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We classify and discuss the possible nonorthogonal coordinate systems which lead to R-separable solutions
of the wave equation. Each system is associated with a pair of commuting operators in the symmetry
algebra so (3,2) of this equation, one operator first order and the other first or second order. Several systems

appear here for the first time.

INTRODUCTION

This paper is one of a series'™ investigating the
relationship between the symmetry groups of the princi-
pal equations of mathematical physics and the coordi-
nate systems for which the corresponding equations
admit an R-separable solution. We recall that a solu-
tion ;b(xl,xz,x3) of an equation in three variables is R-
separable if it can be written in the form

Py, %5, %5) = exp[Q(xl, X2 x3)]A(x1)B(x2)C(x3),

where ¢9 contains no factors which are functions of one
variable. The factor e? is called the modulation factor.
The last two papers in this series®® have dealt with a
study of the wave equation in two space dimensions

B, 0 =059, *)
In Paper 8° of this series (hereafter referred to as I)
we have given a detailed treatment of the symmetry
group of (*) which is locally isomorphie to O(3,2). In
that article are also discussed the principal equations
contained in (*) when a generator of the Lie algebra is
diagonalized. The resulting coordinate systems were
called semisubgroup coordinate systems. In Paper 9°
(hereafter referred to as II) of this series, we com-
plemented the contents of I with a detailed study of the
orthogonal R-separable solutions of (*). This was
achieved using pentaspherical space and families of
confocal cyclides. The methods were principally those
developed by Bbcher.'° In this work we supplement the
contents of I and I by looking for R-separable solutions
of (*) which correspond to coordinates which are
nonorthogonal.

If
ds? = di? = dx? — dy?

1=-9

=gt dx, dx,
is such that g/ #0 for at least one pair of indices i#j
and (*) admits an R-separable solution in the variables
x,,%,,%,, these coordinates constitute a nonorthogonal
R-separable coordinate system. It is the purpose of
this article to classify such coordinate systems. The
contents of the paper are divided into three sections. In
Sec. I we classify all coordinate systems in terms of
their differential forms. This is done in detail by ele-
mentary and straightforward methods. The separation
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equations for each system we find are also given here.
In Sec. II we give the coordinate systems in Minkowski
space which correspond to the differential forms given
in Sec. I. We also give the operators which specify

the separation constants in each system. These are the
operators associated with each system. Finally in Sec.
IIT we look at the properties of coordinate systems which
are specified by elements of an SL(2,R) subalgebra of
the symmetry group of (*). This corresponds to the
SL(2,R) algebra in Sec. 7 of Paper 8 of this series.

|. THE CLASSIFICATION OF SEPARABLE
NONORTHOGONAL COORDINATE SYSTEMS

In this section we give a classification of the non-
orthogonal coordinate systems for which (*) admits an
R-separable solution. As opposed to the sophisticated
methods used in II, we proceed in a straightforward
manner here. These techniques have already been used
previously.

We use the conditions of R-separability together with
the requirement that the space be flat. The first re~
quirement reduces to a number of special cases in
which the metric g/ has a prescribed form. For the
space to be flat means that all the components of the
Riemann curvature tensor are zero. The solution of
these two constraints then gives us the list of possible
nonorthogonal R-separable coordinate systems for the
Laplace operator in a flat space. In each case we ob-
tain a specific form for the metric tensor gi/. Each of
the nonorthogonal R-separable systems that we find
corresponds to a prescribed coordinate system in
Minkowski space with coordinates /,x,y. This reflects
the fact that the only other candidate space satisfying
the above conditions is Euclidean three-space, which
does not admit nonorthogonal R-separable solutions of
the Laplace operator.

A few words about our definition of R-separation are
in order. More specifically we consider at first pure
separation. A solution of (*) ¢(x,,x,,x,) in three new
curvilinear variables u, v, p— xy,%,, X3 is said to be
separable if § =A(x;)B(x,)C(x3) and each of the factor
functions satisfies a second or first order ordinary dif-
ferential equation. By a nonorthogonal coordinate sys-
tem we shall mean a coordinate system for which at
least one g*/ (i#7) is nonzero. Here g*/ is the metric
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tensor expressing the line element ds® =g/ dx;dx,. For
such a coordinate system the wave operator has the
general form

AZatt—A2=Eaifaij+lEaiai’ 1.1
where i,7 =1,2,3 and at least one a;; ({#5) is nonzero.
From this general form it follows that at least one of the
separation equations must be of first order. The defini-
tion of separable coordinates for such a coordinate sys-
tem that we adopt is that for at least one of the variables
whose separation equation is first order the wave
equation Ay =0 can be rewritten as a function of the
single variable on one side and a function of the re-
maining two variables on the other side so that one vari-
able “separates.” The equation in the remaining two
variables separates in the same manner. (There are
other more complicated ways for variables to separate
which do not fall within this definition; see Sec. III. In
this sense our results are not entirely complete.) In
addition the coordinate functions

t=F(x,), x=Glx), y=H() (=1,2,3) (1.2)

are real functions of the x, only. For the case of R-
separation the above definition carries over to the re-
duced wave equation, which results when the modulation
factor e9 is extracted. The function @ may, however,
depend on the separation constants. For each coordinate
system the two separation constants [, and [, are the
eigenvalues of two operators /, and /, which are ex-
pressible as at most second order symmetric operators
in the enveloping algebra of the O(3,2) symmetry group
of ().

We now proceed to the solution of our problem and
examine the conditions which will permit a separable
solution of (*). Recall that if we rewrite (+) in terms of
the variables x, the equation assumes the form

A =084, — By = 41,0130 + By 050 + Aggdgsd + 2150150
+ 0130150 + Gy30,50 + 0,0, 0 + ap0,0 T a33,0=0.
(1.3)

Here A is the Laplacian corresponding to the contra-
variant metric tensor g/ in the differential form:

(1.4)

The expression for A in terms of the metric tensor and
variables ¥, is

ds® =gt dx dx; .

(1.5)

where g=det(¢"’) and g,, is the covariant metric tensor
of our original contravariant tensor g*/. (Note: In this
article we prefer to write all our results in terms of the
covariant variables x,, x,,x, as a matter of convenience.)

It is now the problem of separation of variables for
the equation Ay =0 that is our concern. From expres-
sion (1.3) we find four possibilities.

(1) A1l the separation equations are first ovder: From
(1.3) and the fact that a,, =2g,, (i+#j) and a,,=g,, we
have g,, =g,, =g;,=0. Equation (1.3) then assumes the
form
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@150100 T @130 15Y T ApgBp39 + @0, + ;0,0 + 03339 =0.
1.8)

If the separation equation for the variable x, is 8 dC/dx,
+yC=0, then (1.6) reduces to the form

150150 + 510,01 b0, +0,0=0,

where ¢ =A(x;)B(x,). The condition that this equation
admit a separation is that either a,,=0 or », =0, say.
From the possible forms of the first order separation
equations the condition b, =0 requires a;;=a,=0. In
any case the covariant metric g;; is singular and there-
fore inadmissable.

