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Abstract

Multi-instance (MI) learning is a variant of inductive machine learning, where each learning example

contains a bag of instances instead of a single feature vector. The term commonly refers to the

supervised setting, where each bag is associated with a label. This type of representation is a natural fit

for a number of real-world learning scenarios, including drug activity prediction and image classifi-

cation, hence many MI learning algorithms have been proposed. Any MI learning method must relate

instances to bag-level class labels, but many types of relationships between instances and class labels

are possible. Although all early work in MI learning assumes a specific MI concept class known to be

appropriate for a drug activity prediction domain; this ‘standard MI assumption’ is not guaranteed to

hold in other domains. Much of the recent work in MI learning has concentrated on a relaxed view of

the MI problem, where the standard MI assumption is dropped, and alternative assumptions are

considered instead. However, often it is not clearly stated what particular assumption is used and how

it relates to other assumptions that have been proposed. In this paper, we aim to clarify the use of

alternative MI assumptions by reviewing the work done in this area.

1 Introduction

Multi-instance (MI) learning (Dietterich et al., 1997; also known as ‘multiple-instance learning’) is

a variant of inductive machine learning that has received a considerable amount of attention due

to both its theoretical interest and its applicability to real-world problems such as drug activity

prediction and image classification.

MI learning, as it is commonly defined, belongs to the supervised learning paradigm, which aims

to solve classification and regression problems by using algorithms to build models from data based

on a set of labeled examples. The majority of the work in MI learning is concerned with binary

classification problems, where each example has a classification label that assigns it into one of two

categories—‘positive’ or ‘negative’. The goal is to ‘learn’ a model based on the training examples that

is effective in predicting the classification labels of future examples. All training examples have been

(often manually) assigned a class label, which is why the term supervised learning is used.

Where MI learning differs from the traditional scenario is in the nature of the learning examples. In

the traditional supervised learning scenario, each example is represented by a fixed-length vector of

features. However, in MI learning each example is represented by a multi-set (or bag, as computer

scientists often call it) of feature vectors. In other words, each example contains one or more feature

vectors. The feature vectors are referred to as instances. Classification labels are only provided for entire

bags, and the task is to learn a model that predicts the classification labels for unseen future bags.1

1 In many cases, the instances are assumed to have hidden class labels that are in some way related to the

labels for the bags. Depending on the problem domain, the prediction of the instance labels can also be an

important task in its own right.



In early MI research, a strong assumption was made regarding the relationship between instances

inside the bags and the label of the bag. This assumption is generally referred to as the standard MI

assumption. Under this assumption, each instance has a hidden class label that identifies it as either a

positive or a negative instance, and a bag is considered to be positive if and only if it contains at least

one positive instance. This is generally believed to be true for the musk drug activity prediction

problem, where a molecule will have the desired drug effect if and only if one or more of its

conformations binds to the target binding site (Dietterich et al., 1997). However, in other problem

domains this assumption may not apply, and different or more general assumptions may be needed.

A significant amount of the more recent research in MI is concerned with cases where the standard

view of MI learning is relaxed, and alternative assumptions are used instead.

Unfortunately, it is often not clear what particular assumptions are used and how they relate to

other assumptions from the literature. This is perhaps at least partially due to the fact that the use

of the term ‘MI learning’ has evolved from the original statement by Dietterich et al. (1997).

Dietterich et al. included the standard MI assumption in their original definition of MI learning,

but many authors now include alternative assumptions within the MI learning framework

(see, e.g. Xu, 2003; Chen et al., 2006; Dong, 2006). To compound the issue, some authors use

alternative MI assumptions without explicitly describing the assumptions used. In this paper, we

aim to shed some light on existing MI assumptions and relationships by reviewing the MI

assumptions that can be found in the literature. This paper is not intended as a review of algo-

rithms for MI learning that implement the standard MI assumption.

2 Background

This section gives an overview of machine learning, with emphasis on supervised learning and the

MI learning scenario. MI learning is defined, and the motivations for it are explained.

2.1 Machine learning

Every day, we as humans discover new facts about our world. We interact with the environment

around us, and receive feedback through our empirical faculties—our senses. We are able to

recognize trends and can begin to anticipate the consequences of our actions. The process that

allows us to do this is called learning. It is ubiquitous and most of us take it for granted.

Learning is a task that is normally associated with humans (and intelligent non-human ani-

mals), hence the problem of creating machines that can learn falls within the umbrella of artificial

intelligence. While the creation of truly ‘intelligent’ machines still seems to be a long way off,

machine learning as a practical discipline is a success story of modern artificial intelligence. Many

algorithms have been discovered that allow machines to make inferences from observed data,

effectively ‘learning’ non-trivial facts and behaviors.

Under the guise of data mining, these algorithms have many commercial applications.

Machines are far more efficient and reliable than humans at processing large amounts of data. For

this reason, learning algorithms can offer huge cost saving and efficiency benefits to businesses,

and have successful applications in many domains from medicine to marketing.

2.2 Supervised learning

Supervised learning is the branch of machine learning that is concerned with algorithms that can

learn concepts from labeled examples. As an input, the algorithm requires a set of example cases,

each of which has been given a label corresponding to some important property of the example.

The task of the algorithm is to build a model that will generate accurate predictions of the labels of

future examples.

Let us illustrate this with a simple example. Suppose that we are amateur botanists, and we wish

to learn to distinguish between instances of the various species of the iris genus of flowering plants.
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An expert has given us a set of examples of some of the species of the genus. Once we have seen a

few examples of each, we can attempt to infer the defining characteristics of each species. Once we

have discovered the pattern, we can become proficient at labeling arbitrary iris plants.

Having introduced the subject and its terminology via a simple example, we may now formally

define the standard supervised machine-learning scenario. An instance is a vector of N features

concatenated with a class label, of the form {x | g(x)}, where x5 {x1, x2,y, xN} is the feature

vector and g(x) is the label of the instance. Features and class labels are typically either elements of

the real numbers (numeric attributes) or domain-specific sets of names (nominal attributes).

The task is to find g(x), based on a given labeled set of instances, where the labels have been

assigned based on g(x). When the class is a nominal attribute, this process is called classification.

When the class is a numeric attribute, the process is called regression.

The underlying classification process g(x) is known in machine learning terminology as a

concept. The g(x) may be either a function or a non-deterministic process. Given a set of training

examples to learn from, a supervised machine learning algorithm outputs a model that is intended

to be a best-guess approximation to g(x). Such a model is known as a concept description.

This paper is about a variation of standard (single-instance) supervised learning called MI

learning.

2.3 MI Learning

MI learning, as defined by Dietterich et al. (1997), is a variation on the standard supervised

machine learning scenario. In MI learning, each example consists of a multi-set (bag) of instances.

Each bag has a class label, but the instances themselves are not explicitly labeled. The learning

problem is to build a model based on given example bags that can accurately predict the class

labels of future bags. The difference between standard supervised learning and MI learning is

illustrated in Figure 1.

An example will once again help to illuminate the concept. Chevaleyre and Zucker (2001) refer

to this example as the simple jailer problem. Imagine that there is a locked door, and we have N key

chains, each containing a bunch of keys. If a keychain (i.e. bag) contains a key (i.e. instance) that

can unlock the door, that key chain is considered to be useful. The learning problem is to build a

model that can predict whether a given key chain is useful or not.

2.3.1 Definition of MI learning

We now present a formal definition of the MI problem. This formalization is a refinement of those

used by Weidmann et al. (2003) and Gärtner et al. (2002). In this paper, we follow the trend

established by the majority of the work in this field (a notable exception being Zhou & Zhang,

2006) and assume a binary class attribute V 5 {1, 2}. Let x be the instance space. Then an MI
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Figure 1 (a) The traditional supervised machine-learning scenario. (b) Multi-instance learning. Figure based

on a similar diagram by Dietterich et al. (1997)
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concept is a function nMI : N
w ! O. The task in MI learning is to learn this function, based on a

number of example elements of the function.

Here, Nw refers to the set of all functions from x toN, which is isomorphic to the set of all multi-

subsets of x, viewing the output of f ðxÞ 2 Nw as the number of occurrences of x in the multi-set.

Such functions are known as multiplicity functions, and are a direct generalization of indicator

functions for ordinary sets.

Note that this differs slightly from the formulation used by Weidmann et al., who define an MI

concept as a function nMI : 2
x-V. Here, 2x, the set of indicator functions over x, is isomorphic to

the power set of x, but this does not take into account the fact that duplicate instances are allowed

in a bag. Our alternative definition of an MI concept explicitly defines the problem examples as

multi-sets rather than just sets. This is important for some generalized MI concepts.

2.4 The standard MI assumption

A large percentage of the work on MI learning, including all early works and notably Dietterich et

al. (1997) and Maron and Lozano-Pérez (1997), makes a particular assumption regarding the

relationship between the instances within a bag and the class label of the bag. Dietterich et al.

considered this assumption to be so fundamentally important that they included it as part of their

definition of MI learning. We will follow Weidmann et al. (2003), and refer to this assumption as

the standard MI assumption.

The standard MI assumption states that each instance has a hidden class label cAV 5 {1, 2}.

Under this assumption, an example is positive if and only if one or more of its instances are

positive. Thus, the bag-level class label is determined by the disjunction of the instance-level class

labels.

Formally, let X ¼ fX1;X2; . . . ;Xng 2 Nw be a bag containing n instances from feature space x.

Each instance has a class label determined by some process g : x-V. Let nS : Nw ! O be a

standard MI concept, and equate ‘1’ with the logical constant ‘True’, and ‘2’ with the logical

constant ‘False’. Then:

nSðXÞ3ðgðX1Þ _ gðX2Þ _ . . . _ gðXnÞÞ: ð1Þ

It should be noted that the standard MI assumption is asymmetric: if the positive and negative

labels are reversed, the assumption has a different meaning. Therefore, when we apply this

assumption, we need to be clear which label should be the positive one.

