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ABSTRACT
 

 

Godley (1985) proposed that species which have separate juvenile and adult forms 

may be derived from hybridisation, and proposed that the rare, heteroblastic 

species P. turneri is a putative hybrid. This study aims to identify whether 

Pittosporum turneri is derived from hybridisation between a divaricating shrub 

(P. divaricatum) and a non-divaricating tree (P. colensoi), and to improve 

resolution of relationships among very closely related species within the genus 

Pittosporum. A combined approach was used to test the origin of P. turneri. 

Phylogenetic analysis of the maternally inherited trnT-trnL region of chloroplast 

DNA was undertaken to compare with a phylogeny based on the biparentally 

inherited internal transcribed spacer of nuclear ribosomal DNA (ITS) for all New 

Zealand Pittosporum species. Additionally, inter simple sequence repeats 

(ISSR’s) and allozymes were used in an attempt to identify hybridisation between 

P. colensoi and P. divaricatum. A morphological study was undertaken to 

determine whether P. turneri is morphologicaly intermediate to the putative 

parents. Cross-pollination between the putative parents of P. turneri was also 

undertaken in the wild between female flowers of P. divaricatum and male 

flowers of P. colensoi to investigate whether hybridisation between these co-

existing species is possible.  

 

The trnT-trnL region resolved several clades within the New Zealand Pittosporum 

previously unresolved by the ITS region alone. P. turneri has the same trT-trnL 

sequence as P. divaricatum, implicating P. divaricatum as the maternal parent. 

The profile of ISSR bands in P. turneri, exhibit additivity of bands found in P. 

colensoi and P. divaricatum, supporting a hybrid origin of P. turneri. 

Morphological analyses also show that P. turneri is intermediate to P. 

divaricatum and P. colensoi. The cross-pollination experiment was unsuccessful 

and no seedlings germinated, although four seeds appeared viable. It is proposed 

that P. turneri has a hybrid origin, however this finding needs to be supported by 

further work. 

 



ii 

 

ACKNOWLEDGEMENTS
 

 

Thanks to my supervisors Chrissen Gemmill and Bruce Clarkson for their ideas 

and their guidance during this project. I acknowledge the University of Waikato 

for the Masters Research scholarship I received, and Forest and Bird for the 

Research Grant which helped a great deal with my lab costs. 

 

I would also like to thank the staff and students of the PBRL who were always 

great people to work with, and who helped me with their technical expertise, and I 

would also like to thank the other students in our research group for their advice 

and moral support. Thanks also to the Wehi family for making my life so much 

easier.  

 

Thankyou to the Department of Conservation, Maniapoto Area Office and the 

Tongariro-Taupo Area office, and in particular, Nick Singers for his advice on 

propogation of Pittosporum turneri. Thankyou also to Dave Kelly and Andrea 

Brandon for providing their advice on cross-pollination. Thanks also to Jeff 

Mcauley at Oratia Native Plant Nursery for providing me with eco-sourced 

material.  

 

Lastly and most importantly, thanks to Thomas for coming along on my trips to 

Lochinvar station, and for your proof reading efforts and your support.  



iii 

 

 

TABLE OF CONTENTS 
 

 

 

ABSTRACT            i                                                                                         

ACKNOWLEDGEMENTS        ii             

TABLE OF CONTENTS       iii             

LIST OF TABLES                   vii            

LIST OF FIGURES                   ix           

LIST OF APPENDICES       xi              

CHAPTER ONE – INTRODUCTION     1             

 

1.1 Hybridisation in plants       1  

   1.1.1 Identification of hybrids      2  

   1.1.2 Homoploid hybridisation      2 

   1.1.3 Ecological barriers to introgression     4 

1.2 Evolution and hybridisation in the New Zealand flora   4  

   1.2.1 Evolution of heteroblasty and the divaricate form   6 

1.3 The genus Pittosporum (Pittosporaceae)      9 

1.4 Pittosporum in New Zealand      10              

   1.4.1 Relationships and taxonomy      13              

   1.4.2 Flower biology and pollination     13              

   1.4.3 Pittosporum turneri        14              

   1.4.4 Godley’s hypothesis       15  

1.5 Identification of hybridisation      16  

   1.5.1 Allozymes        16  

   1.5.2 The trnT-trnF region of chloroplast DNA    17  

   1.5.3 The internal transcribed spacer of nuclear ribosomal DNA (ITS)     18 

             region   

   1.5.4 Inter Simple Sequence Repeats (ISSR’s)    19  

   1.5.5 Morphology        20  

1.6 Objectives         20  

 

 

CHAPTER TWO –PHYLOGENETICS OF NEW ZEALAND              22  

PITTOSPORUM          

 

2.1 Introduction        22  

2.2 Materials and methods       22  

   2.2.1 trnT-trnL region of chloroplast DNA     22  

      2.2.1.1 Plant collection and DNA isolation    22  

      2.2.1.2 PCR amplification and sequencing    26  

   2.2.2 ITS region         27  

   2.2.3 Sequence alignment       28  



iv 

 

   2.2.4 Sequence characteristics      28  

   2.2.5 Phylogenetic analysis       28  

   2.2.6 Incongruence tests       29  

2.3 Results         30  

   2.3.1 Sequence characteristics of the trnT-trnL region    30  

   2.3.2 Sequence variation within the trnT-trnL region    30  

   2.3.3 Indels         31  

   2.3.4 Sequence characteristics and variation of the ITS region  32  

   2.3.5 G1 statistic        34  

   2.3.6 ILD test for incongruence between data sets    34  

   2.3.7 Maximum parsimony analysis     39  

   2.3.8 Templeton test for topological incongruence    43  

   2.3.9 Maximum likelihood analysis      45  

   2.3.10 Kishino-Hasegawa test for topological incongruence  47  

   2.3.11 Conflicting placement of taxa between data sets   49  

   2.3.12 Neighbour-net analysis      50  

2.4 Discussion         51  

   2.4.1 Taxa representation       51  

   2.4.2 Sequence variation and phylogenetic utility of the trnT-trnL  52 

            region   

   2.4.3 Maximum parsimony and maximum likelihood    52  

   2.4.4 Tests of incongruence       53  

   2.4.5 Topological incongruence between trees    55  

   2.4.6 Combined trnT-trnL region      56  

   2.4.7 Neighbour-net analysis      56  

   2.4.8 The origin of Pittosporum turneri     57  

   2.4.9 The origin of heteroblasty and the divaricating form in             58 

              Pittosporum  

   2.4.10 Taxonomy and relationships in New Zealand Pittosporum             58                     

   2.4.11 The evolution of morphological characters in New Zealand 59 

              Pittosporum   

   2.4.12 Future directions       60 

2.5 Conclusions        60 

  

 

CHAPTER THREE - ALLOZYMES AND INTER-SIMPLE    62 

SEQUENCE  REPEATS   (ISSR’S) 

 

3.1 Introduction        62  

3.2 Methods         63  

   3.2.1 Allozymes        63  

   3.2.2 ISSR’s         64  

   3.2.3 Data analysis        65  

3.3 Results         66  

   3.3.1 Allozymes        66  

   3.3.2 ISSR’s         67  

      3.3.2.1 Cluster analysis using UPGMA     69  

      3.3.2.2 Analysis of molecular variance (AMOVA)   70  

      3.3.2.3 Principle components analysis     71  

3.4 Discussion         72  

   3.4.1 Allozymes        72  

   3.4.2 ISSR’s         73  



v 

 

      3.4.2.1 Sample representation      73  

      3.4.2.2 Shared marker bands      73  

      3.4.2.3 UPGMA        74  

      3.4.2.4 AMOVA        74  

      3.4.2.5 Principle components analysis     74  

   3.4.3 Evidence for hybridiation in Pittosporum turneri?   75  

   3.4.4 Potential use of ISSR’s as markers in Pittosporum   75  

   3.4.5 Future studies        76  

3.6 Conclusions        76  

 

CHAPTER FOUR – MORPHOLOGY STUDY      77  

 

4.1 Introduction        77  

4.2 Methods         77  

   4.2.1 Herbarium study       78  

   4.2.2 Ripia Valley site study      79  

   4.2.3 Data analysis        80  

4.3 Results         81  

   4.3.1 Herbarium study       81  

      4.3.1.1 Sample representation      81  

      4.3.1.2 Data summary       82  

      4.2.1.3 Wilson’s character count      85  

      4.3.1.4 Categorical characters      87  

      4.3.1.5 Principle components analysis     88   

      4.3.2  Ripia valley study       89  

      4.3.2.1 Data summary       90  

      4.3.2.2 Wilson’s character count      93  

      4.3.2.3 Categorical characters      95  

      4.3.2.4 Principle components analysis     98  

      4.3.2.5 Hybrid index       99  

4.4 Discussion         100              

      4.4.1 Sample representation      100  

      4.4.2 Character trait representation     101  

      4.4.3 Herbarium study       101  

      4.4.4 Ripia Valley site study      102  

      4.4.5 Evidence for hybridisation in Pittosporum turneri   102  

4.5 Conclusion        103  

 

 

CHAPTER FIVE – CROSS-POLLINATION EXPERIMENT  104  

 

5.1 Introduction        104  

5.2 Methods         104  

5.3 Results         105  

5.4 Discussion         107  

   5.4.1 Reproductive barriers in Pittosporum     107  

   5.4.2 Overlap in flowering period       108  

   5.4.3 Future directions       108 

5.5 Conclusion        109 

 

 

 



vi 

 

CHAPTER SIX        110  

 

6.1 The origin of Pittosporum turneri     110  

6.2 Godley’s hypothesis       110  

6.3 Relationships within New Zealand Pittosporum    111  

 

REFERENCES        113  

 

APPENDICES        123 

  

 

 

   

 

 

    



vii 

 

LIST OF TABLES
 

 

1.1 New Zealand endemic Pittosporum from Cooper (1956) and de Lange (2004) 

2.1 Taxa used in this study for the sequencing of the trnT-trnL and ITS regions. 

2.2 Percentage of nucleotides which were a G or C in the trnT-trnL region and    

      total number  of bases for each taxon. 

2.3 Indels needed to align the trnT-trnL matrix. 

2.4 Indels needed to align the ITS matrix 

2.5 Uncorrected pairwise distances for the trnT-trnL region. 

2.6 Uncorrected pairwise distances for the ITS region. 

2.7 Templeton signed-rank test of the strict consensus trees obtained from   

     maximum  parsimony analysis of the trnT-trnL and ITS regions. 

2.8 Model scores of the evolutionary models used for maximum likelihood    

      analysis. 

2.9 Kishino-hasegawa test scores. 

3.1 ISSR primers and sequences. 

3.2 Summary of ISSR bands scored. 

3.3 Number of ISSR bands shared between taxa. 

3.4 Number of marker ISSR bands shared between P. divaricatum, P. colensoi  

      and P. turneri. 

3.5 Nei’s (1978) genetic distance between taxa. 

3.6 Average number of pairwise differences in bands between and within  

      populations. 

3.7 AMOVA of variation within populations, between populations and between  

     groups. 

3.8 Eigenvalues for the first seven loci in the principle components analysis. 

4.1 Morphological characters observed in herbarium and Ripia Valley study. 

4.2 Number of individuals observed for each character in the herbarium study. 

4.3 Wilson’s (1992) character count of herbarium data. 

4.4 Number of intermediate categorical characters of herbarium data. 

4.5 Eigenvalues associated with principle components analysis of herbarium data. 

4.6 Number of individuals observed in the Ripia Valley site study. 

4.7 Wilson’s (1992)  character count for the Ripia Valley site study. 

4.8 Number of intermediate cateogorical characters of Ripia Valley data. 



viii 

 

4.9 Eigenvalues associated with principle components analysis of the Ripia Valley  

      data. 

4.10 Eigenvalues associated with principle components analysis of floral    

      characters. 

 

 

 



ix 

 

LIST OF FIGURES
 

 

1.1 Model of recombination speciation. 

1.2 Photo of species with a divaricating juvenile and non-divaricating adult. 

1.3 The androecium and gynoecium of P.  turneri flowers. 

1.4 P. turneri flowers and juvenile and adult foliage. 

1.5 Records of sightings of P. turneri from the Department of Conservation   

      Bioweb database. 

1.6 The trnT-trnF region of chloroplast DNA in bryophytes. 

1.7 The ITS region and primer sites used to amplify this region. 

2.1 The trnT-trnF region and primer sites. 

2.2 Hybrids of P. crassifolium x P. obcordatum F1 and F2 individuals included in  

      this study. 

2.3 50% majority-rule tree from parsimony analysis of the trnT-trnL region. 

2.4 50% majority-rule tree from parsimony analysis of the ITS region. 

2.5 Strict consensus tree from parsimony analysis of the trnT-trnL region. 

2.6 Strict consensus tree from parsimony analysis of the ITS region. 

2.7 50% majority-rule tree from parsimony analysis of the combined trnT-trnL  

      and ITS regions. 

2.8 Strict consensus tree from parsimony analysis of combined trnT-trnL and ITS  

      regions. 

2.9 Maximum likelihood analysis of the trnT-trnL region. 

2.10 Maximum likelihood analysis of the ITS region. 

2.11 Maximum likelihood analysis of the combined trnT-trnL and ITS regions. 

2.12 Neighbour-network analysis uncorrected pairwise distances of ITS  

        sequences. 

3.1 Allozyme set-up using starch gel electrophoresis. 

3.2 Agarose gel showing appearance of ISSR bands. 

3.3 UPGMA using Nei’s (1978) unbiased genetic distance. 

3.4 Principle components analysis of ISSR loci. 

4.1 Ranges of P. divaricatum, P. colensoi and P. turneri in the North Island. 

4.2 Study site at Ripia Valley. 

4.3 Boxplots of the herbarium morphology data. 

4.4 Scatterplots of the herbarium morphology data. 



x 

 

4.5 Capsules, flowers and leaves of herbarium specimens. 

4.6 Principle components analysis of three variables of herbarium data. 

4.7 Boxplots of Ripia Valley morphology data. 

4.8 Scattergrams of Ripia Valley morphology data. 

4.9 P. divaricatum photos. 

4.10 P. turneri photos. 

4.11 P. colensoi photos. 

4.12 Hybrid index 

4.13 Principle components anlaysis of Ripia Valley data. 

4.14 Principle components analysis of flowering data. 

5.1 P. divaricatum with pollinator exlusion bags. 

5.2 Capsules and seeds produced from cross-pollination of P. colensoi and P. 

       divaricatum. 

5.3 P. turneri seedling. 

5.4 Flowering period overlap of P. divaricatum, P. colensoi and P. turneri at  

      Ripia Valley. 

 

 

 



x 

 

LIST OF APPENDICES
 

 

Appendix 1: DNA Isolation procedure with CTAB buffer   123 

 

Appendix 2: Aligned matrix of the trnT-trnL region    124 

 

Appendix 3: Aligned matrix of the ITS region    135 

 

Appendix 4: Buffer and stain combinations trialled using allozymes 143 

 

Appendix 5: Allozyme data matrix      144 

 

Appendix 6: ISSR data matrix      144 

 

Appendix 7: List of herbarium specimens used in the morphology study 145 

 

Appendix 8: Morphological characters of P. divaricatum, P. turneri 147  

                    and P. colensoi  from Allan (1961) and Cooper (1956) 

 

 



1 

 

CHAPTER ONE 

 

INTRODUCTION 
 

 

 

This study addresses the theory of Godley (1985) that New Zealand plant species 

with a divaricating juvenile form have descended from a hybrid between a 

divaricating shrub and a non divaricating tree. This study uses morphology, 

genetics and cross-pollination experiments to address this theory in respect to a 

rare Central North Island species, Pittosporum turneri.  It is proposed that P. 

turneri is a putative hybrid between P. colensoi, a common tree found throughout 

New Zealand, and P. divaricatum, an understory shrub closely resembling the 

juvenile stage of P. turneri. Additionally, hybridisation and relationships within 

the New Zealand species of Pittosporum is investigated. 

 

 

1.1 HYBRIDISATION IN PLANTS 

Hybrid speciation occurs when two lineages combine to produce a descendent 

species that is a combination of both parental lineages (Rieseberg 1997). 

Hybridisation in plants has been known since the time of Linnaeus who stated “ it 

is impossible to doubt that there are new species produced by hybrid generation”  

(Linn´e 1760; Rieseberg 1997). However most early experiments found that 

hybrids tended to be infertile or revert to the parental form, therefore hybridisation 

was viewed as rare and as having deleterious effects in both plants and animals 

(Wisseman 2007),  a view held by most botanists throughout the eighteenth and 

nineteenth centuries (Rieseberg 1997).   

 

Hybridisation is now considered to  play an important role in evolution and 

speciation (Barton 2001). Although hybridisation events are thought to be rare, 

records of hybrid species have been increasing over time and hybrids have been 

identified within a large number of plant families, comprising around 25% of 

plant species (Mallet 2005). There have been a number of recent studies in plants 

demonstrating that hybridisation can lead to rapid radiation and diversification 

(Hegarty & Hiscock 2005), (Mraz et al. 2005), (Sang et al. 1997) as well as 

“functional novelty” (Arnold 1995), (Seehausen 2004).  
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1.1.1 IDENTIFICATION OF HYBRIDS 

Hybridisation in plants has been found to be most common in species which have 

specific life-history characteristics, including perennial habit, outcrossing 

breeding systems and asexual reproduction (Wisseman 2007). It was proposed by 

Cockayne (1923) that hybrids can be recognised by intermediacy of characters 

between the putative parents, that putative parents and hybrids should grow in 

close proximity, and that the hybrid if fertile should give rise to a polymorphic 

progeny. However, Cockayne also stated “there are no absolute criteria, so each 

case of suspected hybridism must be decided on its own merits”, usually on the 

basis of morphological characters. However, more recently Rieseberg (1993) 

found there was no way to predict the outcome of hybridisation events on gross 

morphology, and studies have shown that hybrids can show an array of 

morphological phenotypes relative to parental species (Allendorf et al. 2001). 

Hybridisation can occur either by homoploid speciation where there is no change 

in ploidy level or by allopolyploid speciation where the hybrid has a different 

ploidy level to either of its parents due to duplication of chromosomes during 

meiosis (Hegarty & Hiscock 2005). Although hybrids which have arisen through 

polyploidy can be easily recognised, polyploids do not always arise from 

hybridisation but can arise through autopolyploidy, where spontaneous doubling 

of chromosome sets occurs without hybridisation. Additionally, after polyploidy 

has occurred, species tend to become reduced in their chromosome number and 

become homoploid over evolutionary time (Wisseman 2007). For these reasons it 

is a difficult task to document wild hybrids and make generalizations about the 

frequency and importance of hybridisation in plants worldwide (Wisseman 2007). 

 

1.1.2 HOMOPLOID HYBRID SPECIATION 

Hybridisation through polyploidy is usually resistant to introgression because the 

change in ploidy level establishes genetic isolation (Lai et al. 2006), whereas 

homoploid speciation requires both ecological and karyotypic divergence (Grant 

1981) and is considered rare, with only around 20 homoploid hybrid species 

rigorously documented (Gross & Rieseberg 2005). Examples are Stephanomera 

diegensis (Gallez & Gottlieb 1982) three species of Helianthus (Rieseberg et al. 

1991; Rieseberg 1991),  Encelia virginensis (Allan et al. 1997), Iris nelsonii 



 

 3 

(Arnold et al. 1990), and within  Paeonia (Sang et al. 1995). Theoretically for a 

homoploid hybridisation event to produce a new species the hybrid must be 

reproductively isolated from both parents, either genetically or ecologically 

(Ungerer et al. 1998), otherwise if closely related species living in sympatry or 

allopatry hybridise then backcross to either parent this will prevent or reduce the 

rate of divergence (Wu 2001). However, backcrossing and introgression (gene 

flow between species) could also have important evolutionary effects by 

introducing new alleles into the population. (Mallet 2005). Homoploid hybrid 

speciation is theorized to occur through „recombinational speciation‟ whereby two 

parental species differ by two or more chromosomal rearrangements producing a 

heterozygous F1 hybrid that will produce a small proportion of gametes which are 

balanced and viable and with recombinant karyotypes. If self fertilized, a small 

fraction of F2 individuals will have a novel homokaryotype and will be fertile and 

stable as well as partly resistant to introgression.  (Grant 1981) (See Figure 1.1.). 

Such chromosomal rearrangements would theoretically provide a barrier to back-

crossing (Gross & Rieseberg 2005). 

 

Figure 1.1. Model of recombinational speciation in which two species differ by 

two chromosomal inversions (marked by v or inverted v). The F1 hybrid is 

heterozygous for both and has low fertility. Mating among the F1 population or 

backcrossing will produce two with partially balanced genotypes and novel 

homozygous genotypes. The novel genotypes will be fertile but partially sterile 

with the parental species.  From Buerkle (2000) 
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1.1.3 ECOLOGICAL BARRIERS TO INTROGRESSION 

External barriers to reproduction may also be an important mechanism of 

reproductive isolation. Some studies have found that a proportion of hybrids show 

extreme phenotypes relative to parental phenotypes and can therefore occupy a 

different ecological niche to either parent, giving the hybrids an ecological 

advantage over any backcrossed individuals. This phenomenon is called 

„transgressive segregation‟ (Rieseberg et al. 1999) and has been found in both 

wild and domesticated plant species with many morphological traits found to be 

transgressive, as well as physiological traits, fecundity, life history traits, 

composition of organs and tissues, and tolerances to abiotic and biotic factors 

(Rieseberg et al. 1999).  Causes of transgressive segregation may include an 

increased mutation rate, reduced developmental stability, new combinations of 

normal alleles, epistasis (whereby genes from different loci interact, masking the 

effect of one gene on another), unmasking of recessive alleles, or overdominance 

(where the heterozygote exhibits a phenotype outside the range of either 

homozygote) (Rieseberg 2000). For example a recent study found that the diploid 

hybrid Helianthus paradoxus has greater salt marsh tolerance due to transgressive 

segregation of elemental uptake and leaf succulence than either parental species 

(Lexer et al. 2003). Transgressive segregation may also even lead to the formation 

of new invasive species (Ellstrand & Schierenbeck 2000).  There may be an 

important role for transgressive segregation in colonizing new habitats in island 

radiations, where rapid radiation and diversification often happen without 

postmating reproductive barriers (Givnish & Sytsma 1997). 

 

1.2 EVOLUTION AND HYBRIDISATION IN THE NEW ZEALAND 

FLORA  

Hybridisation has played an important role in the radiation and evolution of plant 

species in New Zealand (Raven 1973), with a large number of documented 

hybrids within a number of the plant families (Conner 1985), in genera such as 

Phormium (Houliston et al. 2008), Hoheria (Heenan et al. 2005), Sophora, 

(Heenan et al. 2001) Coprosma (Wichman et al. 2002), and even between genera 

e.g. Celmisia x Olearia hybrid (Clarkson 1988).  It is recognised that New 

Zealand plant species tend to show a high level of polymorphy where they are 

known to hybridise, with great variation within populations, from region to region 
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and between species of the same genus (Rattenbury 1961). Wardle (1963) 

proposed that widespread interspecific hybridisation may be due to recent 

evolution in response to the changing climate throughout the Quarternary where 

the climate fluctuated between ice ages and interglacial periods. Since the 

isolation from Gondwana about 80mya, New Zealand experienced frequent 

geological changes and was reduced from a much greater landmass to a series of 

archipelagos from the Palaeocene to the Oligocene (65 to 35mya). The land began 

to rise in the Miocene (35mya) creating its current geography, and a series of 

glaciations followed in the Pleistocene, with the most recent glaciations occurring 

25,000 to 15,000 years ago (Flemming 1979). It is believed that the majority of 

the New Zealand flora has arrived by dispersal since the mid-Palaeocene, mainly 

from Australia (Pole 1994).  

 

Rattenbury (1961) suggested that many of the unusual characteristics in the New 

Zealand flora including the great degree of polymorphy between and among 

species could be explained by “cyclic hybridization”; where species remain inter-

fertile, and are therefore able to adapt to a rapidly changing climate. Theoretically, 

species which hybridise readily would gain an advantage in rapidly changing 

climatic conditions, as the increase in number of alleles will produce a wider 

variety of recombinants, and therefore provide more potential for rapid 

diversification (Wisseman 2007). Hybrids have also been found to be common in 

other island ecosystems, with Carr (1995) noting the high frequency of hybrids in 

the Hawaiian flora, suggesting that oceanic islands maintain the ability to cross 

among species, using hybridization as a survival mechanism in dynamic habitats. 

Recent phylogenetic studies have supported this theory, for example a study by 

Mummenhoff et al., (2004) found that all species of Lepidium in New Zealand 

have low levels of sequence divergence and have radiated through hybridisation, 

probably coinciding with periods of dramatic climatic change. Another study of 

Coprosma by Wichman et al., (2002) found widespread hybridisation in New 

Zealand within the genus, also suggesting this was likely to be due to climate 

change. 

 

1.2.1 EVOLUTON OF HETEROBLASTY AND THE DIVARICATE FORM 

Heteroblastic development in plants is characterised by great differences between 

juvenile and adult growth forms, as opposed to homoblastic development where  



 

 6 

differences between juvenile and adult stages are slight and gradual (Goebel 1900). 

Heteroblasty can be defined as habit-heteroblastism: "an abrupt break in the 

development of the habit of the plant", and  leaf-heteroblastism: changes in leaf 

characters  (Philipson 1964). In New Zealand there are around 200 species which 

show heteroblasty, with differences typically involving changes in the degree of 

leaf serrations, a change from glabrous to tomentous leaves, or changes from 

compound to entire leaves, and changes in leaf size either from small to large or 

vice versa (Godley 1985).  Cockayne (1928) noted that about 165 of these species 

remain purely juvenile for a long period, or in other cases the juvenile form will 

sometimes reappear in some part of the plant as a reversion shoot.  He noted that 

this occurs in 30 families and 50 genera, of which 10 are endemic, and of which 

51 species are trees, 82 are shrubs, 19 are ligneous lianes, 10 are herbs and three 

are aquatic plants. He also made the observation that most juvenile forms are the 

more mesophytic (106 species) but some are more xerophytic (17 species), and 

for others there is no clear difference in ecological tolerance between juvenile and 

adult (39 cases). Examples of species with strong heteroblastic development in 

New Zealand  include Pennantia corymobosa and Eleocarpus hookerianus 

(Heenan 1997). Heteroblasty is also a phenomenon which is very rare on 

continents but common on islands, with heteroblastic species found in Hawaii  

(Givnish & Sytsma 1997), Mascarene islands (Hansen et al. 2003) and New 

Caledonia (Burns & Dawson 2006).  

