
Efficient Process Model Discovery Using
Maximal Pattern Mining

Veronica Liesaputra1, Sira Yongchareon1, and Sivadon Chaisiri2

1Department of Computing and Information Technology
Unitec Institute of Technology, New Zealand
vliesaputra@unitec.ac.nz, sira@maxsira.com

2Department of Computing & Mathematical Sciences

University of Waikato, New Zealand
sivadon@ieee.org

Abstract. In recent years, process mining has become one of the most important
and promising areas of research in the field of business process management as it
helps businesses to understand, analyze, and improve their business processes. In
particular, several proposed techniques and algorithms have been proposed to
discover and construct process models from workflow execution logs (i.e., event
logs). With the existing techniques, mined models can be built based on analyzing
the relationship between any two events seen in event logs. Being restricted by that,
they can only handle special cases of routing constructs and often produce unsound
models that do not cover all of the traces seen in the log. In this paper, we propose
a novel technique for process discovery using Maximal Pattern Mining (MPM)
where we construct patterns based on the whole sequence of events seen on the
traces—ensuring the soundness of the mined models. Our MPM technique can
handle loops (of any length), duplicate tasks, non-free choice constructs, and long
distance dependencies. Our evaluation shows that it consistently achieves better
recall, precision, F-measure and efficiency than the existing techniques.
Furthermore, by using the MPM, the discovered models are generally much easier
to understand.

1. Introduction

Process mining has become a promising field of research that helps businesses better
understand, analyze, monitor and improve their workflow processes. Process discovery
in particular is a core component of process mining that focuses on constructing process
models based on the analysis of processes using event log data produced from
information systems, such as workflow systems and business process management
systems. The discovered process models (e.g., in form of Workflow-net which is a
special class of Petri-net), can then be used for conformance checking, auditing, model
enhancement, configuring a WFM/BPM system, and process improvement [1].

Since the mid-nineties, several techniques have been proposed to automatically
discover process models from event logs in both software processes and business
process domains [2, 3, 4]. Several algorithms are variants of the 𝛼𝛼-algorithm (e.g., in
[8, 9, 10, 11]), which can be seen as a well-known technique where process discovery

https://www.researchgate.net/publication/220451684_Mining_process_models_with_non-free-choice_Constructs?el=1_x_8&enrichId=rgreq-12bb4642e8f25b9b29689f19c364d197-XXX&enrichSource=Y292ZXJQYWdlOzI4MTg2OTkyNTtBUzoyOTkxNjcyMDIyMDE2MDFAMTQ0ODMzODQyNzQ1Nw==
https://www.researchgate.net/publication/235950074_Process_Mining_Overview_and_Opportunities?el=1_x_8&enrichId=rgreq-12bb4642e8f25b9b29689f19c364d197-XXX&enrichSource=Y292ZXJQYWdlOzI4MTg2OTkyNTtBUzoyOTkxNjcyMDIyMDE2MDFAMTQ0ODMzODQyNzQ1Nw==
https://www.researchgate.net/publication/220079776_Datta_A_Automating_the_Discovery_of_AS-IS_Business_Process_Models_Probabilistic_and_Algorithmic_Approaches_Information_Systems_Research_93_275?el=1_x_8&enrichId=rgreq-12bb4642e8f25b9b29689f19c364d197-XXX&enrichSource=Y292ZXJQYWdlOzI4MTg2OTkyNTtBUzoyOTkxNjcyMDIyMDE2MDFAMTQ0ODMzODQyNzQ1Nw==
https://www.researchgate.net/publication/2312347_Discovering_Models_of_Software_Processes_from_Event-Based_Data?el=1_x_8&enrichId=rgreq-12bb4642e8f25b9b29689f19c364d197-XXX&enrichSource=Y292ZXJQYWdlOzI4MTg2OTkyNTtBUzoyOTkxNjcyMDIyMDE2MDFAMTQ0ODMzODQyNzQ1Nw==
https://www.researchgate.net/publication/3297301_Workflow_Mining_Discovering_process_models_from_event_logs?el=1_x_8&enrichId=rgreq-12bb4642e8f25b9b29689f19c364d197-XXX&enrichSource=Y292ZXJQYWdlOzI4MTg2OTkyNTtBUzoyOTkxNjcyMDIyMDE2MDFAMTQ0ODMzODQyNzQ1Nw==
https://www.researchgate.net/publication/2608129_Mining_Process_Models_from_Workflow_Logs?el=1_x_8&enrichId=rgreq-12bb4642e8f25b9b29689f19c364d197-XXX&enrichSource=Y292ZXJQYWdlOzI4MTg2OTkyNTtBUzoyOTkxNjcyMDIyMDE2MDFAMTQ0ODMzODQyNzQ1Nw==
https://www.researchgate.net/publication/244141134_Process_Mining_Extending_the_-algorithm_to_Mine_Short_Loops?el=1_x_8&enrichId=rgreq-12bb4642e8f25b9b29689f19c364d197-XXX&enrichSource=Y292ZXJQYWdlOzI4MTg2OTkyNTtBUzoyOTkxNjcyMDIyMDE2MDFAMTQ0ODMzODQyNzQ1Nw==
https://www.researchgate.net/publication/220616159_A_novel_approach_for_process_mining_based_on_Event_Types?el=1_x_8&enrichId=rgreq-12bb4642e8f25b9b29689f19c364d197-XXX&enrichSource=Y292ZXJQYWdlOzI4MTg2OTkyNTtBUzoyOTkxNjcyMDIyMDE2MDFAMTQ0ODMzODQyNzQ1Nw==

was first studied in the field. Nevertheless, due to the fact that the 𝛼𝛼-algorithms face
problems dealing with complicated routing constructs, noise, and incompletes [1], more
advanced techniques, such as region-based approaches (e.g., [22, 23, 26, 29]), heuristic
mining [12], fuzzy mining [13], and genetic mining [17], have been proposed to tackle
those aforementioned problems.

We argue that the existing algorithms for discovering process models are still unable
to efficiently and accurately handle loops (of any length), duplicate tasks, concurrency,
long dependencies and complex routing constructs. In fact, some of such algorithms
may produce unsound models. To address these problems, we propose a novel process
discovery technique called Maximal Pattern Mining (MPM). Instead of mining the
relationship between two events, MPM mines a set of patterns that could cover all of
the traces seen in an event log. We have implemented the algorithm and compared the
results with the existing algorithms. Our evaluation shows that the MPM always
produces sound process models with better precision, recall, and f-measure. The
processing time of our algorithm to mine and generate a process model is also
significantly shorter than all the existing algorithms.

The remainder of the paper is organized as follows. Section 2 reviews and discusses
the work that has been done in the process mining area. Section 3 proposes our MPM
technique for process discovery and its algorithm. Section 4 discusses a technical
evaluation and results. Finally, the conclusion and future works are given in Section 5.

2. Background and Related Work

In this section, we give some background and discuss related work in process mining,
especially techniques for process discovery (a.k.a. control-flow discovery). Several
discovery techniques have been developed based on algorithmic, machine learning, and
probabilistic approaches. Very early process discovery approaches have been proposed
by Cook and Wolf [3], Agrawal et al. [2], and Datta [4]. Cook and Wolf proposed RNet,
Ktail and Markov software process discovery approach using event-based data based
on statistical, algorithmic and probabilistic methods. Agrawal et al. and Datta studied
graph-based discovery approaches in the context of workflow processes. Manilla and
Meek [5] present a method for finding partial orders that describe the ordering
relationships between the events in a collection of sequences and applying mixture
modeling techniques to obtain a descriptive set of partial orders. However, their
techniques cannot deal with concurrency, decision splits, synchronous and
asynchronous joins, and other common issues found in a process mining field. Later,
Schimm [6, 7] proposed a procedural approach using data mining techniques to mine a
complete and minimal process schema from workflow logs that contains concurrent
processes. However, the approach is restricted to block-structured processes. Van der
Aalst et al. [8] proposed 𝛼𝛼-algorithm to learn structured workflow nets from complete
event logs. However, the 𝛼𝛼 -algorithm cannot cope with noise, incompleteness of
workflow logs, short loops, and non-free choice constructs. Later, Alves de Medeiros
et al. [9] developed 𝛼𝛼+ -algorithm, an improved version of 𝛼𝛼 -algorithm, which is
capable of detecting short loops. Further, Wen et al. [10, 11] proposed 𝛼𝛼++-algorithm
to discover non-free choice constructs and 𝛽𝛽-algorithm to detect concurrency. Due to

https://www.researchgate.net/publication/224588095_New_Region-Based_Algorithms_for_Deriving_Bounded_Petri_Nets?el=1_x_8&enrichId=rgreq-12bb4642e8f25b9b29689f19c364d197-XXX&enrichSource=Y292ZXJQYWdlOzI4MTg2OTkyNTtBUzoyOTkxNjcyMDIyMDE2MDFAMTQ0ODMzODQyNzQ1Nw==
https://www.researchgate.net/publication/226194368_Genetic_process_mining_An_experimental_evaluation?el=1_x_8&enrichId=rgreq-12bb4642e8f25b9b29689f19c364d197-XXX&enrichSource=Y292ZXJQYWdlOzI4MTg2OTkyNTtBUzoyOTkxNjcyMDIyMDE2MDFAMTQ0ODMzODQyNzQ1Nw==
https://www.researchgate.net/publication/220451684_Mining_process_models_with_non-free-choice_Constructs?el=1_x_8&enrichId=rgreq-12bb4642e8f25b9b29689f19c364d197-XXX&enrichSource=Y292ZXJQYWdlOzI4MTg2OTkyNTtBUzoyOTkxNjcyMDIyMDE2MDFAMTQ0ODMzODQyNzQ1Nw==
https://www.researchgate.net/publication/235950074_Process_Mining_Overview_and_Opportunities?el=1_x_8&enrichId=rgreq-12bb4642e8f25b9b29689f19c364d197-XXX&enrichSource=Y292ZXJQYWdlOzI4MTg2OTkyNTtBUzoyOTkxNjcyMDIyMDE2MDFAMTQ0ODMzODQyNzQ1Nw==
https://www.researchgate.net/publication/225164441_Process_Discovery_Using_Integer_Linear_Programming?el=1_x_8&enrichId=rgreq-12bb4642e8f25b9b29689f19c364d197-XXX&enrichSource=Y292ZXJQYWdlOzI4MTg2OTkyNTtBUzoyOTkxNjcyMDIyMDE2MDFAMTQ0ODMzODQyNzQ1Nw==
https://www.researchgate.net/publication/220079776_Datta_A_Automating_the_Discovery_of_AS-IS_Business_Process_Models_Probabilistic_and_Algorithmic_Approaches_Information_Systems_Research_93_275?el=1_x_8&enrichId=rgreq-12bb4642e8f25b9b29689f19c364d197-XXX&enrichSource=Y292ZXJQYWdlOzI4MTg2OTkyNTtBUzoyOTkxNjcyMDIyMDE2MDFAMTQ0ODMzODQyNzQ1Nw==
https://www.researchgate.net/publication/221176697_Process_Miner_-_A_Tool_for_Mining_Process_Schemes_from_Event-Based_Data?el=1_x_8&enrichId=rgreq-12bb4642e8f25b9b29689f19c364d197-XXX&enrichSource=Y292ZXJQYWdlOzI4MTg2OTkyNTtBUzoyOTkxNjcyMDIyMDE2MDFAMTQ0ODMzODQyNzQ1Nw==
https://www.researchgate.net/publication/2312347_Discovering_Models_of_Software_Processes_from_Event-Based_Data?el=1_x_8&enrichId=rgreq-12bb4642e8f25b9b29689f19c364d197-XXX&enrichSource=Y292ZXJQYWdlOzI4MTg2OTkyNTtBUzoyOTkxNjcyMDIyMDE2MDFAMTQ0ODMzODQyNzQ1Nw==
https://www.researchgate.net/publication/3297301_Workflow_Mining_Discovering_process_models_from_event_logs?el=1_x_8&enrichId=rgreq-12bb4642e8f25b9b29689f19c364d197-XXX&enrichSource=Y292ZXJQYWdlOzI4MTg2OTkyNTtBUzoyOTkxNjcyMDIyMDE2MDFAMTQ0ODMzODQyNzQ1Nw==
https://www.researchgate.net/publication/2608129_Mining_Process_Models_from_Workflow_Logs?el=1_x_8&enrichId=rgreq-12bb4642e8f25b9b29689f19c364d197-XXX&enrichSource=Y292ZXJQYWdlOzI4MTg2OTkyNTtBUzoyOTkxNjcyMDIyMDE2MDFAMTQ0ODMzODQyNzQ1Nw==
https://www.researchgate.net/publication/220272013_Global_partial_orders_from_sequential_data?el=1_x_8&enrichId=rgreq-12bb4642e8f25b9b29689f19c364d197-XXX&enrichSource=Y292ZXJQYWdlOzI4MTg2OTkyNTtBUzoyOTkxNjcyMDIyMDE2MDFAMTQ0ODMzODQyNzQ1Nw==
https://www.researchgate.net/publication/221586306_Fuzzy_Mining_-_Adaptive_Process_Simplification_Based_on_Multi-perspective_Metrics?el=1_x_8&enrichId=rgreq-12bb4642e8f25b9b29689f19c364d197-XXX&enrichSource=Y292ZXJQYWdlOzI4MTg2OTkyNTtBUzoyOTkxNjcyMDIyMDE2MDFAMTQ0ODMzODQyNzQ1Nw==
https://www.researchgate.net/publication/224256706_Region-Based_Foldings_in_Process_Discovery?el=1_x_8&enrichId=rgreq-12bb4642e8f25b9b29689f19c364d197-XXX&enrichSource=Y292ZXJQYWdlOzI4MTg2OTkyNTtBUzoyOTkxNjcyMDIyMDE2MDFAMTQ0ODMzODQyNzQ1Nw==
https://www.researchgate.net/publication/244141134_Process_Mining_Extending_the_-algorithm_to_Mine_Short_Loops?el=1_x_8&enrichId=rgreq-12bb4642e8f25b9b29689f19c364d197-XXX&enrichSource=Y292ZXJQYWdlOzI4MTg2OTkyNTtBUzoyOTkxNjcyMDIyMDE2MDFAMTQ0ODMzODQyNzQ1Nw==
https://www.researchgate.net/publication/220616159_A_novel_approach_for_process_mining_based_on_Event_Types?el=1_x_8&enrichId=rgreq-12bb4642e8f25b9b29689f19c364d197-XXX&enrichSource=Y292ZXJQYWdlOzI4MTg2OTkyNTtBUzoyOTkxNjcyMDIyMDE2MDFAMTQ0ODMzODQyNzQ1Nw==
https://www.researchgate.net/publication/222863428_Mining_exact_models_of_concurrent_workflows?el=1_x_8&enrichId=rgreq-12bb4642e8f25b9b29689f19c364d197-XXX&enrichSource=Y292ZXJQYWdlOzI4MTg2OTkyNTtBUzoyOTkxNjcyMDIyMDE2MDFAMTQ0ODMzODQyNzQ1Nw==

