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Abstract

The current and continual development of sensors and imaging systems ca-

pable of acquiring three-dimensional data provides a novel form in which the

world can be expressed and examined. The acquisition process, however, is

often limited by imaging systems only being able to view a portion of a scene

or object from a single pose at a given time. A full representation can still

be produced by shifting the system and registering subsequent acquisitions

together. While many solutions to the registration problem have been pro-

posed, there is no quintessential approach appropriate for all situations. This

dissertation aims to coarsely register range images or point-clouds of a priori

unknown pose by matching their overlapping regions.

Using spherical harmonics to correlate normals in a coarse registration

pipeline has been shown previously to be an effective means for registering

partially overlapping point-clouds. The advantage of normals is their trans-

lation invariance, which permits the rotation and translation to be decoupled

and determined separately. Examining each step of this pipeline in depth al-

lows its registration capability to be quantified and identifies aspects which

can be enhanced to further improve registration performance. The pipeline

consists of three primary steps: identifying the rotation using spherical har-

monics, identifying the translation in the Fourier domain, and automatically

verifying if alignment is correct. Having achieved coarse registration, a fine

registration algorithm can be used to refine and complete the alignment.

Major contributions to knowledge are provided by this dissertation at each

step of the pipeline. Point-clouds with known ground-truth are used to ex-

amine the pipeline’s capability, allowing its limitations to be determined; an

analysis which has not been performed previously. This examination allowed

modifications to individual components to be introduced and measured, es-

tablishing their provided benefit. The rotation step received the greatest at-

tention as it is the primary weakness of the pipeline, especially as the nature

of the overlap between point-clouds is unknown. Examining three schemes
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for binning normals found that equiangular binning, when appropriately nor-

malised, only had a marginal decrease in accuracy with respect to the icosa-

hedron and the introduced Fibonacci schemes. Overall, equiangular binning

was the most appropriate due to its natural affinity for fast spherical-harmonic

conversion. Weighting normals was found to provide the greatest benefit to

registration performance. The introduction of a straightforward method of

combining two different weighting schemes using the orthogonality of complex

values increased correct alignments by approximately 80% with respect to the

next best scheme; additionally, point-cloud pairs with overlap as low as 5%

were able to be brought into correct alignment. Transform transitivity, one

of two introduced verification strategies, correctly classified almost 100% of

point-cloud pair registrations when there are sufficient correct alignments.

The enhancements made to the coarse registration pipeline throughout this

dissertation provide significant improvements to its performance. The result

is a pipeline with state-of-the-art capabilities that allow it to register point-

cloud with minimal overlap and correct for alignments that are classified as

misaligned. Even with its exceptional performance, it is unlikely that this

pipeline has yet reached its pinnacle, as the introduced enhancements have

the potential for further development.
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Chapter 1

Introduction

The current development of imaging systems capable of three-dimensional

(3-D) data acquisition allows the world to be expressed in a digital form that

enables new and novel examination processes to be performed. These range

imaging systems (Blais, 2004) are however only able to view a portion of the

scene or object as they are frequently restricted to a single pose at a given

time. Because of this limitation, the imaging system is shifted relative to the

scene to acquire multiple images in order to reveal more of the scene. The task

of bringing these individual images together and correctly aligning them in a

single coordinate system is known as registration; Figure 1.1 provides a sim-

plified demonstration of registration. While many solutions to the registration

problem have been proposed (Salvi et al., 2007; Tam et al., 2013), it is still

an active area of investigation as there is currently no quintessential approach

appropriate for all situations.

Representing each range image in a standard form allows registration algo-

rithms to process data acquired by different types of range imaging systems.

Point-clouds provide the most intuitive representation of this data as they

are expressed as a set of points in a 3-D Euclidean coordinate system. The

structure of the point-cloud is formed from individual surfaces which make up

the sampled scene, with each point identifying a location on a surface. Each

surface is deemed to be a contiguous set of points which maintain a consis-

tent orientation. The surface orientation at a point is given by its associated

normal, which is a vector perpendicular to the surface (see Section 3.1).

Correctly registering together a set of 3-D point-clouds enhances the rep-

resentation of the object or scene, making it better suited for a wider range

of applications than that of a point-cloud acquired from a single pose. Many

fields have existing applications that can benefit from registration, reducing

1
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Figure 1.1: Simplified illustration of registration showing two separate halves
of the Stanford bunny’s head being brought into alignment.

the amount of time, cost or manual intervention required. Bi and Wang (2010)

provide a list of industrial applications that include reverse engineering, rapid

prototyping, part location and alignment, virtual assembly, and the inspection

and measurement of manufactured items (Tian et al., 2009). Simultaneous lo-

calisation and mapping (SLAM) uses registration techniques when construct-

ing 3-D maps of an environment (Morell et al., 2012); these techniques are

also used for relocalisation, in which an unknown imaging pose is established

with a previously generated map (Mart́ınez-Carranza et al., 2013). Grading

of fruit and vegetables can also benefit from registration by forming a com-

plete representation of their structure and comparing it with respect to a gold

standard (Moreda et al., 2009; Kondo, 2010). This idea also applies to survey-

ing of construction sites to monitor progress (Kim et al., 2011) and possible

extensions such as digital mock-up and simulation.

These 3-D representations are also be used for object recognition and clas-

sification (Halma et al., 2010), allowing objects to be identified in real world

scenes. Virtual reality and gaming can also make use of point-clouds, as real-

world objects and scenes can be converted directly into the virtual world.
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This is a useful application for locations that may have limited access, such

as cultural heritage sites, or museums whose collections are not on perma-

nent display (Blais and Beraldin, 2006). In the medical field, registration can

pertain to a wide variety of applications, such as the design and fitting of

orthotics (Thabet et al., 2011) and prosthetics (Mahmood et al., 2012), or reg-

istering internal body parts to a model for efficient analysis (Gutman, 2013).

Registration is not limited to just these applications, as there are an abun-

dant number of new and novel applications that can be developed from the

examination of registered point-clouds.

1.1 Background

Range imaging systems with no knowledge of their global position, when ac-

quiring an image, produce a point-cloud whose coordinate system is formed

with respect to the imaging system. Therefore, each point-cloud is established

with its own coordinate system, meaning that the coordinate system does

not intuitively change with the imaging system’s pose. The consequence is

that simply placing these point-clouds together in the same coordinate system

results in them being layered haphazardly on top of each other instead of form-

ing a cohesive alignment; a visual example of this is presented in Figure 1.2.

Registering all point-clouds so that they correctly portray the imaged scene

requires fixing one point-cloud and transforming the others with respect to it.

The transform which registers one point-cloud with another is the combination

of a rotation and a translation; scale does not need to be taken into account

as range imaging systems produce point-clouds at a consistent scale.

The transformations that align point-clouds together are a priori unknown

if there is no external system in place for tracking how the imaging system or

object has moved. In this situation, the structural elements (such as planar

surfaces, edges and corners) of the point-clouds are examined and matched to

identify the transformation which provides the best alignment. It is this task

which is essential for robustly solving the registration problem. The difficulty

of finding the transformation is influenced by point-cloud quality, number of

sample points and their distribution, and the percentage of overlap between

point-clouds. Point-cloud quality is given by the accuracy and precision of

the imaging system and its capability to minimise noise. As quality decreases,

the ability to identify common elements between point-clouds also decreases.

Increasing the number of sample points improves the characterisation of each
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Figure 1.2: Visual example showing different imaging poses (A, B and C)
only sampling a portion of the object’s surface, and how these samples, when
viewed from the camera’s perspective, are initially positioned with respect to
each other. Registering these samples then aligns them together in the same
coordinate system.
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structural element. Each imaging system’s pose has a unique distribution

of sampling points in the scene, meaning that the characterisation of each

structural element will vary with pose. The pose also determines point-cloud

overlap, thus as overlap decreases, the number of structural elements common

to both point-clouds also decreases, escalating registration difficulty.

Point-cloud registration is normally performed in two stages: coarse reg-

istration followed by fine registration. Coarse registration algorithms bring

point-clouds with any orientation difference into a close approximate align-

ment. Fine registration algorithms, such as iterative closest point (ICP) (Chen

and Medioni, 1991; Besl and McKay, 1992), complete the alignment by pro-

viding near optimal minimisation of the misalignment between point-clouds.

However, they require the rotation and translation error to be sufficiently

small, otherwise the found alignment can become trapped in local minima.

The required capability of the coarse registration pipeline is determined by

the aforementioned influences, with these influences varying with both the

type of imaging system used and the range images they produce.

1.2 Motivation and Objectives

The initial motivation for analysing the registration pipeline was to regis-

ter range images acquired by simultaneous full-field range imaging systems

that use the amplitude modulated continuous wave (AMCW) time-of-flight

method (Dorrington et al., 2007). These systems have had an increase in at-

tention (Kolb et al., 2010) as they are able to acquire individual range samples

simultaneously across the full field-of-view. Due to both the nature of how

they image a scene and their relative infancy, these imaging systems have in-

herent limitations that can degrade acquisition quality. To minimise these

limitations, the registration pipeline needs to be sufficiently robust to increase

correct alignments.

The limitations of these imaging systems encompass a variety of systematic

aspects that pertain to image quality and how these imaging systems can be

used. The resolution of an acquired range image is comparatively sparse with

respect to more mature imaging systems, as these systems can produce dense

sampling with tens of millions or more points within the same field-of-view.

Examples of resolution for three commercially available cameras are 176×144

for the Mesa SwissRanger SR4500 (Mesa Imaging, 2014), 320×240 for the

SoftKinetic DS325 (SoftKinetic, 2014) and 512×424 for the Microsoft Kinect
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2.0 (Payne et al., 2014). Along with there being fewer sample points, their

accuracy and precision quality can also be degraded by various phenomena

that relate to how the infrared active illumination is reflected and collected.

Two such phenomena are mixed pixels, which occurs when collected light is

reflected back by two or more surfaces, and multipath interference, which is

when the path of light bounces off of two or more surfaces before return-

ing. Various other phenomena such as subsurface scattering, pixel saturation,

intralens scattering, blurring due to depth-of-field and undesirable electronic

effects can also occur (Foix et al., 2011; Godbaz, 2012). These imaging systems

are also limited by how they can be used. The modulation frequency of their

light source determines the range to which they can measure before ambigu-

ity becomes an issue; a 30MHz modulation frequency equates to five metres

unambiguous range. The colour of an object within a scene also influences

its signal to noise ratio, with white objects imaging well, and black objects

typically producing noise due to insufficient light being returned (Dorrington

et al., 2007). Motion blur can also corrupt an image if the imaging system is

moved (or the scene has motion) during image acquisition.

The objective of this thesis is to analyse and enhance the coarse registra-

tion pipeline proposed by Makadia et al. (2006); a comprehensive analysis of

this pipeline, which has not been performed previously, is carried out to de-

termine its capabilities and limitations. The pipeline performs registration by

correlating spherical harmonics to find the rotational alignment between two

point-clouds independently of the translational alignment. The registration is

coarse as the correlation only tests a discrete set of rotations or translations,

therefore, some degree of misalignment will invariable remain. The pipeline

then attempts to automatically classify whether the found alignment is correct

by examining the relationship between the point-clouds.

While this pipeline has had minimal investigation since its conception, it

shows a lot of promise for the registration problem: Makadia et al. showed that

it can register point-clouds with overlap as low as 45%. The only input this

pipeline requires are partially overlapping point-clouds (with any orientation

difference) that have a normal associated with each point. As the pipeline

uses all the points and normals of a point-cloud, all of its structural elements

are used. This differs from other registration approaches, such as key-point

matching (see Section 2.3.2), that only use a subset of points.

The specific focus is on coarsely registering partially overlapping sparse

point-clouds (as opposed to point-clouds with dense sampling or are full mod-
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els) which may be afflicted by the aforementioned limitations of the AMCW

range imaging systems. Establishing the capability of the pipeline using only

the point-cloud overlap requires that no forms of scene preparation are intro-

duced (see Section 2.2); scene preparation includes measuring or restricting

the imaging system’s pose by using external apparatus, such as accelerome-

ters, as they reduce the registration search space. The analysis of the pipeline

deems the rotational alignment correct if its misalignment is 10◦ or less, as

fine registration algorithms, such as ICP, have been shown capable of handling

this amount of misalignment (Larkins et al., 2010; Minguez et al., 2006). The

translational alignment is deemed correct based on the sampling density of the

tested datasets (see Section 7.2).

Herein each step of the pipeline is analysed to provide a reliable quantifi-

cation of its performance, with potential improvements being proposed and

contrasted to establish whether they enhance registration capabilities. The

goal of these enhancements is to produce a pipeline whose registration capa-

bility is more robust than its predecessor, while only requiring minimal overlap

between point-clouds.

1.3 Thesis Organisation

The organisation of this dissertation is structured across 10 chapters in a man-

ner akin to that of the coarse registration pipeline itself. Figure 1.3 is a visual

representation of the pipeline as a flow diagram, with each major step iden-

tified. Each major step that is analysed is contained within its own chapter,

though the fundamental mathematics of the rotation and translation are pre-

sented in a separate preliminaries chapter. Where applicable, the following

descriptions of each chapter identify the step in the flow diagram to which

they correspond.

Chapter 2 contains the literature review pertaining to the current state of

the registration field. The types of systems capable of range image acquisition

are briefly described first, as these produce the images that need registration.

The algorithms presented in literature for both coarse and fine registering

are then critiqued, with their strengths and weaknesses identified. Different

strategies for automatically verifying correct registration are then presented.

Chapter 3 outlines the mathematical preliminaries required for the coarse

registration pipeline. This primarily covers spherical-harmonic conversion and

correlation for finding the rotation, and the binning of points and correlating
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their histograms in the frequency domain to find the translation. The effects

that these mathematical approaches have on registration are also discussed.

The mathematics behind both the Determine Rotation and Determine Trans-

lation steps of the flow diagram are covered in this chapter.

Chapter 4 establishes the three ground-truth datasets used for analysing

each step of the pipeline. This chapter also details how the ground-truth data

is used to assess the overall registration performance.

Chapter 5 tests three schemes for binning normals to determine what ef-

fect the distribution of bins on the unit sphere has on registration performance.

A new algorithm for binning normals on a Fibonacci bin distribution is intro-

duced and the appropriate normalisation of equiangular binning is established.

This chapter corresponds to the Bin Normals step in the flow diagram.

Chapter 6 investigates whether different schemes for reweighting either

the normals or the bins improves the representation of each point-cloud for

correlation. A representation that is conducive to correlation increases the

likelihood of identifying the correct rotation. A novel method of combining two

weightings together is introduced and shown to significantly improve registra-

tion accuracy. This chapter forms the Weight Bins step of the flow diagram.

Chapter 7 analyses the capability of translational registration with respect

to how frequently it achieves correct translation when correct rotation has been

identified. This chapter constitutes the analysis of the Determine Translation

step in the flow diagram.

Chapter 8 details three approaches for verifying whether correct align-

ment has been achieved between two or more point-clouds. The ability of

alternative rotation selection is also tested to establish the amount of benefit

that it provides if an incorrect rotation is selected. This chapter is the Reg-

istration Verification step, which is the last step in the flow diagram, and as

such, it completes the coarse registration pipeline.

Chapter 9 takes the produced coarse registration pipeline and concisely

evaluates its ability to correctly align point-clouds from real datasets. Where

possible, this pipeline is also tested on datasets that have been used with other

registration algorithms, allowing the comparative ability of the pipeline to be

established.

Chapter 10 summarises both the key findings and the contributions made

to the field of 3-D registration. This dissertation is then concluded by dis-

cussing the future directions in which this research could be further progressed.
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Chapter 2

Review of Literature

The extent of literature within the field of 3-D registration is numerous. This

literature encompasses a broad range of approaches and algorithms that are

often designed to handle a particular type of registration problem, or register

3-D data produced from a specific source. This chapter begins by detailing the

different techniques used by range imaging systems to produce 3-D data and

what effect they have on registration. The different approaches for registration

are then reviewed by firstly describing scene preparation, which is a manual

solution. This is followed by the main categories of registration algorithms

in the published literature. The final section touches on different strategies

proposed for verifying the alignment is correct.

2.1 Range Imaging Systems

The last three decades have seen increased growth of systems capable of ac-

quiring range images that allow an object or scene to be digitally represented

in 3-D. Blais (2004) and Bi and Wang (2010) provide in-depth reviews detail-

ing different types of range imaging systems that have been developed. These

range imaging systems are classified based on the techniques behind their 3-D

acquisition, which fall into two main categories: passive or active acquisition.

Passive range imaging measures the scene without using an active illumi-

nation light source. A variety of techniques for passively determining range

information are shape-from-shading (Zhang et al., 1999; Xiong et al., 2013),

photometric stereo (Herbort and Wöhler, 2011), structure-from-motion (Olien-

sis, 2000; Corsini et al., 2013), passive stereo vision (Tippetts et al., 2013),

depth from defocus (Sun et al., 2013), coded aperture (Levin et al., 2007) and

plenoptic cameras (Perwaß and Wietzke, 2012). These forms of acquisition are

11
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less sensitive to constraints in the scene, such as reflective surfaces or surface

material, and are more suited to handling motion, such as on a mobile plat-

form. This reduced sensitivity is due to passive acquisition not requiring the

scene to be actively illuminated for a measurement to be produced. The prin-

ciples underlying passive acquisition techniques do have their own limitations

which affect ability and accuracy. The primary limitation is the difficulty to

infer absolute depth when there is an absence of surface lighting or texture,

as parts of the scene at different ranges appear the same (Levin et al., 2007;

Bi and Wang, 2010). Stereo has the additional limitation of decreased range

accuracy if its two views are not aligned accurately (Tippetts et al., 2013).

Range imaging systems that actively illuminate the scene measure range

by emitting and collecting light in a manner that pertains to their underlying

measurement principle. Active illumination techniques include time-of-flight,

interferometry, and active triangulation approaches, such as structured light-

ing and 3-D laser scanning; Blais (2004), Bi and Wang (2010) and Payne

(2008) describe these in detail. The advantage of active illumination systems

is that they can achieve sub-millimetre accuracy (Dorrington et al., 2007) with-

out needing texture information in the scene. Additionally, they can operate

in environments which have no external light sources. Active illumination

techniques do have limitations that affect range measurement. If their tech-

nique requires multiple measurements to establish range, then camera or scene

movement can induce motion distortions, which can be difficult to detect and

fix (Lee, 2014). Other factors, such as external light sources, scene structure

and surface materials, can also corrupt or distort the returned light, reducing

measurement accuracy (Foix et al., 2011; Kolb et al., 2010; Godbaz, 2012).

The range imaging system appropriate for a particular task is dependent

upon its strengths and weaknesses. The technique used to measure range

determines acquisition quality, which for registration affects its alignment ac-

curacy. Different systems solve the registration problem by incorporating a

hardware based solution into their set-up to provide an exact measure of pose.

These include mechanical arms (Hexagon Metrology, 2014; GOM, 2014), fixed

rigs (Arius 3D, 2014), inertia sensors (Pribanic et al., 2013) and external refer-

ence apparatus (Penman et al., 2008). While these solutions help mitigate the

need for additional registration algorithms, they are not always successful if

the object or additional apparatus need repositioning to complete the acquisi-

tion process. The coarse registration pipeline analysed herein can process any

range imaging data as long as each sample point has an associated normal.
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2.2 Scene Preparation

The registration problem is often handled by introducing markers or targets

into the scene prior to acquisition, allowing the relationship between multiple

images to be easily determined (Bornaz et al., 2002). This is achieved for two

overlapping images by identifying three or more targets that are common to

both images; if there are fewer than three targets, then alignment ambiguity

occurs, and a rigid transform cannot be calculated. Additionally, the position

of targets determines the necessary overlap between images, as a reduction

in overlap requires an increase in the number of targets, so as to ensure that

the prerequisite of three common targets is met. Because the targets are

identified algorithmically from the acquired images, they need to be relatively

immune to acquisition angle, and adequately sized to sufficiently collect enough

sample points, otherwise the available positions for imaging the scene will be

limited (Valanis and Tsakiri, 2004; Franaszek et al., 2009). Becerik-Gerber

et al. (2011) found that spherical targets performed the best when compared

against paddle and paper based targets.

Preparing the scene with targets can provide registration alignment with

high accuracy, but this approach does have disadvantages. The primary of

which is that the targets introduced to the scene may adversely modify its

representation due to the targets adding to or obscuring its true shape. The

nature of the scene may also make the use of targets infeasible if the scene

covers an extensive area, or if access into the scene area is limited or re-

stricted (Guarnieri et al., 2011). The scene preparation step can also be very

time consuming, as this is an additional step that requires choosing optimal

marker locations, as well as having to actively add and remove targets. An

example of this is when using the Creaform portable 3-D scanner (Creaform,

2014), which is an imaging system that requires extensive placement of retro-

reflective markers in the scene to achieve registration. The coarse registration

pipeline presented in this thesis does not require scene preparation as it regis-

ters point-clouds using only their overlapping surface structure.

2.3 3-D Registration Algorithms

Solving the registration problem is not limited to hardware based solutions, as

software algorithms are also capable of performing registration. There is an

abundance of proposed algorithms which cover a variety of distinct registration

approaches. Currently there is no single algorithm suitable for all situations.
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This is due to the operating limitations of each algorithm and their particular

data requirements. Salvi et al. (2007), Blumenthal et al. (2011), Castellani and

Bartoli (2012), Tam et al. (2013) and Dı́ez et al. (2015) provide a broad survey

of many of these algorithms. Because there is an extensive range of literature

available, it is infeasible to review all algorithms. Instead, this section provides

a concise review of the most successful algorithms using up-to-date literature.

2.3.1 Iterative Closest Point Algorithm

The iterative closest point (ICP) algorithm (Besl and McKay, 1992; Chen

and Medioni, 1991) and its subsequent variants are the predominant set of

algorithms used for registering point-clouds whose rotational and translational

misalignment is minimal; this form of registration is known as fine registra-

tion. ICP operates by calculating the transform which minimises the root-

mean-squared distance of corresponding points between two point-clouds. By

iteratively repeating this process, the transform is revised and the distance

minimised. Once the distance is below a prescribed threshold, or the maximum

number of allowable iterations is reached, the iterative process is stopped. The

disadvantage of ICP is that its iterative process often gets trapped in a local

minimum, especially if the initial misalignment between the two point-clouds

is large (Castellani and Bartoli, 2012). The overall alignment accuracy is de-

pendent upon a variety of aspects, with initial alignment, point-cloud quality

and applicability of algorithm variants having the most influence. Depending

on the application, finding a good initial alignment is achieved by acquisition

set-up, manual registration, or by a coarse registration algorithm.

The ability of ICP to produce a tight fit between point-clouds (once a

good initial alignment has been established) has made it the dominant fine

registration algorithm. Due to this success, the majority of subsequent fine

registration algorithms follow an iterative scheme akin to ICP (Salvi et al.,

2007). Rusinkiewicz and Levoy (2001) reviewed different variants proposed

for each step of the ICP algorithm to determine their convergence speed and

alignment accuracy. The primary variants found to benefit ICP are the rejec-

tion of point-pairs containing boundary points, point-to-plane correspondence

instead of point-to-point and avoiding the rejection of point-pairs based on

their distance.

Because hundreds of variants have been published since the inception of

ICP, Pomerleau et al. (2013) constructed a testing framework to compare

how different variants perform when applied to real-world data. They found
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through their framework that improvements to the current ICP variants or new

methods are needed to improve ICP when registering natural, unstructured or

information-deprived scenes. Larkins et al. (2010) ascertained that the errors

that occur in range images acquired by an AMCW range imaging system have

minimal influence on the ability of ICP.

2.3.2 Key-Point Matching

Registration based on key-point or feature matching operates by using image

descriptors that identify aspects (such as shape or texture) in the scene that

are recognisable from multiple view-points. A variety of descriptors have been

proposed and evaluated in literature (Dutagaci et al., 2012; Tombari et al.,

2013). Like scene preparation (see Section 2.2), this approach requires suffi-

cient overlap to allow enough common key-points between overlapping point-

clouds to be detected. Once established, the corresponding key-points between

point-clouds need to be filtered and matched to allow a rigid transform to be

calculated. This matching process can be achieved in different ways; the com-

bination of ICP and the key-points is one such approach (Ekekrantz et al.,

2013; Liu et al., 2014) or by constructing a voting procedure to find pairs of

key-points that correspond to each other (Kulkarni and Kumar, 2012; Pham

et al., 2013). Alternatively, each key-point can be provided with a unique de-

scriptor, such as a spin image (King et al., 2005; Torre-Ferrero et al., 2011;

Fantoni et al., 2012) or shape contexts (Price et al., 2012), to reduce the search

space for performing the matching. While the matching process is an active

area of research, key-point identification is often the primary focus.

Individual range imaging systems provide different types of data that con-

tain a variety of aspects from which key-points can be calculated. Systems ca-

pable of acquiring colour or intensity images in conjunction with the range data

provide additional means of obtaining key-points (King et al., 2005; Seo et al.,

2005). However, as this auxiliary data is not always available or it changes

with view-point, key-points are primarily found at structural elements of the

point-cloud. Gradient features, such as those calculated by scale invariant

feature transform (SIFT) and speeded up robust features (SURF), are detec-

tors adopted from 2-D registration (Houshiar et al., 2013). They can perform

particularly well (Bonarrigo et al., 2011; Fantoni et al., 2012; Segundo et al.,

2012), but their ability is influenced by sample density. Increasing sample

density improves registration success, but computational cost also increases as

more key-points are produced that need to be filtered and matched. Ho lowko



16 Review of Literature

and Sitnik (2013) uses the Harris corner detector which identifies key-points

by calculating the shape variation around a vector using the distribution of

normals in its local neighbourhood. This detector requires high density point-

clouds so that well defined edges and corners are formed, allowing reliable

key-points to be produced; because of this it also has a high computational

cost. Features such as surface planes (Theiler and Schindler, 2012; Xiao et al.,

2012) and object boundaries (Steder et al., 2011) can also be used to produce

key-points, but these rely on the scene having a particular structure, and are

therefore not always available or reliable.