 

The divaricating growth form is characterised  by interlaced, wide-angle branches 

with small, widely spaced leaves and is relatively common in New Zealand, 

comprising 10% of New Zealand‟s flora (Webb & Kelly 1993). There has been 

much speculation as to why this growth form has evolved in New Zealand. 

Greenwood and Atkinson (1977) proposed that the divaricating growth form is a 

response to browsing pressure by moa, as the reduced numbers of leaves on outer 

branches and tough stems is believed to have deterred moa. Alternatively the 

divaricating growth form may be a response to climatic conditions, for example 

an adaptation to xeromorphic conditions which occurred during the “harsh, near 

tree-less” Pleistocene, as the densely branched structure of divaricating stems may 

create a wind break to provide a relatively moist interior (Rattenbury 1961). The 

divaricating form could also provide other advantages such as reduced frost 

damage due to the networking of stems protecting inner leaves (McGlone & M.S 
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1981). This growth form has also been considered to be a response of a mainly 

tropical flora to glaciations that occurred in the Pleistocene, with few species 

which were adapted to alpine or dessert conditions (Wilson & Galloway 1993). 

However no studies have yet found the divaricating growth form to be associated 

with any particular environmental conditions (Burns & Dawson 2006).  

 

Nine New Zealand species are both heteroblastic and have a divaricating juvenile 

and non-divaricating adult form (Philipson 1964). These include Pittosporum 

turneri (Turner‟s kohuhu), Sophora microphylla (Kowhai), Streblus heterophylla 

(Turepo), Pennantia corymbosa (Kaikomako), Prumnopytus taxifolia (Matai), 

Carpodetus serratus (Marbleleaf), Plagianthus regius subsp. regius 

(Ribbonwood), Hoheria angustifolia (Narrow-leaved Hohere), and  Elaeocapus 

hookerianus (Pokaka), (Greenwood & Atkinson 1977). It is considered that the 

change from the divaricating growth form to the non-divaricating adult form is an 

adaptive feature for New Zealand ecological conditions, which optimises the 

advantages of different growth forms at different life stages. Day (1998) 

suggested this could be a response to changing light conditions at different heights 

in the canopy in broadleaf/conifer forests, where juveniles are exposed to low 

light intensity and adults are exposed to a greater light intensity. Greenwood and 

Atkinson (1977) proposed the height where divaricating plants become 

arborescent is when they reach the height of the “tallest moa”, where moa can no 

longer reach the foliage. More recently Burns and Dawson (2006) supported the 

latter theory, noting that both New Caledonia and New Zealand have high 

numbers of heteroblastic species with very similar patterns of ontogeny despite 

having major climatic differences. They noted that avian herbivores replaced 

mammalian herbivores in New Zealand, Hawaii and New Caledonia, and also 

found that the height where the divaricating growth form becomes the adult form 

is lower in New Caledonia than in New Zealand, where the avian herbivores 

attained a lesser height than the moa. An experiment by Bond (2004) supported 

this theory by showing that emus and ostriches could obtain adequate feeding 

rates from adult foliage but not juvenile foliage of Plagianthus regius and 

Pennantia corymbosa. However Burns and Dawson (2006) suggest that we cannot 

rule out environmental influences as there may be a shared environmental history 

between the islands where heteroblasty is found which has led to the development 

of this trait, or the phenomenon may be due to another influence which these 
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islands have in common such as a similarity in rain regimes. However, it is still 

unclear what the genetic mechanisms which lead to the dramatic change in growth 

form are. 

 

  

                              A                                             B 

  

                              C                                             D 

Figure 1.2: Photos of species with a divaricating juvenile and non-divaricating 

adult A and C: Elaeocarpus hookerianus, B and D: Pennantia corymbosa 

 

Godley (1979) postulated that dramatic changes in leaf shape and size and growth 

habit during development is indicative of a hybrid origin. He proposed that all 

nine species with divaricating juvenile forms and arborescent adult forms have 

resulted from hybridisation between a divaricating and an arborescent species. 

Godley suggested that if hybridisation was shown to be the cause for this change 

during ontogeny it could apply to the origin of all such forms and he proposed a 

number of genera that have putative hybrids where there is strong leaf 

heteroblasty including Pittosporum, Sophora, and Pseudopanax (Godley 1985). A 

previous explanation proposed by Cockayne (1911) was that some ancestral forms 

in the Tertiary evolved into divaricating shrubs in the Pleistocene, then when 

warmer conditions returned some species were able to revert to the ancestral stage 

but retained their juvenile growth form. However Markham (1972) in a study of 

Sophora found that there were too many morphological differences between the 

juvenile form of S. microphylla ( a divaricating species) and S. prostrata (an 
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arborescent species) for S. microphylla to be a permanent form of S. prostrata, 

having a more „suckering‟ habit with stouter stems and branches and much 

smaller leaves, and containing different phenolic compounds. Godley (1985) 

suggested that another explanation could be that the divaricating form evolved as 

the permanent form of a heteroblastic species with a divaricating juvenile form, 

however if this is true there has been a high number of subsequent extinctions as 

there are many divaricating species throughout the New Zealand flora with no 

closely related heteroblastic species which occur in the same or similar 

environment or region. Greenwood and Atkinson (1977) noted that there are 45 

species within 11 genera of divaricating shrubs with no related species with a 

juvenile divaricating form and non-divaricating adult form, therefore if this is true 

there have been a minimum of 11 extinctions (the number of genera involved). 

However Godley identified several species which could be used to test the 

hybridisation hypothesis, including P. turneri, for which he suggested one or both 

parental species may still exist. 

 

1.3 THE GENUS PITTOSPORUM (PITTOSPORACEAE) 

The family Pittosporaceae (Apiales) consists of nine genera (Cayzer 1997) and 

200-240 species (Carlquist 1981). The Pittosporaceae has recently been identified 

as a clade within Apiales based on molecular data (Chandler & Plunkett 2004), 

and morphological data also strongly supports this relationship (Plunkett et al. 

2004). Recent advances in the knowledge of relationships of Pittosporaceae have 

led to the inclusion of the genus Citriobatus with Pittosporum (Cayzer LW 

2000b). There is now a new named genus, Auranticarpa, which is probably 

endemic to Australia, and was previously included within Pittosporum, (Cayzer  

2000a). Six other genera are entirely endemic to Australia and only Pittosporum is 

widespread, occurring throughout the pacific, eastern Asia, Africa and as far east 

as Hawaii (Haas 1977).  

 

Pittosporum Banks ex Garten is also by far the largest genus within Apiales with a 

recent estimate of 100 species (including Citriobatus) (Chandler et al. 2007). The 

genus contains high levels of endemism resulting from species radiations on 

islands (Gemmill 2002) and species distributions are attributed to long-distance 

dispersal, as the characteristic resinous seeds are thought to be attractive to birds 

(Carlquist 1974). Species are typically evergreen shrubs which are sometimes 
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epiphytic, or small trees reaching around 10m. Leaves are alternate and sometimes 

whorled and crowded at the branch tips. Flowers are perfect to functionally 

unisexual, panicled to umbellately arranged, in fascicles, or solitary. Fruit are a 

globose to ovoid or obovoid capsule, with two to five woody valves. Seeds are 

often but not always immersed in sticky fluid (Cooper 1956). There are many 

polymorphic characters which differ between species in Pittosporum, however 

relationships are obscured by the large number of hybrids and by species which 

intergrade (Allan, 1961). Phenotypic plasticity has also caused difficulty in 

recognising species which have several growth forms (Chandler et al. 2007). This 

has proven to be a problem throughout Pittosporaceae, a study by Wilkinson 

(1992) found that there was a great amount of overlap in morphological characters 

within each genus during various stages of development and no characters which 

could be used to define them. Recent molecular work has shown that there is low 

sequence divergence between the species although there is great morphological 

variation, creating difficulty in defining relationships between species and 

suggesting a “decoupling of morphological and molecular evolution” (Chandler et 

al. 2007). Alternatively this could be due to widespread hybridisation or 

introgression. 

 

1.4 PITTOSPORUM IN NEW ZEALAND 

The New Zealand species of Pittosporum includes around 18-26 endemic species 

(Cooper 1956); (Allan 1961), and all are endemic. However there is more 

diversity in the North Island, with 11 species endemic to the North Island, and 

only three species endemic to the South Island (Cooper 1956). P. tenuifolium 

subsp. tenuifolium, P. tenuifolium subsp. colensoi and P. eugenoides are 

widespread throughout New Zealand (Cooper 1956), however several species and 

subspecies have very confined distributions e.g. P. ellipticum subsp. serpintinum 

is only found on ultramafic rocks on the Surville Cliffs, North Cape (de Lange 

1998). Four species are considered „nationally endangered‟, P. ellicpticum subsp. 

serptintinum, P. obcordatum, P. patulum, and P. turneri, P. dallii is considered 

„nationally vulnerable‟  P. kirkii is listed as „chronically threatened‟, and P. 

ellipticum is considered „sparse‟. Additionally P. fairchildii is listed as range 

restricted, and P. aff. crassifolium is in „serious decline‟ (de Lange et al. 2004) 

(see Table 1.1.)  
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There are also several different growth forms with eight New Zealand species 

which have distinct juvenile and adult foliage, with juvenile leaves typically lobed 

or toothed and adult leaves larger and entire.  P. rigidum, P. divaricatum, P. 

crassicaule and P. anomalum have a “bewildering series” of polymorphic and 

heterophyllous forms  (Cooper 1956), and all of these are divaricating species 

along with P. obcordatum, which is a trait not known in Pittosporum species 

outside New Zealand (Wilson & Galloway 1993). Hathaway (2001) suggested 

that the evolution of the divaricating habitat is likely to have occurred three times 

independently, and therefore there has likely been strong selection pressure for 

this growth form. Several divaricating species are also known to hybridise with 

non-divaricating species e.g. P. obcordatum x P. tenuifolium subsp. tenuifolium 

(Clarkson & Clarkson 1994) and P. turneri x P. divaricatum (Druce 1977; Ecroyd 

1994`, suggesting weak reproductive barriers between species of different growth 

forms. Hybrids are common between species found in sympatry and on islands e.g. 

P. ralphii x P. tenuifolium subsp. tenuifolium and P. crassifolium x P. tenuifolium 

subsp. tenuifolium {Druce`, 1977 `#164) (Druce 1977) and some of these hybrids 

are easily cultivated (Metcalf 1987).  

 

 

 

 

 

 

 

 

 

Table 1.1. New Zealand endemic Pittosporum from (Cooper 1956) and (de Lange 

et al. 2004).  

Taxa Distribution Conservation 

status 

Growth form 

juvenile 

Heteroblastic 

P. anomalum N, S  Divaricating 

shrub 

Yes 

P. cornifolium N,S  Epiphytic shrub No 

P. crassicaule S  Shrub Yes 

P. crassifolium N  Shrub or Tree No 

P. aff 

crassifolium* 

Kermadec Is. Serious decline Shrub or Tree No 

P. dallii S Nationally 

vulnerable 

Small tree No 

P. divaricatum N,S  Divaricating Yes 
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shrub 

P. ellipticum 

subsp. 

ellipticum 

N Nationally 

endangered 

Small tree No 

P. ellipticum 

subsp. 

serpintinum 

N  Prostrate shrub No 

P. eugenoides N,S  Tree No 

P. fairchildii Three Kings 

Is. 

Range 

restricted 

Shrub No 

P. huttonianum N  Shrub or small 

tree 

No 

P. kirkii N  Epiphytic shrub No 

P. obcordatum N,S Nationally 

endangered 

Shrub Yes 

P. patulum S Nationally 

endangered 

Shrub or small 

tree 

No 

P. pimeleoides 

subsp 

pimeleoides 

N  Shrub No 

P. pimeleoides 

subsp maius 

N  Shrub No 

P. ralphii N  Prostrate shrub No 

P. rigidum N  Tree Yes 

P. tenuifolium 

subsp colensoi 

N,S, Stewart 

Island 

 Tree No 

P. tenuifolium 

subsp 

tenuifolium  

N,S  Tree No 

P. turneri N Nationally 

endangered 

Juv: divaricating 

shrub, adult: 

small tree 

Juvenile only 

P. umbellatum N  Small tree No 

P. virgatum N  Small tree No 

* P. aff crassifolium is not a described species but is treated as a distinct species in 

this study. It may be more closely related to P. bracteolatum of Norfolk Island 

 

 

 

1.4.1 RELATIONSHIPS AND TAXONOMY 

Traditionally relationships within Pittosporum were based on morphology and  

groups divided into those species with bivalved and trivalved capsules, with 

bivalved species showing more diversity in other characteristics (Gowda 1951). 

Characteristics used for recognising species include capsule number, inflorescence 

type, absence or presence of hairs on shoots, leaves and inflorescences, along with 

hair colour, sepal arrangement, presence or absence of extra sepals, petal colour, 

and valve shape, variation in the length and thickness of the placenta and size and 

arrangement of the funicles (Cooper 1956). Contemporary studies of relationships 

within New Zealand Pittosporum have used the internal transcribed spacer (ITS) 
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region of nuclear ribosomal DNA (nrDNA), finding support for an Australian 

origin of New Zealand species of Pittosporum, with all other colonisation events 

from Australia or from island hopping, with low sequence divergence 

corresponding to low morphological differentiation, and there has probably been 

at least two colonisation events into New Zealand as the New Zealand species do 

not form a separate clade (Chandler et al. 2007). 

 

1.4.2. FLOWER BIOLOGY AND POLLINATION 

Pittosporum inflorescences are terminal, lateral or axillary, and flowers can be 

solitary, few or many flowered, in fascicles, umbels or panicles (Cooper, 1956). 

Flowers are small, with five petals and five sepals, five stamens, and two-celled 

anthers. The ovary is formed from 2-5 fused carpels and is sessile or stipulate and 

superior.  In most New Zealand species the corolla are mostly red to deep purple, 

and a few are yellow, unlike Pittosporum elsewhere which typically have white, 

greenish white, or yellow corolla.  Flowers in most species are structurally perfect 

but functionally unisexual, with either male or female parts reduced. Male flowers 

are described as having “weakly capitulate to truncate stigmas, long styles, 

slender ovaries, oblong anthers 2-4mm long borne on slender filaments. Usually 

the anthers are level with the stigma or exserted.” Female flowers are described as 

having “2-3-4-lobed capitate stigmas, slightly shorter styles, plumper ovaries, 

apparently abortive, sagittiform anthers 1-2mm long, borne on filaments 1mm or 

more broad at the base, tapering distally. Usually the anthers are below the stigma.” 

(Cooper, 1956). However flowers with apparently functional anthers, capitate 

stigmas and plump ovaries occur as well as flowers with 4 long functional anthers 

and 1 apparently abortive anther 1-2mm long (Cooper, 1956). Clarkson and 

Clarkson (1994) found that although Pittosporum obcordatum has a ratio of 1:1 

male to female plants, 6.66% of male plants also produce seed. Flowers of all 

Pittosporum are thought to be entomophilous due to the small flower size and  

absence of features that are adapted to pollination by birds (Webb et al. 1999). 

However Anderson (2003) suggests that the importance of birds as pollinators in 

some species may be underestimated, finding that P. crassifolium is likely to be 

pollinated by endemic honeyeaters such as the tui and bellbird which have 

declined in abundance on the mainland and may have been important pollinators 

in the past. Dispersal of Pittosporum including all New Zealand species is thought 

to be mainly by birds due to the resinous seeds, (Burrows 1994). 
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Figure 1.3. The androecium and gynoecium of a male Pittosporum turneri flower 

(left) and female (centre) and an apparently male flower (right) which was from 

an individual which also had capsules.  

 

1.4.3 PITTOSPORUM TURNERI 

Pittosporum turneri Petrie (Turner‟s kohuhu) is a rare plant of the Central North 

Island which has a divaricating juvenile form and an adult larger leaved form 

more closely resembling one of the larger leaved species of Pittosporum (Cooper 

1956). P. turneri is known from nine main sites and has been sighted in several 

others ranging from the north-west Ruahine ranges to Pureora and has been 

reported from several sites which have not since been found, indicating that it may 

have once been more widespread. P. turneri typically grows as a small, emergent 

tree in shrublands, forest margins, and along stream banks.  It grows in acidic 

soils of about pH 4.7, from 200m in altitude in Taumarunui to 1300m in the 

Ruahine ranges (Ecroyd 1994). Disturbance may be an important factor for 

colonisation as many populations consist of even aged stands indicating they may 

have colonised the site following disturbance and with few seedlings establishing 

under shade or with competition from other species. Several factors may 

contribute to the rarity of this species including browse of adult foliage from 

possums, predation of seedlings by hares, and the impacts of farming and logging 

(Ecroyd 1994) and land-use changes have undoubtedly affected the distribution of 

this species. 
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Figure 1.4. Flowers of P. turneri (left), adult foliage (centre) and adult plant with 

both adult and juvenile foliage (right). 

 

 

1.4.4 GODLEY’S HYPOTHESIS 

Godley (1985) proposed that Pittosporum turneri is a putative hybrid, suggesting 

this species may be a relic of a hybrid swarm, which could help to explain its 

disjunct distribution. The most morphologically similar divaricating species to the 

juvenile form of P. turneri are P. divaricatum and P. crassicaule, however P. 

crassicaule only occurs in the South Island (Hathaway 2001). Additionally it was 

noted by Laing (1935) that in Arthur‟s Pass there is a “sharp line of demarcation 

between P. crassicaule and P. divaricatum”, indicating it is possible the two 

species ranges may not overlap. However it is also possible that either parent 

could be found in an entirely different range to historical times or could have  

gone extinct (Godley 1985). Therefore the putative parents should also share a 

similar habitat and share some morphological similarities. P. divaricatum is also 

found in at least two sites where P. turneri is found. P. colensoi is widespread in 

the Central North Island and has the greatest tolerance for colder conditions, being 

a more montane species than P. tenuifolium. Although P. colensoi has much 

larger, broader leaves than P. turneri Godley (1985) stated that for all putative 

hybrids the large leaved non-divaricating putative parent has larger leaves than the 

putative hybrid.  
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Figure 1.6. Records of sightings of P. turneri from the Department of 

Conservation BIOWEB database. 

 

 

1.5 IDENTIFICATION OF HYBRIDISATION 

 

1.5.1 ALLOZYMES 

Allozymes can be defined as enzymes that have different molecular forms but 

identical or similar functions (Hunter & Markert 1957). Different molecular forms 

of isozymes are found both within individual organisms and within different types 

of tissue (Markert 1975). Differences in the electrophoretic mobility of allozymes 

reflect differences in the structural genes coding for polypeptides, therefore 

electroporetic differences are the direct result of genetic differences between 

enzymes (Crawford 1983). Allozyme studies are a valuable tool for resolving 

relationships between species because they directly reflect alterations in the gene 

sequence and exhibit simple mendelian inheritance, expressed as codominant 

alleles (Crawford 1990), therefore hybrids should have fixed heterozygous 

patterns reflecting the alleles of both parents (Weeden & Wendel 1990). 

Allozymes can be used in most cases to support or reject the hypothesis of 

hybridisation in plants (Crawford 1990), and have been used to show evidence of 

easily identifiable differentiation between putative parents and hybrid species, for 

example in European Tilia species (Fromm & Hattemer 2003).  They have also 
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been used to study population diversity of Pittosporum in the Bonin Islands, Japan 

(Ito et al. 1997). Allozymes have been used as a tool in a number of studies to 

support evidence of hybridisation from phylogenetic data using chloroplast DNA 

(cpDNA) and the internal transcribed spacer of nuclear ribosomal DNA (ITS), and 

have been used to identify homoploid hybrids e.g. in Helianthus (Rieseberg et al. 

1990) and Iris species (Cruzan & Arnold 1993). 

 

1.5.2 THE trnT-trnL REGION OF CHLOROPLAST DNA 

The chloroplast genome (cpDNA) is commonly used for inferring evolutionary 

processes in plants (Soltis 1999) and typically ranges in size from 135kb to 160kb 

in angiosperms and contains a ca. 25kb inverted repeat, dividing the rest of the 

genome into one small and one large single copy region (Olmstead & Palmer 

1994). cpDNA is useful for phylogenetic studies due to its large size and large 

number of protein genes providing a large data base for sequencing and restriction 

site studies, its low silent substitution rate, and because structural rearrangements 

are relatively common, with many inversions and intron deletions in angiosperms 

providing phylogenetically informative data (Olmstead & Palmer 1994). The 

cpDNA region is maternally inherited in angiosperms and can infer a hybrid 

origin if a species appears to have inherited cpDNA from more than one maternal 

source (Clegg et al. 1993) due to chloroplast transfer from one species to another 

(Soltis 1999). The use of  both a biparentally and uniparentally inherited marker is 

a commonly used method for resolving relationships between plant species and 

detecting reticulation events (Arnold 1997). This is because when using only 

biparentally inherited markers it is not possible to determine whether a species 

which contains common alleles or shows morphological intermediacy to its 

putative parents is ancestral to the putative parents or is derived by hybridisation 

(Rieseberg et al. 1990). Additionally phylogenetic reconstruction is a much more 

powerful method when combining multiple data sets using defined genetic 

markers (Avise 1994). The cpDNA genome is commonly used in studies which 

also employ a marker such as the ITS region. 

 

The region between the trnT and trnF genes (Taberlet et al. 1991) is a non-coding 

region which has been shown to have a large number of phylogenetically 

informative characters The trnT – trnL region is the most variable region within 

this larger region, averaging around 752 base pairs and containing several large 
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indels (Shaw et al. 2005). The trnT-trnL region has been used in a number of 

studies to resolve angiosperm phylogenies (Borsche et al. 2003), (Fukuda et al. 

2003).  

 

 

Figure 1.6. The trnT-trnF region of chloroplast DNA of bryophytes with forward 

and reverse primer sites applicable to all plants from (Quandt and Stech, 2004) 

 

1.5.3 THE INTERNAL TRANSCRIBED SPACER OF NUCLEAR 

RIBOSOMAL DNA (ITS) REGION 

Internal transcribed spacers (ITS) are located in the 18S – 26S nuclear ribosomal 

DNA (rDNA) region and consist of an external transcribed spacer (ETS), the 18S 

gene, an internal transcribed spacer named ITS1, the 5.8S gene, another internal 

transcribed spacer named ITS2 and the 26S gene. The ITS region is often used to 

obtain phylogenetic information due to the level of variation both within and 

among genera and can contain evidence of hybridisation when a species appears 

to have inherited repeat types from two parental species (Baldwin et al. 1995). 

Incongruence of relationships resolved by cpDNA and ITS markers is often 

indicative of hybridization. (Soltis & Kuzoff 1995). 
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Figure 1.7. The ITS region and primer sites most commonly used to amplify this 

region. From (Baldwin et al. 1995)    

 

1.5.4 INTER-SIMPLE SEQUENCE REPEATS (ISSR’S) 

ISSR‟s are PCR-based markers used to amplify multiple DNA fragments between 

microsatellites (tandem repeats or SSR‟s) (McCauley & Ballard 2002). 

Microsatellites are short tandem repeat DNA sequences of around 2-6 base pairs 

of up to 10 bp long. These are distributed throughout the entire genome and are 

flanked by highly conserved sequences. (Rakoczy-Trojanowska & Bolibok 2004). 

ISSR‟s are regions between the closely spaced inverse, adjacent microsatellites 

and are typically 100 – 300bp. These are amplified using a single oligonucleotide 

primer (16-18bp), anchored on either the 5΄- end or 3΄- end of the microsatellite. 

The resulting PCR product reveals multiple genomic loci on each lane of a gel, 

providing a great deal of information (Zietkiewicz et al. 1994). The number of 

bands produced reflects the frequency of the SSR motif within the genome, which 

varies for each ISSR marker (Blair et al. 1999). ISSR‟s have been shown to be 

„hypervariable‟, exhibiting more bands and more polymorphisms than other 

markers. For example they have been shown to be more variable than  SSR‟s in 

ramie (Zhou et al. 2005), and AFLP‟s in rice (Blair et al. 1999). ISSR‟s have been 

recently used to identify hybridisation between closely related species e.g. among 

oak species (Conte et al. 2007) and Coffea species (Ruas et al. 2003).  They are 

inherited in a dominant or codominant mendelian fashion so that if a species has 

bands of both the putative parents, this is indicative it may be a hybrid. Absence 

of a band is interpreted as primer divergence or loss of a locus through deletion of 

the SSR site or chromosomal rearrangement (Wolfe & Liston 1998). A study by 

Wolfe (1998) found that ISSR‟s were an effective way to identify hybrids, 

providing support for previously identified hybrids using other molecular 

techniques such as allozymes and restriction fragment analyses of chloroplast 

DNA. 

 

1.5.5 MORPHOLOGY 

Morphological studies are a valuable tool for use in combination with molecular 

techniques in identifying a hybrid origin and are often used in studies of 

hybridisation (Allendorf et al. 2001). Traditionally, measures of morphological 

intermediacy to the putative parents were used to resolve the parentage of a 

putative hybrid. Hybrids are usually intermediate to the parental species for a 
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large number of characters and character states, and inference is based on the 

number of characters which are intermediate. This is based on the assumption that 

alleles will combine additively, but can sometimes be untrue if there is dominance 

or epistasis. The genetic basis for inheritance of individual traits is unknown in a 

study of morphology, so care must be taken not to assume hybridisation rather 

than divergence, when similar patterns can occur for each (Wilson 1992), and not 

all variation in morphological characters has a genetic basis (Yüzbaşioğlu E 2008).  

 

There are many considerations which need to be addressed in a morphological 

study, including the number of characters to study and which character states to 

measure or score. Those that are highly correlated may provide an unrealistic 

account of intermediacy if there are pleitropic or functional correlations involved 

(Wilson 1992).  However, a morphological study is important to show that 

putative parents and hybrids can be distinguished on a morphological basis. 

