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Abstract Our approach for modelling interactive systems has been to develop mod-
els for the interface and interaction which are light-weight but with an underlying
formal semantics. Combined with traditional formal methods to describe functional
behaviour, this provides the ability to create a single formal model of interactive
systems and consider all parts (functionality, user interface and interaction) with the
same rigorous level of formality. The ability to convert the different models we use
from one notation to another has given us a set of models which describe an in-
teractive system (or parts of that system) at different levels of abstraction in ways
most suitable for the domain but which can be combined into a single model for
model-checking, theorem proving etc. There are, however, many benefits to using
the individual models for different purposes throughout the development process.
In this chapter we provide examples of this using the nuclear power plant control
system as an example.

1 Introduction

Safety-critical interactive systems are software or hardware devices (containing soft-
ware) operating in an environment where incorrect use or failure may lead to loss,
serious harm or death, for example banking systems, ATMs, medical devices, air-
craft cockpit software, nuclear power plant control systems, factory production cells
etc. Avoiding such errors and harm relies on the systems being developed using ro-
bust engineering techniques to ensure that they will behave correctly and also that
they can be used successfully.
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Developing suitable interfaces for safety-critical systems requires two things.
First, they must be usable in their environments by their users - i.e. they must be
developed using a sound user-centred design (UCD) process and following known
HCI principles. Secondly, we must be able to verify and validate the user interface
and interaction with the same rigour as the underlying functionality. While we can
(we hope) assume the former, the latter is harder, and requires us to develop suitable
techniques which not only support these requirements but which will also be useful
(and used) by the interface developers of such systems.

We have developed modelling techniques for the user interface (UI) and inter-
activity of a system which take as a starting point typical informal design artefacts
which are produced as part of a UCD process, e.g. prototypes (at any level of fi-
delity), scenarios, storyboards etc. In addition to the interface modelling techniques
we also have mechanisms for combining these models with more traditional func-
tional specifications (which deal with the requirements for the system behaviour) in
order to be able to reason about the system as a whole.

In the rest of this chapter we provide details of the models and notations we
use to describe the different parts of an interactive system. We also discuss how
these can be combined into a single model to give a single, formal ‘view’ of the
entire system. This cohesive model allows us to consider important properties of
the system (which generally involves proving safety properties and ensuring the
system as specified will behave in known, safe ways at all times) which encompasses
aspects of the UI and interaction as well as functional behaviour. At the same time,
however, the individual component models used to create this single model have
their own benefits. They give us the ability to consider different aspects of the system
(either specific parts or different groups of behaviours for example) using different
levels of abstraction or different modes of description to suit the domain. Essentially
they provide us with a set of options from which we can select the most appropriate
model for a given use. Because these component models are developed as part of
the design process and form part of the overall system model we essentially get this
‘for free’ (that is, without additional workload).

We use the nuclear power plant control system as an example to show how these
models can be used independently, as well as in combination, to consider different
properties of interest during a development process.

2 Related Work

In early years formal methods were developed as a way of specifying and reasoning
about the functionality of systems which did not have the sorts of rich graphical
user interfaces provided by today’s software. Some formal methods were used to
reason about interaction properties, e.g. (Jacob, 1982; Dix and Runciman, 1985),
but as user interfaces evolved and became more complex, and the importance of
their design became increasingly obvious, the disciplines of HCI and UCD evolved
to reflect this. However, these two strands of research - formal system develop-
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ment and UI design research - remained primarily separate and the approaches used
within them were also very different. On the one hand were formal languages and
notations based on mathematical principles used to formally reason about a system’s
behaviour via specification, proof, theorem-proving, model-checking etc., while on
the other were design processes targetted at usability based on psychological prin-
ciples and involving shared, informal design artefacts, understanding end-users and
their tasks, evaluation of options and usability etc.

This gap between the formal and informal has been discussed many times, no-
tably as far back as 1990 by Thimbleby (Thimbleby, 1990). Numerous approaches
have been taken over the years to try and reduce the gap between the two fields,
particularly as the need to reason about properties of UIs has become increasingly
necessary due to the prevalence of interactive systems in general and the increase in
safety-critical interactive systems in particular. We can generalise key works in this
area into the following categories:

• development of new formal methods specifically for UIs e.g. (Puerta and Eisen-
stein, 2002; Courtney, 2003; Limbourg et al, 2004)

• development of hybrid methods from existing formal methods and/or informal
design methods. e.g., (Duke and Harrison, 1995; Paternò et al, 1995)

• the use of existing formal methods to describe UIs and UI behaviour (Harrison
and Dix, 1990; Thimbleby, 2004)

• replacing existing human-centred techniques with formal model-based methods.
e.g. (Hussey et al, 2000; Paternò, 2001; Reichart et al, 2008)

These, and other similar works, constitute a concerted effort and a step forward in
bringing formal methods and UI design closer together. However, in many cases the
resulting methods, models and techniques continue to either retain the separation of
UI and functionality in all stages of the development process, or seek to integrate
them by creating new components within the models which combine elements of
both in a new way (Duke et al, 1994, 1999).

