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Abstract— This paper investigates possible improvements of
abstraction to simplify finite-state machines during composi-
tional nonblocking verification of large discrete event systems.
Current methods to simplify finite-state machines depend on
the absence of transitions from the states to be simplified, and
selfloop transitions, i.e., transitions with the same source and
target state, are a common culprit that prevents simplification.
Some methods to remove such selfloops are known, but they
require events that appear on selfloops in the entire finite-
state machine to be simplified. The methods described in this
paper improve on this, because they allow for the removal
of individual selfloop transitions from a finite-state machine
while preserving conflict equivalence. This makes it possible to
remove more transitions, thus reducing the computational effort
of compositional nonblocking verification. Two abstraction rules
are proposed, and experimental results show the potential of
improvement over previously used methods.

Index Terms— Discrete event systems, finite-state machines,
nonblocking, model checking, compositional verification.

I. INTRODUCTION

The nonblocking property is a weak liveness property

commonly used in supervisory control theory of discrete

event systems to express the absence of livelocks or dead-

locks [1], [2]. This is a crucial property of safety-critical

control systems, and with the increasing size and complexity

of these systems, there is an increasing need to verify the

nonblocking property automatically. The standard method to

check whether a system is nonblocking involves the explicit

composition of all the components involved, and is limited

by the well-known state-space explosion problem. Symbolic

model checking has been used successfully to reduce the

amount of memory required by representing the state space

symbolically rather than enumerating it explicitly [3].

Compositional verification [4], [5] is an effective alterna-

tive that can be used independently of or in combination

with symbolic methods. Compositional verification works

by abstracting or simplifying individual components of a

large system, gradually reducing the state space and allowing

larger systems to be verified in the end. When applied to

the nonblocking property, compositional verification requires

specific abstraction methods [6], [7]. A suitable theory is

laid out in [8], where conflict equivalence is shown to be the

most general process-algebraic equivalence to preserve the

nonblocking property. Various abstraction rules preserving

conflict equivalence have been proposed [6], [7], [9], [10].

Generalisations beyond conflict equivalence that take context

information into account have also been investigated [11].
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Several conflict-preserving abstraction rules have specific

requirements about the presence or absence of transitions

in the states to be simplified, and the presence of selfloop

transitions, i.e., transitions with the same source and target

states, has often been observed to prevent simplification.

Selfloop Removal [11] can remove an event entirely from

a system or a component, provided that it appears only on

selfloops. This paper proposes two further abstraction rules,

referred to as the Selfloop Subsumption and Weak Active

Events Rules, which can remove individual selfloops from a

finite-state machine, even if the event also appears on non-

selfloop transitions.

In the following, Section II introduces the background of

finite-state machines, the nonblocking property, and compo-

sitional verification. Next, Section III describes the Selfloop

Subsumption Rule, and Section IV describes the Weak

Active Events Rule, which are the contributions of this paper.

Small examples highlight the benefits of these rules and show

how they work. Afterwards, Section V presents experimental

results, and Section VI adds concluding remarks.

II. PRELIMINARIES

A. Events and Languages

Event sequences and languages are a simple means to

describe discrete system behaviours [1], [2]. Their basic

building blocks are events, which are taken from a finite

alphabet Σ. The silent event τ labels transitions that are

only taken by the component under consideration, and the

termination event ω shows completion of a task. These

special events are never included in an alphabet Σ unless

mentioned explicitly using notation such as Σω = Σ ∪ {ω}
or Στ,ω = Σ ∪ {τ, ω}.

Σ∗ denotes the set of all finite traces of the form

σ1σ2 · · ·σn of events from Σ, including the empty trace ε.

The concatenation of two traces s, t ∈ Σ∗ is written as st.
A subset L ⊆ Σ∗ is called a language. For Σ′ ⊆ Στ,ω ,

the natural projection PΣ′ : Σ∗
τ,ω → (Σ′)∗ is the operation

that deletes all events not contained in Σ′ from traces. The

standard projection P = PΣω
deletes all silent (τ ) events.