The standard MI assumption was adopted because it is believed to be appropriate for the

musk problem domain. In the musk problem, it is assumed that a molecule (represented by a bag

of instances) will emit a musky smell if and only if one of its conformations (represented by an

individual instance) binds to a certain target site, hence the standard MI assumption applies

(Dietterich et al., 1997).

A number of learning algorithms for MI classification under the standard MI assumption have

been proposed in the literature. Dietterich et al. (1997) presented several algorithms for learning

axis-parallel rectangles to identify the positive region of instance space. A bag is classified as

positive if it has at least one instance in this region. Maron and Lozano-Pérez (1997) defined

diverse density, a measure of the likelihood that a point in instance space is a positive target

concept, and used a gradient search to find the point that is most likely to define the target

concept. A refinement of this algorithm, expectation maximization (EM)-diverse density (DD),

was proposed by Zhang and Goldman (2001).

Several single instance learning methods have been ‘upgraded’ to the MI scenario under the

standard MI assumption, including support vector machines (Andrews et al., 2002), neural net-

works (Ramon & De Raedt, 2000) decision trees (Blockeel et al., 2005), (Chevaleyre & Zucker,

2001), decision rules (Chevaleyre & Zucker, 2001) and weak learners for boosting (Auer & Ortner,

2004). Zhou and Xu (2007) showed that MI learning under the standard MI assumption could be

viewed as a semi-supervised learning problem with the additional constraint that positive bags
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must contain at least one positive instance. They adapted semi-supervised support vector machines

to the standard MI scenario by encoding this ‘positive constraint’ in the objective function of the

support vector machine (SVM).

2.5 Alternative Assumptions

As (at least in part) the inclusion of the standard MI assumption in Dietterich et al.’s (1997)

definition of MI learning, it was initially adopted ubiquitously by the fledgeling MI learning

community. In more recent years, there has been a trend toward the relaxation of this strict view of

MI learning (Xu, 2003).

When the standard MI assumption is relaxed, other interactions between instances and the class

labels of bags are possible. We refer to such interactions as MI assumptions, since we must assume

that such a relationship between bags and class labels occurs when we use a learning algorithm to

build a predictive model. In order to make learning computationally feasible, it is generally

necessary to reduce the hypothesis space by making use of some MI assumption.

Although many recent authors have (implicitly or explicitly) abandoned the standard

assumption, it is often not precisely stated that new assumptions have been used (Xu, 2003).

Moreover, the literature is not in agreement on whether the relaxed version of the MI problem

belongs within the umbrella of MI learning, or is a separate problem. Some authors, notably

Weidmann et al. (2003) and Scott et al. (2005), refer to the relaxed MI scenario as generalized MI,

while others, such as Xu (2003), Chen et al. (2006), Dong (2006) and Foulds (2008), include

alternative MI assumptions within the MI framework. In particular, Xu explicitly extends the

definition of MI learning to include other assumptions.

We contend that the term ‘multi-instance learning’ should contrast directly with ‘single-instance

learning’, and connotes any type of learning where several instances can be included within a single

learning example, regardless of the assumptions used. Hence, we follow Xu, and use the term to

refer to the relaxed version of MI learning as well as the standard MI scenario. We shall reserve

the term ‘generalized MI learning’ to refer MI assumptions that are strictly more general than the

standard assumption, such as those proposed by Weidmann et al. (2003) and Scott et al. (2005).

2.6 Motivations for alternative MI assumptions

Although the standard MI assumption is widely believed to be appropriate for the musk drug

activity prediction problem, the MI representation can be applied to a number of other problem

domains where the standard MI assumption may not be directly applicable. In these domains,

algorithms that rely upon alternative MI assumptions may be more appropriate.

A prominent example of this is the task of learning visual concepts from databases of labeled

images. This learning problem arises in several computer vision tasks including object detection or

recognition, image categorization and content-based image retrieval. Although standard super-

vised learning could be applied directly to learn from global features of images, the task of learning

visual concepts lends itself well to an MI representation because the target concepts typically only

occupy part of the space of an image. Therefore, it makes sense to split the image into smaller

regions (segments; Burl et al., 1998).

Based on this approach, an image can be represented as a bag of segments, which are represented

by instances. Segments can simply be equal-sized blocks, or more sophisticated segmentation

methods can be used. Each instance in a bag contains features extracted from the corresponding

segment, such as color, texture and shape information. Features describing relative relationships to

adjacent segments can also be used (Maron & Ratan, 1998). MI learning has been frequently applied

to visual concept learning tasks—see, for example, Maron and Ratan (1998), Andrews et al. (2002),

Zhang et al. (2002), Chen and Wang (2004), Chen et al. (2006) and Qi et al. (2007).

Methods using the standard MI assumption have been applied to visual concept learning tasks

with some success. The standard assumption is a good heuristic for many such tasks, but not all

visual concepts can be represented under that assumption. First, for the purposes of comparison
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let us briefly consider a task where the standard MI assumption may be applicable. Maron and

Ratan (1998) identified the task of identifying natural scenes of waterfalls as such a problem. Here,

if image segments (instances) containing a waterfall can be identified, images containing that

instance-level concept can be identified under the standard MI assumption: an image contains a

waterfall if and only if it contains at least one waterfall segment.

We will now describe a learning task where the standard MI assumption is not sufficient to

represent the desired concept. Consider the task of categorizing images of natural scenes of beaches,

oceans and deserts. Since the standard MI assumption requires a binary classification task, one

would generally approach this by learning one against the rest models for each class. However, there

is no single item contained in a segment of a beach scene that defines it as belonging to the

mphbeach category, as opposed to the other two alternatives. Unlike the waterfall scenario, where

the existence of at least one segment with a specific property is a necessary and sufficient condition

for a positive class label, we cannot identify a part of a scene that directly corresponds to a beach or

non-beach scenario. Thus, the standard MI assumption cannot apply. We would still like to use the

MI representation in order to capture localized information from the image, but we need to assume

a non-standard relationship between instances and bag-level class labels.

Let us now consider a generalized MI model that would allow us to represent this type of

concept. For the sake of simplicity, we can define ocean scenes as images with water instances

(segments), and no sand instances, desert scenes as images with sand instances and no water

instances, and beach scenes as images with both sand and water segments. Then the beach concept

can be defined to be

nbeachðXÞ3ð9x 2 X sandðxÞÞ ^ ð9x 2 X waterðxÞÞ:

Such a concept can be represented under alternative MI assumptions such as presence-based MI

(Weidmann et al., 2003) and the generalized multiple instance learning (GMIL) assumption (Scott

et al., 2005; described in Sections 3.1.1 and 3.2, respectively).

A similar scenario arises in text categorization, where the task is to assign semantic labels to text

documents. A document can be represented as an MI bag: instances are obtained by splitting the

document into smaller passages. Features such as word occurrence frequencies can be extracted

from each passage to form instances. This MI approach to text categorization has been applied by

Andrews et al. (2002) and Ray and Craven (2005).

Like visual concept learning, text categorization can potentially benefit from an MI repre-

sentation because it allows localized information to be used. In both of these problem scenarios,

the MI representation is used to describe an object by a set of parts, each of which is a feature

vector (instance). Chevaleyre and Zucker (2001) refer to this type of problem as a multiple part

problem (MPP). As they observe, although the MI representation is useful for describing MPP

learning examples, the standard MI assumption is not guaranteed to hold.

Other problem domains where the relaxation of the standard MI assumption is appropriate

include robot localization via landmark matching, activity prediction for drugs that bind at

multiple sites simultaneously, and identifying thioredoxin-fold proteins. For a thorough account

of these scenarios, the reader is referred to Scott et al. (2005).

A further motivation for the investigation of MI approaches based on alternative assumptions

is the empirical success that such methods have enjoyed on benchmark problems, including the

musk datasets where the standard MI assumption was originally claimed to be necessary (Diet-

terich et al., 1997). A number of authors have reported very competitive results on these datasets

using methods that do not strictly respect the standard MI assumption (deliberately or otherwise),

including Gärtner et al. (2002), Wang and Zucker (2000), Frank and Xu (2003), Chen et al. (2006)

and Dong (2006).

As we have seen, different problem domains require different MI assumptions. Although the

standard MI assumption is often an effective heuristic, the existence of a natural MI repre-

sentation for learning examples in a given domain does not imply that this assumption will apply

in that domain. Data mining practitioners need to take this into consideration, and select algorithms
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that are known to depend only on assumptions that are likely to be true for the problem at hand. We

therefore consider the relaxed MI scenario to be worthy of continued research, with the caveat that

authors make explicit their assumptions whenever the standard MI assumption is disregarded.

2.7 MI assumptions versus MI concept classes

Each MI assumption defines a relationship between instances in a bag and bag-level class labels. If

we know that a certain MI assumption is applicable for a certain problem domain (i.e. the relevant

relationship between instances and bag-level class labels does in fact hold in that domain), then we

may assert that the assumption is true for that domain. We would then consider using the MI

learning algorithms that make use of that assumption.

Hence, the assumption view of MI learning (exemplified by Xu (2003)) is useful from a practical

machine learning perspective. From a theoretical machine learning perspective, although it can be

useful to consider concepts instead of assumptions. For an MI assumption A, if we assert that A is

true for a given domain, we assert that the concept space for that domain is c(A), where c(A)

denotes the set of MI concepts allowable under A. We say that c(A) is the corresponding MI

concept class of A, and A is the corresponding MI assumption of c(A).