the fact that all 𝛼𝛼-algorithms face a robustness problem, Weijters et al. [12] proposed
Heuristics Miner by extending the 𝛼𝛼-algorithm to analyze the frequency of the three
types of relationships between activities in a workflow log: direct dependency,
concurrency, and not-directly connectedness. It is claimed that Heuristics Miner is able
to mine short loops and non-local dependencies. In contrast to the 𝛼𝛼 -algorithms,
Gunther and van der Aalst [13] proposed Fuzzy Miner, an adaptive technique to
discover behavior models from an event log using significance and correlation
measures. Their technique is capable of mining unstructured processes. Asides from
these techniques, Rembert and omokpo [27] proposed a process discovery technique
using 𝛼𝛼-algorithm with Bayesian statistics to incorporate prior knowledge supplied by
a domain expert to discover control-flow model in the presence of noise and
uncertainty.

Herbst and Karagiannis [24] proposed a discovery algorithm to construct a
stochastic activity graph and then convert it into a structured process model. Their
algorithm can discover duplicate activities but not non-local dependencies. Folino et al.
[25] proposed the Enhanced WFMiner algorithm to deal with noise, duplicate tasks and
non-free choice. Ferreira and Gillblad [28] proposed a technique to tackle the problem
of unlabeled event logs (without a case identifier) by using the Expectation–
Maximization procedure. Van der Werf et al. [26] proposed a discovery technique using
Integer Linear Programming (ILP) based on the theory of regions. Van der Aalst et al.
[22] proposed a Finite State Machine (FSM) Miner/Petrify two-step approach to find a
balanced trade-off between generalization and precision of discovered process models.
The theory of region is used in their approach as a method to bridge FSM and Petri-Net
models as also proposed in [23]. Sole and Carmona [29] presented an aggressive folding
region-based technique, which is based on the theory of region, to reduce the total
number of states of a transition system and speed up the discovery process.

Several machine leaning techniques have been used in the process discovery
domain. Maruster et al. [14] proposed to use propositional rule induction, i.e., a uni-
relational classification learner, to predict dependency relationships between activities
from event logs that contain noise and imbalance. Ferreira and Ferreira [15] apply a
combination of Inductive Logic Programming (ILP) learning and partial-order planning
techniques to discover a process model from event logs. In addition, Lamma et al. [16]
applied ILP to process discovery by assuming negative sequences while searching. Due
to the limitations of local search, these approaches were unable to detect non-free
choice constructs, duplicate tasks, and hidden tasks. Therefore, in order to discover
such constructs, Alves de Medeiros et al. [17] proposed a genetic algorithm which
performs a global search based on the use of fitness function using both a recall and a
precision measure to find the best matched models. The DT Genetic and Genetic Miner
can detect non-local patterns and, due to its post-pruning step, it has a reasonable
robustness. While the latter cannot detect duplicate tasks, the former can detect them.
Similarly, Goedertier et al. [18] proposed AGNEsMiner to deal with problems such as
expressiveness, noise, incomplete event logs, and the inclusion of prior knowledge by
representing process discovery as a multi-relational classification problem [19] on
event logs supplemented with Artificially Generated Negative Events (AGNEs). This
technique can learn the conditions that distinguish between the occurrence of either a
positive or a negative event. Furthermore, Greco et al. [20] proposed DWS mining to
improve precision. The technique is implemented in an iterative procedure that refines

https://www.researchgate.net/publication/224588095_New_Region-Based_Algorithms_for_Deriving_Bounded_Petri_Nets?el=1_x_8&enrichId=rgreq-12bb4642e8f25b9b29689f19c364d197-XXX&enrichSource=Y292ZXJQYWdlOzI4MTg2OTkyNTtBUzoyOTkxNjcyMDIyMDE2MDFAMTQ0ODMzODQyNzQ1Nw==
https://www.researchgate.net/publication/226194368_Genetic_process_mining_An_experimental_evaluation?el=1_x_8&enrichId=rgreq-12bb4642e8f25b9b29689f19c364d197-XXX&enrichSource=Y292ZXJQYWdlOzI4MTg2OTkyNTtBUzoyOTkxNjcyMDIyMDE2MDFAMTQ0ODMzODQyNzQ1Nw==
https://www.researchgate.net/publication/46429568_Robust_Process_Discovery_with_Artificial_Negative_Events?el=1_x_8&enrichId=rgreq-12bb4642e8f25b9b29689f19c364d197-XXX&enrichSource=Y292ZXJQYWdlOzI4MTg2OTkyNTtBUzoyOTkxNjcyMDIyMDE2MDFAMTQ0ODMzODQyNzQ1Nw==
https://www.researchgate.net/publication/221586322_Inducing_Declarative_Logic-Based_Models_from_Labeled_Traces?el=1_x_8&enrichId=rgreq-12bb4642e8f25b9b29689f19c364d197-XXX&enrichSource=Y292ZXJQYWdlOzI4MTg2OTkyNTtBUzoyOTkxNjcyMDIyMDE2MDFAMTQ0ODMzODQyNzQ1Nw==
https://www.researchgate.net/publication/225164441_Process_Discovery_Using_Integer_Linear_Programming?el=1_x_8&enrichId=rgreq-12bb4642e8f25b9b29689f19c364d197-XXX&enrichSource=Y292ZXJQYWdlOzI4MTg2OTkyNTtBUzoyOTkxNjcyMDIyMDE2MDFAMTQ0ODMzODQyNzQ1Nw==
https://www.researchgate.net/publication/221586158_Discovering_Process_Models_from_Unlabelled_Event_Logs?el=1_x_8&enrichId=rgreq-12bb4642e8f25b9b29689f19c364d197-XXX&enrichSource=Y292ZXJQYWdlOzI4MTg2OTkyNTtBUzoyOTkxNjcyMDIyMDE2MDFAMTQ0ODMzODQyNzQ1Nw==
https://www.researchgate.net/publication/220451773_A_Rule-Based_Approach_for_Process_Discovery_Dealing_with_Noise_and_Imbalance_in_Process_Logs?el=1_x_8&enrichId=rgreq-12bb4642e8f25b9b29689f19c364d197-XXX&enrichSource=Y292ZXJQYWdlOzI4MTg2OTkyNTtBUzoyOTkxNjcyMDIyMDE2MDFAMTQ0ODMzODQyNzQ1Nw==
https://www.researchgate.net/publication/221524852_Discovering_expressive_process_models_from_noised_log_data?el=1_x_8&enrichId=rgreq-12bb4642e8f25b9b29689f19c364d197-XXX&enrichSource=Y292ZXJQYWdlOzI4MTg2OTkyNTtBUzoyOTkxNjcyMDIyMDE2MDFAMTQ0ODMzODQyNzQ1Nw==
https://www.researchgate.net/publication/291099414_Process_Discovery_Using_Prior_Knowledge?el=1_x_8&enrichId=rgreq-12bb4642e8f25b9b29689f19c364d197-XXX&enrichSource=Y292ZXJQYWdlOzI4MTg2OTkyNTtBUzoyOTkxNjcyMDIyMDE2MDFAMTQ0ODMzODQyNzQ1Nw==
https://www.researchgate.net/publication/221586306_Fuzzy_Mining_-_Adaptive_Process_Simplification_Based_on_Multi-perspective_Metrics?el=1_x_8&enrichId=rgreq-12bb4642e8f25b9b29689f19c364d197-XXX&enrichSource=Y292ZXJQYWdlOzI4MTg2OTkyNTtBUzoyOTkxNjcyMDIyMDE2MDFAMTQ0ODMzODQyNzQ1Nw==
https://www.researchgate.net/publication/220095020_An_Integrated_Life_Cycle_for_Workflow_Management_Based_on_Learning_and_Planning?el=1_x_8&enrichId=rgreq-12bb4642e8f25b9b29689f19c364d197-XXX&enrichSource=Y292ZXJQYWdlOzI4MTg2OTkyNTtBUzoyOTkxNjcyMDIyMDE2MDFAMTQ0ODMzODQyNzQ1Nw==
https://www.researchgate.net/publication/224256706_Region-Based_Foldings_in_Process_Discovery?el=1_x_8&enrichId=rgreq-12bb4642e8f25b9b29689f19c364d197-XXX&enrichSource=Y292ZXJQYWdlOzI4MTg2OTkyNTtBUzoyOTkxNjcyMDIyMDE2MDFAMTQ0ODMzODQyNzQ1Nw==
https://www.researchgate.net/publication/220073608_Discovering_Expressive_Process_Models_by_Clustering_Log_Traces?el=1_x_8&enrichId=rgreq-12bb4642e8f25b9b29689f19c364d197-XXX&enrichSource=Y292ZXJQYWdlOzI4MTg2OTkyNTtBUzoyOTkxNjcyMDIyMDE2MDFAMTQ0ODMzODQyNzQ1Nw==
https://www.researchgate.net/publication/220308906_Top-Down_Induction_of_First_Order_Logical_Decision_Trees?el=1_x_8&enrichId=rgreq-12bb4642e8f25b9b29689f19c364d197-XXX&enrichSource=Y292ZXJQYWdlOzI4MTg2OTkyNTtBUzoyOTkxNjcyMDIyMDE2MDFAMTQ0ODMzODQyNzQ1Nw==

the process model in each step, based on clustering of similar behavior patterns. In [21],
Greco et al. proposed an approach for producing taxonomy of workflow models to
capture the process behavior at different levels of abstraction by extending traditional
discovery methods and an abstraction method.

Based on the above discussions, we have observed that only DT Genetic Miner [17]
can tackle all the typical problems in process mining, i.e., noise, duplicate tasks, hidden
tasks, non-free choice constructs, and loops. However, because of the nature of the
genetic algorithm, it consumes more processing time and space in order to learn and
construct a model. Mining efficiency is considered a major drawback of this approach
in which it is undesirable, especially when it is applied to a complicated real-life log.
To overcome such issues, we need to develop a better technique that can not only solve
all of the typical process mining problems but also takes much less time to process.

3. Maximal Pattern Mining (MPM)

As discussed earlier, the well-known α-algorithm and its variants can be considered the
most substantial techniques in the field of process mining [1, 8]. The model was built
based on the relationship of an event A with the event’s direct predecessors and
successors. However, those algorithms have problems with complex control-flow
constructs, such as non-free-choice constructs (where concurrency and choice meet),
arbitrary nested loops, duplicate tasks, etc.

Bose et al. [34] proposes an algorithm to discover common patterns on events in
traces, especially loops. Pattern similarity is calculated by using edit distance. Although
their evaluation shows promising results, it was not clear how it would handle other
control-flow constructs such as long distance dependencies and duplicate tasks, or how
accurate and robust their algorithm is compared to other existing process-mining
algorithms.

In this paper we use a similar pattern matching technique called Maximal Pattern
Mining (MPM) to construct a workflow model. Instead of looking at the relationship
between 2 events, we consider the whole sequence of events in all of the traces and find
the optimal set of “regular expression”-like patterns that will cover them. Therefore,
our algorithm can handle complex constructs such as non-free choice constructs, nested
loops of any length (as opposed to short one or two length loops), duplicate tasks and
long distance dependencies. It also uses a stricter rule than the edit distance uses in [34]
to find similar patterns.

We overview and detail the MPM technique in Sections 3.1 and 3.2. Then, the
assumptions and limitations of our technique are discussed in Section 3.3.