B. Finite-State Machines

System behaviours are modelled using finite-state ma-

chines. Typically, system models are deterministic, but ab-

straction may result in nondeterminism.

Definition 1: A (nondeterministic) finite-state machine

(FSM) is a tuple G = 〈Σ, Q,→, Q◦〉 where Σ is a set of

events, Q is a finite set of states, → ⊆ Q × Στ,ω × Q is



the state transition relation, and Q◦ ⊆ Q is the set of initial

states.

The transition relation is written in infix notation x
σ
→ y,

and is extended to traces s ∈ Σ∗
τ,ω in the standard way. For

state sets X,Y ⊆ Q, the notation X
s
→ Y means x

s
→ y

for some x ∈ X and y ∈ Y , and X
s
→ y means x

s
→ y for

some x ∈ X . Also, X
s
→ for a state or state set X denotes

the existence of a state y ∈ Q such that X
s
→ y.

The termination event ω /∈ Σ denotes completion of a

task and does not appear anywhere else but to mark such

completions. States reached by ω do not have any outgoing

transitions, i.e., if x
ω
→ y then there does not exist σ ∈ Στ,ω

such that y
σ
→. The traditional set of terminal states is Qω =

{x ∈ Q | x
ω
→} in this notation. For graphical simplicity,

states in Qω are coloured black in the figures of this paper

instead of explicitly showing ω-transitions.

To support silent events, another transition relation ⇒ ⊆
Q×Σ∗

ω×Q is introduced, where x
s
⇒ y denotes the existence

of a trace t ∈ Σ∗
τ,ω such that P (t) = s and x

t
→ y. That

is, x
s
→ y denotes a path with exactly the events in s, while

x
s
⇒ y denotes a path with an arbitrary number of τ events

shuffled with the events of s. Notations such as X
s
⇒ Y and

x
s
⇒ are defined analogously to →.

An FSM is τ -loop free if, for all states x ∈ Q and all

traces t ∈ {τ}∗ such that x
t
→ x, it holds that t = ε. As

every FSM can be transformed into an observation equivalent

τ -loop free FSM [7], it is enough to consider τ -loop free

FSMs for abstraction in this paper.

Definition 2: Let G = 〈ΣG, QG,→G, Q
◦
G〉 and H =

〈ΣH , QH ,→H , Q◦
H〉 be two FSMs. The synchronous com-

position of G and H is

G ‖H = 〈ΣG ∪ ΣH , QG ×QH ,→, Q◦
G ×Q◦

H〉 , (1)

where

• (xG, xH)
σ
→ (yG, yH) if σ ∈ (ΣG∩ΣH)∪{ω}, xG

σ
→G

yG, and xH
σ
→H yH ;

• (xG, xH)
σ
→ (yG, xH) if σ ∈ (ΣG \ ΣH) ∪ {τ} and

xG
σ
→G yG;

• (xG, xH)
σ
→ (xG, yH) if σ ∈ (ΣH \ ΣG) ∪ {τ} and

xH
σ
→H yH .

FSMs are synchronised using lock-step synchronisa-

tion [12]. Shared events (including ω) must be executed by

all FSMs synchronously, while other events (including τ ) are

executed independently.

A common method to simplify an FSM is to construct

its quotient modulo an equivalence relation on the state set.

An equivalence relation is a binary relation that is reflexive,

symmetric and transitive. Given an equivalence relation ∼
on a set Q, the equivalence class of x ∈ Q with respect

to ∼, denoted [x], is defined as [x] = {x′ ∈ Q | x′ ∼ x }.

An equivalence relation on a set Q partitions Q into the set

Q/∼ = { [x] | x ∈ Q } of its equivalence classes.

Definition 3: Let G = 〈Σ, Q,→, Q◦〉 be an FSM, and let

∼ ⊆ Q × Q be an equivalence relation. The quotient of G
modulo ∼ is G/∼ = 〈Σ, Q/∼ ,→/∼ , Q̃◦〉, where →/∼ =
{ ([x], σ, [y]) | x

σ
→ y } and Q̃◦ = { [x◦] | x◦ ∈ Q◦ }.