(2) Exactly one separation equation is of second ovder:
If this equation is in the variable x,, then g,, =g,,=0.
The resulting equation has the form

33033% + @130 15% + 130,30 + Apapg¥)

+a,9,) + a0, + ad,9=0. a.n

For a separable solution of (1.7) it is necessary that
either a;3=0 or a,3=0. We cannot choose a;; =0 as this
would imply g4, =0 and hence a singular metric tensor.

(3) Two of the separation equations are second
ovdev: If these equations are in the variables x,
and x3, then a necessary condition for the separation of
{with @, =0 by hypothesis)
g090Y + Ag3033Y + 190198 +aAy3013Y + y30ps¥ + 40,9
T ay9,9 +a30;9=0 (1.8)
is that a,;=2g,3=0.

(4) All the separation equations ave second ovder: This
case is of no interest for this work as separation of
variables now implies that a;;=0 for ¢#j. This is the
case that has been treated in II and corresponds to
orthogonal coordinates.

We now proceed to those cases of interest by taking
special choices of the contravariant metric g/, We
enumerate the possibilities.

{1) R-separable differential forms in which one
nondiagonal element of the covariant metric
tensor is nonzero

(A) Pure separation

The most general such form of the metric tensor is

y [a b O

g'’=1n 00}, (1.9)
6 0 c
-

corresponding to the covariant metric tensor

0 1/n 0

gii= |1/h —a/B* 0 (1.10)
K 0 1l/c

The wave equation assumes the form
Ayp000Y + @ 530339 +a 1385 +@ DY + Ay + a3 =0
(1.11)

We consider first the x; dependence of the metric co-
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efficients a, %, and ¢. In order that the x; dependence
separate out in an equation of the form T (x,)3,A4 (x,)
=KA(x,), the coefficients in (1.11) must satisfy the
constraints

Ay =F(x)dy, ag=F(x)as, a=F(x)a,,

ay=F(x)as, ap=06l)a,, a;=Gx)a,, 1.12)
where the functions 4;; and @; depend upon x; and x; only.
These conditions imply i = 1/G ()] 2 (xy,%;). By suitable
redefinition of x; we can take G=1. The remaining con-
ditions imply ¢ =&F(x,), a=F(x,)a. There are then two
cases to consider, (i) F(x,)=constant. (ii) F(x,) not a
constant. In the latter case the form of F(x,) can be
found from the requirement a,=F(x;)@,. This means
F'(x;) < F%. We can therefore take F =1/x, without loss
of generality. The two cases to be considered are then
specified by

(1) h=h(xy, x3), a=alx,,x;), and ¢ =c(x,, x3),
(2) h=h(xy, %;), a=a(xy,x,)/%;, and ¢ =c(xy, x3)xy,
and will be considered separately.

(1) The equations which ensure that the space is flat
are obtained by equating the nontrivially zero com-
ponents of the Riemannian curvature tensor R, ;,; to zero.
For the case (1) these equations are

K a.h
2R1221=‘122‘_3‘—2J” =0

%" s (1.13a)
aa a,e; | akj
2R 33 =ag - h —zz—ZZh 2% s E‘i‘ =0 (1.13b)
Ry g%_
2Ry330=Cg — PR =0, (1.13c)
hoh h
2R3221="h32+“2—Lh + 5 =0, (1.13d)
s Cya
2Rgiy=ag, - Lo "‘—3'220 =0, (1.13e)
ay _ e, B
2R 331 = hgy - 22hz - 22 5;;* 0. (1.13f)

For this case we consider two possibilities: ¢;#0, ¢, =0.
If ¢, #0, then equation (1, 3) has the form

a 1 21
"%2'822¢+ 333¢+< +az> 9,0 +a303¢ ~ 2hc¢ 0,

(1.14)

where ¢ =B(x,)C(x;) and 3:A(x,) =l A(x;). Multiplying
(1.14) by ¢, we obtain the separation condition

co/h=[f (x;) +g(xg) Ir(x3).
From (1. 13c) we have
Co/h=5(x5)ct’?
and

h=2f,v/s?.

Now % # 0 which implies f# const. Accordingly we can
define a new x, variable x, =f so that z=h(x;). From
(1.13d) we then have .2;=0. Therefore, =1 without loss
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of generality. The form of (1.14) now requires a =a(x,).
Equation (1.13a) then implies a=1 or a =0, We also
deduce that ¢ =#{x,)u(x;). By a suitable redefinition of
X3 we can take c =c(x,). From (1.13c) we then can take

¢ =x}. We finally obtain the two differential forms:

[1] ds®=2dx, dx, +xidx}, (1.15)
!

[2] ds®=dx?+ 2dxdx, +x2dxd. (1.16)

If c,=0, we can take c=1. From (1.14) we have the
separation conditions a/h =f (x,), h/c=7(x,)s(x;). From
(1.13d) we have k =1(x,)ulx;); hence a =v{x,)ulx;). By
redefinition of the variable x, we may take h =u(x;).
From (1.13a) we then have

Vg =0, u§:2au. 1.17)

The general solutions of these equations are

v=saxi+ By +y, u=(a/2x,+5)% (1.18)
where o, 3,7, and 6 R, and o > 0. There are two
classes of differential forms to consider:

(a) @ =0: We have the three possibilities
[3] ds?=2dx, dx,+dxi, (1.19)
[4] ds®=dx?} + 2dx, dx, +dx3, (1.20)
[5] ds®=ux,dx}+ 2dx,dx, +dx3, (1.21)
(b) @ =1: We have with suitable redefinitions
(6] ds®=xixddx}+2xtdx dx, +did, (1.22)
[7] ds*=xi(x}-1)dx? + 2x}dx, dx, +dxi, (1.23)
[8] ds®=xi(x}+1)dx? + 2x%dx, dxy + dx}. (1.24)

This exhausts the list of separable differential forms in
which the metric coefficients @, %, and ¢ have no x,
dependence.

(2) The equations requiring a flat space for the case of
x, dependence have the form

X Ripgy =Ry =0, (1.25)

2%R 133 = 2R 1331 + (2,8 +8y)/2h - 32 =0,
2R 350/ %1 = 2R 5339 =0, Ryppq =Ry =0,
2xRyy1y=2R 1y +hy/28 =0, Ry =Ry, =0.

Here the curvature tensor components R, ;,; are those in
Eqgs. (1.13) with e ~@&, ¢ —~¢&. Using arguments as for
case (1), we find that the only forms of @ and ¢ com-
patible with the curvature equations are d=x, and ¢ =1,
This gives the separable differential form

(9] ds®=(x,/x,)dx} + 2dx, dxy + x, dx}. (1.26)

(B) R-separation

As regards the possibility of an R-separable solution
for coordinate systems of the type considered in this
subsection, it can be shown that there are in fact no such
systems, We do not reproduce the somewhat lengthy but
straightforward calculations which lead to this negative
result.
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{11) R-separable differential forms in which two
nondiagonal elements of the covariant metric tensor are
nonzero and only one separation equation is second order

(A) Pure separation

The contravariant metric g'/ can be chosen as

0 =& 0
ghi= o b be (1.27)
0 bc
The corresponding covariant metric tensor is
0 /h  -b/he
8ij= 1/n 0 0 (1. 28)
-b/hc 0 1/c?