When we first began to consider the problem and investigate and develop mod-
elling techniques for interactive systems we had a number of criteria, including a
desire to model at the most natural level of granularity (describe the existing com-
ponents as they appear) as well as come up with an approach that could fit with both
formal and HCI methodologies. In contrast to other approaches our starting point
is that of design artefacts (of both interface and system) which may be developed
separately, and perhaps at different times, during the development lifecycle. Unlike
more recent work such as (Bolton and Bass, 2010) we do not include models of user
behaviour or consider the UI in terms of the tasks performed or user goals. Rather
we model at a higher level of abstraction which enables us to consider any available
behaviours of the system via the UI rather than constrain this to expected actions of
the user based on pre-defined goals.

So, just as the interfaces we design must be suitable for their systems and users,
the models we use to reason about these interactive systems must also be useable
and useful to their users (designers, formal practitioners etc.). Rather than having
an expectation that UI designers should throw away their usual, and necessarily
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informal, design processes in favour of a new formal approach, we are of the opinion
that these should be incorporated into our approach rather than be replaced by it.

We start with the assumption that traditional, informal user-centred design prac-
tice has been used, as usual, to produce many artefacts relating to the “look and
feel” of the system. These will include design ideations such as prototypes, scenar-
ios, story-boards etc. and will be the result of collaboration between designers and
end-users, as well as other stake-holders. Keeping this point in mind is very impor-
tant when it comes to understanding the modelling techniques that we discuss in this
chapter.

In the same way that we assume the interface has been developed using well-
known and appropriate design methodologies, we similarly assume that the design
of the functional behaviour of the system has likewise followed a rigorous develop-
ment process which leads to the development of formal artefacts such as a system
specification or some other formal model of the system’s behaviour. Given that we
are interested in safety-critical systems, where erroneous behaviour can lead to in-
jury or even death, this assumption seems a reasonable one.

In order to be able to reason about all parts of the system and not just the func-
tional behaviour, we need a way of considering the informal design artefacts with the
same level of formality as the functional specification. To do this we create formal
models of these design artefacts. By creating a formal representation of the informal
design artefacts (in essence creating a different abstraction of the UI which happens
to be in a formal notation) we gain the ability to combine the two representations
(system and UI) into another model which gives a single view of the system as a
whole. This then allows us to reason about the interactive system in a way which
captures all of the information (both UI and system) and perform activities such as
model-checking and theorem-proving to show that all parts of the system will have
the properties we desire (Bowen and Reeves, 2008, 2013).

We next give an overview of the different models used in our process and then
go on to provide examples of these in use for the nuclear power plant example.

3 Background

Our starting point for the modelling process is to consider the two main components
of the system (functionality and interactivity - which includes the interface) sepa-
rately. This separation of concerns is, in some sense, an artificial division. While it
is often the case that one group within a design team may focus on appearance and
look and feel of the interface while another focusses on core functionality we are
not aiming to reflect the divisions and complexities that exist within design groups.
Rather, the separation allows us to consider different parts of the system in differ-
ent, and appropriate, ways, and provides the basis for our use of different levels of
abstraction to describe different components within that system. Such separation is
a common approach taken in this type of modelling although it can be done at dif-
fering levels of granularity. For example in chap. 5 we see functional behaviours
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described as components which are then associated with related widgets and com-
posed using channels, whereas chap. 14 uses a layered approach where different
parts of the system and model are described in different layers.

We rely on a combination of existing languages and models to specify the func-
tionality. Typically, for us, this means creating a Z specification (ISO/IEC 13568,
2002; Henson et al, 2008) and/or µcharts (Reeve, 2005) to reason about functional
and reactive behaviours, although any similar state-based notation could be substi-
tuted for Z. The ProZ component of the ProB tool 1 is used for model-checking the
specification, or we can use Z theorem provers such as Proofpower 2. These allow
us to ensure that the system not only does the right thing (required behaviour) but
also does not do the wrong thing (behaviour that is ruled out) irrespective of the
circumstances of use. Figure 1 gives an overview of how each of the models relates
to the system under consideration.

The presentation model describes the user interface elements that are present but
not the layout of the interface. It also describes the types of interaction each widget
exhibits (which suggests how a user interacts) and labels the behaviour associated
with that widget. The presentation interaction model (PIM) also describes the user
interface but at a higher level of abstraction which hides the general behaviours and
widgets of the interface and focusses on the navigation that is possible through the
different modes/windows etc.

The presentation model relation (PMR) relates some of the labels of widget be-
haviours to operations in the specification, and as such gives a very high level view
of the interaction between system and UI. Not all functionality is expressed via the
user interface (the user can only directly access certain behaviours) hence the split
in the system functionality box where the grey section are those functions which do
relate to user actions.

µCharts is used as an alternative notation for PIMs, and so describes the same
properties of the user interface, but can also be used to describe aspects of system
functionality to show cause and effect behaviours. The specification on the other
hand describes only the system functionality in terms of what can be achieved and
abstracts away all detail of how it might be achieved.

Finally the models can be combined into single representation which gives a low
level description of the what and how of the interface and system and their inter-
action. We do not explicitly model the user at all in our approach nor any backend
processes such as database connectivity, networks etc. In the next section we de-
scribe each of the models in more detail using examples from the Nuclear Power
Plant example.