3.1. Overview
Let T = {t0, t1 … tn} be the collections of all the traces in an event log that are ordered
first by the value of the events in the trace and then by the number of events in the trace.
A trace tn is an ordered sequence of events or completed tasks, tn = 〈z0, z1 … zm〉. We
denote |tn| as the number of events in a trace. An event zm only contain 1 event type, i.e.
|zm| = 1. Possible event types include create, schedule, assign, revoke, start, addFact,
removeFact, updateFact, and complete [18]. All the traces and events in T and tn are

https://www.researchgate.net/publication/226194368_Genetic_process_mining_An_experimental_evaluation?el=1_x_8&enrichId=rgreq-12bb4642e8f25b9b29689f19c364d197-XXX&enrichSource=Y292ZXJQYWdlOzI4MTg2OTkyNTtBUzoyOTkxNjcyMDIyMDE2MDFAMTQ0ODMzODQyNzQ1Nw==
https://www.researchgate.net/publication/46429568_Robust_Process_Discovery_with_Artificial_Negative_Events?el=1_x_8&enrichId=rgreq-12bb4642e8f25b9b29689f19c364d197-XXX&enrichSource=Y292ZXJQYWdlOzI4MTg2OTkyNTtBUzoyOTkxNjcyMDIyMDE2MDFAMTQ0ODMzODQyNzQ1Nw==
https://www.researchgate.net/publication/235950074_Process_Mining_Overview_and_Opportunities?el=1_x_8&enrichId=rgreq-12bb4642e8f25b9b29689f19c364d197-XXX&enrichSource=Y292ZXJQYWdlOzI4MTg2OTkyNTtBUzoyOTkxNjcyMDIyMDE2MDFAMTQ0ODMzODQyNzQ1Nw==
https://www.researchgate.net/publication/3297301_Workflow_Mining_Discovering_process_models_from_event_logs?el=1_x_8&enrichId=rgreq-12bb4642e8f25b9b29689f19c364d197-XXX&enrichSource=Y292ZXJQYWdlOzI4MTg2OTkyNTtBUzoyOTkxNjcyMDIyMDE2MDFAMTQ0ODMzODQyNzQ1Nw==
https://www.researchgate.net/publication/200450209_Abstractions_in_Process_Mining_A_Taxonomy_of_Patterns?el=1_x_8&enrichId=rgreq-12bb4642e8f25b9b29689f19c364d197-XXX&enrichSource=Y292ZXJQYWdlOzI4MTg2OTkyNTtBUzoyOTkxNjcyMDIyMDE2MDFAMTQ0ODMzODQyNzQ1Nw==
https://www.researchgate.net/publication/200450209_Abstractions_in_Process_Mining_A_Taxonomy_of_Patterns?el=1_x_8&enrichId=rgreq-12bb4642e8f25b9b29689f19c364d197-XXX&enrichSource=Y292ZXJQYWdlOzI4MTg2OTkyNTtBUzoyOTkxNjcyMDIyMDE2MDFAMTQ0ODMzODQyNzQ1Nw==
https://www.researchgate.net/publication/222423164_Mining_taxonomies_of_process_models?el=1_x_8&enrichId=rgreq-12bb4642e8f25b9b29689f19c364d197-XXX&enrichSource=Y292ZXJQYWdlOzI4MTg2OTkyNTtBUzoyOTkxNjcyMDIyMDE2MDFAMTQ0ODMzODQyNzQ1Nw==

not unique, i.e. it is possible to have T = {〈a,b,c,b,b,c,d,e〉, 〈a,b,c,b,b,c,d,e〉,
〈a,b,b,c,e,d〉}.

 Given an input T, our algorithm will first create a list of unique patterns P = {p0, p1
… pi} and then generate a graph based on P. The following sections will describe each
of them.

A pattern pi = 〈e0, e1 … ej〉 is an ordered sequence of elements, |pi| is the number of
elements in the pattern and pi.support is the number of traces covered by the pattern.

An element ej = {v0, v1 … vk} contains k number of unique event types (i.e. |ej| = k)
and ej.loop is a list of 〈vk: w〉 tuples that indicate whether vk is self-looping (w = {vk})
and/or is the last element of a sequence-loop (w = {ex ex+1 … ex+y} and ex+y = vk). The
loop list is ordered first by event value and then by the number of elements in w (|w|).
An element’s value vk only contains 1 event type.

All the elements inside pi may not be unique. For instance, given the T =
{〈a,b,c,b,b,c,d,e〉, 〈a,b,c,b,b,c,d,e〉, 〈a,b,b,c,e,d〉} specified above, our algorithm will
only produce 1 pattern in P. p0 = 〈e0, e1, e2, e3〉, where e0 = a and e0.loop = ∅; e1 = b
and e1.loop = {<b: b>}; e2 = c and e2.loop = {〈c: {bc}〉}; and e3 = {d, e} and e3.loop =
∅. Elements with more than one event type indicate a parallelization. In our example,
e3 shows that in the last 2 events of our model the values could be either de or ed.
Because p0 covers all the traces in T, p0.support = 3.

Our graph algorithm will then generate the following model (Fig. 1) based on p0.
We use the operator AND to indicate the set of tasks that are running at the same time,
and XOR to indicate a path selection.

Figure 1. The generated model for {〈a,b,c,b,b,c,d,e〉,〈a,b,c,b,b,c,d,e〉,〈a,b,b,c,e,d〉}

The algorithm we use to construct the most optimal patterns for a given trace of events
has five main components: finding self and/or sequence loops, storing the pattern in a
vertical format, identifying events that should be done concurrently, investigating
whether a trace is covered by a pattern in P, and pruning non-maximal patterns.

Loops. A sequence of elements S = 〈s0, s1 … sq〉 is in a loop in the trace tn = 〈z0, z1 …
zm〉 or in the pattern pi = 〈e0, e1 … em〉 if and only if there is a sequence of elements such
that for all b ∈ {0…q}and q ≤ (m – a)/2, za+b = sb and za+q+b = sb or ea+b = sb and ea+q+b
= sb, where a is the starting index where S occurs in the trace or in the pattern (0 ≤ a ≤
m). The first phase of our pattern mining is to identify these loops. For every S+
occurring in tn and pi, we replace it with S and set the loop property of the last element
in S. For instance, given a pattern 〈a,b,b,c,d,{e,f},c,d,{e,f}c,d,{e,f}g〉, the pattern
becomes 〈a,b,c,d,{e,f}g〉 where the loop property for b is b, and the loop property for
{e,f} is cd{e,f}. We keep iterating on the pattern until there are no more loops in the
pattern. All the loops in the pattern 〈a,b,d,d,c,b,b,b,d,c,b,d,c,e〉 will be identified in 2
iterations: 1) 〈a,b,d*,c,b*,d,c,b,d,c,e〉, 2) 〈a,(b,d*,c)*,e〉. By identifying loops first,

MPM will be able to deduce that traces 〈a,b,d,d,c,b,b,b,d,c,b,d,c,e〉 and
〈a,b,d,c,b,d,d,c,e〉 are the same and are both covered by the pattern 〈a,b,d,c,e〉.

Vertical Representation. Existing process mining algorithms require several scans of
the event log or need to maintain large amounts of intermediate candidates in the main
memory to generate a process model [10, 11, 17, 19]. To alleviate this problem, MPM
stores all patterns in the vertical format as an IdList in bitset representation [32] where
each entry represents an element, the id of the trace where the element appears (id) and
the positions (pos) where it appears. The support of a pattern is calculated by making
joint operations with IdLists of smaller patterns. Thus, MPM would only need to
perform a single scan through the log to generate IdLists of patterns containing single
elements (see [32] for details). To make it more verbose, MPM uses the symbol $ to
indicate the end of a trace. Given T = {〈a,b,c,b,b,c,d,e,a〉,〈a,b,b,c,e,d,a〉,〈e,d,a〉}, the
vertical representation (VT) of it is represented as follow:

A b c D e $
id pos id pos id pos id pos id pos id pos
0 0, 5 0 1 0 2 0 3 0 4 0 6
1 0, 5 1 1 1 2 1 4 1 3 1 6
2 2 2 1 2 0 2 3

Concurrency. A set of events V = {v0, v1 … vq} are performed at the same time (or
parallel) if and only if there are at least q number of unique traces with the following
sequence 〈z0, z1 … za-1 za, za+1 … za+q za+q+1, za+q+2 … zm〉, where the sequence 〈z0, z1 …
za-1〉 and 〈za+q+1, za+q+2 … zm〉 have the same pattern across those traces, there are no
events mentioned more than once in 〈za, za+1 … za+q〉, and for all b ∈ {0…q}and q ≤ (m
– a), za+b ⊆ V, where a is the starting index where a combination of all the events in V
occur (0 ≤ a ≤ m). Sequence 〈z0, z1 … za-1〉 and 〈za+q+1, za+q+2 … zm〉 may be ∅. Instead
of za+b = V, we relax the criteria to za+b ⊆ V with the assumption that if we see almost
all of V possible events combination in T, it must just be the case that the trace log is
incomplete. For example, given a set of traces {〈a,b,c,d,e〉,〈a,b,d,c,e〉,〈a,c,d,b,e〉}. We
first look at the first two traces where we get 〈a,b,{c,d},e〉 as it is possible to switch the
position of task c and d around. We then compare it with the last trace where we get
〈a,{b,c,d},e〉 as we can switch the position of task c and d around with b. In the future,
we may use the trace frequency to help us decide when we should use the strict or
relaxed criteria.

Coverage. A pattern pi = 〈e0, e1 … en〉 specifies the sequence of patterns that covers
some of the traces in T and it can be represented as a deterministic finite automata DFAi
with (a) well-defined start state, (b) one or more accepted states and (c) deterministic
transitions across states on symbols of the event values. A trace tn = 〈z0, z1 … zm〉 is
covered by the pattern pi if and only if the sequence of transitions for the elements of tn
from the start state results in an accept state. Fig. 2 illustrates the deterministic finite
automaton for the pattern 〈a,b,{c,d},e〉 with the loop property for b to be b. We use > to
indicate the start state and double circles for the accept state. The diagram shows that
the pattern covers the following set of traces {〈a, b, c, d, e〉, 〈a, b, d, c, e〉, 〈a, b, b, c, d,
e〉, 〈a, b,…,b, c, d, e〉, 〈a, b,…,b, d, c, e〉}. However, it will reject the following set of
traces {〈a,b〉, 〈e〉, 〈a,b,h〉, 〈a,b,c,d〉, 〈a,b,b,d,c〉, 〈a,b,a,d,c,e〉}.

https://www.researchgate.net/publication/226194368_Genetic_process_mining_An_experimental_evaluation?el=1_x_8&enrichId=rgreq-12bb4642e8f25b9b29689f19c364d197-XXX&enrichSource=Y292ZXJQYWdlOzI4MTg2OTkyNTtBUzoyOTkxNjcyMDIyMDE2MDFAMTQ0ODMzODQyNzQ1Nw==
https://www.researchgate.net/publication/220451684_Mining_process_models_with_non-free-choice_Constructs?el=1_x_8&enrichId=rgreq-12bb4642e8f25b9b29689f19c364d197-XXX&enrichSource=Y292ZXJQYWdlOzI4MTg2OTkyNTtBUzoyOTkxNjcyMDIyMDE2MDFAMTQ0ODMzODQyNzQ1Nw==
https://www.researchgate.net/publication/220616159_A_novel_approach_for_process_mining_based_on_Event_Types?el=1_x_8&enrichId=rgreq-12bb4642e8f25b9b29689f19c364d197-XXX&enrichSource=Y292ZXJQYWdlOzI4MTg2OTkyNTtBUzoyOTkxNjcyMDIyMDE2MDFAMTQ0ODMzODQyNzQ1Nw==
https://www.researchgate.net/publication/221654436_Sequential_PAttern_mining_using_a_bitmap_representation?el=1_x_8&enrichId=rgreq-12bb4642e8f25b9b29689f19c364d197-XXX&enrichSource=Y292ZXJQYWdlOzI4MTg2OTkyNTtBUzoyOTkxNjcyMDIyMDE2MDFAMTQ0ODMzODQyNzQ1Nw==
https://www.researchgate.net/publication/221654436_Sequential_PAttern_mining_using_a_bitmap_representation?el=1_x_8&enrichId=rgreq-12bb4642e8f25b9b29689f19c364d197-XXX&enrichSource=Y292ZXJQYWdlOzI4MTg2OTkyNTtBUzoyOTkxNjcyMDIyMDE2MDFAMTQ0ODMzODQyNzQ1Nw==
https://www.researchgate.net/publication/220308906_Top-Down_Induction_of_First_Order_Logical_Decision_Trees?el=1_x_8&enrichId=rgreq-12bb4642e8f25b9b29689f19c364d197-XXX&enrichSource=Y292ZXJQYWdlOzI4MTg2OTkyNTtBUzoyOTkxNjcyMDIyMDE2MDFAMTQ0ODMzODQyNzQ1Nw==

Figure 2. The deterministic finite automata model for pi = 〈a,b,{c,d},e〉

Maximal Patterns. A pattern pi is said to be maximal if and only if there is no other
pattern pj in P that has the same start and accept states and covers the same or more
traces in T. Given P = {〈a,b,c,d〉,〈a,{b,c},d〉,〈a,b,c〉}, only p1 and p2 are maximal because
p0 is a sub-pattern of p1.

Optionality. A sequence of elements S0 = 〈s0, s1 … sq〉 in the pattern pj = 〈z0 … zm, s0, s1
… sq, zp … zr〉 is in an XOR (optionality) relations with a sequence of elements S1 = 〈s’0,
s’1 … s’t〉 in the pattern pk = 〈z’0 … z’n, s’0, s’1 … s’t, zu … zv〉 if and only if zm = z’n and
zp = zu. In some cases, zm and z’n could be a start state, and zp = zu could be the accept
state. For example, if P = {〈a,b,c,d〉,〈a,e,d〉,〈g,f〉,〈g,h〉}, the resulted graph will be
XOR(a  XOR(b  c, e)  d, g XOR(f, h)).

Noise (Frequent patterns and events). To further filter P from noisy data, we set a
support threshold value, thresh, so that we will only keep frequent pattern pi and event
vk, i.e. pi.support ≥ thresh and vk.support ≥ thresh. All patterns and events are accepted
if the threshold value is 0. To find out what the best threshold value is, we split the
traces that we used for generating the pattern into 2 sets: training and validation. Our
MPM algorithm generates maximal patterns only based on the traces found in the
training sets. We then evaluate the performance of all the patterns generated by MPM
on the traces of events in the validation set. If we are unhappy with the results, we
change the threshold value of our algorithm, re-generate the pattern of the training
traces based on the new threshold value and evaluate it on the validation traces. We
keep doing this until we find the optimal threshold value.