The wave equation assumes the form
330330 + @ 1909 +@ 13030 + 101 + a8, +azd59=0.

(1.29)
As before we consider first the x; dependence. The

conditions for x,; separation are
ai3=Fx)y3, a;=F(x))ay,

a,=Glxy)a,,

aqg :F(xi)a12,

(1.30)

azz=Gxy)ay, ay=G(x,)a;.

These equations imply & =% (x,, x;)/F(x,). By redefinition
of x; we may as before take F=1, If G is not a constant,
then the above conditions require G’<« G?, and we can
take G=1/x,. We again have two cases to consider:

(1) }l:h(x23x3)) b:b(x25x3): and C:C(Xz,x'3),
/2% (1.31)

(2) h=h(xy,x3), b=2x;""blxy,x,),

and c=x}"2 &(xy, ;).

(1) The curvature equations are

Rypy=-h%/4c*=0, Ryy=0,
Ry =0 + Dby + CCap — DypC = byCy — C3by = Cypb
+ (hyc/R) (by — ¢3) + (c3/¢) (byc + bey —bby)
+ (bhy/R)(c, — by) =0,
Ry =— Shgy + (hy/4c) (Dhy/2k — c,) =0,
Ry112=0, Rygy=3hgy — hycy/26% =0,

(1.32)

These equations immediately give ;=0 and by rede-
finition of x, we can take =1. Multiplying (1.29) by ¢?
we have the further condition b¢c = F(x;). By redefinition
of the variable x; we can take bc =1,

The separation conditions az; =u(xy)v(x;) and a,
=u(x,)v(x;) imply that 5% and ¢® may be taken in the form

b2 =F(x,)/H(x,), c*=H(x,)/F(x,). (1.33)

With this choice the only nontrivial curvature equation is
Ry33, =0, and it has the form

2FF 33 + Fa+ 2HH 5, — Hy = 0. (1.34)
The separation equations for (1.34) are then
2FFy3+Fi=a, 2HH,, - Hi=-o. (1.35)

359 J. Math. Phys., Vol. 17, No. 3, March 1976

There are two cases to consider,

(a) @ =0: In this case equations (1.35) have the general
solution,

H=(Bx, +v)?, F=(5x3+€?3, (1.36)

This gives four possibilities for the differential form
according as the constants 3,7y, 5, and € are or are not
Zero:

[10]  ds?®=2dx, dx, + 2dxy duy + wdsd + Ldx?, (1.37)
! w
dx?
[11] d32=2dx1dx2+2dx2dx3+wx§/3dx§+w—x§&7§ , (1.38)
2
[12] ds®=2dx, dx, + 2dx,dx, + — docs + 22— dx’, (1.39)
1 4% 283 ;%’ © 3
\ wel’® X \
[13] ds :2dx1dx2+2dx2dx3+—xg3-—dx2 + Efn dxd.
3 3

(1. 40)

(b) @ =1: In this case we can integrate Egs. (1.35) at
once to get the relations

dxy=FY2 dF/(F + )V,  dx,=dH/(1 +vH)'/?,

(1.41)
Rather than integrate these equations further, we re-
define the variables x, and x; by taking the new variables
as H and F, respectively. We then distinguish four cases
according as the constants 8 and v are or are not zero.
The resulting differential forms are

[14] ds?=2dx,dx, + 2dx, doy +-Sdxd+ 22 axd,  (1.42)
i 2 2 3 % %,

272 X x
2 23 dxd 4 —22 _ dx?
[15] ds _detdx2+——-—3—1—,~z-(x3 ) dx,dxs + Py dx; + o B)dxa,

(1.43)

2 2
2 _
[16] ds®= A ya) dx,dxy + Trve) 7 dx,dx,
(1.44)

X3 2, X 42
— X gt ogy
x,(L+yx,) T2 x, ¥

9 2x1/2dx dx.
i 3 2 3
[17] ds®= T +yx,)0 7% dzy dx, + [+ yx,)(x, + B2
Xy dxg x dxg . (1045)
%1 +yx,) 72 (x5 +B)

(2) For the case of x, dependence the curvature equa-
tion R,,, =0 reduces to ¢=0, which is inadmissable.
There are therefore no solutions of interest in this class.

(B) R-separation

If we assume that i in (x) has an R-separable solution
of the form = e®¢, then the equation satisfied by ¢
has the form
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b33833¢ + b12612¢ + b13813¢ + blal¢ + b282¢
+ 83030 + by =0, (1.46)

where the b,;, b, are related to the a,;, a; in (1.6) by
the equations

bys=as3;, b1z=ay3 by3=ay,

by =a;,,R, tay, Ry +a;, by=ay,R; +a,,

by=a,sR, +2a5,R,; +a,, (1.47)
bo=a,,(R, +R,R;) + a;3(R5+ R,R) + a33(R33 +R§)
+a,R; +a,R, +a,R,.

As usual, we look at the possibilities for x, dependence.
The conditions on the coefficients of (1.46) are

bsszc(xl)z’aay b2=G(x1)Bz, b3=G(x1)I;3,

b0=G(x1)130, blz:F(xx)szy b13=F(x1)513,

b, =F(x,)b,. (1.48)

As in the case of pure separation, F =1 by redefinition
of the variable x, and, consequently, #=h(x,,x,). The
remaining conditions require, as in the case of pure
separation, that G=const or G xx!/2, This latter case
is inadmissable by the curvature conditions.

We may then take =1 and c¢=c(x,). The condition b,
=b,(x,, x;) requires that R have the form xu(x,, x,)
+v(x,, x;). If the x, dependence in (1.46) is now extracted
via the separation equation dA(x,)/dx, =1A(x,), the re-
sulting equation has the form

bagls3 + (lbm + bz)az¢ + (lbIB + b3)63¢ + (b1l + bo)¢' =0,
(1.49)
where ¢ = B(x,)C(x;). The separation condition I, +b,
=s{x,, x;) implies wu(x,, x;) =0. The further condition that
c*(Iby5 + b,y) = t(x;) requires that R,=Ibc to within a sum

of functions of single variables. The only nontrivial
curvature equation is

(1.50)

which has the solution b,= ¢, so that b= c,x; + glx,) and
the modulation function R has the form

Ryq35 = bbgg + b3 + €Cpp — bysC = €305 =0,

R=3lccyxt + logxs. (1.51)

Finally from the requirement b,l + b, = v(x,) + w(x,) we
obtain the constraints

63022231 ngz:}’, (1.52)

with 8,7< R. The general solution of the first equation
is c=(6x%+¢)!/2, We now evaluate the possibilities de-
pending on the values of the constants §,€:

(i) 5=0 and €=1; then g=wx,: The resulting metric is

(18] ds®=2dx, dx, +2wx, dx, dx, + dx2 +w?x2dx2,  (1.53)

and the modulation function is R=wlx,x,.
(ii) e=0 and 5 =1; then g=w/x% and the differential
form is

[19] ds?=2dx, dx, + 2(x,x, + W/ x,) dx, dx,

1.54
+ (x5 + w/x2)? dx? + x2 dx2. ( )
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The modulation function is then R = 3lx,x% + wixy/x,.
(iii) 6 =¢=1; then g=w and the differential form is
[20] ds?=2dx, dx, +2[x,x, + w(1 +x2)*/2]) dx, dx,

+ [xpx/ (1 + 222 + w2 dx? + (1 +22) da?,

(1.55)

with the modulation function given by
R=3le,x2 + lwxg (1 +42)/2
(iv) 5 =-€=1: In this case g=w and the differential
form is
[21] ds?=2dx, dx, + 2[vayx,+ w( |1 = 23] ) /2] dx, dx,
+vxgy/ (1= Z M2+ 0P dx? + |1 - 22| dx?,
(1.56)

where v=sgn(~ 1 +x2). The modulation function is R

=3ulxyxd + lwxy 11— 221172, This completes our list of

coordinate systems of this type.