Thus, for example, if we assert that the standard MI assumption is true for the problem domain

of detecting molecules that emit a musky odor, we assert that the concept space of that domain is

the set of concepts following the form specified by Equation 1. Clearly, the assumption and

concept views of MI learning are equivalent.

3 Alternative MI assumptions, concepts and models

In this section we review the MI assumptions/concept classes that have been proposed, and briefly

discuss the algorithms that have been developed to learn models of MI data under these

assumptions. The relationships between the various MI assumptions are shown in Figure 2.

3.1 Weidmann’s concept hierarchy for instance-based generalized MI learning

Weidmann et al. (2003) formulated a hierarchy of generalized instance-based assumptions for MI

learning. The hierarchy consists of the standard MI assumption and three types of generalized MI

assumptions, each more general than the last.

To illustrate the three types of generalized MI assumptions, we will follow Weidmann (2003) and

use an extended version of Chevaleyre and Zucker’s (2001) simple jailer problem (discussed earlier in

Section 2.3). Recall that in the simple jailer problem, each bag is a keychain containing several keys,

and a bag is considered to be useful (i.e. positive) if one or more of its keys can unlock a specific door.

Standard MI assumption, but can approximate it arbitrarily closely.
The Weighted Collective and Weighted Linear Threshold assumptions do not strictly subsume the
*GMIL and Count−based GMIL assume instance−level concepts are axis−parallel hyper−rectangles.

MI
Standard

Threshold−based

Count−based

DDSVM BARTMIPOther
Metadata

Nearest
Neighbour

Weighted

Collective

/ MILES

Based on instance−level distances Based on bag−level distances

Metadata assumptions

Weidmann’s hierarchy

Count−based GMIL*

GMIL* MIGraph

Weighted Linear Threshold
/ Extended Weighted Collective*

Collective*
Presence−based

Figure 2 Relationships between multi-instance (MI) assumptions. Arrows indicate increasing generality.

GMIL, generalized multiple instance learning; DD, diverse density; SVM, support vector machine; MILES,

multiple-instance learning via embedded instance selection
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3.1.1 Presence-based MI assumption

In presence-based MI learning, the assumption is that a bag is positive if and only if there exist one

or more instances in the bag that belong to a set of required instance-level concepts (i.e. have the

required hidden instance-level class labels). This can be visualized as a version of the jailer problem

where there are multiple locks on the door. To unlock the door, we need at least one key that can

open each type of lock on the door.

Formally, let vPB : N
w ! O be a presence-based MI concept, let Ĉ � C be the set of required

instance-level concepts, and let D : Nw � C ! N be the function that outputs the count of the

number of occurrences of a concept in the bag. Then:

vPBðXÞ38c 2 Ĉ : DðX ; cÞ � 1:

It should be noted that the standard MI assumption is a special case of presence-based MI,

where jĈj ¼ 1, that is, there is just one required concept.

3.1.2 Threshold-based MI assumption

The threshold-based MI assumption states that a bag is positive if and only if there are at least a

certain number of instances in the bag that belong to each of the required concepts. Each concept can

have a different threshold. In terms of the jailer problem, this is similar to the presence-based MI

jailer problem except that multiple copies of each type of lock are allowed, and keys are consumed

during the unlocking process. If there are n copies of a certain lock, then we need at least n keys of the

appropriate type to unlock it. This is reminiscent of the Microsoft puzzle game Chip’s Challenge.2

To state the threshold-based assumption formally, let us use the same lexicon as before, and let

vTB : N
w ! O be a threshold based MI concept. Then we have:

vTBðXÞ38ci 2 Ĉ : DðX ; ciÞ � ti;

where ti 2 N is the lower threshold for concept i.

3.1.3 Count-based MI assumption

Under the count-basedMI assumption, there is a maximum and a minimum number of instances from

each of the required concepts that must be observed in order for a bag to be positive. Imagine this as

the threshold-based jailer problem, except that there is also a stingy jailer who despises wastefulness,

and will not allow anybody to open the door if they have too many keys of any particular type.

Formally, let vCB : N
w ! O be a count-based MI concept. Then

vTBðXÞ38ci 2 Ĉ : ti � DðX ; ciÞ � zi;

where ti 2 N is a lower threshold for concept i, and zi 2 N is an upper threshold for concept i.

3.1.4 The concept hierarchy

Weidmann et al. (2003) showed that these assumptions form a hierarchy of generality, where

standard MI � presence-based � threshold-based � count-based (see Figure 3 for an illustration).

Therefore, in theory at least, a strong MI learner designed to work under a general assumption

should still be able to solve an MI problem where one of the less general assumptions applies. For

instance, a strong algorithm designed to use the count-based assumption should work well on a

dataset where the generative model is presence-based.

3.1.5 Algorithms and models

The two-level classification (TLC) algorithm (Weidmann et al., 2003) is designed to learn the type

of MI concepts that are described in Weidmann’s concept hierarchy, where it is assumed that bag-

level class labels are determined by the counts of each instance-level concept in a bag.

TLC learns in a two-step process. The first step learns instance-level concepts using a decision

tree. The tree is built on all of the instances in all of the bags in the training data, with class labels

of the instances set to the labels of the parent bags. Each node in the tree is considered to represent

2 Microsoft Game Studios (1990).
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a candidate concept. Then each bag is converted into a single-instance representation, with an

attribute for every node in the tree (i.e. each candidate concept), the value of which is set to the

number of instances that reach that node in the decision tree.

The second step learns bag-level concepts, based on the candidate instance-level concepts dis-

covered in the first step. A single-instance learning algorithm is applied to the transformed data.

The same mapping is performed at classification time, and the bag-level predictions are made by

the single-instance learner. A further (optional) refinement to the algorithm is to use attribute

selection to try to eliminate the attributes that do not contribute to the instance-level classification

problem learned by the decision tree.

The constructive clustering ensemble (CCE) method (Zhou & Zhang, 2007) also uses a proposi-

tionalization method that may be appropriate for some Weidmann type concepts. The algorithm uses

a clustering method to cluster the instances in the training bags into d clusters. Bags are mapped into a

boolean feature space where each attribute corresponds to a cluster, and the value of an attribute is set

to 1 if and only if that bag has an instance in that cluster. A single-instance model is built on the

resulting dataset. The algorithm is repeated for multiple values of d, and classification predictions are

made via a majority vote of the resulting ensemble of single-instance classifiers.

Given that the feature space constructed by CCE represents the presence or absence of instances

with certain properties, it appears that this algorithm may be best suited for learning presence-

based MI concepts. However, the algorithm could be easily extended to learn count-based con-

cepts if the transformed feature space was modified to include the number of occurrences of the

instance-level concepts, as in the earlier TLC algorithm. It should also be noted that Zhou and

Zhang’s (2007) results indicate that the algorithm is less accurate when learning on presence-based

MI data than TLC (with attribute selection enabled).

3.2 The GMIL assumption

Scott et al. (2005)3 introduced a new MI assumption based on theoretical results from geometric

pattern recognition. We will refer to this assumption as the GMIL assumption. In this model, there

Standard MI

Presence−based MI

Threshold−based MI

Count−based MI

Figure 3 Weidmann’s hierarchy of instance-based multi-instance (MI) concepts

3 Originally published in 2003 as a technical report at the University of Nebraska, Lincoln.
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is a set of target points C5 {c1, c2,y, ck}. A bag is positive if and only if it contains instances

sufficiently close to at least r points, out of the k target points.

Scott et al. extend this model to also include a set of repulsion points �C ¼ fc1; c2; . . . ; ck0 g. In the

extended model, a positive bag may only contain instances that are close to at most s of the

repulsion points.

The model can be understood with reference to the ranked half-Hausdorff metric using the

weighted infinity norm. The Hausdorff metric (see, e.g. Edgar (1990)) provides a measure of

distance between two bags of points, and is commonly used in computer vision applications. The

sets of target points and repulsion points can be viewed as ‘ideal bags’, where positive bags are

within a ranked half-Hausdorff distance of some threshold g from the ideal positive bag, and at

least a ranked half-Hausdorff distance of g 0 away from the ideal negative bag.

The Hausdorff distance between bags P and Q is defined to be the largest distance from

either a point in P to its closest point in Q, or from a point in Q to its closest point in P,

whichever is larger, under some norm. However, this is not robust against noise, so the

ranked Hausdorff metric is used: instead of using the largest distance, the sth largest distance is

used. Scott et al. compute the distance from the bag to the model (i.e. the half-Hausdorff metric),

but not vice-versa, as it is assumed that the model is accurate and does not contain extraneous

points.

Scott et al. used the weighted infinity norm as the instance-level distance measure required to

compute the Hausdorff distance. The infinity norm defines the length of a vector as ||x||N 5

max(|x1|,|x2|,y,|xn|), the largest absolute value of its components. Thus the set of points with a

distance of at most d from a point p under the infinity norm are the points within a hypercube of

width 2d and center at point p. The weighted infinity norm allows scaling of the vector compo-

nents, such as for normalization. The hypercubes from the infinity norm are hyperrectangles or

‘boxes’ when the weighted infinity norm is used.

The ranked half-Hausdorff metric using the weighted infinity norm can be stated formally as

max
q2Q

s min
p2P
fjjp� qjj1g

� �
;

where maxs is the sth max, P is a bag, Q is the set of target points, and ‘2’ denotes standard vector

subtraction. Let a bag P be positive if and only if the above equation evaluates to at most g. Then

a target concept is a set of k5 |Q| axis-parallel target boxes, and a bag is positive if and only if it

contains points within at least r5 k2 s1 1 of the k target boxes.

To also include a set �Q of k0 axis-parallel repulsion boxes, we must also check that the following

formula evaluates to at least g 0, which is another constant:

min
q2 �Q

s 0 min
p2P
fjjp� qjj1g

� �
:

Under this extended model, for a bag to be positive, it must also contain points within at most

s02 1 of the k0 repulsion boxes.