The advantage of key-point based registration is that if enough key-points

are acquired and sufficiently defined, they can accurately align point-clouds.

The disadvantage is that the approach used to identify features or key-points

often need to be tailored to a number of factors. These include scene structure,

data quality, arrangement of sample points and the types of information ac-

quired, while being repeatable with view-point changes. Tombari et al. (2013)

surveys a selection of current state-of-the-art 3-D key-point detectors to deter-

mine their repeatability and distinctiveness under a variety of testing condi-

tions. The performance evaluation provided by Tombari et al. confirmed that

a detector should be chosen based on the desired task and data quality. Two

open issues also highlighted as requiring future research were the efficiency

of all existing key-point detectors and improving their robustness to changes

in sampling density and scene dimensionality; scene dimensionality relates to

point-cloud overlap and the amount of data available about the scene. Using

key-point based registration with respect to AMCW imaging systems would

be a challenging task due to their sparse point-clouds and potentially degraded

quality at object boundaries due to mixed pixels and multipath interference.

2.3.3 Evolutionary Algorithms

Evolutionary algorithms provide a means of robustly solving optimisation

problems by drawing inspiration from the process of natural evolution (Eiben

and Smith, 2003). Applying evolutionary algorithms to registration allows

the desired alignment to be refined over successive generations. Genetic algo-

rithms are the primary type of evolutionary algorithm used for registration but

different evolutionary models have been proposed (Santamaŕıa et al., 2011).

Genetic algorithms work by encoding the rotation and translation as a string

of numbers that represents the genetic make-up of each individual, where each

individual is a potential solution (Jacq and Roux, 1995). The initial generation
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is formed by randomly creating a set of individuals, with the fittest individuals

reproducing to form the next generation. The fitness is measured by using an

appropriate function, such as the root-mean-squared distance between point-

clouds (De Falco et al., 2013). The new generation is produced by combining

the genetic make-up of pairs of individuals by using random crossover and

by introducing mutations. Once the stopping condition is reached, such as

when the allowable number of generations has been produced or fitness has

plateaued, then the fittest individual of the last generation is used as the so-

lution.

The primary benefit of using evolutionary algorithms for registering point-

clouds is that they develop multiple solutions in parallel. This allows them to

perform global optimisation without being trapped in local minima. Because

of this, evolutionary algorithms are capable of performing both the coarse and

fine registration steps, though their strength is coarse registration. Santamaŕıa

et al. (2011) performs a comparative study of different algorithms and found

that their accuracy varies substantially based on their chosen evolutionary

model. This is due to these algorithms needing to be finely tuned to the par-

ticular registration problem to perform well. The fine tuning relates to both

how the initial population is generated and how the subsequent generations are

produced (Santamaŕıa et al., 2013). Because the fitness test is performed for

every individual at each generation, computational cost is one of the greatest

limitations of using evolutionary algorithms, especially as the number of points

in each point-cloud increases (Salvi et al., 2007). The continual development

of evolutionary algorithms for registration will reduce the need to tailor an al-

gorithm to each registration problem (Valsecchi et al., 2013). Computational

performance can also be aided by using additional approaches, such as sub-

sampling (Santamaŕıa et al., 2013) or inertia sensors (Hrgetić and Pribanić,

2013).

2.3.4 Spin Images

Spin images (SIs) were initially introduced by Johnson (1997) to provide a set

of rotation and translation invariant 2-D representations of a 3-D point-cloud,

which allow for object recognition or point-cloud registration. A complete

SI model is produced for a point-cloud by generating an individual SI for

every point. The process for generating the SI for a given point, called the

orientated point, begins by calculating its surface normal and forming a plane

that is orthogonal to the normal and passes through the orientated point. A SI
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is produced by discretely histogramming all points in the point-cloud, where

each point is placed into a bin with respect to the orientated point. The two

values that determine the bin are the perpendicular distance from the normal

vector to a point and the signed perpendicular distance between the plane

and a point. Once two or more complete SI models are created, registration

is performed by determining which SIs match each other via correlation and

using the method by Horn (1987) to finding the transform which brings them

together.

Johnson (1997) described the ability of SIs for registering relatively simple

point-clouds, and since their inception, work has been undertaken to improve

both their registration and recognition capability. Brusco et al. (2005) im-

proved SI registration by histogramming the luminance texture information

from the image at different levels, instead of the points. The addition of lumi-

nance improved the correct matching of SIs, particularly as overlap decreased,

though the overlap limit was not identified. A disadvantage of this approach

is that it does not cater for active illumination systems or lighting changes, as

it requires that luminance levels remain relatively consistent between views.

Zhang et al. (2012) instead proposed replacing either axis of the SI with the

signed angular difference between the normals of the orientated point and

each normal of the neighbouring points. The sign of the angular difference

indicates whether the neighbouring normal points towards or away from the

normal of the orientated point, which corresponds to the surface being concave

or convex, respectively. Zhang et al. used this approach to identify and match

complete models, and as such, they did not analyse its ability with respect to

registration.

The limitation of forming and comparing SI models is the computation cost;

as the number of point-clouds or their points increases, more SIs are formed,

requiring additional correlation comparisons. Different strategies have been

introduced to help alleviate this computational burden by making the compar-

isons more efficient or by limiting which points produce SIs. These include com-

pressing SIs using principal component analysis (Johnson and Hebert, 1999),

point-cloud decimation (Guarnieri et al., 2011) to reduce the number of points,

or randomly selecting a subset of points (Zhang et al., 2012). Ho and Gibbins

(2008) suggested parametric surface fitting at each point to measure surface

shape, allowing a set of salient key-points to be identified at locations with

high shape variation. SIs can then be formed at these key-points, minimising

the number of SIs that need to be made. While this process may improve
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overall efficiency, using locations with high shape variations are not always

pertinent if the point-clouds are formed primarily from planar surfaces. Dinh

and Kropac (2006) varied SI resolution to construct a SI pyramid, SI pairings

that had a high enough correlation were promoted to the next resolution, with

the rest being discarded. This process was repeated at each resolution from

lowest to highest, what remained was a set of SI pairings which had the best

correspondence between two point-clouds.

Even with these modifications to improve efficiency, SI based registration

is still computationally expensive. This is shown by Guarnieri et al. (2011)

who used SI pyramids to register 12 point-clouds with a combined count of

3 000 000 points. Each point-cloud was filtered to remove isolated points with

this number being further reduced via decimation. The complete SI model

for each point-cloud was produced by randomly selecting 10% of the points to

construct SIs, with the resulting alignments being refined by ICP. The regis-

tration accuracy was not quantified, though it was stated that a minimum of

30% overlap was required. The reported execution time required for the regis-

tration process was approximately five hours when using a 64-bit workstation

with a quad-core 2.53GHz processor and 6GB of RAM. This reveals that SI

based registration still needs further improvements to boost its efficiency.

2.3.5 Random Sample Consensus

Random sample consensus (RANSAC) is an iterative algorithm introduced

by Fischler and Bolles (1981) that robustly fits models to data that may be

corrupted by both noise and outliers. This is achieved by randomly selecting

the minimum number of points needed to rigidly fit the model to the data.

The quality of this fit is determined by measuring how many points, called

inliers, are within the models threshold distance. The more times this random

selection and fitting is performed, the greater the probability of finding a close

fit. Once the predefined number of iterations is reached, the model with the

most inliers is selected and refined by performing least-squares fitting using

only the inliers. A variety of algorithms proposed to improve both efficiency

and accuracy are evaluated by Choi et al. (2009). Their conclusion was that

merging algorithms or investigating RANSAC further is required to better

balance its accuracy and efficiency.

Applying RANSAC to the registration of 3-D point-clouds is performed by

selecting a set of points from the first point-cloud to be used as a model. A

minimum of three points are required to ensure that a rigid transform can be
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obtained (Chen et al., 1999). The structure of the model is defined by the

distance between each of its points, with one of these points being selected as

the primary. A potential alignment is then tested by matching the primary

point of the model to a point in the second point-cloud. If the structure of

the model has a sufficiently close match with this point and its neighbours,

then the alignment is stored. This process is repeated for as many points in

the second point-cloud as possible. The number of inliers for each alignment

is counted as the number of points that correspond between the two point-

clouds. The alignment with the greatest number of inliers is selected as the

most suitable transform (Fortenbury and Guerra-Filho, 2012). If a suitable

transform cannot be found, then an alternative model is needed.

RANSAC is able to provide very robust registration, even in presence of

noise and outliers (Fortenbury and Guerra-Filho, 2012). Its primary disad-

vantage though is that the computational cost of its iterative process can be

very expensive, especially as the number of points increases or if an exhaus-

tive search is performed (Salvi et al., 2007). The efficiency of the RANSAC

algorithm can be improved by using objects (Yang et al., 2010) or planes seg-

mented from the scene instead of or in conjunction with points to reduce the

number of matches that need to be performed (Yao et al., 2011; Taguchi et al.,

2013). Alternatively, RANSAC can be used with key-points extracted from

the point-clouds instead of only using the initial points (Houshiar et al., 2013;

Ho lowko and Sitnik, 2013; Ekekrantz et al., 2013). While these modifications

can benefit RANSAC, identifying key-points has its own computational over-

head, additionally, their use is often scene dependant (see Section 2.3.2).

2.3.6 Principal Component Analysis

Principal component analysis (PCA) is a statistical technique that is able to

find patterns in data by identifying the orthogonal axes in this data which

correspond to the greatest variance. These axes are the principal components,

which are ordered from largest to smallest based on their variance, with there

being as many principal components as there are dimensions in the original

data (Jolliffe, 2002). The principal components are calculated by first convert-

ing the data into a covariance matrix. Applying either eigendecomposition or

singular value decomposition to the covariance matrix allows its eigenvalues

and eigenvectors to be extracted. Each eigenvector determines the direction of

a principal component, while its variance amount is specified by the associated

eigenvalue.
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Applying PCA to a 3-D point-cloud gives three principal components which

correspond to its primary structural shape. Repeating this process for a sec-

ond point-cloud will give principal components that have the same or similar

structure as the first point-cloud if their overlap is sufficient. The two point-

clouds are coarsely registered by orientating the principal components into the

same alignment from largest to smallest. The primary advantage of PCA is

its efficiency, allowing it to rapidly calculate a transform between two point-

clouds. However, because the principal components are calculated based on

its overall structure, its ability quickly degrade as overlap decreases or if there

is an increase in noise or outliers (Salvi et al., 2007). Due to this, PCA is

best suited for registering whole objects (Tam et al., 2013). Liu and Ramani

(2009) proposed a robust version of PCA which is able to better handle out-

liers and noise by following a least median of squares based approach. Their

approach operates by taking a subset of points that are outlier free and it-

eratively adding points to this subset that are not considered to be outliers;

this subset is deemed the major region, with the minor region comprising of

outliers. Calculating the principal components using the major region pro-

vides greater registration accuracy, though a high level overlap between each

point-cloud’s major region is still required to ensure the registration is reliable.

2.3.7 Frequency Domain Correlation

Converting point-clouds or a particular aspect of them into a frequency domain

representation permits them to be correlated. Correlation efficiently measures

the similarity between two point-clouds using a large range of discrete align-

ments. For 2-D images, frequency domain correlation has the capability of

calculating translation, rotation and scale (Reddy and Chatterji, 1996). Ap-

plying correlation to 3-D data also allows rotation and translation to be found;

scale is not necessary as range imaging systems produce point-clouds at a con-

sistent scale. A suitable representation in the frequency domain is one that

is conducive to the calculated shift. Spherical harmonics provide the most

natural representation for finding the rotation as they produce an orthogonal

system on the surface of a unit sphere. Translation is calculated using the

Fourier series, as they convert data contained in Euclidean space. Because fre-

quency domain correlation is a major component of this thesis, it is reviewed

in greater detail in Section 2.4 below.
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2.4 Registration in the Frequency Domain

Literature that uses the frequency domain for achieving registration is reviewed

in this section, which is divided into two parts. The first focuses on spherical

harmonic based approaches that have been used for finding the rotation that

orientates two closed objects. The second part reviews how the frequency

domain can be used to calculate the rotation and translation that registers

partially overlapping point-clouds. Operating in the frequency domain also

permits other novel applications to be performed that are not directly pertinent

for registration. These include finding the bilateral symmetry plane, which is

the best plane for splitting a symmetric object (Kakarala et al., 2013) and 3-D

model categorisation and retrieval (Makadia and Daniilidis, 2010).

2.4.1 Orientation of Closed Objects

The rotation which orientates a closed object (an edgeless 2-manifold) with

either a ground-truth model or an object of the same type can be calculated

by using spherical harmonics to represent the object. This section reviews

literature that pertains to the prominent approaches for finding the orientation

of closed objects when using spherical harmonics.

Burel and Henocq (1995) proposed the idea of finding the aligning orienta-

tion by directly solving for the three rotation angles using spherical harmonics.

Their goal of orientating 3-D vertebrae (the bones composing the spinal col-

umn) with respect to a model was performed by forming a 3-D voxel matrix

of a vertebra and placing its centroid at the origin of the coordinate system.

The vertebra’s spherical-harmonic representation was produced by mapping it

onto the unit sphere by taking the distance between the origin and the farthest

point on the vertebra in the direction of the sample point on the sphere. The

rotations were found as those that brought the spherical-harmonic coefficients

within a predefined set of values. Burel and Henocq identified that if the cen-

troid of the vertebra matched that of the model, then each angle of rotation

usually had less than half a degree of error. However, if the centroid locations

did not match, then a translational difference occurs, which changed the map-

ping and increased the rotational error. A spherical-harmonic degree of two

was used for finding the rotation, with accuracy being further improved by

fine tuning with a degree of four. The spherical-harmonic degree is the degree

used to calculate the Legendre polynomial (see Section 3.2.1).

A commonly used approach, referred to as SPHARM (Gerig et al., 2001;
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Huang et al., 2005; Shen and Chung, 2007), for representing a 3-D object in

spherical harmonics was introduced by Brechbühler et al. (1995), in which the

vertices of the exterior voxels are mapped onto the surface of the unit sphere.

A continuous mapping was achieved by diffusing the surface between vertices,

with distortions being minimised by a nonlinear optimisation to preserve the

area of the original surface elements. The axes of the first order ellipsoid (FOE)

of this mapping were then used to orientate the object into a fixed position

by aligning them to the axes of the coordinate system. The limitations of

using FOE for registration have been outlined previously (Shen et al., 2007;

Gutman et al., 2008), with these being caused by the ellipsoid’s axes having

similar lengths.

Huang et al. (2005) attempted to overcome the limitations of the FOE by

minimising the Euclidean distance between two SPHARM surfaces. The dis-

tance between the two surfaces is calculated in the frequency domain up to

a desired spherical-harmonic degree. This approach is broken into two steps,

with the first using brute force to independently calculate the distance for

a number of rotations. These rotations were generated by uniformly creat-

ing rotation axes and testing with different rotation angles. Having identified

the rotation with the minimum distance, the second step used the iterative

Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm (Fletcher, 1987) to re-

fine the rotation to further minimise the distance. Shen et al. (2007) reduced

the number of rotations examined by basing them on icosahedral placements; a

hierarchical scheme was then used in which the density of these placements was

increased around the best candidates. The BFGS algorithm was also dropped

in preference for using an ICP based approach to complete the registration.

The results of Shen et al. were shown using a spherical-harmonic degree of

12, and were quantified using the Euclidean distance between corresponding

surface parts. While this approach was shown to provide a better alignment

than FOE, its efficiency is still its primary limitation as the distance is inde-

pendently calculated for each rotation, with this cost only increasing if higher

spherical-harmonic degrees are desired.

Gutman et al. (2008) showed that both FOE and the approach by Shen

et al. (2007) are special cases of spherical-harmonic correlation, and as such,

correlation will provide better registration accuracy. Gutman et al. initialised

the correlation by mapping a 3-D images of the hippocampus (the memory area

of the brain) onto the unit sphere using the approach by Gu et al. (2004), before

being converted to the frequency domain at a bandwidth of 64. Performing the
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correlation and inverting it into the impulse domain allowed the rotation which

maximises the alignment between hippocampi to be identified. Gutman et al.

attempted to reduce the cost of the correlation by expressing the rotation in

the frequency domain as the product of two rotations, allowing β, the rotation

angle about the y-axis, to be fixed as π/2. The idea behind this elegant

approach was that the Wigner d-matrix only needs to be calculated and cached

once for each spherical-harmonic degree and order instead of being recalculated

for each β. While Ritchie and Kemp (1999) found this caching scheme to be

slower than the direct evaluation, the stated computational cost of O
(
B4
)

is

the same as the efficient algorithm proposed by Kostelec and Rockmore (2008).

Rotation estimation between two objects using a closed-form solution was

proposed by Althloothi et al. (2013), in which the separating rotation is identi-

fied as the one which minimises the difference between the two sets of spherical-

harmonic coefficients. This was achieved by first expressing objects on the unit

sphere using a modified version of the approach by Shen and Makedon (2006),

allowing objects with a torus like nature (objects of genus-1 and greater) to

also be represented. This modification works by performing hole-filling, in

which the objects are made to be genus-0. This reconstruction, however, can

misconstrue the representation, such as when filling in the handle of a coffee

mug. Suboptimal representations of an object can be detrimental as it limits

the ability of the algorithm to accurately determine the correct rotation. By

performing eigendecomposition on the cross-covariance matrix of the spherical-

harmonic coefficients, the eigenvector of the maximum eigenvalue allowed the

rotation which minimises the rotation error to be estimated. This approach

was tested using a degree of 15 to calculate the spherical harmonics of both

an object and the rotated version of itself. The results showed that as the

rotational misalignment between the two models increased, the rotation error

also increased, with this increase rapidly rising when misalignment was 80◦

or more. While this closed-form solution can perform well, the increase in

rotation error indicates that its capability is limited; rotational misalignment

should not affect the resulting rotation error when spherical harmonics are

used, as they can handle any rotational difference.

2.4.2 Orientation of Surfaces

The registration capability of spherical-harmonic correlation permits it to be

expanded beyond solely using it for closed objects, though currently there has

been minimal research that examines it for partially overlapping point-clouds.
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Makadia et al. (2006) provided the first and primary piece of literature that

applies spherical-harmonic correlation to this task. The approaches used for

representing an object’s orientation on a unit sphere do not intuitively apply

to a point-cloud that is open, as opposed to being fully closed. Therefore, an

alternative means of representing surface orientation on the unit sphere is used.

This representation is achieved by extracting the surface normals from the

point-cloud to form a Gaussian sphere, which is a unit sphere with points on its

surface indicating the orientation of each normal. Makadia et al. (2006) refers

to these Gaussian spheres as extend Gaussian images (EGI) (Horn, 1984), but

this is a misnomer as the formed Gaussian spheres do not take into account

the surface area associated with each normal when projecting them onto the

sphere. The advantage of using surface normals is that their relationship with

each other is invariant to both rotation and translation.

Converting the Gaussian sphere into spherical harmonics first requires that

a discrete representation of the sphere surface be produced to allow a computer

implementation to transform the normals into the frequency domain. Maka-

dia et al. (2006) achieved this by uniformly sampling both the polar and az-

imuthal coordinate directions using 256 bins. This binning procedure is known

as equiangle binning, which efficiently places each normal into a bin, with these

bins being collectively referred to as an orientation histogram. It was stated

that the best orientation histogram would be comprised of bins which have the

same surface area and shape, but this was not focussed on due to their require-

ment for fast correlation. Makadia et al. (2006) did not examine how different

binning schemes or bin sizes for collecting normals would affect registration

performance.

Wang and Qian (2008) proposed an alternative means of producing the

Gaussian sphere, in which a range image is converted into a 2-D phase-encoded

map and then transformed into the Fourier domain. An EGI was then pro-

duced by performing a coordinate transform from the frequency domain into

spherical coordinates. While this is a novel approach, it is less efficient than di-

rectly binning normals and it can only operate on a range image acquired from

a single pose of a range-imaging system at a time; therefore, this procedure is

not applicable to all systems, such as those that use a mechanical arm. This

procedure also requires a uniform sample distribution; non-uniform sampling

can be made uniform via interpolation, but this adds to the computational

overhead.

Makadia et al. (2006) introduced an additional step for converting the ori-
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entation histogram into a constellation image, by setting all bins that have a

dominant peak to a value of one, and the rest to zero. However, it was not

stated what criteria determines a dominant peak, though it is assumed that

it is based on each bin collecting a sufficient number of normals. The advan-

tage provided by a constellation image is that each surface region is treated

as being equally sized, improving the likelihood that the same surface region

from different views will be matched together. This is important as the same

surface region may have different sampling densities, or portions of it may be

outside the field-of-view when imaged from different poses.

The registration pipeline used by Makadia et al. (2006) first identified the

rotation between two point-clouds by converting their formed constellation im-

ages into spherical harmonics using the algorithm by Driscoll and Healy (1994).

A bandwidth of 128 was used for this conversion process, which corresponds

to a 256×256 histogram; the bandwidth specifies the upper limit for the cal-

culation of spherical harmonics (see Section 3.2.2). Correlating the two sets of

spherical-harmonic coefficients at this bandwidth and inverting the correlation

into the impulse domain allowed 2 097 152 different rotations to be efficiently

tested simultaneously. The size of each resulting impulse provided a measure

of how closely the two constellation images match each other at the associated

rotation. The largest impulse response corresponds to the rotation that brings

the two point-clouds into rotational alignment, if they are conducive to corre-

lation. Calculating the registration in this manner decouples the rotation from

the translation, allowing them to be calculated independently. The mathemat-

ics behind both the rotation and translation are outlined with greater depth

in Chapter 3.

Calculating the rotation and translation independently means that these

two steps only have three degrees of freedom each, instead of the original

six. Because the translation does not accommodate rotational misalignment,

it must be calculated after the rotation, otherwise the found translation will

be incorrect. Makadia et al. (2006) calculated the translation in a manner

similar to the rotation, except the points of the point-cloud were instead binned

and converted into Fourier coefficients. A process similar to the rotation was

performed, with the coefficients being correlated in the frequency domain and

inverted to the impulse domain. The translation corresponding to the largest

impulse was then selected and used to complete the registration.

In order to automate this pipeline Makadia et al. incorporated two align-

ment verification strategies (see Section 2.5). If the found alignment was clas-
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sified as incorrect, then the rotation associated with next largest impulse was

applied and the translation and verification steps reperformed. The number

of available rotations limits the effectiveness of this approach, as the next se-

lected rotation can be very similar to one previously selected. This pipeline was

shown capable of coarsely registering point-clouds with overlap as low as 45%.

However, as this pipeline was formed to show that spherical-harmonic correla-

tion can be applied to partially overlapping point-clouds, the capabilities and

limitations of each step were not evaluated in detail. The analysis performed

throughout this dissertation characterises each step with much greater depth.

In literature there have been alternative pipelines proposed which use tech-

niques similar to those presented by Makadia et al. (2006). Buchholz et al.

(2012) collected normals from a scene by acquiring an image using structured

lighting. An EGI was formed from these normals by using equiangle bin-

ning and taking into account the area of their corresponding face to overcome

changes in sampling density. Weighting the normals in this fashion does not

take into account how the visible area of each surface region changes with

different imaging poses. The orientation of the image was then found via

spherical-harmonic correlation with respect to a known model. Having rotated

the image, the model was projected onto a plane from the image’s acquisition

pose, 2-D scale invariant image correlation was then performed to complete the

registration, allowing the acquired image to be compared against the model.

This approach for finding the scale and translation was used as the acquisition

process used by Buchholz et al. did not provide depth data for each sample

point.

The pipeline by Bülow and Birk (2013) avoided using spherical harmonics

for calculating the rotation between two point-clouds by instead resampling

them into structures which allowed the yaw to be determined separately from

the roll and pitch. The yaw was determined by representing two point-clouds

as 2-D images using a combination of spherical coordinates at different radii

and polar resampling. The shift between these images, found by a phase

correlation, then corresponded to the yaw angle. The roll and pitch were de-

termined by projecting the spherical coordinates of each point-cloud at a given

radii onto a plane, which was discretised into an image. Once again applying

a 2-D phase correlation to these images produced a shift, in which the x and

y translations corresponded to pitch and roll, respectively. The translational

alignment was then found by a 3-D phase correlation of the voxelised points.

This pipeline was shown to efficiently register point-clouds with overlap as low
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as 29%. However, the nature of the used algorithm limits both the roll and

pitch angles to ±35◦ each, it is therefore unable to register all imaging poses,

restricting the applications to which it can be applied.

2.5 Verification Strategies

The 3-D registration algorithms reviewed above do not guarantee correct align-

ment. Incorporating a verification strategy into the registration pipeline pro-

vides a means of confirming whether the found point-cloud alignment is correct

or not. This is achieved by testing whether the alignment abides by prede-

fined criteria which stipulate how two or more point-clouds should relate to

each other. If the found alignment does not meet the criteria, then this indi-

cates that an alternative alignment should be sought. The simplest strategy

is to measure the root-mean-squared distance between point-clouds, with this

distance pertaining to the accuracy of the alignment (Dorai et al., 1998). If

this distance is below a given threshold, such as the noise limit of the sensor,

then this alignment can be considered correct (King et al., 2005). While this

strategy provides a form of verification that indicates correct alignment, in-

correct alignments can still be classified as correct if their error is within the

threshold. Applying different or more complex strategies to the pipeline help

limit an incorrect alignment being chosen.

When producing a registration pipeline, the inclusion of a verification strat-

egy is often overlooked. Therefore, there has been a minimal number of veri-

fication strategies proposed and investigated in literature. One strategy is to

maintain the line-of-sight between the imaging system and the acquired point-

cloud. If the registration brings a point-cloud into an alignment that obscures

this line-of-sight, then this alignment cannot occur and is classified as incor-

rect (Huber and Hebert, 2003; King et al., 2005; Makadia et al., 2006). This

strategy can work well, but it is not appropriate for all registration problems as

it requires an imaging system with a fixed sensor position. If the point-cloud is

constructed by a range sensor that moves, such as those that are on a mechan-

ical arm, then the line-of-sight changes and it is unknown whether it has been

obscured. The allowable separation between overlapping point-clouds (before

they are deemed obscured) needs to account for noise level, and the amount

of error that remains if only coarse registration is performed.