1 http://stups.hhu.de/ProB/
2 http://www.lemma-one.com/ProofPower/index/index.html
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Fig. 1 Overview of model components

3.1 Presentation Model

This is a behavioural model of the interface of a system described at the level of
interactive components (widgets), their types and behaviours. We group the widgets
based on which components of the interface (e.g. windows, dialogs) they appear in
(or in the case of modal systems, which modes they are enabled in). The presen-
tation model can be derived from early designs of interfaces (such as prototypes,
story-boards etc.), final implementations, or anything in between. As such they can
be produced from the sorts of artefacts interface designers are already working with
within a user-centred design process. The presentation model does not in any sense
replace the design artefacts it describes. Rather, we use it as an accompanying arte-
fact that provides a bridge between informal designs and formal models. So the
presentation model describes the ‘meaning’ of the interface (or interface design)
in terms of its component widgets and behaviours, but the layout and aesthetic at-
tributes are contained in the visual artefacts that the presentation model is derived
from.

It is important to appreciate that we do not require widgets to be (only) buttons or
check boxes or menu items etc. Widgets are any ‘devices’ through which interaction
can occur. For example, sensors attached to parts of a physical system would be
widgets: as the physical system evolves the sensors would note this evolution and,
in response, the system would move between states. In this sort of system we might
simply describe a collection of sensors together with the behaviours (both functional
and interactive) that their triggering or their readings cause in the system. Thus our
idea of ‘interface’ is very general.
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Each window, dialogue, mode or other interactive state of the system is described
separately in a component presentation model (pmodel) by way of its component
widgets which are described using a triple:

widget name, widget type, (behaviours)

The full interface presentation model is then simply the collection of the pmod-
els, and describes all behaviours of the interface and which widgets provide the
behaviours. Behaviours are split into two categories, interactive behaviours (I-
behaviours) are those which facilitate navigation through the interface (opening
and closing new windows, noting the change of a sensor state etc.) or affect only
presentational elements of the interface, whereas system behaviours (S-behaviours)
provide access to the underlying functionality of the system (the grey part in figure
1).

Fig. 2 Nuclear plant control example interface

The syntax of the presentation model is essentially a set of labels which we use to
meaningfully describe the attributes of the widgets. Consider the interface provided
as part of the nuclear power plant example, which we repeat in figure 2. Each of the
widgets is described in the manner described, so for example the power output label
in the top left corner is:

PowerDisplay, Responder, (S_OutputPower)
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The category assigned is that of ‘Responder’ as this widget displays information
to the user in response to some inner stored value (which keeps track of the cur-
rent power level). As such the behaviour it responds to is a system behaviour
which outputs whatever that power level currently is, and hence has the label
‘S OutputPower’. The WP1 slider on the other hand is described as:

WP1Ctrl, ActionControl, (S_IncWaterPressure1,
S_DecWaterPressure1)

The category ‘ActionControl’ indicates it is a widget which causes an action to occur
(i.e. the user interacts with it to make something happen), which in this case is to
change the value of the water pressure either up or down. Again these are behaviours
of the system and so are labelled as S-behaviours.

Once we have labelled all of the widgets in the UI we have an overview of all the
available behaviours that are presented to a user by that UI. We subsequently give
a formal meaning to these labels via the presentation interaction model (PIM) and
presentation model relation (PMR) which we describe next.

3.2 Presentation Interaction Model

The presentation interaction model (PIM) is essentially a state transition diagram
where pmodels are abstracted into states and transitions are labelled with I-behaviours
from those pmodels. As such the PIM gives a formal meaning to the I-behaviours as
well as providing an abstract transition model of the system’s navigational possibil-
ities. The usual ‘state explosion’ problem associated with using transition systems
or finite state to model interactive systems is removed by the abstraction of pmodels
into states, so the size of the model is bounded by the number of individual win-
dows or modes of the system. While the presentation model describes all available
behaviours the PIM describes the availability of these via the user’s navigation. For
example in a UI with multiple windows the user may be required to navigate through
several of these windows to reach a particular behaviour. The nuclear power plant
example of figure 2 has only a single, static UI screen and as such the PIM is a
single state automaton. We show later how this changes when we extend the exam-
ple to have multiple windows constraining behaviour in the case of the emergency
scenarios.

A PIM can also be used to consider aspects such as reachability, deadlock and
the complexity of the navigational space (via the lengths of navigational sequences).
Considered formally, the role of the PIM is to inform us what the allowable se-
quences of Z operations are for the interactive system that we are modelling. This
allows us to make the Z definitions somewhat simpler since we do not have to intro-
duce an elaborate system of flags and consequent pre-conditions in order to disallow
the use of Z operations when the interactivity does not allow them: the PIM handles
all of this, and what Z operations are allowed at any point in the interactivity is given
by what widgets have behaviours (that are given by the Z operations) at that point.
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3.3 Presentation Model Relation

Just as the PIM gives meaning to the I-behaviours of the presentation model, the
presentation model relation (PMR) does the same for the S-behaviours. These
behaviours represent functional behaviours of the system, which are specified in
the formal specification. The PMR is a many-to-one relation from all of the S-
behaviours in a presentation model to operations in the specification. This reflects
the fact that there are often multiple ways for a user to perform a task from the UI
and therefore there may be several different S-behaviours which relate to a single
operation of the specification.