 

1.6 OBJECTIVES 

It is hypothesized that Pittosporum turneri has a homoploid hybrid origin due to (i) 

its change in ontogeny resembling „morphological intermediacy‟ between a 

divaricating shrub and arborescent tree (ii) its occurrence in a zone where there is 

overlap between other Pittosporum species which can be considered putative 

parents based on morphology (iii) its disjunct distribution and its occurrence in an 

extreme environment relative to other species of Pittosporum. This study 

addresses this theory in Pittosporum turneri by considering putative parents and 

also attempts to identify reticulation and resolve relationships among New 

Zealand Pittosporum. 

 

This hypothesis is addressed using cpDNA and ITS sequencing as well as 

allozymes and ISSR‟s. A cross-pollination experiment was also conducted to 

determine whether hybridisation is possible in the wild between P. colensoi and P. 

divaricatum in the same area and to characterise the morphological attributes of 

any seedlings produced. 

 

 

Specifically the questions addressed are: 
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1. Is there molecular evidence that hybridisation has occurred between 

Pittosporum colensoi and P.  divaricatum? 

2. Is there morphological evidence that hybridisation has occurred between 

these species? 

3. How does a seedling of P.  divaricatum x P.  colensoi compare to a P. 

turneri seedling?  

4. Where are reticulation events likely to have occurred in Pittosporum? 
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CHAPTER TWO 

 

PHYLOGENETICS OF THE NEW 

ZEALAND PITTOSPORUM 
 

 
2.1 INTRODUCTION 

The sequencing of chloroplast and nuclear ribosomal genes is the most commonly 

used method of inferring plant phylogenies (Shaw et al. 2005). By combining 

these independent data sets with different phylogenetic histories it is possible to 

improve the resolution of relationships among species. Combining a chloroplast 

and nuclear data marker can be used to identify hybridisation events where 

topological incongruence occurs between trees (Howarth & Baum 2005), as 

chloroplasts are maternally inherited in angiosperms, whereas nuclear genes are 

biparentally inherited (Kim & Donoghue 2008). This study uses phylogenetic 

analysis of the trnT-trnL region of chloroplast DNA and the nuclear ribosomal 

internal transcribed spacer (ITS) region to investigate whether Pittosporum 

turneri has a hybrid origin, identify any other putative hybrids, and improve our 

knowledge of relationships among closely related New Zealand Pittosporum. 

 

2.2 MATERIALS AND METHODS 

 

2.2.1 THE trnT-trnL REGION OF CHLOROPLAST DNA 

 

2.2.1.1 Plant collection and DNA isolation 

Twenty-five taxa from different localities throughout New Zealand were sampled, 

including one taxa from Norfolk Island (P. bracteolatum), a taxon nested within 

the New Zealand clade according to ITS sequences (Hathaway, 2001). This 

includes all New Zealand Pittosporum except for P. ellipticum subsp. serpintinum 

and P. crassicaule, which may be a subspecies of P. rigidum (Wilson & Galloway 

1993), and a number of other varieties which are not considered species or have 

doubtful status (Cooper 1956). A large proportion of the DNA samples used were 

already available as they had been used for a previous study of the ITS region by 

Hathaway (2001), and had been collected from wild populations and botanic 

gardents throughout New Zealand (Table 2.1). DNA samples used for sequencing 
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were either from the same individual or population as those used in the earlier 

study where possible, however some DNA samples of Hathaway‟s (2001) were 

degraded and new DNA extractions were necessary. Genomic DNA was extracted, 

using either the PureLink Plant total DNA purification kit (Invitrogen Inc) or a 

modified version of the CTAB method (Appendix 1). Samples were collected 

from the same population or area as the earlier study if possible, or from the 

Auckland Botanical Gardens or Oratia Native Plant Nursery in Auckland, where 

provenance information was obtained where possible. Additionally a putative 

hybrid produced in cultivation between P. crassifolium and P. obcordatum was 

sequenced along with one of its progeny to investigate patterns of inheritance and 

whether the parental species of the putative hybrid could be identified by 

phylogenetic incongruence (Figure 2.2). All specimens used in the study and their 

provenance information are listed in Table 2.1. 
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Table 2.1 Taxa used in this study for sequencing of the trnT-trnL and ITS regions. Individuals marked with ♦ = only used in the ITS study (Hathaway, 

2001) ♠ = only used in the trnT-trnL study.* = additional samples used for ITS and trnT-trnL sequences in this study. N.I: North Island, S.I: South 

Island. 

Species  Source Locality Collection number 

New Zealand    

P. anomalum♦ wild Castle Basin, S.I DG7505 

P. anomalum♠ Oratia Native Plant Nursery Cultivation, N.I. SKC004 

P. cornifolium Otari Native Botanic Garden Waikanae, N.I OBG9200494 

P. crassifolium♦ wild Kauaeranga, N.I. CEC316 

P. crassifolium♠ wild Mokau, N.I. SKC005 

P. crassifolium x P. obcordatum F1 cultivated Hamilton, N.I. SKC007 

P. crassifolium x P. obcordatum F2 cultivated Hamilton, N.I. SKC008 

P. aff crassifolium Auckland Regional Botanical Garden Raoul Island, Kermedec Islands ABG942199 

P. dallii Landcare Research, Lincoln Cobb dam, S.I LC16439 

P. divaricatum 1 wild Ripia Valley, N.I. SKC006 

P. divaricatum 2* wild Arthurs Pass, S.I CECG229 

P. ellipticum subsp. ellipticum Auckland Regional Botanical Garden Waitakere ranges, N.I. ABG941495 

P. eugenoides Cultivated Christchurch, S.I. CECG301 

P. fairchildii Oratia Native Plant Nursery Three Kings Islands SKC003 

P. huttonianum wild West coast, N.I. Bcsn5 

P. kirkii♦ Otari Native Botanical Garden Great Barrier Island OBG9100137 

P. kirkii♠ Auckland Regional Botanical Garden Cultivation, N.I. ABG20030274 

P. obcordatum wild Waikura Valley, N.I. CECG293 

P. patulum Landcare Research, Lincoln Lee Creek, Wairau river, S.I. LC16564 

P. pimeleoides subsp. pimeleoides Landcare Research, Lincoln Timaru Botanic gardens LC15/90A 

P. pimeleoides subsp. majus  Landcare Research, Lincoln North Cape, N.I. LC11564 

P. ralphii wild Rangataiki, N.I. CECG291 

P. rigidum wild West Coast, N.I.  BCsn4 
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P. tenuifolium subsp colensoi Wild00 Pureora Forest Park, N.I. SKC001 

P. tenuifolium subsp tenuifolium  wild Waipunga, N.I. CECG290 

P. turneri 1 wild Ripia Valley, N.I CECG287 

P. turneri 2* wild Bog Pine Reserve, Pureora N.I SKC008 

P. umbellatum♦ Auckland Regional Botanic Garden Great Barrier Island ABG940216 

P. umbellatum♠ Oratia Native Plant Nursery North Cape, N.I SKC007 

P. virgatum Otari Native Botanical Garden Peketi, N.I. OBG8800096 

„P. Stephens Island”♠ Oratia Native Plant Nursery Stephens Island, S.I. SKC002 

Norfolk Island    

„P. bracteolatum Auckland Regional Botanical Garden Norfolk Island National Park ABG980883 
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2.2.1.2 PCR amplification and sequencing  

The trnT-trnL Taberlet region was amplified using the forward primer Tab „a‟ and 

Tab „b‟ (Taberlet et al. 1991). PCR was performed in 25 μL volumes, with 1X PCR 

buffer, 200 μmol/L each dNTP, 3.0 mmol/L MgCl2, 0.1 μmol/L each primer, 1.25 

units of Taq and 2 μL of unquantified DNA, diluted to  1:10. 1:100, or 1:1000 dilution 

to prevent co-precipitation of secondary compounds with the DNA, which may inhibit 

amplification. Reactions included a positive control (sample which had previously 

amplified) and a negative control (containing an equivalent measure of distilled water 

instead of DNA) to check for contamination of the mastermix. The PCR was 

performed using an Eppendorf Mastercycler gradient thermal cycler with the 

following parameters: An initial denaturation of one cycle at 96 ˚C for 5 minutes; 

followed by 35 cycles of denaturation at 96 ˚C for 1 minute, annealing at 53 °C for 2 

minutes, and extension at 72 °C for 2 minutes; followed by a final extension at 72˚C 

for 5 minutes to complete polymerisation. The lid of the thermal cycler was heated to 

105 °C to prevent evaporation of the reactions. 

 

 

Figure 2.1. The trnT-trnF region and primer sites with primers „a‟ to „f‟. From 

Taberlet (1991) 

 

 

After the PCR reaction was completed, PCR products were electrophoresed using a 

1% agarose gel with 1XTBE buffer stained with ethidium bromide (0.1 mg/L). 

Samples were loaded into the gel with loading buffer (0.0083% bromophenol blue, 

2.5% ficol (MW 400 000) and 5mM EDTA (disodium salt).  Gels were run for 

approximately 30 minutes at 55 volts. Bands were then visualized and photographed 

under UV light using an Alpha-imager (Alpha Innotech Corporation). A 100 base pair 

ladder (Invitrogen Inc) was used to determine the size of the PCR product. Products 
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that produced a clear band of around 700 base pairs were purified using EXO-SAP 

(Invitrogen Inc), and electrophoresed again and visualised using the Alpha-imager to 

ensure quality of the purified product before sending to sequencing. Samples that did 

not amplify were tried again with a different dilution of DNA. Sequencing was 

performed at the University of Waikato sequencing unit with Big Dye chemistry on 

an ABI automated sequencer.  

 

2.2.2 ITS REGION 

 Sequencing of the ITS1 and ITS2 region for four DNA samples was undertaken using 

the higher plant primer ITS5HP (5‟-GGAAGGAGAAGTCGTAACAAGG-3‟)  

(Laboratory of molecular systematic, Smithsonian Institution (LMS), and the 

universal eukaryote primer ITS4  (White et al. 1990). These sequences were aligned 

with unpublished sequences of New Zealand Pittosporum by Hathaway (2001) and 

Chrissen Gemmill of the University of Waikato. This included the F1 and F2 putative 

hybrid between P. obcordatum and P. crassifolium (see figure 2.2) and a second P. 

divaricatum and P. turneri specimen from different regions to the original sequenced 

specimens to determine whether there is sequence variation within these species. PCR 

was performed in 25 µL volumes with 1XPCR buffer, 5 mmol/L MgCl2, 200 μmol/L 

each dNTP, 0.2 µL 1% BSA, 0.2 µmol/L each primer, 1 unit of Taq and 2 µL of DNA 

(diluted 1:10 or 1:100). PCR was performed using an Eppendorf Mastercycler with 

the following parameters: An initial denaturation of 94 °C for 5 minutes, 35 cycles of 

denaturation period of 94°c for 1 minute, a primer annealing period of 50°c for 1 

minute, an extension of 72°c for 1 minute) followed by a final extension of 72°c for 1 

minute. PCR products were then checked for quality and purified as for the trnT-trnL 

region. Sequencing was performed using both primers ITSHP5 and ITS4 as well as 

the internal primers ITS2 and ITS3 (White et al. 1990) when necessary to improve the 

quality of the consensus sequences, as ITS4 generally provided poor sequencing 

results.  
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Figure 2.2. Hybrids of putative hybrids included with both cpDNA and ITS 

sequencing F1 P. crassifolium x P. obcordatum F1 (left) and F2 (right). 

 

2.2.3 SEQUENCE ALIGNMENT 

Sequences were edited and aligned manually using Sequencher 4.8 software (Gene 

Codes, Inc). All individuals that differed in nucleotide sequence were included in 

phylogenetic analyses. Sequences were truncated so that all started and ended in the 

same position (Appendix 2 and 3). 

 

2.2.4 SEQUENCE CHARACTERISTICS 

The uncorrected pairwise distance between all taxa was calculated using PAUP* 

version 4.0b10 (Swofford 2003). The g1 statistic was calculated using 10000 random 

trees to determine the level of phylogenetic signal in the data (Hillis & Huelsenback 

1992).  

 

2.2.5 PHYLOGENETIC ANALYSIS 

Phylogenetic trees were constructed using maximum parsimony and maximum 

likelihood for both the ITS data and cpDNA data using PAUP*. For maximum 

parsimony, searches were performed using a heuristic search method with characters 

treated as unordered and of equal weight, with gaps treated as missing, with 

accelerated transformation (ACCTRAN) character state transformation, tree-

bisection-reconnection (TBR) branch swapping, and simple, random addition. 

Bootstrap tests (Felsenstein 1985) were carried out to evaluate support for each node 

using 100 replicates with the same heuristic search settings. A model search was 

conducted using PAUP* to determine the best model of evolution for maximum 

likelihood using MODELTEST 3.7 (Posida & Crandall 1998), testing 56 models of 

evolution before implementing the best model in PAUP*.  Heuristic search methods 
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were used for maximum likelihood with TBR branch swapping, (MULPARS and 

ACCTRAN optimization). Bootstrap tests were performed using 100 replicates with 

sub-tree pruning, regrafting (SPR) branch swapping. For the combined ITS and trnT-

trnL regions MODELTEST was also used to search for the best model of evolution, 

which selected a different model from that of either data sets (Table 2.6.). All trees 

were rooted using the outgroup P. cornifolium, P. pimeleoides subsp. pimeleoides and 

P. pimeleoides subsp. majus, a separate lineage from all other New Zealand 

Pittosporum which form a monophyletic group most closely related to the New 

Caledonian species of Pittosporum (Chandler et al. 2007). Additionally, relationships 

based on ITS sequences were depicted using neighbour-net, implemented in Splits-

tree 4.0 (Huson 1998). This method was used to visualize all conflicting signal in the 

data, using all characters to connect nodes and create a network rather than a tree, to 

illustrate relationships which are strongly conflicting, and to identify where 

hybridization events may have occurred. 

 

2.2.6 INCONGRUENCE TESTS 

Incongruence was assessed using two approaches. (1) An incongruence length 

difference (ILD) test (Farris et al. 1994) was conducted using the partition 

homogeneity test in PAUP* to determine whether the two data sets were comparable,  

using simple taxon addition, TBR branch swapping, and a heuristic search of 1000 

repartitions. (2) Paired-site tests were implemented in PAUP* to assess the level of 

conflict between each tree produced by maximum parsimony and maximum 

likelihood analysis of the two data sets.  The Templeton (Wilcox signed-rank) test 

(Templeton 1983) was used to determine whether the topologies of the strict 

consensus tree from the most parsimonious trees produced from each data set were 

incongruent. The Kishino and Hasegawa (Kishino & Hasegawa 1989) test was used to 

test whether the topologies of the two maximum likelihood trees were significantly 

incongruent. The null distribution for this test was generated by nonparametric 

bootstrapping using the RELL method (Kishino & Hasegawa 1989). This was done 

for both maximum likelihood trees of the cpDNA and ITS data, and four constrained 

“test” trees that had nodes constrained that were found in the trnT-trnL trees and not 

in the ITS tree.  
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2.3 RESULTS  

 

2.3.1 SEQUENCE CHARACTERISTICS OF THE trnT-trnL REGION 

Sequences were obtained for all taxa, however only a poor sequence was obtained for 

the subspecies P. aff crassifolium from the Kermedec Islands. P. aff crassifolium 

produced a poor sequence and was therefore not included in the analysis. The entire 

trnT-trnL region was 796 characters long and was truncated to an alignment of 708 

characters in length, including gaps to account for insertions and deletions (indels). 

Most taxa were uniform in sequence length with 689 bases. P. kirkii has the longest 

sequence with 703 bases, P. bracteolatum has the shortest sequence (688 bp) and P. 

rigidum and P. pimeleoides subsp. majus have an extra base pair (690bp) (see Table 

2.2).  All other sequences differed in length by a maximum of one base pair. 

Sequences were AT rich, with a GC content of 25.8%, ranging from 25.02% to 

26.02%. A chi-squared test of homogeneity of base frequencies across taxa using 

PAUP* showed that there is no significant heterogeneity of base frequencies between 

taxa (p= 1).  

 

2.3.2 SEQUENCE VARIATION OF THE trnT-trnL REGION 

A pairwise identity of 97% was found for all taxa, with 688 identical sites. Of the 20 

variable characters, 16 were parsimony informative (synapomorphies found in two or 

more taxa). Sequence divergence ranged from 0.00 to 1.7%, with an average of 0.6%. 

For those taxa which were sampled from two locations (P. turneri and P. 

divaricatum), sequences were identical between the two populations, therefore only 

one sequence was used in further analyses. Some taxa had identical sequences: P. 

turneri has the same sequences as P. divaricatum, both F1 and F2 P. obcordatum x P. 

crassifolium, have identical sequences to P. obcordatum, P. colensoi, P. tenuifolium 

and P. “Stephens Island” have identical sequences, and .P. bracteolatum and P. 

umbellatum shared identical sequences. 
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Table 2.2. Percentage of nucleotides which were a G or C in the trnT-trnL region and 

total number of bases for each taxon. 

 

      Taxon GC content Total no. bases 
1. P. anomalum 25.98% 689 
2. P. cornifolium 25.98% 689 
3. P. crassifolium 25.98% 689 
4. P. dallii 25.83% 689 
5. P. divaricatum 25.97% 689 
6. P. ellipticum 25.83% 689 
7. P. eugenoides 25.68% 689 
8. P. fairchildii 25.83% 689 
9. P. huttonianum 25.98% 689 
10. P. kirkii 25.20% 703 
11. P. obcordatum 25.83% 689 
12. P. obcordatum  x P. 

crassifoliumcrasifolium F1 

25.83% 689 
13. P. obcordatum  x P. crassifolium F2 25.83% 689 
14. P. patulum 25.98% 689 
15. P. ralphii 25.83% 689 
16. P. rigidum  25.94% 690 
17. P. pimeleoides subsp. majus  25.79% 690 
18. P. pimeleoides subsp pimeleoides 24.83% 689 
19. P. “Stephens Island” 25.83% 689 
20. P. colensoi 25.83% 689 
21. P. tenuifolium 25.83% 689 
22. P. turneri 1 25.97% 689 
23. P. umbellatum 25.83% 689 
24. P. virgatum 26.02% 689 
25. P. bracteolatum 25.66% 688 

Mean 25.84% 689 

 

 

2.3.3. INDELS  

A total of 17 gaps were required to align the data matrix. There were seven indels 

throughout the whole trnT-trnL region, including two insertions found in only P. 

kirkii, one four bp long and another 9bp long. The rest of the insertions were of a 

single base pair, and none of the informative indels were used in phylogenetic 

analyses as they were found only in the designated outgroup (P. cornifolium, P. 

pimeleoides subsp. pimeleoides and P. pimeleoides subsp. majus) or found in the 

outgroup and P. rigidum only.  

 

 

 



32 

 

Table 2.3 Indels needed to align the tnrT-trnL matrix. Informative indels are 

highlighted in grey. 

Size Position Characteristics 

4 110 Insertion in P. kirkii ATAC 

9 116 Insertion n P. kirkii TATTATTTT 

1 126 Insertion in P. rigidum, P. cornifolium, both P. pimeleoides 

subspecies T 

1 129 Insertion in P. rigidum C 

1 137 Insertion in P. cornifolium, both P. pimeleoides subspecies C 

1 494 Insertion in P. pimeleoides subsp. majus A 

1 736 Gap in P. bracteolatum A 

 

 

2.3.4 SEQUENCE CHARACTERISTICS AND VARIATION OF THE ITS 

REGION 

The ITS data contains 569 characters and a pairwise identity of 95.8%.  440 

characters are constant (77.3%), and 62 variable and parsimony-informative. The GC 

content is 60%, differing slightly from the results of Hathaway (2001) due to the 

addition of extra sequences.  Hathaway (2001) discusses the length and GC content of 

the ITS region for the New Zealand Pittosporum in length. Pairwise sequence 

divergence averages 4.2%, 7 times greater than the trnT-trnL region.  26 indels were 

needed to align the ITS region, a much greater number of indels than the trnL-trnT 

region. Most of these are 1 base in length and seven are phylogenetically informative. 

The two P. divaricatum DNA samples from different regions have the same sequence, 

however the two P. turneri samples differed by one base pair. The P. crassifolium x P. 

obcordatum F1 and F2 individuals have a different sequence, with 18 differences in 

nucleotide bases, and the F2 hybrid contains a number of gaps (Table 2.4).  
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Table 2.4. Indels needed to align the ITS data matrix. Informative indels are 

highlighted in grey. 

Size Position Characteristics 

5 1 Gap in P. crassifolium x P. obcordatum F2 

1 32 Insertion in P. bracteolatum T 

1 36 Gap in P. bracteolatum C 

1 66 Gap in P. ralphii  

4 67 Gap in P. fairchildii 

1 74 Gap in P. fairchildii 

6 77 Gap in P. fairchildii 

1 85 Gap in P. fairchildii 

1 115 Insertion in P. colensoi, P. crassifolium, P. crassifolium x P. 

obcordatum F1, P. huttonianmum, P. ralphii C 

1 115 Insertion in P. crassifolium x P. obcordatum F2 G 

1 120 Gap in P. crassifolium x P. obcordatum F2  

1 125 Gap in P. crassifolium x P. obcordatum F2 

1 181 Gap  in P. crassifolium x P. obcordatum F2 

1 185 Insertion in P. crassifolium x P. obcordatum F2 T 

1 188 Insertion in P. colensoi, P. crassifolium, P. crassifolium x P. 

obcordatum F1, P. crassifolium x P. obcordatum F2, P. 

ellipticum, P. ralphii, P. tenuifolium and P. huttonianum. T 

1 369 Insertion in P. eugenoides and P. umbellatum G 

1 369 Insertion in P. umbellatum A 

1 373 Gap in P. umbellatum 

1 375 Gap in P. bracteolatum 

1 381 Insertion in P. dallii, P. umbellatum, P. fairchildii, P. 

virgatum and P. eugenoides C 

1 382 Insertion in P. dallii and P. eugenoides C 

1 388 Gap in P. umbellatum  

1 389 Gap in P. ellipticum 

1 417 Insertion in P. bracteolatum and P. eugenoides, P. 

cornifolium, both P. pmeleoides subspecies A 

1 422 Gap in P. dallii and P. kirkii, P. cornifolium ,both  

P.pimeleoides subspecies 

1 424 Insertion in P. eugenoides G 
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2.3.5 G1 STATISTIC 

A G1 statistic was calculated using 10000 random trees, with a statistic of -1.6589 for 

the trnL-trnF region. This compares to a G1 statistic of -2.59 for the ITS region and a 

combined statistic of -2.837 for the two regions combined. These results indicate that 

there is sufficient signal in both data sets to make phylogenetic inferences as they 

deviate significantly from zero (p<0.01) (Hillis & Huelsenback 1992).  