Makadia et al. (2006) presented a strategy which verifies an alignment by

establishing whether the surface orientations between overlapping point-cloud
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regions are consistent. This was based on the assumption that the normals of

points in the same vicinity have the same orientation. Makadia et al. did not

explore the accuracy of this strategy, but as voxelisation is needed to measure

the difference in orientation, there is a limit to its classification ability. This is

because each given voxel can collect normals that correspond to more than one

surface causing their mean orientation to be shifted. When using this strategy,

the allowable orientation error needs to account for these shifts, as well as any

noise or alignment error if used with a coarse registration algorithm.

The transform transitivity between three or more point-clouds has previ-

ously been used for improving their overall registration accuracy (Pooja and

Govindu, 2010). The transitive relation stipulates that when an element in a

set is related to a second element it is also related to a third element if the

third element is related to the second element. The transitive nature of the

transforms between point-clouds also has the potential of being used as a ver-

ification strategy by determining whether the found transforms are consistent

with each other. Both the orientation of normals and transform transitivity

are examined in Chapter 8. The lack of proposed verification strategies limits

the ability to automatically determine if correct alignment has been achieved.

Further investigation into this step of the pipeline will help ensure that the

found alignment is the one that is desired.





Chapter 3

Mathematical Preliminaries

The points of a point-cloud and their associated normals are formed in the

spatial domain, which is the coordinate system specifying their individual lo-

cations. The coarse registration pipeline analysed in this dissertation operates

primarily in the frequency domain. The frequency domain provides an alter-

native representation of the spatial domain by measuring how many points

or normals occur within a particular frequency band at a range of frequency

rates. Cross-correlating two sets of points or normals in the spatial domain

is performed by representing and multiplying them together in the frequency

domain; the correlation measures their similarity when one set is discretely

shifted relative to the other. Inverting the correlation to the impulse domain

represents each shift as an impulse, where the position of an impulse corre-

sponds to a specific shift between the two sets of points or normals within the

spatial domain. The size of an impulse is the measure of their similarity at

this shift.

This chapter outlines the mathematics used to transform between the re-

spective domains when calculating the rotation and translation that aligns two

overlapping point-clouds. The application of the mathematics is necessary as

the coordinate system of each acquired point-cloud is attached to the range

imaging system. Specifically, the origin of the local coordinate system of an

acquired point-cloud is located at the imaging system’s sensor. Therefore, sim-

ply placing these point-clouds into the same coordinate system does not bring

them into alignment, but will haphazardly place them all together within the

same field-of-view of the imaging system. The rotation and translation used

for alignment are determined independently, but both follow a sequence of

steps similar to those initially outlined.

31
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3.1 Surface Normals

When acquiring a point-cloud of an object or scene, the surface orientation

at each sample point is represented by its surface normal. A normal is a

unit vector associated with a point and perpendicular to the surface. Because

each point is only a location in 3-D Cartesian space, its normal is not inher-

ently given, instead the normal is calculated using the relationship between

the sampled point and its neighbours (Klasing et al., 2009). If an imaging

system samples the scene in a uniform manner, then the neighbouring sample

points are intrinsically given. However, if the imaging system does not sample

the scene in a uniform manner, then the relationship between points can be

determined algorithmically (Newman and Yi, 2006; Isenburg et al., 2006).

The procedure for bringing two overlapping point-clouds into coarse rota-

tional alignment by way of spherical-harmonic correlation is reliant upon the

calculated normals. The normals maintain the same directional relationship

relative to each other because the shape of an object (to which the normals

pertain) is invariant to the coordinate system, even when the coordinate sys-

tem changes with imaging system pose; it must be noted that in practice,

sample point noise and changes in sampling distribution between acquisitions

can affect this relationship. Extracting the normals from a point-cloud and

placing them at the origin of the coordinate system means they are no longer

associated with a point and can instead be thought of as identifying a location

on a unit sphere. This coordinate space on the sphere is defined as

S2 =
{
x ∈ R3 : ||x|| = 1

}
(3.1)

and is known as a Gaussian sphere (Horn, 1984).

A point-cloud’s normals can be calculated using a number of algorithms (Jin

et al., 2005; Klasing et al., 2009). The choice of algorithm will affect the rota-

tional alignment, but this aspect is not examined as part of this research.

3.2 Rotation Registration

This section details the process involved for calculating the rotation which

provides coarse rotational alignment. This is achieved by converting two sets

of surface normals extracted from overlapping point-clouds into the frequency

domain. These two sets are then correlated and inverted to give the rotation

which maximises their rotational similarity.



3.2 Rotation Registration 33

3.2.1 Spherical Harmonics

Spherical harmonics arise as the angular solutions to partial differential equa-

tions when these equations are expressed in spherical coordinates and solved by

the separation of variables method. The Laplace, Helmholtz and Schrödinger

equations are such examples (Arfken et al., 2013). The usefulness of spherical

harmonics in the context of range-image registration comes from their capa-

bility to provide an orthonormal system that allows a function formed on the

surface of a unit sphere to be represented in the frequency domain (Driscoll

and Healy, 1994). Spherical harmonics are given in the form

Y m
l (θ, φ) =


√

2l + 1

4π

(l −m)!

(l +m)!
Pm
l (cos θ)eimφ m ≥ 0,

(−1)mY
|m|
l (θ, φ) m < 0,

(3.2)

where i is the imaginary unit, x̄ is the complex conjugate of x, and l and m,

the respective degree and order, are defined as

l ∈ N, (3.3)

and

−l ≤ m ≤ l, m ∈ Z. (3.4)

The Pm
l component is the Legendre polynomial of degree l and order m ex-

pressed as

Pm
l (x) =

(−1)m

2ll!
(1− x2)

m
2
dl+m

dxl+m
(x2 − 1)l. (3.5)

Visual representations of the spherical harmonics up to degree three are con-

structed by sampling across the entire sphere surface; the squared real com-

ponents are presented in Figure 3.1, while the magnitude of the spherical-

harmonic complex values are shown in Figure 3.2.

3.2.2 Spherical-Harmonic Transform

Correlating two sets of normals in the Frequency domain requires their spherical-

harmonic representation. The spherical-harmonic transform (SHT) provides

this conversion from the spatial domain to the frequency domain, though it

usually samples a continuous function on the unit sphere. While normals

have discrete locations, this issue is circumvented by binning the normals (see

Chapter 5), with each bin being formed around the SHT sample points.
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Figure 3.1: Visualisation of the squared real components of the spherical har-
monics up to the third degree; expressed mathematically as Re (Y m

l (θ, φ))2.
Each row shows a particular degree of a spherical harmonic, along with all of
its orders. The lighter colouring is where the spherical-harmonic function is
positive, and the darker colouring is where the function is negative.

Figure 3.2: Visualisation of the magnitude of the spherical harmonics up to
the third degree. Each row shows a particular degree of a spherical harmonic,
along with all of the positive orders.
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Performing the transform requires that a bandwidth, Bt, specify the upper

limit of the calculated frequencies, in which Bt is a positive integer. For these

frequencies to represent the function defined on the unit sphere, the surface

must be sampled (i.e. discretised) in a sufficient manner. Any number of

sample points can be used for the transform to the frequency domain, but

if an insufficient number of samples are used, then ambiguous aliasing of the

harmonics will occur. The sufficient sample count is related to the bandwidth

and is dependent upon the chosen SHT algorithm. There are a variety of SHT

algorithms, two of which are used in this work; these are the fast SHT by Healy

et al. (2003) and least-squares regression, both of which are described below.

The difference in their efficiency is then outlined.

Fast Spherical-Harmonic Transform

The fast SHT is one of the most efficient SHT algorithms, however it is lim-

ited to equiangular sampling. This limitation is one aspect that permits the

fast SHT to be fast as it allows the integrals defining the spherical-harmonic

coefficients to by efficiently evaluated by the weighted sums of the samples. Ad-

ditional improvements to efficiency come from the manner in which the base

mathematics are implemented, as the Legendre polynomials can be decom-

posed into smaller sub-problems and solved recursively. The work by Driscoll

and Healy (1994) and subsequently Healy et al. (2003) describe in detail the

efficient mathematical derivations of the fast SHT; these derivations are not

presented here as they contain many nuances that unnecessarily complicate

the algorithm description. Instead, the algorithm is expressed in its discrete

form, allowing its key components to be focussed upon.

The initial step is to sample the unit sphere, as it is the value at these

sample points that are converted to the frequency domain. The fast SHT sam-

ples points on the unit sphere in an equiangular fashion, with their locations

being given in spherical coordinates. Sufficient sampling is achieved when 4B2
t

sample points are distributed about the sphere, with the placement of these

points specified by

θj =
(2j + 1)π

4Bt

j = 0, 1, . . . , 2Bt − 1, (3.6)

and

φk =
kπ

Bt

k = 0, 1, . . . , 2Bt − 1. (3.7)

As the sampling has greater density at the poles, the transform needs to ac-
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commodate this change in sampling distribution. This is achieved by applying

Chebychev weights to the transform which are analogous to the sin (θ) factor

present in the integral depiction of the transform (Healy et al., 2003). The

Chebychev weights are given as

w
(Bt)
j =

2 sin θj
Bt

Bt−1∑
k=0

sin ((2k + 1)θj)

2k + 1
, (3.8)

and are only dependent upon the transform bandwidth and the polar angle

position as specified by j.

Sampling at the specified locations gives the value attributed to the func-

tion defined on the sphere at that point. If the function f (which can be

complex) is given in the spatial domain, its representation in the frequency

domain is f̂ , which is the set of spherical-harmonic coefficients. Having now

outlined these components, the formula for the transform at each degree l < Bt

and order |m| ≤ l is

f̂ml =

√
π

Bt

2Bt−1∑
j=0

2Bt−1∑
k=0

w
(Bt)
j f(θj, φk)Y m

l (θj, φk), (3.9)

in which
√
π/Bt is simply a scaling factor, that is unnecessary for the following

spherical-harmonic correlation.

Inverting from the frequency domain back to the original form of the func-

tion in the spatial domain is unnecessary for identifying the rotation which

maximises the correlation. It is provided here purely for completeness, and is

given as

f(θj, φk) =
√
π

Bt−1∑
l=0

l∑
m=−l

f̂ml Y
m
l (θj, φk). (3.10)

Least-Squares

Least-squares regression is one approach that has been commonly used to

transform a set of points sampled on a sphere into the frequency domain (Blais

and Soofi, 2006; Brechbühler et al., 1995). While least-squares is a computa-

tionally expensive SHT algorithm, it is capable of transforming any distribu-

tion of sample points. This is achieved by constructing the matrix B which

contains the spherical-harmonic basis functions in the form

Bs,k = Y m
l (θs, φs), (3.11)
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where each row and column is indexed by

s = 0, 1, . . . , n− 1 (3.12)

and

k = l(l + 1) +m, (3.13)

respectively, in which n is the total number of sample points. The value at each

sample point is stored in the vector x which is indexed by s. The least-squares

equation is then constructed as

c = (BᵀB)−1Bᵀx. (3.14)

The vector c then contains the spherical-harmonic coefficients. If however,

BᵀB is ill-conditioned or singular, then it cannot be inverted and the least-

squares solution cannot be determined.

Least-squares via singular value decomposition (SVD) is able to determine

a solution even if it cannot be found by the prior approach. This is achieved

by expressing B in its SVD form, given as

B = USVᵀ, (3.15)

when the null space has been removed (making S a square diagonal matrix).

Least-squares is then calculated by rearranging the SVD equation to

c = VS−1Uᵀx. (3.16)

The fast SHT and least-squares produce the same spherical-harmonic coef-

ficients when using the same equiangle sample points and corresponding values.

Computational Efficiency

The computational cost of performing the fast SHT is significantly less than

the least-squares approach, both in the necessary processing and the required

storage. The work presented by Driscoll and Healy (1994) states that the

cost of performing fast SHT is dependent upon the specified bandwidth Bt.

The computational cost for transforming the sample points to the frequency

domain is then O
(
4B2

t log2 (4B2
t )
)
. An array of size B2

t is then needed to store

the spherical-harmonic coefficients.

Computing least-squares by way of SVD requires that the matrix B, which
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is of size nB2
t , be decomposed into U, S and V; if n = 4B2

t then the size of

B is 4B4
t . The combination of U, S and V has the size n2 + nB2

t +B4
t . The

total computational cost is difficult to measure due to the SVD, the matrix

inversion of S and the two matrix multiplications.

Because there is a significant difference in the computational cost between

the fast SHT and least-squares, least-squares is unable to perform at the same

bandwidth as the fast SHT for any given computer system. While there are

other approaches for calculating least-squares regression, SVD is the most

robust. Least-squares is more versatile than the fast SHT as it handles any

distribution of sampling points; the benefit of this versatility with respect to

registration performance is compared with the fast SHT in Chapter 5.

3.2.3 Spherical-Harmonic Correlation

Sampling two sets of normals, given as f and g, and converting them to the

frequency domain by way of SHT gives f̂ and ĝ, respectively. Correlating these

two sets of spherical-harmonic coefficients is the next step, which is achieved

by

ĥlmm′ = f̂−ml ĝ−m
′

l , (3.17)

in which ĥ is the set of correlated spherical harmonics, l is the degree and

−l ≤ m,m′ ≤ l are the orders. Because every order between f̂ and ĝ are cor-

related, ĥ has a size of (4B3
t − Bt)/3, which is greater than B2

t , the size of

either f̂ or ĝ.

3.2.4 Correlation Inversion

Having produced the correlation ĥ in the frequency domain, ĥ is then inverted

into the rotation domain as specified by the rotation group SO(3). The band-

width used for the forward transform is termed the transform bandwidth, but

it is not necessary for the inverse transform. Instead, the bandwidth, Bc, used

for the inverse, is termed the correlation bandwidth and is specified as

Bc = 0, 1, . . . , Bt. (3.18)

The storage requirements needed for the inverse transform is greater than the

forward SHT when Bt and Bc are the same. Therefore, using a transform

bandwidth larger than the correlation bandwidth is beneficial; these benefits

are covered in detail in Section 3.4 below.
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The inversion to the rotation domain uses the Wigner D-matrix and its

subsidiary the Wigner (small) d-matrix. The Wigner D-matrix is the frequency

domain equivalent to the rotation matrix in the spatial domain. The Wigner

D-matrix is given as

Dl
mm′(α, β, γ) = e−i(mα+m

′γ)dlmm′(β) (3.19)

and the Wigner d-matrix as

dlmm′(β) =

min (l+m′, l−m)∑
t=max (0,m′−m)

(−1)t
√

(l +m′)!(l −m′)!(l +m)!(l −m)!

(l +m′ − t)!(l −m− t)!(t+m−m′)!t!

×
(

cos
β

2

)2l+m′−m−2t(
sin

β

2

)2t+m−m′

. (3.20)

The rotation angles α, β and γ correspond to a ZYZ rotation matrix in the

spatial domain (see Section 3.2.5). The correlation value of a particular set of

rotation angles is given by

h(α, β, γ) =
Bc−1∑
l=0

l∑
m=−l

l∑
m′=−l

ĥlmm′Dl
mm′(α, β, γ). (3.21)

Typically, the closer the tested rotation is to the desired rotation, the

greater the correlation value. The work by Kostelec and Rockmore (2008)

provides an efficient approach for testing a discrete set of rotations that en-

compass the entire rotation domain; therefore, it is not necessary to test every

rotation (this is infeasible as rotations angles are real numbers). The rotation

angles used for each rotation from the discrete set are calculated as

α =
πa1
Bc

, (3.22)

β =
π(2b1 + 1)

4Bc

, (3.23)

γ =
πc1
Bc

, (3.24)

where

a1, b1, c1 = 0, 1, . . . , 2Bc − 1, (3.25)

which restricts the rotation angles to

0 ≤ α, γ < 2π, (3.26)
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and

0 ≤ β ≤ π. (3.27)

The inverse transform has a processing cost of O
(
B4
c

)
, with this size being

the combined total of the 8B3
c tested rotations. The correlation value of each

of these rotations is stored in the rotation correlation matrix, CR, which is

indexed by a1, b1 and c1. This correlation matrix has a storage cost equal to

the total rotation count, which is 8B3
c .

3.2.5 ZYZ Rotation Matrix

Identifying the rotation which provides coarse alignment is simply a case of lo-

cating the element in the rotation correlation matrix, CR, that has the largest

value. The position of this element specifies a1, b1, and c1, each of which cor-

respond to an individual axis. Having determined a1, b1 and c1, the rotation

angles are given by inserting them into equations (3.22), (3.23) and (3.24),

respectively. These rotation angles correspond to a post-multiplication ZYZ

rotation matrix for use in a right-hand coordinate system, where all three rota-

tions are counter-clockwise (when viewing along the axis towards the origin).

If each rotation angle is dealt with individually, the rotation matrix which

they each form are given as

RZ(α) =

 cosα sinα 0

− sinα cosα 0

0 0 1

 , (3.28)

RY (β) =

cos β 0 − sin β

0 1 0

sin β 0 cos β

 , (3.29)

RZ(γ) =

 cos γ sin γ 0

− sin γ cos γ 0

0 0 1

 . (3.30)

Multiplying these three rotation matrices together gives the complete ZYZ
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rotation matrix as

RZYZ(α, β, γ) = RZ(α)RY (β)RZ(γ) = cosα cos β cos γ − sinα sin γ sinα cos γ + cosα cos β sin γ − cosα sin β

− cosα sin γ − sinα cos β cos γ cosα cos γ − sinα cos β sin γ sinα sin β

sin β cos γ sin β sin γ cos β

 .
(3.31)

The two sets of sample points, f and g, are produced from the two sets of

normals extracted from the overlapping point-clouds. Applying this rotation

matrix to g will (in suitable situations) bring g into coarse rotational alignment

with f . Subsequently applying this rotation to the points from which g was

extracted will bring them into coarse rotational alignment with the points

from which f was extracted. Having achieved the desired coarse rotational

alignment, the coarse translational alignment can be obtained, completing the

coarse registration between these two point-clouds.

3.3 Translation Registration

The rotational alignment achieved in the previous section does not complete

the registration, as translational alignment is also needed. The coarse trans-

lational shift which aligns the two point-clouds is calculated using a three-

dimensional phase correlation in the Fourier domain. If the two point-clouds

do not have correct rotational alignment, the accuracy of the translation will be

limited as the translation correlation simply attempts to maximise the trans-

lational similarity between two point-clouds. It is for this reason that the

translation is performed subsequent to the rotation.

The translation registration goes through a similar sequence of steps as

the rotation registration. These are binning, transformation to the frequency

domain, correlation, inversion and applying the identified translation. These

steps are described in detail below.

Voxelisation

The two point-clouds in their initial form are continuous in nature, but for

a computer implementation to transform them into the frequency domain, a

discrete representation is required. Converting a point-cloud into a discrete

representation is achieved by segmenting the Cartesian coordinate space in a
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process called voxelisation. To ensure that the occurrence of redundant empty

space is minimised, each point-cloud is first translated so that their centroid

is placed at the origin of the coordinate system. The voxelisation process is

then carried out by centring a cube at the origin of the coordinate system and

making it large enough to encompass all point of both point-clouds. Because

there is no scale difference between the two point-clouds, it is best to use the

same sized cube for both. The length of each side of the cube is given as `,

which is determined as twice the maximum x, y or z point coordinate within

the point-cloud. This length is then equally divided by v voxels, with each

voxel acting as a bin.

The position of each of the v3 voxels are specified by the integers a2, b2

and c2, which respectively correspond to the x, y and z axes. The voxel that

collects a given point, p, is determined by

a2 =

⌊
v

(
px
`

+
1

2

)⌋
, (3.32)

b2 =

⌊
v

(
py
`

+
1

2

)⌋
, (3.33)

c2 =

⌊
v

(
pz
`

+
1

2

)⌋
. (3.34)

A minor issue arises if p is on a positive edge of the cube, as this situation

combined with these equations causes one or more of the position values to be

set to v, which is undesired as

a2, b2, c2 = 0, 1, . . . , v − 1. (3.35)

This situation is resolved by setting the position value of p to v − 1. Hav-

ing discretised the two point-clouds into three-dimensional histograms, they

are correlated, allowing the translation which maximises the correlation to be

determined.

Translation Correlation

The translation correlation is carried out by transforming the two point-cloud

histograms into the Fourier domain. Let two histograms of points be F and G,

and their Fourier representations be F̂ and Ĝ, respectively. The correlation,
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known as a phase correlation, is given by

ĈT =
F̂ ◦ Ĝ

‖F̂ ◦ Ĝ‖
, (3.36)

where the matrix ĈT is the normalised correlation in the frequency domain and

F ◦G is the Hadamard product or entry-wise product between two matrices.

Inverting ĈT gives the normalised correlation in the spatial domain as CT . The

position of the maximum impulse response is once again indexed by a2, b2 and

c2, which identifies the coarse translation which maximises the translational

similarity between the two point-clouds. The translational shift is performed

along each axis, where a2, b2, and c2 correspond to the x, y, and z directions,

respectively, and are found as,

x =

a2`/v a2 ≤ bv/2c

(a2 − v)`/v otherwise
, (3.37)

y =

b2`/v b2 ≤ bv/2c

(b2 − v)`/v otherwise
, (3.38)

z =

c2`/v c2 ≤ bv/2c

(c2 − v)`/v otherwise
, (3.39)

where `/v gives the side length of each individual voxel.

Increasing the number of voxels or decreasing the side length improves the

precision of the resulting translational alignment, as the sampling density will

increase. Setting the voxel count, v, along each side to a power of two allows

the fast Fourier transform to have the best efficiency.

3.4 Practical Issues

Both normals and points, due to their nature, cannot be sampled in a manner

that satisfies the sampling assumption of the spherical harmonic or Fourier

transforms; this is because, unlike a function, it is not possible to sample them

at a point. Instead, sampling is performed by averaging about the point, which

is achieved by histogramming. Histogramming provides a set of samples that

represent either the normals or points at the sample locations required for the

discrete SHT. Histogramming acts like a convolution of a square function that

has the same width as the histogram bin, which in the 1-D Fourier domain
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is a multiplication of the sample by a sinc function instead of a delta spike.

The spherical-harmonic domain and the 3-D Fourier domain, each have their

own function that has an effect analogous to the sinc function. The effect of

these functions is that some of the high frequency information is lost. While

histogramming reduces the representation of the normals or points in the fre-

quency domain, the impact on correlation is minimal. This is because the

effect of noise is mitigated if the same bin still collects a given point or normal,

which will occur if the noise is insignificant. Additionally, the goal is coarse

registration, for which a histogrammed representation is sufficient.

The discrete spherical-harmonic mathematics in Section 3.2 are presented

in a form that slightly differs from that in the literature by Driscoll and Healy

(1994) and Healy et al. (2003). The reason for this is to help present the math-

ematics in an uncomplicated manner. The difference that occurs is the scaling

of the individual equations, which for the rotation registration is inconsequen-

tial as the scaling factor does not change the maximum element in the rotation

correlation matrix. Therefore, as the same element in the matrix is still the

maximum, the final selected rotation remains unaffected. While the presented

mathematics shows the steps for producing the correlation matrix, the actual

algorithmic implementation used to achieve the correlation is provided by the

SOFT library.1

Because the SOFT library is independently called for each SHT, the spheri-

cal harmonics are recalculated every time. It may be possible to construct SHT

algorithms in a manner which allows either the Legendre, Wigner or spherical-

harmonic values to be precomputed and stored. If the fast SHT is conducive

to having these values precomputed, then its processing efficiency will be fur-

ther improved. While improving the processing efficiency is beneficial, it is

inconsequential when compared with the exorbitant memory requirement. To

store the two sets of spherical harmonics, their correlation in the frequency

domain and its inversion requires 2(2B2
t + (4B3

c − Bc)/3 + (2Bc)
3) elements

of type double (this includes both the real and imaginary components). If

Bt = Bc = 256, then this is a memory requirement of 2.4 gigabytes; which

with modern computing is not significant (nor is it insignificant), but does not

include any required overhead. Checking the true memory usage showed that

Matlab R2011a (which can be memory inefficient) with the SOFT library at

times required up to 8.5 gigabytes of memory. The primary means of limiting

1SOFT is a collection of spherical-harmonic routines provided by P.J. Kostelic and
D.N. Rockmore (http://www.cs.dartmouth.edu/~geelong/sphere/). Version 2.0 is used
herein.
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this cost is directly related to the used transform and correlation bandwidths.

If aspects of the algorithm can be precomputed, their cost will also be deter-

mined by the chosen bandwidth, and will themselves require memory space.

Additionally, any precomputed values will need to be recalculated if the band-

width changes.

The chosen transform bandwidth specifies the total number of spherical

harmonics used to represent the set of normals in the frequency domain. Be-

cause the computational cost of this transform is related to the transform

bandwidth, there exists an upper limit for what is feasible given the available

computational resources. When the fast SHT is used, the cost of transforming

the normals from the spatial domain to the frequency domain is lower than

the cost of inverting the correlation to the impulse domain. Therefore, the

forward transform can be performed at a higher bandwidth than the inverse

transform given equal computational resources. The advantage of increasing

the transform bandwidth is that higher harmonics are calculated and distin-

guished. This is beneficial even when a lower correlation bandwidth is used as

the spherical-harmonic degrees between Bt and Bc are isolated and discarded.

Discarding these harmonics ensures that they cannot be aliased on to the lower

harmonics. However, aliasing will still occur as the harmonics above Bt remain;

but as they will be distributed across all calculated harmonics, some of this

aliasing will disappear with the discarded harmonics.