In terms of Weidmann’s hierarchy, Scott et al.’s MI formulation, without repulsion points, is

the same as presence-based MI learning when boxes are viewed as instance-level concepts and the

minimum threshold r is equal to the number of target points k. When r 6¼ k, Scott et al.’s model is

more general than the presence-based MI model. Weidmann’s threshold and count-based MI

concepts generalize presence-based MI concepts in a different fashion to Scott et al.’s model, and

neither is strictly more general than the other.

Count-based MI concepts can model repulsion points by setting the maximum count for some

instance-level concepts to zero. However, count-based and threshold-based concepts cannot model

the case where only r out of k concepts must be present for a bag to be positive. The GMIL

assumption cannot represent problems where the number of instances belonging to specific con-

cepts must be within a given range (as in threshold and count-based MI), as only concept presence

rather than concept counts are included in the model.
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3.2.1 Algorithms and models

Scott et al. (2005) proposed the GMIL-1 algorithm to learn GMIL concepts. The algorithm

explicitly enumerates all possible axis-parallel boxes. It creates a single-instance feature space with

boolean attributes for each box, signifying whether a bag contains an instance within that box. To

reduce the dimensionality of this space, boxes that cover the same instances are grouped together,

and only one representative box for each group is used. The training bags are mapped into the

feature space, and the single-instance algorithm Winnow (Littlestone, 1987) is trained on the

transformed dataset.

The task of enumerating all axis-parallel boxes is exponential in the number of dimensions,

which makes GMIL-1 very inefficient. GMIL-2 Tao and Scott (2004) is an attempt to improve the

computational and memory efficiency of the algorithm. The algorithm is roughly the same as

GMIL-1, but it selects groups of boxes in a different way. First, GMIL-2 reduces the number of

instances to consider by selecting a subset of representative instances, C. Then it constructs groups

by considering the boxes represented by the bounding box of each possible subset ofC. A breadth-

first search approach is used to attempt to efficiently find the sets of groups that are geometrically

valid, that is, all instances within the bounding box of the group are contained within the group.

Although GMIL-2 is far more efficient than GMIL-1, it still suffers from limited scalability

(Tao et al., 2004a). In a further attempt to improve the algorithm’s computational complexity,

Tao et al. (2004a) presented a kernel-based reformulation of the GMIL learning problem. The

kernel, k4, allows a support vector machine to be applied directly to the problem. As the com-

putation of k4 belongs to the complexity class #P-complete and thus suffers from severe scalability

issues that quickly make the problem intractable as the problem size increases, the authors pre-

sented a fully polynomial randomized approximation scheme (FRAPS) for it.

3.3 The count-based GMIL assumption

As mentioned earlier, neither the GMIL assumption nor the count-based MI assumption is strictly

more general than the other—some MI concepts can be represented by one assumption and not

the other, and vice-versa. Tao et al. (2004b) proposed an MI assumption that is more general than

both of the assumptions, which we will refer to as the count-based GMIL assumption. Under this

assumption, a bag is positive if and only if it satisfies at least r of a set of k concepts, and at most s

of a set of k0 ‘repulsion’ concepts. A concept ci is satisfied by a bag B if the number of points in the

region of instance space associated with ci is between a certain specified minimum value, ti, and a

maximum value, zi.

3.3.1 Algorithms and models

Tao et al. proposed an extended version of the k4 kernel, called kmin, which allows a support

vector machine to solve the MI learning problem under the count-based GMIL assumption.

Unlike the k4 kernel, the feature space associated with the kmin kernel includes information related

to the number of instances within the box that describes the concept concerned.

3.4 The DD-SVM/multiple-instance learning via embedded instance selection assumption

The DD-SVM (Chen & Wang, 2004) algorithm and its successor multiple-instance learning via

embedded instance selection (MILES) (Chen et al., 2006) also use a generalized MI assumption, where

bag-level class labels are determined based on the distance from each of a set of target points.

Although the authors of DD-SVM and MILES note that their algorithms do not follow the standard

MI assumption, they do not explicitly describe their new assumptions independently from the

descriptions of the algorithms. This section attempts to isolate the common assumptions between these

algorithms and thus describe the types of MI concepts that the algorithms attempt to learn.

The DD-SVM/MILES assumption is related to Scott et al.’s (2005) GMIL assumption, in that

distance from a set of target points is used to determine bag labels. However, ‘distance’ is defined
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differently, and the r-of-k threshold is not used. As in the GMIL assumption, the target points can

be related to either positive or negative concepts. The DD-SVM and MILES methods each include

a distance-related measure of similarity between a target point and a bag, and it is assumed that

bag-level class labels are in some way determined by these similarity values. In DD-SVM, the

similarity function is

sðx;BiÞ ¼ min
j
jjBij � xjjw;

where Bij are the instances in the bag Bi, x is a target point and w is a weight vector determining

the importance of each feature. In MILES, a Gaussian function is used instead:

sðx;BiÞ ¼ max
j

exp � jjxij � xjj2

s2

 !
; ð2Þ

where s is a scaling factor, which is a parameter to the algorithm. The relationship between the

‘similarities’ to target points and bag-level class labels is dependent on the single-instance base

learner that is applied to the data after transformation based on the similarity scores. In the

original statement of DD-SVM and MILES, a support vector machine is used. If a linear kernel is

used for the SVM, class labels are determined by a weighted linear threshold defined on the

similarity values, that is, DD-SVM/MILES concepts are of the form

nD=MðXÞ3
X
k2T

wksðk;XÞ þ b � 0;

where T is the set of target points, wk is the weight associated with target point k and b is a bias

parameter. If a target point has a positive weight, it can be viewed as being positive—bags with

points close to that target point are more likely to be positive; and similarly for negative target

points, that is, points with negative weight.

However, alternative single-instance base learners are possible for both DD-SVM and MILES.

If we view the algorithms as ‘wrapper’ methods where arbitrary base learners are possible, the

assumption is merely that bag-level labels can be determined in some way from the similarities to

the set of target points.

3.4.1 Algorithms and models

MILES (Chen et al., 2006) embeds bags into a single-instance feature space based on similarity

scores obtained from Equation 2, and applies the 1-norm support vector machine algorithm to the

transformed dataset.

MILES uses the instances in the training bags as candidates for target points. A feature-space

mapping is defined, where each attribute represents the closeness of an instance to a candidate

target point (i.e. training instance). Each training bag is mapped into this space (with class labels

appended), and a single-instance base learner is built on the transformed dataset. At testing time,

bags are similarly mapped into the instance-based feature space, and classification predictions are

made by the single-instance base learner.

The diverse density support vector machine (DD-SVM) algorithm (Chen & Wang, 2004) is a

predecessor to MILES that is conceptually very similar to the later method. Chen et al.’s (2006)

experimental results show that MILES is much more efficient than DD-SVM in terms of com-

putational complexity, while maintaining similar or better classification accuracy and increased

robustness to label noise, hence we do not discuss DD-SVM in detail here.

3.5 The bag-level representation transformation for multi-instance prediction assumption

The BARTMIP algorithm (Zhang & Zhou, 2009) is closely related to MILES, and thus implicitly

relies on a related MI assumption. While MILES assumes that bag labels are related to the

instance-level distances from a set of target points, the BARTMIP method assumes that bag labels

are related to distances from target bags.
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Distances between bags of points can be computed via the Hausdorff distance (see Section 3.2).

Zhang and Zhou use three different variants of the Hausdorff distance to define bag-level dis-

tances: the maximal, minimal and average Hausdorff distances.

The (maximal) Hausdorff distance between two sets of points (or bags) A and B is the largest

Euclidean distance between a point in A and its closest point in B, or vice versa. Formally, the

Hausdorff distance is defined as

HmaxðA;BÞ ¼ max fhðA;BÞ; hðB;AÞg;
where

hðA;BÞ ¼ max
a2A

min
b2B
jja� bjj:

The minimal Hausdorff distance was proposed by Wang and Zucker (2000) in the context of a

simple nearest-neighbor MI learning algorithm that is discussed in more detail in Section 3.11. In

this variant, the h function is replaced by a function h1, where

h1ðA;BÞ ¼ min
a2A

min
b2B
jja� bjj:

Note that the minimal Hausdorff distance is simply the shortest distance between a point in A

and a point in B. It can be stated as

HminðA;BÞ ¼ min
a2A;b2B

jja� bjj:

Zhang and Zhou additionally proposed the average Hausdorff distance, which is defined to be

the average distance between a point in one bag and its closest point in the other bag:

HavgðA;BÞ ¼
P

a2A minb2B jja� bjj þ
P

b2B mina2A jjb� ajj
jAj þ jBj :

The choice of distance measure determines the set of MI concepts that can be represented.

Clearly, alternative bag-level distance measures could potentially be used if appropriate for a

specific problem domain.

3.6 Algorithms and models

The BARTMIP algorithm performs an initial bag-level clustering step on the training bags using

the k-medoids algorithm adapted to MI learning by using a Hausdorff distance variant for its

distance function. As well as grouping the bags into k clusters, the clustering algorithm also

outputs the medoid 4 of each cluster.

The training bags are then mapped to a k-dimensional single-instance feature space, where the

ith attribute corresponds to the distance of the bag to the ith medoid, under the same bag-level

distance measure that was used in the clustering step. The class labels of the original bags are

appended to the transformed instances, and a single-instance base learner is applied to the

resulting feature space. At classification time, the mapping is performed to the test bags and

predictions are made by the single-instance base learner. Note that this method is identical to

MILES, except for the different feature-space transformation used.

3.7 The collective assumption

Under the standard MI assumption, only a few special instances (those with a ‘positive’ label) can

have any influence on the class label. In contrast, the collective assumption is an MI assumption,

where all instances in a bag contribute equally to the bag’s label (Xu, 2003).