3.2. Generating maximal patterns
The pseudo-code of the MPM algorithm is shown in Alg. 1. MPM takes as input an
event log (T) and the support threshold value (thresh). For each trace tn, it identifies all
the loops, constructs the vertical representation of the log (VT) and get the set of frequent
events (E) as described in Section 3.1. Events in E, except for $, are ordered from the
most common to the least. For each event v in E, the procedure calls the EXPAND
procedure with 〈v〉, E and thresh.

The EXPAND procedure takes as parameters a sequential pattern (p), a set of items
(S) to be appended to p to generate candidates and minimum support value (thresh).
Each item (si) in the set S is appended to p as the next sequential item of p. Each of the
newly generated patterns are called pi’. Because any infrequent sequential patterns
cannot be extended to form a frequent pattern, the procedure uses IdList join operation
[32] to calculate the number of traces where the pattern pi’ appears. If pi’.support ≥
thresh, pi’ is then used in a recursive call to EXPAND to generate patterns starting with
pi’. All the frequent pi’ are passed onto the RESOLVE procedure.

https://www.researchgate.net/publication/221654436_Sequential_PAttern_mining_using_a_bitmap_representation?el=1_x_8&enrichId=rgreq-12bb4642e8f25b9b29689f19c364d197-XXX&enrichSource=Y292ZXJQYWdlOzI4MTg2OTkyNTtBUzoyOTkxNjcyMDIyMDE2MDFAMTQ0ODMzODQyNzQ1Nw==

Algorithm 1. The procedure of the Maximal Pattern Mining algorithm

MPM (T, thresh)
 VT = ∅
 FOR each trace tn ∈ T
 tn = SOLVE_LOOP (tn)
 VT = INSERT_TRACE (VT, tn)
 E = GET_FREQUENT_EVENTS (VT)
 PT = ∅
 FOR each event v ∈ E
 PT = PT ∪ EXPAND (〈v〉, E, thresh)
 PT = RESOLVE (PT, 0)
 DRAW_GRAPH (PT)

EXPAND (p, S, thresh)
 ST = ∅
 PT = ∅
 FOR each item si ∈ S
 pi’ = p ∪ si
 IF pi’.support ≥ thresh THEN
 ST = ST ∪ si
 FOR each item si ∈ ST
 PT = PT ∪ EXPAND (p ∪ si, ST, thresh)
 PT = RESOLVE (PT, |p|)
 Output PT

RESOLVE (FP, idx)
 CP = Copy of FP
 FOR each item pi ∈ FP
 FOR each item pj ∈ FP AND i < j ≤ FP.length
 IF pi [idx] ≠ $ AND pj [idx] ≠ $ AND
 pi [idx ... pi.length] = pj [idx ... pj.length] THEN
 pi = SOLVE_CONCURRENCY (pi, pj)
 pi = SOLVE_LOOP (pi)
 Remove pj from FP
 ELSE IF pj is sub-pattern of pi THEN
 Remove pj from FP
 ELSE IF pi is sub-pattern of pj THEN
 Remove pi from FP
 Go to the next item in FP
 IF CP ≠ FP THEN
 RESOLVE (FP, idx)
 Output FP

3.3. Assumptions and Limitations
An event in a transactional log usually contains information such as the event
type/value (e.g. apply for a drivers licence or update patient information), the
agent/performer that is doing the event, the requestor/client that initiates the whole
sequence of events, timestamp and the data element being modified or accessed (e.g.
the age of a patient, the driving test result). A trace of events is a sequence of events,
sorted by the timestamp, done for a client. Because the goal of MPM is to find all
possible orderings of the logged events in the system, only the event type/value are
mined. Once we have organized the log into sets of traces, other information, such as
timestamp and agent, are ignored. In this paper, the term event type and event value are
used interchangeably.

In an experimental setting, we know the original model that our algorithm should
strive to construct, the complete list of traces that the model could generate, and the
instances in a log that are negative examples. But in real life scenarios no original
models will be available; logs may contain noise such as mislabelled events and
incorrectly logged sequences of events and exceptions. In fact, a particular trace of
observed events does not have to be reproduced by the model. Furthermore, in a
complex process with many possible paths, only a fraction of those paths may be
present in the log, i.e., the log is incomplete. Thus, it is undesirable to construct a model
that allows only for the observed instances in the log. Since we do not know which
instance in the log is noise, we assume that every trace/event recorded in the log that
appears no less than a user’s specified threshold frequency is correct (positive
examples). However, unobserved traces of events are not considered as negative
examples. Our MPM algorithm can construct a model that can explain all the traces of
events found in the log while also allowing for any unobserved behaviour.

As shown in Section 4.4., because we are always trying to solve loops before
parallel tasks, just like α++, AGNEs and Heuristic Miners, our algorithm is incapable of
generating a model that can accurately represents duplicate tasks in a parallel process
structure.

4. Experimental Result

There have been many process mining algorithms developed in recent years and they
have been used in real life case studies. But there has been little effort done on creating
a framework that people can use to objectively compare the quality of the models
discovered by those algorithms. There were no common logs, evaluation criteria and
methodologies to measure the algorithms performance. In this paper, we evaluate the
quality of the mined model produced by MPM, α++, DT genetic miner, AGNEs and
heuristic miners according to logs that are mentioned in the respective publications. We
did not perform the evaluation on α and α+ as [10, 11] have reported that α++ can
construct a model that handles more complex control-flow constructs.

4.1. Criteria
Rozinat et al. [31] reviewed all the existing criteria used by various researchers to
validate their process mining techniques and found that they all shared the notions of

https://www.researchgate.net/publication/220451684_Mining_process_models_with_non-free-choice_Constructs?el=1_x_8&enrichId=rgreq-12bb4642e8f25b9b29689f19c364d197-XXX&enrichSource=Y292ZXJQYWdlOzI4MTg2OTkyNTtBUzoyOTkxNjcyMDIyMDE2MDFAMTQ0ODMzODQyNzQ1Nw==
https://www.researchgate.net/publication/220268118_The_Need_for_a_Process_Mining_Evaluation_Framework_in_Research_and_Practice?el=1_x_8&enrichId=rgreq-12bb4642e8f25b9b29689f19c364d197-XXX&enrichSource=Y292ZXJQYWdlOzI4MTg2OTkyNTtBUzoyOTkxNjcyMDIyMDE2MDFAMTQ0ODMzODQyNzQ1Nw==
https://www.researchgate.net/publication/220616159_A_novel_approach_for_process_mining_based_on_Event_Types?el=1_x_8&enrichId=rgreq-12bb4642e8f25b9b29689f19c364d197-XXX&enrichSource=Y292ZXJQYWdlOzI4MTg2OTkyNTtBUzoyOTkxNjcyMDIyMDE2MDFAMTQ0ODMzODQyNzQ1Nw==

recall, precision and generalization. Therefore, we have also used these criteria along
with time and F-measure to evaluate the performance of our algorithm.

Fitness or recall (R) is calculated by dividing the number of traces that are correctly
modelled by the model with the number of traces that are in the event log. Precision
(P) measures the number of traces that are correctly captured by the model divided by
the number of all possible sequences generated by the model. This criterion addresses
an overly general model. In contrast to Precision, generalization addresses an overly
precise model. As mentioned previously, it is not likely that a log is complete and noise-
free. Therefore, the mined model should be robust enough so that the removal or
addition of small percentage of traces in the log will not lead to a remarkably different
model. We also use F-measure to achieve a better understanding of the recall and
precision values, which can be calculated as followed: 𝐹𝐹 − 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 =
 (2∗𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟∗𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝)
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝+𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

. Most importantly, processing time is also considered one of the
critical criteria, we include the time taken by an algorithm to mine a process model as
one of our quantitative criteria.

4.2. k-fold cross validation
Based on the existing techniques, evaluating the quality of a mined model is achieved
by calculating the fitness, the precision, and the generalization measures of the model
on all of the traces found in a log, and usually the log used during the evaluation is the
same log that is used to build the model. However, it is well-known in the statistics and
machine learning communities that it is a methodological mistake to learn and test the
performance of a prediction function on the same data as the generated model will in
all likelihood get 100% accuracy on the training data but perform very poorly on a new
set of input data. This phenomenon is called over-fitting. To avoid over-fitting, the
available data should be separated into a training data set that is used to generate the
model, and a test data set that is used to evaluate the quality of the generated model.
The most common approach to do this is called k-fold cross validation and this is the
evaluation method that we use.

With k-fold cross validation, the log is split into k approximately equal sized
partitions. Each partition is used exactly once as the test set while the remaining data is
used as the training set. The performance of the algorithm is the average of the values
computed on each iteration. For example, in 3-fold cross validation, the log is divided
into 3 equal sized groups (A, B, C). First, the algorithm uses A and B as training data.
The performance of the generated model (P1) is then tested on C. Next, the algorithm
uses B and C as training data, and evaluates the performance of the constructed model
(P2) on A. Finally, A and C are used as training data, and the performance of the
generated model (P3) is tested on B. The overall performance of the algorithm is
measured by averaging P1, P2 and P3. In our evaluation, we use 10-fold cross validation.
Because k-fold cross validation ensures that our model does not over-fit the training
data (i.e. the model is general enough), the performance measured in each iteration is
recall, precision and f-measure.

In the process mining area, some researchers avoid over-fitting by evaluating the
performance of their generated model on “noisy” logs. These logs are created by adding
noise (such as artificial start and end events, incorrect event labelling, traces addition
and removal, etc.) to original logs. However, as mentioned previously, without an

explicit reference model, we do not know which specific instances in the original logs
is noise. Therefore, artificial logs may actually generate positive examples that we did
not observe in the original log and we may incorrectly label them as negative instances
[19]. This is also the reason why we do not think stratified k-fold cross validation,
where we artificially create negative examples, as proposed by [31] is appropriate.

A one-way analysis of variance and paired t-tests is then used to examine
statistically significant differences in the performance of each algorithm. This way we
can generate a process model on several data sets.

4.3. Setup
Similar to other discovery algorithms, our MPM algorithm is implemented as a plugin
of ProM [30]. In our evaluation, we use synthetics and real event log data to
demonstrate the fact that the MPM algorithm can significantly improve the
performance of the existing approaches, especially the α-algorithm and its variants. We
do not use parameter fine-tuning or metadata to enhance the performance of our
algorithm. We have also used the default settings for α++, genetic miner and AGNEs.
To further extend the capability of Heuristic Miner, we configure it to discover long
distance dependencies based on completed events’ values and positions on a trace.

4.4. Synthetic data
We compare the performance of MPM, α++, DT genetic miner, AGNEs and Heuristic
Miners on the artificial logs example that are used in [10, 11, 17, 19]. There are about
300 to 350 traces and maximum 10 unique events in each log.

Due to the fact that the α++ algorithm builds a process model based on the
relationship between any two events so that it does not allow an event to occur more
than once in the model, it requires additional heuristics to handle long distance
dependencies, short loops (maximum of two events) and non-free-choice constructs
(combination of choice and concurrency); and assumes that two or more events must
occur concurrently if they have the same parents (i.e. low precision). Therefore, it is
possible for α++ algorithm to produce unsound workflow nets as shown in Figures 3 and
4. Similarly, because Heuristic Miners also builds a casual matrix that represents the
relationship between any two events, it cannot handle duplicate tasks as illustrated in
Figure 5. Although AGNEs is more versatile than Heuristic Miners, it is still incapable
of handling complex non-free choice constructs such as displayed in Figure 6.

a) α++ algorithm

b) MPM algorithm
Figure 3. Log T = {ABCE, ACBE, ABDDCE}

https://www.researchgate.net/publication/226194368_Genetic_process_mining_An_experimental_evaluation?el=1_x_8&enrichId=rgreq-12bb4642e8f25b9b29689f19c364d197-XXX&enrichSource=Y292ZXJQYWdlOzI4MTg2OTkyNTtBUzoyOTkxNjcyMDIyMDE2MDFAMTQ0ODMzODQyNzQ1Nw==
https://www.researchgate.net/publication/220451684_Mining_process_models_with_non-free-choice_Constructs?el=1_x_8&enrichId=rgreq-12bb4642e8f25b9b29689f19c364d197-XXX&enrichSource=Y292ZXJQYWdlOzI4MTg2OTkyNTtBUzoyOTkxNjcyMDIyMDE2MDFAMTQ0ODMzODQyNzQ1Nw==
https://www.researchgate.net/publication/220268118_The_Need_for_a_Process_Mining_Evaluation_Framework_in_Research_and_Practice?el=1_x_8&enrichId=rgreq-12bb4642e8f25b9b29689f19c364d197-XXX&enrichSource=Y292ZXJQYWdlOzI4MTg2OTkyNTtBUzoyOTkxNjcyMDIyMDE2MDFAMTQ0ODMzODQyNzQ1Nw==
https://www.researchgate.net/publication/220616159_A_novel_approach_for_process_mining_based_on_Event_Types?el=1_x_8&enrichId=rgreq-12bb4642e8f25b9b29689f19c364d197-XXX&enrichSource=Y292ZXJQYWdlOzI4MTg2OTkyNTtBUzoyOTkxNjcyMDIyMDE2MDFAMTQ0ODMzODQyNzQ1Nw==
https://www.researchgate.net/publication/220308906_Top-Down_Induction_of_First_Order_Logical_Decision_Trees?el=1_x_8&enrichId=rgreq-12bb4642e8f25b9b29689f19c364d197-XXX&enrichSource=Y292ZXJQYWdlOzI4MTg2OTkyNTtBUzoyOTkxNjcyMDIyMDE2MDFAMTQ0ODMzODQyNzQ1Nw==
https://www.researchgate.net/publication/220308906_Top-Down_Induction_of_First_Order_Logical_Decision_Trees?el=1_x_8&enrichId=rgreq-12bb4642e8f25b9b29689f19c364d197-XXX&enrichSource=Y292ZXJQYWdlOzI4MTg2OTkyNTtBUzoyOTkxNjcyMDIyMDE2MDFAMTQ0ODMzODQyNzQ1Nw==

a) α++ algorithm

b) MPM algorithm

Figure 4. Log T = {ABDEHFI, ADBEHFI, ACDFGEI, ADCFGEI}

A

H

G
B

F

E

D

C

a) Heuristic Miner

XORA

H

XOR
D

E

XOR

XOR

B

C
XOR

A F

A G

XOR

b) MPM algorithm

Figure 5. Log T = {ADAF, AEAF, AHBAG, AHCAG}

A
C

ED

B

a)AGNES

b) MPM algorithm

Figure 6. Log T = {ABC, ABDE, ADBE}

Our MPM algorithm discovers a process model by reading patterns from the whole

sequence of events in traces. Thus, it has more stringent criteria than Heuristic Miners
or α++; it can handle duplicate tasks, long distance dependency, loops of any length and
non-free choice constructs. The process model discovered by MPM is always sound,
and it is generally more accurate and readable than the models mined by AGNEs,
Heuristic Miners or α++. However, MPM is incapable of generating a model that
accurately represents duplicate tasks in a parallel process structure, as shown in Figure
7. DT Genetic Algorithm was the only algorithm that could correctly mine this log.

