options for inducing more diversity into the ensemble were
also tried, and will be discussed and evaluated in the next sec-
tion. Once nodes are initialized, and are not class-pure, they
are put onto a list and will wait for rules that will split their
data into two non-empty sets. After a user-defined maximum
number of rules have been seen (M RC, or maximum rule
count), a node will either be split on the best rule seen, or will
be turned into a leaf predicting an appropriate class distribu-
tion, if no rule was found to split this node. Root nodes are
an exception as they ignore the MRC setting and split on the
first non-trivial rule seen. Together with bagging this ensures
sufficient diversity of the trees, even though they are grown
in parallel from the same stream of boolean features.

To clarify the forest building procedure, Figures 1 to 3
show three exemplary stages of forest construction, with the
trees designated by letters, and internal nodes marked with
an identifier corresponding to the rule that split them. Nodes
are described by the tree designation followed by a numeric
identifier. The training data consists of 20 instances, 10 each
of two classes. The class distribution at each node is given to
the node’s left. For simplicity we assume that MRC is set to
one, i.e. splitting is done immediately, if possible at all. We
also assume that full rules (not prefixes) lead to the highest
information-gain in all cases.

Figure 1 shows the state of the forest after the first rule,
Rule Ry, has been added. Initially, the root node of Tree A,
A1, was the only node on the Open Leaf List. Now, A; has
been split, and two leaves A and A3 created. Ao, Az and the
root node of Tree B, B have been added to the Open Leaf list
and Aq has been removed from the list.

988

A

10:10
(R,
7:4 / 3>
—er

Open leaf list: A, A; B,

10:10

Figure 1: Example of R*F Forest Construction, Stage 1

Figure 2 shows the state of the forest after another rule,
R has been processed. Both As and A3 have been split, By
has been split, and most of the new leaves thus created (As
through A7 and By through B3), along with the root node of
Tree C, C1, have been added to the Open Leaf list. A4 now
contains instances of only one class (denoted by the double
circle) and so was not added to the Open Leaf list, and will
not be split any further.

Figure 3 shows the state of the forest after the third rule
R3 has been processed. Nodes As and Ag have been split,
adding Ag through A;; to the Open Leaf list. Node A7 has not
been split by R3, and therefore had its Fail count incremented.
We set the maximum fail count to 1 (to keep this example
concise), and thus A7 (marked by the crossed circle) will now
be removed from the Open Leaf list and will not be split any
further. A7 will predict a class distribution of (1/3,2/3) for
test examples. Nodes B, and B3 have been split, producing
B4 through By, of which By, B¢ and B; will be added to the
Open Leaf list, while B5 will not, as it is class-pure. C; has
been split, producing C, and C3, and the root of tree D, D1,
has also been added to the Open Leaf list.

To summarize, R4F differs from FORF [Assche ef al.,
2006], in two main ways. First of all FORF does not use full
rules in every node, but in contrast pathes from the root to
each leaf comprise rules. As logical variables can only be
shared across positive pathes, this complicates both genera-
tion as well as interpretation of such trees. Like Breiman’s
original random forest, FORF randomly restricts the set of
possible tests (features) and then picks the best test from
that restricted set. R*F on the other hand uses a fully self-
contained randomly generated relational rule as a test. As a
consequence, R*F can easily generate its trees in a staggered
parallel fashion, with each new rule being available for all
open leaves, while FORF processes both nodes and trees fully
sequentially. Even though in theory FORF could also par-
allelize node and tree generation, it could still not share the
expensive cover computation across nodes or trees the way
R*F can.