 

2.3.6 ILD TEST 

An ILD test was performed using both data sets with all taxa including the P. 

crassifolium x P. obcordatum F1 and F2 hybrids. The test produced an insignificant 

result of p=0.29, indicating that there is no major conflict between data sets. Therefore 

sequences of the trnT-trnL region and the ITS region were combined for phylogenetic 

analyses.
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Table 2.5. Uncorrected pairwise distances for the trnT-trnL region of cpDNA 
 1 2 3 4 5 6 7 8 9 10 11 12 

1. P. anomalum             

2. P. cornifolium .0131            

3. P. crassifolium .0029 .0131           

4. P. dallii .0043 .0116 .0014          

5. P. divaricatum .0058 .0160 .0058 .0072         

6. P. ellipticum .0014 .0116 .0014 .0029 .0043        

7. P. eugenoides .0101 .0175 .0101 .0087 .0072 .0087       

8. P. fairchildii .0014 .0116 .0014 .0029 .0043 .0000 .0087      

9. P. huttonianum .0029 .0131 .0000 .0014 .0058 .0014 .0101 .0014     

10. P. kirkii .0043 .0145 .0072 .0058 .0101 .0058 .0116 .0058 .0072    

11. P. obcordatum .0014 .0116 .0014 .0029 .0043 .0000 .0087 .0000 .0014 .0058   

12. P. ob x P. crass F1 .0014 .0011 .0014 .0029 .0043 .0000 .0087 .0000 .0014 .0058 .0000  

13. P. ob x P. crass F2 .0014 .0116 .0014 .0029 .0043 .0000 .0087 .0000 .0014 .0058 .0000 .0000 

14. P. patulum .0000 .0131 .0029 .0043 .0058 .0014 .0101 .0014 .0029 .0043 .0014 .0014 

15. P. ralphii .0029 .0131 .0029 .0043 .0058 .0014 .0101 .0014 .0029 .0072 .0014 .0014 

16. P. rigidum  .0058 .0145 .0058 .0072 .0000 .0043 .0073 .0043 .0058 .0102 .0043 .0043 

17. P. pimeleoides subsp. majus .0116 .0145 .0116 .0102 .0145 .0102 .0160 .0102 .0116 .0131 .0102 .0102 

18. P. pimeleoides subsp. pimeleoides .0116 .0014 .0116 .0102 .0145 .0102 .0160 .0102 .0116 .0131 .0102 .0102 

19. P. “Stephens Island” .0058 .0160 .0058 .0072 .0087 .0043 .0043 .0043 .0058 .0101 .0043 .0043 

20. P. tenuifolium subsp. colensoi .0058 .0160 .0058 .0072 .0087 .0043 .0043 .0043 .0058 .0101 .0043 .0043 

21. P. tenuifolium .0058 .0160 .0058 .0072 .0087 .0043 .0043 .0043 .0058 .0101 .0043 .0043 

22. P. turneri 1 .0058 .0160 .0058 .0072 .0000 .0043 .0072 .0043 .0058 .0101 .0043 .0043 

23. P. umbellatum .0043 .0117 .0043 .0029 .0072 .0029 .0087 .0029 .0043 .0058 .0029 .0029 

24. P. virgatum .0000 .0131 .0029 .0043 .0014 .0014 .0072 .0014 .0029 .0043 .0014 .0014 

25. P. bracteolatum .0043 .0117 .0043 .0029 .0072 .0029 .0087 .0029 .0043 .0058 .0029 .0029 
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 13 14 15 16 17 18 19 20 21 22 23 24 

14. P. patulum .0014            

15. P. ralphii .0014 .0029           

16. P. rigidum  .0043 .0058 .0058          

17. P. pimeleoides subsp. majus .0102 .0116 .0116 .0131         

18. P. pimeleoides subsp. pimeleoides .0102 .0116 .0116 .0131 .0000        

19. P. “Stephens Island” .0043 .0058 .0058 .0087 .0145 .0146       

20. P. colensoi .0043 .0058 .0058 .0087 .0145 .0146 .0000      

21. P. tenuifolium .0043 .0058 .0058 .0087 .0145 .0146 .0000 .0000     

22. P. turneri .0043 .0058 .0058 .0000 .0145 .0145 .0087 .0087 .0087    

23. P. umbellatum .0029 .0043 .0043 .0072 .0102 .0102 .0072 .0072 .0072 .0072   

24. P. virgatum .0014 .0000 .0029 .0014 .0116 .0116 .0058 .0058 .0058 .0014 .0043  

25. P. bracteolatum .0029 .0043 .0043 .0073 .0102 .0102 .0072 .0072 .0072 .0072 .0000 .0043 

 

 

Table 2.6. Uncorrected pairwise distances for the ITS region 
 1 2 3 4 5 6 7 8 9 10 11 12 

1. P. anomalum             

2. P. cornifolium .0804            

3. P. crassifolium .0089 .082           

4. P. dallii .0143 .084 .023          

5. P. divaricatum  .0053 .0769 .014 0.017         

6. P. ellipticum .0072 .0788 .008 0.021 0.012        

7. P. eugenoides .0355 .091 .037 0.030 0.033 0.039       

8. P. fairchildii .0073 .084 .016 0.016 0.012 0.014 0.036      

9. P. huttonianum .0089 .082 .007 0.023 0.014 0.008 0.037 0.016     

10. P. kirkii .0268 .085 .030 0.019 0.030 0.030 0.040 0.025 0.030    

11. P. obcordatum .0125 .082 .014 0.016 0.017 0.019 0.040 0.016 0.014 0.023   

12. P. ob x P. crass F1 .0161 .089 .007 0.030 0.021 0.012 0.044 0.023 0.007 0.037 0.037  

13. P. ob x P. crass F2 .0291 .092 .030 0.036 0.034 0.034 0.056 0.031 0.030 0.041 0.034 0.034 

14. P. patulum 0.007 0.084 0.016 0.021 0.012 0.014 0.043 0.014 0.016 0.033 0.033 0.023 

15. P. ralphii 0.012 0.086 0.003 0.023 0.017 0.012 0.037 0.016 0.003 0.030 0.030 0.010 

16. P. rigidum 0.000 0.080 0.008 0.014 0.005 0.007 0.035 0.007 0.008 0.026 0.026 0.016 

17. P. pimeleoides subsp. majus 0.080 0.000 0.082 0.084 0.076 0.078 0.091 0.084 0.082 0.085 0.085 0.089 
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18. P. pimeleoides subsp. pimeleoides 0.080 0.000 0.082 0.084 0.076 0.078 0.091 0.084 0.082 0.085 0.085 0.089 

19. P. colensoi 0.008 0.082 0.000 0.023 0.014 0.008 0.037 0.016 0.000 0.030 0.030 0.007 

20. P. tenuifolium 0.008 0.082 0.000 0.023 0.014 0.008 0.037 0.016 0.000 0.030 0.030 0.007 

21. P. turneri 1 0.001 0.080 0.008 0.016 0.005 0.009 0.035 0.009 0.010 0.028 0.028 0.017 

22. P. turneri 2 0.016 0.082 0.010 0.014 0.007 0.007 0.037 0.007 0.010 0.026 0.026 0.016 

23. P. umbellatum 0.003 0.084 0.012 0.017 0.008 0.010 0.039 0.011 0.012 0.030 0.030 0.019 

24. P. virgatum 0.005 0.084 0.014 0.019 0.010 0.012 0.037 0.012 0.014 0.032 0.032 0.021 

25. P. bracteolatum 0.043 0.096 0.052 0.038 0.044 0.050 0.035 0.044 0.052 0.050 0.050 0.059 

 

 
 13 14 15 16 17 18 19 20 21 22 23 24 

14. P. patulum 0.036            

15. P. ralphii 0.034 0.019           

16. P. rigidum 0.029 0.007 0.012          

17. P. pimeleoides subsp. majus 0.092 0.084 0.086 0.080         

18. P. pimeleoides subsp. pimeleoides 0.092 0.084 0.086 0.080 0.000        

19. P. colensoi 0.030 0.016 0.003 0.008 0.082 0.082       

20. P. tenuifolium 0.030 0.016 0.003 0.008 0.082 0.082 0.000      

21. P. turneri 1 0.030 0.008 0.014 0.001 0.082 0.082 0.010 0.010     

22. P. turneri 2 0.029 0.007 0.012 0.000 0.080 0.080 0.008 0.008 0.001    

23. P. umbellatum 0.032 0.010 0.016 0.003 0.084 0.084 0.012 0.012 0.005 0.003   

24. P. virgatum 0.034 0.012 0.017 0.005 0.084 0.084 0.014 0.014 0.007 0.005 0.008  

25. P. bracteolatum 0.063 0.050 0.055 0.043 0.096 0.096 0.052 0.052 0.045 0.043 0.047 0.045 
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2.3.7 MAXIMUM PARSIMONY ANALYSIS 

Analysis of the trnT-trnL region failed to find a single most parsimonious tree, 

retaining 130 trees of 31 steps. Three clades were recovered with moderate to strong 

support in the strict consensus tree (Figure 2.3) (1) P. turneri forms a clade with P. 

divaricatum and P. rigidum with 76% bootstrap support. (2) P. bracteolatum and P. 

umbellatum form a clade with 66% bootstrap support, and (3) P. colensoi, P. 

tenuifolium, P. “Stephens Island” and P. eugenoides form a clade with 66% bootstrap 

support. Additionally a clade of P. crassifolium, P. huttonianum and P. dallii and a 

clade of P. anomalum, P. patulum, P. virgatum and P. kirkii is found in the 50% 

majority-rule consensus tree only, however both clades have below 50% bootstrap 

support. 

 

 Maximum parsimony analysis of the ITS data produced 20,000 most parsimonious 

trees. In both 50% majority-rule (Fig. 2.4) and strict consensus (Fig. 2.6) trees none of 

the clades resolved by the trnT-trnL region are recovered in the ITS region. Three 

clades were recovered with moderate to strong support in the strict consensus trees. (1) 

A clade of P. eugenoides and P. bracteolatum with 93% bootstrap support, (2) a clade 

of P. tenuifolium, P. ralphii, P. colensoi, P. huttonianum, P. crassifolium and the F1 

hybrid between P. crassifolium and P. obcordatum as a sister taxon with 71% 

bootstrap support, and (3) P. ellipticum as a sister taxon to this group with 59% 

bootstrap support.  A clade of P. obcordatum and P. crassifolium x P. obcordatum F2 

hybrid was also recovered in the strict consensus tree despite having low bootstrap 

support. 
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Figure 2.3. 50% majority- rule tree of 130 most parsimonious trees of trnT-trnL 

sequences. CI=  0.800, HI= 0.200, RI = 0.881, RC = 0.7048. Numbers above the 

branches indicate the percentage each clade is represented in the most parsimonious 

trees. Numbers below the branches indicate bootstrap values over 50%. 
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Figure 2.4. 50% majority rule of 20000 most parsimonious trees of ITS sequences.  

CI = 0.7941, HI = 0.2059, RI = 0.8409, RC = 0.8409. Values above branches 

represent percentage of times clades found in the most parsimonious trees, values 

below the branches represent bootstrap values over 50%. 
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Figure 2.5. Strict consensus of the trnT-trnL region. Values above branches indicate 

bootstrap values over 50%. CI=  0.800, HI= 0.200, RI = 0.881, RC = 0.7048. 

 

Figure 2.6. Strict consensus of the ITS region. Values above branches represent 

bootstrap values over 50%. CI = 0.7941, HI = 0.2059, RI = 0.8409, RC = 0.8409. 
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2.3.8 TEMPLETON TEST OF  INCONGRUENCE 

The results of the Templeton signed-rank test showed that the topologies of the 

cpDNA and ITS strict consensus tree did not differ significantly (p= 0.07). Therefore 

the two data sets were combined to provide a more resolved tree. Maximum 

parsimony analysis produced 396 most parsimonious trees of 168 steps. This 

increased the bootstrap values of two clades, P. obcordatum and P. crassifolium x P. 

obcordatum F2, and P. tenuifolium and P. colensoi, but reduced the bootstrap support 

found in other clades, showing that there is still some degree of conflict between data 

sets. Overall, combining the two data sets produced more resolved trees with more 

clades (Fig. 2.7 and Fig 2.8). 

 

 

Table 2.7. Templeton signed-rank (1983) test of strict consensus of most 

parsimonious trees. N: sum of steps gained in the ITS tree compared to the trnT-trnL 

tree. P: P value with 95% confidence. 

 

Data set Tree length N P  

ITS 46   

trnT-trnL 31 8 0.0703 
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Figure 2.7 Maximum parsimony 50% majority rule of the 396 most parsimonious 

trees of combined trnT-trnL and ITS region CI = 0.7671, HI = 0.2329, RI = 0.8381, 

RC = 0.6429. Values above branches indicate percentage of times these clades are 

recovered in the 396 most parsimonious trees. Values below branches indicate 

bootstrap support values over 50%. 
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Figure 2.8. Strict consensus of parsimony analysis of combined trnT-trnL and ITS 

regions. Values above branches indicate bootstrap support values over 50%. CI = 

0.7671 HI= 0.2329, RI= 0.8381, RC= 0.6429 

 

 

2.3.9 MAXIMUM LIKELIHOOD ANALYSIS 

MODELTEST found that the K81uf+I+G model is the most suitable for the trnT-trnL 

region, with base frequencies of: A= 0.38722, C=0.1216, G=0.1325, T= 0.3588, and a 

substitution rate matrix of (A-C: 1.000000, A-G: 0.0392, A-T: 0.2407, C-G: 0.2407, 

C-T: 0.0392, G-T:1.0000), with the proportion of variable sites = 0.9046, and a 

gamma distribution of 0.8159. The best model for the ITS region is the TrN+G model, 

with base frequencies of A=0.2150, C=0.2979, G=0.2858, T=0.2013 and a 

substitution rate matrix of (A-C: 1.000000, A-G: 2.651200, A-T: 1.000000, C-G: 

1.0000, C-T: 8.0417, G-T: 1.0000), proportion of invariable sites = 0 and a gamma 

distribution of 0.2367. The best model of evolution  combining both data sets is the 

TrN+I+G model, with base frequencies of  A=0.3075, C=0.2025, G=0.2062, 

T=0.2838 and a substitution rate matrix of (A-C: 1.000000, A-G: 1.4401100, A-T: 

1.000000, C-G: 1.0000, C-T: 4.3996, G-T: 1.0000), with the proportion of invariable 

sites = 0.6541, and gamma distribution of 0.7514. 
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Table 2.8. Model scores of the evolutionary models used for maximum likelihood 

analyses of the trnT-trnL region, ITS region and combined regions 

Region Model Model score (-lnL) 

trnT-trnL K81+uf+I+G 1068.4465 

ITS TrN+G 1637.7467 

trnT-trnL and ITS TrN+I+G 2797.7783 

 

 

Maximum likelihood analysis of then trnT-trnL region produced similar results to that 

of maximum parsimony. Five clades were recovered: 1) P. bracteolatum and P. 

umbellatum with 68% bootstrap support, 2) P. divaricatum, P. rigidum and P. turneri, 

with 58% bootstrap support, 3) P. crassifolium, P. huttonianum and P. dallii form a 

clade but with low bootstrap support, 4) P. tenuifolium, P. colensoi, P. “Stephens 

Island” and P. eugenoides form a clade with 58% bootstrap support. 5) P. anomalum, 

P. patulum, P. virgatum and P. kirkii form a clade with 51% bootstrap support. 

 

 
Figure 2.9.  Maximum likelihood analysis of the trnT-trnL data. Numbers indicate 

bootstrap values from 100 bootstrap replicates. Log likelihood = 1062.50251. 
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Maximum likelihood analysis of the ITS region revealed three clades: 1) P. 

bracteolatum and P. eugenoides with 95% bootstrap support, with P. dallii as a sister 

taxon (63% bootstrap support), and P. kirkii as a sister taxon to these three taxa (58% 

bootstrap support), 2) P. obcordatum and P. crassifolium x P. obcordatum F2 hybrid 

form a clade with 52% bootstrap support 3)  P. tenuifolium, P. ralphii, P. huttonianum, 

P. crassifolium, P. crassifolium x P. obcordatum F1 hybrid and P. colensoi form a 

clade with 58% bootstrap support, with  P. ellipticum as a sister taxon to this group 

but with low bootstrap support. 

 
Figure 2.10. Maximum likelihood analysis of the ITS data. Numbers indicate 

bootstrap values for 100 bootstrap replicates. Log likelihood = 1142.30568 

 

 

2.3.10 KISHINO-HASEGAWA TEST OF INCONGRUENCE 

Maximum likelihood analysis showed a significant result (p<0.05) for  the Kishino-

Hasegawa test, indicating that there is significant topological disagreement between 

the data sets. Four ITS test trees were produced with constrained nodes where clades 

were moderately to well supported by the more resolved trnT-trnL data set, but not 

supported by the ITS data set. These constrained test trees contained clades of 1) P. 

anomalum, P. patulum, P. kirkii and P. virgatum, 2) P. colensoi, P. eugenoides,  
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P. tenuifolium, 3) P. crassifolium, P. dallii and P. huttonianum, 4) P. bracteolatum 

and P. umbellatum. Only the first test tree produced an insignificant result, therefore 

the taxa contributing to the incongruence are considered to be P. eugenoides, P. dallii 

and P. umbellatum as these taxa are those incongruent between trees produced by the 

two data sets.  

 

Table 2.9. Kishino-hasegawa (1989) test scores 

Tree -lnL Difference in -lnL P  

trnT-trnL 1062.50251   

ITS 1142.30568 79.80317 0.001* 

Test tree    

1 1545.47618 18.12999   0.092 

2 1557.18789 29.84170   0.015* 

3 1560.25138 32.90520   0.000* 

4 1554.78667 27.44049   0.005* 

 

 

The two data sets were also combined to produce a single tree based on maximum 

likelihood and to determine whether this increased the support for some clades and 

reduced support for others. This tree produced two resolved clades with more support 

than either region alone: 1) P. colensoi and P. tenuifolium, a clade with 90% bootstrap 

support, 2) P. anomalum, P. patulum and P. virgatum form a clade with 63% 

bootstrap support. There is also a greater level of support for a split between the main 

group of closely related New Zealand taxa and P. fairchildii (53% bootstrap support). 

Other relationships are clearly conflicting between data sets as bootstrap support 

diminishes for most clades. However, overall, the tree reflects the general support for 

two main clades found in the ITS phylogeny, indicating that the signal from the ITS 

set overwhelms that of the trnT-trnL data set, and the trnT-trnL region provides more 

resolution between the very closely related taxa, creating overall a more resolved tree.  

(1) P. bracteolatum forms a clade with P. eugenoides with 86% bootstrap support, 

with (2) P. dallii as a sister taxa with 51% bootstrap support and (3) P. kirkii as a 

sister taxa to this group with 52% bootstrap support. (4) P. crassifolium x P. 

obcordatum F2 is placed with P. obcordatum in a clade with 53% bootstrap support. 

(5) P. turneri and P. divaricatum form a clade but with low bootstrap support. (6) P. 

anomalum, P. patulum and P. virgatum form a clade with 63% bootstrap support. (7) 

P. colensoi and P. tenuifolium form a clade, with 90% bootstrap support. (8) P. 



49 

 

crassifolium and P. huttonianum form a clade with 65% bootstrap support. (9) P. 

anomalum, P. patulum, P. virgatum, P. colensoi, P. tenuifolium, P, crassifolium, P. 

huttonianum, P. crassifolium x P. obcordatum F1, P. rigidum, P. ellipticum, P. 

divaricatum, P. turneri, P. umbellatum and P. ralphii form a clade with 53% 

bootstrap support.  

 
Figure 2.11. Maximum Likelihood tree of combined ITS and trnT-trnL regions. Log 

likelihood = 2811.20745. Numbers represent bootstrap values for 100 bootstrap 

replicates. 

 

2.3.11 CONFLICT IN THE PLACEMENT OF TAXA 

The trnT-trnL region suggests different placements of P. eugenoides, P. dallii, P. and 

P. umbellatum to the ITS analyses for both maximum parsimony and maximum 

likelihood. The putative hybrid P. turneri, however, shows no conflict between data 

sets, and forms a clade with P. divaricatum in the trnT-trnL region but is unresolved 

in the strict consensus maximum parsimony tree and maximum likelihood of the ITS 

data. The two P. crassifolium x P. obcordatum F1 and F2 hybrids have different ITS 

sequences and are placed in different positions in the ITS trees but have identical 

chloroplast sequences to that of P. obcordatum, however their placement is only  
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resolved in the maximum likelihood analysis of the ITS region. P. rigidum forms a 

well supported clade with P. turneri and P. divaricatum in maximum parsimony and 

maximum likelihood trees of the trnT-trnL data but appears more closely related to P. 

colensoi and P. tenuifolium in the combined analysis of ITS and trnT-trnL data, but 

this relationship has low bootstrap support. P. kirkii is also placed in different clades 

between data sets, however ITS trees constraining the node containing this taxon in 

the trnT-trnL tree does not cause significant incongruence between trees. 

 

2.3.12 NEIGHBOUR-NET ANALYSIS 

Analysis using neighbour-net of the ITS data set indicates that there is low conflict for 

the highly resolved taxa, but graphically represents the conflict which occurs within 

the data set. In particular, the taxa that appear to have the most conflict are P. turneri 

and P. rigidum as all other taxa have split from the network to some degree, with P. 

bracteolatum and P. eugenoides showing the longest splits. The F1 and F2 P. 

crassifolium x P. obcordatum hybrids also show a long split from the rest of the 

network. Other taxa involved in conflict of the data set are P. divaricatum, P. 

virgatum, P. umbellatum, P. fairchildii, and P. patulum. 
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Figure 2.12 Neighbour-network analysis of uncorrected pairwise distances of ITS 

sequences, excluding the outgroup (P. pimeleoides taxa and P. cornifolium). 

 

2.4 DISCUSSION 

 

2.4.1 TAXA REPRESENTATION 

Only one individual was included in this analysis for most taxa. This may be adequate 

for elucidating relationships using the trnT-trnL region due to the slow rate of 

evolution of this marker, as P. turneri or P. divaricatum both had identical sequences 

between the two sampled populations, however, P. turneri had different ITS 

sequences for the two samples from different locations. Nuclear genes have an 

effective population size four times that of organellar genes for dioecious species, 

therefore relationships inferred by nuclear markers may partially reflect stochastic 

sorting processes, creating “noise” in the data and causing erroneous reconstructions  
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(Linder & Rieseberg 2004). In future studies more than one population should be 

sampled for other closely related taxa, especially from those taxa which exhibit a wide 

range of morphological variation. This may also increase the likelihood of detecting 

hybridisation and introgression, which may have occurred in some populations and 

not others. 

 

2.4.2 SEQUENCE VARIATION AND UTILITY OF THE trnT-trnL AND ITS 

REGION 

The trnT-trnL region amplified in total was 794 bp long. This is close to the average 

size range of this region of 752bp as described by (Shaw et al. 2005). The variation 

observed between sequences was mostly due to point mutations with few indels, and 

alignment was achieved easily, but sequence variation was very low. The trnT-trnL 

region exhibited a high AT content characteristic of the chloroplast genome (Shaw et 

al. 2005). The GC content did not differ significantly between taxa indicating that 

there is unlikely to be any compositional bias introduced, as taxa which share a 

greater GC content can be linked erroneously (Wendel & Doyle 1998). The G1 

statistic was significantly different from 0 (p<0.01) (Hillis & Huelsenback 1992), with 

a value of -0.659 indicating that the data is highly skewed and contains enough 

phylogenetic signal to provide meaningful interpretation of relationships. However 

there are few phylogenetically informative sites compared to the ITS region, 

indicating that the ITS region is likely to depict relationships more accurately than the 

trnT-trnL region alone. This is also because the chloroplast genome can be exchanged 

easily between taxa, which can lead to erroneous phylogenetic reconstructions when it 

is used as the only source of phylogenetic information (Comes & Abbott 1999). 

 

2.4.3 MAXIMUM PARSIMONY AND MAXIMUM LIKELIHOOD 

Maximum parsimony produces a tree which requires the fewest number of character 

state changes, assuming an equal rate of substitution changes between nucleotides and 

across sites (Yang 1996), whereas maximum likelihood uses an explicit evolutionary 

model, and produces the tree most likely to be the „true‟ tree given the chosen model 

of evolution (Lewis 1998). According to recent studies, maximum likelihood is more 

likely to represent the species tree when the appropriate model is selected (Hall 2005), 

as maximum parsimony is essentially a subset of maximum likelihood where random 
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variables are estimated, leading to a greater potential for statistical error (Goldman 

1990). This study found very similar reconstructions between the maximum 

parsimony 50% majority rule tree and the maximum likelihood tree for both the trnT-

trnL region and the ITS region, therefore these relationships are supported by both the 

model of evolution used for maximum likelihood and by maximum parsimony. 

However, some relationships differ between maximum parsimony and maximum 

likelihood. In the strict consensus tree of the most parsimonious trees for the trnT-

trnL region, P. bracteolatum and P. umbellatum do not form a clade separate to the 

main New Zealand clade as they do in maximum likelihood. Also, in the strict 

consensus tree of the most parsimonious trees of the ITS region, P. kirkii does not 

form a clade with P. eugenoides, P. bracteolatum and P. dallii. However, when 

combining the two data sets there is very little difference between the strict consensus 

of the most parsimonious trees and the maximum likelihood tree.  

 

2.4.4 TESTS OF INCONGRUENCE 

Incongruence between trees based on different markers does not always reflect 

differences in the evolutionary history of the taxa in question. Other causes may 

include statistical error, such as when clades are weakly supported and there is not 

enough „signal‟ in the data or when the gene used has a high rate of evolution relative 

to the level of taxon divergence. Incongruence can also be caused by technical 

difficulties such as sequencing error (Wendel & Doyle 1998). Therefore, the level of 

statistical support for each clade is very important in determining whether 

phylogenetic incongruence reflects evolutionary processes such as hybridisation. The 

ILD test assesses the significance of any incongruence between data sets against the 

null hypothesis of homogeneity in the distribution of phylogenetic information 

(Johnson & D.E 1998), assessing whether the conflict between datasets is 

significantly greater than the conflict within each data set (Planet & Sarkar 2005). 

This is done by comparing the difference in tree lengths between the most 

parsimonious trees of each data set. The difference is the sum of the total 

incongruence (the number of homoplasius steps required to explain the shortest trees) 

in each data set when the data sets are combined minus the number of homoplasius 

steps required to explain the shortest tree within each data set. This result can range 

from 0-1. When the result is zero, the shortest trees recovered are identical. When it 

equals 1, there is no homoplasy and the two topologies are distinct (Johnson & Soltis 
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1998). This test showed that the ITS and trnT-trnL data sets are compatible because 

the level of homoplasy within each data set indicates that the same tree topology 

could be reached with either data set. Therefore the best representation of 

relationships is likely to be when both data sets are combined to reduce the level of 

homoplasy. However, this is only considered a starting point, as congruence is only 

accepted if there are a large number of sites, specific tree topology conditions such as 

asymmetry, and a high mutation rate  and trees are  not incongruent if they have 

different branch lengths (Darlu & Lecointre 2002).  

 

The Templeton (Wilcox signed-rank) two-tailed test (significantly less parsimonious 

test of Templeton) compares the number of steps required for each character for the 

separate topologies using maximum parsimony (Cunningham 1997), testing the null 

hypothesis that characters which differ in numbers of steps are equally likely to 

favour both topologies (Lee & Hugall 2003). The result is insignificant when the 

increase in steps required by some characters on the alternate topology (the most 

parsimonious topology based on the other data set) is not significantly different to the 

decrease in number of steps required by other characters (Johnson & D.E 1998). The 

Kishino-Hasegawa test is used to compare topological incongruence between trees 

based on maximum likelihood. This test used the ln-likelihood score of each tree, 

which is made up of the ln-likelihood for all sites, and computes the variance of the 

sum of all ln-likelihoods for each tree. It uses the variance to determine whether the 

difference in ln-likelihood between the two trees is statistically significant (Lewis 

1998). Either of these tests can be used to compare topologies using constraint trees 

(trees that have been altered to include nodes with conflicting relationships between 

trees). 

 

Although the strict consensus trees were not statistically significantly different 

between ITS and cpDNA data sets based on the Templeton-signed rank test this may 

be because, for the ITS data there were 20,000 most parsimonious trees, indicating 

many combinations were equally parsimonious. However, using maximum likelihood 

the scores of the trees were significantly different. This is likely to be because the 

model selected corrects for problems that lead to erroneous reconstructions, e.g. 

correcting for multiple hits that can otherwise lead to long-branch attraction (where 

long branches are erroneously linked because they have more sites in common) 
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(Bergston 2005). Therefore, the trees produced are superior to any other 

reconstruction under the particular model of evolution. 

 

2.4.5 TOPOLOGICAL INCONGRUENCE  

The significant result of the Kishino-hasegawa test (P<0.05), indicates that there are 

some clades which cause conflict in topology between trees using maximum 

likelihood. The taxa that were placed in different clades between data sets and were 

significantly incongruent were P. eugenoides, P. dallii, and P. umbellatum. The 

placement of P. eugenoides and P. dallii within the main group in the trnT-trnL tree, 

relative to the position in the other main New Zealand clade the ITS tree, could 

indicate that these taxa have been involved in introgression at some stage in their 

evolutionary history, as morphologically distinct taxa can contain the same 

chloroplast (chloroplast capture), (Rieseberg 1991). However, the P. eugenoides 

sample was from a cultivated specimen in Christchurch, indicating that this 

introgression event may have occurred in cultivation. The P. dallii individual was 

sampled from Landcare Research in Christchurch and was a wild specimen. However 

P. dallii is a rare species that only occurs in the South Island and the two taxa it is 

placed with based on the trnT-trnL region, P. crassifolium and P. huttonianum, are 

restricted to the North Island. This indicates that the introgression event may have 

been ancient, when these species had different geographical ranges to the present. In 

the combined analysis P. dallii is placed with P. eugenoides and P. bracteolatum. 