(111) R-separable differential forms in which two
nondiagonal elements of the covariant metric tensor are
nonzero and two separation equations are of second order

Pure separation

The determination of the contravariant metric is

rather involved. The wave equation for coordinate
systems of this type will be taken as

A2050% T Q330330 +@,150159 + 130,59 +a,0,9

+ a0 +adgp=0. (1.57)
The contravariant metric can then be taken to be
a f abc/f
gli= f b be (1.58)

abe/f be ¢

so that the components of the covariant metric tensor

are
0 f =bffc
1
i = (7T ap?) f -a 0 (1.59)
-bffc 0 f¥Yc?

From the conditions for separation of the x, variable,
which we do not repeat here [these are the analogs of
Egs. (1.30)], we find
a=Gx,)a, b=b/VGlx), c=¢&/ VGx,), (1.60)

where G=1 or 1/x,. There are then two distinct cases
to consider:

(1) F=F (%5, %), a=alx,, x,), b="b(x, %3), and c= c(x, x5).

() f=f(%3,%5), a=a () %5)/ %,, b= b (%2 xa)xilz’

and ¢ = &(x,, x)xi /2

(1) From the separation conditions a,,/a,, = 7(x,) and
@,/ @33 = s(%;) we have the relations a=1(x,)f, bc=u(x,)f,
and k= abc/f=tx,)u(x,)f. By suitable redefinition of the
variables x, and x, these relations can be reduced to a
=f, bc=f, h=f. [Note these results follow also for (2)
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with a, b, and ¢ replaced by a,b, and &.] With d =f%/c?
the contravariant metric then assumes the relatively
simple form

f r f
gi=1f a f (1.61)
fof f¥a
with corresponding covariant metric tensor
f -b
1
84T Flrzay f -f 0 (1.62)
-b 0 b
For this case the curvature equations are
2R1221 =for t [1/2(f‘ d)]
X[(2 -~ d/f)fZ + fods — (d/f) fg +(d/f)f3d3]=0:
(1.63a)
2R1331 =fas t [1/2(f— d)]
X[(f/ @) fsds + (F/ d®) fodp + (1 = 2f/A) f}
+(2d - 3f)f2] =0, (1.63b)

2Ry 55 = dyy = 2f35 + (f/d) fap = (F%/ &)y + [1/(f - d)]
X[~ @f/d) fi+ 3F/ @) @d~f) fody + 51 + f/ D&

—4fody +2Q2 = d/F) fofs + (d/f - 2) fody — (f/ d)dof)

:0,
(1.83c)

2Ry = fao = faa + [/ (f- D2 foda + (d/27 - 1) 1}
+(d/20) fads + 2 = d/f)fofs = (f/2d) f3d, - 2 fods

+(b/2f) f2] =0, (1.63d)
2R3112 = fap T [1/ (f— d)]
X (f/2d) fod, + (d/f = 2) fofs + 3 ds)=0,  (1.63e)

2Ry45.= fag— foz T /(r- d)] [(f/zd)f3d3 + (d/Zf— 1) 72
+(d/2f) fods + 2 = d/f) fofs = (F/2d) foda - 3 1ods
+(d/2f) f3]=0.

From these equations we deduce

2R1332 + 2R3112 - 2R1331 = [ffz/d(f— d)] [“ (f/2d)dz +fz] =0.

(1.64)

There are then two possibilities: (i) f,=0 or (ii) 4
=7(x,) f%. We consider each of these cases separately.

(i) From (1.63c) we have that f,d,=0 so that either f,
=0 or d,=0. In the first case we can take f=1. Equation
R,,,,=0 requires

A+d) o dy , (6d-3) & _

st sqi-d) B~ @ " 2a@-1) T -

(1.865)

The separation condition asy/ a,, =7(x,)s(x,) must also be
satisfied. There are then three possibilities of this type.

a. d=d(x,): The variable x, can be redefined to be d
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via the relation
de=d*/2— /2, (1.866)
The corresponding differential form is
[22] ds®=2dx, dx, + [2x3/%/ (1 - x5)] (dx, dx, + dx, dx,)
+dx? + xgdxl + dx?/ (1 = x,)°. (1.67)
b. d=d(x,): The variable x, can be redefined to be d
via the relation

dy=d**d-1). (1.68)

[23] ds?=[2/(x, — 1)x3/ 2} (dx, dx, + dx, dx,) + 2dx, dx,

+d? + dxl/ (x, = 1242 + d?/ x,. (1.69)
¢c. d=w, const: The differential form is
[24] ds?=2dx, dx, +2dx, dxg + 2dx, dx, + dx®
+wdxd + (1/w) dl. (1.70)

In addition we must consider the case when f,#0 and d,
=0. From (1.63a) this implies f,=d, so that f=d + 5
with 6 #0. Integrating (1.63c) once, we get dy=56d"*/?
+d*2, The variable x, can then be redefined to be d.
The resulting differential form is

(25] ds?=2(x,+5) dx, dx, + 2x572(dx, dxg + dx, dx,)

+ (g +6) dx? +x, dx2 + dx?. (1.71)
(ii) In this case the separation condition a,;/a,,
=ulx,)v(x;) ensures that 4 and f can each be expressed
as products of functions in each of the variables x, and
%, We may therefore take f=h(x,)r(x,), d=h*(x,)s(x,).
If » and s are both constants, then (1.63f) implies &,
=0. This case has already been found and corresponds
to (1.69), (1.70). For nonconstant v and s=const=1,
(1.63a) can be put into the form

k3 1 % hzvz)
= — o — — —l + 2 2 - .
oh fgs 20— 1) ( 7 v+ 2h; —-2—-17
For the right-hand side of (1.72) to be a function of x,
only, we require that i =exp(x,) and = exp(x;). By
choosing now variables & and ¥ the differential form
becomes

[261 ds?=2x,dx,dx, + 2%, dx, dxs + 2dx, dx,
3dx1 A%y 2 X dxs

(1.72)

+ x0%5 dx? +dxl +dxd. (1.73)

It is not hard to show that this is the only form of the
functions » and s which are compatible with the curvature
equations.

(2) For the case of explicit x, dependence it can be
shown by straightforward but lengthy calculations that
there are no differential forms of this type. Similar
remarks apply to the case of R-separation.

This concludes our derivation of the differential forms.

