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ABSTRACT

The development of a visco-resistive length scale for the thickness of a reconnecting current sheet would have
significant consequences for the physics of magnetic reconnection in solar flares. In this paper, planar magnetic
reconnection in an incompressible visco-resistive plasma is investigated analytically and numerically. Relaxation
simulations are performed in an “open” geometry that allows material to enter and exit the reconnection volume.
Solutions of two types are identified depending on the strength of the external flow that drives the reconnection.
For sufficiently strong flows separate resistive and viscous layers develop in the reconnection region. In this case
merging rates are found to be largely independent of viscosity. However, when the flow is too weak to produce a
localized current layer, an equilibrium lacking any small-scale structure is obtained. The central conclusion is that
neither of these steady-state solutions provide evidence of a visco-resistive length scale.
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1. INTRODUCTION

Magnetic reconnection is recognized as a key mechanism
in the evolution of solar and stellar plasmas. In practice, the
electrical resistivity of the plasma is often too small to deter-
mine the reconnection rate. In the solar corona, for example,
the collisional resistivity corresponds to an inverse Lundquist
number of order η � 10−14, a value that makes it difficult to ob-
tain magnetic dissipation rates implied by observations of solar
flares. Accordingly, recent reconnection research has focused
on the search for extra physical processes that could speed up
the reconnection rate, such as Hall effects or plasma turbulence
(e.g., Cassak et al. 2006; Malakit et al. 2009; Litvinenko 2009,
and references therein).

In the solar corona the dimensionless viscosity ν exceeds
the dimensionless resistivity η by many orders of magnitude. It
is therefore reasonable to expect that plasma viscosity should
strongly modify the reconnection process. Dimensional argu-
ments for a visco-resistive Sweet–Parker current sheet (Park
et al. 1983; Biskamp 1994) and analytical solutions for weakly
perturbed magnetic X-points (Titov & Priest 1997) predict that
the speed of the reconnection outflow should decrease and the
thickness of the current sheet should increase if η � ν � 1.
Specifically, the emergence of a visco-resistive length scale
(ην)1/4 for the current sheet thickness is predicted.

While the visco-resistive scale has been identified in recon-
nection simulations in closed line-tied X-points (Craig et al.
2005), it remains questionable whether the (ην)1/4 scale can
emerge in flux pile-up reconnection in an open geometry
(Sonnerup & Priest 1975). A preliminary study by Fabling &
Craig (1996) suggested that flux pile-up merging in an incom-
pressible plasma should remain largely unaffected by viscous
effects. The question is important in the context of modeling of
energy release in solar flares. For typical coronal parameters we
have η1/2 < di < (ην)1/4 where di, the scale of the Hall effect,
is the dimensionless ion skin depth based on the proton plasma
frequency (see Section 2.1 below). Hence the visco-resistive
scale for the current sheet thickness would be large enough to
justify the use of fluid models to describe the structure of a flar-
ing current sheet, whereas the resistive Sweet–Parker scale η1/2

would strongly suggest the need for collisionless reconnection
models.

Motivated by the conflicting results of the previous studies,
in this paper we explore the influence of plasma viscosity on
reconnection solutions by invoking an exact analytical reduc-
tion of the governing MHD equations. Specifically, we focus
on generalizing the inflow solutions for reconnective annihila-
tion (Craig & Henton 1995) to the case of a viscous resistive
plasma. In contrast to the steady-state treatment of Fabling &
Craig (1996), we examine the dynamic relaxation of the visco-
resistive MHD system by formulating an initial value problem
and investigating whether visco-resistive boundary layers ap-
pear in the quasi-steady solution. Moreover, when the visco-
resistive layers do not emerge, we also explore the extent to
which inviscid reconnection solutions (e.g., Craig & Henton
1995) can approximate viscous flux pile-up merging.