AND AND
C

A

A

B

a) DT Genetic Miner

XOR

A

B

C

XOR

b) MPM algorithm

Figure 7. Log T = {ABC, ABDE, ADBE}

Table 1. The average recall, precision, F-measure and run-time

comparisons for the artificial logs

 Recall Precision F-measure Time
α++ 0.8 0.3 0.5 250 ms
Genetic 1.0 0.9 0.9 1 hour
Heuristics 0.7 0.5 0.6 10 s
AGNEs 0.8 0.7 0.7 5 mins
MPM 1.0 0.9 0.9 150 ms

Although there are no significant differences at the 95% level in terms of the

average recall between each of these algorithms, there is a significant difference at the
95% level in terms of average precision and F-measure. As displayed in Table 1, DT
Genetic Algorithm and MPM are the only algorithms that can consistently produce
models with high F-score values across all the synthetic data. A paired t-test evaluation
showed that there is no significant difference between them, however there is a 95%
level of confidence of there being a significant difference in F-score performance
between the Genetic Algorithm or MPM to α++ and Heuristic Miners. α++ and Heuristic
Miners tend to create an overly general model and so they are much less precise.
AGNEs could produce models that are more precise than α++ and Heuristic Miners so
there is only a 90% level of significant difference between Genetic Algorithm or MPM
to AGNEs.

While DT Genetic Miner will sometimes produce a model that is more accurate than
MPM, MPM can generate a similar model in significantly less time. Furthermore, MPM
can incrementally build and improve the mined model in near real time as it receives
new traces of events, i.e. the model becomes more accurate as it sees more unique traces
of events.

4.5. Real-life log data
Similar to the previous section, to evaluate the performance of MPM, α++, DT genetic
miner, AGNEs and Heuristic Miners we used the real-life Hospital log obtained from
[33]. For each log, we let each of the algorithms run for 5 days and if they exceeded
that we counted them as DNF (Did Not Finish).

From Table 2, we can see a similar pattern to the one that we found with the
synthetic data. DT Genetic Miner is the algorithm that takes the longest to finish. It
takes at least 4 days for Genetic Miner to return any sort of result. Therefore, we could
not comment on the recall, precision and F-measure of the model generated by DT
Genetic Miner. Unlike with the synthetic data, Heuristic Miners significantly
outperforms AGNEs in terms of F-measure and running time with the real-life log data
analysis at the 95% level. Heuristic Miners could generate a model significantly faster
than AGNEs, and the model is significantly more accurate and robust than that
generated from AGNEs. We argue that this difference is caused by the introduction of
incorrect false negative examples in AGNEs. Real-life logs contain much noise and
tend to be incomplete. As such, it is fairly easy for AGNEs to regard an unobserved
positive behaviour as a negative example. On the other hand, Heuristic Miners decides

the relationship between two processes based on the probability of process B following
process A given the evidence of prior processes as such it is more robust to noise.
However, MPM is still significantly better than Heuristic Miners at the 95% in terms
of both recall, precision and F-measure. The worst performing algorithm is α++.

In terms of comprehensibility (the total number of nodes and links created between
the nodes), the models generated by either of those algorithms are still difficult to read.
However, MPM shows most potential for task abstractions and α++ produces the most
complex and least readable models.

Table 2. Average Recall, Precision, F-measure and run-time of different
techniques across multiple logs

 Recall Precision F-measure Time
α++ 0.3 0.4 0.3 10 mins
Genetic DNF DNF DNF >5 days
Heuristics 0.7 0.8 0.7 1 hour
AGNEs 0.6 0.5 0.5 20 hours
MPM 0.9 0.8 0.8 9 mins

5. Conclusion and Future work

In this paper, we propose a novel technique called Maximum Pattern Mining (MPM) to
discover a process model from event logs. We implemented our technique and
evaluated it against well-known process discovery algorithms: α++, DT genetic miner,
AGNEs and Heuristic Miners algorithms. The results from our experiments show that
MPM performs better in terms of recall, precision, f-measure and run-time efficiency.
It can handle much more general cases, such as loops of any length and long distance
dependencies. In the future, we will implement a graph that will allow users to define
the tasks’ abstraction level. We will then compare our algorithm with a more
sophisticated process-mining algorithm such as ILP miner [16]. As MPM was able to
efficiently generate an accurate model from a real-life log in near real time, event-
stream mining is more feasible.

References

1. van der Aalst, W.M.P.: Process Mining: Overview and Opportunities, ACM
Transactions on Management Information Systems, 2012, vol. 3, no. 2, article 7.

2. Agrawal, R., Gunopulos, D., Leymann, F.: Mining process models from workflow
logs, in: Proceedings of the 6th International Conference on Extending Database
Technology (EDBT'98), 1998, LNCS 1377, pp. 469-483.

3. Cook, J., Wolf, A.: Discovering models of software processes from event-based
data, ACM Transactions on Software Engineering and Methodology, 1998 (7), pp.
215–249.

https://www.researchgate.net/publication/235950074_Process_Mining_Overview_and_Opportunities?el=1_x_8&enrichId=rgreq-12bb4642e8f25b9b29689f19c364d197-XXX&enrichSource=Y292ZXJQYWdlOzI4MTg2OTkyNTtBUzoyOTkxNjcyMDIyMDE2MDFAMTQ0ODMzODQyNzQ1Nw==
https://www.researchgate.net/publication/235950074_Process_Mining_Overview_and_Opportunities?el=1_x_8&enrichId=rgreq-12bb4642e8f25b9b29689f19c364d197-XXX&enrichSource=Y292ZXJQYWdlOzI4MTg2OTkyNTtBUzoyOTkxNjcyMDIyMDE2MDFAMTQ0ODMzODQyNzQ1Nw==
https://www.researchgate.net/publication/221586322_Inducing_Declarative_Logic-Based_Models_from_Labeled_Traces?el=1_x_8&enrichId=rgreq-12bb4642e8f25b9b29689f19c364d197-XXX&enrichSource=Y292ZXJQYWdlOzI4MTg2OTkyNTtBUzoyOTkxNjcyMDIyMDE2MDFAMTQ0ODMzODQyNzQ1Nw==
https://www.researchgate.net/publication/2312347_Discovering_Models_of_Software_Processes_from_Event-Based_Data?el=1_x_8&enrichId=rgreq-12bb4642e8f25b9b29689f19c364d197-XXX&enrichSource=Y292ZXJQYWdlOzI4MTg2OTkyNTtBUzoyOTkxNjcyMDIyMDE2MDFAMTQ0ODMzODQyNzQ1Nw==
https://www.researchgate.net/publication/2312347_Discovering_Models_of_Software_Processes_from_Event-Based_Data?el=1_x_8&enrichId=rgreq-12bb4642e8f25b9b29689f19c364d197-XXX&enrichSource=Y292ZXJQYWdlOzI4MTg2OTkyNTtBUzoyOTkxNjcyMDIyMDE2MDFAMTQ0ODMzODQyNzQ1Nw==
https://www.researchgate.net/publication/2312347_Discovering_Models_of_Software_Processes_from_Event-Based_Data?el=1_x_8&enrichId=rgreq-12bb4642e8f25b9b29689f19c364d197-XXX&enrichSource=Y292ZXJQYWdlOzI4MTg2OTkyNTtBUzoyOTkxNjcyMDIyMDE2MDFAMTQ0ODMzODQyNzQ1Nw==
https://www.researchgate.net/publication/2608129_Mining_Process_Models_from_Workflow_Logs?el=1_x_8&enrichId=rgreq-12bb4642e8f25b9b29689f19c364d197-XXX&enrichSource=Y292ZXJQYWdlOzI4MTg2OTkyNTtBUzoyOTkxNjcyMDIyMDE2MDFAMTQ0ODMzODQyNzQ1Nw==
https://www.researchgate.net/publication/2608129_Mining_Process_Models_from_Workflow_Logs?el=1_x_8&enrichId=rgreq-12bb4642e8f25b9b29689f19c364d197-XXX&enrichSource=Y292ZXJQYWdlOzI4MTg2OTkyNTtBUzoyOTkxNjcyMDIyMDE2MDFAMTQ0ODMzODQyNzQ1Nw==
https://www.researchgate.net/publication/2608129_Mining_Process_Models_from_Workflow_Logs?el=1_x_8&enrichId=rgreq-12bb4642e8f25b9b29689f19c364d197-XXX&enrichSource=Y292ZXJQYWdlOzI4MTg2OTkyNTtBUzoyOTkxNjcyMDIyMDE2MDFAMTQ0ODMzODQyNzQ1Nw==
https://www.researchgate.net/publication/2608129_Mining_Process_Models_from_Workflow_Logs?el=1_x_8&enrichId=rgreq-12bb4642e8f25b9b29689f19c364d197-XXX&enrichSource=Y292ZXJQYWdlOzI4MTg2OTkyNTtBUzoyOTkxNjcyMDIyMDE2MDFAMTQ0ODMzODQyNzQ1Nw==
https://www.researchgate.net/publication/2608129_Mining_Process_Models_from_Workflow_Logs?el=1_x_8&enrichId=rgreq-12bb4642e8f25b9b29689f19c364d197-XXX&enrichSource=Y292ZXJQYWdlOzI4MTg2OTkyNTtBUzoyOTkxNjcyMDIyMDE2MDFAMTQ0ODMzODQyNzQ1Nw==

4. Datta, A.: Automating the discovery of AS-IS business process models:
probabilistic and algorithmic approaches, Information Systems Research, 1998,
vol. 9, pp. 275–301.

5. Mannila, H., Meek, C.: Global partial orders from sequential data, in: Proceedings
of the 6th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining (KDD ’00), 2000, pp. 161–168.

6. Schimm, G.: Process miner - a tool for mining process schemes from event-based
data, Logics in Artificial Intelligence, LNCS 2424, 2002, pp. 525–528.

7. Schimm, G.: Mining exact models of concurrent workflows, Computers in
Industry, 2004, vol. 53, pp. 265–281.

8. van der Aalst, W.M.P., Weijters, A.J.M.M., Maruster, L.: Workflow mining:
discovering process models from event logs, IEEE Transactions on Knowledge
and Data Engineering, 2004, vol. 16, pp. 1128–1142.

9. Alves de Medeiros, A.K., van Dongen, B.F., van der Aalst, W.M.P., Weijters,
A.J.M.M.: Process Mining: Extending the Alpha-Algorithm to Mine Short Loops,
BETA Working Paper Series, TU Eindho- ven, 2004, vol. 113.

10. Wen, L., van der Aalst, W.M.P., Wang, J., Sun, J.: Mining process models with
non-free-choice constructs, Data Mining and Knowledge Discovery, 2007 (15), pp.
145–180.

11. Wen, L., Wang, J., van der Aalst, W.M.P., Huang, B., Sun, J.: A novel approach
for process mining based on event types, Journal of Intelligent Information
Systems, 2009, vol. 32, pp. 163–190.

12. Weijters, A.J.M.M., van der Aalst, W.M.P., Alves de Medeiros, A.K.: Process
Mining with the Heuristics Miner algorithm, BETA Working Paper Series, 2006,
TU Eindhoven, vol. 166.

13. Günther, C.W., van der Aalst, W.M.P.: Fuzzy mining - adaptive process
simplification based on multi-perspective metrics, in: Proceedings of the 5th
International Conference on Business Process Management (BPM), 2007, LNCS
4714, pp. 328–343.

14. Maruster, L., Weijters, A.J.M.M., van der Aalst, W.M.P., van den Bosch, A.: A
rule-based approach for process discovery: dealing with noise and imbalance in
process logs, Data Mining and Knowledge Discovery, 2006, vol. 13, pp. 67–87.

15. Ferreira, H., Ferreira, D.: An integrated life cycle for workflow management based
on learning and planning, International Journal of Cooperative Information
Systems, 2006, vol. 15, pp. 485–505.

16. Lamma, E., Mello, P., Montali, M., Riguzzi, F., Storari S.: Inducing declarative
logic-based models from labeled traces, in BPM 2007, LNCS 4714, pp. 344–359.

17. Alves de Medeiros, A.K., Weijters, A.J.M.M., van der Aalst, W.M.P.: Genetic
process mining: an experimental evaluation, Data Mining and Knowledge
Discovery, 2007, vol. 14, pp. 245–304.