C. Compositional Nonblocking Verification

The key liveness property in supervisory control theory

is the nonblocking property [2]. An FSM is nonblocking if,

from every reachable state, a terminal state can be reached.

Definition 4: [8] An FSM G = 〈Σ, Q,→, Q◦〉 is non-

blocking if, for every state x ∈ Q and every trace s ∈ Σ∗

such that Q◦ s
⇒ x, there exists a trace t ∈ Σ∗ such that x

tω
⇒;

otherwise G is blocking.

To reason about this property in a compositional way,

the notion of conflict equivalence is used [8]. According to

process-algebraic testing theory, two FSMs are considered as

equivalent if they both respond in the same way to tests [13].

For conflict equivalence, a test is an arbitrary FSM, and the

response is the observation whether the test composed with

the FSM in question is nonblocking or not.

Definition 5: [8] Two FSMs G and H are conflict equiv-

alent, written G ≃conf H , if, for any FSM T , G ‖ T is

nonblocking if and only if H ‖ T is nonblocking.

When verifying whether a composed system of FSMs

G1 ‖G2 ‖ · · · ‖Gn , (2)

is nonblocking, compositional methods [6], [7] avoid build-

ing the full synchronous composition immediately. Instead,

individual FSMs Gi are simplified and replaced by smaller

conflict equivalent FSMs Hi ≃conf Gi. If no simplification

is possible, a subsystem (Gj)j∈J is selected and replaced by

its synchronous composition, which then may be simplified.

The soundness of this approach is justified by the congru-

ence properties [8] of conflict equivalence. For example, if

G1 in (2) is replaced by H1 ≃conf G1, then by considering

T = G2 ‖ · · · ‖ Gn in Def. 5, it follows that the abstracted

system H1 ‖ T = H1 ‖G2 ‖ · · · ‖Gn is nonblocking if and

only if the original system (2) is.

A component G1 in a system such as (2) typically contains

events that appear only in G1 and not in the remainder

T = G2 ‖ · · · ‖ Gn of the system. These so-called local

events are abstracted using hiding, i.e., they are replaced by

the silent event τ . This paper is concerned about methods

to simplify FSMs with silent transitions in such a way that

conflict equivalence is preserved.

III. SELFLOOP SUBSUMPTION

Several abstraction rules to simplify FSMs while preserv-

ing conflict equivalence are known [6], [7], [9], [10]. One of

these rules, called the Only Silent Outgoing Rule [6], allows

for the removal of a state that has no outgoing transitions

except transitions labelled by the silent event τ .

Example 1: Consider FSM G1 in Fig. 1. State 1 has only

two outgoing transitions, which are both labelled by the

silent event τ . This state can be removed after redirecting

its incoming transition 0
α
→ 1 to both its τ -successor states,

i.e., after adding the transitions 0
α
→ 2 and 0

α
→ 3. Fig. 1

shows the resultant abstraction H1, which is known to be

conflict equivalent to G1.

The Only Silent Outgoing Rule in Example 1, while useful

for conflict-preserving abstraction [6], requires states with no
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Fig. 1. Only Silent Outgoing abstraction.

other outgoing transitions except τ -transitions, which is an

unnecessarily restrictive requirement.

Example 2: Consider FSM G2 in Fig. 1. State 1 has the

outgoing transition 1
λ
→ 1, which is not silent, and therefore

the Only Silent Outgoing Rule is not applicable to this state.

Nevertheless, FSM G2 is conflict equivalent to H2, which

would result from removing state 1 using the Only Silent

Outgoing Rule. The selfloop in state 1 is irrelevant for

the purpose of conflict equivalence, because the successor

states 2 or 3 also have selfloops labelled λ. Therefore, any

continuation from state 1 to a terminal state can be rearranged

by first using the silent transition to state 2 or 3 and executing

any λ events needed for termination in that state. This idea

is captured by the following definition.