The paper is organized as follows. In Section 2, we present the
MHD system and discuss the analytical reduction that leads to
reconnection solutions. The singular nature of the ideal system is
discussed and it is pointed out that the system changes character
when the external driving flow is no longer strong enough to
localize the reconnecting magnetic field. Exact steady resistive
solutions are then presented that reinforce the key role played by
the external flow amplitude. In Section 3, the dynamic relaxation
problem is formulated, and the resolution of singularities by
resistive and viscous effects is investigated. It is shown that,
depending on the strength of the flow, both localized current
sheet solutions and extended diffuse solutions are possible. The
impact of these findings is discussed in Section 4.

2. FORMULATION OF THE PROBLEM AND
IDEAL SINGULARITIES

2.1. Incompressible MHD Equations

We consider the resistive MHD equations in an incompress-
ible viscous plasma. These are written in dimensionless form
by adopting reference values of the magnetic field B0, plasma
density ρ0, and length L. Velocities are measured in units of
the Alfvén speed vA = B0/

√
4πρ0. A typical coronal number

density 109 cm−3 and B0 = 102 G give vA � 109 cm s−1. Times
are scaled according to tA = L/vA where L = 109.5 cm.

The dimensionless momentum and induction equations are
given by

∂tv + (v · ∇)v = −∇p + (∇ × B) × B + ν∇2v, (1)
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∂tB = ∇ × (v × B) + η∇2B, (2)

where the v and B fields satisfy

∇ · v = 0, ∇ · B = 0. (3)

The system is controlled by two dimensionless parameters
ν and η which derive from collisional forms for the scalar
viscosity and resistivity, normalized by vAL and 4πvAL/c2,
respectively. For coronal applications we should take ν � 10−4

and η � 10−14. In terms of the normalized ion skin depth
di � 10−6.5 the ordering is η1/2 < di < (ην)1/4, which
suggests that resistive and Hall effects may be inhibited by
the emergence of visco-resistive scales. Some caution must be
exercised, however, in interpreting results based on a classical
viscosity, as opposed to a more general anisotropic viscous stress
tensor (Braginskii 1965; Hollweg 1986). Although the scalar
form is strictly justified only in the vicinity of a magnetic neutral
line (Craig & Litvinenko 2005), the classical form is typically
used in theoretical studies of visco-resistive reconnection (Titov
& Priest 1997; cf. Litvinenko 2005).

2.2. Analytic Reduction

A wide variety of reconnection solutions can be constructed
using the forms

v = α P(x) + u(x, t), B = β P(x) + b(x, t). (4)

Here, α and β are positive constants of order unity, P is a large-
scale background field and u and b are dynamic reconnection
fields. Solutions are constructed by assuming reconnection fields
of reduced dimensionality based on “fan” and “spine” forms for
merging in two or three dimensions.

In the present application we consider only the simplest
system, associated with a two-dimensional null P = (−x, y),
namely,

v = −αxx̂ + (αy + u(x, t))ŷ, B = βxx̂ + (−βy + b(x, t))ŷ.

(5)

In this case α � 0 defines the strength of a global stagnation
point flow that washes curved field lines (β > 0) toward a
merging region centered on the origin (Craig & Henton 1995).
We refer to the system as “flow dominated” when α > β.

We are interested in determining reconnection fields u and b
given plausible conditions on the boundary surfaces x = ±1.
For reconnection fields that are odd functions of x, we have

ut − αxux + αu = βxbx − βb + νuxx, (6)

bt − α(xb)x = ηbxx + β(xu)x. (7)

Our aim is to explore this system using a combination of analytic
and numerical techniques based on arbitrary initial conditions.
However, the numerical relaxation is most conveniently per-
formed using stream and flux function representations of the
fields. The relaxation can then be parameterized by the flux
transfer rate E–a rate that is both uniform and constant in steady
two-dimensional reconnection solutions.

2.3. The Ideal MHD System

In the absence of dissipation the system of Equations (6)
and (7) can be expected to develop singularities. Since the
location and strength of these singularities can provide insight

into the development of viscous and resistive boundary layers
in the solution, it is instructive to consider the properties of the
ideal system.