So, in order to understand what an S-behaviour label represents, for example
the behaviour label S IncWaterPressure1 from the presentation model tuple above,
we identify from the PMR the name of the operation in the Z specification that it
represents:

S IncWaterPressure1 7→ IncreaseWaterPressure

This tells us that in the formal specification is an operation called ‘IncreaseWater-
Pressure’ which specifies what effect this operation has on the system. The specified
operation then gives the meaning to this behaviour label. We give a larger example
of the PMR for the nuclear power plant example later.

3.4 Specification

The formal specification of the system provides an unambiguous description of the
state of the system and the allowable changes to that state provided by the opera-
tions. Many different formal languages exist for such a specification (e.g. VDM, Z,
B, Event-B, Object-Z etc. to name but a few) but for our approach we rely on the Z
specification language which is based on set theory and first order predicate logic.
In Z, we typically give a description of the system being modelled which is based on
what can be observed of it, and then the operation descriptions show how (the values
of) what is observed change. The operations are guarded by preconditions which tell
us under what circumstances they are allowed to occur (i.e. based on given values
of observations or inputs) and the postcondition defines which observations change
and which do not when the operation occurs as well as describing any output values.

The specification of the nuclear power plant example, therefore, is concerned
with observations relating to the items such as reactor pressure and water levels,
condenser pressure and water levels, power output, speed of the pumps, status of the
valves etc. A Z specification can be used with theorem provers to prove properties
over the entire state space of the system (for example to show that a certain set of
observations is never possible if it describes an undesirable condition) and can also
be used with model-checkers to examine the constrained state space for things such
as safety conditions.
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3.5 µCharts

In addition to the Z specification, we also use the visual language, µCharts (Reeve,
2005; Reeve and Reeves, 2000b,a) (a language used to model reactive systems).
PIMs can also be represented as µcharts, which provides additional benefits over a
simple PIM (including the ability to compose specific sets of behaviours in different
charts via a feedback mechanism and embed complex charts into simple states in
order to ‘hide’ complexity) (Bowen and Reeves, 2006a).

µCharts is based on Harel Statecharts (Harel, 1987) and were developed by
Philipps and Scholz (Scholz, 1996; Philipps and Scholz, 1998). µCharts was sub-
sequently extended by Reeve (Reeve, 2005) and we use his syntax, semantics and
refinement theory. µCharts has a simpler syntax than Statecharts (and in some sense
can be considered a ‘cut down’ version) and it also has a formal semantics. µCharts
and Statecharts differ in terms of synchrony of transitions (we imagine a clock tick-
ing and a step happening instantaneously at each tick), step semantics and the na-
ture of the labels on transitions. Labels on transitions in µcharts (note we refer to
the language as µCharts and the visual representations as µcharts) are of the form
guard/action where guards are predicates that trigger a transition if they are true,
and also cause actions to take place. For example, if a guard is simply a signal s then
the presence of s in the current step makes the guard true (think of the guard as being
the predicate “the signal s is present”). An example of an action is “emit the signal t
in the current step”. Guards are evaluated and actions happen instantaneously in the
same single step, thus the emission of a signal from one transition which is a guard
to another transition results in both transitions occurring in the same step.

The µCharts language includes several refinement theories which in turn gives us
refinement theories for PIMs. The trace refinement theory for µCharts is particularly
useful as it can be abstracted into a much more lightweight refinement theory for
interfaces based on contractual utility (Bowen and Reeves, 2006b). The semantics
of µCharts is given in Z and there is a direct translation available (via an algorithm
and tool) from a µchart to a Z specification (Reeve and Reeves, 2000b), this in turn
means we have an algorithm and means to turn a PIM into a Z specification (Bowen
and Reeves, 2014).

3.6 Combining the Models

The models of functionality (specification) and interactivity (presentation model and
PIM) are already coupled via the PMR. This gives us a model which combines
the conventional use of Z to specify functionality together with the more visually
appealing use of charts for the interactivity.

However, we can also combine the models in a way that leads to a single model,
all in Z, of the entire system. This gives us the ability to, for example, create a
single model of all parts of an interactive system (i.e. interactivity and underlying
functionality), that can then be used to prove safety properties about that system
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which might relate to functional constraints, interface constraints, or both (Bowen
and Reeves, 2013). It might also be used as the basis for refinement, ultimately
into an implementation, via the usual refinement theories for Z (Derrick and Boiten,
2014; Woodcock and Davies, 1996).

We do this single-model building by using the Z semantics of µCharts and by
expressing the PMR as a Z relation. This is then combined with the formal specifi-
cation of the functionality of the system, giving a single model where the transitions
representing the PIM are used to constrain the availability of the operations. So if
an S-behaviour given in the presentation model is only available in one state of the
UI, this is represented in the new combined Z specification as a pre-condition on the
related operation. Recently we have also given a simplified semantics for the cre-
ation of a single specification from the models to reflect models of modal devices
where the PIMs typically do not use the full expressiveness of µCharts (Bowen and
Reeves, 2014).

4 The Nuclear Power Plant Case Study

We now consider the case study and give concrete examples of the modelling tech-
niques described above. From the general overview of the functionality of the nu-
clear power plant given in the case study (along with several assumptions to fill in
the gaps) we can generate a Z specification of the desired functionality. This Z spec-
ification gives us a description of the observable states of the system (i.e. its state
space) as a Z state schema, along with the operations that can change these states
(i.e. move us around the state space). As such, it formally specifies behaviours that
can be exhibited by the system.3 Note that we have simplified the value types for
pressure and water levels to natural numbers for convenience of specification.