This seems to be a more likely relationship as these species all share the same 

white/yellow flower colour and inflorescence type (Cooper 1956). P. umbellatum may, 

on the other hand, be derived from hybridisation between one of the more basal 

species in the New Zealand phylogeny, or a now extinct taxon and one of the species 

within the main New Zealand clade. However, this needs to be investigated further as 

this species is unresolved in its placement in the ITS tree. P. kirkii is also incongruent 

between trees, however test trees showed that the grouping of this taxa in a clade with 

P. virgatum, P. patulum and P. anomalum was not incongruent with the ITS data set.  

 

 

 

2.4.6 COMBINED trnT-trnL AND ITS REGIONS 
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Some clades that were well resolved in the trnT-trnL region were not resolved in the 

ITS region and vice versa, but did not cause any conflict, indicating that overall 

relationships are most likely to be best represented by combining the data sets. Some 

relationships were better supported with higher bootstrap values when combining data 

sets. This can be due to homoplasy masking the phylogenetic signal in one of the data 

sets but providing “secondary signal” when both data sets are combined (Nixon & 

Carpenter 1996). Relationships found in the ITS tree, which are recovered when 

including the trnT-trnL region, include the clade of P. bracteolatum with P. 

eugenoides, P. kirkii and P. dallii, which is incongruent between the data sets. 

However, there is less bootstrap support for this clade.  There is also increased 

support for relationships found based on both maximum parsimony and maximum 

likelihood using the trnT-trnL region, which were more supported when combining 

data sets. This includes a clade of P. tenuifolium and P. colensoi, and a separate clade 

of P. huttonianum and P. crassifolium, a clade of P. crassifolium x P. obcordatum F2 

and P. obcordatum, and a clade of P. anomalum, P. patulum and P. virgatum in both 

the strict consensus of the most parsimonious trees and the maximum likelihood tree 

of the combined data sets. Additionally, some relationships are apparent when 

combining data sets, which were not found in either data set alone. For example, P. 

rigidum changes position from being in a clade with P. divaricatum and P. turneri in 

the cpDNA data set and being unresolved within the main New Zealand clade in the 

ITS data set to being included within a clade that contains P. colensoi, P. tenuifolium, 

P. huttonianum and P. crassifolium in both maximum parsimony and maximum 

likelihood analysis of the combined data sets. Overall, the analysis of combined data 

sets using maximum parsimony and maximum likelihood exhibit the relationships 

strongly supported by each data set and appears to be a more accurate representation 

of relationships within the genus. 

 

2.4.7 NEIGHBOUR-NET ANALYSIS 

Phylogenetic analysis allows conflicting signals and ignores alternate phylogenetic 

histories. However, methods that allow the visualization of these conflicting signals 

such as neighbour-net can help identify ambiguous relationships and identify where 

further investigation is needed. The use of networks also better represents 

relationships when there is a history of hybridisation, because reticulated graphs 

rather than a bifurcating tree (Bryant & Moulton 2004 224) better represent these 
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relationships. However, ambiguous relationships can be caused by sampling error, or 

other processes than hybridisation, and this method does not address these hypotheses 

specifically. There are conflicting signals within closely related taxa (P. turneri, P. 

divaricatum, P. rigidum and P.  patulum), as well as P. umbellatum and P. fairchildii. 

P. turneri and P. rigidum exhibit the strongest conflict. This conflict indicates that 

these taxa are more likely to have a history of hybridisation but this needs to be 

investigated further.  

 

2.4.8 THE ORIGIN OF PITTOSPORUM TURNERI 

Clearly P. turneri has a close relationship to the divaricating species P. divaricatum 

and P. rigidum, with P. divaricatum being the closest relative in combined analyses. 

However, the findings from this study do not provide enough resolution to determine 

whether P. turneri has evolved from hybridisation between P. divaricatum and a 

large-leaved species because both P. turneri and P. divaricatum are unresolved in all 

ITS phylogenies within the internal node containing most of the taxa with ambiguous 

relationships. When the number of polymorphisms between sequences are low, 

hybrids can cluster towards one of the parental taxa, however this may change when 

more sequence information is added (Soltis et al. 2008), as found in Collomia 

(Plemnoniaceae)  (Johnson & RL 2006). This is likely to be the case in P. turneri, 

where the addition of more regions may change the relationships inferred. However, 

there is  a tendency for one of the parental alleles of nuclear genes to become fixed in 

the hybrid, which can occur in many nuclear genes when the hybrid is ancient, due to 

genetic drift, population bottlenecks and inbreeding (Pan et al. 2007). This has 

important implications in P. turneri as most populations are severely fragmented with 

few individuals and therefore introgression with other closely related taxa (such as P. 

divaricatum) is also highly plausible, “erasing” evidence of hybridisation within these 

slowly evolving markers. There is no evidence to suggest any of the larger-leaved 

species are likely to be the parent of P. turneri,  however P. umbellatum has the least 

uncorrected pairwise distance of the larger-leaved tree species from P. turneri 2 

(collected from Pureora), where it is not found in sympatry with P. divaricatum. P. 

umbellatum also shares some character traits with P. turneri, such as having flowers 

in umbels and leaves in whorls.  It is also possible that P. turneri is the result of 

hybridisation between more than two taxa, or an extinct taxa. However, the 

unresolved status of P. turneri may also reflect stochastic population processes, which 



58 

 

may be uncovered by sequencing of a larger number of samples from different 

populations and the inclusion of more nuclear regions as markers. 

 

2.4.9 HETEROBLASTY AND THE DIVARICATE FORM IN PITTOSPORUM 

This study supports the findings of Hathaway (2001) that the divaricating form has 

evolved at least three times independently in Pittosporum. Analyses support a close 

relationship between the divaricating species P. turneri, P. divaricatum, and P. 

rigidum, with the other heteroblastic taxa P. obcordatum and P. anomalum having 

likely acquired this growth form independently. There is also no evidence for any of 

the heteroblastic species of Pittosporum having evolved from hybridisation as all 

heteroblastic species are unresolved in the ITS trees within the main New Zealand 

clade. It is possible that hybridisation could have increased the amount of homoplasy 

within the ITS region, as homoplasy is often caused by the effects of recombination in 

nuclear genes (Small et al. 2004) and  rates of homoplasy are relatively high in the 

ITS region (Alvarez & Wendel 2003). This is because allelic recombination can also 

result in alleles which are chimeric (combining sequences of the parental taxa), 

violating the assumptions of phylogenetic analysis (Small et al. 2004). Therefore, 

sequencing of a larger number of independent nuclear markers may help elucidate and 

change relationships within the heteroblastic taxa and address the question of the 

origin of heteroblasty more thoroughly.  

 

2.4.10 TAXONOMY AND RELATIONSHIPS WITHIN NEW ZEALAND 

PITTOSPORUM 

The strict consensus of maximum parsimony and maximum likelihood of the 

combined data sets are identical. Two main New Zealand clades are apparent, one P. 

eugenoides, P.dallii and P. kirkii, which form a clade with P. bracteolatum from 

Norfolk Island, and another containing the rest of the New Zealand Pittosporum.  

 

 

Hathaway (2001) proposed that P. bracteolatum shares a common ancestor with the 

New Zealand clade, and may be descended from a dispersal event from New Zealand 

to Norfolk Island (Gemmill, Botany 2008 conference). P. obcordatum and P. 

fairchildii are the next most distinct taxa from the main New Zealand clade as they 

are both placed in a distinct clade from the rest of the main New Zealand clade. These 
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are also two of the rarest taxa, with P. fairchildii occurring only on the Three Kings 

Islands, and P. obcordatum occurring in only twelve small isolated populations 

throughout New Zealand (Clarkson & Clarkson 1994). P. fairchildii appears to be 

more closely related to P. crassifolium based on morphology and these species 

hybridise readily (Cooper, 1956). However, P. fairchildii has some morphologically 

distinct traits such as yellow/green glabrous capsules (Allan 1961). P. obcordatum is 

more morphologically distinct from other New Zealand Pittosporum. so its placement 

is less unexpected. It has a divaricating form but is dissimilar in leaf shape to all other 

divaricating forms within the genus, with distinctive heart-shaped leaves. A clade of P. 

turneri and P. divaricatum is apparent, along with a clade including P. patulum, P. 

anomalum and P. virgatum within the main New Zealand clade, separating the 

remaining divaricating taxa into two groups.  

 

2.4.11 THE EVOLUTION OF MORPHOLOGICAL CHARACTERS IN NEW 

ZEALAND PITTOSPORUM 

When combining the two data sets there is still conflict with previous hypotheses 

regarding relationships based on morphology. No correlation has been found between 

relationships based on ITS sequences and morphology, implying that many of these 

characters have evolved more than once in different clades, or that the markers used 

do not evolve at a fast enough rate comparable to the rate of morphological evolution 

involved. The separate clade of  taxa from the main group according to combined 

analyses are those with several to many flowered fascicles or umbels (P. eugenoides 

and P. dallii), consistant with the hypothesis previously proposed by (Cooper 1956) 

that reduced numbers of flowers are the derived form in New Zealand. These taxa are 

also bivalved, while the main New Zealand clade has both bivalve and trivalved taxa. 

However, valve number may be an unstable characteristic, unsuitable for inferring 

relationships (Haas 1977). These taxa also have white or yellow flowers, suggesting  

 

that the red flower colour may have evolved within New Zealand. The apparent 

polyphyly of morphological characters could also be due to convergence, with 

repeated evolution of the same characters (Wendel & Doyle 1998), or could be a 

result of hybridisation. The one taxon identified as a putative hybrid in this study (P. 

umbellatum) shares the characteristic red flowers of the closely related New Zealand 

taxa with the many flowered inflorescences seen in the distinct clade including P. 
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bracteolatum for with which it clusters according to ITS sequences. This taxon is 

therefore considered a putative hybrid but this needs to be investigated further. 

Gemmill (2002) suggest that morphological evolution and molecular evolution are 

“decoupled” in this genus. 

 

2.4.12 FUTURE DIRECTIONS 

The use of multiple unlinked nuclear markers may be needed to resolve relationships 

within closely related Pittosporum, as more phylogenetic information would help 

overwhelm the conflicting signals of homoplasy in the ITS region (Sang & Zhong 

2000). Linder and Rieseberg (2004) suggest that the use of a large set of biparentally 

inherited markers are needed to reconstruct each hybrid speciation event, due to the 

problem of population genetic and stochastic issues. They also suggest that the most 

powerful way to detect hybridisation is through combining studies of phylogenetic 

incongruence with searching for linkage disequilibrium (genetically linked markers), 

as closely linked markers are significantly more likely to come from the putative 

parent than from convergence or common descent (Rieseberg 2000). Another way to 

detect hybridisation is to combine multiple independent loci into one analysis and 

look for two or more evolutionary histories by performing analyses such as splits 

decomposition (similar to neighbour-net), which examines the level of conflict in the 

data (Bandelt & Dress 1992).  Future studies could include sequencing of other 

nuclear regions, including the External transcribed spacer of nuclear ribosomal DNA 

(ETS) region, which has been shown to have great utility in phylogenetic studies, and 

to improve resolution of trees based on ITS data (Baldwin 1998). For example, 

Howarth and Baum (2005) used four introns of nuclear genes, the ITS region, LEAFY, 

NITRATE REDUCTASE, and GLYCERGLYCERALDEHYDE 3-PHOSPHATE 

DEHYDROGENASE to identify hybridisation in Scaevola, finding all markers were 

 

 needed to resolve relationships between taxa adequately.  More nuclear and 

chloroplast markers may also be available in the future (Linder & Rieseberg 2004). 

 

2.5 CONCLUSION 

Phylogenies produced from the ITS region and trnT-trnL region show distinct clades 

which appear to be incongruent in their placement using both maximum parsimony 

and maximum likelihood analyses. There is no evidence that P. turneri is a hybrid 
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based on these two markers. However, one taxon, P. umbellatum may have a history 

of hybridisation and two other taxa, P. eugenoides and P. dallii appear to have 

experience introgresson. Combining the two data sets however increases the support 

for some clades and provides greater resolution of relationships among New Zealand 

Pittosporum. Further investigation using more nuclear and chloroplast markers may 

improve the resolution of relationships depicted by these markers.  
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CHAPTER THREE 

 

ALLOZYMES AND INTER-SIMPLE 

SEQUENCE REPEATS (ISSR’s) 
 

 

 

3.1 INTRODUCTION 

A variety of different molecular methods have been used for the identification of 

plant hybrids, however it can be necessary to employ several methods to attain an 

adequate understanding of relationships between closely related species and 

putative hybrids (Wolfe 1998). Allozymes are widely used to identify hybrids as 

they are a codominant marker with a known genetic basis, and they show easily 

identifiable evidence for hybridisation. First generation hybrids are identified by 

having patterns of fixed heterozygosity, combining the alleles of both parents, 

which then segregate in the next generation (Weeden & Wendel 1990), however 

later generation hybrids should contain alleles found in either parent for different 

enzyme systems. Studies of ancient, putative hybrids have confirmed a hybrid 

origin based on the presence of alleles of both parental taxa, for example 

(Rieseberg et al. 1990) found the species Helianthus paradoxus combined the 

alleles of its putative parents H. annus and H. petiolaris for several different 

enzymes. An alternative approach for identifying hybrids is the use of inter-simple 

sequence repeats (ISSR’s): random hypervariable nuclear markers generated by 

PCR amplification. Hybrids can be identified by having a unique profile, with an 

additive banding pattern of bands of both parental species as they are inherited in 

a dominant fashion (Wolfe & Liston 1998). ISSR’s have been used to successfully 

differentiate between very closely related species when other markers do not show 

any variation (Wolfe 1998). For example (James & Abbott 2005) found 11 bands 

which were exclusive to the putative hybrid Senecio squalidus and one putative 

parent, and 13 bands found exclusively in S. squalidus and the other putative 

parent, providing strong evidence for a hybrid origin of this species. This 

preliminary study investigates whether allozymes and ISSR’s show the level of 

variation useful for investigating the putative hybrid origin of P. turneri, and aims 

to determine whether there is any evidence that P. turneri is a diploid hybrid 

derivative of P. divaricatum and P. colensoi. 
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3.2 METHODS 

 

3.2.1 ALLOZYMES 

Thirty-eight samples were collected in total, ten leaf samples were collected from 

Pittosporum turneri, P. divaricatum and P. colensoi at Lochinvar station in the 

Ripia Valley, Bay of Plenty (GPS reference: E2800102, N6240083) and eight 

individual P. turneri samples were collected at the Bog Pine reserve near Pureora 

Village, Waikato (GPS reference: E2730662, N6296368). Samples were ground 

with a mortar and pestle to homogenize the leaf tissue using a Tris-HCL grinding 

buffer with 12.5 ml 0.1 M Tris-HCL, ph 7.5, 0.75 g PVP-40, 0.005g EDTA, 0.009 

g Potassium Chloride, 0.025 g Magnesium chloride, 3 drops ß-mercaptoethanol 

and 1.25 ml DMSO modified from (Soltis et al. 1983). Homogenates were placed 

in two separate 0.5 ml eppendorf tubes then stored at -70˚c prior to use. 

Electrophoresis using gels made of 12% hydrolyzed potato starch were used to 

resolved three enzyme systems out of 16 enzyme systems trialled (Appendix 4). 

Staining recipes were those used by (Ranker et al. 1989). Resolved enzyme 

systems included PGI (phosphoglucoisomerase), ALD (aldolase) and PGM 

(Phosphoglucomutase). The buffer systems used to resolve these enzyme systems 

were System 8 and System HC, modified from (Soltis et al. 1983), using the same 

gel and electrode buffer concentrations. System 8 resolved PGI and ALD and 

system HC resolved PGM. System 8 had an electrode buffer of 0.04M lithium 

hydroxide and 0.26 M boric acid adjusted to pH 8.0 and a gel buffer of 0.033 M 

Tris, 0.005 M citric acid, 0.004 M lithium hydroxide and 0.03 M boric acid, 

adjusted to pH 7.6. System HC was a continuous system using 0.26 M histadine-

free base and 0.03 M citric acid titrated to pH 6.5. Homogenates were loaded on 

to the gels using paper wicks, and gels were then run in a fridge to prevent loss of 

enzyme activity, at 35-45 mAmps (system 8) and 200 volts (system HC) for three 

to four hours (see figure 3.1). Gels were sliced horizontally three times to apply 

three different stains. They were stained immediately and left in the dark to 

develop until bands were clearly visible. Bands were scored as present or absent, 

where the presence of two bands was interpreted as two alleles of the same locus.   
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Figure 3.1. Allozyme set up using starch gel electrophoresis, with electrode 

buffer in chambers on either end to conduct current through the gel and sponges 

used to transfer buffer onto the gel. Plastic wrap is placed on the exposed part of 

the gel to prevent drying of the gel surface during electrophoresis. A glass plate is 

placed on the gel, with straws on top of the sponges to maintain contact of the 

sponges on the gel surface. 

 

3.2.2 INTER-SIMPLE SEQUENCE REPEATS (ISSR’S) 

DNA was extracted from leaf tissue of three of the samples from each taxon 

collected for the allozyme study, including a putative hybrid between P. 

divaricatum x P. turneri (Ecroyd 1994).  A sample of a more distantly related 

taxon, P. cornifolium was also included in the study to examine the number of 

bands common to all New Zealand Pittosporum. Samples were extracted using an 

Invitrogen kit (Invitrogen Corporation) (see appendix 2 for DNA isolation 

protocol). Eight ISSR primers were trialled, these were developed by (Wolfe, 

1992) which were obtained from Invitrogen Corporation. A temperature gradient 

was performed for each primer between 39°c and 45°c. PCR amplification was 

performed using 1XPCR buffer, 4 mmol/L MgCl2, 200 µmol/L each DNTP, 0.2 

µl 1% 1% BSA, 0.2 µmol/L each primer, 2.5 units of Taq and 1µl of unquantified 

DNA. Cycle parameters were as follows: An initial denaturing period of 94°c for 

2 minutes, followed by 40 cycles of (denaturing at 94° for 40 seconds, an 

annealing adjusted for each primer of 45 seconds, followed by an extension at 

72°c for 1 minute) and a final extension of 72°c for 20 minutes. All PCR’s 

included a positive control, which had been previously amplified to check for 

reproducibility, and a negative control to ensure there was no contamination of 
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DNA in the mastermix. PCR products were electrophoresed following PCR’s on a 

1.8% agarose gel, which was stained with ethidium bromide (0.1 mg/L). A 100 

base pair ladder (Invitrogen Inc) was used as a reference on the first and last lanes 

of the gel for sizing of bands. The gel was run for around four hours at 44 volts 

(or until the bottom blue dye marker had ran about 10cm). Gels were then 

visualised under UV light and photographed using an Alphaimager 

(Alphainnotech). Five primers produced clear bands (table 3.1). Bands which 

lined up on the gel as the same size were assumed to be homologous (of the same 

origin) and all clearly visible bands were scored by eye as present or absent and 

included in a data matrix. A replicate to ensure reproducibility of bands was 

performed using primer ‘1’ and any anomalies between results reported.  

 

 

Table 3.1. ISSR primers and sequences and the annealing temperature used for 

each primer. 

 

Primer Sequence Annealing temp 

ISSR ‘A’ (CA) 8 TC 40°c 

ISSR ‘ B’ (CAC)4 GC 40.8°c 

ISSR ‘C’ (CT)7 AC 42.2°c 

ISSR ‘F’ (CA)6 GC 43.3°c 

ISSR ‘1’ (CA) 6AT 42.2°c 

 

 

3.2.3 DATA ANALYSIS 

For allozyme data, mean number of alleles per locus, mean number of alleles per 

polymorphic locus, percent polymorphic loci, number of loci per enzyme system 

was calculated and expected heterozygosity was calucated using TFPGA (Miller 

1997). For ISSR data, percent polymorphism and number of shared ‘marker 

bands’ (polymorphic bands shared among taxa and present in all accessions of a 

taxon) were calculated using Statistica 8.0 (Statsoft Inc, 2008). An Analysis of 

Molecular Variance (AMOVA) was performed using Arlequin version 3.0 

(Excoffier et al. 2005) to examine the level of within and between population 

variation. An UPGMA (unweighted pair group method algorithm) using Nei’s 

(1978) unbiased distance was performed on all data also using TFPGA.  This 
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measure was used because it doesn’t consider band absences as matches, an 

assumption which can overestimate the level of similarity between populations 

and overwhelm the significance of band matches, as absence of a band may be 

due to a number of reasons e.g. a mutation in either priming site, structural 

rearrangement of the chromosome during meiosis, or an insertion or deletion large 

enough to interpret the band as a separate locus due to differences in band size 

(Black 1997). Bootstrapping (Felsenstein 1985) using 100 replicates was 

performed to indicate the strength of each support node for the UPGMA and thus 

provide an indication of the confidence of relationships inferred. Additionally a 

Principal Components Analysis was performed using Statistica 8.0 (Statsoft Inc, 

2008) to investigate how genetic variation appears in multivariate space.  

 

3.3 RESULTS 

 

3.3.1 ALLOZYMES 

The three enzyme systems assayed were interpreted as being encoded by three 

putative loci: PGI-1, PGM-1, and ALD-1. For all three systems only seven 

individuals per taxa were used as all 30 sampled did not fit on the starch gel, and 

later repeats of the procedure were unsuccessful using the rest of the samples. 

There was no variation in ALD-1 or PGM-1, with all loci monomorphic 

(homozygous for the same allele). One P. colensoi individual was a heterozygote 

for PGI-1 while all other individuals were homozygotes but for different alleles. 

P. turneri individuals were also monomorphic for this enzyme system, showing 

no variability for any of the three enzyme systems, while P. divaricatum and P. 

colensoi contained two alleles. The samples which were collected from a separate 

population of P. turneri at Bog Pine Reserve, Pureora were low in activity and 

could not be resolved for any enzyme systems to show whether allele patterns 

differed between the two P. turneri populations. Enzyme activity appeared to 

diminish after time spent in the ultracold freezer at -70°, and this may have been 

due to degradation of the homogenates during storage.  

 

 

 

 

Table 3.2 Allelic frequencies for 3 putative loci.  
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Population 

Loci 

 P. divaricatum P. turneri P. colensoi 

PGI-1 a 0.500 1.000 0.857 

 b 0.500 - 0.428 

ME-1 a 1.000 1.000 1.000 

 b - - - 

ALD-1 a 1.000 1.000 1.000 

 b - - - 

 

 

Table 3.3 Percent loci polymorphic (Ps), number of alleles per polymorphic locus 

(As), mean number of alleles per locus (Acs) and expected heterozygosity over all 

loci. 

Population Ps  As Acs He  

P. divaricatum 33.3 1.00 1.00 0.16 

P. turneri 0.0 1.00 1.00 0.00 

P. colensoi 33.3 2.00 1.05 0.11 

 

 

3.3.2 ISSR’s 

All primers produced bands which were polymorphic between taxa, and the 

average number of bands scored per primer ranged from four to ten (average of 

6.2 bands per primer). Overall 42 bands were scored with an average of 23 bands 

per taxon. The number of polymorphic bands was 31 (73.8%). Bands scored 

ranged from 600 bp to approximately 2072 bp, as bands smaller than 600bp 

tended to be faint and those below 500 bp tended to run off the gel. A replicate 

using primer ‘1’ showed no discrepancies above the size range of 600bp, bands 

smaller than this were faint in both replicates, and it was therefore assumed there 

were no problems with reproducibility at the larger size range. There were also 

several bands above 600bp which were difficult to score as they were also faint 

and where bands were questionable they were left as missing data. 

 

 

 

 

 

 

 

 

                    Table 3.4. Summary of ISSR bands scored per taxon for each primer.  
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Primer Primer 

sequence 

Total 

no.  

bands 

Size range 

of bands 

P. 

divaricatum  

P. 

turneri  

 

P. 

colensoi  

ISSR 

‘A’ 

(CA) 8 TC  7 600-2072 5.3 
 

6 
 

3 

ISSR ‘ 

B’ 

(CAC)4 

GC  

10 600-2072 7 9 7 

ISSR 

‘C’ 

(CT)7 AC 7 800-1600 2 4 3 

ISSR 

‘F’ 

(CA)6 GC 4 700-2072 5 6 5 

ISSR 

‘1’ 

(CA) 6AT 9 600-2072 3 7 3 

Total    22.3 34 21 

 

 

 

Figure 3.2. Agarose gel showing appearance of ISSR bands using ‘ISSR A’. Lane 

1: P. cornifolium, lane 2-4: P. divaricatum, lane 5-7: P. turneri, lane 8-10: P. 

colensoi. P. cornifolium exhibits a different profile with some bands which are 

shared by all taxa and some unique bands.  P. turneri has bands which are found 

in some P. divaricatum accessions and some P. colensoi accessions and contains 

several unique bands.  

 

40.5% of bands scored were polymorphic between P. divaricatum, P. colensoi 

and P. turneri. The putative hybrid between P. turneri and P. divaricatum did not 

exhibit any differences to P. turneri at any loci and was therefore included in all 

analyses as P. turneri.  P. divaricatum had one unique, taxon specific band found 

in all accessions and P. turneri had five unique, taxon specific bands, however P. 

colensoi had no unique taxon specific bands. All taxa contained one to three bands 
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which were unique to an individual and found in no other accessions of the other 

taxa.  

 

Marker bands used to identify hybridisation were considered as those bands 

shared between all accessions within a taxon, but are polymorphic between taxa. 

P. turneri shares four marker bands with P. colensoi and no other taxa and two 

marker bands with P. divaricatum, and no other taxa, combining the bands of both 

taxa and exhibiting an additive profile consistent with the hypothesis of 

hybridisation. No bands are specific to P. colensoi and only one band is specific to 

P. divaricatum, however both P. cornifolium and P. turneri have a high number of 

taxon specific bands (six and five respectively). P. colensoi shares the greatest 

number of bands with P. cornifolium of the other taxa, with two bands in common 

which are not observed in P. divaricatum or P. turneri. 

 

Table 3.5 Total number of ISSR bands shared between taxa. Number of shared 

marker bands between taxa in parenthesis. 