18. Goedertier, S., Martens, D., Vanthienen, J., Baesens, B.: Robust process discovery
with artificial negative events, Journal of Machine Learning Research, 2009 (10),
pp. 1305–1340.

19. Blockeel, H., De Raedt, L.: Top-down induction of first-order logical decision
trees, Artificial Intelligence, 1998, vol. 101, pp. 285–297.

https://www.researchgate.net/publication/226194368_Genetic_process_mining_An_experimental_evaluation?el=1_x_8&enrichId=rgreq-12bb4642e8f25b9b29689f19c364d197-XXX&enrichSource=Y292ZXJQYWdlOzI4MTg2OTkyNTtBUzoyOTkxNjcyMDIyMDE2MDFAMTQ0ODMzODQyNzQ1Nw==
https://www.researchgate.net/publication/226194368_Genetic_process_mining_An_experimental_evaluation?el=1_x_8&enrichId=rgreq-12bb4642e8f25b9b29689f19c364d197-XXX&enrichSource=Y292ZXJQYWdlOzI4MTg2OTkyNTtBUzoyOTkxNjcyMDIyMDE2MDFAMTQ0ODMzODQyNzQ1Nw==
https://www.researchgate.net/publication/226194368_Genetic_process_mining_An_experimental_evaluation?el=1_x_8&enrichId=rgreq-12bb4642e8f25b9b29689f19c364d197-XXX&enrichSource=Y292ZXJQYWdlOzI4MTg2OTkyNTtBUzoyOTkxNjcyMDIyMDE2MDFAMTQ0ODMzODQyNzQ1Nw==
https://www.researchgate.net/publication/46429568_Robust_Process_Discovery_with_Artificial_Negative_Events?el=1_x_8&enrichId=rgreq-12bb4642e8f25b9b29689f19c364d197-XXX&enrichSource=Y292ZXJQYWdlOzI4MTg2OTkyNTtBUzoyOTkxNjcyMDIyMDE2MDFAMTQ0ODMzODQyNzQ1Nw==
https://www.researchgate.net/publication/46429568_Robust_Process_Discovery_with_Artificial_Negative_Events?el=1_x_8&enrichId=rgreq-12bb4642e8f25b9b29689f19c364d197-XXX&enrichSource=Y292ZXJQYWdlOzI4MTg2OTkyNTtBUzoyOTkxNjcyMDIyMDE2MDFAMTQ0ODMzODQyNzQ1Nw==
https://www.researchgate.net/publication/46429568_Robust_Process_Discovery_with_Artificial_Negative_Events?el=1_x_8&enrichId=rgreq-12bb4642e8f25b9b29689f19c364d197-XXX&enrichSource=Y292ZXJQYWdlOzI4MTg2OTkyNTtBUzoyOTkxNjcyMDIyMDE2MDFAMTQ0ODMzODQyNzQ1Nw==
https://www.researchgate.net/publication/220451684_Mining_process_models_with_non-free-choice_Constructs?el=1_x_8&enrichId=rgreq-12bb4642e8f25b9b29689f19c364d197-XXX&enrichSource=Y292ZXJQYWdlOzI4MTg2OTkyNTtBUzoyOTkxNjcyMDIyMDE2MDFAMTQ0ODMzODQyNzQ1Nw==
https://www.researchgate.net/publication/220451684_Mining_process_models_with_non-free-choice_Constructs?el=1_x_8&enrichId=rgreq-12bb4642e8f25b9b29689f19c364d197-XXX&enrichSource=Y292ZXJQYWdlOzI4MTg2OTkyNTtBUzoyOTkxNjcyMDIyMDE2MDFAMTQ0ODMzODQyNzQ1Nw==
https://www.researchgate.net/publication/220451684_Mining_process_models_with_non-free-choice_Constructs?el=1_x_8&enrichId=rgreq-12bb4642e8f25b9b29689f19c364d197-XXX&enrichSource=Y292ZXJQYWdlOzI4MTg2OTkyNTtBUzoyOTkxNjcyMDIyMDE2MDFAMTQ0ODMzODQyNzQ1Nw==
https://www.researchgate.net/publication/221586322_Inducing_Declarative_Logic-Based_Models_from_Labeled_Traces?el=1_x_8&enrichId=rgreq-12bb4642e8f25b9b29689f19c364d197-XXX&enrichSource=Y292ZXJQYWdlOzI4MTg2OTkyNTtBUzoyOTkxNjcyMDIyMDE2MDFAMTQ0ODMzODQyNzQ1Nw==
https://www.researchgate.net/publication/221586322_Inducing_Declarative_Logic-Based_Models_from_Labeled_Traces?el=1_x_8&enrichId=rgreq-12bb4642e8f25b9b29689f19c364d197-XXX&enrichSource=Y292ZXJQYWdlOzI4MTg2OTkyNTtBUzoyOTkxNjcyMDIyMDE2MDFAMTQ0ODMzODQyNzQ1Nw==
https://www.researchgate.net/publication/220079776_Datta_A_Automating_the_Discovery_of_AS-IS_Business_Process_Models_Probabilistic_and_Algorithmic_Approaches_Information_Systems_Research_93_275?el=1_x_8&enrichId=rgreq-12bb4642e8f25b9b29689f19c364d197-XXX&enrichSource=Y292ZXJQYWdlOzI4MTg2OTkyNTtBUzoyOTkxNjcyMDIyMDE2MDFAMTQ0ODMzODQyNzQ1Nw==
https://www.researchgate.net/publication/220079776_Datta_A_Automating_the_Discovery_of_AS-IS_Business_Process_Models_Probabilistic_and_Algorithmic_Approaches_Information_Systems_Research_93_275?el=1_x_8&enrichId=rgreq-12bb4642e8f25b9b29689f19c364d197-XXX&enrichSource=Y292ZXJQYWdlOzI4MTg2OTkyNTtBUzoyOTkxNjcyMDIyMDE2MDFAMTQ0ODMzODQyNzQ1Nw==
https://www.researchgate.net/publication/220079776_Datta_A_Automating_the_Discovery_of_AS-IS_Business_Process_Models_Probabilistic_and_Algorithmic_Approaches_Information_Systems_Research_93_275?el=1_x_8&enrichId=rgreq-12bb4642e8f25b9b29689f19c364d197-XXX&enrichSource=Y292ZXJQYWdlOzI4MTg2OTkyNTtBUzoyOTkxNjcyMDIyMDE2MDFAMTQ0ODMzODQyNzQ1Nw==
https://www.researchgate.net/publication/221176697_Process_Miner_-_A_Tool_for_Mining_Process_Schemes_from_Event-Based_Data?el=1_x_8&enrichId=rgreq-12bb4642e8f25b9b29689f19c364d197-XXX&enrichSource=Y292ZXJQYWdlOzI4MTg2OTkyNTtBUzoyOTkxNjcyMDIyMDE2MDFAMTQ0ODMzODQyNzQ1Nw==
https://www.researchgate.net/publication/221176697_Process_Miner_-_A_Tool_for_Mining_Process_Schemes_from_Event-Based_Data?el=1_x_8&enrichId=rgreq-12bb4642e8f25b9b29689f19c364d197-XXX&enrichSource=Y292ZXJQYWdlOzI4MTg2OTkyNTtBUzoyOTkxNjcyMDIyMDE2MDFAMTQ0ODMzODQyNzQ1Nw==
https://www.researchgate.net/publication/3297301_Workflow_Mining_Discovering_process_models_from_event_logs?el=1_x_8&enrichId=rgreq-12bb4642e8f25b9b29689f19c364d197-XXX&enrichSource=Y292ZXJQYWdlOzI4MTg2OTkyNTtBUzoyOTkxNjcyMDIyMDE2MDFAMTQ0ODMzODQyNzQ1Nw==
https://www.researchgate.net/publication/3297301_Workflow_Mining_Discovering_process_models_from_event_logs?el=1_x_8&enrichId=rgreq-12bb4642e8f25b9b29689f19c364d197-XXX&enrichSource=Y292ZXJQYWdlOzI4MTg2OTkyNTtBUzoyOTkxNjcyMDIyMDE2MDFAMTQ0ODMzODQyNzQ1Nw==
https://www.researchgate.net/publication/3297301_Workflow_Mining_Discovering_process_models_from_event_logs?el=1_x_8&enrichId=rgreq-12bb4642e8f25b9b29689f19c364d197-XXX&enrichSource=Y292ZXJQYWdlOzI4MTg2OTkyNTtBUzoyOTkxNjcyMDIyMDE2MDFAMTQ0ODMzODQyNzQ1Nw==
https://www.researchgate.net/publication/220451773_A_Rule-Based_Approach_for_Process_Discovery_Dealing_with_Noise_and_Imbalance_in_Process_Logs?el=1_x_8&enrichId=rgreq-12bb4642e8f25b9b29689f19c364d197-XXX&enrichSource=Y292ZXJQYWdlOzI4MTg2OTkyNTtBUzoyOTkxNjcyMDIyMDE2MDFAMTQ0ODMzODQyNzQ1Nw==
https://www.researchgate.net/publication/220451773_A_Rule-Based_Approach_for_Process_Discovery_Dealing_with_Noise_and_Imbalance_in_Process_Logs?el=1_x_8&enrichId=rgreq-12bb4642e8f25b9b29689f19c364d197-XXX&enrichSource=Y292ZXJQYWdlOzI4MTg2OTkyNTtBUzoyOTkxNjcyMDIyMDE2MDFAMTQ0ODMzODQyNzQ1Nw==
https://www.researchgate.net/publication/220451773_A_Rule-Based_Approach_for_Process_Discovery_Dealing_with_Noise_and_Imbalance_in_Process_Logs?el=1_x_8&enrichId=rgreq-12bb4642e8f25b9b29689f19c364d197-XXX&enrichSource=Y292ZXJQYWdlOzI4MTg2OTkyNTtBUzoyOTkxNjcyMDIyMDE2MDFAMTQ0ODMzODQyNzQ1Nw==
https://www.researchgate.net/publication/220272013_Global_partial_orders_from_sequential_data?el=1_x_8&enrichId=rgreq-12bb4642e8f25b9b29689f19c364d197-XXX&enrichSource=Y292ZXJQYWdlOzI4MTg2OTkyNTtBUzoyOTkxNjcyMDIyMDE2MDFAMTQ0ODMzODQyNzQ1Nw==
https://www.researchgate.net/publication/220272013_Global_partial_orders_from_sequential_data?el=1_x_8&enrichId=rgreq-12bb4642e8f25b9b29689f19c364d197-XXX&enrichSource=Y292ZXJQYWdlOzI4MTg2OTkyNTtBUzoyOTkxNjcyMDIyMDE2MDFAMTQ0ODMzODQyNzQ1Nw==
https://www.researchgate.net/publication/220272013_Global_partial_orders_from_sequential_data?el=1_x_8&enrichId=rgreq-12bb4642e8f25b9b29689f19c364d197-XXX&enrichSource=Y292ZXJQYWdlOzI4MTg2OTkyNTtBUzoyOTkxNjcyMDIyMDE2MDFAMTQ0ODMzODQyNzQ1Nw==
https://www.researchgate.net/publication/220272013_Global_partial_orders_from_sequential_data?el=1_x_8&enrichId=rgreq-12bb4642e8f25b9b29689f19c364d197-XXX&enrichSource=Y292ZXJQYWdlOzI4MTg2OTkyNTtBUzoyOTkxNjcyMDIyMDE2MDFAMTQ0ODMzODQyNzQ1Nw==
https://www.researchgate.net/publication/220272013_Global_partial_orders_from_sequential_data?el=1_x_8&enrichId=rgreq-12bb4642e8f25b9b29689f19c364d197-XXX&enrichSource=Y292ZXJQYWdlOzI4MTg2OTkyNTtBUzoyOTkxNjcyMDIyMDE2MDFAMTQ0ODMzODQyNzQ1Nw==
https://www.researchgate.net/publication/221586306_Fuzzy_Mining_-_Adaptive_Process_Simplification_Based_on_Multi-perspective_Metrics?el=1_x_8&enrichId=rgreq-12bb4642e8f25b9b29689f19c364d197-XXX&enrichSource=Y292ZXJQYWdlOzI4MTg2OTkyNTtBUzoyOTkxNjcyMDIyMDE2MDFAMTQ0ODMzODQyNzQ1Nw==
https://www.researchgate.net/publication/221586306_Fuzzy_Mining_-_Adaptive_Process_Simplification_Based_on_Multi-perspective_Metrics?el=1_x_8&enrichId=rgreq-12bb4642e8f25b9b29689f19c364d197-XXX&enrichSource=Y292ZXJQYWdlOzI4MTg2OTkyNTtBUzoyOTkxNjcyMDIyMDE2MDFAMTQ0ODMzODQyNzQ1Nw==
https://www.researchgate.net/publication/221586306_Fuzzy_Mining_-_Adaptive_Process_Simplification_Based_on_Multi-perspective_Metrics?el=1_x_8&enrichId=rgreq-12bb4642e8f25b9b29689f19c364d197-XXX&enrichSource=Y292ZXJQYWdlOzI4MTg2OTkyNTtBUzoyOTkxNjcyMDIyMDE2MDFAMTQ0ODMzODQyNzQ1Nw==
https://www.researchgate.net/publication/221586306_Fuzzy_Mining_-_Adaptive_Process_Simplification_Based_on_Multi-perspective_Metrics?el=1_x_8&enrichId=rgreq-12bb4642e8f25b9b29689f19c364d197-XXX&enrichSource=Y292ZXJQYWdlOzI4MTg2OTkyNTtBUzoyOTkxNjcyMDIyMDE2MDFAMTQ0ODMzODQyNzQ1Nw==
https://www.researchgate.net/publication/221586306_Fuzzy_Mining_-_Adaptive_Process_Simplification_Based_on_Multi-perspective_Metrics?el=1_x_8&enrichId=rgreq-12bb4642e8f25b9b29689f19c364d197-XXX&enrichSource=Y292ZXJQYWdlOzI4MTg2OTkyNTtBUzoyOTkxNjcyMDIyMDE2MDFAMTQ0ODMzODQyNzQ1Nw==
https://www.researchgate.net/publication/220095020_An_Integrated_Life_Cycle_for_Workflow_Management_Based_on_Learning_and_Planning?el=1_x_8&enrichId=rgreq-12bb4642e8f25b9b29689f19c364d197-XXX&enrichSource=Y292ZXJQYWdlOzI4MTg2OTkyNTtBUzoyOTkxNjcyMDIyMDE2MDFAMTQ0ODMzODQyNzQ1Nw==
https://www.researchgate.net/publication/220095020_An_Integrated_Life_Cycle_for_Workflow_Management_Based_on_Learning_and_Planning?el=1_x_8&enrichId=rgreq-12bb4642e8f25b9b29689f19c364d197-XXX&enrichSource=Y292ZXJQYWdlOzI4MTg2OTkyNTtBUzoyOTkxNjcyMDIyMDE2MDFAMTQ0ODMzODQyNzQ1Nw==
https://www.researchgate.net/publication/220095020_An_Integrated_Life_Cycle_for_Workflow_Management_Based_on_Learning_and_Planning?el=1_x_8&enrichId=rgreq-12bb4642e8f25b9b29689f19c364d197-XXX&enrichSource=Y292ZXJQYWdlOzI4MTg2OTkyNTtBUzoyOTkxNjcyMDIyMDE2MDFAMTQ0ODMzODQyNzQ1Nw==
https://www.researchgate.net/publication/244141134_Process_Mining_Extending_the_-algorithm_to_Mine_Short_Loops?el=1_x_8&enrichId=rgreq-12bb4642e8f25b9b29689f19c364d197-XXX&enrichSource=Y292ZXJQYWdlOzI4MTg2OTkyNTtBUzoyOTkxNjcyMDIyMDE2MDFAMTQ0ODMzODQyNzQ1Nw==
https://www.researchgate.net/publication/244141134_Process_Mining_Extending_the_-algorithm_to_Mine_Short_Loops?el=1_x_8&enrichId=rgreq-12bb4642e8f25b9b29689f19c364d197-XXX&enrichSource=Y292ZXJQYWdlOzI4MTg2OTkyNTtBUzoyOTkxNjcyMDIyMDE2MDFAMTQ0ODMzODQyNzQ1Nw==
https://www.researchgate.net/publication/244141134_Process_Mining_Extending_the_-algorithm_to_Mine_Short_Loops?el=1_x_8&enrichId=rgreq-12bb4642e8f25b9b29689f19c364d197-XXX&enrichSource=Y292ZXJQYWdlOzI4MTg2OTkyNTtBUzoyOTkxNjcyMDIyMDE2MDFAMTQ0ODMzODQyNzQ1Nw==
https://www.researchgate.net/publication/220616159_A_novel_approach_for_process_mining_based_on_Event_Types?el=1_x_8&enrichId=rgreq-12bb4642e8f25b9b29689f19c364d197-XXX&enrichSource=Y292ZXJQYWdlOzI4MTg2OTkyNTtBUzoyOTkxNjcyMDIyMDE2MDFAMTQ0ODMzODQyNzQ1Nw==
https://www.researchgate.net/publication/220616159_A_novel_approach_for_process_mining_based_on_Event_Types?el=1_x_8&enrichId=rgreq-12bb4642e8f25b9b29689f19c364d197-XXX&enrichSource=Y292ZXJQYWdlOzI4MTg2OTkyNTtBUzoyOTkxNjcyMDIyMDE2MDFAMTQ0ODMzODQyNzQ1Nw==
https://www.researchgate.net/publication/220616159_A_novel_approach_for_process_mining_based_on_Event_Types?el=1_x_8&enrichId=rgreq-12bb4642e8f25b9b29689f19c364d197-XXX&enrichSource=Y292ZXJQYWdlOzI4MTg2OTkyNTtBUzoyOTkxNjcyMDIyMDE2MDFAMTQ0ODMzODQyNzQ1Nw==
https://www.researchgate.net/publication/222863428_Mining_exact_models_of_concurrent_workflows?el=1_x_8&enrichId=rgreq-12bb4642e8f25b9b29689f19c364d197-XXX&enrichSource=Y292ZXJQYWdlOzI4MTg2OTkyNTtBUzoyOTkxNjcyMDIyMDE2MDFAMTQ0ODMzODQyNzQ1Nw==
https://www.researchgate.net/publication/222863428_Mining_exact_models_of_concurrent_workflows?el=1_x_8&enrichId=rgreq-12bb4642e8f25b9b29689f19c364d197-XXX&enrichSource=Y292ZXJQYWdlOzI4MTg2OTkyNTtBUzoyOTkxNjcyMDIyMDE2MDFAMTQ0ODMzODQyNzQ1Nw==
https://www.researchgate.net/publication/220308906_Top-Down_Induction_of_First_Order_Logical_Decision_Trees?el=1_x_8&enrichId=rgreq-12bb4642e8f25b9b29689f19c364d197-XXX&enrichSource=Y292ZXJQYWdlOzI4MTg2OTkyNTtBUzoyOTkxNjcyMDIyMDE2MDFAMTQ0ODMzODQyNzQ1Nw==
https://www.researchgate.net/publication/220308906_Top-Down_Induction_of_First_Order_Logical_Decision_Trees?el=1_x_8&enrichId=rgreq-12bb4642e8f25b9b29689f19c364d197-XXX&enrichSource=Y292ZXJQYWdlOzI4MTg2OTkyNTtBUzoyOTkxNjcyMDIyMDE2MDFAMTQ0ODMzODQyNzQ1Nw==