Definition 6: Let G = 〈Σ, Q,→, Q◦〉, and let Λ ⊆ Σ and

p ∈ Q. Then G is said to have subsumed Λ-selfloops at

state p, if the following conditions hold.

(SS1) p
λ
→ p for all λ ∈ Λ.

(SS2) If p
σ
→ x for some σ ∈ Σω and x ∈ Q, then σ ∈ Λ

and x = p.

(SS3) For every path p
τ
→ p1

τ
→ · · ·

τ
→ pk with pk

σ
→ for

some σ ∈ Σω \ Λ or pk
λ
→ r for some λ ∈ Λ and

pk 6= r, there exists 1 ≤ j ≤ k such that pj
λ
⇒ pj

for all λ ∈ Λ.

Conditions (SS1) and (SS2) require that the state p has the

selfloops by the events in Λ as its only outgoing transitions,

apart from silent τ -transitions. Condition (SS3) requires that

these selfloops also appear together on every path of τ -

transitions originating from state p, before any other event

becomes possible. Under these conditions, the following

operation of selfloop subsumption is used to remove the

selfloops from the start state p.

Definition 7: Let G = 〈Σ, Q,→, Q◦〉, and let Λ ⊆ Σ and

p ∈ Q. The result of selfloop subsumption is G ⊖ (p; Λ) =
〈Σ, Q,→⊖, Q

◦〉 where →⊖ = →\ ({p} × Λ× {p}).
Example 3: FSM G2 in Fig. 1 has subsumed {λ}-self-

loops at state 1, because both τ -successor states 2 and 3

also have {λ}-selfloops. The result of selfloop subsumption,

G2 ⊖ (1, {λ}), is obtained by deleting the transition 1
λ
→ 1

from G2, and the result can be further simplified using the
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Fig. 2. Counterexample to selfloop subsumption.

Only Silent Outgoing Rule to obtain the abstraction H2.

It is important to note in Def. 6 that the events of all

selfloops on state p are collected in the set Λ: either all these

selfloops are removed together, or none can be removed.

Example 4: FSM G3 in Fig. 2 does not have subsumed

{λ1, λ2}-selfloops at state 1. Condition (SS3) is not satisfied,

because there is no state τ -reachable from state 1 with both

events λ1 and λ2 on selfloops, except for state 1 itself.

Note that removing only the λ2-selfloop from state 1

results in H3, which is not conflict equivalent to G3. Fig. 2

shows an FSM T and the synchronous composition G3 ‖ T ,

which is nonblocking, and H3 ‖ T , which is blocking.

The following proposition confirms that selfloop subsump-

tion as defined above indeed results in a conflict equivalent

abstraction.

Proposition 1 (Selfloop Subsumption Rule): Let G = 〈Σ,
Q,→, Q◦〉 have subsumed Λ-selfloops at p ∈ Q. Then

G ≃conf G⊖ (p; Λ).
The selfloop subsumption rule is implemented by checking

each state of the FSM with only selfloops and τ -transitions as

outgoing transitions. For such states p, the set Λ of selfloops

to be checked for removal is determined as the set of non-τ
events enabled in the state. Then a search of the τ -successors

is performed. For each τ -successor x, it is checked whether

x
λ
⇒ x for all λ ∈ Λ. If this is the case, the state x passes the

check. Otherwise, it is determined whether x
σ
→ for some

σ ∈ Σω \ Λ or x
λ
→ y 6= x for some λ ∈ Λ, in which

case state p does not have subsumed Λ-selfloops. If no such

transition is found, the τ -successors of x must all be checked.

If all checked states pass the test, then state p has subsumed

Λ-selfloops.

As the removal of selfloops at a state may enable selfloop

subsumption at its τ -predecessors, the order in which states

are analysed can be important. If the FSM is τ -loop free,

maximum effectiveness is achieved by first analysing the

states with the fewest other states reachable by τ -transitions.