 
 P. cornifolium P. divaricatum P. turneri P. colensoi 

P. cornifolium **    

P. divaricatum 11 **   

P. turneri 11 20 (2) **  

P. colensoi 13 (2) 18 (0) 22 (4) ** 

 

 

3.3.2.1 Cluster analysis using UPGMA 

P. cornifolium was the most distant taxa with 100% bootstrap support and a 

consistency index of 100% (see figure 3.3), indicating strong support for this 

relationship. P. divaricatum and P. colensoi cluster together, however the support 

for this node is relatively weaker (61% bootstrap support, and a consistency index 

of 16.67%). There is strong support for the relationship between P. turneri and the 

taxa (P. colensoi and P. divaricatum) (96% bootstrap support, 64.29% consistency 

index). This shows that P. colensoi individuals have more bands in common with 

P. divaricatum, and reflects the number of unique bands of P. turneri. The genetic 

distance between P. colensoi and P. divaricatum is very low (0.19) and also low 

between both of these taxa and P. turneri (0.2449). The genetic distance between 

taxa is highest between P. cornifolium and both P. divaricatum and P. colensoi 
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(0.7302), and lowest between P. divaricatum and P. colensoi (0.1902), and P. 

turneri has equal distance to P. colensoi  and P. divaricatum (0.2449). 

 

 

Figure 3.3. UPGMA using Nei’s (1978) unbiased genetic distance. Values of 100 

bootstrap replicates are shown. Consistency indices (CI’s) at each node are 1 

(between 1 and (2, 3, 4) = 100%, 2 (between 2, 3, 4) =  64.29% and 3 (between 2 

and 4) = 16.67%.  

 

 

Table 3.6. Nei’s (1978) unbiased genetic distance values between taxa. 

 

 P. cornifolium P. divaricatum P. turneri P. colensoi 

P. cornifolium ****    

P. divaricatum 0.7302 ****   

P. turneri 0.4853 0.2449 ****  

P. colensoi 0.7302 0.1902 0.2449 **** 

 

 

3.3.2.2 Analysis of Molecular Variance (AMOVA) 

29 polymorphic loci were used for the AMOVA, excluding loci with missing data. 

The majority of variation is between groups when comparing genetic differences 

between P. cornifolium and (P. divaricatum and P. colensoi) (48.1%), with less 

variation between populations (46.1%). 5.71% of variation was found within 

populations. These results are significant for both within populations and between 

populations (p<0.05), however not between groups (p=0.25), (due to only one 

individual DNA sample of P. cornifolium being used).  
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Table 3.5. AMOVA of variation between taxa, within taxa and between the 

groups P. cornifolium vs. (P. divaricatum, P. turneri and P. colensoi). 

Source of 

variation 

d.f.  Sum of 

squares 

Variance 

components 

Variation (%) 

Within taxa 1 11.489 3.74 5.71 

Between taxa 2 22.44 3.59 46.19 

Between groups 6 2.667 0.44 48.10 

 

 

3.3.2.3 Principal Component Analysis 

A principle component analysis was performed using 29 loci without missing 

data. Figure 3.4 shows the first two factors of the PCA with a demarcation of P. 

cornifolium from the other taxa and clustering of individuals of the three other 

taxa, with no overlapping of taxa. Table 3.7 shows that only the first seven loci 

out of all 29 loci were needed to explain the total variation between taxa.  

 

 

Figure 3.4. First two factors in a Principle Components Analysis of ISSR loci 

between all four species.  

 

 

 

 

 

 

 

Table 3.7 Eigenvalues for the first seven loci in the Principle Component 

Analysis.  
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Eigenvalue Cumulative % 

13.6 48.57 

7.26 74.5 

4.16 89.37 

1.55 94.93 

0.71 97.49 

0.55 99.48 

0.15 100 

 

 

3.4 DISCUSSION 

 

3.4.1 ALLOZYMES 

Allozymes have traditionally been used as evidence for hybridisation, however 

several studies have been unsuccessful (Wolfe 1998). For example, a study of a 

putative diploid hybrid Arisaema found that this species contained alleles which 

were in either one or the other putative parent for different enzyme systems but 

not both (Maki & Murata 2001), suggesting that the putative hybrid could be 

either derived from hybridisation or divergence. Although F1 hybrids are expected 

to show fixed heterozygosity (Weeden & Wendel 1990) points out that after the 

first generation, the alleles segregate and can reflect the pattern of either of the 

parents. Therefore the allele patterns found in P. turneri with PGM-1 may be due 

to either divergence or hybridisation, as the one allele found in all accessions of P. 

turneri was also found to be a common allele in P. divaricatum and P. colensoi. 

Additionally, because only one loci was polymorphic there is little basis to make 

inferences in the origin of P. turneri. 

 

In this study, taxa were sampled from only one location where they occur in 

sympatry (as the second population sampled did not show any activity).In this 

population P. turneri shows no variation, while the other two taxa have 

individuals with either allele. The low diversity in P. turneri may be due to a 

population bottleneck in the evolutionary history of P. turneri, as found to be the 

case in the diploid hybrid Helianthus deserticola (Gross et al. 2003), or this could 

only be occurring at the one site at Ripia Valley where samples were taken. Other 

studies have also found putative hybrids to be monomorphic for loci while the 
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parental taxa are not e.g. (Rieseberg et al. 1990) found the hybrid Helianthus 

paradoxus to be monomorphic for ADH, 6PGD and PGI while the parental taxa 

contained heterozygotes. This species however has been shown to be a hybrid 

through sequencing of chloroplast DNA and nuclear ribosomal DNA (Rieseberg 

et al. 1990).  

 

 3.4.2 ISSR’s 

 

3.4.2.1 Sample representation 

Because the sampling within each population was very low in this study, bands 

which are considered to be unique to each taxon cannot be ruled out as bands 

potentially found in other taxa if the sampling scheme was larger. Further 

sampling could show that some of the bands which are considered ‘marker bands’ 

found only in P. turneri and one other taxon also occur in the other putative 

parent, which would reduce the number of bands shown to be ‘additive’ in P. 

turneri. This also could be the cause of some of the non-parental bands found in 

P. turneri. Sampling error and incompletely explored parental genomes can be the 

underlying cause of additive band patterns in putative hybrids (Neuffer & Jahncke 

1997).  

 

3.4.2.2 Shared ‘marker bands’ 

The number of bands shared between P. turneri and P. divaricatum, and P. 

turneri and P. colensoi implies an additive profile of banding patterns, as P. 

turneri shares four marker bands with P. colensoi (bands found in all accessions 

of P. colensoi and not found in P. divaricatum or P. cornifolium) and two marker 

bands with P. divaricatum (bands found in all accessions of P. divaricatum and 

not found in P. colensoi or P. divaricatum). This could indicate that these two 

taxa have hybridized to form P. turneri.  

 

 

 

3.4.2.3 UPGMA 

The UPGMA based on Nei’s (1978) genetic distance illustrates clearly that P. 

cornifolium is the most distant taxon from the other taxa. However, the node 

separating P. turneri from P. colensoi and P. divaricatum was an unexpected 



74 

 

result anomalous with ITS and cpDNA sequencing results, which suggest that P. 

turneri is more closely related to P. divaricatum than P. colensoi (see chapter 

two). This pattern reflects the fact that while a high number of bands are shared 

between P. divaricatum, P. colensoi and P. turneri, P. turneri has five unique 

taxon specific bands. The UPGMA also illustrates that the distance between P. 

cornifolium and the remaining taxa is great, with many unique bands found in P. 

cornifolium. This suggests that ISSR’s could be useful in clarifying relationships 

within the New Zealand Pittosporum.  

 

3.4.2.4 AMOVA 

Table 3.6 shows that there is a high percentage of variation between taxa and 

between P. cornifolium and the other taxa, with low variation within taxa.  A 

greater genetic distance between P. cornifolium and the other three species is 

expected as it is a distinct lineage (Chandler et al. 2007). There is also a greater 

difference between P. turneri and P. cornifolium than all other pairwise 

differences, this could suggest that P. turneri is more distantly related to P. 

cornifolium, however this needs to be further investigated. This more distant 

relationship to P. cornifolium probably also reflects a history of hybridisation 

because recombination has led to the distinct banding pattern found in P. turneri, 

with many taxon specific bands. The low variation found within taxa is a positive 

result, as this indicates that there is a low likelihood of finding more bands within 

taxa if the sampling was broader. 

 

3.4.2.5 Principle Components Analysis 

The PCA showed differentiation between species, with no overlap between taxa 

or outlying data to indicate any anomalous results. There was enough 

differentiation between taxa to distinguish them with seven loci. This is consistent 

with the findings of Wolfe (1998), who found that only one to three primers were 

needed to fingerprint each accession. This suggests that a low number of primers 

are needed to distinguish between taxa and to gain adequate resolution among 

closely related Pittosporum species. However a larger number of loci may be 

necessary to confirm with confidence whether there is an additive profile among 

hybridizing populations. Based on the number of unique bands scored in P. 

turneri we would expect P. turneri to appear outside the ranges of values for P. 
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divaricatum and P. colensoi. This illustrates the unusually high number of taxon 

specific bands in P. turneri relative to the number of additive bands found.  

 

3.4.3 EVIDENCE FOR HYBRIDISATION? 

The criteria used to support hybridization using ISSR’s is an additive profile of 

parental bands (Wolfe 1998). P. turneri shares two marker bands with P. 

divaricatum and four marker bands with P. colensoi. This is consistent with a 

hybrid origin of P. turneri. The extra ‘non-parental’ bands found in P. turneri 

could also be indicative of a hybrid origin, as they may be due to crossing-over 

events during meiosis, and mutation in the binding sites (Neuffer & Jahncke 

1997). Many studies have found a similar result, with many non-parental bands 

found in diploid hybrids e.g. (Godwin et al. 1997). This result could also be 

caused by problems with PCR amplification such as heteroduplex bands (non-

independent bands caused by degenerate repeats or multiple priming sites within a 

locus) (Wolfe & Liston 1998), sampling error, or incompletely sampled parental 

genomes (Neuffer & Jahncke 1997).  However the occurance of bands due to any 

artifacts caused by the PCR procedure should be no more common in interspecific 

hybrids than in any intraspecific progeny (Rieseberg 1998). As very few novel 

bands were found in P. divaricatum and P. colensoi, it is highly likely the extra 

bands found in P. turneri have a genetic basis.  

 

3.4.4 POTENTIAL FOR USE OF ISSR’S IN PITTOSPORUM 

This study provided adequate resolution between closely related taxa with a low 

number of loci and exhibited low variation within each population. This is 

important as any marker used to identify hybridisation depends on being able to 

distinguish parental taxa from one another (Wolfe & WJ 1995). Although the 

main concern with arbitrary markers such as ISSR’s is the assumption of 

homology (the assumption that bands shared indicate a common origin), this is 

less of a problem in closely related taxa (Wolfe & Liston 1998). This study shows 

that ISSR’s may be a valuable tool to study relationships at the species level in 

Pittosporum and resolve relationships between problematic taxa, as well as 

potentially an excellent tool to study hypotheses of hybridisation. 

 

3.4.5 FUTURE STUDIES 
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Amplified fragment length polymorphisms (AFLP’s) are a more accurate method 

than ISSR’s, and have been shown to a have greater level of reproducibility and 

information content than RAPD’s and ISSR’s (Mcgregor et al. 2000). However 

AFLP’s are also prone to the problem of the assumption of homology and they are 

a more expensive method, requiring two rounds of PCR amplification and the use 

of radio-active primers and acrylamide gels (Wolfe & Liston 1998). ISSR’s could 

be used to study the origin of P. turneri, employing a larger number of samples 

and larger number of primers, however it is recommended that other taxa than P. 

divaricatum and P. colensoi be included in the study as P. turneri may be derived 

from more than one hybridization event.  

 

3.5 CONCLUSIONS 

The results of this study support a hybrid origin of P. turneri as this species 

combines ISSR bands which are found exclusively in this species and P. 

divaricatum and other bands in this species and P. colensoi. P. turneri also has a 

number of non-parental bands consistent with a history of recombinational 

speciation. Allozymes did not provide any evidence for hybridisation as P. turneri 

did not exhibit additivity of bands, therefore the pattern of inheritance was 

consistent with either hybridisation or divergence. 
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CHAPTER FOUR 

 

MORPHOLOGY STUDY

 
 

 

4.1 INTRODUCTION 

Morphological studies are a useful tool where molecular methods do not resolve 

relationships between taxa because hybrids often show greater morphological 

variation than molecular variation (Gottlieb 1984). Hybridisation is inferred from  

the degree of morphological intermediacy between the putative parents over a 

large number and range of characters (Wilson, 1992), and this has been found to 

be true in many cases of suspected hybridisation which have combined 

morphological data with molecular data (Milne 1999). Pittosporum turneri 

appears morphologically intermediate between several of the closely related 

divaricating and large-leaved species of Pittosporum (Cooper, 1956), however the 

extent to which it is morphologically intermediate has never been investigated. 

This study uses the methods of Wilson (1992) to address the hypothesis that P. 

turneri is a hybrid derived from hybridisation between P. divaricatum and P. 

colensoi. 

 

4.2 METHODS 

A study of herbarium specimens throughout the geographical ranges of P. turneri, 

P. colensoi and P. divaricatum was conducted, as well as a morphological study 

of the three species at one site at Lochinvar station in the Ripia Valley, Central 

North Island where they occur in sympatry. This was done to measure variation 

over a large number of morphological characters between species and to identify 

whether P. turneri is intermediate in adult vegetative, floral and growth form 

characters. 29 character traits were observed for the herbarium study and 33 for 

the site study. A number of categorical characters were included in both studies if 

they could be shown to differ between species and were consistent between 

individuals of the same species. These characters were taken from Allan (1961) 

and Cooper (1956) for the herbarium study and confirmed with herbarium 

specimens (see appendix 7). 
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Figure 4.1. Ranges of P. divaricatum, P. colensoi and P. turneri in the North 

Island. Records of P. turneri (black dots) from the BIOWEB data base, 

Department of Conservation, Generalised distribution of P. divaricatum (yellow) 

and P. colensoi (green) in the North Island. P. colensoi occurs from 38° South 

while P. divaricatum is found “ throughout” the central North Island (Allan, 

1961).   

 

4.2.1 HERBARIUM STUDY 

Herbarium specimens used were from the University of Waikato Herbarium 

(WAIK), the Allan Herbarium at Landcare Research Lincoln (NZCHAR), and the 

National Forestry Herbarium at Scion Research (NZFRI). These specimens were 

selected to include the diversity of ecotypic variation from throughout their 

natural ranges (see appendix 7 for list of specimens). 22 adult P. divaricatum 

specimens were observed along with 27 adult P. colensoi and 15 adult P. turneri 

herbarium specimens. 27 characters were observed, including 11 categorical 

character traits which were scored and judged as to whether or not they were 

intermediate (see table 4.1). All characters taken from Allan (1961) and Cooper 

(1956) (Appendix 8) were verified using herbarium specimens except one 

character, seed number, as there was no overlap in the range stated by these 

authors. Information was taken from herbarium labels where possible (e.g. height 

and growth form) and measurements were made using a ruler and a 

stereomicroscope. Specimens which had good examples of floral and fruit 

characters were photographed. 
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Table 4.1. Characters observed in the herbarium and Ripia Valley studies. 
1. Leaf length (mm) 18.     Capsules (0) smooth (1)  

          weakly rugose (2) rugose 

2. Leaf width (mm) 19.     Stigma (0) glabrous (1) 

          Sparsely hairy (2)  densely 

          hairy 

3. Petiole length (mm) 20.     Capsules (0) glabrous (1)   

          sparsely hairy (2) densely hairy 

4. No. lateral veins 21.     Stems (0) glabrate (1) 

          ciliate (2) tomentose 

5. Petal length (mm) 22.     Leaf texture (0) coriacious (1) 

          submembranous (2)   

           membranous 

6. Petal width (mm) 23.     Leaves (0) glabrous (1) ciliate  

          (2) tomentose 

7. Sepal length (mm) 24.     Leaf apex (0) obtuse (1) sub- 

          acute (2) acute 

8. Sepal width (mm) 25.     Leaf arrangement (0) altermate   

          (1) both alternate and fascicled  

          (2) mainly fascicled 

9. Length of pedicle (mm) 26.    Venation (0) not netted (1)  

           netted over some of the leaf  

           surface (2) netted over the 

           whole leaf surface 

10. Length of anthers (male flowers) (mm)  27.    Sepal apex (0) obtuse (1) sub- 

           acute (2) acute 

11. Length of filament (male) (mm) 28.      Sepals (0) glabrous (1)  

            sparsely hairy (2) densely  

            hairy 

12. Length of carpel (female) (mm) 29.       Pedicels (0) glabrous (1)  

            Sparsely hairy (2) densely   

            hairy 

13. No. Flowers in inflorescences             Ripia valley study only: 

14. Length of stigma (mm) 30.       Basal diameter (cm) 

15. No. valves on capsules 31.       Height (m) 

16. Capsule diameter (mm) 32.       No. seeds per capsule 

      17. Capsule shape (0) ovoid (1) 

            subglobose (2) globose 

33.       Degree of leaf indentation 

 

4.2.2 RIPIA VALLEY SITE STUDY 

Two visits were made to the Ripia Valley site in November and December 2008 

(GPS reference: E2800102, N6240083). A wider variety of measurements were 

taken, including basal diameter and height, and some floral characters which were 

difficult to determine on pressed herbarium specimens (e.g. anther length, 

filament length, and carpel length). A branch about 50cm long was selected which 

had flowers and/or capsules present. This was done for tall trees by using a long 

handled (approximately four metre, extendable) pair of secateurs. Ten adult P. 
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divaricatum adult plants were found at this location, and 13 P. turneri and 13 P. 

colensoi flowering adults were included in the study. 

 

 

Figure 4.2. Study site at Ripia Valley, with Pittosporum turneri adult in the 

foreground.  

 

4.2.3 DATA ANALYSIS 

Box-plots were produced to show the range, upper and lower quartiles and 

extremes for each variable. This was done to compare the ranges of each character 

between species and identify outliers which may dramatically affect results. 

Graphical representation of the continuous data was produced using scattergrams 

to illustrate diagrammatically any patterns of intermediacy for characters which 

had a significant difference between two or more species. For multivariate 

analyses, the character count procedure developed by (Wilson 1992) was used to 

determine the number of continuous characters for which P. turneri is 

intermediate to the other taxa and whether this number is significantly greater than 

would be expected for a divergent species. A Tukey‟s HSD test was used for 

pairwise comparisons of means to determine whether characters successfully 

distinguished between the putative parents and whether the measurements for P. 

turneri were statistically significantly different from P. divaricatum or P. 

colensoi. This is a conservative test which reduces the chance of type 1 Error (the 

chance of finding differences when there are none). A traditional Andersonian 

hybrid index was calculated for P. turneri individuals for the Ripia Valley data 
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using the method of (Anderson 1949), with a total of eight characters of which 

there was no missing data. A Principle Component analyses (PCA) was conducted 

using Statistica 8.0 (Statsoft Inc, 2008), to examine patterns within the data. PCA 

is used to compare data in multivariate space. This is done by converting data into 

“eigenvalues”, a method which allows the comparison of any number of variables 

on a common scale (Shaw 2003), which helps to identify any outlying or 

anomalous results, and can also be used to identify how many characters are 

needed to explain the total variation found. This was performed using a 

correlation matrix of Pearson‟s product moment correlation coefficients.  

 

4.3 RESULTS 

 

4.3.1 HERBARIUM STUDY 

 

4.3.1.1 Sample representation  

Many data values were missing for a number of variables (see Table 4.1) as 

individuals usually had either flowers or fruit, and this problem is compounded by 

the overlap in ranges for some characters. Several characters could not be 

confirmed using herbarium specimens or showed no identifiable difference 

between species such as those characters associated with the degree of hairiness 

present on floral parts and leaf shape, and the results for these characters were 

then disregarded and not used for further analysis. Sepal width was not easily 

measured and was replaced with sepal shape (from Allan, (1961 and Cooper, 

(1956)). The range of characters was therefore reduced from 27 to 20 (including 

both continuous and categorical characters). Table 4.2 shows the number of 

individuals contributing to the means shown in table 4.3. 

 

 

 

Table 4.2. Number of individuals observed for each character in the herbarium 

study. 
 

P. colensoi P. turneri  P. divaricatum 

Length of longest leaf (mm) 23 14 23 
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Width of longest leaf (mm) 23 14 18 

Petiole length of longest leaf (mm) 10 10 10 

Petal length (mm) 7 7 6 

No. flowers per inflorescence 9 8 7 

Sepal length (mm) 3 6 5 

Pedicle length of capsules (mm) 8 5 3 

Seed length (mm) 16 4 4 

Capsule thickness (mm) 10 5 4 

 

4.3.1.2 Data summary 

Figure 4.3 shows that there are a number of outliers in the data and that the 

range varies dramatically between species for many characters.  Maximum 

and minimum values for some characters lie close to the ranges of other 

species. This may reflect the nature of Pittosporum species with many 

overlapping character states (see appendix 7). P. colensoi contains values 

which are outliers for leaf length, seed length, and capsule pedicle length. P. 

turneri contains outliers for leaf length, leaf width, sepal length and pedicle 

length, and P. divaricatum has no outliers. 

 

 

 

 

 

 

P. div aricatum P. turneri P. colensoi
-20

0

20

40

60

80

100

120

140

160

180

P. divaricatum P. turneri P. colensoi
-5

0

5

10

15

20

25

30

35

40

(1)  Length of longest leaf (mm)          (2) Width of longest leaf (mm) 



83 

 

P. divaricatum P. turneri P. colensoi
0

2

4

6

8

10

12

14

  P. divaricatum P. turneri P. colensoi
1

2

3

4

5

6

7

8

9

10

 

(3) Petiole length                       (4) Petal length (mm) 

P. divaricatum P. turneri P. colensoi
0

1

2

3

4

5

6

7

8

P. divaricatum P. turneri P. colensoi
0

2

4

6

8

10

12

14

16

18

20

 

 (5) Sepal length (mm)                        (6) Capsule length (mm)        

 

P. divaricatum P. turneri P. colensoi
-2

0

2

4

6

8

10

12

14

16

18

20

22

P. divaricatum P. turneri P. colensoi
1.8

2.0

2.2

2.4

2.6

2.8

3.0

3.2

3.4

3.6

3.8

4.0

4.2

 
 

     (7) Length of capsule pedicle (mm)       (8) Length of seeds (mm) 

 

P. div aricatum P. turneri P. colensoi
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

 
 

                                         (9) Capsule thickness (mm) 

 



84 

 

Figure 4.3. Boxplots of herbarium data used in the character count of Wilson 

(1992) showing the median, upper and lower quartiles, extremes (excluding 

outliers), and outliers for each species.  

 

 

The scattergrams in Figure 4.3 show diagrammatically the pattern of intermediacy 

for two traits on the x and y axis, with P. turneri tends to cluster between the other 

two taxa. (A) shows that P. turneri clusters between P. divaricatum and P. 

colensoi for leaf length x width (B) shows a scattering of values for P. colensoi 

and P. turneri for petal length but is intermediate for sepal length (C) shows no 

consistent pattern of P. colensoi and P. turneri individuals for petal length x 

number flowers per inflorescence (D) Shows P. turneri and P. colensoi have 

similar pedicel length and (E) shows P. turneri is generally intermediate for 

capsule length x thickness.  
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Figure 4.4. Scattergrams of character traits for the herbarium study. 

 

 

 

4.3.1.3 Wilson (1992) character count 

P. turneri is intermediate in character means for 10 out of 11 quantitative 

characters. This is statistically significant (p<0.05) and supports a hypothesis of 

hybridisation (see Wilson, 1992). All characters which were not found to be 

statistically significant between pairwise comparisons of P. colensoi and P. 

divaricatum were excluded. However, only two characters were significantly 

different between P. turneri and both the other taxa, while three characters were 

significantly different from only P. colensoi and three were significantly different 

from only P. divaricatum. For two continuous characters P. turneri had an 

extreme value relative to the other two species, however neither of these results 

were significantly different from P. colensoi.  
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Table 4.3.  Wilson‟s (1992) character count. Means, standard deviations and 

results of Tukey‟s HSD test . * denotes data taken from Cooper (1956) and 

Allan (1961). 
 (1) P. 

divaricatum 

(2) P. 

turneri 

(3) P. 

colensoi 

Significantly 

different 

from: 

Means 

Intermediate? 

1. Length of longest 

leaf (mm) 
8.44 ± 2.17 28.66 

± 5.94 

77.17 ± 

23.94 

Both Y 

2.Width of longest leaf 

(mm) 
2.88 ± 1.06 6.26 ± 

1.87 

28.65 ± 

7.28 

3  Y 

3. Petiole length of 

longest leaf (mm) 
0.66 ± 0.26 1.38 ± 

0.53 

9.48 ± 

2.43 

3 Y 

4. Petal length (mm) 3.66 ± 1.21 6.14 ± 

1.68 

8.33 ± 

2.8 

Neither Y 

5. Sepal length (mm) 1.3 ± 0.44 3.5 ± 

0.77 

4.5 ± 

1.29 

1 Y 

6. Length of capsule 

(mm) 
4.93 ± 1.79 7.86 ± 

1.34 

11± 

2.13 

Both Y 

7. Length of capsule 

pedicel (mm)  
0.33 ± 0.57 11 ± 

5.19 

7.14 ± 

2.48 

1 N 

8. Length of seeds 

(mm) 
2.25 ± 0.5 2.85 ± 

0.3 

2.98 ± 

0.41 

Neither  Y 

9. Capsule thickness 

(mm) 
0.3 ± 0.14 0.56 ± 

0.19 

0.93 ± 

0.16 

3 Y 

10. Seeds per capsule*  2-6 3-10 5-31  Y 

11. Maximum height 

(cm)* 
200 900 1000  Y 

10:1 
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4.3.1.4 Categorical characters 

P. turneri has the same score as P. divaricatum for four out of the eight 

categorical characters including leaf arrangement, sepal fusion, sepal shape 

and capsule shape, two characters are intermediate, including venation and 

capsule number, and the degree of hairiness of capsules is more similar to P. 

colensoi. Figure 4.5 shows photos of capsule, floral and leaf characters of 

herbarium specimens. 