Chapter 4

Ground-Truth Datasets

Evaluating each step of the registration pipeline requires that the ground-

truth of each tested dataset be known. The purpose of using datasets with

ground-truth is that it allows each step to be accurately assessed. In par-

ticular, the performance of individual modifications within each step can be

compared with each other in terms of both their accuracy and robustness with

respect to overlap. This comparison establishes the capability and limitations

of each modification, revealing those that provide the most benefit to the reg-

istration pipeline. This chapter details the pre-processing used to form the

three datasets and how they provide ground-truth. Additional aspects such as

overlap and noise generation are also outlined.

4.1 Base Models

The three datasets used for evaluating the registration pipeline are each formed

from a base model that is broken into overlapping segments. The models

used for this process are the Stanford bunny, Dragon and Buddha, each of

which comes from the Stanford 3D scanning repository1 and are shown in

Figure 4.1; these models contain 35 947, 22 982, and 32 328 points, respectively.

While the number of points in these models is comparatively low compared to

the achievable dense sampling of modern scanners, it is representative of the

sampling density that a low resolution range imaging camera would produce.

1The Stanford 3-D scanning repository is located at http://graphics.stanford.edu/
data/3Dscanrep/.

47
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(a) Stanford Bunny

(b) Dragon (c) Buddha Statue

Figure 4.1: Three models from the Stanford 3-D scanning repository. The
models are shown in their initial state before segmentation.

4.2 Forming the Datasets

Creating datasets by segmenting complete models gives the exact rotation and

translation between segments. The result of this process is that overlapping

regions of different segments each have the exact same points and normals.

While this would not occur in a real scene due to changes in sampling distri-

bution and noise, it ensures that neither sampling distribution nor noise are

factors that influence the registration results. Additionally, because the rela-

tionship between points remains the same for each segment, the exact overlap

between segments can be measured. Both of these aspects allow the produced

results to accurately reflect how different algorithmic choices compare to each

other, and with respect to changes in overlap.
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4.2.1 Calculating Normals

The calculation of normals is performed before a model is segmented to en-

sure that if the same point appears across multiple segments it always has the

same associated surface normal. Because there are any number of algorithms

available for calculating normals, and as this is a solved problem, MeshLab2

is used for calculating the normals for each model. This ensures that a re-

liable algorithm is used for this task without needing to produce a separate

implementation. While in practice the reliability of the chosen algorithm will

influence the registration performance, it will not have any influence on these

datasets as the overlapping regions between segments have the same normals.

4.2.2 Model Segmentation

A dataset is formed from each of the three models by breaking it into 120

overlapping segments, where a segment is the section of the model visible from

a single imaging pose. Using uniform random deviates u1, u2 ∈ [0, 1), each

pose, A, given in spherical coordinates is randomly placed about the model by

Aθφ =
[
2πu1, cos−1(2u2 − 1)

]
, (4.1)

with its optical axis directed towards the model. This viewing orientation is

then further varied by randomly rotating the imaging pose about the optical

axis. This process is performed using Blender3, which is able to extract from

the model only the points that are visible to the imaging pose.

Each extracted segment is a point-cloud, with its points and normals main-

tain their original values. In order for an individual point-cloud to provide a

better representation of the capturing process, it needs to be orientated with

respect to the imaging pose. To achieve this, a transform is applied to the

point-cloud so that it is brought into the same coordinate system as the imag-

ing pose. The translation component of this transform shifts the imaging pose

to the origin of the coordinate system, while the rotation orientates the imag-

ing pose so that its optical axis is placed on the z-axis, and its top is aligned

with the y-axis. The resulting dataset mimics how the point-clouds would be

presented if the model was imaged using an imaging system that only has itself

as the reference point.

2MeshLab is an open-source mesh processing system (http://meshlab.sourceforge.
net/). Version 1.3.2 is used here.

3Blender is an open-source 3-D graphics editor (http://www.blender.org/). Version
2.62.0 r44136 is used here.
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4.2.3 Noise Generation

Extracting segments from the same base model means that there is no differ-

ence in the distribution of normals or points that are common between two

overlapping point-clouds. In order to add noise that may occur in a real range

imaging system, the position of each normal or point is independently varied.

Because the normals are not used in conjunction with the points throughout

the registration pipeline, any variations to the normals do not need to be re-

flected in the points, or vice-versa. This section outlines how noise is generated

for each normal. Noise in the points only affects the translational alignment,

therefore the manner in which noise is generated for points is contained within

the Translational Alignment chapter, in particular Section 7.2.

Spherical-harmonic correlation is carried out using the normals extracted

from the two point-clouds, because noise in a real imaging system is indepen-

dent to each sample, the noise is generated and added to every normal indi-

vidually. This is achieved by creating a random normal, r̂, near the sphere’s

pole, with its random placement being given as

r̂ = (|vσ| , 2πu3) , (4.2)

where v is a normally distributed random number, with σ specifying the one

standard deviation angle, and u3 ∈ [0, 1) being a uniform random deviate.

This noise is then applied to n̂ by performing the rotation

n̂′ = r̂R, (4.3)

where R rotates the pole to n̂. The rotation axis of R is perpendicular to both

the pole and n̂, with the rotation angle being n̂θ; care must be taken to ensure

that the rotation direction is correct.

While this approach of applying noise to normals is some-what convoluted,

it allows the noise handling capability of spherical-harmonic correlation to be

revealed. The level of noise is easily modified as it has a direct relationship

with the value of σ; if σ is increased, so does the noise level.

4.3 Quantifying Registration Performance

Registration performance is quantified by testing every possible segment pair-

ing, including registration of an image with itself. This produces 7 260 pairs for
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Figure 4.2: The distribution of overlap between the 21 780 point-cloud pairs
that are formed from the Bunny, Buddha and Dragon models.

each model, forming a total of 21 780 pairs across the three datasets. Because

the rotation and translation of each point-cloud with respect to the original

model are known, the exact registration accuracy, for either rotation or trans-

lation, between two registered point-clouds can be measured. This accuracy

can also be thresholded to establish a percentage of point-cloud pairs which

have achieved correct alignment.

A major factor which influences registration performance is the percentage

of overlap between two point-clouds. While it could be expected that overlap is

directly related to the rotational difference between two imaging poses, this is

not a consistent measure. An example of this is if the imaging pose is rotated

by 180◦ about is optical axis, the overlap would remain at 100%, but the

rotational difference is maximised. Instead, overlap is calculated by uniquely

ascribing an index to each point of a model, the number of points common

to two point-clouds are then counted. However, as two point-clouds do not

always have the same number of points (such as if one point-cloud is a subset

of another), the overlap percentage is determined by normalising the number

of common points by the total number of points in the larger point-cloud. The

overall distribution of overlap between the 21 780 point-cloud pairs is presented

in Figure 4.2, which shows that the testing will use more point-cloud pairs that

have less than 50% overlap.





Chapter 5

Binning Normals

Range imaging systems are capable of producing point-clouds that can contain

millions of points. As a normal is generated for each point, there will be an

equivalent number of normals. The computational cost of directly transforming

this number of normals into spherical harmonics will be immense. This cost

is significantly reduced by binning the normals and converting the bin centres

to spherical harmonics instead. Having binned the normals, each bin centre is

weighted by the total number of normals that it has collected, thus providing

a representation of its portion of the surface area. Bins are formed in S2 by

either uniformly dividing the polar and azimuthal angles of a unit sphere or

by forming bins about points in S2 that have a near uniform distribution.

Attempting to produce a uniform distribution is referred to as the Fekete

problem or the Thomson problem, and has many proposed solutions (Saff and

Kuijlaars, 1997; Gorski et al., 2005; Teanby, 2006; Williamson, 2007; Koay,

2011a,b).

The manner in which normals are binned plays a role in registration ac-

curacy, in particular, the more uniform the bin distribution, the better the

accuracy. Because bin size and shape affect the relationship between normals,

three binning schemes are thoroughly investigated throughout this chapter to

determine how they impact the rotational registration capability of spherical-

harmonic correlation. This chapter describes the three binning schemes and

their implementation, then evaluates their performance with respect to accu-

racy, efficiency and noise.

53
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(a) Equiangle Bins (b) Equiangle Bin Centres

Figure 5.1: Orthographic projection of the equiangular binning scheme. A
bandwidth of 16 is used to give 1024 bins, which are distributed around the
sphere. The spheres are tilted 45◦ making the north pole visible. Figures 5.1a
and 5.1b show the distribution of bin boundaries and their centres, respectively.

5.1 Binning Schemes

In this section, three schemes for subdividing the surface of the unit sphere

and binning normals are described in detail. These schemes are equiangular

binning, geodesic subdivision using the icosahedron Platonic solid, and bin-

ning based on the Fibonacci spiral. This description covers how the bins are

positioned and formed, the procedure that is followed for allocating normals

to bins and the algorithm variants that influence the registration.

In the following, let the unit sphere be defined by a spherical coordinate

system in which θ ∈ [0, π] is the polar angle (or colatitude) and φ ∈ [0, 2π) is

the azimuthal angle. Each surface normal, n̂, and bin centre, b̂, is expressed

in terms of these coordinates.

5.1.1 Equiangle Grid

The equiangle grid, shown in Figure 5.1a, is the simplest approach for subdivid-

ing the surface of a sphere. This grid is the same as the fast spherical-harmonic

transform sample points (see Section 3.2.2), as such, it was used by Makadia

et al. (2006) for binning normals in preparation for spherical-harmonic regis-

tration. The grid is formed using the equiangle sampling scheme outlined by

Healy et al. (2003), in which the polar angle θ and the azimuthal angle φ are

divided into 2Bt equal sections, with Bt being the specified transform band-
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width. These polar and azimuthal sections, indexed by

j = 0, 1, . . . , 2Bt − 1, (5.1)

and

k = 0, 1, . . . , 2Bt − 1, (5.2)

respectively, form a total of 4B2
t bins. The bin that each normal belongs to is

directly calculated by

j =


⌊

n̂θ2Bt

π

⌋
0 ≤ n̂θ < π

2Bt − 1 n̂θ = π

, (5.3)

k =

⌊
n̂φBt

π

⌋
. (5.4)

The bin weight is incremented by one for each normal that it captures.

Using a (j, k) index pair, the coordinate of the (j, k) bin centre is given as

θj =
(2j + 1)π

4Bt

, (5.5)

φk =
kπ

Bt

. (5.6)

Figure 5.1b illustrates the distribution of these bin centres on the unit sphere.

Note that the equiangular grid has decreased bin density at the equator.

Weighting by Bin Surface Area

Equally dividing the polar and azimuthal angles to form the equiangle grid

distinctly affects the surface area of each equiangle bin: the closer a bin is

to the sphere’s equator, the larger its area for capturing normals. Figure 5.2

shows that the difference in surface area between the smallest and largest bins

increases with bandwidth. At a bandwidth of 128, the largest bin is 163 times

the size of the smallest bin; not the approximate 10 times difference stated by

Makadia et al. (2006). If this area is not taken into account, the influence that

each bin has on spherical-harmonic correlation is solely based on the number of

normals that it collects. It is incorrect to simply assume that the resulting bin

weight is just a reflection of its capturing power. This is because the fast SHT

normally samples a continuous function, whereas the distribution of normals

is discrete. Therefore, correct sampling in each bin is formed by dividing its
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Figure 5.2: The percentage of area that the smallest equiangular bin encom-
passes of the largest equiangular bin, with respect to bandwidth. As bandwidth
increases so does the difference in area between the smallest and largest bins.

count of normals by the size of its surface area. By sampling in this fashion,

any bias towards the larger bins is removed.

The bin area is independent of the azimuth angle, thus with the polar index

j and the bandwidth Bt the fractional bin area is given by

ABt(j) =

cos

(
πj

2Bt

)
− cos

(
π(j + 1)

2Bt

)
4Bt

, (5.7)

that is, it has been normalised by 4π, the total surface area of a unit sphere.

To confirm that dividing each bin’s weighting by its surface area is the correct

form of sampling, it and two other approaches of reweighting are investigated.

The other two approaches are composed by multiplying each bin’s weight by

its surface area and not performing any reweighting. Multiplying by surface

area emphasises the larger bins, while not rescaling by surface area weights

each bin purely on its ability to capture normals.

Orientation of Normals

Many range imaging systems are only capable of viewing a scene from a single

pose at any given time. Because of this, the angle between a surface normal

and the camera’s optical axis is less than 90◦. Therefore, when the normals are

collected together, they only occur on half of the unit sphere, instead of being

distributed about the entire unit sphere. The manner in which the hemisphere
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(a) Icosahedron Bins (b) Icosahedron Bin Centres

Figure 5.3: Orthographic projection of icosahedron binning, with 1280 bins
distributed around the sphere. The spheres are tilted 45◦ making the north
pole visible. Figures 5.3a and 5.3b show the distribution of bin boundaries and
their centres, respectively.

containing the normals is orientated with respect to the equiangle grid changes

which bins collect normals. If the chosen orientation aligns the optical axis

with the equator of the grid, the largest bins are placed in the centre of the

hemisphere, resulting in a poorer sampling of the normals. Alternatively, if

the orientation aligns the optical axis with the pole of the grid, the smallest

bins are placed in the centre of the hemisphere, providing a denser sampling

of the normals.

Changing the orientation of the normals with respect to the equiangle grid

is achieved by simply rotating the normals before binning them. The registra-

tion accuracy of both orientations is determined as part of this investigation.

5.1.2 Geodesic Subdivision

Geodesic subdivision is achieved by centring a Platonic solid at the origin of

the coordinate system and projecting each face on to the surface of a unit

sphere to form a bin (Williamson, 2007). The icosahedron is used as it has

the most faces of the five Platonic solids. As each face of the icosahedron is

an equilateral triangle, more bins can be formed by breaking each face into

four subsequent equilateral triangular regions, with this process repeated to a

preferred depth; Figure 5.3a shows the icosahedron with a depth of three.

The twelve vertices that define an icosahedron are arranged on a unit sphere
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using the golden ratio,

τ =
1 +
√

5

2
, (5.8)

where if a vertex is aligned to each pole are given as (in Cartesian coordinates):



x y z

0 0 ±1

±2/
√

5 0 ∓(2/(τ 2 + 1)− 1)

±1/(τ 2 + 1) ±1/
√
τ−2 + 1 ±1/

√
5

±1/(τ 2 + 1) ∓1/
√
τ−2 + 1 ±1/

√
5

∓1/(τ−2 + 1) ∓1/
√
τ 2 + 1 ±1/

√
5

∓1/(τ−2 + 1) ±1/
√
τ 2 + 1 ±1/

√
5


. (5.9)

These vertices are presented in pairs that are antipodal to each other on the

sphere. The 20 faces defined by these vertices are projected onto the sphere,

creating the initial bins. By specifying a depth, d, more bins can be produced

by subsequently dividing each face into four smaller equilateral triangles and

projecting these on to the sphere surface. Each face creates 4d triangles, with

the total number of bins being

n = 20× 4d. (5.10)

The effect of this projection is that the size and shape of each bin changes. Bins

closer to the centre of a face have greater surface area than those at the edge,

thus there is a higher density of bin centres at the edges. This change in density

impacts the implementation described below as the best branch to traverse at a

lower depth may not contain the closest bin centre to the point, instead placing

the normal in an adjacent bin. It has been hypothesized by Teanby (2006)

that for most practical purposes this slight bias is insignificant; this claim is

confirmed true by Larkins et al. (2012), an analysis previously performed to

investigate the binning of normals.

Binning Procedure

Binning normals using geodesic subdivision is performed in two stages. First,

a forest of trees is built that stores the bins at each depth, and second, the

forest is searched to find the closest bin.

The forest is constructed as 20 individual trees, one for each face, with

each face defined by three vertices from those listed in equation (5.9). The
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Figure 5.4: Demonstration of how a triangular face is divided into four sub-
sequent triangles. These new triangles can be further divided in the same
fashion.

centre of a face is projected onto the sphere surface and stored as a spherical

coordinate in the root node of the corresponding tree. For every new level,

each node has four children, one for each of the four subsequent triangles

created; as demonstrated in Figure 5.4. The centres of these new triangles are

again projected onto the sphere surface and stored. This constructs a quadtree

formed as a linear array, with the index of each child node, jc, found from the

index of the parent node, jp, by

jc = 4jp + c, c ∈ {1, 2, 3, 4}. (5.11)

Each tree contains t nodes, given by

t =
4d+1 − 1

3
, (5.12)

where d is the depth of the tree. A linear array is composed that only stores

the leaf nodes and their weights from all 20 trees, in which the index, jb, of a

bin in this array is given by

jb = 4d
(
f − 1

3

)
+ jl +

1

3
, f ∈ {0, . . . , 19}, (5.13)

where f is the face and jl is the index of the leaf node in the above quadtree.

Binning a normal begins by identifying which of the 20 faces is closest to

it; these faces are the zero depth bin. As the normals and bins represent a

position on a unit sphere, the great circle distance (GCD) is the same as the

angle between the normal, n̂, and the centre of a bin, b̂, calculated as

ψ = cos−1 (sin n̂θ sin b̂θ cos (n̂φ − b̂φ) + cos n̂θ cos b̂θ). (5.14)
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The layout of the vertices of the icosahedron produces pairs of root nodes

that are on direct opposite sides of the unit sphere. The distance therefore is

calculated for only ten of the nodes, and the distance of a node’s counterpart

is given by π − ψ. If a single shortest distance is found, then the normal goes

to the corresponding root node and the search down the tree for the wanted

bin begins.

Given the closest root node, the distance between its four children and

the normal is found using equation (5.14). This process of finding the clos-

est node and going down its branch is repeated until a leaf node is reached;

with the spherical coordinate of the leaf node being the closest bin. Using

equation (5.13) the weight of this bin is then incremented. Throughout this

process, both for finding the root node and for searching down the quadtree,

there is the unlikely possibility that a normal is located where multiple nodes

have the same shortest distance, in this situation one of these closest nodes is

arbitrarily chosen and used.

5.1.3 Fibonacci Spiral

The Fibonacci spiral (González, 2010) is a point distribution method that we

propose as an alternative approach for binning normals (Larkins et al., 2012).

A spiral is created around the sphere from the north to south pole, with each

point placed at equal increments along the spiral, creating a near uniform

distribution of bin centres around the sphere, as shown in Figure 5.5b. The

bin boundaries are formed around each point, as shown in Figure 5.5a. An odd

number of points must be along the spiral to ensure both hemispheres contain

the same number of bin centres. Using the number of bins, n, the bin centres

are then found as spherical coordinates at

b̂ =

[
sin−1

(
2d

n

)
+
π

2
,

2π

τ
(d (mod τ))

]
, (5.15)

where

d =
1− n

2
, . . . ,

n− 1

2
(5.16)

uniquely indexes each point along the spiral and τ is the golden ratio from

equation (5.8).
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(a) Fibonacci Spiral Bins (b) Fibonacci Spiral Bin Centers

Figure 5.5: Orthographic projection of Fibonacci spiral binning, with 1025 bins
distributed around the sphere. The spheres are tilted 45◦ making the north
pole visible. Figures 5.5a and 5.5b show the distribution of bin boundaries and
their centres, respectively.

Binning Procedure

Binning normals on a Fibonacci spiral distribution can be achieved in a variety

of ways, such as brute force calculation or by a form of Delaunay triangula-

tion. A new algorithm is introduced here that does not require a search or

storage structure for finding the closest bin; it instead identifies which bin a

normal belongs to by using the turns of the spiral. Because of this, there is no

initial construction needed before performing the search, and the number of

evaluations of equation (5.14) is reduced. The intersection between each turn

and the constant longitudinal line on which the normal is situated is used to

locate the closest bins. Using equation (5.15) the bins are distributed on a

spiral that is formed clockwise around the sphere. Equation (5.15) can instead

be expressed as

b̂ =

[
sin−1

(
2d

n

)
+
π

2
,

2π

τ 2
(−d (mod τ 2))

]
, (5.17)

which produces the exact same bins, but on a spiral that is formed counter-

clockwise around the sphere. The counter-clockwise spiral decreases the turn

density required to place the bins, benefiting the proposed binning procedure

as there are fewer turns to test. Figure 5.6 illustrates the difference in turn

density produced by these two spirals when n = 45.

Determining the intersect locations between the spiral and the constant
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(a) Clockwise Spiral (b) Counter-Clockwise Spiral

Figure 5.6: The two Fibonacci spirals that give the same uniform distribution
of points on the sphere. These spirals distribute 45 points around the sphere;
the clockwise spiral produces a much greater turn density than that of the
counter-clockwise spiral.

longitudinal line defined by n̂φ is the first step in identifying the bin closest

to n̂. These intersects occur when the φ value of the spiral equals n̂φ; this

requires d being treated as a real value instead of an integer, and allows the

following equation rearrangement

2π

τ 2
(−d (mod τ 2)) = n̂φ,

−d−
⌊
−d
τ 2

⌋
τ 2 =

n̂φτ
2

2π
,⌊

−d
τ 2

⌋
= − n̂φ

2π
− d

τ 2
.

(5.18)

Rearranging for d is not possible as the floor does not permit a direct solution.

The floor is instead dealt with by substituting in the variable z (due to the

nature of the floor, z is always an integer), in which each turn of the spiral is

labelled with a unique integer value z; allowing d to be expressed as

z = − n̂φ
2π
− d

τ 2
,

−τ 2
(
z +

n̂φ
2π

)
= d.

(5.19)

Placing this equation for d into equation (5.17), gives the spherical coordinate
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of each intersect point as

p̂z =

[
− sin−1

(
z + v2
v1

)
+
π

2
, n̂φ

]
, (5.20)

but as the number of turns are finite, only the select range of z = zmin, . . . , zmax

gives legitimate locations on the spiral, where

zmin = d−v1 − v2e , (5.21)

and

zmax = bv1 − v2c , (5.22)

given

v1 =
n

2τ 2
, (5.23)

and

v2 =
n̂φ
2π
, (5.24)

constant variables common throughout these equations. The bin centre on

turn z closest to p̂z is found via equation (5.15) when

d = round
(
−τ 2(z + v2)

)
. (5.25)

The z value of the normal n̂ is initially a real value (as it is likely to be between

the turns of the spiral) given by

z = v1 sin
(
n̂θ −

π

2

)
− v2, (5.26)

with the integer identifiers of the turns either side of n̂ being the floor and

ceiling of this z value. The bins are searched by first testing these two turns;

the bin centre with the smaller distance, calculated from equation (5.14), is

then stored. Each successive turn away from n̂ is tested, both stepping up

and down the sphere. If the distance from n̂ to p̂ is greater than the current

smallest distance, the bin centre on this turn is tested and the stepping in this

direction is stopped.

Because the turns of the spiral have a greater spacing towards the poles,

the above approach may miss the closest bin centre, therefore, when the nor-

mal is above the spiral or there is only one turn above it, that is, when

n̂θ < p̂θ (zmin + 1), all bin centres from the closest turn location up must be
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tested. Once this is done, searching down the spiral is carried out as described

above. This process is repeated by testing all bin centres down the spiral when

n̂θ > p̂θ (zmax − 1), followed by testing each turn up the spiral.

This implementation requires two full turns of the spiral to operate cor-

rectly, which occurs when there are seven or more bins. When there are fewer

than seven bins, directly calculating the distance to every bin is feasible, how-

ever, a far greater number of bins are used, hence the need for the search.

5.2 Methodology

The analysis performed for testing the three binning schemes uses the Dragon,

Buddha statue and the Bunny datasets, each of which are described in Chap-

ter 4. These three datasets, constructed by segmenting each model into 120

overlapping segments, enable a detailed analysis as the percentage of overlap

and the angle of separation between every point-cloud is known a priori. The

rotation which coarsely aligns the two sets of normals from a point-cloud pair is

selected from a correlation matrix (whose size is determined by the correlation

bandwidth) calculated over the spherical domain. Unless the selected rotation

perfectly matches the rotational difference between the two point-clouds, an

error in rotational alignment will remain due to the discrete sampling. This

remaining rotation error is measured as the angle between the found position

of the point-cloud and its known true position.

Determining whether the rotational alignment is correct is a case of apply-

ing a threshold to the resulting rotation error. If the rotation error is equal to

or lower than the threshold, then the alignment is classified as correct, other-

wise it is incorrect. As there is no prescribed fine registration algorithm for use

in conjunction with spherical-harmonic correlation, varying the threshold pro-

vides a means of measuring how the percentage of correct alignments changes.

If a particular fine registration algorithm is applied, and its capability of han-

dling rotation error is known, then the results give a good indication of how

well this fine registration algorithm will perform. In most cases the rotation

error threshold is tested at 0.2◦ increments from 0◦ to 12◦, but as this is not

always practical, such as in a table, rotation error thresholds of 1◦, 2◦, 5◦, 10◦

and 15◦ are used instead.

The ability of spherical-harmonic correlation to accurately register a point-

cloud pair is largely influenced by how well the normals are represented in

the frequency domain. The transform bandwidth, Bt, determines the level of
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Table 5.1: The number of bins used at each bandwidth for the three binning
schemes.

Binning Scheme
Transform Bandwidth

16 32 64 128 256 512

Equiangle Grid 1 024 4 096 16 384 65 536 262 144 1 048 576

Icosahedron 1 280 5 120 20 480 – – –

Fibonacci Spiral 1 025 4 097 16 385 – – –

representation as it is the maximum degree of spherical harmonic calculated.

Given a transform bandwidth Bt, 4B2
t sample points are specified over the unit

sphere as this allows the fast SHT to avoid ambiguous aliasing. As the fast

SHT uses equiangle sampling, an equiangle bin is formed around each sample

point. Three approaches for reweighting each equiangle bin by its surface

area are compared. This reweighting is not performed on the icosahedron

and Fibonacci binning schemes as their bins are more uniform both in size

and distribution. Converting the icosahedron and Fibonacci bins to spherical

harmonics is accomplished via least-squares. This conversion can be achieved

with any number of sample points, but a minimum of 4B2
t bins are used to

avoid an underdetermined system. The number of bins required for each of the

three binning schemes are listed in Table 5.1. Due to the manner in which bins

are distributed by the icosahedron and Fibonacci schemes, having the exact

number of required bins is not possible. Therefore, the number of bins used

for these two schemes at each transform bandwidth is the closest sampling

distribution above 4B2
t that they can each achieve. Performing a least-squares

inversion has a high computational cost which limits these two schemes to a

bandwidth of 64.