Setting ν = η = 0 and introducing the variables

τ = t, s = ln x + αt, (8)

system (6) and (7) can be reduced to a Klein–Gordon equation
for b, namely,

bττ − β2bss = (α2 − β2)b. (9)

This equation is valid in fact for any linear combination of the
fields u and b. A formal solution of the Klein–Gordon equation
within the context of three-dimensional magnetic merging is
given by Craig & Fabling (1998; see also Tassi et al. 2005).
For the present our aim is simply to emphasize the changing
character of the solution as the inflow strength decreases, that
is, as α is reduced below β.

The characteristics of Equation (9) are given by s ± βτ
which correspond in the original variables to ln x + (α + β)t
and ln x + (α − β)t . The characteristics define the propagation
of information and both are inward pointing and converging for
α > β. Thus, if a wave envelope located in the outer field is rep-
resented initially as the superposition of two pulses, one pulse
will localize toward the origin on the fast timescale (α + β)−1,
while the other will localize more slowly on the timescale
(α − β)−1. It follows that the case α > β corresponds to grow-
ing field envelopes that steepen significantly, generating large
currents close to x = 0. Formally, this behavior corresponds to
the formation of a current singularity at the origin. For α < β,
however, the characteristics of the slow pulse are outward point-
ing and diverging. This pulse therefore produces relatively weak
currents as it propagates outward.

The singular behavior at the origin can be resolved only by
non-ideal resistive effects. The resulting diffusive length scale
determines the reconnection rate of the solution. This point is
illustrated by the well-known, steady resistive solution described
below.

2.4. Singularity Resolution by Resistivity

For an inviscid plasma ν = 0, the steady momentum
equation (6) yields

u = −β

α
b(x) + γ x, (10)

where γ is a constant. The steady induction equation (7) is now
integrated to give

b(x) = E

ημ
daw±(μx) − βγ

2ημ3
(μx − daw±(μx)) . (11)

Here, E = const is the electric field component along the z axis,

μ2 = |α2 − β2|
2αη

, (12)

and

daw±(x) = e∓x2
∫ x

0
e±s2

ds (13)

is a Dawson function with the sign chosen to match that of
α2 − β2. Expression (11) departs from the general steady
solution only by the absence of an even component of the form
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Figure 1. Magnetic field lines ψ for inviscid reconnection in the case η = 10−3,
α = 1, β = 0.25, and E = 0.1. Note the one-dimensional current layer
overlying the origin.

exp(−μ2x2) (Watson & Craig 1997; Tassi et al. 2005) which
gives rise to asymmetric current layers.

Solution (11) with α > β and γ = 0 defines the reconnection
model of Craig & Henton (1995). In this case there is a well-
defined current sheet at the origin of thickness

xs �
√

2η

α− , α− ≡ α2 − β2

α
. (14)

The magnetic field achieves the strength

bm � E

η
xs � E√

ηα− (15)

and falls off as E/(α− x) outside the current layer. Clearly
for physically relevant fields with bm = O(1) we require E
to scale as

√
η. The case β = 0 recovers the annihilation

model of Sonnerup & Priest (1975). However, as the shearing
parameter β increases, the current layer broadens, becoming
increasingly diffuse as β → α. The case β > α—not explored
previously—provides a profile for b(x) that grows exponentially
with distance from the origin.

Finally, anticipating our numerical results, we emphasize the
term involving γ . This allows an exact linear solution that lacks
any small-scale structure:

b = E

η
x, u = −α

β
b (16)

for γβ = −2Eμ2. More critically, this simple linear solution
remains valid when the viscosity ν 
= 0.

Figures 1 and 2 contrast the field lines of the Dawson
function reconnection model with the uniform current solution
of Equation (16). Notably, in Figure 2, the field accumulates at
the outer boundary: there is no localized current layer overlying
the origin.