Il. EXPLICIT COORDINATES AND R-SEPARABLE
SOLUTIONS

Here we present the list of coordinates corresponding
to the differential forms given in Sec. I. We also present
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with each coordinate system the separation equations
and a representative solution where possible. We con-
nect the listed coordinate systems with the symmetry
group of () by giving the operators which specify the
separation constants in terms of the generators of the
symmetry algebra. We need only recall here the form
of the generators in the coordinate representation. [For
more information on the group structure associated with
(*) we refer the reader to Paper 8 in this series. | The
generators are

1. Translations: Py=3,, P;=32,, P;=2,. (2.1)
2. Two-dimensional Lorentz subgroup SO(2,1):

My =x ay_ya:ﬂ Myy =10, +x9,, M02:t8y+yat'

(2.2)
3. Dilatation: D=-13,—-x3, — 3, 3. (2.3)
4. Special conformal transformations:
Ky=—t- (*+x"+v%)8, - 2tx3, - 21,3,
K, =x+({*+x%~ 913, + 2xt8, + 2xyd,, (2.4)

Ky=y+ ( +y? =x%)2, + 2913, + 2yx0,.

In a number of cases we give simpler forms of the dif-
ferential forms than given in Sec. 1. This is achieved
by making use of earlier results in this series of papers
and is mentioned when it occurs. We now list the co-
ordinate systems:

[1] ds?=2dx, dx, + x}dx3. (2.5)
The coordinates are given by

t=2x, +3x02% + 2, (x5 + 1), x =2, + 32,55 + 2575,

Y =xy(x5 +1). (2.6)
The separation equations are

% =LA, 2%} z%g—szz %B, g-;% +,C=0, (2.7)

where ¥ =A (x,)B{x;)C(x;) is a separable solution of (x).
A typical solution is

cosVl, x4
= exp(lyx)xs’? exp(—1,/21x,) (2.98)

sinvl, x,

The operators /; and /, which specify this coordinate
system are given in terms of the generators by

Li=Py+Py, [y=My— M) 2.9)
[2] ds®=dx? + 2dx, dx, + x%dx3. (2.10)
The three space coordinates are given by

t=x,coshx;, x=x,8inhy;, y=x+x,. (2.11)
The separation equations are
dA a*B (1 dB (1, 1
== = +{— -2, \=— +{ % --L}B=0
dx, bk 5’?{ <x2 1) dx, (’_‘% x2) ’

(2.12)

d*c

d—xg- =LC.
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A typical solution is

P =exp(l,x,) exp(lyx,) Cz, (ilyx,) exp(ivl, x;), (2.13)

where C,(z) is a solution of Bessel’s equation. The
operators which specify the coordinate system are

L1=Py, [,=M}. (2.14)
[3] ds®=2dx,dx, +dxi. (2.15)
The three space coordinates are
V24 =x+xy, V2x=x1-%,, V=2x; (2.16)
The separation equations have the form
dA dB d*c
E;CT:liA’ Ex—;_lzB’ d—xg-:—2l1lzc. (2.17)
A typical solution is
cosv2llyxg
b= exp(lix; +lox,) (2.18)
sinv2llyxg

The operators which specify the coordinate system are

[1=V2 (Py+P), [,=V2 (Py~P)). (2.19)
|4] ds?=dxd+ 2dx dx, +dx. (2.20)
The three space coordinates are

(i) t=x,, x=2x1+%, y=x3, (2.21)

(ii) t=x;+ x5, x=2%y, Yy=x3.
The separation equations have the form

dA d*B dB B d’c _
:ZiA, W—le dxz —123_0, Zi—x*;s-_tIQC.

dxy
(2.22)
A typical solution is
cosVl, + Iix, cosvi lyxg
b =exp(lx,) exp(l,x,) .
sinvl, + 1% «, sinvslyx,
(2.23)

The operators which specify the coordinate system are

() [y=P,+Py, [,=P}

. (2.24)
(1) L1:Po, L2ZP§-
2
[5] dstea 2% 1y dxd%) 42, (2.25)
X1 Xq
The three space coordinates are
t=xgxy = /%y,  x=xpxy+1/%y, y=2x5. {2.26)
The separation equations are
dA d'B dB d*c
—_ — —— - = :l C.
dx, =LA, x, E;g' +(1-21) dx, 1,B=0, 3?3' 9
(2.27)
A typical solution is
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2 cosvV-I, x4
Y= x1 xz C,1(2i Viyx,) . (2.28)
sinv-I, x4
The operators which specify the coordinate system are
Ly=My, [,=P}. (2.29)
(6] ds?=xixidx? + 2xidx, dx, +dx3. (2.30)

The three space coordinates are
F=x5[3%,(1 =~ Ex)) + (E= 1/E)(1 = Ex;)(1 - x1x,/2)
+1/E (1 - x,5,/2)],
x=x5[1-2(1 = Ex;)(1 - x,x,/2)],
y =x4[3%,(1 — Ex,) + (E + 1/E)(1 - Ex,)(1 - xx,/2)
- (I/BE)(1 - %2,/ 2)],

EcR. (2.31)
The separation equations are
dA d*B dB
E:llA, xzz—y+2( —ll)dz—lzB-—o,
(2.32)
2
x%%—g— +2x35 -1, =0.
A typical solution is
x
Z,D— exp[ - 1/)62 ] j+1/2 (ili/x2)x§1/2 ’
=j-1
X3
(2.33)

where I,=35(j + 1). The operators which specify the co-
ordinate system are

[i=(E*+1)M, + (E = )My — 2EMy,, [,=~3+D%.
(2.34)

(7] ds®=x3(x}~ 1) dx? + 2% dx, dx, +dx?. (2.35)

There are two alternative parametrizations in three
space which correspond to the above differential form.
They are

(1) t=xgl(eT+E)+ze 1t (xy + 1)+ E)? - 2¢71 (x, +1)]
x=2x5[1= 2™ (x, + 1)(E + ™), (2.36)

y =201+ E) + 3™ (x, + 1)(" + E)2 + 2¢™1 (x, +1)],

where Ec IR
(ii) t=x,{(4/a@) (E-cothzx,)[1+ (E sinh}x, —coshix,)
X (coshzx; ~ %, sinhzx,)]

+(a/4) sinh} x, (coshzx, — x, sinhdx, )}, (2.37)

x =x3[1 = 2(E sinhzx, — coshzx,)(coshix, — x, sinhjx,)],
¥ =x3[(4/@)(E - cothzx,)[1 + (E sinhzx, — coshix,)

X (coshzx, — ¥, sinhzx,)]

- (&/4) sinhzx (coshzx, - x , sinhgx, )],

where o, E€R and o #0.
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The separation equations are

dA d'B dB
E;l—:llA’ (1- xz)——2-+(2l1 )dx2 +1,B=0,
(2.38)
. d*C dc
x3;1—2' +2x3d——-l C =0.
A typical solution is
1,72 Pilx,) x}
=o't (2Tl (2.39)
- X +1 1! et
Q' (xy) X3

where I, =j(j +1). The functions P} (z) and Q¥ (z) are
Legendre functions of the first and second kind respec-
tively. The operators which specify the coordinate sys-
tem are

(1) Ly=2Mp=-EMp+My), Ly=-%+D%,
(i) L=/ )(E? - )My, + M) + (a/4) (M, — My,)