The transform and correlation bandwidths are often set to the same value,

but the transform bandwidth can be greater. The computational resources

required by the fast SHT for converting from the spatial to frequency domains

is lower than that required for constructing the correlation matrix. It is for this

reason that a higher transform bandwidth is possible, even though only the

spherical-harmonics up to the correlation bandwidth are used. The primary

advantage of having a higher transform bandwidth is covered in Section 3.4.

The secondary advantage is that there is a greater sampling density on the unit

sphere, meaning that the lower spherical harmonics are provided with a more

accurate representation of the normals. Both the correlation and transform

bandwidths are tested at powers of two. When the transform bandwidth is
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greater than 128, the correlation bandwidth is limited herein to 128 due to the

aforementioned computational cost. The exception to this is in the bandwidth

and overlap analysis in which the best performing equiangle binning scheme is

tested with a correlation bandwidth of 256.

The three models that are used for this analysis are initially provided by

the Stanford 3D repository in a form that has been reconstructed from indi-

vidual scans. It is unlikely that this process was perfect, thus an insignificant

amount of noise will have been introduced to each model; but as the over-

lapping segments are extracted from the same model, their overlapping points

and normals are identical. The initial testing is performed without introducing

any noise to the normals, allowing each binning scheme to be quantified using

perfect scenarios. Once the best scheme or schemes are identified, they are

further analysed to determine how robust they are to noise. The manner in

which Gaussian noise is added to each normal is outlined in Section 4.2.3. The

variability of the noise is specified by a base angle which is set at one standard

deviation from the normal: five such base angles are used for introducing noise,

with these being 0.5◦, 1◦, 2◦, 5◦ and 10◦.

5.3 Results

The results presented reveal how registration accuracy and efficiency are af-

fected by the manner in which normals are binned. Additionally, the robust-

ness of spherical-harmonic correlation for registration is quantified by adding

varying levels of noise to the normals.

5.3.1 Equiangle Accuracy

This section analyses different algorithm choices and aspects of the point-

clouds and how their relationship to each other impacts registration. As such,

this analysis is broken into three subsequent sections: bin surface area and

orientation of normals, bandwidth and overlap.

Bin Surface Area and Orientation of Normals

The process of binning normals on an equiangle grid can take a variety of

approaches. The results presented here investigate six approaches, each of

which are formed as a combination of reweighting each bin by its surface area

and the global orientation of the normals. Figure 5.7 shows the performance
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of each approach over a variety of bandwidths. The manner in which each

bin is weighted with respect to its surface area size has the greatest impact on

registration ability. Dividing the count of normals in each bin by its surface

area provides the best representation of the normals in the frequency domain.

This is followed by giving every bin an equal area weighting, that is, a bin’s

weight is only determined by the total count of normals that it collects. The

poorest performance occurs when each bin is multiplied by its surface area.

The ability of the three approaches for reweighting each bin remains consistent

across all tested bandwidths, however, their individual ability can be highly

influenced by the orientation of the normals.

Two global orientations of the normals are tested: the first places the nor-

mals so that binning occurs at the pole of the equiangle grid, and the second

orientates the normals so that binning occurs at the equator of the grid. The

influence that a given orientation has on the percentage of correctly aligned

point-cloud pairs is dependent on the bin reweighting approach. The combi-

nation of binning at the pole and dividing by the surface area has the highest

consistent performance, especially at lower bandwidths. However, when the

bandwidth is equal to or greater than 128 and the bins are divided by area,

the orientation has little influence on the percentage of correct alignments.

The other four combinations fluctuate extensively with respect to each other

at the lower bandwidths. At the higher bandwidths these four combinations

remain stable with respect to each other, with a distinct separation in ability

occurring when bin area is not incorporated and each bin is multiplied by its

area. These two weighting approaches also differ with orientation as binning

at the equator is more conducive to the bins being multiplied by their area,

while binning at the pole is better when bin area is not incorporated.

Increasing the rotation error threshold on the best performing combination

(binning at the pole and dividing by bin size), is presented in Figure 5.8. This

graph shows that after the initial spike of aligned point-cloud pairs, the im-

provement is only gradual. The threshold at which this spike plateaus is depen-

dent upon the chosen bandwidth, with this occurring below the 10◦ threshold

for all bandwidths except 16, and at approximately 2◦ when the bandwidth is

equal to or greater than 128. It also shows that a large percentage of correct

alignments only occur in the last 10◦ of the rotation error threshold. The influ-

ence that the bandwidth has on this combination is covered with more detail

in the following section.
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Figure 5.8: The percentage of correctly aligned point-cloud pairs when a
threshold specifies the maximum allowed rotation error between two point-
clouds. In this graph, the normals were binned at the pole of the equiangle
grid, with each bin being divided by its surface area.

Bandwidth

Because spherical-harmonic correlation produces a discrete rotation, it is im-

probable that the desired rotation will exactly match the discrete rotation;

therefore some degree of rotational misalignment will invariably remain. The

level of discretisation is a product of the chosen transform and correlation

bandwidths. In this section, the likelihood of achieving correct alignment is

gauged when the transform and correlation bandwidths are varied, which al-

lows the trade-off between efficiency and accuracy to be adjusted. Although

reducing the bandwidth reduces the computational resources required, there is

a limit to the minimum bandwidth needed to achieve acceptable results. The

results presented in Figure 5.8 show the extent to which bandwidth influences

the accuracy when using the best equiangle binning combination. These results

along with transform bandwidths of 8 and 1024 are shown with specific values

in Table 5.2 at five rotation error thresholds. The lowest presented bandwidth

is that of 8, which at a threshold of 10◦ is capable of correctly aligning approx-

imately 5% of the point-cloud pairs. Each subsequent bandwidth successively

improves the percentage of correct alignments, with a bandwidth of 64 bring-

ing 21% of the point-cloud pairs into alignment, more than quadrupling that of

bandwidth 8. In comparison, the jumps from bandwidth 64 to 128 and 128 to

256 each provide significant improvements that correctly align 33% and 46%
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of the point-cloud pairs, respectively.

The results show that registration accuracy has the greatest improvement

when using higher correlation bandwidths, however, higher correlation band-

widths are restricted by their computational cost (see Section 3.2.2). Alter-

natively, an additional but smaller boost to performance is achieved by fixing

the correlation bandwidth and increasing the transform bandwidth; increasing

the transform bandwidth improves the representation of the normals across

all spherical-harmonic degrees. The results in Table 5.2 show how the im-

proved representation benefits the registration accuracy even though only the

spherical harmonics up to the correlation bandwidth are used. The boost to

registration accuracy when only increasing the transform bandwidth (the cor-

relation bandwidth is limited to 128) tapers off the further it is increased. For

example, when the transform bandwidth is 128, accuracy is 33.1% at a rota-

tion error threshold of 10◦, increasing the transform bandwidth to 256 gives

an additional 2%, while a transform bandwidth of 512 is only an additional

0.3%. Interestingly, increasing the transform bandwidth further to 1 024 has a

marginal adverse impact on registration accuracy.

Increasing the correlation bandwidth not only improves the registration ac-

curacy, but it also decreases the minimum rotation error that occurs between

two aligned point-clouds. This is seen in Figure 5.9 where the initial spike of

correct alignments tapers off at lower rotation error thresholds. At a correlation

bandwidth of 128 and 256, the spike tapers off at a rotation error threshold

of approximately 2◦ and 1◦, respectively. Reducing the rotational misalign-

ment benefits the fine registration algorithm, especially if it is restricted to a

maximum rotational misalignment that it is capable of handling.

Overlap

The ability of spherical-harmonic correlation to correctly align two point-clouds

is primarily linked to the amount of overlap that occurs between them. Fig-

ure 5.10 shows how the percentage of correctly aligned point-cloud pairs varies

with differing amounts of overlap when the rotation error threshold is set to

10◦. The results presented by this graph confirm that as overlap increases so

does the percentage of correct alignments. This increase in accuracy is tied to

the bandwidth, with the bandwidths of 64 and below starting to achieve correct

alignment when overlap is 60%. For bandwidths 128 and above, the starting

point is closer to 30%, with approximately half of all point-cloud pairs that

have 50% overlap achieving correct alignment. The separation in ability be-
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Figure 5.10: The percentage of correctly aligned point-cloud pairs versus their
overlap. The overlap is broken into twenty 5% steps, where the correctly
aligned percentage is the mean of all point-cloud pairs in a given step. Align-
ment is deemed correct if its rotation error is 10◦ or less.

2.5 12.5 22.5 32.5 42.5 52.5 62.5 72.5 82.5 92.5
0

10

20

30

40

50

60

70

80

90

100

Overlap (%)

C
o
rr

e
c
tl
y
 A

lig
n

e
d

 (
%

)

 

 

Threshold = 1
o

Threshold = 2
o

Threshold = 5
o

Threshold = 10
o

Threshold = 15
o

Figure 5.11: The percentage of correctly aligned point-cloud pairs versus their
overlap when the transform bandwidth is 256 and the correlation bandwidth is
128. The overlap is broken into twenty 5% steps, where the correctly aligned
percentage is the mean of all point-cloud pairs in a given step.
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Table 5.2: The percentage of correctly aligned point-cloud pairs at different
rotation error thresholds when the normals are orientated with the pole of the
equiangle grid and each bin is divided by its surface area.

Bandwidth Rotation Error Threshold

Transform Correlation 1◦ 2◦ 5◦ 10◦ 15◦

8 8 0.0 0.0 0.4 4.6 8.0

16 16 0.1 0.3 4.9 10.9 13.3

32 32 0.4 4.3 13.0 15.6 16.2

64 64 5.5 13.9 20.1 21.3 21.8

128 128 18.6 28.5 31.2 33.1 34.0

256 128 26.4 31.3 33.5 35.2 35.9

512 128 28.4 31.8 34.1 35.5 36.3

1024 128 28.4 31.5 33.7 35.3 36.1

256 256 41.0 42.3 44.2 45.7 46.7

512 256 43.4 44.3 46.3 47.6 48.4

tween bandwidths 64 and 128 is quite distinct, while the difference between 128

and 256 may appear minimal (remembering that the correlation bandwidth is

restricted to 128), there is up to 10% improvement in registration performance

in the 40% to 50% overlap range. Further increasing the transform bandwidth

to 512 barely provides any benefit over 256.

The examination of bandwidth 256 in Figure 5.11 provides insight into how

the chosen rotation error threshold permits the alignment of point-cloud pairs

to be classified as correct with respect to overlap. Limiting the threshold to 1◦

restricts many potentially correct alignments, as seen by the consistent 10%

improvement when the threshold is 2◦. Using the larger thresholds increases

the number of correct alignments, but this occurs at diminishing levels due

to the discrete nature inherent of the correlation matrix. These results reflect

those seen previously in Figure 5.7, in which the majority of correct alignments

occur within the initial spike. Figure 5.11 also shows that there is no correlation

between the overlap percentage and the rotation error threshold. Therefore,

the resulting rotation error does not decrease as overlap increases. The dip

that occurs for the 1◦ threshold at an overlap of 92.5% is explained in the

discussion (see Section 5.4).

The minimum overlap capable of achieving correct alignment is presented

in Table 5.3, and is shown for each bandwidth at five rotation error thresholds.

An initial observation appears to show that the minimum overlap required im-

proves when increasing the rotation error threshold, however, as previously
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Table 5.3: The minimum overlap necessary to correctly align a point-cloud
pair for a range of bandwidths and rotation error thresholds.

Bandwidth Rotation Error Threshold

Sampling Correlation 1◦ 2◦ 5◦ 10◦ 15◦

8 8 – 78.2 75.2 63.4 58.2

16 16 78.4 68.0 60.9 51.4 47.8

32 32 63.9 57.8 40.8 40.8 40.8

64 64 47.2 35.1 13.3 13.3 13.3

128 128 21.5 21.5 19.5 19.5 19.5

256 128 9.2 9.2 9.2 9.2 9.2

512 128 13.7 13.7 13.7 13.7 13.7

1024 128 13.7 13.7 13.7 13.7 13.7

256 256 10.8 10.8 10.8 10.8 10.8

512 256 15.2 15.2 15.2 15.2 15.2

stated, there is no correlation between overlap and the remaining rotation

error (when the best available coarse rotation is selected). The apparent im-

provement is purely due to the number of correctly aligned point-cloud pairs

increasing with the rotation error threshold, which in turn increases the likeli-

hood of point-cloud pairs with low overlap being correctly aligned. The results

in Table 5.3 also reveal that increasing the two bandwidths will initially de-

crease the required overlap, but this does not remain consistent when they are

greater than 128. Figure 5.12 shows for each of the three datasets an example

of the minimum overlap required to correctly align a point-cloud pair. Due to

their differing shapes, the Stanford bunny requires the least amount of over-

lap at 9.2%, followed by the Dragon and Buddha statue at 27.7% and 35.6%

overlap, respectively.

5.3.2 Icosahedron and Fibonacci Accuracy

The icosahedron and Fibonacci binning schemes improve the uniformity of the

bins across the unit sphere, allowing them to provide a better representation

of normals. Comparing these two schemes with equiangle binning determines

if their near uniform binning provides any advantage. Due to the high compu-

tational cost of the least-square method of converting to spherical harmonics,

the bandwidth is limited to 64. Figure 5.13 shows that at all presented band-

widths, the icosahedron and Fibonacci schemes get a higher percentage of cor-

rect alignments at lower rotation error thresholds than equiangle. However, as
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(a) Stanford Bunny; 9.2% overlap.

(b) Dragon; 27.7% overlap.

(c) Buddha Statue; 35.6% overlap.

Figure 5.12: Examples of the minimum overlap needed to correctly align point-
clouds for each of the three models used from the Stanford 3D Repository. Each
point-cloud pair alignment is shown from two poses to help reveal the total
extent of overlap.
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Figure 5.13: The percentage of point-cloud pairs that each of the three binning
approaches (equiangle, icosahedron and Fibonacci) correctly aligns. Equiangle
binning is performed at the pole and each bin is divided by its surface area.

the rotation error threshold increases, equiangle binning surpasses icosahedron

and comes close to matching Fibonacci binning. At a rotation error threshold

of 10◦, Fibonacci has an approximate 1% improvement on equiangle binning

when the bandwidth is 16. Increasing the bandwidth provides minimal ad-

vantage between equiangle and Fibonacci. The icosahedron scheme tapers off

early, with a 1% decrease in performance.

5.3.3 Efficiency

The goal of using an alternative binning scheme to equiangle binning is to

improve registration accuracy, but accuracy is not the only metric which must

be considered. To justify using these alternative binning schemes, the cost to

efficiency should be taken into account. The cost of binning each normal is

a measure of total GCD calculations (see Equation (5.14)) that must be per-

formed. Figure 5.14 shows the GCD cost for binning each normal with relation

to the bin count. Equiangle binning does not require any GCD calculations

as it bins each normal directly. Equiangle is only shown with bin counts at
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powers of two, as the bin count is determined by bandwidth; the bandwidth

can be any natural number, but the fast spherical-harmonic algorithm (see

Section 3.2.2) is most efficient at powers of two.

The cost of the Fibonacci binning scheme is highly dependent upon the

location of the normal with respect to the surrounding bins, as this determines

the number of bins that must be checked before the closest bin is confirmed.

The line showing the Fibonacci cost in Figure 5.14 is the mean number of GCD

calculations performed when binning a normal. The fluctuations in this line

are due to the changing relationship between the normals and bins, which was

produced by creating and binning 10 000 random normals, with the bin count

being increased in steps of 200. Fibonacci binning is presented as a line as its

bin count can be any odd number.

The cost of binning normals using the icosahedron scheme is a fixed value

based on the desired depth, where if d is the depth, the required number of

GCD calculations is given as 10+4d. Because the icosahedron bins are formed

by successively splitting triangles, the bin count is very restricted, as shown in

Figure 5.14 by the six marked icosahedron bin counts. The cost of performing

icosahedron binning tapers off as bin count increases, with Fibonacci binning

having the same mean performance when there are approximately 20 000 bins.

Depending on the individual location of a normal, the GCD cost of Fibonacci

can be much greater than the mean; at a bin count of 20 001, the maximum

number of GCD calculations for a normal was 129. Overall, equiangle binning

is the most efficient scheme as it does not require an iterative algorithm to bin

each normal.

5.3.4 Equiangle Noise

When an imaging system captures range data, the produced point-cloud is

rarely free from noise. As this noise affects individual points, then their cal-

culated normals will also be noisy. By applying varying levels of noise to

the normals, the extent to which spherical-harmonic correlation is capable of

achieving correct alignment is determined. Only the equiangle binning scheme

is examined with respect to noise. This is due to equiangle binning being

able to achieve a greater registration performance than either Fibonacci or

icosahedron as it can be executed at bandwidths greater than 64.

The ability of the spherical-harmonic correlation to correctly align point-

cloud pairs at six different levels of noise is shown in Figure 5.15. No improve-

ment is gained by increasing the bandwidth when the noise is 5◦ or 10◦, while
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Figure 5.14: The number of great circle distance (GCD) calculations that are
performed to bin an individual normal at different bin counts.

at the lower noise levels, increasing the bandwidth to 128 produces a minimum

of 2% improvement. By further increasing the transform bandwidth to 256,

the 0.5◦ and 1◦ noise levels see an approximate 1% improvement.

The greater the noise contamination, the higher the overlap be between

point-clouds needs to be for correct alignment. Figure 5.16 shows this rela-

tionship for a transform bandwidth of 256 and a correlation bandwidth of 128.

It can be seen that as the noise level increases, correct alignments rapidly de-

crease as overlap decreases. The extent of this decrease is that even adding 1◦

of noise results in the average overlap needing to be 10% higher for it to match

the registration ability when no noise is added. Unexpectedly, having a slight

amount of noise improves registration when there is 70% to 90% overlap.

5.4 Discussion

This section discusses in greater detail the individual findings revealed in the

previous results section. It is broken up into three sections: accuracy, efficiency

and noise.

5.4.1 Accuracy

One of the key aspects of this analysis was quantifying the effect that bin sur-

face area and shape has on registration accuracy. Using an equiangle grid has
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Figure 5.16: The percentage of correctly aligned point-cloud pairs versus their
overlap. The graph lines are shown for a variety of noise levels used to con-
taminate the normals. The overlap is broken into twenty 5% steps, where the
correctly aligned percentage is the mean of all point-cloud pairs in a given step.
Alignment is deemed correct if its rotation error is 10◦ or less.

the primary advantage of allowing an efficient conversion to spherical harmon-

ics, but both the size and shape of each bin changes with respect to its polar

angle. Dividing the count of normals that each bin collects by the size of its

surface area improves performance, as this more accurately reflects the true

collecting power of each bin. If surface area is not incorporated, then there is

bias towards the larger bins.

The icosahedron and Fibonacci binning schemes provide a more uniform

distribution of bins about the unit sphere, producing individual bins which

have a similar size and shape. Due to this, the bins were not normalised by

their size, as this is a non-trivial task in itself, especially for Fibonacci binning.

If these bins were normalised, there may be a marginal improvement, but it

is unlikely to be significant. The main benefit that these two binning schemes

provided was allowing more point-cloud pairs to achieve correct alignment at

a lower rotation error. However, as their bandwidth is limited to 64 (due to

computational cost), equiangle has a similar performance if a marginally higher

rotation error is permitted. At higher correlation bandwidths, the equiangle

rotation error is less than 2◦ for the initial spike of aligned point-cloud pairs.

Makadia et al. (2006) noted that the best binning histogram is one com-

prised of bins that have the same surface area and shape. Their goal was to

create a fast algorithm as opposed to improved accuracy. The results shown
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in this chapter prove that using a binning scheme with a more uniform distri-

bution of bins does provide a minimal improvement to registration accuracy.

However, equiangle binning can be kept computationally more efficient as its

bandwidth is increased, thus producing a better registration accuracy. Fur-

thermore, Makadia et al. (2006) do not rescale the equiangle bins, meaning

their registration accuracy will have suffered. Their algorithm attempts to

overcome any incorrect alignments by weighting the normals and adding a

verification step; both of which are explored in Chapters 6 and 8, respectively.

One result that must be noted is that the icosahedron binning scheme ta-

pers off at a lower alignment percentage than either Fibonacci or equiangle

binning (shown in Figure 5.13). The exact cause for this has not been iden-

tified, but may be due to two reasons. The first is that icosahedron bins do

differ in size; bins closer to the centre of an icosahedron triangle are larger, as

the distance to project them onto the sphere surface is greater. The second

potential cause is that the icosahedron, due to the manner in which its bins are

created, produces more bins per bandwidth than the other two schemes. By

having more bins than necessary for performing the least-squares conversion to

spherical harmonics, their representation of normals in the frequency domain

may be adversely affected.

The primary goal of performing this analysis was to determine the capa-

bility of different binning schemes for registering range images acquired from

independent poses. As each range image is from a single fixed pose, the ex-

tracted normals only occur on a hemisphere of the total unit sphere. The

orientation of the normals with respect to the equiangular grid affects the reg-

istration performance. If the pole of the equiangle grid is aligned with the

optical axis of the imaging device, then there is a greater density of bins for

collecting and representing normals. Additionally, the larger bins that are near

the equator will collect normals which are noisier or less useful, especially as

the surface they are calculated from trends towards being parallel with the

optical axis. By increasing the bandwidth to 128, the effect of orientation di-

minishes (when bins are divided by their area size), suggesting that as long as

the bandwidth is high enough, sampling on the equator is sufficiently repre-

sents the distribution of normals in the frequency domain. This improvement

is attributed to the overall increase in bin density. Given that a high band-

width is used, the orientation of normals with respect to the equiangle grid has

little influence on registration. Therefore, using imaging devices that capture

a larger field-of-view should have an equal level of performance (as long as the
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imaged scene is static).

When determining the best correlation between two sets of normals, the

entire rotational space is searched (albeit in a discrete manner), therefore, the

angular difference between a point-cloud pair is irrelevant. What is important

is the percentage of overlap between point-cloud pairs, as this increases the

similarity between the two sets of spherical harmonics, and in turn the cor-

relation value of the correct rotation, allowing it to be identified. It may be

expected that overlap would intrinsically be related to the angular difference

between poses, but this relationship does not exist due to two reasons. The

first is that a scene structure can have aspects which introduce occlusions when

imaged from one pose, obscuring a large portion of the scene that may become

visible even with a minimal shift in imaging pose. When a large portion of

the scene is revealed, the percentage of overlap can change considerably, but

as the imaging pose only had a minimal shift, the angular difference remains

minimal. The second reason is that an imaging device can be rotated about

its optical axis, which can introduce an angular difference of up to 180◦, while

still maintaining an overlap percentage that is near 100%.

While increasing the overlap between point-cloud pairs is one method for

improving registration accuracy, the key benefit comes from increasing both

the transform and correlation bandwidths. The transform bandwidth defines

the level of representation of the normals in the frequency domain. The higher

the transform bandwidth, the better this representation will be due to two

reasons. The first is that as the transform bandwidth goes up, so does the

bin density, thus the surface of the unit sphere is sampled in finer increments.

This provides more detail of the overall distribution of normals and how they

are related to each other once binned. This increased bin density benefits all

calculated spherical harmonics. The second is that the transform bandwidth

is the maximum spherical-harmonic degree used to express the normals in the

frequency domain. The correlation bandwidth stipulates both the size and

the maximum degree of spherical harmonics used for forming the correlation

matrix; because of this, the transform bandwidth must be equal to or greater

than the correlation bandwidth. By having a transform bandwidth greater

than the correlation bandwidth, the registration accuracy does improve as the

bin density increases and the harmonic aliasing is reduced. This improvement

does taper off as the transform bandwidth goes up, which shows that the

effect of aliasing reduces, and the sampling density on the sphere is able to

adequately represent the normals.
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Varying the bandwidths produced two unexpected outcomes. The first was

that registration accuracy diminished when the transform bandwidth (1 024)

was much greater than the correlation bandwidth (128), though this decrease

was insignificant. The second was when the bandwidths were greater than 128,

the minimum overlap capable of achieving alignment was inconsistent. This is

because when the overlap is low, there are a variety of potential alignments that

maximise correlation. Combining this with the fact that the representation of

the normals and the available discrete rotations both change with different

bandwidths, one particular alignment will produce the maximum correlation.

It is just coincidental if a lower bandwidth pair produces the correlation that

has a rotation closer to the true rotation between two point-clouds.

The registration accuracy could be further improved if greater correlation

bandwidths are computed, as there is no indication that a bandwidth of 256

sufficiently represents the normals. Lower bandwidths can be used to perform

the registration if the two sets of normal distributions provide a representation

that is distinct enough for identifying the correct rotation. This however comes

at a cost, as there less rotations to select from, causing larger rotation errors

to occur. Therefore, when performing spherical-harmonic correlation, using

the highest feasible combination of transform and correlation bandwidths is

recommended as this helps maximise registration accuracy and minimise the

resulting rotation error.

The rotation error that remains after rotational registration is not related

to the overlap between point-cloud pairs. This is due to there only being a

discrete set of rotations, where even if the overlap is large, the most suitable

rotation may result in a larger rotation error. Because there is no relationship,

the opposite can occur, where minimal overlap may produce a rotation error

that is near zero. It is due to this reason, combined with the low number

of point-cloud pairs at 92.5% overlap (shown in Figure 4.2), that Figure 5.11

has a dip in correct alignments at 92.5% overlap for the 1◦ threshold. This

assessment is reinforced by the fact that this dip is much less apparent when

the threshold is 2◦.

Knowing how well the spherical-harmonic correlation performs to within

a given rotation error, when a particular set of parameters are used, provides

an indication of how well a fine registration algorithm will perform. This is

because fine registration algorithms, such as ICP, are limited to a maximum

rotational misalignment that they can handle. As ICP is the primary algorithm

used, a preliminary study (Larkins et al., 2010) was performed which found
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ICP capable of registering up to 10◦ of rotational misalignment. This provides

enough of a buffer for spherical-harmonic correlation, which at a correlation

bandwidth of 128 achieves correct rotational alignments within 2◦.