R*F can also be seen as an example of dynamic proposi-
tionalization [Landwehr et al., 2006], in that the features are
generated dynamically on-demand, and do not have to be pre-
computed in advance as would be common in static proposi-
tionalization [Kramer et al., 2000].
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Figure 2: Example of R*F Forest Construction, Stage 2

2.3 Complexity of Forest Construction

When R*F generates and evaluates a rule, it then applies
the derived test at every open leaf in each active tree. The
cost of rule evaluation is the same as for previous uses of
Random Relational Rules [Botta et al., 2003; Anderson and
Pfahringer, 2007]. As each test is applied to all open leaves,
the number of rules required to be evaluated is substantially
less than would be required if a new rule were being evaluated
for each open leaf, as in standard random forests. The number
of rules required for forest construction is heavily influenced
by the number of trees in the forest and the Maximum Rule
Count. A rough estimate for this value is the sum of the av-
erage number of rules required to construct a single tree and
the number of trees in the forest, as when the last tree in the
forest is completed, the previous trees are also likely to be
complete:

Rules required for forest generation ~ (n + s)

ey

where n is the number of trees in the forest and s is the aver-
age number of rules required to construct a single tree. Em-
pirical evidence confirming Equation 1 can be found in [An-
derson, 2009].

Because of the staggered fashion in which the trees are gen-
erated, each tree has access to at least one more rule than its
immediate successor and so its construction has probably al-
ready finished at the time the construction of that successor
finishes. Thus, when the final tree is complete, it is likely that
all previous trees are complete or nearly so.

The number of rules required to construct a single tree can
vary substantially. It is a function of the particular dataset,
the Maximum Rule Count and the particular random rules
generated. A worst case upper bound is given by:

Max #rules needed per tree = (t — 1) x MRC  (2)

where ¢ is the size of the training set and M RC' is the Maxi-
mum Rule Count. It is unlikely that this upper bound would
be reached under normal circumstances, as it describes the
pathological case where each node in the tree is split only af-
ter the maximum possible number of rules have been gener-
ated, and at every node the split has resulted in one single-
instance leaf and one leaf containing all the remaining in-
stances (see Figure 4). In practice the number of rules re-
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Figure 4: Worst-case tree

quired has always been substantially lower than this worst
case upper bound.

3 Empirical Evaluation

R*F was tested using the following standard ILP datasets:
Mutagenesis (with and without regression-unfriendly in-
stances) [Srinivasan et al., 1994], Musk]1 [Dietterich et al.,
1997], Carcinogenesis [Srinivasan et al., 1997], and Diter-
penes [Dzeroski et al., 1997]. Mutagenesis and Carcinogen-
esis were limited to low-level structural information as rep-
resented by atoms and bonds; additional propositional infor-
mation such as global properties lumo or log P, or predefined
functional groups was deliberately excluded: they are known
to improve classification accuracy significantly, thereby po-
tentially masking the relational performance of the investi-
gated algorithms. The current implementation of R*F is lim-
ited to two classes, so the Diterpenes dataset was transformed
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Figure 3: Example of R*F Forest Construction, Stage 3

Table 1: Accuracy for R*F using 500 trees, bagged roots, and
MRC equal to 50 compared to static propositionalization.

Dataset R*F | Static | Significant
Carcinogenesis | 61.24 | 60.91 no
Diterpenesss_ 3 97.31 | 96.97 yes
Diterpenessa 54 | 96.24 | 94.22 yes
Diterpenesss 3 | 98.43 | 97.69 yes
Musk; 85.32 | 89.13 no
Mutagenesis 4;; | 79.27 | 76.66 no
Mutagenesisgr | 85.99 | 84.95 no

into three two-class versions by using all pairwise combi-
nations of the three largest classes called 3, 52 and 54 —
Diterpenessy 3, Diterpenesss 3 and Diterpenessa 54.

All results were obtained as averages over ten times ten-
fold cross-validation. Table 1 compares the accuracy obtained
for each dataset, using both R*F using 500 trees, bagged
roots, and MRC equal to 50, and a static propositionalization
based on 1000 non-trivial random rules turned into boolean
features and processed by an equivalent standard Random
Forest.