- 2EMy,, [,=-—1+D% (2. 40)
[8] ds®=xi(x3+1)dx? +2xEdx, dx, +dxi. (2.41)
The three space coordinates are given by
t=x,l- (4/a)(E +tanix,)
x [1+ (sinzx, + E cossx,)(sinzx, + x, coszxy)]
—{a/4) costx, (sinzx, +x, coszxy)],
x =x5{1 = 2(singx, + &, cossx,)(sinzx, + E coszx,)], (2.42)
v =x5[~ (4/a)(E + tangx,)[1 + (sindx, + E cosix,)
X (sinzx, +x, coszx,)]
+ (a/4) coszx(sinzx, +x, coszxy)],
where ¢, E€cR and ¢ > 0.
The separation equations are
dA o d°B dB
de —l144, (1 +x2)?i;§'+2(x2—l1)d ) _ZZB:O’
(2.43)
dc dc
2 ~ —
X3 d—'xT +2.X3 dx3 lzc-—o.
A typical solution is
i) (.
o — 1\ 141/2 SP; 1(”2)( \ x3
P=exp(x,) <;2TI) s
2 lli(lxz)g ?x§]-1
(2. 44)

where as usual I, =j(j +1).
the coordinate system are

The operators which specify

Li=@/a)(1 +EY My +My) + (@/4) (M5 — My;) + 2EM,,,

[y==%3+D%, (2.45)

(9] ds?=(x,/x,)dx? + 2dx, dx, + x,dx3. (2.46)
The three space coordinates are given by
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t+x =22V —3x63Vx, , t-—x==2Vx;, y=x3Vx,. (2.47)
The separation equations are
dA d’B ., dB d*C
X4 dx; =UA, x 'd;%- + (21 = 3) (—fx—z- +1,B=0, d—"x%- =1,C.
(2. 48)
A typical solution is
. COS‘/E X3
¢=(x1/xz) ng/4C3_4,1(2vl2x2) (2.49)
sin‘/l_z X3
The operators which specify this coordinate system are
Li==3D=%, [,=51(My— Myp) (2.50)
[10] ds®=2dx, dx, + 2dx, dx, + wdx} + (1/w)dxd.  (2.51)
The three space coordinates are
t+x=2x+2(1 = E/Yw )xy + (0= Ex,,
t=x==2x,, y=x/Vw +Ex,. (2.52)
The separation equations are
d’c dc
2 _ 9., Y —
dxl =LA, ~lzB w a-é- 2wl xs +241,C=0.
(2.53)
A typical solution is
cos{ly (2L, — wil,) |1/ 2,
P =exp(lix,) exp(lyx,) expllyn;)
sinfZ; (27, — W)} %,
(2.54)

The operators which specify this coordinate system are
Li=P,+Py,
(2.55)

[11] ds?=2dx, dx, + 2dx, dxy +wxd/ 3 dx? +dxk/wxd/?. (2. 586)

The three space coordinates are

t+x=2x,+2%; + (wx, = 3E/2Vw )x2/3 = w2 (Fwal/? - E)®,
t=x==1x v=(3/2Vw)x}? -1 '’} + Ex,. (2.57)
The separation equations are
dB
gA LA, T =1{,B,
*1 *2 (2.58)

& ac
%y Zz}fr + (=2 - Gy +1,/wx/3)C =0.

The operators which specify this coordinate system are
Li=Py+Py,

Lz-‘:%wwz(Moz‘Mu) +é(P1"Po)
- ZEX(Py+ P,) + EP,.

(2.59)

364 J. Math. Phys., Vol. 17, No. 3, March 1976

L,=3(w-E) (P, +P,) +3(P,~P)) +EP,.

(12] ds®=2dx,dx, + 2dx, dxs + (w/x3) dx} + (x%/w) dx2.
(2.60)
The three space coordinates are given by

t4x=2x,+ 2% = Xx%/w — QE/Vw ) x5 — %%y — w/x,,

e X ==y, ¥ =2X%/Vw +Ex,. (2.61)
The separation equations are
gf =LA, 22 C?TB +(,+x,)B=0,
2 (2.62)
d*c dac 1l
20—
i 2l =— ax, C=0.

A typical solution is
coshVIZ + 1,1,/ w x,
sinhViZ + 1,1,/ w x.

(2.63)

Y =exp(lx)x;'/? exp(ly/2x,) exp(l x;)

The operators which specify this coordinate system are

[=P,+P,, [;=2w(P,+P,)+K,+K,. (2. 64)

[13] ds?=2dx,dx, + 2dx, dxy + (wxs/3/x2) dal + (x%/wxl/ %) dx?.
(2.65)

The three space coordinates are given by

t4x =200 + 2%y = (9/4w)xd 3%, +{ w/ 2%, — (3E/Vw)x,]x2/3

—E%, +Ew®’?/3x, —w®/108x3, (2.66)
t—x==%y, y=1{(3/2Vw)xx}/% +w3'?/6x, + Ex,.
The separation equations are
dA , dB (1, _
dxi'—l’A’ 2x3 2 Fg ) +(Z1 +x,) B=0,
(2.67)
d’c ., dac (h L 1/3>
x3c—l}'§'+(3—2l1x3)dx3 -— 3 +wx3 C=0.

The operators which specify this coordinate system are
[y=Ky+K,+3Ew®/ (P +P)) - $0*/?P,,
(2.68)

[i=P,+Py,

[14] ds?=2dx,dx, +2dx, dxy + (xy/%,)dx} + (xy/x5) dx}.
(2.69)
The three space coordinates are given by

tx=2x = By — 4E Vitpxy, f—x==1x,, y=2Vxx3 +Ex,,

(2.170)
The separation equations are
dA dB
le—1 :l144, sz dx2 =12.B,
2.71)
d*c
X3 d—z‘ + (% 2l1x3) —lllzc 0.
X3
A typical solution is
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¥ =explly(r; +x9) 1322 Dy poii [ (1 +DV2Tx), (2.72)

where D,(z) is a parabolic cylinder function. The
operators which specify the coordinate system are

[1=Py+Py, [,=EM;~Mp)-My~D-3. (2.73)

[15] ds?=2dx,dx, +[2x3/2/(xy + B)1 /] dx, dx,
+ (x3/%5) dxk + [xp/ (x5 + B)] dx2.

(2.74)

The three space coordinates are
t+x=2%; = 2%+ Va3 (x; + B) - 28In(Vxy + B + V) - Blnx,
- E’,— 4Ex} %(xy + B)'/?, (2.75)
l—x==2x5, ¥ =2\/3c2(x—3+§) + Ex,y.
The separation equations are

dA dB

E =11E1, X9 3?2' =ZZB’

(xy+ ﬂ) _2' +[z- 20y Vxg(xg + B)] dC

X3
1/2
+{2l1lz +11, [1 —(ffcié) ]} c=0.
3

The operators which specify the coordinate system are
[1=Py+Py,
Ly=- %[B(Po +Py)-D - My - 3 +EMyy - Mgp)].