5.4.2 Efficiency

The process of binning normals is a step that must be performed, as attempt-

ing to represent every individual normal in spherical harmonics by the way of

least-squares will be cost prohibitive. In terms of the most efficient binning

scheme, the equiangle grid has the best performance as it is able to directly bin

each normal without having to perform any form of search. The icosahedron

and Fibonacci schemes both require searching to identify the closest bin to a

normal. Therefore, they are incapable of achieving the same level of efficiency;

unless of course there is an underlying aspect to their formation that permits

direct binning. From the results shown, the benefit to accuracy of using icosa-

hedron and Fibonacci is minimal, therefore the equiangle grid gives the best

combination of efficiency and accuracy.

The computational cost of identify which bin collects a normal is marginal

with respect to the computation required for converting the bins to spherical-

harmonics. Using least-squares permits any point-distribution to achieve this

conversion, but for a specified bandwidth, there is a preferred number of sam-

ple points (4B2
t ), otherwise the fitting becomes underdetermined or overde-

termined. Singular value decomposition can handle both of these situations,

but its ability to do so was not tested. Because Fibonacci can have any odd

number of bins, the additional cost of it forming an overdetermined system

is minimal, whereas icosahedron does not have these fine increments, further

increasing its computational cost.

Using least-squares is an expensive means for converting a distribution of

points on a sphere to spherical harmonics. Optimal conversion occurs when

the points have constant latitude, as this means that the associated Legen-

dre polynomial only needs to be calculated once for many points. Neither

icosahedron nor Fibonacci meet this requirement, and therefore they are not

conducive to the fast spherical-harmonic transforms implementations. This is

the primary advantage of the equiangle grid when it comes to efficiency, as

it allows the conversion to be performed significantly faster. A more detailed

overview of the computational costs are covered in Section 3.2.2.
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5.4.3 Noise

When noise corrupts a normal, shifting it from what would be its true position,

an adjacent bin may collect it. For equiangle binning, the higher the band-

width, the greater the occurrence of incorrect binning, especially if the normal

is near the pole. However, the results presented in Figure 5.15 show that while

registration accuracy does decrease with noise, this decrease is not related

to the sampling density of the transform bandwidth, as performance remains

consistent. Equiangle binning was the only scheme tested with noise, the ca-

pability of icosahedron and Fibonacci for handling noise was not determined.

These two schemes are unlikely to provide any benefit as the combination of

increased sampling density and noise does not decrease registration accuracy.

The ability of binning to deal with noise occurs when bin size is larger than the

noise discrepancy, which would keep the normal in the bin. Ensuring a bin is

large enough would require a lower bandwidth; which provides no benefit as a

higher bandwidth maintains or improves accuracy even when noise is present.

An unexpected result that occurred in Figure 5.16 was that the percentage

of correctly aligned point-cloud pairs increased between the 70% to 90% overlap

range when a marginal level of noise was present. The exact reason why noise

boosted the alignment percentage is unknown, though it may be reducing the

effect of quantisation error. This boost however does not improve the overall

registration ability, especially considering that when the overlap is below 70%,

the performance drops more rapidly when noise is present as opposed to no

noise.

5.5 Summary

The initial hypothesis was that if normals are placed into bins that are both

more uniformly distributed on a sphere and maintain a similar size, then a

more accurate representation of the normals will be formed, thus improving

registration accuracy. The experiments and analysis performed show that this

hypothesis proves to be somewhat true, as icosahedron and Fibonacci binning

schemes are able to align more point-cloud pairs at a lower rotation error than

equiangle binning. Achieving alignments which minimises rotation error is

advantageous for fine registration algorithms that are only capable of handling

small rotational misalignments. By further evaluating equiangle binning, it was

seen that if a higher rotation error is permitted, the performance of equiangle

surpassed icosahedron and was similar to Fibonacci.
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The fundamental advantage of equiangle binning over icosahedron and Fi-

bonacci comes from its efficient conversion to spherical harmonics. This allows

equiangle to make use of higher bandwidths, increasing the total number of

spherical harmonics used. Being able to perform both the sampling on a

sphere and the spherical-harmonic inversion at higher bandwidths was shown

to provide a significant benefit to registration accuracy. Due to this, equian-

gle binning provides a sufficient means of achieving rotational alignment when

given a pair of overlapping point-clouds.

An additional aspect of this analysis was to determine whether bin size and

the orientation of normals are factors that should be taken into account when

using equiangle binning. From this, it was found that both of these factors have

a large influence on registration ability. The best performing combination was

when the normals were binned at the pole of the equiangle grid, and each bin’s

weight was scaled by dividing its count of normals by the area it encompasses

on the sphere surface.

The final area of investigation was quantifying how robust equiangle bin-

ning is when normals are contaminated by noise. This was measured by exam-

ining the registration performance achieved by spherical-harmonic correlation.

The results showed that the noise level adversely affected performance, espe-

cially as point-cloud overlap decreases. At high levels of noise, the area of

investigation should not be the registration algorithm, but on the capturing

and pre-processing steps, so as to improve point-cloud quality.



Chapter 6

Weighting Normals

Treating all normals equally in preparation for performing spherical-harmonic

correlation was shown in Chapter 5 to be capable of bringing 35% of the point-

cloud pairs into correct rotational alignment. However, each normal does not

provide an equal contribution in terms of allowing the correlation to determine

the correct alignment; this is due to two primary reasons. Firstly, there is no

guarantee that the surfaces common to two overlapping point-clouds have the

same sampling density or size, meaning that the number of normals between

them will differ. Each surface in a point-cloud is a contiguous section of points

that maintains a consistent level of surface curvature; the pose of the imaging

system and the nature of the scene will determine the size, shape and number

of individual surfaces that constitute the point-cloud. However, identifying

surfaces based on contiguous points is not pertinent as only the normals are

used in the correlation. Because of this limitation, surfaces are identified by

clusters of normals that have a similar orientation and are subsequently set

to have an equivalent weighting. Secondly, a normal can be contaminated by

noise, in particular, it is unreliable if it is collected from areas with high surface

curvature or from surfaces that are nearly parallel to the optical axis of the

imaging system. Weighting normals based on their surrounding surface cur-

vature allows noisy normals to be identified and culled, improving the overall

quality of the normals used in the correlation.

This chapter investigates how registration accuracy is improved by miti-

gating the effect of unreliable normals. This is achieved by exploring weighting

schemes that are designed to emphasise normals that are beneficial to the reg-

istration, and de-emphasise those that are not. The goal of this investigation

is to determine if weighting schemes provide an advantage to registration, and

if so, which scheme is the most conducive to spherical-harmonic correlation.

87
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Makadia et al. (2006) proposed that equiangle bins deemed local maxima

should be set to a value of one, with the rest set to zero. This scheme attempts

to normalise each surface of a point-cloud so that their size is not taken into

account. Because equiangle bins are not equal in size, the idea of setting bins

to a single fixed value (as opposed to normalising them based on bin size) is

suboptimal. The weighting scheme by Makadia et al. is built upon by evalu-

ating how alternative bin values enhance the registration accuracy. Fibonacci

binning is also used to determine if its incorporation will alleviate issues that

arise with the equiangle approach. Weighting individual normals, as opposed

to reweighting each histogram bin, is an additional weighting scheme that is

introduced to help minimise the inclusion of detrimental normals. Because

these two weighting schemes target different issues, their combination further

benefits registration accuracy. This is accomplished by introducing the idea of

transforming complex values into spherical harmonics instead of simply using

real values.

6.1 Weighting Schemes

Incorporating weighting into the correlation process emphasises preferred prop-

erties contained within a point-cloud. If these properties are similar between

two point-clouds, then their emphasis means that the correlation is better able

to identify the rotation that correctly brings these two point-clouds into rota-

tional alignment. Two types of weighting schemes are investigated, the first

gives each normal its own weight, while the second weights all the surfaces of

a point-cloud equally, regardless of their size. A means of combining these two

weightings is then introduced, providing the benefit of both schemes.

6.1.1 Weighting Normals

Each normal when binned is initially treated as having an equivalent weight,

that is, they each have a weight of one. The weight attributed to a given

normal can be modified based on a variety of aspects; here, the local surface

curvature about a point is used. The weight is normalised to a value between

zero and one, allowing each weight to be dealt with in the same manner, where

zero is the maximum surface curvature and one is a perfectly flat surface.

Because a normal is the first-order derivative of a surface, it only describes

the surface orientation at the corresponding point, whereas surface curvature

is the second-order derivative. Surface derivatives at a point are calculated
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based on its neighbouring points; this is inclusive of normals being used to

calculate surface curvature, as normals are also calculated from the points.

The number of neighbours that the current point has is given by the variable

nc. Two approaches of measuring surface curvature are tested. The first

uses the angular difference between a normal and its neighbours; a similar

approach has been used previously by Jiang et al. (2009) to allow an iterative

based registration algorithm to be formed. The second measure, introduced

here, calculates the perpendicular distance that points lie with respect to the

tangent plane fitted to the current point.

The surface curvature weighting can be used in a variety of ways, but it

is simply used here to determine if a normal should be kept or culled. It is

hypothesised that points residing near edges or corners in a scene produce

normals that flare out in unexpected directions, particularly if the imaging

system has sparse sampling or if its 3-D acquisition process is prone to noise.

As such, these normals are treated as noise and culled. Because the weights

are normalised, a threshold, q, termed the cull-point, gives a binary divide,

namely the weight ω of the normal used is

ω =

0 ω′ < q,

1 ω′ ≥ q;
(6.1)

where ω′ is the calculated surface curvature. If a normal receives a weight of

zero, it is culled by not binning it. The cull-point can be specified as an angle

that limits how great the local curvature can be about a point. If this limiting

angle is λ, the cull-point q is given as

q = 1− λ/π. (6.2)

Angular Difference Between Normals

The angular difference, ψj, between the normal n̂ = [nx, ny, nz] and one of its

neighbours, n̂j, gives a measure of the surface curvature, calculated by

ψj = cos−1 (n̂ · n̂j), (6.3)

where j = 0, . . . , nc − 1 identifies each of the nc neighbours, and n̂ · n̂j is the

dot product between n̂ and n̂j. Normals expressed in Cartesian coordinates
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can be re-expressed in spherical coordinates by

n̂θφ =

[
cos−1 (nz), tan−1

(
ny
nx

)]
. (6.4)

The angular difference between two normals expressed in spherical coordinates,

namely n̂ = [θ, φ] and n̂j = [θj, φj], is given by

ψj = cos−1 (sin θ sin θj cos (φ− φj) + cos θ cos θj) . (6.5)

The weight, ω′, of the normal n̂ is given by

ω′ = 1− 1

πnc

nc−1∑
j=0

ψj, (6.6)

where the summation is over all the angular differences between n̂ and its

neighbours. Note that ω′ ∈ [0, 1], with ω′ = 1 when the normal and all its

neighbours point in exactly the same direction, otherwise it is smaller.

Plane Distance

Let P be the plane with normal n̂ and that passes through the point p. A

surface curvature weighting for this point is calculated by taking the mean per-

pendicular distance between P and the points neighbouring p. A neighbouring

point, pj, is a point in the plane if

n̂ · (pj − p) = 0. (6.7)

If pj is not in the plane, then

n̂ · (pj − p) (6.8)

gives the perpendicular Euclidean distance of pj to P , with the sign positive

if pj is on the same side of P as the direction given by n̂, and negative oth-

erwise. This distance gives a measure of the surface curvature between p and

pj, though if it is not normalised, the same surface at a different scale will

give a different weighting. Therefore, the distance is normalised based on the

separation between p and pj, namely by

n̂ · (pj − p)

||pj − p||
. (6.9)
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The calculated weight is the mean of the normalised distances to each neigh-

bour, that is,

ω′ = 1−

∣∣∣∣∣ 1

nc

nc−1∑
j=0

n̂ · (pj − p)

||pj − p||

∣∣∣∣∣ ; (6.10)

taking the absolute value of the mean ensures that surface curvature weighting

remains consistent no matter what side of the plane the points are located.

6.1.2 Reweighted Bins

Image acquisition of a scene will typically sample the same surface multiple

times. As the overlap between point-clouds is a major factor that influences

registration, it is desirable to have a similar number of samples from surfaces

common to both point-clouds. This is because the correlation uses the two

distributions of normals from the two point-clouds to identify a rotation. If

the number of samples, thus the number of normals, differs for the same surface

between point-clouds, then the two point-clouds have a different representation

of the same surface when the correlation is performed. This occurs for a variety

of reasons, but is primarily due to part of the surface in one of the acquisitions

being either obscured or outside the field-of-view of the imaging system.

Changes in the number of normals on a surface between acquisitions can

be mitigated by näıvely assuming that normals clustered together represent a

single surface and should only be counted once; even though in reality a cluster

of normals may constitute multiple surfaces. This is because multiple surfaces

can have normals with similar orientations, or similarly, a curved surface can

produce normals with a variety of different orientations; they are therefore

treated as a single surface. Despite these failings, this approach attempts to

make clusters of normals equal, allowing the correlation to be performed with

a single representation of a surface’s orientation, minimising the effect that

surface size and changes in sampling density will have on the correlation. Fig-

ure 6.1 demonstrates how different camera poses affect sampling distribution,

which can lead to an incorrect rotation being identified.

Determining which normals to cluster together can be achieved by binning

them and setting the weight of any bin which has collected a normal to a value

that appropriately represents the binned normals; four values are evaluated as

part of this investigation. The equiangle and Fibonacci binning approaches,

shown previously in Figures 5.1a and 5.5a, respectively, are used for this task.

However, one aspect that must be taken into account is that curved surfaces
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B
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Imaging

Binning
Normals

Bin
Reweighting

Figure 6.1: Demonstration of how the sampling distribution of three surfaces
in a scene change as the camera pose changes. The surfaces which camera A
and B sample more densely depends on their pose, thus affecting the number
of normals that are binned at each orientation. These changes in sampling
distribution can cause the correlation to match two separate surfaces, as they
appear similar, where as if each surface is reweighted equally, the correct ro-
tation has a better chance of being distinguished.

or surface edges can distribute normals into a wide array of orientations. The

result of this distribution is that individual bins may only collect normals

that are effectively noise. As all bins that contain normals are reweighted,

incorporating a threshold that stipulates the minimum number of normals

required in a bin helps alleviate the effect of this noise, which in turn only allows

bins that represent prominent surface areas to contribute to the correlation.

While this threshold could be set as a fixed value, this is not suitable as the total

number of normals varies with pose, creating different sampling densities. The

approach used here to help make the threshold invariant to the total number

of normals is to set it as a percentage of this total.
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Equiangle

The percentage of normals that each equiangle bin must collect for it to con-

tribute to the SHT is dependent upon its size, but because each bin is nor-

malised based on its surface area, a single threshold can be calculated. This

threshold, t, is the percentage of normals that a bin at a particular polar angle

will likely collect. By specifying this bin as the smallest bin, the threshold is

given by

t =
npBt

ABt(0)
, (6.11)

where n is the number of normals, pBt is the percentage of normals to collect

at a given transform bandwidth Bt, and ABt(0) is the area of the smallest

equiangle bin (as calculated by equation (5.7)). The bins equal to or greater

than t then influence the correlation. If the sampling density increases, there

will likely be a corresponding increase in the number of noisy normals from

the varying noise sources. Using a dynamic threshold based on the percentage

means that the threshold remains applicable if the sampling density changes.

Unfortunately using a percentage value requires it to be varied depending on

the transform bandwidth. This is because the number of equiangle bins and

thus their size are dependent on the transform bandwidth.

Let the sampled value of each equiangle bin be fjk, and the reweighted

bin be, f ′jk, as determined by the threshold t. Four reweighting schemes for

equiangle binning are investigated, with all of them setting any bins that have

a value below the threshold to zero. The first scheme does not modify the bins

that are equal to or greater than the threshold, and is given by

f ′jk =

fjk fjk ≥ t,

0 fjk < t.
(6.12)

The second scheme simply gives each bin a value of one, making all bins equal

if their value is large enough,

f ′jk =

1 fjk ≥ t,

0 fjk < t.
(6.13)

This scheme is equivalent to that of Makadia et al. (2006), thus allowing the

performance of their algorithm to be compared against. The remaining two

schemes reweight each bin based on their size, as equiangle bin size varies with
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polar angle; they are given as

f ′jk =


1

ABt(j)
fjk ≥ t,

0 fjk < t,
(6.14)

and

f ′jk =

ABt(j) fjk ≥ t,

0 fjk < t,
(6.15)

which is a weight of one normalised by area, and the bins area, respectively.

Fibonacci

The disadvantage of reweighting equiangle bins is that a suitable percentage

value is dependent on the transform bandwidth. A solution that avoids chang-

ing the percentage value is to bin the normals using the Fibonacci binning

scheme. The Fibonacci bins are instead reweighted, with their bin centres

being fed into the equiangle binning scheme. Each equiangle bin then collects

the Fibonacci bin centres that fall within its collection area and sums up their

reweighted values. This approach allows the number of Fibonacci bins, and

thus the percentage value, to remain constant, even if the transform bandwidth

of the equiangle binning scheme changes. However, the percentage value is also

dependent on the number of Fibonacci bins. The threshold, t, (calculated in a

similar fashion to equation (6.11)) determines if a bin or its normals are used,

and is given as

t = npb, (6.16)

where n is the total number of normals and pb is the used percentage value for

a specific number of Fibonacci bins, b. If the count of normals in a bin is less

than t, then this bin is weighted as zero.

Two options are explored once the threshold has been applied to a Fi-

bonacci bin. These are to either use the bin centre in place of the normals,

allowing them to be represented by this bin centre, or use only the normals

that are in the bins that are not culled. As each Fibonacci bin is approxi-

mately equal in size, the expectation is that the benefit to the registration is

logarithmic; as the number of bins increases the benefit wanes. The reasoning

for this is that the total percentage of surface area a bin encompasses on the

unit sphere follows a reciprocal relationship, as shown in Figure 6.2.
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Figure 6.2: The percentage of area that each Fibonacci bin encompasses on
the surface of a sphere, with respect to the number of Fibonacci bins. As the
number of bins increases, the subsequent difference in the percentage of surface
area of each bin decreases.

6.1.3 Complex Value

Transforming the binned normals to the frequency domain only requires a real

value, as the value at each sample point is the normalised count of normals col-

lected by the bin. The SHT though, is capable of transforming complex values,

thus there is an extra dimension available for encoding additional information

about the normals or the point-cloud itself. This supplementary information

helps the correlation, increasing its ability in identifying the desired rotational

alignment between two point-clouds. However, simply encoding this infor-

mation using the imaginary component does not work as this modifies the

magnitude of the complex value. Instead, the magnitude, r, is taken as the

count of binned normals, with the phase, ρ, of the complex value encoded with

some additional information. This does however restrict what can be encoded,

as the phase value is limited to [0, 2π).

The additional aspect investigated here to be encoded in the phase is the

surface curvature weighting, ω, attributed to each normal. Because normals

are binned, their surface weightings must also be dealt with on a per bin basis.

This is achieved by taking the mean weighting of the normals in the bin, ω̄,

which is still a value between zero and one. However, if the normals have been

culled by their surface curvature weighting using the threshold q, only a small

section of the overall phase is used. In this situation, the weighting between q
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and one can be re-spread between zero and one by

ω̄′ =
ω̄ − q
1− q

, (6.17)

making it the new surface curvature weight for each bin. Converting this

weight to a phase value is simply achieved by multiplying it by 2π. One issue

with this approach is that as the phase is cyclic, surface curvature weightings

of zero and one will appear the same when multiplied by 2π. While this limits

the improvement to registration provided by the complex value combination,

it is an insignificant issue if registration accuracy increases.

6.2 Methodology

The weighting schemes described in this chapter extend the schemes for bin-

ning normals presented in Chapter 5. Due to this, the same Dragon, Buddha

statue and Bunny datasets are used as they provide a ground-truth, allowing

the exact rotation error to be calculated. Once again, the rotational align-

ment is deemed correct if the resulting rotation error is less than or equal to

a prescribed threshold, otherwise it is incorrect. The rotation error threshold

is tested at 0.2◦ increments from 0◦ to 12◦. In certain situations the rotation

error threshold must remain fixed to examine a particular aspect of the regis-

tration, if this arises, the threshold is set to 10◦. This is chosen as it permits

a coarse registration to be classified as correct, while also being within the

bounds of what a fine registration algorithm, particularly ICP, is capable of

handling (Larkins et al., 2010; Minguez et al., 2006).

The effect that the described weighting schemes have on the registration

accuracy is dependent upon the applied parameters. Culling normals based

on their surface curvature weighting requires a threshold or cull-point, q, to be

specified. As these weightings have a value between zero and one, the threshold

is also specified as a value between zero and one; though it can alternatively be

given as an angular measure of the surface curvature, with this angle having

a value between 0◦ and 180◦. Six cull-points are tested to determine how the

registration accuracy varies as greater restrictions on the surface curvature are

applied; these cull-points are shown in Table 6.1. Because it is hypothesised

that lower surface curvature improves registration accuracy, both the mean

angle and plane distance measures are inverted and tested to ensure that this

hypothesis is correct.
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Table 6.1: The cull-point threshold used to specify which normals are kept or
culled based on their surface curvature weighting.

Cull-point Surface Curvature Angle

0 180◦

0.8 36◦

0.9 18◦

0.95 9◦

0.975 4.5◦

0.9875 2.25◦

Both of these schemes for weighting normals require that the neighbours

of a given point be known. If a point is determined to have no neighbours,

then its associated normal is also culled. The weighting schemes used in the

final comparison have these normals culled, whether it is required or not, so

as to ensure that the comparison is fair. Because of this, the results presented

in this chapter differ slightly from those presented in the previous chapter.

The manner in which bins are reweighted is dependent upon whether

equiangle binning or Fibonacci binning is used, though both binning schemes

use a percentage threshold (see Section 6.1.2) to determine whether a bin’s

value is set to zero or a particular value. Because the number of equiangle

bins increases with bandwidth, the size of each bin decreases, therefore three

bandwidths, 16, 32, and 64, are tested to identify how the percentage threshold

varies, and if this trend is related to bandwidth. Because equiangle bin size

changes with the polar angle, four values are tested to identify the optimal

value for reweighting the bin. These values are one, bin area, the reciprocal

of the bin area, and using only the normals that persist after the percent-

age threshold has been applied. The Fibonacci bins are near uniform in size,

therefore only two reweighting schemes are applied to them. The first feeds

the Fibonacci bin centres into equiangle binning if the given bin collects more

normals than the percentage threshold. The second approach only feeds the

normals into equiangle binning that are collected by the Fibonacci bins with

a greater value than the percentage threshold. Both of these approaches are

tested using bin counts of 1 001, 5 001 and 10 001, at bandwidths of 16, 32,

and 64. Testing at these three bin counts reveals whether registration accu-

racy improves when increasing bin count, while the selected bandwidths test

if the percentage threshold is invariant to bandwidth.

The complex value weighting is a combination of the weighting of normals
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scheme and the reweighting of bins scheme. The mean weighting value of the

normals in a bin is converted into a phase value, while the value attributed to

the bin is expressed as the magnitude of the complex value. The experiments

using the two schemes separately will identify which set of parameters perform

the best; the two schemes with these parameters are used in conjunction with

each other to form the complex value. The goal of forming the complex value

in this manner is to further boost the registration accuracy, as the complex

value provides an orthogonal system for encoding both schemes.

Testing how the best weighting scheme handles noise is performed using

the same testing structure established in Chapter 5, in which each normal has

Gaussian noise applied to it using the approach outlined in Section 4.2.3. The

variability of the noise is specified by a base angle which is set at one standard

deviation from the normal: five such base angles are used for introducing noise,

with these being 0.5◦, 1◦, 2◦, 5◦ and 10◦. Because the weighting schemes only

use the normals, applying noise to the normals in this manner is sufficient for

testing their robustness, except for plane-distance. Noise is applied directly

to the plane distance weighting, ω, by treating it as an angular value between

zero and π (in radians), with the noisy weighting being given as

r = ω +
uσ

π
, (6.18)

where u is a normally distributed random number with σ specifying the one

standard deviation angle. This noisy weighting still needs to be a value between

zero and one, therefore, if it is outside these bounds, the value is reflected back

to maintain this restriction. This reflection is achieved by

ωr =

4π − r r > 1,

|r| r < 0,
(6.19)

with ωr being the weighting with noise. To maintain continuity, the angle used

to introduce noise to the plane distance value will be the same as the angle

used to introduce noise to the normals. It must be noted that the noise applied

to the normals does differ from that applied to the plane-distance weighting,

as both of these noise sources would be symptomatic of sampling noise shift-

ing the points from their true position. The level to which artificial noise is

added to the two weighting schemes is more than what a real imaging system

should produce, therefore, it provides a suitable evaluation of the correlation

robustness.



6.3 Results 99

6.3 Results

The presented results show how different weighting schemes impact the accu-

racy and efficiency of SHT registration. The robustness of the best performing

scheme is tested further by adding varying levels of noise to the normals.

6.3.1 Accuracy

The primary purpose of incorporating weighting schemes into the registration

pipeline is to improve the registration accuracy by refining which normals are

used or alternatively how they are used. This section investigates how the three

described classes of weighting schemes perform when a variety of parameters

are applied. These classes are the weighting of normals, reweighting of bins,

and combining them together using complex values.

Weighting of Normals

Normals can be weighted using any number of aspects, with the results pre-

sented here showing the registration accuracy of two weightings that are pro-

duced by measuring surface curvature. These weightings favour flat surfaces,

but to ensure that the nature of this weighting is appropriate, their inverse is

also tested. Figure 6.3 shows how these four weighting variants perform when

one of six thresholds are applied to specify which normals are kept and which

are culled. The threshold of zero, deemed the baseline, permits all normals

to be kept and binned, with its purpose being purely to demonstrate whether

culling provides any benefit to registration accuracy.