20. Greco, G, Guzzo, A., Pontieri, L., Sacca, D.: Discovering expressive process
models by clustering log traces, IEEE Transactions on Knowledge and Data
Engineering, 2006, vol. 18, pp. 1010–1027.

21. Greco, G., Guzzo, A., Pontieri, L.: Mining taxonomies of process models, Data &
Knowledge Engineering, 2008, vol. 67, pp. 74–102.

22. van der Aalst, W.M.P., Rubin, V., Verbeek, H.M.W., van Dongen, B.F., Kindler,
Günther, C.W.: Process mining: a two-step approach to balance between
underfitting and overfitting, Software and System Modeling, 2010 (9), pp. 87–111.

23. Carmona, J., Cortadella, J., Kishinevsky, M.: New region-based algorithms for
deriving bounded Petri nets, IEEE Transactions on Computers, 2010 (59), pp.
371–384.

24. Herbst, J., Karagiannis, D.: Workflow mining with InWoLvE, Computers in
Industry, 2004, vol. 53, pp. 245–264.

25. Folino, F., Greco, G., Guzzo, A., Pontieri, L.: Discovering expressive process
models from noised log data, in: Proceedings of the 2009 International Database
Engineering & Applications Symposium, 2009, ACM, pp.162–172.

26. van der Werf, J.M.E.M., van Dongen, B.F., Hurkens, C.A.J., Serebrenik, A.:
Process discovery using integer linear programming, Fundamenta Informaticae,
2009, vol. 94, pp. 387–412.

27. Rembertm A.J., Omokpo, A.: Process Discovery Using Prior Knowledge, in
Proceedings of the 11th International Conference on Service Oriented Computing
(ICSOC), 2013, LNCS 8274, pp. 328-342.

28. Ferreira, D.R., Gillblad, D.: Discovering process models from unlabelled event
logs, in: Proceedings of the 7th International Conference on Business Process
Management (BPM), 2009, LNCS 5701, pp. 143–158.

29. Sole, M., Carmona, J.: Region-Based Folding in Process Discovery, IEEE
Transactions on Knowledge and Data Engineering, 2013, vol. 25(1), pp. 192-205.

30. Günther, C.W., Verbeek, E.: XES Standard version 2, 2014, http://www.xes-
standard.org/_media/xes/xesstandarddefinition-2.0.pdf

31. Rozinat, A., de Medeiros, A.K.A., Günther, C.W., Weijters, A.J.M.M., van der
Aalst, W.M.P.:The need for a process mining evaluation framework in research
and practice. In ter Hofstede, A.H.M., Benatallah, B., Paik, H.Y., eds.: Business
Process Management Workshops. Volume 4928 of Lecture Notes in Computer
Science., Springer (2007) 84-89

32. Ayres, J., Flannick, J., Gehrke, J., Yiu, T.: Sequential pattern mining using a
bitmap representation, in: Proc. 8th ACM Intern. Conf. Knowl. Discov. Data
Mining, ACM (2002), pp. 429–435.

33. 3TU Data Center, BPI Challenge, Event Log,
data.3tu.nl/repository/collection:event_logs_real

34. Bose, R. P. J. C, van der Aalst, W. M. P. : Abstractions in Process Mining: A
taxonomy of patterns, in: Dayal, U., Eder, J., Koehler, J., Reijers, H.A. (eds.) BPM
2009. LNCS, vol. 5701, pp. 159–175. Springer, Heidelberg (2009)