(2.76)

(2.77)

2 2
2_
[16] ds*= ATy e dxydsxy + T Ty 7T P2 i%s
(2.78)

X 2 X 2
+ ——d— dx? + 22 dx?,
x2(1 +)’x2) 2 x3 3

The three space coordinates are given by
t+x =22 = 2(1 +yxy)t /2 (BYy +x3) = 4E Vi, + 23,
b x == (2/y)(1 +yx)/?,
y =2Vxxy + (2E/7)(1 +yx,) 12,

The separation equations are

dA dB
a?t =lt[4, 2l1x2(1 +'yx2)1/2 d—x: +[%(1 +7x2)1/2_ ZZ]'Bzo’
(2. 80)
d’c

X3 Eg‘ + (2 211X3) + (l2 -1 )C 0.

The operators which specify this coordinate system are
L1=Py+Py, [,= (')’/4)(Ko +Ky)+ (/v - E*)P,

- (1 +E)P, - EPy]. .80
2 2x1/2
[17] ds® = "y dxdx, + T d%20%,
(1 +vxy) (1 + %) (x5 + B)
(2. 82)
+ X3 dx? + dx}
%L +7%) T (i +B) &

The three space coordinates are given by
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t4x=2x;~ (2/V)(1 +vx) 2 (x5 + E?) = 4E Vx, (x5 + B)

~BIn[(VI +yx, - 1)/(VT+yx, +1)] + Va3 (x5 + B)
- 28In(Vx; + B+ Vx5 )
t—x== (/7)1 + yx,)?%, y=2Vx, (x5 + B) + CE/Y)WVI +7x,.

(2.83)

The separation equations are

;:_ZIA 2%, V1 4+ yx,y d +(g\’1+'yx2 5,)B=0,
1

(2.84)

d’c dcC
(x5 +B) 7 +[3 - 21, Va3 (xy + B)] —

dx; dx

1/2
- 1(mre) Je=o.
2 X3

The operators which specify the coordinate system are
[i=Py+P,,

Lo= (7’/4)(Ko +K,) + (1/')’)(P0—P1) - (2E/7’)P2

+(EY/y = B)(Py + Py). (2. 85)
(18] ds?=2dx,dx, + 2wx,dx,dx, +dxd + wixidx:  (2.86)
with modulation function R = wl;xyx3.

The three space variables are given by
t+x=2x;, t—x=—2%; 9=2x;+3Wx5. (2.87)
The separation equations are
gxﬁ =14, 27—~ 2032 +1,)B=0,
t (2. 88)
2
t;—cg- + (2Bwx, + L,1,)C =0.
A typical solution is then
Ai)
$=exp(liwryxs + Lixy + 4 Liw?sd +5lyx,) (2.89)
Bi(z)

with z = (213w)'/ %%, + 1,(23w)"1/3, The functions Ai(z) and
Bi(z) are Airy functions.

The operators which define the coordinate system are

Ll=P0+P1’ LZ=P1—P0+2(UW12—M02). (2.90)

[19] ds®=2dx, dx, + 2(xyx5 + w/x,) dx, dx, @.91)

+ (x5 + w/x2)? dxd + 22 dxl.

with modulation factor R = + 3,%x,x5 + wlyx,/%,. The three
space coordinates are

t+x =2x1 - szz - 2Ex2x3 +2 (.I)E/xz,

(2.92)
t=x=~2%y, y=2xyx3+Exy— w/xz.
The separation equations are
E.G. Kalnins and W. Miller, Jr. 365
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dA dB wl
7, =l 2d o= +( -t —l2>B= 0,
: (2.93)
d‘C
+ (— 4wllx-l)C:0.
d_x:z; 12Xy =2
A typical solution is
p=x;""% ex (lxx Wl - w
=X PlatXoxg + % 1T W, T 6x
Aiz) (2.94)
x b
Bilz)

where z = (413w)! /3%, + 1,(415w)"1/3,

The operators which define the coordinate system are
L1:P0 +Py, LZ:Kl +K, +4wP,. (2. 95)

[20] ds? =2dx,dx, + 255 dx, dx,
+[odxd/ (1 + xd) ] do + (1 +x8) dxd

(2. 986)

with modulation function R = 31,x,x3.
The three space variables are

t+x:2x1— szz— 2Ex3(1 +x%)1/27
2.97
t—x=~-x,, y=x3(1 +x§)“2+Ex2. ( !

The separation equations are

dA

a4 ) 4B
dx, 21,(1 + x3)

:llA’ de

+ (- 1) B =0,
(2. 98)

d*’c
E}—C; + (l%x% + ZZ)C =0.

A typical solution is then

Y= (1 +x3)"1* explalwgad +1x; + (1,/20) tan™'x, |
XD_taity r1p /2 [+ ()3 VI ] (2.99)
where D, (z) is a parabolic cylinder function. The
operators which specify the coordinate system are
Li=Py+Py,

[;=-E*(Py+P)+2EP,+P,-Py+K,+K,. (2.100)

[21) ds®=2dx,dx, + 2ex,%5dx, dx,
+(x%x§/|1—x%l)dx§ + Il—x%ldx%,

where € =sgn{x% — 1) and the modulation function is R
=3¢l ppxk.

{2.101)

The three space coordinates are

t+x=2x1=E%; —2Ex,|1 - 2|2,

(2.102)
t=x==2xy y=1x3]1=x2|'2+Ex,.
The separation equations are
dB
j‘i =LA, 2= 1) T - U + B,
(2.103)

d*c
i (- Bx+1,)C=0.
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A typical solution is

(Io+l) /41
= exp(zel ywoxf +Iyxy) (x, = 1)° 20

(g1 /414 (2.104)
X(xy +1) D_cryeryy s21, & V2L %),

The operators which specify the coordinate system are
Li=Py+Py,

(2.105)
[,==E*Py+P,)= 2EP,+Py— P, + K, +K,.

[22] ds®=2dx,dx, +[2Vx; /(1 = x,)] (dx, dxy +dx, dx,)

+dx% + wydxl +dul/(1 - x,)? (2.106)
The three space coordinates are given by
t=2V1-x, sinhix,, x=2V1-x, coshix,, (2.107)
Y =%1 %y + 2¥%; +1n[(Viy — 1)/ (Vx, +1)]
The separation equations are
2
gxﬁ ~14, g—?- 2zld —LB=0,
! (2.108)

d*C
(x —1)6—1—7+(x3—1+2l1 )—~+(—£1—+lz—éll>czo.
X3 2x3

The operators which specify this coordinate system are

[,=P,y, [y=~3iM} —~M,P,+Pi. (2.109)
2 2
(23] ds :m(dxidxz +dx,dxs) + 2dx dxs
(2.110)
+dxd + ———1—2—;—1) 7 P
The three space coordinates are given by
t=2V(1/x))~ 1 coshix;, x=2V(1/x;)-1 sinhzx,,
111
y =xq + x5+ 20512 + In[(Vx, +1)/ (Vxy = 1)]. (2.111)
The separation equations are
dA
Ex_1' —llA,
d‘B 21 dB
200 _ 1)2 _ _ s\ 4o
x5(xy = 1) c_z’y_cg- (3x2 208 — x5 + Py > i,
(2.112)
l l
1 P -0
+ 5 +1, ZxZ)B ,
d‘c dc
Z’E _led ~1,C=0

The operators which specify the coordinate system are

L1=Py, [y=—5M} ~MyP,+P5, (2.113)
[24] ds?=2dx,dx, + 2dx; dx, + 2dx, dxy +dxd + wdx}
+(1/w)dxd. (2.114)
The three space coordinates are given by
t=V{w=1)/w x;, x=Vw—1x,, yp=x+%,+%x5. (2.115)
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The separation equations are

dA d’B dB
—d-;c—i =LA, Zi}q{ —Zl‘a; -1,B=0,

(2.116)

d’C ac 1,
o~ g - L c=o0.