The observable states of the system can be captured by observing all of the pa-
rameters that are described in the case study brief along with any known constraints.
For example, we know that for the state of the reactor to be considered ‘safe’ then
the reactor pressure must be no more than 70 bar while the core temperature remains
below the maximum value of 286◦ C. So, we would have to be able to observe these
values, and ensure that they are within the required limits, in order to be able to say
that we are describing an allowed state of the system.

The state space of the system is given by a state schema like ReactorControl
below. It declares names and types for all the observations that can be made of
parts (or parameters) of the system, and it places constraints on some or all of those
observations in order to ensure that the state space contains only safe states. Of
course, this is a design decision; it is equally valid to have a state space that includes
unsafe values for some observations, as long as this aspect is handled elsewhere in
the specification (e.g. perhaps there are specialised error-handling operations that

3 Of course in order to ensure this is actually true we must also consider the preservation of these
properties in the final implementation, but we will not go into a discussion about refinement here.



12 Judy Bowen and Steve Reeves

come into play once we enter a state which is allowed by the model but which is
unsafe according to the requirements).

The Z snippets below show some of the definitions used to model the system.

ReactorControl
sv1 : Valve
sv2 : Valve
cpUMin : N
pressure : N
temp : N
wv1 : Valve
wv2 : Valve outputMW : N
waterlevelMM : N
wp1UMin : N
rodposition : N

pressure≤ 70
temp < 286

LowerRods
∆ReactorControl

rodposition > 0
rodposition′ = rodposition−1
wp1UMin = wp1UMin′

sv1′ = sv1
sv2′ = sv2
wv1′ = wv1
wv2′ = wv2
cpUMin′ = cpUMin
waterlevelMM′ = waterlevelMM
outputMW ′ = outputMW

The ReactorControl schema is the state schema showing the observable states of
the system (via the parameters or observable values within the system) and Lower-
Rods is an operation schema that changes a state - in this case the position of the
rods is the only part of the overall state that changes.

Once we have a complete specification of all allowable behaviours we can then
use a model-checker such as the ProZ plug-in for ProB to investigate the specifi-
cation to ensure it behaves as expected. For example, if we have specified what it
means for the system to be in a stable state then we should be able to show that
when these conditions are not satisfied then the system moves into one of the three
error control states - abnormal operation, accident or SCRAM.
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Stable
ΞReactorControl

cpUMin = 1600
waterlevelMM = 2100
outputMW = 700

Status =̂ Stable ∨ Abnormal ∨ Accident ∨ SCRAM

In the same way as we describe the system observations for Stable we also de-
scribe the Abnormal, Accident and SCRAM states so that Status is then defined as
the disjunction of these possible states.

While this high-level view is essential in enabling us to perform the sorts of
proofs we require for a safety-critical system we may wish to consider subsets of
behaviour in more detail. We could always, of course, add to the specification to
include all of the detail needed to consider these, but it is true that the more we
reduce the level of abstraction the more unreadable (and potentially unwieldy) the
specification becomes.

Suppose we wish to consider some specific procedures of the power plant which
combine several operations. For example, when the plant starts up or shuts down
there are a series of required steps that must occur along with requirements of values
of certain parameters (i.e. conditions on observable values) that enable the required
steps to proceed. We could investigate the ‘Start-up’ and ‘Shut-Down’ steps using
model-checking with the Z specification as above, however in order to more eas-
ily consider the user inputs to control these procedures (which are not included in
the specification) we might instead create a µchart which shows the required input
levels and reactions that occur in these processes.

Figure 3 shows the µchart of the‘Start-up’ procedure for the power plant. It pro-
vides a different (and more visual) abstraction of the system than the Z specification
might be able to and is more expressive in terms of the reactive properties (the Z
is intended to describe what is and is not possible and abstracts away such reactive
and event-driven behaviour deliberately), but at the same time (via its Z semantics)
retains all of the useful properties of a formal specification. In particular the Z spec-
ification, while it tells us precisely what the state space is and what operations can
move us around the state space, says nothing about the sequencing of operations
that are allowed or possible. This is, in part, the role of the µchart. For example, the
fact that a valve must be open before it can be closed is best handled by the chart.
It could formally be handled via setting-up flags and preconditions for Z operations
in terms of those flags, but this is an example of the unwieldiness of one language
over another: picking the right language for each part of a job is part of the skill of
a modeller, and part of the elegance that comes from experience. The fact that the
modelling could all be done in Z, say, is no reason to actually do it all in Z. If there
is a better language for certain parts of the model, in this case the use of a chart for
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the sequencing of operations, then the elegant solution is to do the modelling in that
way.