4 The medoid of a cluster is the element whose average distance to the other elements is minimal. In a

geometric space, this is equivalent to choosing the element that is closest to the center of the cluster.
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The collective assumption, designed as a general alternative to the standard MI assumption,

was not precisely defined by Xu (2003). However, all algorithms in (Xu, 2003) that were designed

to use this assumption actually depend on the same specific generative model. We will therefore

use the term collective assumption to refer to this specific model.

The collective assumption is motivated by a view of the nature of MI bags that is based on

probability theory. Under this view, a bag is not a finite collection of fixed elements (as is generally

assumed), but instead is a sample of an underlying population specific to that particular bag. Here,

a bag can be modeled as a probability distribution Pr(X|b) over the instance space, where the

observed instances were generated by random sampling from that distribution.

Instances are assumed to be assigned class labels according to some (typically unknown)

probability function (or non-deterministic probabilistic process) g(x)5Pr(Y|x). Under the col-

lective assumption, the bag-level class probability function is determined by the expected class

value of the population of that bag. Let c be a class label AY5 {0,1}, and let b be a bag. Then

PrðcjbÞ ¼ EX ½PrðcjxÞjb� ¼
Z
X

PrðcjxÞPrðxjbÞ dx:

To compute this exactly, we must know Pr(x|b), the probability distribution for the bag.

However, this is generally not known in practice so the sample provided by the instances in the bag

is used instead:

PrðcjbÞ ¼ 1

nb

Xnb
i¼1

PrðcjxiÞ;

where nb is the number of instances in the bag. In the limit, as the sample size approaches infinity,

the sample version of the equation will approach the population version.

3.7.1 Algorithms and models

Xu (2003) developed statistical algorithms for learning this kind of probabilistic concept, the most

notable of which are versions of logistic regression and boosting, upgraded to solve MI learning

problems under the collective MI assumption (see also (Xu & Frank, 2004)).

Frank and Xu (2003) also investigated a simple heuristic algorithm calledMIWrapper for applying

single-instance learners under the collective assumption. The first step of the MI Wrapper algorithm

is to collect all of the instances from all of the bags, and label each of them with the label of the bag

that they came from. This effectively creates a propositional (i.e. single-instance) dataset. The algo-

rithm then weights all of the instances so that each bag has equal total weight. A single-instance

learner is applied to this propositional dataset. At classification time, the single-instance learner

predicts class probabilities for all of the instances in the bag for which the classification is to be

predicted. The output is merely the average (arithmetic or geometric) of the predicted instance-level

class probabilities. Using the arithmetic mean at prediction time, the method applies the ‘sample’

version of the collective assumption formula when making predictions.

3.8 MI assumptions using instance weights

In the collective assumption, each instance receives equal weight when computing bag-level class

probabilities. Foulds (2008) introduced two MI assumptions based on the notion of instance

weights that determine the level of influence that instances have on bag-level class labels. The

weighted collective MI assumption is an extended version of the collective assumption that

incorporates a weight function over instance space as well as a probability function, while the

weighted linear threshold MI assumption is based on linear classification models from single-

instance learning. Although the two assumptions are quite different in form, and each facilitates

different concept description models and algorithms, it can be shown that the weighted linear

threshold assumption is equivalent to an extended version of the weighted collective assumption in

terms of the MI concepts that can be represented (Foulds, 2008).
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3.8.1 The weighted collective assumption

While under the collective assumption it is assumed that instances contribute equally and inde-

pendently to bag-level class labels, the weighted collective assumption asserts that each instance

contributes independently but not necessarily equally to the class label of the bag. This is achieved

by incorporating a weight function into the collective assumption:

PrðcjbÞ ¼ 1Pnb
i¼1 wðxiÞ

Xnb
i¼1

wðxiÞprðcjxiÞ; ð3Þ

where wðxÞ : w! Rþ is a weight function from instance space to the positive real numbers (not

including zero) that determines the level of influence that an instance has on the bag-level class label.

The weighted collective assumption, as stated in Equation 3, is a probabilistic model. Some-

times, however, a deterministic classifier may be more appropriate. It is also possible to state a

deterministic version of the assumption in the standard fashion, where bags are labeled with the

‘most likely’ class according to the probability function described in Equation 3. In the case of

binary classification, this corresponds to:

ndwðBÞ3t � 0; t ¼ 1Pnb
i¼1 wðxiÞ

Xnb
i¼1

wðxiÞprðþjxiÞ � 0:5:

Here, t is the decision variable, the sign of which determines the classification outcome. This MI

assumption is more powerful than the collective assumption because it allows some instances to be

ignored when determining bag-level class labels. The collective assumption gives all instances in a

bag the same weight, which means that every instance must be taken into account, and irrelevant

instances may bias the class probability estimates in some problem domains. For instance, the

collective assumption cannot model the standard MI assumption, where only a few (positive)

examples affect the class labels of bags. Under the weighted collective assumption, the standard

MI assumption can be very closely approximated by giving positive instances a large weight and

setting all other weights to values close to zero.

3.8.2 The weighted linear threshold MI assumption

The weighted linear threshold MI assumption is so named because the accumulated (signed) weights for

a bag are compared against a threshold to obtain a classification. A weight function wwltðxÞ : w! Rþ

and a classification function cwlt (x) :x-{11,21} are defined over instance space. Instances belonging

to the positive class (cwlt (x)5 11) influence their parent bag toward a positive class label, and instances

belonging to the negative class (cwlt (x)5 21) influence their bag toward a negative class label. The

weight of an instance determines the strength of that instance’s influence on bag-level class labels.

Formally, let nwlt : Nw ! O ¼ fþ;�g be a weighted linear threshold MI concept. Then nwlt is of
the form

nwltðXÞ3t � 0; t ¼
X
i

wwltðxiÞcwltðxiÞ þ b:

Here, b is a bias variable, which determines the location of the decision boundary. This for-

mulation of weight-based MI learning is inspired by linear classification in single instance learning.

Recall the classification equation for a linear classifier:

nðmÞ3t � 0; t ¼
X
i

wimi þ b:

In the weighted linear threshold model, instances are treated analogously to attributes in the

case of linear classification. The class cwlt (x) of an instance corresponds to an attribute value mi.

Instance weights wwlt (x) in the MI assumption correspond directly to attribute weights wi in a

linear classifier. The bias parameter b performs an identical function to the parameter b in the

linear classification model.

It can be shown that the weighted linear threshold assumption is at least as powerful as the

deterministic version of the weighted collective assumption (in terms of the set of representable

A review of multi-instance learning assumptions 15



concepts). An arbitrary deterministic weighted collective concept can be converted into a weighted

linear threshold concept using the following formula (Foulds, 2008):

ndwðBÞ3t � 0; t ¼
X
i

wdwðxiÞcdwðxiÞ þ 0

 !
;

where

cdwðxÞ ¼
þ1 prðþjxÞ � 0:50

�1 otherwise;
; and wdwðxÞ ¼ jwðxÞðprðþjxÞ � 0:5Þj:

�

The converse is also true with one restriction: any weighted linear threshold concept where b5 0

can be represented as a deterministic weighted collective concept. This restriction can be elimi-

nated; by introducing a bias parameter bedw into the formulation, the extended deterministic

weighted collective assumption becomes equivalent to the weighted linear threshold assumption:

nedwðBÞ3t � 0; t ¼ 1Pnb
j¼1 wðxjÞ

Xnb
i¼1

wðxiÞprðþjxiÞ � bedw:

3.8.3 Algorithms and models

Implementing the weighted collective assumption requires a method for learning instance weights.

Foulds (2008) investigated an iterative framework for learning instance weights (IFLIW), a heuristic

algorithm for learning weighted collective assumption concepts. The algorithm is an extension of

the MI Wrapper approach from Section 3.7.1. IFLIW uses MI Wrapper to learn the class

probability function pr(c|x) via the simple propositionalization method described in Section 3.7.1

and a single-instance base learner. The challenge, however, is to estimate the weight function. An

iterative method is applied, where instance weights of the training data are updated according to

an update function, and the MI Wrapper model is rebuilt using the new weights. The update

function that is used is:

x:weight ¼ x:weight� expðinfogainðprðcjxÞ; prðcÞÞÞ;

where x.weight is the weight of instance x, infogain is the information gain of pr (c|x), the class

probability distribution for the instance x predicted by the single-instance base classifier, relative

to pr (c), the prior class probabilities computed from the class frequencies in the training data. The

iteration continues until a stopping criterion is met. The weight function is then estimated using a

regression model built on the training instance weights.

It is also possible to learn a model based on the weighted linear threshold assumption. The

MILES method from Section 3.4 can be modified so that it learns weighted linear threshold

concepts when a linear classifier is used as the base learner (Foulds, 2008). This is achieved by

using an alternative similarity measure between a bag and a target point.

Recall that the similarity measure s(x,B) used in MILES (Equation 2) includes a max operator,

which effectively selects only the closest instance in the bag B when determining the similarity

value. This is based on Maron’s (1998) most likely cause estimator from the diverse density

framework. The models learnt by MILES (with a linear classifier as the base learner) can be

understood as being similar to weighted linear threshold concepts, except that the use of the max

operator in the similarity measure means that instance weights are bag-dependent, as only the

closest instance in the bag to each target point contributes to the bag-level classification. By simply

replacing the max operator with a sum operator, the bag-dependence is removed, resulting in a

true weight function over instance space. The resulting similarity measure, called yet another radial

distance-based similarity measure (YARDS; Foulds, 2008), is defined as follows:

syðx;BÞ ¼
X
j

exp � jjBj � xjj2

s2

 !
:
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Hence, by replacing the similarity measure s(x,B) in the MILES algorithm with the YARDS

similarity measure sy(x,B), MILES can be adapted to learn weighted linear threshold concepts.