The mean angle weighting shows that as the threshold increases, the per-

centage of correctly aligned point-cloud pairs also increases, with a threshold

of 0.975 aligning approximately 10% more point-cloud pairs as opposed to

no weighting being applied. However, if the threshold is too restrictive, then

there is a detrimental effect on registration, as shown when the threshold is

0.9875. The thresholds perform differently when applied to the plane distance

weighting, with the percentage of correctly aligned point-cloud pairs continu-

ally increasing with threshold. The highest tested threshold, 0.9875, correctly

aligned a further 18% of the point-cloud pairs compared with the baseline; this

is the best performing scheme for weighting the normals.

The inverse mean angle results were interesting in that when the thresh-

old was decreased, the registration accuracy increased. Because the inverse

mean angle favours surfaces with high curvature, its results were based purely
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on the Buddha statue and dragon model, as all the normals in the bunny

model were culled. The effect of the inverse mean angle weighting scheme is

described with greater detail in the discussion (see Section 6.4). The inverse

plane distance weighting is unsuitable as at the tested thresholds all normals

were culled. The correct alignments produced by the inverse plane distance

are purely coincidental as the first element in the correlation matrix is selected

in this situation; this element corresponds to the smallest available rotation,

which works for point-cloud pairs that are already aligned.

Reweighted Bins

Binning normals and then reweighting the bins based on the number of normals

collected is an alternative approach presented by Makadia et al. (2006), who

reweighted equiangle bins. The implementation by Makadia et al. differs from

that presented here, with these differences being compared and analysed in

the discussion (see Section 6.4). The bin reweighting is determined based

on a percentage threshold, with the appropriate threshold varying with bin

count. Because bandwidth dictates the bin count for equiangle binning, three

bandwidths, 16, 32 and 64, are used to determine if there is a relationship

between the threshold value and bin count.

Figure 6.4 shows a trend between the three bandwidths and the percentage

threshold, with each doubling of the bandwidth dropping the best performing

threshold by approximately a seventh. Because the threshold was determined

numerically (as opposed to analytically) for the three bandwidths, this trend

will be extrapolated for higher bandwidths. The primary revelation of Fig-

ure 6.4 is how the four bin reweighting schemes compare with each other.

Using a percentage threshold of zero with a reweighting scheme that only sets

bins to zero is equivalent to performing the registration without any weight-

ing, and as such is the baseline. With respect to this baseline, setting a bin’s

weight to one and normalising by its size has the worst performance, this is fol-

lowed by the scheme which only reweights bins to zero based on the percentage

threshold. Reweighting certain bins to zero does improve registration accuracy,

which at a bandwidth of 16 is on par with the best performing reweighting

scheme. The reweighting scheme which performs the best is dependent upon

bandwidth, with reweighting bins to one being the better scheme at band-

widths 16 and 32, while at a bandwidth of 64, it is surpassed by reweighting

bins to their area size. Both of these schemes perform better than the baseline

as long as the percentage threshold has been correctly selected.
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The idea of reweighting bins is not exclusive to equiangle binning, as it

can be applied to other binning schemes such as Fibonacci binning. The reg-

istration is still performed using equiangle binning, with the additional bin-

ning scheme providing an abstraction which allows the bin count, and hence

the percentage threshold, to remain constant if the bandwidth changes. This

consistency is demonstrated in Figure 6.5 with the best percentage threshold

remaining the same with bandwidth, though it does vary with bin count, as

there is a respective change to the number of normals that a bin collects. Sim-

ply using Fibonacci binning to cull normals provides a benefit to registration

accuracy, though if the Fibonacci bin centres are treated as individual normals

which are fed into equiangle binning, the registration accuracy is further ben-

efited by an approximate 7% at a bandwidth of 64. The Fibonacci bin count

does have an effect on registration accuracy, though this benefit plateaus as bin

count increases. This is evident by the distinctly larger jump in performance

between 1 001 and 5 001 bins, than that between 5 001 and 10 001 bins, when

the Fibonacci bin centres are used with a bandwidth of 64. This plateauing is

attributed to the decreased difference in bin size as shown by Figure 6.2.

The equiangle and Fibonacci results shown in Figures 6.4 and 6.5, respec-

tively, identify which bin reweighting schemes have the best performance. Fig-

ure 6.6 increases the bandwidth to 128 to further evaluate the performance of

equiangle binning when the bins are reweighted to one or the bin area, and

when the centres of Fibonacci bins are used to represent the normals. Using a

percentage threshold of 1.5 × 10−6 shows that reweighting the equiangle bins

to their area has a better performance than reweighting the bins to one. This

threshold was chosen as it follows with the trend identified in Figure 6.4. The

performance of Fibonacci binning when 10 001 bins, at a threshold of 0.6×10−3,

are used only has a 2% lower performance than when the equiangle bins are

reweighted to one, making them comparatively similar.

Complex Value

Combining the highest performing reweighting of bins scheme and the weight-

ing of normals scheme into complex values produces the best registration accu-

racy, allowing the SHT to correctly align 85% of the point-cloud pairs. Using

these two schemes together provides a representation of the point-clouds for

correlation in the frequency domain that is more suitable than using these two

schemes separately. The results in Figure 6.6 show how different weighting

schemes compare at a bandwidth of 128, with the reweighted complex value
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scheme comprising of the plane-distance surface curvature at a threshold of

0.9875 and reweighting equiangle bins to their area using a percentage thresh-

old of 1.5 × 10−6. Applying these thresholds to the two weighting schemes

is still a necessary step as simply combining all the normals and their plane-

distance weightings to form the complex values is only marginally better than

not using any weightings at all.

Figure 6.7 further analyses registration by examining how the three best

weighting schemes compare to no weighting with respect to the overlap be-

tween point-cloud pairs. The equiangle scheme maintains the SHT registra-

tion capability at higher overlap percentages, while improving it as the overlap

decreases. This is significantly improved upon by the complex values scheme,

which only drops to a 50% correct alignments at an approximate 11% overlap.

The aggressive nature of the plane-distance culling at a threshold of 0.9875 has

an unusual effect on the relationship between the initial overlap percentage and

the achieved alignment percentage. The result is that while more point-cloud

pairs with lower overlap achieve correct alignment, increasing overlap does not

improve registration accuracy as rapidly as the other schemes; potential rea-

sons for this distinct growth rate are described below in the discussion (see

Section 6.4). The minimum overlap required for the complex value weight-

ing scheme to correctly align the Buddha statue, the Stanford bunny and the

dragon model were 4.9%, 4.8% and 5.7%, respectively.

6.3.2 Efficiency

The computational cost of incorporating a weighting scheme is a minimal ex-

pense when contrasted with the achieved results. The cost of applying a surface

curvature weighting to each normal is based on two factors: the total number

of neighbouring points that are used and the equation which calculates the

weight. If the imaging system samples the scene in a uniform or grid like man-

ner, then it is expected that each point has eight neighbours. This means that

the total number of times that either equation (6.6) or (6.10) are invoked will

be 8n, where n is the total number of points.

Fortunately, calculating the weight for each normal only occurs once, as it

can be stored; this is useful when registering multiple point-clouds if SHT is

applied to every point-cloud pair. Reweighting the equiangle bins is effectively

a free weighting scheme as each bin’s weight can be modified at the same time

it is normalised by its size. However, the Fibonacci bin reweighting scheme

has a binning cost (see Section 5.3.3). The computational cost of the complex
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Figure 6.6: Comparison of the three weighting schemes types when the best
performing parameters are used with a bandwidth of 128.

2.5 12.5 22.5 32.5 42.5 52.5 62.5 72.5 82.5 92.5
0

10

20

30

40

50

60

70

80

90

100

Overlap (%)

C
o
rr

e
c
tl
y
 A

lig
n

e
d

 (
%

)

 

 

No Weighting

Plane−Dist (0.9875)

Equiangle (A)

CV: Reweighted

Figure 6.7: The percentage of correctly aligned point-cloud pairs versus their
overlap for four weighting schemes. An alignment is deemed correct if its
rotation error is less than 10◦.



6.4 Discussion 107

values scheme is based solely upon the two weighting schemes which are used

in conjunction to form the complex value. Because the fast SHT is inherently

capable of handling complex values, there is no additional cost attributed to

using them with the fast SHT. In saying this though, additional symmetry

does occur in the Fourier coefficients when the sampled values are strictly real.

This symmetry can be exploited to provide a computational advantage, though

there is only a marginal benefit (Kostelec and Rockmore, 2008).

6.3.3 Noise

The complex value weighting scheme has exceptional performance with respect

to other tested weighting schemes, though as ground-truth data was used, the

results it produced are unable to reflect how it handles noise. Keeping both

the plane-distance culling and equiangle percentage thresholds at 0.9875 and

1.5× 10−6, respectively, reveals how well the complex value weighting scheme

performs when noise is independently introduced to both the normals and

the plane-distance weighting. These results are shown in Figure 6.8 at six

different noise levels. The addition of noise is shown to have an immediate

detrimental effect on registration accuracy, with the percentage of correctly

aligned point-cloud pairs quickly decreasing as the noise angle increases. The

decrease in performance is a reflection of the two used thresholds being highly

sensitive to noise. It is expected that the ability of the correlation to handle

noise will improve if the thresholds are less restrictive, though this will reduce

the achieved performance of the ground-truth data. The implications of these

noise results are described in greater detail in the discussion below.

6.4 Discussion

Currently, the extent of literature identified which uses weighting schemes in

conjunction with spherical-harmonic correlation is limited to that presented

by Makadia et al. (2006) and Larkins et al. (2013). The weighting scheme

proposed by Makadia et al. was only described at a high level, therefore,

comparing results against their implementation can only occur by making ed-

ucated guesses. It was determined that the constellation images formed used

a value of one to represent the equiangle bins deemed to be local maxima,

with the rest being set to zero. The work presented here has revealed that this

reweighting value has a lower performance than reweighting to the bin size

when the bandwidth is 64 or greater.
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Figure 6.8: Performance of the complex values weighting approach at six dif-
ferent noise levels with respect to overlap. A bandwidth of 128 was used.

Two differences in implementation that may also be present are the use of

extended Gaussian images (EGI) and selecting of local maxima. EGIs (Horn,

1984) are Gaussian images where each normal has been extended to include a

weighting equivalent to the surface area that the normal represents. However,

if Makadia et al. incorporated true EGIs into their pipeline, the surface area

weighting becomes irrelevant when bin values are reweighted. This is because

the goal of reweighting is to remove any bias that exists due to the same surface

having different sampling densities when imaged from separate poses. The only

situation where surface weight may have a role is when selecting which bins to

keep. While the inclusion of surface area weighting may benefit registration

accuracy, this chapter shows that exceptional results are achieved without it.

Makadia et al. do not disclose how bins are determined to be local maxima,

though their approach may simply select a predetermined number of bins with

the largest values. This approach is not expected to have any benefit over

using a percentage threshold as they both have the same limitation: the best

percentage threshold or number of bins to keep will differ with both the band-

width and the distribution of normals in the scene. Makadia et al. also stated

that a point-cloud pair with overlap as low as 45% was successfully aligned;
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while their results might be a limitation of the testing data, this chapter has

shown that using the complex value weighting scheme can align point-cloud

pairs with overlap as low as 5%.

6.4.1 Surface Curvature Weighting

The results presented in Figure 6.3 show that reverse mean-angle weighting has

a similar performance as mean-angle weighting, however, these results are only

provided by the Buddha and dragon models. The reason why the reverse mean-

angle weighting performs well for these two models is that they both contain

surfaces with high curvature. This means that after culling has occurred,

only the normals of these high curvature surfaces remain. Because a minimal

number of these normals remain, with a subset of them common to both point-

clouds, the correlation is able to calculate the desired rotation with greater

accuracy. This is likely due to the percentage of normals common to both

point-clouds decreasing as the total number of used normals increases. These

extraneous normals still influence the correlation, and as such, the selected

rotation can give an alignment with decreased accuracy. The mean-angle and

plane-distance weightings are more susceptible to this issue as they use surfaces

with low curvature. However, because fewer normals are culled, the correlation

has a very low risk of being performed with no normals. As it is possible for the

reverse mean-angle weighting to cull all the normals in a point-cloud, it is not

recommended as a weighting scheme, with this recommendation also applying

to the reverse plane-distance weighting due to its very poor performance.

The result of the plane-distance weighting presented in Figure 6.7 shows

that it does not provide the best registration at higher overlap percentages.

This is likely due to the aggressive culling threshold reducing the overlap

between the two point-clouds; if different normals are culled from the two

point-clouds (when there is high overlap), the overlap will decrease. The op-

posite effect occurs when the initial overlap is lower, as the normals in the

non-overlapping regions are more likely to be culled, increasing the overlap

between the remaining normals. Any decrease in the overlap between normals

also decreases the ability of the spherical-harmonic correlation to identify the

correct rotation. This is because the superfluous normals negatively influence

the correlation, obscuring the preferred rotation. Lowering the culling thresh-

old will improve the registration of point-cloud pairs with high overlap, but

will in turn decrease the registration accuracy at lower overlaps.
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Table 6.2: The percentage of correctly aligned point-cloud pairs for each of the
three tested models at different weighting cull-points.

Threshold
Mean Angle Plane Distance

Buddha Bunny Dragon Buddha Bunny Dragon

0 26 30 40 26 30 40

0.8 26 30 40 27 30 41

0.9 28 30 42 30 32 44

0.95 31 33 47 32 35 52

0.975 33 37 57 31 43 64

0.9875 27 37 35 28 60 66

6.4.2 Thresholding Bins and Weights

Using a percentage threshold to restrict which equiangle bins are kept allows

the bin reweighting to be invariant to the number of normals; though as men-

tioned earlier, the distribution of normals affects which threshold provides the

best benefit to registration. This is because the distribution of normals is based

on the shape of the scene, changing the number of normals that each bin col-

lects. The effect is that the optimal threshold differs between a scene with

high surface curvature and one with low surface curvature. These changes in

surface curvature also impact the weighting of normals and the optimal culling

threshold applied to them. The results presented in Figure 6.3 do not make

this readily apparent as all point-cloud pairs are grouped together. Table 6.2

shows the percentage of correctly aligned point-cloud pairs for each model

at different culling thresholds. As a whole, the performance across the three

models follows a similar trend, except for the Buddha statue when using the

plane-distance weighting, which has a drop in performance when the thresh-

old increases from 0.975 to 0.9875. This drop is due to the Buddha statue

having a higher level of surface curvature. While the point-clouds taken from

the same model have a similar surface curvature, it must be noted that the

optimal threshold will differ for each point-cloud pair.

A relationship between bandwidth and the best performing equiangle per-

centage threshold was revealed in Figure 6.4. To confirm that a linear trend

is maintained between bandwidth and threshold, additional bandwidth values

need to be examined. It is for this reason that the 1.5×10−6 percentage thresh-

old may not be optimal, as it was determined by extrapolating this trend from

a bandwidth of 64 to 128. Once again, the optimal value for this threshold

will fluctuate with the aforementioned factors that affect the acquired data.
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If a robust trend can be determined, the registration ability may be further

improved over the current 85% by increasing the transform bandwidth to 512

and the correlation bandwidth to 256.

Even though surface curvature affects which threshold is optimal for culling

normals, noisy normals will be still be removed, improving registration accu-

racy (if the remaining normals match). However, if the applied threshold culls

all normals, then the correlation cannot identify the correct rotation. The ex-

ception to this occurs when the two point-clouds are already aligned, allowing

the correct alignment to be inherently found; this is due to the first element

in the correlation matrix being selected, which corresponds to the smallest

available rotation. This issue with culling normals is especially true when us-

ing the reverse mean-angle weighting, as only the normals on high curvature

surfaces are kept, and these surfaces are typically less common than low curva-

ture surfaces. Additionally, noise and low sample density make these normals

unreliable, as their calculated direction will not maintain consistency between

poses.

The plane-distance culling threshold and the equiangle percentage thresh-

old identified as providing the optimal registration accuracy both run the vul-

nerability of being biased towards the ground-truth data due to over-fitting.

The risk of using over-fitted thresholds is that they may not accommodate

data that has been affected by a range of factors. These factors include the

shape of the scenes, the overall distribution of normals, the manner in which

the imaging system samples the scene along with any inherent limitations of

the hardware, and any noise that is introduced to the data. Therefore, the

optimal threshold combination will vary with the point-cloud pair being reg-

istered. Alternatively, many of these factors can be mitigated by reducing the

two thresholds; less aggressive thresholds are more lenient to changes in the

data. The related disadvantage of using lenient thresholds is that for certain

point-cloud pairs the correct rotation will not be identified, where as it would

be if the thresholds are stricter. Appropriate thresholds need to be determined

with respect to the point-cloud pairs being registered.

6.4.3 Noise

The two sources of artificial noise differ from noise that occurs in a real imaging

system, especially given that they were independently added, and together will

have compounded the overall noise level. Simulating all the different sources

of noise that corrupts the data is a difficult task, as noise can occur at all
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stages of image acquisition. Therefore, the noise applied to the ground-truth

data is purely to give an indication of the algorithm’s robustness. The only

viable means of truly evaluating how well the complex values and spherical-

harmonic correlation handles data acquired from a particular imaging system

is to use ground-truth data acquired by that imaging system. This is because

the sampling distribution and noise sources are unique to each imaging system.

If the ground-truth rotation between the two point-clouds is unknown, a visual

evaluation will be needed. Chapter 9 tests the coarse registration pipeline with

real data.

An additional approach for culling normals that was not implemented here

is to simply set all bins that are within a predefined angle of the equator to

zero. This is suitable for range imaging systems that are only able to image

a scene from a single pose at any given time. Therefore, the normals that

are near perpendicular to the optical axis are collected from surfaces that are

nearly parallel to the optical axis. The angle of these surfaces with respect to

the imaging system diminishes their ability to provide reliable sample points.

The carry on effect is that the quality of the normals calculated for these points

will be low. It was unnecessary to implement this for the used ground-truth

data, as each segment was extracted from a fixed model.

6.5 Summary

Applying a weighting scheme to modify either the normals or the binning has

an effect on the registration ability of spherical-harmonic correlation, as it

changes the representation of the two point-clouds being registered. A variety

of weighting schemes were proposed and tested to determine which are ben-

eficial for maximising registration accuracy. The two primary schemes were

weighting normals using their local surface curvature and reweighting bins.

The surface curvature was determined using two measures: mean-angle and

plane-distance, both of which improved registration accuracy when an appro-

priate threshold was applied. Once the optimal threshold for each measure

was identified, the results showed that the plane-distance weighting was able

to correctly align 10% more of the point-cloud pairs than mean-angle, for a to-

tal of 50%. The reweighting of bins was performed using two binning schemes:

equiangle and Fibonacci. At a bandwidth of 32 or lower, reweighting bins

that exceeded the threshold to a value of one (with the rest being weighted

to zero) achieved the best results, while a bandwidth of 64 or greater revealed
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that reweighting the kept bins to the size of their surface was more suitable.

Fibonacci binning overcomes the limitation of equiangle binning needing the

percentage threshold to change with bandwidth. Using the optimal threshold

for both equiangle and Fibonacci found that reweighting the equiangle bins

had a slight advantage over Fibonacci binning as it correctly aligned approxi-

mately 2% more of the point-cloud pairs. Comparing the weighting of normals

scheme with the reweighting of bins scheme shows that weighting normals with

the plane-distance measure of surface curvature had better accuracy.

The most valuable contribution that this chapter makes is that it introduces

the concept of combining the two aforementioned weighting schemes into com-

plex values. The advantage of complex values is that they cohesively encode

two sets of information into an orthogonal system, which are then transformed

into the frequency domain. The spherical-harmonic correlation then uses the

information from both weighting schemes. The result of using complex values

was a significant improvement in registration ability, with 85% of the point-

cloud pairs being coarsely brought into correct rotational alignment. This

increases the percentage of correctly aligned point-cloud pairs by 35% over

the plane-distance weighting scheme, which aligned 50% of the point-cloud

pairs, making it the next best weighting scheme. The added benefit was that

the complex values weighting scheme was capable of aligning point-cloud pairs

with overlap as low as 5%. Adding noise to the data did have a detrimental

impact on the registration accuracy of complex values, but this is primarily

due to the chosen thresholds being too restrictive with respect to noise.





Chapter 7

Translational Alignment

The found rotational alignment is only half of the coarse registration as the

translational alignment also needs to be determined. The translational reg-

istration is carried out in a manner similar to rotational registration, with

the points being histogrammed and transformed into the frequency domain

instead of the normals. Operating in the frequency domain allows the trans-

lation correlation to be performed with relative efficiency, as it simultaneously

determines the correlation value for all translational shifts that the histogram

permits. Identifying the translation by way of phase correlation is an estab-

lished technique, particularly for 2-D registration (Reddy and Chatterji, 1996).

Its use for determining the translation alignment for 3-D point-clouds also ap-

pears in literature (Makadia et al., 2006; Bülow and Birk, 2013), but is less

common. Makadia et al. only described the fundamental mathematics behind

how the translation correlation was performed, but did not investigate the

algorithmic robustness in any form.

The analysis undertaken in this chapter attempts to identify the accuracy

with which the translation correlation is able to bring point-clouds into coarse

translational alignment, with respect to a variety of factors. These factors in-

clude the initial rotational misalignment of the two point-clouds, the number

of voxels used in the histogramming process and the amount of noise contam-

inating the points.

7.1 Parameters

The translational alignment process is described with detail in Section 3.3.

The parameters outlined here are provided as a means of measuring the error

remaining after translational alignment, allowing its accuracy to be gauged.

115
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7.1.1 Voxel Size

The side length, `, specifies the size of the cube that encompasses all points

of both point-clouds. The cube is then divided up into a number of voxels, v,

in each of the x, y and z directions, for a total of v3 voxels. Because the vox-

elisation process histograms the points, discretisation occurs, thus translation

registration by straightforward discrete correlation of this histogram is only

capable of coarse alignment. It is a coarse alignment because the translational

shift in each direction occur in steps of `/v, the size of each voxel. While sub-

voxel registration is possible (Balci and Foroosh, 2006; Tzimiropoulos et al.,

2011), it is not investigated here as the goal is coarse registration. The voxel

size also determines the alignment precision, as a margin of error can occur

due to equivalent points from both point-clouds being collected by the same

bins in both cubes. The maximum distance that these points can be from each

other while remaining in the same equivalent bins is√
3

(
`

v

)2

, (7.1)

which is the diagonal distance through the voxel.

7.1.2 Translation Error

Measuring the exact error in translation after translational alignment of two

point-clouds can only occur when the ground-truth translation is known. The

true translational shift between the two point-clouds is determined by placing

the centroid of the first point-cloud at the origin of the coordinate system and

taking the vector to the centroid of the second point-cloud. In preparation for

performing the translation correlation, the second point-cloud is shifted so that

its centroid is also placed at the origin. The best translational shift given by the

maximum impulse response in the correlation matrix will be close to the true

translation, but as this is a coarse alignment, some translational misalignment

will occur. This is because the translation error is caused by a combination

of rotational misalignment, noise, and the discrete steps of the translational

shift. The translation error is the distance between the found location and

the true location of the second point-cloud’s centroid. Figure 7.1 provides an

illustration of how the translational misalignment is measured, with f and t

being the found translation vector and the true translation vector, respectively.
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f

t

e

Figure 7.1: The centroid of both point-clouds (the body and head) are initially
positioned at the origin of the coordinate system, the second point-cloud (head)
is shifted using the found translation, f . Because the ground-truth is known,
the true translation, t, is also known, allowing the translation error to be
calculated as the vector e, the difference between f and t.

The translational misalignment is calculated as

e = f − t, (7.2)

with the translation error defined as

ε = ||e|| . (7.3)

The translation error provides a useful means of measuring the accuracy of

the correlation when bringing two point-clouds into translational alignment.

However, it is not invariant to point-cloud size; the larger the point-cloud,

the larger the resultant translational error will be as voxel size also increases.

Therefore, the translation error needs to be normalised to enable comparison

between various objects. Attempting to normalise by the maximum transla-

tion error that the correlation generates is one possible approach, however, it
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does not provide useful information with respect to the point-cloud pair being

registered. Because of this, the translation error found for a given point-cloud

pair is normalised by the mean distance between neighbouring points of the

unsegmented model from which the point-cloud segments were extracted. The

normalised translation error is then a value related to the mean separation be-

tween the points; for example, if the normalised translation error has a value of

three, then the optimal translational alignment is off by three times the mean

separation.

7.2 Methodology

Following on from the previous two chapters, the translation registration is

once again examined using the Dragon, Buddha statue and Bunny datasets

(see Section 4.1) allowing consistency to be maintained as well as providing

the ground-truth rotation and translation. The process followed for testing

how well translation correlation performs for bringing point-cloud pairs into

translational alignment is achieved by first shifting both point-clouds so that

their centroids are at the origin of the coordinate system. Because no rotational

misalignment currently exists between the two point-clouds, their rotational

alignment does not affect translational alignment. However, as the rotation

correlation is only a coarse registration algorithm, rotational misalignment

does occur.

Varying angles of rotational misalignment are tested on each point-cloud

pair by rotating the second point-cloud by the prescribed angle around a ran-

domly placed rotation axis. The tested angles of rotational misalignment are

0◦, 1◦, 2◦, 5◦, 10◦ and 15◦. A random rotation axis is formed for the second

point-cloud by selecting a random point on a unit sphere, with this point being

given (in spherical coordinates) as

[
2πu1, cos−1(2u2 − 1)

]
, (7.4)

where u1, u2 ∈ [0, 1) are uniform deviates. As there are three models, each with

120 segments, 21 780 tests are generated for each rotation misalignment. While

an alternative random axis will give a different result, the large number of

tests sufficiently evaluates the ability of the translation correlation for handling

varying levels of rotational misalignment.

The points can be located anywhere in the coordinate system, the his-

togramming process provides estimate values of the points at the sample loca-
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tions needed for the discrete Fourier transform to the frequency domain. The

total number of bins contained by the histogram is determined by the number

of voxels v along each side of the histogram cube. The greater the value of

v, the lower the quantisation error, thus the translational alignment is deter-

mined with greater accuracy. The two downsides of increasing v is that there

are fewer points per histogram bin, thus the sample point at a bin has a poorer

measurement of the surface, and secondly, the computational cost is increased.