 

Table 4.4: Number of intermediate categorical characters of herbarium data 
 

 P. 

divaricatum 

P. 

turneri 

P. 

colensoi 

 

1. Leaf arrangement  (0) Alternate (1) both 

alternate and fascicled (2) mainly fascicled 

 

1 1 0 N 

2. Venation (0) not netted (1) netted over 

some of the leaf surface (2) netted over the 

whole leaf surface 

 

0 1 2 Y 

3. Sepal fusion  (0) not overlapping (1) 

slightly imbricate at base (2) imbricate at 

base 

 

1 1 2 N 

4. Sepal apex (0) obtuse (1) subacute (2) 

acute 

 

2 2 1 N 

5. Sepal shape (0) broad (1) narrow (2) very 

narrow/linear 
1 1  0 N 

6. Capsule shape (0) ovoid (1) subglobose 

(2) globose 

 

1 1 2 N 

7. Hairs on capsules (0) glabrous (1) sparse 

(2) tomentose/pilose 
1 2 2 N 

8. No. valves on capsules 2 2-3 3 Y  

 2:6 
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A    B    C 

 
D    E        F 

 
G     H       I 

 

Figure 4.5. Photographs of capsules, flowers and leaves of herbarium specimens. 

A, D and G: P. colensoi, B, E and H: P. turneri, C, F and I: P. divaricatum. 

 

 

4.3.1.5 Principle components analysis 

The PCA diagram (Figure 4.6) shows that the first axis sufficiently resolves 

species into groups (leaf length) and accounts for 97.32% of the total 

variation found between these three characters. There is strong clustering of 

individuals within species with P. turneri appearing intermediate for all 

individuals on the first axis, however P. turneri individuals appear closer to 

P. divaricatum. P. colensoi appears to be the most variable with the widest 

range of eigenvalues. 
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Figure 4.6. Principle components analysis of length of longest leaf, width of 

longest leaf and petiole length. 

 

 

Table 4.5. Eigenvalues of principle components analysis of herbarium data. 
Factor Eigenvalue % total 

variance 

Cumulative 

Eigenvalue 

Cumulative % 

1 2.849195 94.97318 2.849195 94.973 
2 0.096088 3.20293 2.945283 98.176 
3 0.054717 1.82389 3.000000 100.000 

 

 

 

4.3.2 RIPIA VALLEY STUDY 

A broader range of variables were observed for the Ripia Valley site study as 

flowers could be dissected and characters such as length of carpels, and anther and 

filament length could be easily measured. Additional characters which were also 

observed included hairiness of pedicels, carpels and sepals which were difficult to 

observe on herbarium specimens. 15 out of a total of 20 continuous characters 

were used for the character count procedure as some characters did not have 

significant differences between the putative parents, including number of flowers 

per imfloresence, carpel length, anther length and filament length and seed 

number could not be easily counted with many capsules no longer containing 
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seeds. For all measurements, between two and five measurements were taken for 

each character depending on whether there were enough flowers, capsules etc to 

do so. 

 

Table 4.6 Number of individuals measured in the Ripia Valley site study. 

 
 

P. colensoi P. divaricatum P. turneri 

Length of longest leaf (mm) 10 14 10 

Width of longest leaf (mm) 10 14 10 

Petiole length of longest leaf (mm) 10 14 9 

Petal Length (mm) 9 10 7 

Petal width (mm) 9 10 7 

Sepal length (mm) 8 10 6 

Sepal width (mm) 5 4 7 

Pedicle length (mm) 8 10 7 

Anther length of male flowers (mm) 5 5 5 

Filament length of male flowers (mm) 5 5 5 

Gynoecium length of female flowers 

(mm) 
3 5 3 

No. flowers per inflorescence  7 10 6 

Capsule length (mm) 3 10 3 

Capsule thickness (mm) 3 10 3 

Basal diameter (mm) 9 12 10 

Height (m) 7 9 10 

 

 

4.3.2.1 Data summary 

The box-plots in figure 4.7 show that for most characters, as per the herbarium 

study P. divaricatum exhibited the lowest range and few outliers (see figure 4.7). 

P. turneri has several individuals which have outlying values for leaf width, sepal 

width, degree of indentation, and petal length. P. colensoi has outlying values for 

width of longest leaf, length of longest leaf, pedicle length, petal length and 

flowers per inflorescence. 
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Figure 4.7. Boxplots of data from Ripia Valley which were used in the character 

count of Wilson (1992) showing median, upper and lower quartiles, outliers, 

maximum and minimum (excluding outliers) and extremes. 
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The scatterplots in Figure 4.8 shows that leaf length x leaf width (A) separates 

between taxa, and P. turneri is intermediate for both characters. For petal length x 

petal width (B) P. divaricatum is the most distinct with overlap between the other 

two taxa, This pattern is also true for basal diameter x height (E), for which P. 

turneri overlaps with P. colensoi, with a number of P. turneri individuals 

attaining the same height as P. colensoi. For capsule length x capsule thickness 

(C) P. turneri is more similar to P. colensoi while for sepal length x sepal width 

(D) P. turneri is more similar to P. divaricatum. P. turneri have intermediate 

basal diameter but are close in height to P. colensoi.  

 

4.3.2.2 Wilson’s (1992) character count 

A number of characters were rejected for use in the analysis as there were no 

significant pairwise differences between the putative parents including a number 

of floral characters (stigma and style length, anther and filament length). P. 

turneri is intermediate for 12 of 14 quantitative characters. This result is 

statistically significant (p=<0.05) (see Wilson, 1992) and supports a hypothesis of 

hybridisation. P. turneri differs significantly from P. divaricatum and P. colensoi 

only for four and five traits respectively showing no obvious resemblance to one 

species more than the other.  
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Figure 4.8. Scattergrams of character traits for the Ripia Valley study. 
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Table 4.7.:  Wilson‟s (1992) character count: Means, standard deviations and 

results of Tukey‟s HSD test  A * denotes data taken from Cooper (1956) and 

Allan (1961). All expressed in millimetres unless otherwise stated.  
 (1) P. 

divaricatum 

(2) P. 

turneri 

(3) P. 

colensoi 

Significantly 

different from 

Mean 

Intermediate? 

1. Length of longest 

leaf  
8.22 ± 1.28 25.33 

± 4.94 

28.09± 

18.53 

Both Y 

2. Width of longest leaf  3.17 ± 0.69 6.69 ± 

3.94 

22.30 ± 

5.36 

3 Y 

3. Petiole length of 

longest leaf  
1.02 ± 0.35 1.79 ± 

0.51 

7.85 ± 

2.07 

3 Y 

4. Degree of 

indentation of leaves 
0.54 ± 0.06 0.04 ± 

0.11 

0 ± 0 1 Y 

5. Length of filament 

(male)  
3.07 ± 0.1 4.73 ± 

0.76 

4.18 ± 

0.46 

1 N 

6. Pedicel length  1.46 ± 0.49 7.23 ± 

1.18 

3.27 ± 

1.71 

Both N 

7. Petal length  5.17 ± 0.30 7.29 ± 

1.61 

9.33 ± 

1.23 

3 Y 

8. Petal width  0.88 ± 0.07 1.89 ± 

0.49 

2.72 ± 

0.54 

3 Y 

9. Sepal length  2.27 ± 0.45 3.63 ± 

0.53 

4.84 ± 

0.76 

Both Y 

10. Sepal width  0.65 ± 0.05 0.95 ± 

0.07 

2.42 ± 

0.4 

3 Y 

11. Length of capsule  4.16 ± 0.29 6.75 ± 

0.77 

9.67 ± 

1.53 

Both Y 

12. Capsule thickness  0.11 ±  0.01 0.5 ± 

0.11 

0.6 ± 

0.17 

1 Y 

13. Basal diameter (cm) 1.83 ± 0.48 8.82 ± 

1.42 

16.33 ± 

4.78 

Both Y 

14. Height (m) 1.51 ± 0.42 7.81 ± 

1.07 

9.86 ± 

2.48 

Both Y 

12:2 

4.3.2.3 Categorical characters 

Table 3.4 shows that P. turneri is intermediate for three out of seven categorical 

characters, including number of valves on capsules, leaf arrangement and hairs on 

carpels. For two characters, sepal fusion and surface of capsules P. turneri is more 

similar to P. divaricatum, and for one, hairiness of pedicels P. turneri is more 

similar to P. colensoi. P. turneri is extreme for one character, having strictly 

terminal flowers while P. divaricatum has axillary and terminal flowers, while P. 

colensoi has  only axillary flowers. Figure 4.9 shows the narrow petals and sepals 

of P. divaricautm, with slightly overlapping sepals, glabrous carpels, short 

pedicels and small, slightly flattened capsules. Figure 4.10 illustrates the hairy 

carpels, narrow sepals, long pedicels, inflorescence type with large number of 

flowers per inflorescence, long pedicels and capsules of P. turneri. Figure 4.11 
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illustrates a P. colensoi flower sourced from Tongariro, and the difference in 

colour to that from Ripia Valley, hairy pedicels and carpels, overlapping, broad 

sepals and longer anthers.  

 

Table 4.8.  Number of intermediate categorical characters of Ripia Valley data. 
 P. divaricatum P. turneri P. colensoi  

1.  No. valves on capsules 2 2-3 3 Y 
2.  Leaf arrangement (0) 

alternate (1) both alternate and 

fascicled (3) mostly fascicled 

3 1 0 Y 

3.  Sepal fusion (0) not fused 

(1) slightly imbricate at base 

(2) imbricate at base 

0 0 1-2 N 

4.  Hairs on carpels (0) none 

(1) sparse (2) thick 
0 1-2 2 Y 

5.  Hairs on pedicels (0) none 

(1) sparse (2) dense 
0-1 2 2 N 

6.  Position of inflorescences 

(0) terminal only (1) terminal 

and axillary (2) axillary only 

1 0 2 N 

7.  Surface of mature capsules 

(0) smooth (1) weakly rugose 

(2) rugose 

1 1 1-2 N 

3:4 

 

 

 

 

 

 

                                                      

 

 

 

Figure 4.9. P. divaricatum photos. 1 to 6 clockwise.  (1) flower, (2) pedicels and 

sepals with few hairs, (3) developing fruit with glabrous gynoecium, (4) solitary 

flower (5)  glabrous gynoecium of male flower, and  (6) capsule.  
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Figure 4.10. P. turneri flowers. (1) female flower with densely hairy gynoecium 

and short stamens (2) male gynoecium and androecium with hairy carpel (3) ? (4) 

inflorescence with many flowers with long pedicels (5) flowers of female plant (6) 

capsules 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.11. P. colensoi photos. (1) Photo of P. colensoi flower from outside of 

Ripia Valley distinctly different in colour (2) female flower with hairy carpel and 

short stamens (3) hairy pedicel with persistent bracts (4) male gynoecium with 

slender carper and long filaments and anthers (5) broad sepals (6) capsule with 

many seeds.  
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4.3.2.4 Principal Components Analysis 

The PCA shows that individuals cluster together strongly within species with the 

first two factors explain 97.11% of the total variation. This shows that the 

additional characters do not add a lot of „noise‟ to the data and P. turneri clusters 

towards the centre.  A second PCA was conducted with floral characters only, 

with the first two axes accounting for 87.02% of variation, and a similar pattern. 

Data points for P. turneri and P. colensoi show more spread than P. divaricatum 

illustrating less variation within P. divaricatum. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.12. Principle component analysis of five characters including leaf 

length, leaf width, petiole length, basal diameter and height. 

 

 

Table 4.9. Eigenvalues of the five characters used in PCA 

Factor Eigenvalue % total 

variance 

Cumulative 

eigenvalue 

Cumulative % 

1 4.376829 87.53658 4.376829 87.5366 

2 0.478773 9.57546 4.855602 97.1120 

3 0.094957 1.89915 4.950559 99.0112 

4 0.038016 0.76031 4.988575 99.7715 

5 0.011425 0.22850 5.000000 100.0000 
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Figure 4.13. A Principle Components Analysis using five floral characters 

including petal length, petal width, sepal length, pedicle length and flowers per 

inflorescence. The first two Principle components account for 87.02% of the total 

variance. 

 

Table 4.10. Eigenvalues for characters used in PCA of floral characters  

Factor Eigenvalue  % Total 

variance 

Cumulative 

eigenvalue 

Cumulative % 

1 2.462138 49.24277 2.462138 49.2428 

2 1.889185 37.78369 4.351323 87.0265 

3 0.400381 8.00762 4.751704 95.0341 

4 0.187264 3.74527 4.938968 98.7794 

5 0.061032 1.22065 5.000000 100.0000 
 

 

4.3.2.5 Hybrid Index 

The  traditional hybrid index of Anderson (1949) shows an intermediate peak for 

P. turneri. This method measures intermediacy across all characters, showing that 

overall P. turneri is the intermediate taxa over all eight characters. However, this 

method does not measure character by character intermediacy, instead it measures 

overall intermediacy and any individual which is morphologically similar to one 

species in some characteristics and similar to the other in other characteristics can 

cluster towards 0.5 (Wilson, 1992).  The hybrid index shows that P. colensoi has 

P. Colensoi

P. Colensoi

P. Colensoi

P. Colensoi

P. Colensoi

P. ColensoiP. Colensoi

P. turneri

P. turneri

P. turneri
P. turneri

P. turneri

P. turneri

P. turneri

P. turneriP. turneri

P. turneri

P. divaricatum

P. divaricatum

P. divaricatum

P. divaricatum
P. divaricatum

-3 -2 -1 0 1 2 3

Factor 1: 49.24%

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

F
a

c
to

r 
2

: 
3

7
.7

8
%

P. Colensoi

P. Colensoi

P. Colensoi

P. Colensoi

P. Colensoi

P. ColensoiP. Colensoi

P. turneri

P. turneri

P. turneri
P. turneri

P. turneri

P. turneri

P. turneri

P. turneriP. turneri

P. turneri

P. divaricatum

P. divaricatum

P. divaricatum

P. divaricatum
P. divaricatum



100 

 

the largest morphological range of individuals and some individuals overall have 

a similar hybrid index to P. turneri individuals.  
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Figure 4.14. A hybrid index for eight characters including longest leaf length, 

longest leaf width, petiole length, sepal length, sepal width, pedicle length, basal 

diameter and height.  

 

 

4.4 DISCUSSION 

 

4.4.1 SAMPLE REPRESENTATION 

There was not enough data to provide statistically significant results for some 

characters due to the small sample sizes, due to the low number of individuals on 

both herbarium specimens and study site specimens with either flowers or 

capsules. This problem is also compounded by the overlapping of ranges and 

outlying values for characters between taxa. This may have been resolved by 

using a larger number of samples for the herbarium study along with more sub-

sampling within individuals to account for intra-individual variation and to reduce 

statistical error. However the lack of statistically significant differences between 

the putative parents for some characters (e.g. anther length and carpel length) may 

also reflect the lack of floral diversity and divergence within New Zealand 

Pittosporum (Cooper, 1956). 
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4.4.2 CHARACTER TRAIT REPRESENTATION 

This study uses a variety of floral and vegetative characters which can be used to 

distinguish the putative parents. However, not all of the characters measured were 

found to be informative as many characters did not differ significantly between 

species, including hairiness of young branchlets, petioles, leaf buds, sepals, and 

seed shape. There were also a number of traits for which phenotypic plasticity and 

variation within and between populations meant taxa could not be distinguished, 

for example the huge variety of leaf forms on P. divaricatum with leaves ranging 

from entire to crenate to pinnatifid. A larger data set may have provided more 

significant differences between means for the quantitative traits measured, 

however ranges of many character traits in both Allan (1961) and Cooper (1956) 

also suggest overlap between these species in most vegetative and floral character 

traits (see summary in appendix 7). The Principle Components Analyses (figures 

4.6, 4.12 and 4.13) show that few characters are needed to differentiate between 

taxa, with the majority of total variation accounted for in the first two axes. 

However when only using floral characters the data appears more „noisy‟ with the 

first two axes explaining less of the total variation and  all characters needed to 

explain the total variation (see figure 4.10 and 4.11), suggesting that floral 

characters do not distinguish taxa as easily as the vegetative characters used. This 

result is consistent with observations by Cooper (1956) who suggested that 

although Pittosporum are highly polymorphic between species in vegetative traits 

such as habit, leaf shape and form, floral characteristics are usually highly 

conserved.  

 

4.4.3 HERBARIUM STUDY 

Hybrids are recognised through morphological intermediacy between the putative 

parental taxa, however hybrids may not be perfectly intermediate or may be 

extremely variable  (Hardig 2000). The character count of Wilson (1992) is used 

to determine the proportion of character traits for which a putative hybrid is 

intermediate to the putative parents. The assumption of this technique is that while 

it is reasonable to assume that any species which has evolved through divergent 

evolution may be intermediate for any one trait, it is highly unlikely that divergent 

species would show morphological intermediacy for a large number of traits 

(Hardig 2000). The character count procedure produced a significant result for the 
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herbarium data for a wide range of characters, indicating that P. turneri is 

morphologically intermediate to P. colensoi and P. divaricatum throughout the 

ranges of these species, which suggests that P. turneri is a species of a hybrid 

origin. P. turneri has extreme values for two character traits, length of pedicle and 

number of flowers per inflorescence.  Traits which are extreme are also expected 

to occur in hybrids. This often occurs directly due to transgressive segregation 

during hybridisation, which can affect the ecological tolerance of hybrids, and 

may be important in allowing the hybrid to occupy a niche which is different to 

that of either parent (Rieseberg 1997). Greater than 30% of characters can be 

found to be extreme in later generation hybrids (Rieseberg 1993).  

 

4.4.4 RIPIA VALLEY SITE STUDY 

The level of intermediacy of P. turneri at the Ripia Valley site shows a 

statistically significant result, with 12 out of 14 characters intermediate, similar to 

the findings of the herbarium study. This result is also consistent with a hybrid 

origin of P. turneri. Means and variation within characters that were measured 

were similar within the Ripia Valley populations to the results from the study of 

herbarium specimens. Further investigation would be needed to determine 

whether any individuals at this site are backcrossed with either of the putative 

parents, explicitly comparing genetic variation between P. turneri populations and 

populations of the putative parents where they do and do not occur in sympatry. 

As for the herbarium study there were some character traits for which P. turneri is 

extreme, including filament length, length of pedicle and position of 

inflorescences.  

 

4.4.5 EVIDENCE FOR HYBRIDISATION IN PITTOSPORUM TURNERI 

There are important considerations to make when inferring the evolutionary 

histories of species based on morphological studies. Some authors have entirely 

rejected the use of morphological characters because morphological intermediacy 

may not always be the result of hybridisation. The genetic basis for morphological 

traits is unknown, and has a non-inheritable component (Yüzbaşioğlu 2008), 

therefore all morphological variation may not be directly correlated to species 

relationships. Species which appear intermediate could be the result of convergent 

evolution, having been exposed to the same selection pressures (Rieseberg 1993).  

Morphological intermediacy could also be the result of the putative hybrid 
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showing plesiomorphy (the retention of ancestral characteristics), where the two 

putative parents are both derived from the putative hybrid (Dobzhansky 1941). 

Another problem with morphological studies is that later generation hybrids may 

deviate from the expected pattern of morphological intermediacy (Rieseberg 

1993), reducing our ability to detect them. However a large number of studies 

have combined morphological markers with molecular methods and found that 

taxa identified as hybrids through molecular markers also show a distinct pattern 

of morphological intermediacy, and this has been found in studies of both 

polyploid and homoploid hybrids e.g.  (Tho´ rsson 1998), (Milne 1999), (Bateman 

2004), along with studies which also employ chromosome morphology e.g.  

(Bartoli 1998). P. turneri however also appears intermediate between that of the 

divaricating species of Pittosporum and the large-leaved species of the genus for 

capsule valve number, combining a character which is diagnostic of the 

divaricating species of Pittosporum (2-valved capsules) with a feature diagnostic 

of the large-leaved species (3-valved capsules) (Laing 1935). It was observed that 

at the Ripia Valley site study and with herbarium specimens, most P. turneri 

individuals had both 2-valved and 3-valved capsules. However because P. turneri 

also appears intermediate between other divaricating taxa and only one taxa was 

considered as the putative large leaved adult, there may be other taxa for which P. 

turneri exhibits overall intermediacy, including species which are now extinct. 

Therefore this study must be backed up by molecular work or other forms of 

evidence that P. turneri is derived from these two taxa. 

 

4.5 CONCLUSION 

This research supports the hypothesis of Godley (1985) that P. turneri is derived 

from hybridisation between a divaricating shrub and a non-divaricating tree, and 

that the putative parents are P. divaricatum and P. colensoi. However, this finding 

of morphological intermediacy must be further supported by molecular evidence 

as morphological intermediacy on its own does not provide proof of a hybrid 

origin.  
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CHAPTER FIVE 

CROSS-POLLINATION 

EXPERIMENT
 

 

5.1 INTRODUCTION 

Cross-pollination experiments can be used as evidence to identify hybrid species 

by demonstrating whether hybridisation between putative parents is possible in 

the wild. For example, a study by Houliston (2008) found that artificial crosses of 

Phormium species were able to produce viable, filled seed, confirming a lack of 

any intrinsic barriers to cross-fertilization. If cross-pollination results in the 

production of seed, morphological comparisons can be made between the 

“synthesized” hybrid and the putative natural hybrid (Godley 1985). This study 

investigates whether cross-pollination between Pittosporum colensoi and 

Pittosporum divaricatum is possible in the wild and aims to produce seedlings 

which can be examined to compare morphological similarities with the putative 

hybrid of these two species, P. turneri.  

 

5.2 METHODS 

Pittosporum divaricatum specimens were located at the Ripia Valley, Lochinver 

Station in November 2007 (GPS location: E2800102, N6240083). Ten unopened 

flowers on two P. divaricatum female plants were covered in cloth bags made of 

fine mesh to exclude pollinators. Flowers were not emasculated to reduce the 

chance of cross-pollination being unsuccessful as plants had very few, solitary 

flowers which were easily damaged. The site was visited each week and when 

flowers opened they were hand-pollinated with pollen of P. colensoi from a 

nearby location at Lochinver Station by brushing the stigma with the anther and 

checking using a hand lens that pollen grains had contacted the stigma. Sites were 

re-visited weekly for six weeks from late October through to early December 

2007 to determine flowering times for P. turneri, P. divaricatum and P. colensoi, 

and to determine whether the flowering period of these species overlaps. This was 

done by examining 13 P. turneri, 13 P. divaricatum plants (the entire adult 

population) and 12 P. colensoi plants, and any plants which had one or more open 
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flowers visible was considered to be flowering. Half of the seeds collected from 

the cross-pollination experiment were sown into a mixture of 75% seed-raising 

mix and 25% pumice, and kept in shade-house conditions with a sheet of glass 

covering seed trays to regulate moisture over the winter period. The remaining 

half were left in damp sphagnum moss in cold storage (4 degrees) for 6 weeks 

then sown. 

 

 

Figure 5.1. A female P. divaricatum with pollinator exclusion bags. 

 

Additionally, 80 P. divaricatum and P. turneri seeds were collected to attempt to 

germinate seedlings from the same location and compare to any hybrid seedlings 

produced. They were sown in two batches of 40 seeds and treated exactly as for 

the hybrid seed, with one batch sown immediately and one batch left in sphagnum 

moss for six weeks. 

 

5.3 RESULTS 

 

Only four capsules were produced from cross-pollination because half of the 

cross-pollination experiment was lost with bags having apparently been taken by 

deer. Of the four capsules, 11 seeds were sown, of which only four appeared 

viable (see Figure 5.2B), as the other seeds were shrivelled and grain-like. All of 

the capsules were unusually flattened and of irregular shape as they had no or few 

viable seeds. However, in February 2008 ten months after sowing no hybrid seeds 

had germinated. Sixteen P. turneri seeds sown in sphagnum moss had germinated 

but no P. divaricatum seeds had germinated. 
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A               B 

Figure 5.2 A: Flattened, heart-shaped capsules collected from cross-pollination of 

P. divaricatum female plants. B: Photo of the four seeds from one capsule which 

appeared viable. 

 

 

Figure 5.3. P. turneri seedling approximately two weeks after germination. 
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Figure 5.4. Overlap of flowering times from the last week of October-to the 

second week of December 2007  

 

The trend in flowering period for each species for the 2007 flowering season 

(Figure 5.4) shows that all species overlap in flowering time and peak within a 

few weeks of each other. All of the P. turneri individuals were still flowering at 

the end of the six week period so it was not determined when flowering began to 

decline for this species, however the trend shows that peak flowering is later for P. 

turneri than the other two species and the proportion of individuals flowering 

increases more suddenly with all individuals beginning to flower in the same 

week. 

 

5.4 DISCUSSION 

 

5.4.1 REPRODUCTIVE BARRIERS TO CROSS-POLLINATION 

In Pittosporum pollination is considered to be unspecialized (Webb 1999) and 

there are many conserved floral characters (Godley 1979), which suggests that 

cross-pollination may occur between closely related species if there are no 

intrinsic barriers to hybridisation. As no hybrid seedlings were produced in this 

study, the results are inconclusive in determining whether P. colensoi and P. 

divaricatum are inter-fertile. Only four seeds produced out of a total of four 

capsules collected appeared to be viable, providing a very low sample size but 
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indicating that cross-pollination may be possible albeit probably infrequent in the 

wild. There could also be many reasons why the seeds did not germinate, such as 

problems to do with glasshouse conditions or seed dormancy. However, 

pollination may also have occurred before the flowers were enclosed, or self-

fertilization could have occurred, and there is no way of confirming whether the 

hand-pollination was successful unless the seeds germinate.  

 

5.4.2 OVERLAP IN FLOWERING PERIOD 

 P. colensoi starts to flower before P. divaricatum which suggests that if P. 

colensoi and P. divaricatum are able to hybridise P. divaricatum is more likely to 

be the maternal parent because most female P. colensoi flowers will be fertilised 

by the time P. divaricatum starts to flower and this is consistent with the findings 

of sequencing of the maternally inherited trnT-trnL region of chlorolplast DNA 

(see Chapter Two), as P. turneri has the same sequence as P. divaricatum. 

However, all taxa overlap in flowering time, suggesting that if P. turneri is a 

hybrid between P. colensoi and P. divaricatum introgression may have occurred 

or may still still be occuring at this site. This may also be the case between P. 

turneri and P. divaricatum, as hybrids between these taxa have reported on the 

basis of morphological intermediacy (Ecroyd 1994).  