The YARDS method can represent weighted linear threshold concepts where the weight function

is the sum of a set of Gaussian-like influence functions, and makes the further assumption that the

peak (or trough) of each of the Gaussian-like functions is at the location of an instance from one

of the training bags.

3.9 Metadata-based assumptions

A simple approach to MI learning is to perform propositionalization by replacing each bag with a

feature vector consisting of metadata features derived in some way from the instances in that bag.

A single-instance learning algorithm can then be applied directly to the transformed version of the

dataset. At classification time, new bags are mapped into the metadata feature space, and pre-

dictions are made by outputting the prediction of the single-instance learner for the transformed

version of the bag. Xu (2003) refers to methods of this kind as metadata approaches.

When this type of method is used, the implicit assumption is merely that the classification labels

of the learning examples are directly related to the metadata. We will therefore refer to this type of

MI assumption as a metadata assumption.

3.9.1 Algorithms and models

The MILES, YARDS, BARTMIP, TLC and CCE algorithms discussed above all use feature-

space transformations, where bags are mapped to single-instance feature vectors, and single-

instance algorithms are applied to the resulting datasets. These methods can therefore be viewed

as metadata approaches. However, the feature spaces used by these methods are intended

to represent more sophisticated MI concepts, and are perhaps better understood with respect to

the underlying MI assumptions that the feature-space transformations are designed to encode.

In contrast, we will now describe a method that uses simple summary statistics as metadata.

Using this approach, MI learning problems are converted into single-instance problems by

replacing each bag with a feature vector consisting of summary statistics derived from the

instances in that bag. This method originates from a similar approach to propositionalization for

relational data known as relational aggregations (RELAGGS) (Krogel & Wrobel, 2002). We will

follow Dong (2006), and refer to the approach based on summary statistics as simple MI.

Dong described three versions of simple MI, each of which differs only in the type of summary

statistics used for the single-instance feature space. The first two methods merely average the

values of the instances in a bag for each dimension, using either the arithmetic or the geometric

mean. Formally, the two methods can be defined as follows: if b is a bag with instances from

feature space x 5 (x1, x2,y, xn), then b is mapped to ð �x1; �x2; . . . ; �xnÞ, where �x is the arithmetic (or

geometric) mean of the instances in the bag.

The third option is called the ‘minimax’ method. Here, the minimum and maximum values of

each variable are recorded for each bag. This method is equivalent to Gärtner et al.’s (2002)

minimax kernel, used as a kernel in a standard support vector machine algorithm. Using the same

notation as before, each bag b is mapped to (minx1, min x2,y, min xn, max x1, max x2,y,

max xn). The new feature space contains 2n dimensions.

The main advantage of simple MI is that it is extremely fast. The computation of the feature-

space transformation is trivial, and the single-instance base learner only has to learn from as many

instances as there are bags in the training set, regardless of how many instances are contained

inside the bags. Of course, this simple model is not able to represent some types of problems.

However, Dong found that simple MI (with appropriate base learners) performs surprisingly

well on many datasets, even outperforming all of the special-purpose MI algorithms that were

investigated in some cases.

A more sophisticated metadata approach is used by the multiple-instance learning using class

conditional log likelihood ratio (MICCLLR) algorithm (El-Manzalawy & Honavar, 2007), which

A review of multi-instance learning assumptions 17



performs propositionalization by replacing each bag by a feature vector containing statistics com-

puted based on the class conditional log-likelihood ratios of the attribute values of the instances in the

bags. These statistics are computed using the relative frequencies of attribute values and class labels in

a flattened version of the MI dataset (using the same method as in the MI Wrapper algorithm from

Section 3.7), under the assumption that attribute values are conditionally independent given the class

value. As the authors note, Gärtner et al.’s kernel (or equivalently, the minimax simple MI method)

may not be able to represent binary data well, unlike MICCLLR; however, the former method does

not rely upon the conditional independence assumptions used by the latter.

MI learning algorithms can also be said to rely on a metadata assumption if they are equivalent

to a metadata approach for some feature space transformation, even when the algorithm does not

explicitly perform the transformation. Learning algorithms of this type include the Relic MI

decision tree learner (Ruffo, 2000) and Gärtner et al.’s (2002) KMI MI kernel method. Relic is an

information gain-based decision tree learner that has been upgraded to handle MI data by defining

a test-selection criterion for MI bags. Although Relic does actually not perform propositionali-

zation, Xu (2003) showed how, in the case of data with numeric attributes, Relic is equivalent to

the minimax version of simple MI with a decision tree base learner, and hence effectively relies

upon the same MI assumption.

Gärtner et al. (2002) presented MI kernels that can be used to apply a standard SVM algorithm

directly to MI data. As well as the aforementioned minimax kernel, they also proposed the MI

kernel KMI, a variant of the set kernel (Gärtner, 2000). The kernel is defined as

kMIðX ;YÞ ¼
X

x2X ; y2Y
k
p
I ðx; yÞ;

where k
p
I is an arbitrary instance-level SVM kernel kI, raised to the pth power. As products of

kernels are kernels, k
p
I is also a kernel. Gärtner et al. showed that for a sufficiently large p, any

standard MI concept is separable (and thus representable by an SVM using that kernel) assuming

that the underlying instance-level concept is separable. It follows from this result that MI concepts

that respect the standard MI assumption (with separable instance-level concepts) can be learnt by

this method. However, this method does not actually make any use of the standard MI

assumption, and can in fact be shown to use a metadata assumption.

Using the fact that the dot product is distributive over scalar multiplication, it is not hard to

show that KMI can be rewritten as

kMI ðX ;YÞ ¼
X

x2X ; y2Y
fI ðxÞ 	 fI ðyÞ ¼

X
x2X

fI ðXÞ
 !

	
X
y2Y

fIðYÞ
 !

;

where fI (x) is the feature space transformation implicit in the kernel k
p
I . Thus, an SVM using the

KMI kernel is equivalent to propositionalizing via mapping each bag X to
P

xAX fI (X), and

applying a standard SVM using a linear kernel to the resulting dataset.

Later, Cheung and Kwok (2006) proposed a regularization framework for MI learning via

SVMs using a loss function that encodes a trade-off between Gärtner et al.’s KMI model and an

SVM algorithm based on the standard MI assumption that is due to Andrews et al. (2002). The

trade-off is accomplished via a weight parameter l in the loss function. The implicit assumption of

this method is that bag-level class labels are determined by some combination of the KMI metadata

assumption and the standard MI assumption.

3.10 The MI graph assumption

Zhou et al. (2009) proposed algorithms that depend upon the assumption that the spatial rela-

tionships between instances in bags are important contributors to bag labels. Consider the e-graph
of a bag, which has nodes for each instance, and edges exist between nodes if and only if the

distance between their associated instances (under some metric) is less than a fixed threshold e. The
edges are weighted according to the affinity of the two nodes—Zhou et al. set the weights to be

the normalized reciprocal of the (non-zero) distance between them. The assumption, which we will
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call the MI graph assumption, is that bag labels are in some way determined by the properties of

the e-graph.

3.10.1 Algorithms and models

The MIGraph and miGraph algorithms (Zhou et al., 2009) apply support vector machines to MI

data by using graph kernels on the e-graphs of the bags. Although any graph kernel could be used,

Zhou et al. define two new kernels based on Gärtner et al.’s MI kernel. The MIGraph and

miGraph methods differ only in the kernels used. MIGraph uses the kernel kG, defined as

kGðX ;YÞ ¼
X

x2X ; y2Y
knodeðx; yÞ þ

X
ex2EðXÞ;ey2EðYÞ

kedgeðex; eyÞ;

where E(I) is the edge set of bag I, and knode and kedge are positive semidefinite kernels defined on

nodes and edges, respectively. Zhou et al. use the Gaussian radial basis function (RBF) kernel for

knode. For the kedge kernel, they define a kernel with the property that edges are similar if their

ending nodes have similar degree, taking the edge weights into account. Note that the node

portion of the kernel kG is the same as Gärtner et al.’s MI kernel.

As the computational complexity of kG is dominated by the number of edges in X and Y if the

graphs are not sparse, it can be computationally expensive to compute the kernel function. To

counter this, Zhou et al. introduce the miGraph algorithm, where the kg kernel is used:

kgðX ;YÞ ¼
P

x2X ; y2Y WXxWYyknodeðx; yÞP
x2X WXx

P
y2Y WYy

;

where WIi is the reciprocal of the number of instances from bag I in an e-ball around instance i

(including itself). In (Zhou et al., 2009), the WIis are computed using the Gaussian distance,

consistently with the Gaussian RBF kernel used for knode. The authors describe kg as a soft version

of a clique-based graph kernel; it behaves identically to a clique-based kernel when all instances

are clustered into cliques.

3.11 Nearest neighbor assumptions

In traditional single-instance learning, the k-nearest neighbor algorithm is a simple classification

method, where examples are labeled according to the majority class of the k-closest training

examples. Here, ‘closest’ is easily defined using a distance metric such as the Euclidean distance.

In MI learning, it is not as immediately obvious how distances between bags should be com-

puted. Wang and Zucker (2000) used the maximal and minimal Hausdorff distance for this pur-

pose (see Section 3.5 for more information on this distance). Zhou et al. (2009) note that the graph

edit distance (Neuhaus & Bunke, 2007), as computed on the e-graphs of the bags, could be used as

a metric for k-nearest neighbors.

In nearest-neighbor approaches a specific kind of relationship between bags and class labels is not

directly assumed. Instead, the implicit assumption is that bags that are ‘similar’ according to the

distance measure used are likely to have the same class label. This is closely related to the BARTMIP

assumption (Section 3.5). Note that there is no clear relationship between the nearest neighbor

assumption (at least when using variants of the Hausdorff distance) and the standard MI assumption.