2.5. Singularity Resolution by Resistivity and Viscosity

When both η and ν are nonzero, the MHD system is too
complicated to allow an exact analytical solution for reconnec-
tion of two-dimensional magnetic fields, although generaliza-
tions of the magnetic merging solution with β = 0 are available
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Figure 2. Sheared magnetic field ψ for the case η = 10−3, α = 0.25, β = 1,
and E = 0.1. In contrast to Figure 1, this solution has a weak uniform current
density.

(Sonnerup & Priest 1975; Besser et al. 1990; Jardine et al. 1992).
Notably, a visco-resistive length scale does not appear in any of
those solutions.

To explore the structure of a more general steady reconnection
solution in the physically interesting case η � ν � 1, we
assume that the daw+ solution (11) approximates the magnetic
field profile b(x) everywhere except in a resistive current
layer of thickness

√
η/α−. This is certainly the case in an

ideal outer region where resistive and viscous effects are
negligible. Substituting b = E/(α−x) in the steady momentum
Equation (6) yields

ν

α
u′′ + xu′ − u = 2βE

αα−x
, x >

√
η

α− . (17)

The odd solution of this equation is

u(ξ ) = Aξ + εξ ln ξ − 1

6
εξ 3

2F2

(
1, 1; 2,

5

2
;−1

2
ξ 2

)
, (18)

where 2F2 is a generalized hypergeometric function (e.g., Olver
et al. 2010), ξ = (α/ν)1/2x > 0 and ε = 2βE/[(αν)1/2α−].
The constant A is defined by the matching condition u(∞) = 0
that follows from the ideal outer solution

u(ξ 
 1) ≈ − ε

2ξ
. (19)

To obtain an explicit expression for A, we use the reduction
formula

2F2(1, b; 2, d; z) =
(

d − 1

b − 1

)
1

z
[1F1(b − 1, d − 1; z) − 1]

(20)
and write

2F2

(
1, 1; 2,

5

2
;−1

2
ξ 2

)
= 3

2(−ξ 2/2)
lim
δ→0

1

δ

×
[

1F1

(
δ,

3

2
;−1

2
ξ 2

)
− 1

]
. (21)

We evaluate the limit by expanding the right-hand side in
a Taylor series and substitute the result into Equation (18).
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On using Equation (19), we get

A = −ε lim
ξ→∞

[
ln ξ +

∞∑
k=1

(−1)kξ 2k

2k(2k + 1)!!

]
, (22)

which gives A ≈ −0.365ε.
Of particular interest is u(ξ ) in the range (η/ν)1/2 < ξ < 1,

which describes the velocity profile within the viscous boundary
layer:

u(x) ≈ 2βE

να− x

[
ln

(√
α

ν
x

)
− 0.365

]
. (23)

We observe that a visco-resistive scale does not emerge
in the approximate steady solution for magnetic reconnection
in two dimensions, except possibly in a next iteration. Thus,
our analysis suggests that separate viscous and resistive length
scales—rather than a single visco-resistive scale—tend to de-
velop in planar reconnection dynamics.

3. RELAXATION SIMULATIONS OF THE
VISCO-RESISTIVE SYSTEM

3.1. Visco-resistive Relaxation

We now turn to the relaxation of the visco-resistive system
toward a steady equilibrium solution. Of central concern is the
role of viscosity in the relaxation.

Recall that the only small scale deriving from the steady
resistive solution is xs � √

η/α− (see Section 2.4). In the
visco-resistive case though, dimensional considerations, based
on Equations (6) and (7) in steady state, suggest that any small
scale should satisfy

|α2 − β2|x4
s = ην + αx2

s |η − ν|. (24)

Three potential scales emerge√
η

α− ,

√
ν

α− ,
( ην

αα−
)1/4

. (25)

We retain α− in the denominator to account for the possibility
that small scales may be lost as β → α. We use numerical
relaxation simulations to determine which of these scales
emerges in a specific reconnection model.