Complexity: The above algorithm checks |Q| states of an

FSM, each time visiting up to |Q| − 1 proper τ -successors.

For each τ -successor, it has to explore up to |Q| outgoing

τ -transitions, and up |Σ||Q| outgoing transitions with events

from Σ. This gives a total of O(|Q|3|Σ|) operations.



The most complicated check, whether x
λ
⇒ x, needs to be

performed only once per state x and event λ, as the result

will not change for a τ -loop free FSM even when selfloops

are removed. This requires computation of the transitive

closure of τ -transitions ahead of time, which can be done

in O(|Q|3) time [14], and using this each test for x
λ
⇒ x

is possible in O(|Q|2) time. In the worst case, the check is

performed for each pair of state x and event λ, with total

time complexity O(|Q|3|Σ|). This is the same as the above

complexity to analyse the states, so it is the worst-case time

complexity of the Selfloop Subsumption Rule.

IV. ACTIVE EVENTS ABSTRACTION

The Active Events Rule is another conflict-preserving

abstraction [6], which merges states with exactly the same

enabled events, if they are reached after some nondetermin-

istic choice. This is justified by the fact that, to preserve

the nonblocking property, only the traces leading to terminal

states are important, which makes it possible to postpone

a nondeterministic choice by one step. The requirement

for states to be reached after a nondeterministic choice is

expressed by the relation of incoming equivalence.

Definition 8: [6] Let G = 〈Σ, Q,→, Q◦〉 be an FSM.

The incoming equivalence relation ∼inc ⊆ Q×Q is defined

such that y1 ∼inc y2 if the following conditions hold.

(IE1) Q◦ ε
⇒ y1 if and only if Q◦ ε

⇒ y2.

(IE2) For all states x ∈ Q and all events σ ∈ Σω it holds

that x
σ
⇒ y1 if and only if x

σ
⇒ y2.

Two states are incoming equivalent, if either both or none

are silently reachable from initial states (IE1), and if they

have exactly the same incoming transitions, i.e., transitions

with the same events and the same source states (IE2).

Based on this, the Active Events Rule merges states that are

incoming equivalent and have the same sets of active events.

Proposition 2 (Active Events Rule): [6] Let G = 〈Σ, Q,
→, Q◦〉 be an FSM, and let ∼ ⊆ ∼inc be an equivalence

relation on Q such that x ∼ y implies x
σ
⇒ if and only if

y
σ
⇒ for all σ ∈ Σω . Then G ≃conf G/∼.

Example 5: Consider FSM G1 in Fig. 3. States 1 and 2

both only have incoming transitions from state 0 with

event α, which is enough to establish incoming equivalence,

and they both have the same active event, β. The Active

Events Rule can be applied to merge states 1 and 2 into a

single state 12 as shown in H1.

While some simplification is achieved by the Active

Events Rule, the condition of incoming equivalence is re-

strictive as it requires incoming transitions from exactly the

same states. This rules out some desirable simplification,

particularly when selfloops are involved.

Example 6: Consider FSM G2 in Fig. 3. States 1 and 2

are not incoming equivalent, because 1
α
⇒ 1 while 1

α
⇒ 2

does not hold. Therefore, the Active Events Rule cannot be

used to merge states 1 and 2 and obtain H2.

Although H2 cannot be obtained from G2 by the Active

Events Rule, FSMs G2 and H2 are conflict equivalent:

similarly to Example 5, the nondeterministic choice between

states 1 and 2 can be deferred as both states only have got
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Fig. 3. Active Events abstraction.

outgoing transitions by the same events, and the selfloops

with event α do not change the way how termination is

possible only via β in both states.

As incoming equivalence is too restrictive, it is desirable

to relax it by allowing for equivalent rather than identical

source states of incoming transitions. This leads to reverse

weak bisimulation, which has been used in compositional

verification of the generalised nonblocking property [7].

Definition 9: [15] Let G = 〈Σ, Q,→, Q◦〉. An equiva-

lence relation ∼ ⊆ Q × Q is a reverse weak bisimulation

on G, if the following conditions hold for all y1, y2 ∈ Q
with y1 ∼ y2.