 

5.4.3 FUTURE DIRECTIONS 

Godley (1985) stressed the importance of long-term experiments where hybrids 

are observed from seedling stage through to maturity to identify whether the 

pattern of inheritance of morphological traits changes during ontogeny. Hybrid 

individuals between known parental species are also useful because they can be 

studied using molecular methods which can aid in determining how other hybrids 

can be recognised. Future studies could use broader-scale, statistically designed 

experiments, with some flowers enclosed without being cross-pollinated to 

determine whether selfing occurs. The level of inter-fertility between these species 

could then be quantified as evidence for or against the ability of these species to 

cross and produce hybrid offspring.  
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3.5 CONCLUSION 

This study shows that flowering time overlaps where P. divaricatum, P. colensoi 

and P. turneri occur in sympatry, indicating that there are unlikely to be any 

external barriers which could prevent cross-fertilization. However no seeds from 

crosses between these species germinated, therefore we cannot draw any 

conclusions about the origin of P. turneri from this aspect of the study. 
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CHAPTER SIX 

 

CONCLUSION 
 

 

 
 6.1 THE ORIGIN OF PITTOSPORUM TURNERI 

The criteria used to support a hybrid origin of a species is an additive profile of 

parental nuclear markers and the organelle genome of one of one of the putative 

parental taxa (Wolfe 1998). This study demonstrates that P. turneri has an 

identical sequence to P. divaricatum for the trnT-trnL region of chloroplast DNA, 

indicating that the maternal parent of P. turneri is likely to be P. divaricatum. P. 

turneri was not well resolved in its placement within the New Zealand 

Pittosporum based on analyses of the nuclear ITS region, however P. turneri  

exhibits a unique ISSR profile of bands, combining the bands of P. divaricatum 

and P. colensoi. This suggests that P. turneri may be derived from hybridisation 

between these two species. This relationship however, needs to be confirmed by 

sampling these taxa more broadly with a larger number of primers, as there are 

inherent problems and limitations in this technique. Morphological analyses 

further support a hybrid origin of P. turneri, as this species combines a large 

proportion of morphological traits from both taxa, including leaf, floral, capsule 

and growth form characteristics. The use of allozymes and the cross-pollination 

experiment however did not provide any evidence for or against a hybrid origin, 

as too few allozyme loci were resolved, and no hybrid progeny was produced. 

Analysis of the ITS region using two P. turneri individuals from different 

populations exhibited variation in sequence. This illustrates that population level 

genetic variation is an important consideration in inferring relationships. 

 

6.2 GODLEY’S HYPOTHESIS 

This study suggests that species with a divaricating juvenile form and a non-

divaricicating, arborescent form may be descended from hybridisation between a 

divaricating shrub and a non divaricating tree. In most cases this cannot be 

proven, as the parental taxa are likely to be extinct. However, the results of this 

study have implications on the driving forces of evolution which have led to the 

heteroblastic form, indicating that it may be due to hybridisation and the 
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associated rapid colonisation of new habitats, as a result of rapid climate change 

or a dynamic landscape.  

 

6.3 RELATIONSHIPS WITHIN THE NEW ZEALAND PITTOSPORUM 

The use of the trnT-trnL region of chloroplast DNA improves resolution of some 

closely related taxa of New Zealand Pittosporum. This study supports several 

clades not resolved using phylogenetic analysis of the ITS region alone, including 

a clade of P. anomalum, P. patulum and P. virgatum, and a clade of P. crassifolim 

and P. huttonianum. Several taxa are implicated as having been involved in 

introgression during their evolutionary history, with different placement between 

trees based on the trnT-trnL and ITS regions. These include P. eugenoides, P. 

umbellatum and P. dallii. The closely related species of Pittosporum provide an 

opportunity to study the process of speciation in New Zealand after recent 

colonization. Future studies should focus on the unresolved taxa which have 

conflicting signals, taking into account the variation which occurs within 

populations. This may also shed light on the population level processes which 

have led to speciation in this group. Potentially the greater understanding of the 

relationships between closely related species in Pittosporum can lead to a greater 

understanding of the processes that have shaped the New Zealand flora. 
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APPENDICES
 

 

APPENDIX 1: DNA Isolation (Ray Littler and Dick Wilkins, University of 

Waikato) 

Homogenisation buffer: 

 EDTA Ethylenediaminetetraacetic acid   20mM 

 CTAB Hexadecyltrimethylammonium bromide  2 % 

 PVP-40 Polyinvylpyrrolidone MW 40,000   w/v 

 DIECA Diethyldithiocarbamic acid    4mM 

 Tris- HCl (pH 8)      100mM 

 NaCl        1.42M 

 

Other Chemicals needed for procedure: 

 2-mercaptoethanol (3.49ul per reaction) 

 RNase A (10mg/ml) 

 Chloroform: Isoamyl alcohol (24:1) 

 Isopropanol 

 100% ethanol 

 70% ethanol 

 TE buffer 

 

Preparation: 

 Label and U.V 2x 1.5ml Microcentrifuge tubes per sample 

 Collect ice and Liquid Nitrogen  

 Collect Mortar and Pestles (one per sample) 

 Add 500ul (X no. of samples) of Homogenisation Buffer to a15ml Conical 

tube,  Then add 3.49ul of 2-mercaptoethanol (X no. of samples) to the 

conical tube and Invert to mix 

 Aliquot 500ul of H. Buffer +  2-mercaptoethanol mix into the first set of 

U.Ved microcentrifuge tubes and sit on ice.  

 

1:  Weigh out about 0.7g (this varies with species) of frozen leaf material per 

sample then grind to a fine powder using Liquid Nitrogen.  Scrape powder 

into microcentrifuge tube on ice Mix thoroughly by flicking tube (the buffer 

and leaf material should make a thick solution), then return to ice until all 

samples have been ground.   
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2:  Vortex samples at high speed then incubate in the Thermomixer at 60C for 

10-15 minutes (more for fibrous leaves) 

3:  Add 500ul of Chloroform: Isoamyl alcohol (24:1), cap tube and mix 

vigorously using Vortex at high speed 

4:  Centrifuge at Max speed for 10 minutes – you should now have two distinct 

layers in the tube with an interface between them that may look like skin.  The 

DNA is in the top (Aqueous) layer, Debris type plant material in the interface 

and proteins etc in the lower (Chloroform) layer 

5:  Recover DNA by gently sucking off the top layer and transferring it to a fresh 

1.5ml microcentrifuge tube – Try to recover as much of the top layer without 

sucking up any of the interface or lower layer (NOTE: if supernatant appears 

cloudy or had debris left in it REPEAT steps 3 – 5) 

6:  Add equal volume of Isopropanol and invert to mix, then sit samples for 10 

minutes 

7:  Centrifuge at maximum speed for 10 minutes 

8:  Locate the fine whitish pellet near the bottom of the tube, then use a fine tip 

pipette to remove all supernatant without disturbing pellet (which contains the 

DNA!) 

9:  Add 500ul of 100% ethanol, centrifuge at maximum speed for 1 minute and 

again locate the pellet and remove the supernatant as above in 8 

10: Add 500ul of 70% ethanol to samples, centrifuge at maximum speed for 1 

minute – again locate pellet and remove supernatant as in 8 – Re-spin at 

maximum briefly to bring liquid from sides down – remove excess liquid 

without disturbing pellet 

11: Sit on bench for 5 mins to dry off any ethanol.  Then add 50ul of TE buffer – 

Shake tube in thermomixer at 37 C for 10-20 minutes to resuspend DNA. 
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APPENDIX 2: Aligned data matrix for the trnT-trnL region  
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APPENDIX 3: Aligned matrix of the ITS region 
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APPENDIX 4: Stain and buffer combinations trialled for allozymes. Question 

marks show that bands were faint but appeared polymorphic. 

Stain TC8 System 6 MC HC System  8 Polymorphic? 

MDH  no yes   no 

ADH     yes yes 

PGM    yes  no 

IDH    no yes no 

PGI     yes yes 

LAP       

6PGD yes no no no no yes 

ALD     yes no 

G6PDH   no  no yes? 

ME  yes  no no no 

SKDH     yes yes? 

HK y/n    no yes? 

EST (FE)     no  

DIA     no  
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APPENDIX 5 : Allozyme data matrix. 01 represents an individual homozygous 

for allele 1, 02 represents an individual homozygous for allele 2, 12 represents a 

heterozygous individual (prepared for analyses using TFPGA). 

P. divaricatum 1     01,01,01 

P. divaricatum 2     02,01,01 

P. divaricatum 3     02,01,01 

P. divaricatum 4     01,01,01 

P. divaricatum 5     01,01,01 

P. turneri 1             01,01,01 

P. turneri 2             01,01,01 

P. turneri 3             01,01,01 

P. turneri 4             01,01,01 

P. colensoi 1           12,01,01 

P. colensoi 2           01,01,01 

P. colensoi 3           01,01,01 

P. colensoi 4           02,01,01 

P. colensoi 5           01,01,01 

P. colensoi 6           01,01,01 

P. colensoi 7           01,01,01 

 

APPENDIX SIX: ISSR data matrix. Band absent = 0, band present = 1. 

P. cornifoliim          111011110010100110110001101100010010100000 

P.divaricatum 1       011001001110001110010011011110101110010100 

P. divaricatum 2      011101001110001110010111011110101110010100 

P. divaricatum 3      011001001110001111010011011110101110000100 

P.   turneri 1            011101101011011110011011111111101110011111 

P.  turneri 2             011101101011011110011011111111101110011111 

P.   turneri 3            011101101011011110011011111111101111011111 

P. colensoi 1            011011000011001110010011111110101110001001 

P. colensoi 2            011011000011001110010011111110101110011001 

P. colensoi 3            0110110000111???????????????1110101110001001
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APPENDIX 7: Herbarium specimens used in the morphology study. 

Specimens are from the Allan Herbarium at Landcare Research (NZCHAR), New 

Zealand Forest Research Institute (NZFRI) or University of Waikato Herbarium 

(WAIK). 

Accession number Taxa Location 

NZCHAR649433 P. divaricatum Ripia valley, N.I 

NZCHAR 231693 P. divaricatum North Canterbury, S.I 

NZCHAR 254997 P. divaricatum Hooker Valley, S.I 

NZCHAR 537259 P. divaricatum Marlborough, S.I 

          NZCHAR511862A P. divaricatum Canterbury, S.I 

NZCHAR 312083 P. divaricatum North-West Nelson,S.I 

NZCHAR 415966 P. divaricatum Nelson, S.I 

NZCHAR 221440 P. divaricatum Kaimanawa Forest, N.I 

NZCHAR 112704 P. divaricatum Tongariro National Park, N.I 

NZCHAR 469735 P. divaricatum Wairarapa, N.I 

NZCHAR 469445 P. divaricatum Ripia valley, N.I 

NZCHAR 420048 P. divaricatum Otago, S.I 

NZCHAR 568971 P. divaricatum Mt Algidus, S.I 

NZCHAR 467437 P. divaricatum Canterbury, S.I 

NZCHAR 112704 P. divaricatum               ? 

NZCHAR 244221 P. divaricatum               ? 

NZCHAR 467792 P. divaricatum North-West Nelson, S.I 

NZCHAR 519197 P. divaricatum Canterbury, S.I 

          NZCHAR511862B P. divaricatum Canterbury, S.I 

                    NZFRI17003 P. divaricatum Ripia valley, N.I 

NZCHAR 319061 P. divaricatum Canterbury,S.I 

NZCHAR 537252 P. colensoi Ohakune, N.I 

NZCHAR 535718 P. colensoi Bruce rd, Ohakune, N.I 

NZCHAR 537254 P. colensoi Ohakune, N.I 

NZCHAR 537253 P. colensoi Ohakune, N.I 

NZCHAR 247615 P. colensoi Fiordland, S.I 

NZCHAR 445818 P. colensoi Waitomo, Waikato, N.I 

NZCHAR 238650 P. colensoi Peketi forest, Northland, N.I 

NZCHAR 153065 P. colensoi Catlins Forest, Otago, S.I 

NZCHAR 505709 P. colensoi Lake Wakatipu, Otago, S.I 

NZCHAR 417329 P. colensoi South Otago, S.I 

NZCHAR 419184 P. colensoi Karamea bluffs, S.I 

NZCHAR 166793 P. colensoi Franz Joseph, Westland, S.I 

NZCHAR 296048 P. colensoi Waimarino, Waikato, N.I 

NZCHAR 192450 P. colensoi Wanganui river, N.I 

NZCHAR 296096 P. colensoi Auckland (cultivated), N.I 

NZCHAR 537251 P. colensoi Taupo, N.I 

NZCHAR 117284 P. colensoi Tongariro, N.I 

NZCHAR 206903 P. colensoi Rotorua, N.I 

NZCHAR 394772 P. colensoi Nelson, N.I 
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NZCHAR 218779 P. colensoi Southland, N.I 

NZCHAR 243555 P. colensoi Manapouri, Fiordland, S.I 

NZCHAR 537255 P. colensoi Esk, N.I 

NZCHAR 535687 P. colensoi Wairere Stream, Salmond Track, N.I 

NZCHAR 368554 P. colensoi Kererutahi, Opotiki, N.I 

NZCHAR 537250 P. colensoi Taupo, N.I 

NZCHAR 332093 P. colensoi Ohakune, N.I 

NZCHAR 329258 P. colensoi Bruce rd, Ohakune, N.I 

NZCHAR 326424 P. colensoi Ohakune, N.I 

                    WAIK19706 P. turneri  Waitihi saddle scenic Reserve, N.I 

                    WAIK19710 P. turneri  Waitihi saddle scenic Reserve, N.I 

                    WAIK12539 P. turneri  Whenuakura plains, Pureora, N.I 

                    WAIK21183 P. turneri  Ripia Valley, N.I 

                 WAIK14636B P. turneri  Pureora, N.I 

                    WAIK12840 P. turneri Kuratau, N.I 

                    NZFRI18575 P. turneri Ripia valley, N.I 

NZFRI17962 P. turneri Whenuakura plains, N.I 

NZFRI18884 P. turneri Kuratau river, N.I 

NZFRI117961 P. turneri Whenuakura plains, N.I 

NZFRI24470 P. turneri Pureora, Waimiha Stream, N.I 

NZFRI8249 P. turneri  Maraeroa Rd, Pureora, N.I 

NZFRI18576 P. turneri Ripia valley, N.I 

NZFRI18577 P. turneri   ? 
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APPENDIX 8: Morphological differences between P. colensoi, P. turneri and 

P. divaricatum. (From Allan (1961) and Cooper (1956). 

 P. colensoi P. turneri P. divaricatum P. rigidum 

Adult leaf 

length  

40-100 mm (Allan), 

39-122 mm (Cooper) 

30-50 mm 

(Allan), 10-40 

mm (Cooper) 

4-10 mm 

(Cooper) 

8-10 mm 

(Allan), 5-24 

mm (Cooper)  

 Adult leaf 

width 

 

20-50 mm (Allan), 11-

47 (Cooper) 

5-10 mm (Allan), 

6-12 mm 

(Cooper) 

2-7 mm (Cooper) 5-8 mm 

(Allan), 3-13 

mm (Cooper) 

Adult leaf shape Elliptic to lanceolate to 

obovate-oblong us. 

Acute (Allan), 

Lanceolate-oblong -  

obovate-oblong, acute 

to shorly acuminate 

(Cooper) 

Obovate-narrow 

obovate cuneately 

narrowed to 

slender petiole 

(Allan), obovate – 

oblacelolate, 

obtuse – acute at 

apex, attenuate at 

base (Cooper) 

Obovate- elliptic 

(Allan), linear-

oblanceolate to 

linear-oblong or 

ovate (Cooper) 

Elliptic-

obovate to 

broadly 

elliptic  

(Allan), 

elliptic-

oblong, occ 

oblanceolate – 

obovate, rarely 

lanceolate , 

obtuse – 

subacute at 

apex, obtuse at 

base (Cooper) 

 Adult leaf 

margin 

Flat (Allan), Entire, 

usually flat, (Cooper) 

Entire to 

irregularly 

toothed or 

pinnatifid (Allan), 

entire or 

obscurely crenate 

(Cooper) 

Dimorphic 

(a) entire to 

subentire 

(b) shallowl

y or 

deeply 

lobed or 

toothed 

(Allan) 

Entire to 

obscurely 

sinuate-

dentate 

(Allan), 

Entire, rarely 

toothed 

(Cooper) 

Juvenile leaf 

shape 
As adult Obovate to 

narrow-obovate to 

linear , entire to 

irregularly 

toothed or 

pinnatifid (Allan), 

orbicular, 

obovate, or linear, 

entire or variously 

lobed and parted 

(Cooper) 

Narrow-

lanceolate – 

obovate (Allan), 

Oblong, obovate 

to lanceolate or 

almost linear, 

margins with 1-

several lobes or 

teeth on either 

side, occasionally 

crenate  (Cooper) 

Entire-

irregularly 

lobed or rarely 

pinnatifid 

(Allan), 

obovate, 

oblanceolate, 

or elliptic-

oblong 

(Cooper) 

Petiole length 3-12mm (Cooper) 1-2 mm (Allan), 

0.5-2.5 mm 

(Cooper) 

1 mm (Cooper) 2 mm (Allan), 

1-3 mm 

(Cooper) 

Juvenile leaf 

length 

As adult (40-100) 2-15 mm 

(Cooper), 3-20  

mm (Allan) 

2 cm (Allan), 6-9 

mm (Cooper) 

5-13 mm 

(Cooper) 

Juvenile leaf 

width 
As adult (20-50) 2-5 mm (Allan), 

1-5 mm (Cooper) 

1-4 mm (Cooper) 3-10 mm 

(Cooper) 
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Leaf 

arrangement of 

adult  

Alternate (Allan) 

(Cooper) 

Alternate 

(Cooper) 

Alternate on 

young branchlets, 

later restricted to 

the tips of arrested 

branchlets 

(Cooper) 

Alternate 

fascicles on 

short arrested 

branchlets 

(Allan),  

Leaf texture of  

juvenile and 

adult 

Coriacious (Allan) Coriacious 

(Allan), 

tomentose when 

young, glabrate 

when older 

(Cooper) 

Submembrenous 

when juvenile, 

Coriacious as 

adult (Cooper) 

Coriacious 

(Allan) 

Hairs on leaves Tomentose when 

young, soon glabrate 

(Cooper) 

Tomentulose 

when young, soon 

glabrate (Cooper) 

Glabrous 

(Cooper) 

Glabrate 

(Cooper) 

Leaf colour 

above 

Dark green (Allan) Brownish green 

(Cooper) 

Green (Cooper) Dark green 

(Cooper) 

Secondary veins 

 

6-12 per side (Cooper) 

includes P. ten 

10-13 per side 

(Cooper) 

Obscure (Cooper) Usually 

obscure 

(Cooper) 

costa 

 

Sunken above, raised 

beneath (Cooper) 

Obscure above, 

raised beneath 

(Cooper) 

Immersed above, 

sunken beneath 

(Cooper) 

Raised or 

immersed 

above, raised 

beneath 

(Cooper) 

 

Pedical length Sessile or pedicels up 

to 1 cm (Cooper) 

1cm (Allan), 1-3 

mm (Cooper) 

Minute or sessile 

flowers (cooper) 

0.5-4 mm 

(Cooper) 

Petal colour Dark-very dark red 

(Allan) Dark purple, 

maroon, pink or white 

(Cooper) 

Light red (Allan) 

Pink or purple 

(Cooper) 

Very dark red 

(Allan) Purple 

(Cooper) 

Very dark red 

(Allan), 

“dingy purple” 

(Cooper) 

Petal length 8-16mm (Cooper) 6-9mm (Cooper) 4-6mm (Cooper) 8-12mm 

(Cooper) 

Position of 

flowers 

Axillary, solitary or 

occ. in few flowered  

cymes (Allan) 

Auxillary 1-3 solitary 

or fascicled, 

occasionally terminal 

(Cooper) 

Terminal, 4-10 

flowered (Allan), 

4-12 fascicled 

(Cooper) 

Terminal, on short 

arrested 

branchlets and 

subtended by 

fascicles of leaves 

or strictly 

terminal (Allan) 

solitary (Cooper) 

Axillary, 

solitary 

(Allan), 

terminal or 

Axillary, 

solitary 

(Cooper) 

Sepal length 3-7 mm (Cooper) 3.5-5 mm 

(Cooper) 

2 mm (Allan), 

1.5-2.5 mm 

(Cooper) 

3.5-6 mm 

(Cooper) 

Type of hairs on 

sepals 

Pubescent (Allan) Ciliolate, 

tomentose 

(Cooper) 

Ciliolate (Allan) Ciliolate 

(Allan), 

Sparsely 

ciliolate with 
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scattered hairs 

(Cooper) 

Sepal shape Broad-oblong (Allan), 

slightly imbricate at 

base, ovate – oblong, 

subacute – obtuse 

(Cooper) 

Slightly imbricate 

at base, 

lanceolate, acute 

to acuminate 

(Cooper) 

Lanceolate, acute 

(Cooper) 

Ovate, obtuse 

– acute 

(Allan), 

lanceolate-

oblong , not 

imbricate 

(Cooper) 

Style length 

(female) 

1.6-2 mm (Cooper) 2 mm (Cooper) 1-1.5 mm 2.5 mm 

(Cooper) 

Ovaries 

(female) 

4 mm (Cooper) 2.5-3.5 mm 

(Cooper) 

1-2.2 mm 

(Cooper) 

2-2.5 mm 

(Cooper) 

Stigma 

shape 

Capitate or truncate 

(Cooper) 

Weakly capitate– 

truncate (Cooper) 

Capitate-truncate 

(Cooper) 

Capitate-

truncate 

(Cooper) 

Stamen 

length 

(male) 

6-8mm (Cooper) 4-5.5 mm 

(cooper) 

1.5-2.6 mm 

(Cooper) 

4-6.5 mm 

(Cooper) 

Anther 

length 

(male) 

2-3 mm (Cooper) 1.5-2 mm 

(Cooper) 

0.5-1.4 mm 4.6-1.8 mm 

(Cooper) 

 

Capsules 

diameter 

12 mm (Allan) 7 mm (Allan), 5-

8mm (Cooper) 

5-8 mm (Allan), 

6mm (Cooper) 

8-10 mm 

(Cooper) 

Valve number 3, rarely 2 or 4 

(Cooper) 

2 (Allan) 2 rarely 

3 (Cooper) 

2 (Cooper) 2 (Cooper) 

Valve thickness/ 

shape 

1-1.5mm thick,  

coriaceous, convex in 

transcerse section with 

a placenta raised and 

fused at the base, 

bearing peg-like or 

flattened funicles from 

the base to above the 

middle (Cooper) 

Convex or 

sometimes sulcate 

in transverse 

section <1mm 

thick, coriacious, 

with a 

conspicuous 

placenta bearing 

several pairs of 

short stout 

funicles between 

the base and the 

middle (Cooper) 

<1mm thick, 

coriaceous with a 

slightly thickened 

placenta bearing 

1-2 pairs of peg-

like funicles near 

the middle 

(Cooper) 

Convex in 

transverse 

section, <1mm 

thick, 

coriacious 

(Cooper) 

Seeds 5-31 black, irregular 

(Cooper), 

3-10 (Cooper) 2-6 (Allan), 1-6 

(Cooper) 

3-9 (Cooper) 

Capsule shape Globose (Allan) Subglobose 

(Allan) 

Subcompressed 

(Allan) globose, 

apiculate 

(Cooper) 

Subglobose 

(Allan) (Cooper) 

Subcompressed-

ovoid (Allan) 

Subglobose, 

apiculate 

(Cooper) 

Type of hairs on 

capsules 

Tomentose, glabrate ? (Allan) ? Pilose when 

young (Allan), 

Tomentose, 

glabrate 
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(Cooper) (Cooper) glabrous (Cooper) (Cooper) 

Capsule texture Woody, thick, rugulose 

valves (Allan), weakly 

rugose (Cooper) 

Woody valves 

(Allan), slightly 

rugose (Cooper) 

Granulate (Allan), 

glabrous, weakly 

rugose (Cooper) 

Rugose 

(Cooper) 

 

Maximum 

height 

10 m (Allan) (Cooper) 9 m (Cooper) 2 m (Allan) 3 m (Allan) 

(Cooper) 

Branchlets Tomentose when 

young, glabrate 

(Cooper) 

Divaricating and 

interlacing 

branchlets 

(Allan),  

Glabrous (Allan) 

Branchlets 

divaricating, 

opposite or 

whorled at the 

nodes, stout often 

spinose at the tips, 

tomentulose when 

young, soon 

glabrate (Cooper) 

Stout, not or 

hardly 

divaricate, 

densely clad 

when young in 

ferruginous to 

pale hairs 

(Allan) 

Habitat Lowland to montane 

forest (Allan), higher 

elevations (Cooper) 

Streamsides and 

forest margins 

(Allan), forest 

margins above 

1000m sea level 

(Cooper) 

Upper montane 

forest to forest 

margins and 

subalpine scrub 

(Allan) 

Upper 

montane forest 

to subalpine 

scrub (Allan) 

Along 

mountain 

ranges 

between 650 

and 1400m 

(Cooper) 

Distribution N. S. St. From 38° 

southwards, occurs 

west of divide in S. 

(Allan), From the 

Waikato and Volcanic 

Plateau southwards 

(Cooper) 

N. Hauhungaroa 

range and 

Waimarino 

Plateau, 600-

1050m (Allan), 

Central Volcanic 

Platwau beteen 

Erua and 

Waimarino 

(Cooper) 

N. Mountains of 

volcanic plateau. 

S. “throughout” 

(Allan), N. 

Ruahine Range 

and Central 

Volcanic Plateau 

– Arthur’s Pass 

(Cooper)  

N. along main 

axis from lat. 

38° 

southwards. S. 

mountains of 

N.W. Nelson 

(Allan) From 

East Cape to 

Marlborough 

(Cooper) 

Flowering 

period 

11-12 (Allan) 10-12 (Allan), 11-

12 (Cooper) 

11 (Allan), 10-11 

(Cooper) 

10 (Allan), 11-

12 (Cooper) 

Fruiting period 1-4 (Allan) 1-? (Allan) 1 (Allan) 2 (Allan) 

 

 

 