To simulate the problem it is convenient to use stream and
flux function representations of the fields:

u = −fx(x, t), b = −gx(x, t). (26)

For reconnection fields that are odd functions of x the potentials
satisfy

ft − αxfx + 2αf = βxgx − 2βg + νfxx, (27)

gt − αxgx = ηgxx + βxfx. (28)

The steady-state equations can be recovered using the replace-
ments f (x, t) → f (x), g(x, t) → g(x) − Et .

In practice, the relaxation is modeled by specifying the
parameters α, β, η, ν and by assuming a fixed value of
E. This formulation allows the reconnection fields to adjust
dynamically to external flux washed through the outer boundary.
The boundary conditions at the origin now follow from the
symmetry of the potentials, fx(0, t) = gx(0, t) = 0. At the outer
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Figure 3. Inviscid relaxation of the reconnection magnetic field b for the case
η = 10−3, α = 1, β = 0.25, and E = 0.1. In the present run the relaxed velocity
field (dotted line) closely approximates u � −βb/α. Times (1–4) correspond
to 0.56, 1.12, 2.24, and 10.0 Alfvén times.

boundary x = 1 we take g = 0 and extrapolate f from the
interior solution. The extrapolation means that the method
cannot be used to find a solution with a boundary layer at
x = 1, which would be a visco-resistive analogue of the resistive
solutions of daw− type. This is not a significant limitation
of the method, however, since we are primarily interested
in reconnective solutions containing a localized current layer
within the region, typified by the daw+ resistive solution of
Figure 1.

For example, in the simplest case of inviscid reconnection,
a fully relaxed, well-resolved simulation should effectively
“pick out” a unique member of the one parameter equilibrium
family (11) specified by the value of γ . More generally, when
analytic solutions are not available, the relaxation from arbitrary
initial conditions should provide well-defined visco-resistive
equilibria. In what follows the initial conditions are taken as

g(x, 0) = x2 − 1, f (x, 0) = 1 + cos(πx), (29)

consistent with smooth large-scale fields at t = 0.

3.2. The Visco-resistive System for α > β

Figure 3 shows the development of a localized current layer
for a typical inviscid computation (α = 1, β = 0.25, η = 10−3,
ν = 0, E = 0.1). By around 10 Alfvén times the fields have
relaxed to their equilibrium values. The resultant equilibria are
found to closely approximate the Dawson function model with
u = −βb/α, b = E daw+(μx)/(ημ), and γ = 0.

The relaxation can be clarified by introducing the auxiliary
function

h = f (x, t) +
β

α
g(x, t). (30)

Then the h-field must become small for large times if an inviscid
solution with f � −βg/α is to be achieved. The system
becomes

ht − α+xhx + 2αh − νhxx = β

α
(α−xgx + (η − ν)gxx), (31)

gt − α−xgx = ηgxx + βxhx, (32)

where

α± = α2 ± β2

α
. (33)
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Figure 4. Comparison of field amplitudes for inviscid relaxation. The log-ten
plot shows that, after the initial localization phase 0 � t � 5, the h-field declines
exponentially before flattening out for t > 10. Parameters are those of Figure 3.

A key property of this system is that for ν = 0 the h-field
can evolve on a much faster timescale than the g-field. That is,
since the initial gradients in g are small (by virtue of the initial
conditions), the right-hand side of Equation (31) is negligible
for β sufficiently small. Under these conditions h localizes and
decays rapidly according to

h = h0(xeα+t )e−2αt , (34)

where h0 is the initial profile. Since the h-wave establishes
the reconnection fields at the level f � −βg/α, later times
t 
 1/α+ are characterized by the relatively slow relaxation

gt − α−gx = ηgxx. (35)

This behavior is illustrated in Figure 4 which shows the
log-ten amplitudes of the b−, u−, and h−fields. Following the
initial phase (0 � t � 5 for the present parameters), the h-field
declines in amplitude while continuing to localize. However, it
should not be assumed that the h-field vanishes completely even
for large times (say t > 10). This reflects the fact that minor
deviations from the Dawson function model with u = −βb/α
are present due to small but non-vanishing γ (see Equation (10)).