(RB1) If Q◦ ε
⇒ y1 then also Q◦ ε

⇒ y2.

(RB2) For all states x1 ∈ Q and all s ∈ Σω ∪ {ε} such

that x1

s
⇒ y1 there exists a state x2 ∈ Q such that

x2

s
⇒ y2 and x1 ∼ x2.

Condition (RB1) is the equivalent to (IE1) for incoming

equivalence, while condition (RB2) differs in that it con-

siders states to be equivalent if they have got incoming

transitions with the same events, originating from states that

are equivalent under the same relation. This is weaker than

condition (IE2) for incoming equivalence, which requires

identical source states. Reverse weak bisimulation allows

for states 1 and 2 in FSM G2 in Fig. 3 to be considered

as equivalent.

Unfortunately, the Active Events Rule cannot be relaxed

by replacing incoming equivalence with reverse weak bisim-

ulation, as the following example shows.

Example 7: A relation that considers states 1 and 2 as

equivalent is a reverse weak bisimulation on FSM G3 in

Fig. 3, and both states have the same active events α and β.

Merging these states results in FSM H3, which is not conflict

equivalent to G3. For example, if T is an FSM that always

enables α and always disables β, then G3 ‖ T is blocking



while H3 ‖ T is nonblocking.

The problem in Example 7 is caused by the transition 1
α
→

3, which makes it possible to reach a different equivalence

class by event α from state 1 but not from the equivalent

state 2. This observation suggests the need to distinguish

active events that lead to the same equivalence class only

from active events that lead to a different equivalence class.

Definition 10: Let G = 〈Σ, Q,→, Q◦〉. An equivalence

relation ∼ ⊆ Q × Q is a weak active events equivalence

on G if for all y1, y2 ∈ Q such that y1 ∼ y2 the following

conditions hold.

(WA1) If Q◦ ε
⇒ y1 then also Q◦ ε

⇒ y2.

(WA2) If x
σ
⇒ y1, and x ∼ y1 does not hold, then x

σ
⇒ y2.

(WA3) If x1

σ
⇒ y1 and x1 ∼ y1, then there exists x2 ∼ x1

such that x2

σ
⇒ y2.

(WA4) If y1
σ
⇒ then y2

σ
⇒.

(WA5) If y1
σ
⇒ z1 for some z1 /∈ [y1] then y2

σ
⇒ z2 for

some z2 /∈ [y2]
Condition (WA1) is equivalent to the first condition (IE1)

for incoming equivalence, while the second condition (IE2)

is replaced by two conditions (WA2) and (WA3). Condi-

tion (WA2) requires identical predecessor states in the same

way as (IE2), but only for transitions originating from a

different equivalence class. For transitions originating from

the same equivalence class, condition (WA3) requires an

equivalent predecessor state as reverse weak bisimulation

does. Condition (WA4) requires equivalent states to have

exactly the same active events, as it is also required in

Prop. 2 for the Active Events Rule. In addition to that,

condition (WA5) requires any active event that leads from

a state to a different equivalence class to do so also from

any equivalent state.

These conditions allow for states 1 and 2 of FSM G2

in Example 6 to be equivalent, because for the transition

1
α
→ 1 there exists the transition 2

α
→ 2 that originates from

an equivalent state, 1 ∼ 2. On the other hand, states 1 and 2

of FSM G3 in Example 7 cannot be equivalent because of

condition (WA5), since 1
α
→ 3, where state 3 is not equivalent

to state 1, while the only α-transition from state 2, 2
α
→ 2,

leads to a state in the same equivalence class.

The following result confirms that the merging of weakly

active events equivalent states results in a conflict equivalent

abstraction.

Proposition 3 (Weak Active Events Rules): Let G = 〈Σ,
Q,→, Q◦〉, and let ∼ ⊆ Q × Q be a weak active events

equivalence on G. Then G ≃conf G/∼.