[WP1rate=0, CPrate=0, Waterlevel=0]NuclearPlantStartup

PowerOff

SV2Open SetCP

WV1Open

ControlRodsSetSV1OpenSV2Close

Stable

opensv2

setCP/CPrate:=1600

setWP1/WPrate:=200

Waterlevel=2100

/Pull

opensv1

closesv2
/Pull.Turn

Waterlevel=2100

RodControl

PullRods

Pull.-Waterlevel=2100/Waterlevel:=Waterlevel+1

WP1Control

TurnValve

Turn.-Waterlevel=2100/Waterlevel:=Waterlevel+1

{Pull,Turn,Waterlevel}

Fig. 3 Chart of startup procedure

The model consists of three atomic µcharts (which are in this case just like simple
finite-state machines) composed in parallel, which means that they each react in step
with each other and signals listed in the feedback box at the bottom of the chart are
shared instantaneously between all charts at each step. This modularity is another of
the advantages of using µCharts as we can explicitly model relationships between
independent components and behaviours. For example in this chart we can see that
once the system is in the svclose2 state, it will remain there until the water level
reaches the required value, and at each step it outputs signals (from the self-loop
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transition) Pull and Turn 4. These signals are then shared with the RodControl and
WP1Control charts which lead to transitions which ultimately affect the water level
until the required value is reached.

The transitions between the various states the system goes through are guarded
by required values on key indicators (such as water level, power output etc.) as well
as user operations (such as opening and closing valves). In this model we still do
not distinguish between user operations, system controlled operations and functional
monitoring of values. In this way we still abstract from a user’s view of the system as
we are most interested here in ensuring the correct outcomes are reached depending
on the values and that the components interact properly as shown by the feedback
mechanism of the composed charts.

Using the Z semantics of µCharts, and a tool called ZooM 5 which generates the
Z specification which expresses the meaning of a µchart, we can go on to model-
check this component of behaviour to ensure that the system progresses correctly
through the start-up procedure (and similarly shut-down) only when the correct
pre/post conditions are met. Already having these two different, but inter-related,
views gives us a consistent mechanism for viewing parts of the system in different
ways.

Once we are satisfied that the system will behave correctly as described we must
also ensure that the users can perform the required operations and that at the very
least the interface provides the necessary controls (we do not talk about the issue
of usability of the interface in this chapter—recall our comment in the introduction
about the usual artefacts being available from the UCD process—however it is of
course equally important in ensuring the system can be used): so we take any design
artefacts we have for the user interface to the control system and create presentation
models, PIMs and PMR as described previously.

For the nuclear power plant control system we start with the initial design shown
in figure 2. The following presentation model and PMR snippet gives an example of
the models derived from this. There is no PIM at this stage as we are dealing with a
single fixed ‘window’ which has no navigational opportunities for the user and so,
as mentioned previously, it is trivially a single-state automata.

Presentation Model
PowerDisplay, Responder, (S OutputPower),
RWaterLevelDisplay, Responder, (S OutputReactorWaterLevel),
RPressureDisplay, Responder, (S OutputReactorPressure),
ControlRodCtrl, ActionControl, (S RaiseControlRods,

S LowerControlRods),
WP1Ctrl, ActionControl, (S IncWaterPressure1,

S DecWaterPressure1),
WP2Ctrl, ActionControl, (S IncWaterPressure2,S DecWaterPressure2),

4 Note that these two transitions happen at every clock tick since their guards are true, denoted by
convention by the absence of any guard.
5 http://sourceforge.net/projects/pims1/files/?source=directory
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CPCtrl, ActionControl, (S IncCPressure, S DecCPressure),
SV1Open, ActionControl, (S OpenSV1),
SV1Close, ActionControl, (S CloseSV1)
SV1Status, Responder, (S OutputSV1Status)

PMR
S OutputPower 7→ OutputPowerLevel
S OutputReactorWaterLevel 7→ OutputReactorWaterLevel
S OutputReactorPressure 7→ OutputReactorPressure
S RaiseControlRods 7→ RaiseRods
S LowerControlRods 7→ LowerRods
S IncWaterPressure1 7→ IncreaseWaterPressure
S DecWaterPressure1 7→ DecreaseWaterPressure
S OpenSV1 7→ OpenSV1
S CloseSV1 7→ CloseSV1
S OutputSV1Status 7→ OutputSV1Status

For brevity we do not include all of the status lights and valve controls (e.g. for
valves SV2, WV1 and WV2) but the reader can assume they are described in the
same manner as the SV1 controls and status display.

The presentation model can be used to ensure that all of the required operations
are supported by the user interface, whilst the PMR ensures that the UI designs are
consistent and complete with respect to the functionality of the system. For example,
if we have some S-behaviours of the presentation model which do not appear in the
PMR then we know that the interface describes functionality that is not included in
the specification and we must therefore address this incompleteness.

We can also use these interface models to help derive alternative (restricted) in-
terfaces for use in error conditions when the user may have only partial control of
the system, or when they have no control due to SCRAM mode. Initially a presenta-
tion model of the alternative interfaces provides information about what operations
are (and more crucially, are not) available for the user. Subsequently we can use the
refinement theory based on µCharts trace refinement (Bowen and Reeves, 2006b)
to examine alternatives and prove that they are satisfactory. The visual appearance
of the alternative interfaces may be entirely different from the original (although of
course we would want as much correspondence between interfaces for the same sys-
tem as possible to avoid user confusion). The presentation models of the different
interfaces allow us to compare behaviours (via the refinement theory) irrespective
of the appearances.