Consider now the more physically interesting case ν 
 η.
As Figure 5 with ν = 10η shows, the equilibrium velocity
field is strongly suppressed within the current layer (x < xs �√

η/α−). Thus, it is only in the outer field that the inviscid
relation u � −βb/α holds.

To understand this behavior note that, even with ν 
 η, there
is still a fast initial phase in which the h-field rapidly localizes
and decays. This decay is more pronounced than previously due
to the significant viscous damping of the h-field. For longer
times (t 
 1/α+), however, the h-field can no longer decline
because the viscous term on the right-hand side of Equation (31)
provides an effective source term. It follows that in the high
current region close to the origin where νgxx becomes large, the
b-field induces growth in the h-field, effectively suppressing the
reconnection velocity field u(x, t) over the scale of the current
layer.

The localization and induction phases are shown in Figure 6
for the case ν = 10η. These profiles differ markedly from the
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Figure 5. Profiles of the relaxed reconnection fields. Although the magnetic
field (top plot) peaks on the resistive

√
η scale, the velocity field (dotted line)

is suppressed within the current layer and peaks on the larger viscous scale√
ν. The intermediate plot shows the h-field profile. Parameters are η = 10−3,

ν = 10−2, α = 1, β = 0.25, and E = 0.1.
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Figure 6. Comparison of (log-ten) field amplitudes in viscous relaxation. The
localization phase for t � 5 is again evident, but in marked contrast to the
ideal relaxation of Figure 4, the h-field, being induced by the strongly localizing
b-field at the origin, is no longer small at large times. Parameters are those of
Figure 5.

inviscid simulation of Figure 4. Clearly, in the case of strong
viscosity, it is only in the outer field x �

√
ν/α− that the

reconnection velocity field is not strongly suppressed.
How are the peak magnetic and velocity fields related? If

we assume that the magnetic and velocity field amplitudes are
determined by the resistive and viscous scales, respectively, then
for ν > η we obtain

um � β

α

√
η

ν
bm, bm � E√

ηα− . (36)

5



The Astrophysical Journal, 747:16 (8pp), 2012 March 1 Craig & Litvinenko

−6 −5 −4 −3 −2 −1
−0.5

0

0.5

1

1.5

2

2.5

 log10(ν)

 lo
g1

0(
u m

) b
m

u
m

Figure 7. Scaling of the peak velocity and magnetic field with viscosity at fixed
η = 10−4. The velocity field amplitude um declines from the level βbm/α

as ν increases beyond η. Shown also is the reference line that derives from
Equation (36). Note that for the purposes of visual comparison the velocity
field has been scaled by the factor α/β. Parameters are α = 1, β = 0.25, and
E = 0.1.

Note that the approximate analytic solution (23) leads to
um = 1.06βE/[(αν)1/2α−]. This is consistent with estimate
(36) because a localized current layer emerges only if β < α and
thus α− ≈ α. The veracity of the argument is further supported
by Figure 7 which shows the scaling of the field amplitudes
predicted by Equation (36). Here η = 10−4 is fixed and the
viscosity is systematically varied between 10−6 and 10−1.5. We
see that the velocity amplitude (scaled by the factor α/β to aid
visual comparison) falls off as ν−1/2 in the case ν > η.

3.3. The Visco-resistive System for α � β

According to the analysis of the ideal system in Section 2,
the system is expected to change character if α < β. Relaxation
computations indeed confirm that when the flow is no longer
strong enough to localize the field, the field gets expelled from
the merging region, accumulating flux in the vicinity of the outer
boundary. Thus there is no reconnecting current layer. Even so,
a severe pile-up of the field in the outer regions, as suggested by
the resistive solution in terms of the Dawson function daw−(μx),
is not in evidence. What does occur is a relaxation to the linear
solution (16).