The Weak Active Events Rule is implemented by a parti-

tion refinement algorithm similar to [16]. In a first step, all

states with equal active events and equal silent reachability

from initial states are grouped together, producing a partition

satisfying conditions (WA1) and (WA4). This partition is

then refined to satisfy (WA2) by exploring the successors

for each state and event and splitting the other equivalence

classes by separating the states that can be reached from

those that cannot. Afterwards, each pair of class and event is

checked to see which states in the same class can be reached,

if necessary splitting the classes to satisfy (WA3). Finally,

each class and event is checked again to separate states that

can reach a different class from those that cannot, ensuring

that the partition satisfies (WA5). Whenever a class is split,

all states of the two classes resulting from the split must

be processed again to check for further splits according to

(WA2), (WA3), and (WA5).

Unlike incoming equivalence and reverse weak bisim-

ulation, there does not necessarily exist a coarsest weak

active events equivalence for a given FSM. This is because

condition (WA5) can be satisfied by splitting classes in

different ways. The above algorithm results in a weak active

events equivalence, but not necessarily in an optimal solution.

If some states have been found to be equivalent by the al-

gorithm, the FSM quotient is computed to simplify the FSM.

Afterwards, the algorithm starts over to compute another

weak active events equivalence. This is because the merging

of states can cause other states to satisfy condition (WA2),

making it possible to merge more states.

Complexity: The computation of a weak active events

equivalence involves splitting classes up to |Q| times. After

each split, in the worst case, all pairs of state and event need

to be checked for conditions (WA2), (WA3), and (WA5).

These are up to 3|Q||Σ| checks, each of which can be

performed by exploring up to |Q| successor states, assuming

the relation ⇒ is computed in advance and stored. This gives

a worst-case time complexity of O(|Q|3|Σ|) to compute a

weak active events equivalence. The complexity to compute

the relation ⇒ in advance is the same, the initial partitioning

according to (WA1) and (WA4), the splitting of the classes,

and the construction of the quotient FSM can be done in

lower time complexity.

As the algorithm iterates and computes up to |Q| weak

active events equivalence relations, the worst-case time com-

plexity to apply the Weak Active Events Rule to an FSM

is O(|Q|4|Σ|).

V. EXPERIMENTAL RESULTS

The abstraction rules proposed in this paper have been

integrated in a compositional nonblocking verification al-

gorithm in the discrete event systems tool Supremica [17].

Compositional nonblocking verification receives as input a

system of FSMs (2), and repeatedly applies abstraction to

individual components, or composes a few components if

no abstraction is possible, until a final simplified system is

verified using a standard monolithic nonblocking check [1].

The abstraction sequence [11] in the implementation [17]

has been modified by inserting the Selfloop Subsumption

and Weak Active Events Rules at appropriate positions.

The compositional algorithm without and with the new

rules has been used to check the nonblocking property of

26 benchmark examples [6], [7], [11]. The test suite includes

complex industrial models and case studies from application

areas such as manufacturing systems, communication proto-

cols, and automotive electronics.

Table I shows the results of the experiments. It shows

for each test case the number of FSMs in the model (Aut),



TABLE I

EXPERIMENTAL RESULTS

State Previous Work [11] Advanced Selfloop Treatment

Model Aut space Res Peak Final Time Peak Final Time SS WA

aip0aip 117 1.0·109 yes 226 66 1.7 s 226 66 1.7 s 316 0

aip0alps 35 3.0·108 no 13 9 0.4 s 13 9 0.4 s 8 0

aip0tough 60 1.0·1010 no 177 0 1.3 s 177 0 1.5 s 44 16

aip1efa 〈3〉 50 6.9·108 yes 10734 2887502 11.3 s 10759 2540103 11.3 s 157 1158

aip1efa 〈16〉 50 9.5·1012 no 74100 20072368 34.1 s 57395 7108974 119.1 s 2760 27063