The interface in figure 2 allows the user full control of all aspects of the system,
as occurs when it is in a stable mode. However, if it moves into one of its error states
then the user has a reduced amount of control (or none in SCRAM mode when the
system functions in a totally automated fashion). We might propose changes to the
interface to support this restricted control and provide feedback to the user about
what is happening and what they can, and cannot, do. Figure 4 shows a suggested
design change to the nuclear power plant for when the control system is in ‘Abnor-
mal’ mode, and partial automated-only control is in place.
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Fig. 4 Restricted interface for pump controls

The presentation model for the interface will then differ from that of the original
example as the three pump controls are now displays rather than controls (they show
the user what the automated system is doing rather than enable the user to make
changes themselves). The widgets are still associated with the same behaviours, but
instead of generating these behaviours (as action controls do) they now respond
to them instead. In addition, we include the automated behaviour (which drives
the mode switch), described as a ‘SystemControl’, which leads to the interface be-
haviours of changing the display.

WP1Ctrl, Responder, (S IncWaterPressure1,S DecWaterPressure1)
WP2Ctrl, Responder, (S IncWaterPressure2,S DecWaterPressure2)
CPCtrl, Responder, (S IncCPressure, S DecCPressure)
Status, SystemControl, (S Stable, I Stabilised)

Similarly we add the automated behaviour to the original presentation model to
make explicit the automation which switches into abnormal mode.

Status, SystemControl, (S Abnormal, I AbnormalOperation)

It is important to ensure that this new interface provides exactly the right controls
and restrictions to the user, and also that they are only present in the relevant error
states (i.e. that a user is not restricted when the system is stable).

For each of the possible error states, Abnormal, Accident and SCRAM we can
provide different interfaces which provide only the correct levels of user interaction.
Figure 5 shows the PIM for the new collection of interfaces, including those of the
other error modes (Accident and SCRAM) although we do not discuss their designs
here.

The Stable state is considered the initial state (indicated by the double ellipse)
and the transitions indicate possible movements between states. The SCRAM state
is a deadlock state, in that there are no possible transitions out of this state. This is
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Fig. 5 PIM of interface modes

correct for this system as the user cannot interact with the system in this mode and
the only possible behaviour for the system is to go into a safe shutdown mode.

There are several types of properties we may wish to consider once we have these
designs and their associated models. First, we should ensure that the combination
of new interface models still adhere to the original requirements. Second, as stated
above, we should be sure that the correct level of control/restriction is provided in
each instance.

Typically when we make changes to the interface or interaction possibilities of
our system during the modelling stage we would use refinement to ensure the adher-
ence to original requirements. However, what we are doing with the new interfaces
is restrict behaviour, so it is not the case that each of the different (new) modes re-
fines the original, but rather that the total interface model (the concatenation of the
four pmodels) refines the original. We reiterate that we retain all of the visual designs
of layout etc. for both the original as well as the new UIs so that we can always refer
back to these to understand more about the actual appearance. This will, of course,
be crucial when we come to evaluate the usability aspects of the UIs. In terms of the
final considerations of refinement, however, we rely on the models alone.

Refinement for interface and interaction properties described in presentation
models and PIMs is based on the notion of contractual utility (Bowen and Reeves,
2006b) and can be described by relations on the sets of behaviours of the models
in a simple way, whilst being formally underpinned by the trace refinement theory
of µCharts. Given two arbitrary interfaces, A and C, The requirements for the two
types of behaviours are as follows:

UIA ≡SBeh UIC
I Beh[UIA] ⊆ I Beh[UIC]
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where I Beh[P] is a syntactic function that returns identifiers for all I-behaviours
in P.

We call the first interface (from figure 2) ‘Original’ and the new interfaces (a
combination of ‘Original’ with the addition of the automation and ‘Abnormal’)
‘New’. We use the syntactic functions to extract behaviours to create the follow-
ing sets:

I Beh[Original] = {}
S Beh[Original] = {S OutputPower, S OutputReactorWaterLevel,
S OutputReactorPressure, S RaiseControlRods, S LowerControlRods,
S IncWaterPressure1, S DecWaterPressure1, S IncWaterPressure2,
S DecWaterPressure2, S OpenSV1, S OpenSV2, S OutputSV1Status}
I Beh[New] = {I AbnormalOperation, I Stabilised}
S Beh[New] = {S OutputPower, S OutputReactorWaterLevel,
S OutputReactorPressure, S RaiseControlRods, S LowerControlRods,
S IncWaterPressure1, S DecWaterPressure1, S IncWaterPressure2,
S DecWaterPressure2, S OpenSV1, S OpenSV2, S OutputSV1Status,
S Stable, S Abnormal }

The requirement on the I-behaviours permits addition of new behaviours, and so
this is satisfied. However, notice the inclusion of the S-behaviours for the automation
to switch the system between states of the interface (S Stable and S Abnormal).
These are now implicit behaviours of the interface and so must also be included,
but these additional behaviours break the requirement on equality between sets of
S-behaviours of the interfaces. If we consider this further we can understand why
this is a requirement. Our new interface depends on behaviours to switch between
modes under different states of the system which were not part of the original de-
scription, as such there is no guarantee that this behaviour is described anywhere in
the specification. We can see from the PMR that there is no relation between these
operations and the specification, so we have added functionality to the interface may
not (yet) be supported by system functionality. This is an indication that we need
to also increase behaviours in the functional specification which will allow these to
then be supported, or we need to ensure that we can relate any existing specified op-
erations (via the PMR) to the new S-behaviours. In fact we have already discussed
earlier how we can describe the different states of the system (Stable, Abnormal,
SCRAM etc.) in the specification so we must now ensure that identification of these
states along with the necessary behaviour is also described.