Figure 8 shows time slices of a typical field relaxation for the
parameters α = 0.25, β = 1, η = ν = 10−3, and E = 0.1. The
evolution contrasts sharply with the much faster relaxation of
the flow-driven solution in Figure 3.

The form the relaxation takes can be explored by defining a
discrepancy function q as

q = f (x, t) +
α

β
g(x, t). (37)

The relaxation equations are now

qt − 2αxqx + 2αq = β−(xgx − 2g) +
α

β
ηgxx, (38)

gt = ηgxx + βxqx, (39)

where

β− = β2 − α2

β
. (40)
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Figure 8. Relaxation of the reconnection magnetic field b for the case α = 0.25,
β = 1, E = 0.1, and η = ν = 10−3. Profiles 1–4 are snapshots taken at 2.2, 11,
17, and 30 Alfvén times, respectively. The dotted line shows the velocity field
at the final time t � 30. The b-field amplitude achieves the level E/η = 100
for sufficiently long times.
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Figure 9. log-ten amplitudes of the reconnecting fields vs. time. The parameters
are α = 0.25, β = 1, and η = ν = E = 10−3. Unlike the flow-driven
reconnection solution of Figure 4, the discrepancy field q is characterized by
well-defined oscillations.

A key aspect of this system is that the induction Equation (39)
is diffusive rather than advective in character. Accordingly, the
late relaxation in which

g(x) → −E

η

x2

2
, f (x) → −α

β
g(x), (41)

and q → 0, proceeds very slowly, over a timescale determined
by η−1.

Computations show that the q-field has an oscillatory decay in
contrast to the monotonic decline of the h-field in the flow-driven
reconnection model. In Figure 9, these oscillations are shown for
the parameters ν = η = E = 10−3. For this calculation we have
purposely assumed a relatively small value of E: this ensures that
the late evolution is dominated by oscillatory modes, as opposed
to the growing field gradients of Figure 8. Independent of these
considerations, increasing the viscosity always has the effect of
damping out the oscillations more rapidly.
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The oscillation frequency of the q-field is accurately described
by ω �

√
β2 − α2, which means that a Fourier mode exp(iks +

iωt) in the Klein–Gordon Equation (9) is characterized by a
small value of k. An exact analytical calculation confirms that
the equilibrium is approached via weakly damped Alfvénic
oscillations of frequency ω = β and decay rate ∼ | ln η|−3 when
ν = α = 0 (Bulanov et al. 1990). However, the interpretation of
the decay rate is more subtle since oscillatory wave modes have
the freedom to carry energy out of the source volume (Craig &
Fabling 1998).

3.4. Summary

The present relaxation solutions fall into two distinct cate-
gories, depending on whether or not the merging is flow dom-
inated. Neither category provides evidence of a visco-restive
scale. Thus, in the case α > β, the system is characterized
by the emergence of a localized, reconnective current layer of
thickness ∼√

η. In the absence of viscosity the reconnection
fields in the case α > β satisfy u(x) � −βb(x)/α, where
b(x) is well approximated by the Dawson function model, i.e.,
Equation (11) with γ � 0. Realistic levels of viscosity have
the effect of suppressing the velocity field within the current
layer and, for ν 
 η, the peak in u(x) is shifted to the broader
viscous scale ∼√

ν. The reconnection rate, however, remains in-
dependent of ν. More specifically, since the steady reconnection
field b(x) is always controlled by the resistive scale xs ∼ √

η,
flow-dominated merging rates remain well approximated by
the resistive Dawson function model even in the limit ν 
 η.
These conclusions are in good agreement with the approximate
analytical solution of Section 2.5 for steady visco-resistive re-
connection in two dimensions.