3.11.1 Algorithms and models

Wang and Zucker proposed two variants of the standard k-nearest neighbor algorithm. In these

methods, neighbors are computed in the normal way via the (maximal or minimal) Hausdorff

distance; the difference is in the method for selecting the label of an example given a set of

neighbors.

These methods were motivated by the authors’ observation that predicting the majority class of

the neighbors does not always give the optimal classification result. Their Bayesian-K-nearest

neighbor algorithm uses a Bayesian method for predicting the most likely class given a set of
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neighbors, while the Citation-KNN algorithm is based on the notions of references and citers from

the field of library and information science—when making a classification decision, not only are

nearest neighbors (references) of an example considered, but also bags that consider the example

to be a nearest neighbor (citers).

The experimental results presented by Wang and Zucker indicate that these methods are very

competitive with other algorithms on the musk benchmark datasets. However, a comparison with

the standard k-NN majority voting method is not provided. It should also be noted that the

Bayesian and Citation alternatives to majority voting are not at all dependent on the MI nature

of the data, and are hence equally applicable in a single-instance scenario. Finally, Wang and

Zucker used parameter values selected on the test data when comparing their methods to other

algorithms, so their comparative results may be optimistic.

4 MI learning in other supervised settings

Although the majority of the research on MI learning has been devoted to classification problems,

some work has been done on other supervised MI learning scenarios. The most notable of these

are MI multi-label learning (Zhou & Zhang, 2006) and MI regression (Ray & Page, 2001; Amar

et al., 2001). Similarly to MI classification, any learning approach in these scenarios must depend

upon an implicit assumption regarding the nature of the relationship between instances and bag

labels; we therefore discuss these assumptions in this section.

Other interesting learning scenarios using MI representations include MI clustering (Zhang &

Zhou, 2009; Kriegel et al., 2006), learning instance-level classifiers from bags labeled with a

percentage of positive instances (Kück & de Freitas, 2005), and predicting the salience of instances

in an MI regression setting (Wagstaff & Lane, 2007). None of these scenarios involves bag-level

predictions, however, so we do not consider them in this paper.

4.1 MI multi-label learning

In traditional supervised learning, multi-class learning problems contain more than two classifi-

cation categories, but each learning example belongs to exactly one of these categories. An

extension to this is multi-label learning, where the categories are not mutually exclusive, so that

each example may belong to several class categories (Schapire & Singer, 2000).

Zhou and Zhang (2006) formalized MI multi-label learning (MIML), where each MI bag may

be associated with multiple class labels. In their formulation, the task in MIML is to learn a

function of the form fMIML : 2
x-2Y, where x is the instance space, and Y is the set of class

categories. Given that MI examples are really bags (multi-sets) rather than sets, we modify this

definition to be fMIML : N
w ! 2Y (see Section 2.3.1 for more information on this notation).

As Zhou and Zhang observe, MI learning and multi-label learning are both natural general-

izations of traditional single-instance learning, and MIML is a generalization of both of these. In

MIML, it is clear that the standard MI assumption is not directly applicable, as that assumption is

dependent on the learning task being a binary classification problem. Other assumptions regarding

the relationships between the instances and the bag-level labels are required for MIML.

Zhou and Zhang proposed two solution frameworks for applying single-instance learners to

solve MIML problems. Although they did not discuss the types of concepts that these frameworks

are appropriate for, we will attempt to unify them under a more general algorithm template, and

thus expose the MIML assumptions used by both methods.

Before discussing these solution frameworks, it is instructive to first consider a method for

converting multi-label problems to single-label problems, used by both of Zhou and Zhang’s

MIML approaches. The method is referred to by Tsoumakas and Katakis (2007) as problem

transformation method PT4. In this method, the multi-label problem is converted into a set of

binary classification problems—one for each of the labels. For each label, a dataset is created

where the multi-label training examples that are associated with that label are tagged as positive in
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the new dataset, and are otherwise tagged as negative. Multi-label predictions are made by

building a single-label classifier on each of the new datasets, and outputting the union of the

positive predictions made by these classifiers.

The first solution framework proposed by Zhou and Zhang (Solution 1) is to use MI learning as

a bridge between MIML and single-instance learning. The MIML problem is converted to a set of

MI problems using PT4. Zhou and Zhang were interested specifically in methods that use tra-

ditional single-instance algorithms to solve MIML problems, and hence their formulation of

Solution 1 insists on the use of an MI method that can be solved using a single-instance algorithm.

Thus an MI method that applies a single-instance algorithm, such as MI Boosting (Xu & Frank,

2004), is then applied to the resulting MI problems.

However, it is clear that any arbitrary MI learning algorithm could in fact be applied. We will

refer to this relaxed version of the Solution 1 framework as MIML_PT4. Here, the assumption is

that the MI concept corresponding to each label can be learned under the assumption used by the

MI base learner. For example, when the MI base learner is Xu and Frank’s (2004) MI boosting

algorithm, the implicit assumption is that the concept associated with each of the labels is a

collective assumption MI concept. We shall call this general MIML assumption the MIML_PT4

assumption.

Zhou and Zhang’s other solution framework (Solution 2) uses multi-label learning as the bridge

between MIML and traditional single-instance learning. First, a propositionalization method is

used to map the MI bags into a single-instance feature space, retaining the multiple labels,

resulting in a single-instance multi-label dataset. This new learning problem is transformed into a

set of traditional single-instance single-label datasets by applying PT4, and hence is solved by

building single-instance models on the resulting datasets.

However, if we view the propositionalization step in Solution 2 as the application of a ‘wrapper’-

type MI algorithm, Solution 2 can in fact also considered to be within the MIML_PT4 framework.

This is because the order of the transformations is not important—the result is the same whether we

apply PT4 and then use the wrapper method to propositionalize the data (MIML_PT4), or propo-

sitionalize first and then apply PT4 (Solution 2). Hence, the MIML_PT4 assumption applies to

Solution 2 algorithms—it is assumed that the MI assumption used by the propositionalization

algorithm applies to each of the MI concepts associated with the MIML labels.

4.1.1 Algorithms and models

Zhou and Zhang’s (2006) MIMLBOOST algorithm uses MI Boosting (Xu & Frank, 2004) as the MI base

learner for Solution 1, while their MIMLSVM algorithm uses the constructive clustering propositiona-

lization method (Zhou & Zhang, 2007) and an SVM base learner to implement Solution 2.

4.2 MI regression

At the International Conference on Machine Learning in 2001, Ray and Page (2001) and Amar

et al. (2001)5 independently formulated multiple instance regression, where bags are associated

with real-valued labels instead of the usual binary class labels. The task is again to predict these

labels. Similarly to MI classification, MI regression is motivated by the drug activity prediction

problem. The authors of both papers observe that many drug developers prefer predictions of

activity levels of drugs, instead of active/inactive classification predictions. Application areas

identified by later authors include aerosol optical depth prediction for climate research (Wang

et al., 2008) and crop yield modeling (Wagstaff & Lane, 2007).

Ray and Page assume that the data is generated by a linear model with Gaussian noise on the

real-valued labels. Critically, they further assume that for each bag, there is one instance (referred

to as the primary instance) that is responsible for the label. Similarly to the standard MI

assumption in classification problems, this further assumption is useful for modeling ambiguity,

5 See also the later journal article (Dooly et al., 2002).
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where the instances in a bag represent different views or different states of an object, and it is

unknown which of the instances is responsible for the class label. We thus refer to it as the standard

MI regression assumption.

Amar et al. proposed the direct application of the Citation-KNN algorithm (Wang & Zucker, 2000)

and traditional k-NN (using the minimal Hausdorff distance) to data with real-valued labels. These

methods depend on the same assumption as the nearest neighbor MI classification methods; namely

that bags that are similar according to the bag-level distance measure will have similar labels.

The later MI regression algorithms proposed by Wang et al. (2008) use the assumption that

each bag is generated by some random noise around a point in instance space, which they refer to

as a prime instance.6 Bag labels are assumed to be generated from the prime instances via some

function (with added noise).

Zhang and Zhou (2009) observed that their BARTMIP algorithm (see Section 3.5), which maps

bags into a single-instance feature space, can be directly applied to MI regression when a single-

instance regression base learner issued—the method works the same way regardless of whether

labels are discrete or real-valued. This method could in fact be applied to any other metadata

algorithm, such as MILES or simple MI. Under this approach, the metadata assumption used by

the corresponding MI classification algorithm is applied in the regression setting.

4.2.1 Algorithms and models

Under Ray and Page’s assumptions, an ideal MI regression model is a hyperplane Y5Xb such that

b ¼ argmin
b

Xn
i¼1

Lðyi;Xip; bÞ;

where n is the number of bags, yi is the real-valued label of bag i, Xip is the primary instance of the ith

bag, and L is a loss function. Ray and Page use L(yi,Xij, b)5 (yi2Xij,b)
2, similarly to traditional

multiple regression. However, the primary instances Xip are not known at training time, so Ray and

Page propose that the ‘best fit’ hyperplane be used instead:

b ¼ argmin
b

Xn
i¼1

min
j

Lðyi;Xij ; bÞ; 1 � j � jXij:

They state that the decision problem for the existence of such a hyperplane can be shown to be

NP-complete via a reduction from the 3SAT problem. They therefore instead present an

approximation algorithm. Their algorithm is an EM approach, which iteratively improves an

initial guess at a hypothesis. In the expectation step, an instance is selected from each bag, namely

the one that has the least L-error with respect to the current guess at the hypothesis hyperplane. In

the maximization step, ordinary multiple regression is performed to find a hyperplane that best fits

the selected instances. These steps are repeated until convergence. As Ray and Page observe, this

algorithm can easily be modified to incorporate alternative L-error functions and alternative

(possibly non-linear) hypotheses. The algorithm is, however, dependent upon the standard MI

regression assumption.