Now we can investigate the behaviours of the component pmodels (of each differ-
ent mode of use) via translation of the PIM (to Z) and its corresponding specification
to ensure that these correspond to permissible user behaviours in each of the system
states. We discuss the combination of models which provides this next.
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4.1 Benefits of Combining the Models

In the previous sections we have given examples of the use of the individual models
to consider some properties of the nuclear power plant control system which might
be of interest during the development process. There are some things, however,
which require a combined model of both UI and functionality in order to formally
consider. Suppose we want to ensure that when the system is in Abnormal mode, the
user cannot alter the water pressure (as this is one of the elements under automatic
control in this mode). Using the ProB model checker there are several different ways
to perform such analysis, and we have found that describing the properties as LTL
formulae and then checking these is a useful mechanism as ProB provides counter-
examples consisting of a history list of operations performed when a formula check
fails (Bowen and Reeves, 2014).

However, the functional specification alone cannot be used for this. If we perform
some analysis to show that when the status of the system is Abnormal the operations
to increase or decrease the water pressure are not enabled, we find that this is not
true. Of course, this is exactly as it should be, although the user cannot change the
water pressure, it can still be changed (via automation) and our functional model
correctly describes this.

In order to consider the possible effects of user interactions, therefore, we need
to combine the interface models with the specification. We start by declaring types
for the states of the PIM and the transition labels.

State ::= Stable | Abnormal | Accident | SCRAM
Signal ::= I AbnormalOperation | I Accident | I SCRAM | I Stabilised

Next we give a description of the UI which consists of a single observation which
shows the state the UI is in (one of the states of the PIM) and create an operation
schema for each of the transitions which describes the change in state that occurs on
a given signal, for example:

TransitionStableAbnormal
∆UI
signal? : Signal

signal? = S AbnormalOperation
currentState = Stable
currentState′ = Abnormal

This describes how the observation of ‘currentState’ changes when the transition
from ‘stable’ to abnormal’ occurs, which requires the ‘I AbnormalOperation’ input
signal to be present.

The final step is to create a combined schema for the system and UI (so we
include the schema descriptions for each into a single schema) and then for each of
the operation schemas we add a precondition which gives the required state of the
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UI, i.e. shows when the operation is available to a user. Now when we model-check
the specification and check the condition of whether a user can change the water
pressure when the system is in an abnormal state we find that they cannot, as none
of the user operations which change the water pressure are enabled if the system
state is abnormal.

In order to create a fuller picture we should include all of the automation con-
siderations. We can do this by describing automatic control in exactly the same way
as we have shown above. That is, we create the alternate set of models including
automated interface behaviours (as if they were user controls) and then we can in-
clude this with the combined model. This new model then enables us to show that
the correct levels of manual (human user) or automatic control occur in all of the
different states of the system.

5 Conclusion

In this chapter we have described the different models we use for reasoning about
interactive systems. Using the nuclear power plant control system as an example
we have shown how the models can be used independently as the differing expres-
sive natures of the languages involved mean that they are individually suitable for
different tasks in the process of verifying and validating safety-critical interactive
systems. We have also given an example of combining the models into a single
formal description, which allows us to ensure correctness of the interactivity and
interaction in combination with the functionality.

Although the type of interface used in the nuclear power plant control example
consists of standard desktop system controls (buttons, sliders etc.) this is not a re-
quirement for our methods. Any type of interaction control (speech, touch, gesture,
sensor etc.) can be modelled in the same way as we can abstract them in the pre-
sentation models as event generating (action controls) or responding (responders) as
shown here.
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Duke DJ, Faconti GP, Harrison MD, Paternò F (1994) Unifying views of interactors.
In: Advanced Visual Interfaces, pp 143–152

Duke DJ, Fields B, Harrison MD (1999) A case study in the specification and analy-
sis of design alternatives for a user interface. Formal Asp Comput 11(2):107–131

Harel D (1987) Statecharts: A visual formalism for complex systems. Science of
Computer Programming 8(3):231–274

Harrison MD, Dix A (1990) A state model of direct manipulation in interactive sys-
tems. In: Formal methods in human-computer interaction, Cambridge University
Press, pp 129–151

Henson MC, Deutsch M, Reeves S (2008) Z Logic and Its Applications, Springer:
Monographs in Theoretical Computer Science. An EATCS Series, pp 489–596

Hussey A, MacColl I, Carrington D (2000) Assessing usability from formal user-
interface designs. Tech. Rep. TR00-15, Software Verification Research Centre,
The University of Queensland

ISO/IEC 13568 (2002) Information Technology—Z Formal Specification
Notation—Syntax, Type System and Semantics, 1st edn. Prentice-Hall In-
ternational series in computer science, ISO/IEC

Jacob RJK (1982) Using formal specifications in the design of a human-computer
interface. In: 1982 conference on Human factors in computing systems, ACM
Press, pp 315–321

Limbourg Q, Vanderdonckt J, Michotte B, Bouillon L, López-Jaquero V (2004)
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