The geometry of the emerging steady solution changes
radically when the magnetic field dominates the imposed flow
(α < β). Localized current layers are no longer achieved
and what emerges from the dynamic relaxation are the simple
linear solutions of Equation (16), namely b(x) = Ex/η,
u(x) = −αb(x)/β. The more extreme equilibria associated with
the daw−(μx) functions are not achieved. Unlike the flow-driven
solutions, the linear equilibria are exact solutions, valid for any
value of ν. The relaxation now involves damped oscillatory
Alfvén modes whose frequency is given by

√
β2 − α2. Although

the dynamic interaction of these waves with the outer boundary
has the potential to provide transient visco-resistive layers of
thickness ∼ (ην)1/4, these layers are conspicuously lacking in
the equilibrium solutions themselves.

4. DISCUSSION

We have used relaxation simulations to obtain steady mag-
netic reconnection solutions of a visco-resistive MHD system.
Our main finding is that, in contrast to closed line-tied X-points
(Craig et al. 2005), the visco-resistive scale (ην)1/4 does not
emerge in flux pile-up magnetic reconnection in open geom-
etry. This result is significant because a fluid model based on
the visco-resistive scale would lead to a very slow ohmic en-
ergy release rate, a factor of (η/ν)1/4 slower than the resistive
Sweet–Parker rate. Moreover, as long as the large-scale recon-
nection inflow is fast enough (α > β), the resistive solution
defined by the Dawson function model provides a good approx-
imation to the magnetic field profile even for ν 
 η. Hence our
results imply that the scaling arguments for the parameters of the
Sweet–Parker current sheet in the case ν 
 η (Park et al. 1983)
are not universally valid (see also Armstrong et al. 2011). More

generally, the η1/2 scaling obtained in our visco-resistive simu-
lations implies that a complete description of a flaring current
sheet would need to incorporate collisionless effects.

An important aspect of our approach is that the boundary
velocity and magnetic fields are free to adjust to the internal dy-
namics of the relaxation. Although this approach is useful for in-
vestigating how ideal singularities within a volume are resolved
by resistive and viscous effects in internal boundary layers, it
is possible that other strategies—say, fixing the reconnecting
fields at the outer boundary—could lead to seemingly conflict-
ing results. Litvinenko (2006) takes u(1, t) = b(1, t) = 1 for
the system with α = 0, β = 1 and shows that both the flow
vorticity and the electric current density are localized on a scale
of order (ην)1/4 at the outer boundary rather than elsewhere in
the region. By contrast, the present analysis provides steady so-
lutions either without a small-scale structure (if α � β) or with
separate viscous and resistive layers within the merging region
(if α > β). To reconcile these results it should be remem-
bered that the present computation deals with open geometries
in which boundary fields can adjust dynamically. Thus, while
outward propagating waves impacting the outer boundary can
(and do) provide localized transient effects (especially in the
case α < β), these rapidly disperse during the relaxation allow-
ing smooth, global equilibria to develop.

It is interesting to compare these findings with the study by
Tassi et al. (2005). Tassi et al. (2005) investigated whether the
exact, steady resistive solutions of Craig & Henton (1995) could
be reached by a dynamically evolving MHD system when distur-
bances of the velocity shear and magnetic field are superimposed
onto initial large-scale fields containing a null point. A natural
question is whether the analysis of Tassi et al. (2005), based
on the field Equations (10) and (11) with prescribed boundary
conditions, can be generalized to explore the dynamic acces-
sibility of visco-resistive reconnection solutions. This is made
difficult because the reconnection solution of Craig & Henton
(1995) cannot be extended to include viscosity unless either the
magnetic field or plasma flow is strictly one-dimensional (e.g.,
Besser et al. 1990; Litvinenko 2006). Hence in this paper we
have adopted a more restricted approach: we obtain steady visco-
resistive solutions using relaxation simulations and explore how
these solutions deviate from the resistive reconnection models
as the viscosity is systematically increased. Once the relaxation
is achieved, however, it is straightforward to test the resulting
equilibria for dynamic accessibility. A preliminary analysis sug-
gests that the visco-resistive solutions of this paper are in fact
dynamically accessible.

This work was partially supported by NASA through a grant
to the University of New Hampshire. Useful suggestions by an
anonymous referee are acknowledged.
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