https://www.researchgate.net/publication/224588095_New_Region-Based_Algorithms_for_Deriving_Bounded_Petri_Nets?el=1_x_8&enrichId=rgreq-12bb4642e8f25b9b29689f19c364d197-XXX&enrichSource=Y292ZXJQYWdlOzI4MTg2OTkyNTtBUzoyOTkxNjcyMDIyMDE2MDFAMTQ0ODMzODQyNzQ1Nw==
https://www.researchgate.net/publication/224588095_New_Region-Based_Algorithms_for_Deriving_Bounded_Petri_Nets?el=1_x_8&enrichId=rgreq-12bb4642e8f25b9b29689f19c364d197-XXX&enrichSource=Y292ZXJQYWdlOzI4MTg2OTkyNTtBUzoyOTkxNjcyMDIyMDE2MDFAMTQ0ODMzODQyNzQ1Nw==
https://www.researchgate.net/publication/224588095_New_Region-Based_Algorithms_for_Deriving_Bounded_Petri_Nets?el=1_x_8&enrichId=rgreq-12bb4642e8f25b9b29689f19c364d197-XXX&enrichSource=Y292ZXJQYWdlOzI4MTg2OTkyNTtBUzoyOTkxNjcyMDIyMDE2MDFAMTQ0ODMzODQyNzQ1Nw==
https://www.researchgate.net/publication/225164441_Process_Discovery_Using_Integer_Linear_Programming?el=1_x_8&enrichId=rgreq-12bb4642e8f25b9b29689f19c364d197-XXX&enrichSource=Y292ZXJQYWdlOzI4MTg2OTkyNTtBUzoyOTkxNjcyMDIyMDE2MDFAMTQ0ODMzODQyNzQ1Nw==
https://www.researchgate.net/publication/225164441_Process_Discovery_Using_Integer_Linear_Programming?el=1_x_8&enrichId=rgreq-12bb4642e8f25b9b29689f19c364d197-XXX&enrichSource=Y292ZXJQYWdlOzI4MTg2OTkyNTtBUzoyOTkxNjcyMDIyMDE2MDFAMTQ0ODMzODQyNzQ1Nw==
https://www.researchgate.net/publication/225164441_Process_Discovery_Using_Integer_Linear_Programming?el=1_x_8&enrichId=rgreq-12bb4642e8f25b9b29689f19c364d197-XXX&enrichSource=Y292ZXJQYWdlOzI4MTg2OTkyNTtBUzoyOTkxNjcyMDIyMDE2MDFAMTQ0ODMzODQyNzQ1Nw==
https://www.researchgate.net/publication/220268118_The_Need_for_a_Process_Mining_Evaluation_Framework_in_Research_and_Practice?el=1_x_8&enrichId=rgreq-12bb4642e8f25b9b29689f19c364d197-XXX&enrichSource=Y292ZXJQYWdlOzI4MTg2OTkyNTtBUzoyOTkxNjcyMDIyMDE2MDFAMTQ0ODMzODQyNzQ1Nw==
https://www.researchgate.net/publication/220268118_The_Need_for_a_Process_Mining_Evaluation_Framework_in_Research_and_Practice?el=1_x_8&enrichId=rgreq-12bb4642e8f25b9b29689f19c364d197-XXX&enrichSource=Y292ZXJQYWdlOzI4MTg2OTkyNTtBUzoyOTkxNjcyMDIyMDE2MDFAMTQ0ODMzODQyNzQ1Nw==
https://www.researchgate.net/publication/220268118_The_Need_for_a_Process_Mining_Evaluation_Framework_in_Research_and_Practice?el=1_x_8&enrichId=rgreq-12bb4642e8f25b9b29689f19c364d197-XXX&enrichSource=Y292ZXJQYWdlOzI4MTg2OTkyNTtBUzoyOTkxNjcyMDIyMDE2MDFAMTQ0ODMzODQyNzQ1Nw==
https://www.researchgate.net/publication/220268118_The_Need_for_a_Process_Mining_Evaluation_Framework_in_Research_and_Practice?el=1_x_8&enrichId=rgreq-12bb4642e8f25b9b29689f19c364d197-XXX&enrichSource=Y292ZXJQYWdlOzI4MTg2OTkyNTtBUzoyOTkxNjcyMDIyMDE2MDFAMTQ0ODMzODQyNzQ1Nw==
https://www.researchgate.net/publication/220268118_The_Need_for_a_Process_Mining_Evaluation_Framework_in_Research_and_Practice?el=1_x_8&enrichId=rgreq-12bb4642e8f25b9b29689f19c364d197-XXX&enrichSource=Y292ZXJQYWdlOzI4MTg2OTkyNTtBUzoyOTkxNjcyMDIyMDE2MDFAMTQ0ODMzODQyNzQ1Nw==
https://www.researchgate.net/publication/221586158_Discovering_Process_Models_from_Unlabelled_Event_Logs?el=1_x_8&enrichId=rgreq-12bb4642e8f25b9b29689f19c364d197-XXX&enrichSource=Y292ZXJQYWdlOzI4MTg2OTkyNTtBUzoyOTkxNjcyMDIyMDE2MDFAMTQ0ODMzODQyNzQ1Nw==
https://www.researchgate.net/publication/221586158_Discovering_Process_Models_from_Unlabelled_Event_Logs?el=1_x_8&enrichId=rgreq-12bb4642e8f25b9b29689f19c364d197-XXX&enrichSource=Y292ZXJQYWdlOzI4MTg2OTkyNTtBUzoyOTkxNjcyMDIyMDE2MDFAMTQ0ODMzODQyNzQ1Nw==
https://www.researchgate.net/publication/221586158_Discovering_Process_Models_from_Unlabelled_Event_Logs?el=1_x_8&enrichId=rgreq-12bb4642e8f25b9b29689f19c364d197-XXX&enrichSource=Y292ZXJQYWdlOzI4MTg2OTkyNTtBUzoyOTkxNjcyMDIyMDE2MDFAMTQ0ODMzODQyNzQ1Nw==
https://www.researchgate.net/publication/221524852_Discovering_expressive_process_models_from_noised_log_data?el=1_x_8&enrichId=rgreq-12bb4642e8f25b9b29689f19c364d197-XXX&enrichSource=Y292ZXJQYWdlOzI4MTg2OTkyNTtBUzoyOTkxNjcyMDIyMDE2MDFAMTQ0ODMzODQyNzQ1Nw==
https://www.researchgate.net/publication/221524852_Discovering_expressive_process_models_from_noised_log_data?el=1_x_8&enrichId=rgreq-12bb4642e8f25b9b29689f19c364d197-XXX&enrichSource=Y292ZXJQYWdlOzI4MTg2OTkyNTtBUzoyOTkxNjcyMDIyMDE2MDFAMTQ0ODMzODQyNzQ1Nw==
https://www.researchgate.net/publication/221524852_Discovering_expressive_process_models_from_noised_log_data?el=1_x_8&enrichId=rgreq-12bb4642e8f25b9b29689f19c364d197-XXX&enrichSource=Y292ZXJQYWdlOzI4MTg2OTkyNTtBUzoyOTkxNjcyMDIyMDE2MDFAMTQ0ODMzODQyNzQ1Nw==
https://www.researchgate.net/publication/291099414_Process_Discovery_Using_Prior_Knowledge?el=1_x_8&enrichId=rgreq-12bb4642e8f25b9b29689f19c364d197-XXX&enrichSource=Y292ZXJQYWdlOzI4MTg2OTkyNTtBUzoyOTkxNjcyMDIyMDE2MDFAMTQ0ODMzODQyNzQ1Nw==
https://www.researchgate.net/publication/291099414_Process_Discovery_Using_Prior_Knowledge?el=1_x_8&enrichId=rgreq-12bb4642e8f25b9b29689f19c364d197-XXX&enrichSource=Y292ZXJQYWdlOzI4MTg2OTkyNTtBUzoyOTkxNjcyMDIyMDE2MDFAMTQ0ODMzODQyNzQ1Nw==
https://www.researchgate.net/publication/291099414_Process_Discovery_Using_Prior_Knowledge?el=1_x_8&enrichId=rgreq-12bb4642e8f25b9b29689f19c364d197-XXX&enrichSource=Y292ZXJQYWdlOzI4MTg2OTkyNTtBUzoyOTkxNjcyMDIyMDE2MDFAMTQ0ODMzODQyNzQ1Nw==
https://www.researchgate.net/publication/291099414_Process_Discovery_Using_Prior_Knowledge?el=1_x_8&enrichId=rgreq-12bb4642e8f25b9b29689f19c364d197-XXX&enrichSource=Y292ZXJQYWdlOzI4MTg2OTkyNTtBUzoyOTkxNjcyMDIyMDE2MDFAMTQ0ODMzODQyNzQ1Nw==
https://www.researchgate.net/publication/291099414_Process_Discovery_Using_Prior_Knowledge?el=1_x_8&enrichId=rgreq-12bb4642e8f25b9b29689f19c364d197-XXX&enrichSource=Y292ZXJQYWdlOzI4MTg2OTkyNTtBUzoyOTkxNjcyMDIyMDE2MDFAMTQ0ODMzODQyNzQ1Nw==
https://www.researchgate.net/publication/200450209_Abstractions_in_Process_Mining_A_Taxonomy_of_Patterns?el=1_x_8&enrichId=rgreq-12bb4642e8f25b9b29689f19c364d197-XXX&enrichSource=Y292ZXJQYWdlOzI4MTg2OTkyNTtBUzoyOTkxNjcyMDIyMDE2MDFAMTQ0ODMzODQyNzQ1Nw==
https://www.researchgate.net/publication/200450209_Abstractions_in_Process_Mining_A_Taxonomy_of_Patterns?el=1_x_8&enrichId=rgreq-12bb4642e8f25b9b29689f19c364d197-XXX&enrichSource=Y292ZXJQYWdlOzI4MTg2OTkyNTtBUzoyOTkxNjcyMDIyMDE2MDFAMTQ0ODMzODQyNzQ1Nw==
https://www.researchgate.net/publication/200450209_Abstractions_in_Process_Mining_A_Taxonomy_of_Patterns?el=1_x_8&enrichId=rgreq-12bb4642e8f25b9b29689f19c364d197-XXX&enrichSource=Y292ZXJQYWdlOzI4MTg2OTkyNTtBUzoyOTkxNjcyMDIyMDE2MDFAMTQ0ODMzODQyNzQ1Nw==
https://www.researchgate.net/publication/222423164_Mining_taxonomies_of_process_models?el=1_x_8&enrichId=rgreq-12bb4642e8f25b9b29689f19c364d197-XXX&enrichSource=Y292ZXJQYWdlOzI4MTg2OTkyNTtBUzoyOTkxNjcyMDIyMDE2MDFAMTQ0ODMzODQyNzQ1Nw==
https://www.researchgate.net/publication/222423164_Mining_taxonomies_of_process_models?el=1_x_8&enrichId=rgreq-12bb4642e8f25b9b29689f19c364d197-XXX&enrichSource=Y292ZXJQYWdlOzI4MTg2OTkyNTtBUzoyOTkxNjcyMDIyMDE2MDFAMTQ0ODMzODQyNzQ1Nw==
https://www.researchgate.net/publication/224256706_Region-Based_Foldings_in_Process_Discovery?el=1_x_8&enrichId=rgreq-12bb4642e8f25b9b29689f19c364d197-XXX&enrichSource=Y292ZXJQYWdlOzI4MTg2OTkyNTtBUzoyOTkxNjcyMDIyMDE2MDFAMTQ0ODMzODQyNzQ1Nw==
https://www.researchgate.net/publication/224256706_Region-Based_Foldings_in_Process_Discovery?el=1_x_8&enrichId=rgreq-12bb4642e8f25b9b29689f19c364d197-XXX&enrichSource=Y292ZXJQYWdlOzI4MTg2OTkyNTtBUzoyOTkxNjcyMDIyMDE2MDFAMTQ0ODMzODQyNzQ1Nw==
https://www.researchgate.net/publication/220073608_Discovering_Expressive_Process_Models_by_Clustering_Log_Traces?el=1_x_8&enrichId=rgreq-12bb4642e8f25b9b29689f19c364d197-XXX&enrichSource=Y292ZXJQYWdlOzI4MTg2OTkyNTtBUzoyOTkxNjcyMDIyMDE2MDFAMTQ0ODMzODQyNzQ1Nw==
https://www.researchgate.net/publication/220073608_Discovering_Expressive_Process_Models_by_Clustering_Log_Traces?el=1_x_8&enrichId=rgreq-12bb4642e8f25b9b29689f19c364d197-XXX&enrichSource=Y292ZXJQYWdlOzI4MTg2OTkyNTtBUzoyOTkxNjcyMDIyMDE2MDFAMTQ0ODMzODQyNzQ1Nw==
https://www.researchgate.net/publication/220073608_Discovering_Expressive_Process_Models_by_Clustering_Log_Traces?el=1_x_8&enrichId=rgreq-12bb4642e8f25b9b29689f19c364d197-XXX&enrichSource=Y292ZXJQYWdlOzI4MTg2OTkyNTtBUzoyOTkxNjcyMDIyMDE2MDFAMTQ0ODMzODQyNzQ1Nw==
https://www.researchgate.net/publication/221654436_Sequential_PAttern_mining_using_a_bitmap_representation?el=1_x_8&enrichId=rgreq-12bb4642e8f25b9b29689f19c364d197-XXX&enrichSource=Y292ZXJQYWdlOzI4MTg2OTkyNTtBUzoyOTkxNjcyMDIyMDE2MDFAMTQ0ODMzODQyNzQ1Nw==
https://www.researchgate.net/publication/221654436_Sequential_PAttern_mining_using_a_bitmap_representation?el=1_x_8&enrichId=rgreq-12bb4642e8f25b9b29689f19c364d197-XXX&enrichSource=Y292ZXJQYWdlOzI4MTg2OTkyNTtBUzoyOTkxNjcyMDIyMDE2MDFAMTQ0ODMzODQyNzQ1Nw==
https://www.researchgate.net/publication/221654436_Sequential_PAttern_mining_using_a_bitmap_representation?el=1_x_8&enrichId=rgreq-12bb4642e8f25b9b29689f19c364d197-XXX&enrichSource=Y292ZXJQYWdlOzI4MTg2OTkyNTtBUzoyOTkxNjcyMDIyMDE2MDFAMTQ0ODMzODQyNzQ1Nw==
https://www.researchgate.net/publication/221654436_Sequential_PAttern_mining_using_a_bitmap_representation?el=1_x_8&enrichId=rgreq-12bb4642e8f25b9b29689f19c364d197-XXX&enrichSource=Y292ZXJQYWdlOzI4MTg2OTkyNTtBUzoyOTkxNjcyMDIyMDE2MDFAMTQ0ODMzODQyNzQ1Nw==
https://www.researchgate.net/publication/221654436_Sequential_PAttern_mining_using_a_bitmap_representation?el=1_x_8&enrichId=rgreq-12bb4642e8f25b9b29689f19c364d197-XXX&enrichSource=Y292ZXJQYWdlOzI4MTg2OTkyNTtBUzoyOTkxNjcyMDIyMDE2MDFAMTQ0ODMzODQyNzQ1Nw==
https://www.researchgate.net/publication/221654436_Sequential_PAttern_mining_using_a_bitmap_representation?el=1_x_8&enrichId=rgreq-12bb4642e8f25b9b29689f19c364d197-XXX&enrichSource=Y292ZXJQYWdlOzI4MTg2OTkyNTtBUzoyOTkxNjcyMDIyMDE2MDFAMTQ0ODMzODQyNzQ1Nw==
https://www.researchgate.net/publication/221654436_Sequential_PAttern_mining_using_a_bitmap_representation?el=1_x_8&enrichId=rgreq-12bb4642e8f25b9b29689f19c364d197-XXX&enrichSource=Y292ZXJQYWdlOzI4MTg2OTkyNTtBUzoyOTkxNjcyMDIyMDE2MDFAMTQ0ODMzODQyNzQ1Nw==
https://www.researchgate.net/publication/221654436_Sequential_PAttern_mining_using_a_bitmap_representation?el=1_x_8&enrichId=rgreq-12bb4642e8f25b9b29689f19c364d197-XXX&enrichSource=Y292ZXJQYWdlOzI4MTg2OTkyNTtBUzoyOTkxNjcyMDIyMDE2MDFAMTQ0ODMzODQyNzQ1Nw==
https://www.researchgate.net/publication/221654436_Sequential_PAttern_mining_using_a_bitmap_representation?el=1_x_8&enrichId=rgreq-12bb4642e8f25b9b29689f19c364d197-XXX&enrichSource=Y292ZXJQYWdlOzI4MTg2OTkyNTtBUzoyOTkxNjcyMDIyMDE2MDFAMTQ0ODMzODQyNzQ1Nw==
https://www.researchgate.net/publication/221654436_Sequential_PAttern_mining_using_a_bitmap_representation?el=1_x_8&enrichId=rgreq-12bb4642e8f25b9b29689f19c364d197-XXX&enrichSource=Y292ZXJQYWdlOzI4MTg2OTkyNTtBUzoyOTkxNjcyMDIyMDE2MDFAMTQ0ODMzODQyNzQ1Nw==
https://www.researchgate.net/publication/221654436_Sequential_PAttern_mining_using_a_bitmap_representation?el=1_x_8&enrichId=rgreq-12bb4642e8f25b9b29689f19c364d197-XXX&enrichSource=Y292ZXJQYWdlOzI4MTg2OTkyNTtBUzoyOTkxNjcyMDIyMDE2MDFAMTQ0ODMzODQyNzQ1Nw==

	1. Introduction
	2. Background and Related Work
	3. Maximal Pattern Mining (MPM)
	3.1. Overview
	3.2. Generating maximal patterns
	3.3. Assumptions and Limitations

	4. Experimental Result
	4.1. Criteria
	4.2. k-fold cross validation
	4.3. Setup
	4.4. Synthetic data
	4.5. Real-life log data

	5. Conclusion and Future work
	References