Cheung and Kwok (2006) presented a support vector regression approach for MI regression

under the standard MI regression assumption. To make computation feasible, their method relies

on the simplifying assumption that the primary instance is the one with the highest output value

according to the SVM.

Amar et al. (2001) adapted the diverse density algorithm (see Section 2.4) to MI regression data

by using a real-valued version of Maron’s (1998) most likely cause model, and Zhang and

Goldman (2001) used a similar method to apply EM-DD (see also Section 2.4) to real-valued data.

Here, the assumption is that the closest instance to a certain ‘target point’ is responsible for a bag’s

label, which is compatible with the standard MI regression assumption. Bag labels are determined

6 Not to be confused with Ray and Page’s (2001) primary instances, which are elements of a bag and are not

assumed to ‘cause’ the other instances.
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from the distance between the target point and the closest point in the bag by a Gaussian function

with a peak at the target point.

Wang et al. (2008) proposed MI regression algorithms that are similar to the simple MI and MI

Wrapper algorithms described in Sections 3.9 and 3.7, respectively. The Global Pruning-multiple

instance regression (MIR) and Balanced Pruning-MIR algorithms are expectation-maximization

versions of an MI Wrapper-like approach that discards those instances that are most likely to be

noisy in each iteration. It should be noted that these methods are very similar to the IFLIW

algorithm from Section 3.8.3, except that sampling is used instead of weighting in the former

methods, in order to remove the effects of noisy or unimportant instances.

5 Conclusions

The MI representation is more expressive than the traditional feature-vector model, and is a

natural way to describe learning examples in a diverse array of real-world scenarios. Learning

from sets of MI examples is a difficult problem because there are many ways that instances can

interact with bag-level class labels, and consequently the hypothesis space is very large. This

difficulty can (and must) be mitigated by assuming that MI concepts are of some specific form.

The standard MI assumption, namely that bags have a positive class label if and only if at least

one instance in the bag is positive, is widely believed to be applicable to drug activity prediction

problems such as identifying molecules that emit a musky odor. While this assumption is also a

good heuristic for some other problem domains, this does not imply that it will always hold, thus

alternative assumptions can be required.

We have reviewed MI assumptions from the literature that have been used for the supervised

learning scenarios of classification, regression and multi-label learning with MI data. We have

discussed alternatives to the standard MI assumption that have been explicitly introduced by the

authors, and also attempted to clarify MI assumptions implicitly used by algorithms where

authors do not state them explicitly. We have found that some of the most popular and widely

cited MI approaches actually disregard the standard MI assumption. This indicates that this

assumption may not be as crucial for the musk problem as was initially hypothesized by Dietterich

et al. (1997)—several approaches that depart from the standard MI assumption have been shown

empirically to be very competitive on the musk data.

The expressivity of the MI representation is a strong motivation for continued work in this

area. As MI learning continues to be applied to a wider selection of practical machine learning

problems, the use of appropriate MI assumptions for the problems at hand becomes increasingly

important. We therefore anticipate that future research into algorithms and assumptions for the

relaxed MI learning problem will prove fruitful.

We do, however, believe that it is important to explicitly state assumptions used by an algo-

rithm whenever the standard MI assumption is not used. Researchers and practitioners need to be

aware that different MI problem domains may require different MI assumptions, and the standard

MI assumption is not always applicable. It is important to verify that the MI assumption used by

an algorithm is at least plausible for the problem at hand.

A task that is of particular interest is to find more effective and generally applicable algorithms

for learning visual concepts, such as for image classification and content-based image retrieval.

The MI representation allows for concept descriptions that are defined upon the interaction of

instance-level concepts, which is a very natural way to describe visual concepts. Different visual

concepts are likely to require vastly different interactions between instances and bag-level class

labels—for example, the banana concept is likely to be very different to the beach concept—so

there is significant scope for work on alternative MI assumptions in this domain.
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Maron, O. & Lozano-Pérez, T. 1997. A framework for multiple-instance learning. In Proceedings of the 11th

Conference on Neural Information Processing Systems, 570–576. MIT Press.

Maron, O. & Ratan, A. L. 1998. Multiple-instance learning for natural scene classification. In Proceedings of

the 15th International Conference on Machine Learning, 341–349. Morgan Kaufmann.

Neuhaus, M. & Bunke, H. 2007. A quadratic programming approach to the graph edit distance problem. In

Proceedings of the 6th IAPR-TC-15 International Workshop on Graph Based Representations in Pattern

Recognition, 92–102. Springer.

Qi, G.-J., Hua, X.-S., Rui, Y., Mei, T., Tang, J. & Zhang, H.-J. 2007. Concurrent multiple instance learning

for image categorization. In Proceeding of the IEEE Conference on Computer Vision and Pattern

Recognition, 1–8. IEEE Computer Society.

Ramon, J. & De Raedt, L. 2000. Multi instance neural networks. In Proceedings of the International

Conference on Machine Learning 2000 Workshop on Attribute-Value and Relational Learning.

Ray, S. & Craven, M. 2005. Supervised learning versus multiple instance learning: an empirical comparison.

In Proceedings of the 22nd International Conference on Machine Learning, 697–704. ACM.

24 J . F OULD S AND E . F RANK



Ray, S. & Page, D. 2001. Multiple instance regression. In Proceedings of the 18th International Conference on

Machine Learning, 425–432. Morgan Kaufmann.

Ruffo, G. 2000. Learning single and multiple instance decision trees for computer security applications. PhD

thesis, Universida di Torino, Italy.

Schapire, R. E. & Singer, Y. 2000. BoosTexter: A boosting-based system for text categorization. Machine

Learning 39(2/3), 135–168.

Scott, S., Zhang, J. & Brown, J. 2005. On generalized multiple-instance learning. International Journal of

Computational Intelligence and Applications 5(1), 21–35.

Tao, Q. & Scott, S. 2004. A faster algorithm for generalized multiple-instance learning. In Proceedings of the

17th International Florida Artificial Intelligence Research Society Conference, 550–555. AAAI Press.

Tao, Q., Scott, S., Vinodchandran, N. V., Osugi, T. & Mueller, B. 2004a. An extended kernel for generalized

multiple-instance learning. In Proceedings of the 16th IEEE International Conference on Tools with

Artificial Intelligence, 272–277. IEEE Computer Society.

Tao, Q., Scott, S., Vinodchandran, N. & Osugi, T. T. 2004b. SVM-based generalized multiple-instance

learning via approximate box counting. In Proceedings of the 21st International Conference on Machine

Learning, 779–806. ACM.

Tsoumakas, G. & Katakis, I. 2007. Multi-Label classification: An overview. International Journal of Data

Warehousing and Mining 3(3), 1–13.

Wagstaff, K. & Lane, T. 2007. Salience assignment for multiple-instance regression. In Proceedings of the

International Conference on Machine Learning 2007 Workshop on Constrained Optimization and Structured

Output Spaces.

Wang, J. & Zucker, J.-D. 2000. Solving the multiple-instance problem: A lazy learning approach. In

Proceedings of the 17th International Conference on Machine Learning, 1119–1125. Morgan Kaufmann.

Wang, Z., Radosavljevic, V., Han, B. & Obradovic, Z. 2008. Aerosol optical depth prediction from satellite

observations by multiple instance regression. In Proceedings of the SIAM International Conference on Data

Mining, 165–176. SIAM.

Weidmann, N. 2003. Two-level classification for generalized multi-instance data. Master’s thesis, Albert

Ludwigs University of Freiburg.

Weidmann, N., Frank, E. & Pfahringer, B. 2003. A two-level learning method for generalized multi-instance

problems. In Proceedings of the 14th European Conference on Machine Learning, 468–479. Springer.

Xu, X. 2003. Statistical Learning in Multiple Instance Problems. Master’s thesis, University of Waikato.

Xu, X. & Frank, E. 2004. Logistic regression and boosting for labeled bags of instances. In Proceedings of the

8th Pacific-Asia Conference on Knowledge Discovery and Data Mining, 272–281. Springer.

Zhang, M-L. & Zhou, Z.-H. 2009. Multi-instance clustering with applications to multi-instance prediction.

Applied Intelligence 31(1), 47–68.

Zhang, Q. & Goldman, S. 2001. EM-DD: An improved multiple-instance learning technique. In Proceedings

of the 15th Conference on Neural Information Processing Systems, 1073–1080. MIT Press.

Zhang, Q., Yu, W., Goldman, S. & Fritts, J. 2002. Content-based image retrieval using multiple-instance

learning. In Proceedings of the 19th International Conference on Machine Learning, 682–689. Morgan

Kaufmann.

Zhou, Z.-H., Sun, Y.-Y. & Li, Y.-F. 2009. Multi-instance learning by treating instances as non-I.I.D.

samples. In Proceedings of the 26th International Conference on Machine Learning, 1249–1256. ACM.

Zhou, Z.-H. & Xu, J.-M. 2007. On the relation between multi-instance learning and semi-supervised learning.

In Proceedings of the 24th International Conference on Machine learning, 1167–1174. ACM.

Zhou, Z.-H. & Zhang, M.-L. 2006. Multi-instance multi-label learning with application to scene classifica-

tion. In Proceedings of the 20th Annual Conference on Neural Information Processing Systems, 1609–1616.

MIT Press.

Zhou, Z.-H. & Zhang, M.-L. 2007. Solving multi-instance problems with classifier ensemble based on con-

structive clustering. Knowledge and Information Systems 11(2), 155–170.

A review of multi-instance learning assumptions 25