aip1efa 〈24〉 50 1.8·1013 no 10734 20105881 28.3 s 10759 13867554 20.8 s 103 198

fencaiwon09 32 1.0·108 yes 279 41 0.8 s 279 41 0.9 s 7 0

fencaiwon09b 31 8.9·107 no 279 68 1.2 s 279 62 1.2 s 10 1

ftechnik 36 1.2·108 no 152 0 1.2 s 152 0 1.2 s 129 3

profisafe i4 82 yes 37044 4440 16.7 s 37044 2974 17.6 s 677 12

profisafe i5 88 yes 98304 5414 58.7 s 98304 3643 63.2 s 948 14

profisafe i6 94 yes 52224 300735 73.7 s 47736 179 36.0 s 1011 16

tbed ctct 84 3.9·1013 no 15039 0 6.2 s 15039 0 6.5 s 727 774

tbed hisc0 196 6.0·1012 yes 766 50 3.5 s 766 33 3.6 s 114 34

tbed hisc1 184 2.9·1017 no 19 0 0.4 s 19 0 0.4 s 2 0

tbed valid 84 3.0·1012 yes 4640 3019 3.6 s 4398 3019 3.8 s 456 126

tip3 58 2.3·1011 yes 192 0 1.1 s 192 0 1.2 s 46 0

tip3 bad 54 5.2·1010 no 192 0 1.0 s 192 0 1.1 s 45 0

verriegel3 53 9.7·108 yes 636 2 1.6 s 774 2 1.6 s 134 27

verriegel3b 52 1.3·109 no 27 0 0.6 s 27 0 0.6 s 1 1

verriegel4 65 4.6·1010 yes 636 2 1.7 s 774 2 1.7 s 209 33

verriegel4b 64 6.3·1010 no 27 0 0.7 s 27 0 0.7 s 2 2

6linka 53 2.4·1014 no 61 0 0.8 s 61 0 0.8 s 0 0

6linki 53 2.7·1014 no 32 0 0.5 s 32 0 0.6 s 0 0

6linkp 48 4.4·1014 no 16 0 0.4 s 16 0 0.4 s 0 0

6linkre 59 6.2·1013 no 29 0 0.8 s 29 0 0.8 s 0 0

the number of reachable states in the synchronous com-

position (State space) if known, and whether or not the

model is nonblocking (Res). Then it shows, for the case

with and without the Selfloop Subsumption and Weak Active

Events Rules, the number of states of the largest FSM sim-

plified (Peak), the number of states processed by monolithic

nonblocking verification after simplification (Final), and the

total verification time (Time). A final states number of 0

indicates that the algorithm has terminated early without a

monolithic nonblocking check [11].

The table also shows the number of selfloops removed by

Selfloop Subsumption (SS) and the number of states removed

by the Weak Active Events Rule (WA). The latter are in

addition to the original Active Events Rule [6], which is also

contained in the abstraction sequence and executed before the

Weak Active Events Rule.

The data shows that the Selfloop Subsumption and Active

Events Rules can achieve additional simplification over the

abstraction sequence [11], particularly for the large aip1

and profisafe models. The runtime is not always better,

because the Weak Active Events Rule can be slow and

its implementation is not optimised as much as the other

abstractions. Yet, the reduction in the peak and final states

numbers is encouraging, as these can be the bottleneck for

compositional verification.

VI. CONCLUSIONS

Two conflict-preserving abstraction rules have been pro-

posed that allow for simplification of FSMs during compo-

sitional nonblocking verification, particularly in cases where

previously used methods [6], [7], [11] fail due to the presence

of selfloops. Specifically, the Selfloop Subsumption Rule

allows for the removal of individual selfloops from an FSM,

and the Weak Active Events Rule allows for the merging

of states with the same enabled events even though they

are not incoming equivalent due to selfloops. Experimental

results demonstrate that these rules provide for better abstrac-

tion during compositional nonblocking verification of large

discrete event systems. In future work, it is of interest to

generalise these rules beyond conflict equivalence, by taking

into account how shared events are used in the rest of the

system [11], and to develop similar rules for extended finite-

state machines [18].
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