R*F has several advantages over a static two-stage method
that generates a propositional representation of the data first,
and then constructs a Random Forest based on the proposi-
tionalized data. The latter approach must generate a suffi-
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ciently large number of rules in the first stage without know-
ing which ones will actually be useful. The propositional rep-
resentation is potentially very large, but might still not be a
good enough approximation of the relational problem. Thus
the number of rules to generate will be a critical parameter
for the user to set. R*F on the other hand has a simple stop-
ping condition: completion of the forest, so it never generates
more rules than needed. No memory is needed for any in-
termediate representation, and forest generation is fully par-
allel. Still, as can be seen in this table, static proposition-
alization works fairly well for the datasets studied here, and
even outperforms R*F on the Musk dataset, even though that
win is not statistically significant due to the small size of that
dataset. The only significant differences are the wins for R*F’
on each of the three Diterpenes datasets, in all other cases
the standard deviations over the ten times ten-fold cross-
validation runs are too large.

For comparison with published results for FORF[Assche et
al., 2006], we also tested R*F on Mutagenesis 4;; (Table 2)
and the Financial dataset (Table 3) using out-of-bag evalu-
ation rather than cross-validation. This was necessary as ap-
parently it is not feasible to evaluate FORF using ten times
ten-fold cross-validation. In their paper they used only four
datasets, two of which are used here as well, and two were
dropped for the following reasons: one is simply too small
for any meaningful comparison, as it only comprises 20 ex-
amples in total; the other one is a multiple classes problem
that the current version of R*F cannot handle yet. We com-



Table 2: Comparison of R*F and FORF (out-of-bag evalua-
tion) on Mutagenesispp

Algorithm | Accuracy

RTF 79.1 £ 1.1 | R¥is | Significance
FORF 74.7+ 1.4 | better 95%
FORF-SA | 7894+ 1.8 | equal < 90%
FORF-RA | 78.1£1.2 | equal < 90%
FORF-LA | 79.0+1.4 | equal < 90%

Table 3: Comparison of R*F and FORF (out-of-bag evalua-
tion) on Financial

Algorithm | Accuracy

RTF 87.8+£0.7 | R*¥Fis | Significance
FORF 85.7+ 0.6 | better 95%
FORF-SA | 99.8 £0.2 | worse 99%
FORF-RA | 99.7 £0.4 | worse 99%
FORF-LA | 99.8 £0.4 | worse 99%

pare to the highest FORF results listed in their paper, and see
that R*F significantly beats the standard aggregate-less FORF
both times. Remember that R*F currently does not include
aggregates, still it is as good as the all FORF-plus-aggregates
variants (FORF-LA: lookahead aggregates, FORF-SA: simple
aggregates, and FORF-RA: refined aggregates) on one of the
two datasets. Clearly, for the second dataset aggregates are
essential for near-perfect prediction. Adding aggregates to
R*F will be one major direction for future research.

In addition to measuring accuracy we have also conducted
studies to judge the sensitivity of the algorithm to parameter
settings and to alternative split rule selection methods. For
lack of space we can only summarize here, claiming that, as
expected, larger number of trees consistently produce higher
accuracies, but that after a couple of hundred trees accuracy
usually levels out on a plateau. The MRC or maximum rule
count is more of an optimization parameter, usually with op-
timal values between 50 and 100, where lower values tend
to underfit, and higher values cause overfitting. Measuring
tree sizes and tree diversity, fully random trees are usually
larger and more diverse, and higher MRC values reduce both
the size and diversity of trees. For a lot more detail on these
aspects please see [Anderson, 2009].

4 Summary and Future Work

The efficiency and effectiveness of the R*F algorithm is the
result of the application of randomly generated relational
rules to the random forests framework. Staggered root initial-
ization allows R*F to produce diverse trees in parallel, and
the experimental results obtained are very competitive with
those achieved by another Relational Random Forest algo-
rithm. The main direction for future work will be the inclu-
sion of aggregates into R*F: FORF benefits significantly from
adding aggregates, so R*F might also be able to take advan-
tage of the additional expressiveness that aggregates provide.
As it currently stands, R*F outperforms the non-aggregate
version of FORF and is already equal in performance to the
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aggregate-enhanced version of FORF on some datasets. Al-
ternative and more targeted random rule generation methods,
which work on explicit seed examples that must be covered
by a rule, will also be investigated.
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