A typical solution is

Scosﬂzl +1,x, \cosVii+ 1/ /wx,
ZSinVlg +1, %y | sinVli+1,/w x,

(2.117)

P =expll,(x; +x, +x5)]

The operators which specify this coordinate system are
Li=Py, [y=(w=1)(Pi+P?)- (w-+1)P. (2.118)

[25] ds?=2(x; + 6)dx;dx, + 2x3/ *(dx, dx, + dx, dx,)

+ (x5 + 8) dx§ + x5 dxk +dxl/ (xy + B)°. (2.119)

The three space coordinates are given by
t=2V6{x, + 6) sinh[(x, +x, +2Vx;~2V5 tan™!Vx,/5)2V5 |,
x = 2V8(x, + 6) cosh[(x; +x, + 2Vx; = 2V5 tan 1Vx,/5)2V5 |,

y:\/ﬁ_xz. (2. 120)

The separation equations are

dA d*B dB
:i;; :l1A, zx-?z— —2117152— +lzB_0,

d’C dc N 5
(X3+5)E;§-+(1-211)Ex-3—+[l2—2 (1+x3>JC—-0.
(2.121)

The operators which specify the coordinate system are

Li=My, [,=0P;-M},. (2.122)

[26] ds?=2x,dx,dx, + 2x,dx,dxy + 2dx, dxy + X%, dx’
3 1 2 1 3 2 3 243

+dx3 + dxd. (2.123)

The three space coordinates are given by
t =%y, exp(x,/2) + exp(—x,/2),

(2.124)
X =xp%5 €xp(x1/2) ~ exp(=x,/2), ¥ =x,+x,.

The separation equations are

dA d’B dB
-6?1 =IA, x2d~x§—+(1-2l1)%+l2B:0’
(2.125)

2
0 28 1 1-21) % 0o,

dc
dxs dx

3
A typical solution is

¥ =expllyr,) (x%5) 1y, (@VE,)Co, (2VI05).  (2.126)
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The operators which specify the coordinate system are
L1=3My, 2[,=PMe;+MpPo+PM,+M,Py.
(2.127)

lll. OTHER TYPES OF SEPARATION

In this section we examine the coordinate systems as-
sociated with the diagonalization of the operator L
=3%M ;- (P, ~K,). The algebra of (*) when L has been
diagonalized is SL(2,R) with basis

A=3My,+:(Py~K,), B=1My +i(P,-K,),

C:‘%M02+%(P1'K1) 8.1
and commutation relations
[A:B]:c’ [C,A]:B7 [C,B]:A- (3-2)

The coordinate systems associated with the diagonaliza-
tion of L and an additional operator from the above
SL(2,R) algebra are the semisubgroup coordinates of
type 7 of Paper 8 of this series. In this section we give
the three subgroup coordinates discussed in Paper 8 and
leave open the question of whether there are any more,
This will be the subject of subsequent study. The three
coordinate systems we present are different from those
presented in the earlier two sections in that they do not
enable a separation of variables to occur explicitly in
the equation. This becomes clear for the individual co-
ordinate systems.

For the choice of variables

_ sinocosz(8+p)
~ cos0~cosz (B~ p) ’

____sinz(B-p)
~ coso - cosz(B8-p) ’

_ sinosinz(8+p) 3.3)

~ coso—coszs(B—p) ’

and ¢ =[coso — cosz (8- p)]'/? exp(ixB) ©(0, p), we have
Ly=1iyBy, where the function ©(0, p) satisfies the
equation

@A-B-CcHhe=(L* +He=(-yde. (3.4)

The diagonalization of A is easily performed in this co-
ordinate system as A =0d, when acting on the function ©,
and so for ©(c, p) = ®(0) exp(iTp) the corresponding
solutions of (x) have the form

Uy+(0, B, p) =[coso = cost (8- p)]'/?

+ X

X exp(ixB) exp(iTp)PIX, ;5 (coso). {3.5)

In particular we note that the SL(2,R) generators acting
on the functions © have the form

C +iB =exp(ip)(~ 3,~ i cothz, + x/sinhz + § tanh3z),

C ~iB= exp(- ip)(- 3,+1 cothz 3, - x/sinhz + § tanh3z),

A=2, (3.8)
where sino =tanhzz. The pure derivative parts of these
operators are the same as the corresponding operators
that would be obtained on the two dimensional hyper-
boloid parametrized by f=(coshz, sinhz, cosp, sinhz sinp).
This suggests the procedure necessary for the remaining

two subgroup coordinate systems which diagonalize C
and A - C, The appropriate change of variables is given
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by a knowledge of the subgroup type coordinates on the
hyperboloid. !! After extraction of the appropriate
modulation function, the separation of variables is
achieved. The results are:

1. The diagonalization of C: The appropriate change of
variables is coshz = cosha coshb, tanp —=tanha sinhb, and
the R-separation modulation function is

f=(cosha coshb +1)!/4 exp[ix tan™ (sinha cothb)).
3.7

The generators acting on the functions &, where 6 =%
have the form

A =sinhb3, — tanha coshb@, — iy coshb/cosha,
== coshb3, +tanha sinhbd, +ix sinhd/cosha,
(3.8)
Then for & =exp(iTh)H (a) the function H satisfies

32 d T . 9 l.>
(—532- + tanha 52 T (;-sxﬁza—smha+x -3 JH(@)=0
3.9)

with solutions

=1/2¢%

-1/24X
H(@)=P;m10.4772

(cosha), @, 77,577 (cosha),
where PL,(z) and Q.,(2) are the generalized Legendre
functions, =13

2, The diagonalization of A~ C: The appropriate
change of variables is

coshz = cosha + 537%™, tanp=ve™®/(sinha +372e™),
and the modulation function is
f=[(cosha +3r%¢™*= 1)/(cosha + 372" + 1) ['*/2
expi~ % tan" v/ (e® + 1)}

The generators acting on the functions & =f3 have the
form

B=03,+73, A=C=3,,

A+C=2rd, + -3, +5(2e-1).

(3.10)

(3.11)
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Then for & =exp(iTr) H(a) the function H satisfies
[8%/3a ~ 3/3a~ T2 = }iT (2° = 1)~ x2 + L H(a) =0,
(3.12)
which has solutions
H(@)=M; ;4,002 -int/2 (2T€%),

where M, ,(z) is a solution of Kummers differential
equation. ™ We see that each of the subgroup types has
an R-separable solution and does not fit into the scheme
of Sec. I, We do not yet know if there are any more
systems of these types.

The principal contribution of this article is to provide
examples of R-separable solutions, which to our
knowledge have not previously been exhibited. A unified
group theoretical approach must be able to account for
the explicit solutions and coordinate systems produced
here.
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