A suitable value for v is one low enough to minimise the computational cost

while also providing adequate registration accuracy for fine registration. The

four values of v tested are 16, 32, 64 and 128.

The point-cloud pairs that are registered together are extracted from the

same base model, therefore, the overlapping sections of the two point-clouds

contain the exact same points. This situation does not occur when imaging a

real scene as the sampling distribution changes with the pose of the imaging

system, and in addition, varying levels of noise are inherently introduced into

the acquisition based on the ability of the imaging system. These two aspects

are mimicked by introducing artificial noise to the points. The level of random

Gaussian noise to be added to each dimension of all points is specified by a

standard deviation value. This value is the mean separation between neigh-

bouring points of the unsegmented model from which the two point-clouds

have been extracted. Increasing this standard deviation value increases the

level of noise contamination.

The normalised translation error only provides a measure of translational

misalignment with respect to the mean distance between points for a given

model. Any threshold value can classify a translation as correct if the nor-

malised translation error is less than or equal to the threshold; the larger the

threshold, the larger the allowable translation error. Here a translation is clas-

sified as correct if its normalised translation error is 15 mean distances or less.

A threshold of 15 is chosen as a fine registration algorithm, such as ICP, will

be capable of handling this amount of translational misalignment.

The ability of the translation correlation to handle noise is tested by adding

Gaussian noise independently to each of the three dimensions of every point.

The level of Gaussian noise is specified by a standard deviation value and

a noise multiplier. In order to relate the noise to each model, the standard

deviation value is the mean distance between points for the given model. The

noise multiplier is simply a value that is multiplied with the standard deviation

value to increase the noise level; three noise multipliers are used, 1, 3 and 5.
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Table 7.1: The approximate percentage of point-cloud pairs that are correctly
aligned within a normalised translation error of 15 for a specified voxel count.

Rotational Voxel Count

Misalignment 16 32 64 128

0◦ 79% 98% 100% 100%

1◦ 79% 97% 100% 100%

2◦ 79% 97% 99% 99%

5◦ 75% 92% 95% 96%

10◦ 57% 72% 79% 81%

15◦ 36% 48% 56% 59%

7.3 Results

The following results quantify the ability of the translation correlation to cor-

rectly align point-clouds. This is examined with respect to varying levels of

rotational misalignment, and with noise added to the points.

7.3.1 Accuracy

The accuracy of the translation correlation is primarily determined by the

voxel count prescribed to the histogramming process. Figure 7.2 shows that

the greater the voxel count, the greater the translation accuracy. Table 7.1

shows the percentage of point-cloud pairs that are classified as correct when

examining these results with respect to the classification threshold of 15. There

is very little difference in performance when the angle of rotational misalign-

ment is 0◦, 1◦ and 2◦. As the rotational misalignment increases from 5◦ up to

15◦, there is a decrease in the percentage of point-cloud pairs that are classified

as correct. This decrease is less apparent for a voxel count of 16, which is due

to larger voxels having a greater resiliency to increased rotational misalign-

ments, as each voxel still captures the same points as when there is a smaller

rotational misalignment.

The classification percentage for a given normalised translation error pre-

sented in Figure 7.2 is the mean of the three tested models. Figure 7.3 shows

that the results for each model have minor fluctuations with respect to the

mean, with these fluctuations occurring due to a variety of factors, the primary

of which is point density with respect to model size. This is because transla-

tion error is normalised based on point density, while voxel size is determined
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by model size. The result is that a model with greater density with respect to

its overall size will increase the normalised translation error compared to one

with lower density when using the same voxel count. These fluctuations are

also compounded by any factor that influences the translational accuracy. It is

these factors that cause the Buddha point-clouds to achieve lower translation

errors than the bunny when no rotational misalignment is present, and the

reverse when the rotational misalignment is 5◦. On the whole, the results from

each model follow the same relative trend when using the same voxel count

and rotational misalignment.

The overlap between two point-clouds influences whether the translation

correlation will determine the correct translational alignment. Figure 7.4 shows

the percentage of correctly classified point-cloud pairs for a given overlap; most

point-cloud pairs are correctly aligned when overlap is greater than 12.5% when

rotational misalignment is 2◦ or less. As the rotational misalignment between

the two point-clouds increases to 5◦, overlap needs to be approximately 32.5%

before all point-cloud pairs are correctly aligned. The results show that no

matter the overlap, higher rotational misalignments do not correctly align all

point-cloud pairs. Given this shortcoming, approximately 85% of point-cloud

pairs still achieve correct alignment at a rotational misalignment of 10◦, when

the overlap is greater than 32.5%. However, at 15◦, the maximum percentage

of correctly aligned point-cloud pairs is approximately 65%, which requires the

overlap to be greater than 50%.

7.3.2 Efficiency

The computational cost of performing the translation correlation is determined

by two primary factors: the number of points in both point-clouds and the

number of voxels used for histogramming. The cost of binning the n points

is O
(
n
)

as the bin that collects a point is determined directly. The two con-

structed histograms each have a size of v3, meaning that converting both of

them into the Fourier domain by the most efficient fast Fourier transform has

a cost of O
(
v3 log v

)
. Multiplying the two histograms together in the Fourier

domain to form the phase correlation matrix has a cost of O
(
v3
)
. Inverting

the phase correlation matrix into the impulse domain has the same cost as the

conversion to the Fourier domain. Once in the impulse domain, finding the

maximum impulse has a cost of O
(
v3
)

as each element is searched. Identify-

ing the location of the maximum impulse and converting it into a translation

completes the translation correlation.
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Figure 7.3: The percentage of correctly aligned point-cloud pairs as the nor-
malised translation error threshold is increased. The results are shown for each
of the three models and their overall mean for two rotational misalignments.
A voxel count of 64 was used.
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Figure 7.4: The percentage of point-cloud pairs correctly aligned by the trans-
lation registration at six different angles of rotational misalignment with re-
spect to overlap. Each dimension was broken into 64 voxels, with the trans-
lation being deemed correct when the normalised translation error was 15 or
less.
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7.3.3 Noise

The accuracy of the translation correlation for bringing a point-cloud pair into

correct alignment has been shown to be dependent upon the number of vox-

els used. Using 64 voxels in each direction to form the histogram for binning

points allows the correlation to achieve an adequate level of accuracy while

restricting the computational cost. Figure 7.5 compares how different noise

multipliers and angles of rotational misalignment affect the percentage of cor-

rectly aligned point-cloud pairs. When the noise multiplier has a value of 1,

there is a minuscule drop off in performance with respect to no noise being

present, though this drop off is more prominent as the rotational misalignment

increases. When the noise multiplier is 3, one standard deviation of Gaussian

noise is three times the mean distance between points. This results in an ap-

proximate 10% drop in correctly aligned point-cloud pairs when the rotational

misalignment is minimal, but this drop increases to 20% with 5◦ of rotational

misalignment.

Because a voxel margin-of-error, for a voxel count of 64, is approximately

four mean distances in length, this level of noise can shift points up to three

voxels away from the one in which they would initially reside. Further in-

creasing the noise level again using a multiplier of 5 limits the ability of the

translation correlation to achieve alignment within an acceptable accuracy

threshold. Rotational misalignment on the whole still has the biggest impact

on translational accuracy, though noise does become more of an issue as it

increases, as shown when the noise multiplier is 5. Overall, these results show

that if noise is contained within a voxel or its immediate neighbours, noise has

minimal impact on the accuracy of the translation correlation in bringing two

point-clouds into an acceptable translational alignment.

7.4 Discussion

The translation correlation is a coarse registration algorithm, therefore, the

translational shift occurs in discrete steps as established in Section 7.1.1, with

these steps being determined by voxel size. Because ground-truth is known,

the exact translation error can be measured. For a point-cloud pair where the

ground-truth is not known, and the optimal discrete translational from the

correlation is found, the translation error can still be up to the margin-of-error

of the voxel. The normalised size of this margin of error across all point-

cloud pairs for all three models is 3.7, with a standard deviation of 0.8. This
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means that for a voxel count of 64, even if the optimal discrete translation is

found, the translational alignment can still be off by up to four times the mean

distance between points. While this ambiguity exists and is expected due to

the translation correlation being a coarse algorithm, it is minimal and within

the misalignment that a fine registration algorithm is capable of handling.

Translation correlation has been shown to bring the majority of point-

cloud pairs into correct translational alignment, even when they have minimal

overlap. This is because each point-cloud only represents surfaces within the

scene, meaning no points occur behind others when viewed from the pose of the

imaging system. The result is that many of the histogram bins or voxels remain

empty, causing voxels that contain points to be brought together. Because the

translation correlation simply attempts to find the translation which best fits

the two point-clouds together, its ability is dependent upon the preceding

rotation correlation. The closer the two point-clouds are to being rotationally

aligned, the greater the likelihood that the translation correlation identifies

the appropriate translation. This improved performance is due to more voxels

from the first histogram being able to match their counterparts in the second

histogram when the correct translation is applied, making the corresponding

correlation value more distinct.

The voxel count used for performing the translation correlation affects both

its capability to handle noise and the achieved translation accuracy. Because

the size of a point-cloud does not vary, the area encompassed by each indi-

vidual voxel increases as voxel count decreases. The larger a voxels size, the

better its ability to contain points that have been contaminated by noise or

have rotational misalignment. The resulting histogram is then a closer match

to what it would be if points had no contamination. This allows the transla-

tion correlation to be more resilient to noise, permitting a translation to be

identified as if there was minimal noise present. While using a larger voxel

size reduces the influence of noise, the achievable translation accuracy is also

reduced due to the increased discretisation error. This is because the size of

the translation step in each direction is determined by the length of a voxel’s

edge, and it is for this reason that accuracy improves as voxel count increases.

The best voxel count is dependent upon the quality of the point-clouds being

registered, the ability of the subsequent fine registration algorithm and any

constraints related to computational cost. Currently, the appropriate voxel

count is identified via testing; a dynamic solution based on the structure of a

point-cloud may be feasible, though not investigated here.
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The benefit that translation correlation provides for the entire registration

pipeline is dependent upon the fine registration algorithm. This is because

the used fine registration algorithm may be capable of achieving the correct

alignment without needing the translation correlation stage. In the case of

ICP, translation correlation will still reduce the total number of iterations

that ICP performs, improving computational efficiency. The applicability of

translation correlation in the overall registration pipeline is outside the scope

of this investigation, as its incorporation should be determined based on the

capability of the fine registration algorithm.

The amount of noise that contaminates each point is based on the imaging

systems accuracy when sampling a scene. The artificial noise used here for

examining the robustness of the translation correlation is Gaussian noise that

has been applied to the points in all three directions. This noise is not meant

to be representative of any particular imaging system, as the noise introduced

by each system will differ due to their own inherent limitations. Instead, it is

provided as a means of measuring how well the translation correlation handles

points that have been randomly shifted at increasing levels from their original

position. It is for this reason that the noise level was generated using multiples

of the mean distance between points, as it allows points to be contaminated

with noise that is related to the point-clouds themselves. The level of noise

that would occur in practice should be low enough that a point has a high

probability of still being captured by the same voxel as it would have if no

noise was present. The robustness of the translation correlation means that

even if noise shifts a point to an adjacent voxel, there is minimal effect on

registration accuracy.

7.5 Summary

The analysis of the translation correlation found it to be a highly effective

algorithm for performing translation registration. The correlation is able to

bring the majority of point-cloud pairs into translational alignment with a high

level of accuracy, though the accuracy level is dependent upon the number of

used voxels. When the point-cloud is broken into 64 voxels in each direction

and no rotational misalignment or noise is present, all point-cloud pairs achieve

registration accuracy within the 15 mean distance threshold. The ability of the

correlation is affected by the rotational misalignment between the point-clouds,

with it decreasing as rotational misalignment increases. The introduction of
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noise that contaminates the points was shown to have little influence on the

accuracy as long as the points are collected by the same voxel or those adjacent

to it. Point-clouds with greater noise levels run the risk of having a much

lower level of translation accuracy. However, the translation correlation can be

optimised to mitigate both the rotational misalignment and any present noise

by varying the voxel count. A lower voxel count will decrease the achievable

accuracy, but as this is a coarse registration algorithm, the amount of accuracy

required is dependent upon the subsequent fine registration algorithm.



Chapter 8

Verification of Correct

Alignment

Once the rotational and translational registrations between point-clouds have

been performed, it is unknown whether the found alignment is correct. Au-

tomatically verifying correct alignment can be accomplished by determining

that the point-cloud alignment conforms to a predetermined criterion; this

allows an alternative alignment to be sought when the transform is deemed

misaligned. The nature of each criterion is dependent upon the verification

strategy formed for each alignment or point-cloud aspect. Verification strate-

gies such as surface orientation (Makadia et al., 2006), visibility (Huber and

Hebert, 2003; King et al., 2005; Makadia et al., 2006) and transitivity (Pooja

and Govindu, 2010) have been used previously in literature to automatically

verify correct alignment.

This chapter introduces a new verification strategy based on the size of the

maximum impulse response from the translation correlation and expands on

the idea of transitivity (see Section 2.5). Surface orientation consistency along

with these two new strategies are examined to ascertain their capability to

correctly classify a found alignment. If their performance is satisfactory, then

they will provide a benefit to the coarse registration pipeline as they will limit

the amount of manual verification and intervention required.

8.1 Alignment Verification Approaches

This section describes the three investigated verification approaches. The first

uses the size of the impulse response from the translation correlation; the

impulse response from the rotation correlation is not applicable as it is not

129
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normalised. The other two approaches, surface orientation and transform tran-

sitivity, are more generic as they evaluate the consistency between surfaces and

the difference between the transforms themselves, respectively.

8.1.1 Translation Correlation Value

Performing the translation correlation produces a three-dimensional correla-

tion matrix whose elements are normalised between one and negative one; a

value of one occurs when both histograms are identical. The element with

the maximum impulse response is selected as the translation, with the value

of this response, termed the translation correlation value (TCV), providing

a measure of the overall alignment quality. This is due to the TCV increas-

ing as aspects such as point-cloud overlap, rotational misalignment and noise

improve. Therefore, applying an appropriate threshold to the TCV is one ap-

proach for classifying an alignment. Because the aforementioned aspects affect

the TCV in different ways, a threshold will need to be adjusted to accommo-

date all alignment situations.

8.1.2 Surface Orientation Consistency

The overlapping surfaces of two registered point-clouds will have the same

orientations if correct alignment has been achieved. Because individual sur-

faces are not inherently given by a point-cloud, their orientations are expressed

by the normals. Surface orientation consistency is evaluated by binning the

two point-clouds in a manner similar to the translation correlation, except the

point-clouds remain in their found alignment position. Binning is performed

using the points, with the normals associated to the points in a given bin being

collected together; the orientation of the surfaces within this bin is calculated

as the mean of the normals across their three dimensions.

The mean orientation is given as a new normal, therefore, each relevant

bin will contain two of these new normals, one for each point-cloud; a relevant

bin is a bin that contains at least one normal from both point-clouds. The

difference in orientation for each relevant bin is calculated as the angular dif-

ference between the two normals. The contribution that a bin makes to the

overall angular difference (based on the number of normals it collects) is also

incorporated. To provide a fair weighting for each bin, a bin’s angular differ-

ence is multiplied by the number of normals provided by the point-cloud with

the smallest presence in the bin. The overall difference in surface orientation,
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ABT CBT
ACT

C

B

A

Figure 8.1: Three poses, A, B and C, of an imaging system are related to each
other by the three transforms TAB, TBC and TAC . If the transforms found
from registration are correct, then TAC is equivalent to TAB followed by TBC ,
as they both rotate the imaging system from A to C.

ε, between the two point-clouds is then the mean of the individual angular

differences, which is a value between 0◦ and 180◦. If

ε ≤ τε, (8.1)

for some margin-of-error τε, then the point-cloud alignment is classified as

correct, otherwise it is deemed misaligned.

8.1.3 Transform Transitivity

The transforms that separate the poses of an imaging system (or the acquired

point-clouds) are deemed correct if they are consistent with each other. Con-

sistency occurs when the combination of two transforms matches a third; this

transitive relationship between transforms is illustrated in Figure 8.1. Tran-

sitivity will not occur if one or more of the transforms are incorrect, as this

makes them inconsistent. While transitive verification requires a minimum of

two transforms to be combined together and compared against a third, it can

also be performed when three or more transforms are combined together. The

verification approached described herein only examines the case of transform

triplets, in which one transform is written as the combination of the other two.
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The three transforms that comprise a triplet each contain a rotation and a

translation. Because the rotation and translation are calculated independently,

their transitivity is also calculated independently; while transitive verification

can use either the rotations or translations between poses, using both in con-

junction makes the classification more robust. Therefore, both the rotation

and translation transitivity must be consistent for the transform triplet to be

classified consistent. When transitivity is inconsistent, at least one of the three

transforms misaligns its two corresponding point-clouds. The converse is not

necessarily true, as consistent transitivity may coincidently be formed from

two or more incorrect transforms, though this possibility is minute as both the

rotation and translation transitivity tests must agree.

Rotation transitivity is determined for a triplet of point-clouds, A, B and

C, by first identifying the rotations RAB, RAC and RBC , which connects them

together, where RAB would rotate point-cloud A into rotational alignment

with point-cloud B. These three rotations are then said to be consistent if

RAC = RABRBC . (8.2)

The disadvantage of this definition is that the rotations found by spherical-

harmonic correlation come from a discrete set, resulting in quantisation error.

Therefore, even if the coarse rotational alignment is deemed correct, the above

definition will produce an inconsistent triplet if RAC and RABRBC do not

precisely agree. In this situation, there is no guarantee that inconsistency is

proof of misalignment.

To arrive at a better definition of rotation consistency, let

RS = Rᵀ
ACRABRBC , (8.3)

which is the rotational difference between Rᵀ
AC and RABRBC . This works

because Rᵀ
AC = R−1AC = RCA. The angular portion, θ, of this rotational

difference is extracted from RS by

θ = cos−1
(

Tr (RS)− 1

2

)
. (8.4)

If

θ ≤ τR (8.5)

for some small margin-of-error τR, then the triplet comprising rotations RAB,

RAC and RBC is deemed rotationally consistent. If the rotations of a triplet
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are consistent, then the allowable error τR has an inverse relationship with the

maximum rotation correlation bandwidth, that is, as the correlation bandwidth

increases, τR can be decreased, limiting false positives.

The process for translation transitivity is similar to that of rotation tran-

sitivity. If, once again, the triplet is comprised of the point-clouds, A, B and

C, the translational shifts connecting them together are given as tAB, tAC and

tBC , where tBC would be the translation which shifts point-cloud B into trans-

lational alignment with C. These three translations are said to be consistent

if

tAC = tABRBC + tBC . (8.6)

The order in which translations link the point-clouds must be taken into con-

sideration as translations cannot be simply added together. This is because a

translation between two point-clouds is performed with respect to the point-

cloud that remains stationary; joining two translations together requires that

they both be performed with respect to the same stationary point-cloud. A vi-

sual illustration of this is presented in Figure 8.2, in which translations tAC and

tBC are performed with respect to point-cloud C, whereas tAB is performed

with respect to point-cloud B. The rotation, RBC , applied to tAB ensures

that it is also performed with respect to point-cloud C. It is this rotation that

permits the two translations to be correctly added together.

Like rotation transitivity, translations found via translation correlation

come from a discrete set, and contain quantisation error, therefore, transla-

tional consistency is better defined by letting

tS = tAC − (tABRBC + tBC) (8.7)

be the translation separation between tAC and tABRBC +tBC . The separation

error is then given as

||tS|| , (8.8)

where if

||tS|| ≤ τt, (8.9)

for some margin-of-error τt, then the triplet comprising of tAB, tAC and tBC

is deemed translationally consistent.
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Figure 8.2: Visual illustration of why the translation between point-clouds
A and B needs to be rotationally aligned with respect to point-cloud C for
transform transitivity to work.
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Classifying Individual Transforms

The three transforms that comprise a triplet all receive the same classification

as the triplet. If the triplet is consistent, then it is expected that all three

transforms are correct, whereas, if the triplet is inconsistent, then up to two

of the transforms may still be correct. A total of

nT =
n(n− 1)

2
(8.10)

transforms are formed from n acquired point-clouds, with these transforms

producing
n (n− 1) (n− 2)

6
(8.11)

triplets. The classification of an individual transform is inferred from the n− 2

triplets to which it contributes. If all n− 2 triplets are classified as consistent,

then it is highly likely the transform has been correctly deduced, however, if

the triplets are all inconsistent, there is no guarantee that the transform is

incorrect as triplet inconsistency may result from other incorrect transforms.

But as the transform only contributes to inconsistent triplets, it cannot be

determined correct, thus is treated as incorrect. For all other situations a

threshold is specified with the transform being deemed correct if the number

of consistent triplets it contributes to are equal to or greater than the threshold.

Three thresholds of differing strictness are investigated herein, namely,

τa = 1, (8.12)

τb =

⌈
n− 1

2

⌉
, (8.13)

and

τc = n− 2. (8.14)

Verification Worst Case

Verification by way of transform transitivity fails when every triplet contains

one or more incorrect transforms. If a transform is incorrect, then all n− 2

triplets that it contributes to are inconsistent. The minimum number of incor-

rect transforms that render all triplets inconsistent in the worst case scenario

is

q =

⌊
(n− 1)2

4

⌋
. (8.15)
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Figure 8.3: In the case of six acquisitions, fifteen transforms are formed. The
shown combinations are three of the ten worst case scenarios that occur when
six transforms (solid lines) are incorrect. For six acquisitions, six incorrect
transforms are the minimum required to cause complete triplet verification
failure.

The total number of unique transform combinations comprising of q transforms

is given by the binomial coefficient,(
nT
q

)
. (8.16)

Fortunately, complete inconsistency only occurs for a subset of size(
2h− 1

h

)
(8.17)

of these combinations, where

h =

⌊
(n+ 1)

2

⌋
. (8.18)

Figure 8.3 provides an example of the incorrect transform combinations for

n = 6 that cause all triplets to be inconsistent, in which three of the ten possible

arrangements of six incorrect transforms are shown.

8.2 Alternative Rotation Selection

If a particular point-cloud pair has been deemed misaligned by the aforemen-

tioned verification approaches, then an alternative transform is required. Typ-

ically the translation found between two point-clouds will be incorrect when

the rotation is incorrect, therefore, an alternative rotation is needed. The

alternative rotation is selected by finding the next largest impulse response

in the rotation correlation matrix. Simply selecting the next largest impulse

response may identify a rotation that is similar to a previously tested rota-
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tion, therefore to mitigate this outcome, the newly selected rotation should be

sufficiently different.

Expressing the two rotations in matrix form allows them both to be treated

as point sets containing three points each; this is possible as they will remain

the same when multiplied with a point set that is identical to the identity

matrix. The angle of the optimal rotation that aligns one of these point sets

with the other is the measure of difference between the two rotations; this

can be achieved by using the Kabsch algorithm (Kabsch, 1976). If this found

angle is less than a given threshold, the newly selected rotation does not differ

enough from the list of previously tested rotations and is therefore discarded

and the selection process repeated. Otherwise, the rotation is added to the

tested list followed by applying it to the second point-cloud and re-performing

the translation correlation and verification. If the resulting alignment passes

verification, then the process of selecting an alternative rotation is finished,

otherwise the selection process is repeated. The selection process is stopped

and the alignment classified as misaligned if a suitable alignment cannot be

found within a predefined number of tests.

8.3 Multiple Point-Cloud Registration

If a suitable alignment between two point-clouds cannot be found, they can

still be aligned together using intermediary point-clouds. Such situations occur

when imaging around an object, as an acquisition on one side of an object will

have minimal overlap with an acquisition on the opposite side. The transforms

classified as aligned can form a network of transforms that link point-clouds to-

gether. By keeping one point-cloud fixed, all other point-clouds in the network

can be brought into alignment with it, even if they are not directly linked. This

is achieved for each point-cloud by traversing the network to find the shortest

path between it and the fixed point-cloud. Once the path for each point-cloud

is found, global alignment of all point-clouds in the network is achieved. Be-

cause alignments are coarse, linking multiple transforms together may have

the side effect of increasing alignment error between point-clouds. This is due

to the error from each transform in the path potentially compounding. A sec-

ondary issue occurs when no transforms are classified as correct for aligning a

point-cloud to the network. In this situation, the best misaligned transform

linking this point-cloud to the network could be retested with less restrictive

criteria. Alternatively manual verification or registration may be applicable.
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8.4 Methodology

The alignment verification approaches described in this chapter are tested to

determine their accuracy when classifying individual point-cloud pair align-

ments as being correct or misaligned. Each approach is independently tested

using point-cloud pairs that have been registered using an appropriate set of pa-

rameters, thus establishing their respective capability and limitations. Because

the ground-truth classification of each point-cloud pair alignment is known a

priori, the verification classification is compared against the ground-truth al-

lowing the four possible outcomes to be counted. These four outcomes are

true positive (TP), true negative (TN), false positive (FP) and false negative

(FN), with their relationship being presented in Table 8.1. The true-positive

fraction (TPF) and false-positive fraction (FPF) are then calculated as

TPF = TP / (TP + FN), (8.19)

and

FPF = FP / (FP + TN), (8.20)

respectively.

Each verification approach is analysed by way of receiver operating char-

acteristic (ROC) curves. ROC curves illustrate how the binary classification

varies with respect to a particular threshold. Varying the threshold between its

lower and upper bounds reveals how the classification responds. The threshold

deemed optimal is the one that maximises

TPF + 1− FPF

2
, (8.21)

which is the mean of the true positive and true negative fractions. This mea-

sure is chosen as it equally weights the two fractions, making no assumptions

whether one should have more influence.

Applying a threshold to the TCV classifies a point-cloud pair alignment as

correct if the TCV is equal to or greater than the threshold, otherwise it is

classified as misaligned. Because the TCV varies with the structure of the two

point-clouds and how well they match, the optimal threshold will fluctuate

between point-cloud pair alignments. However, as there is currently no means

of automatically adjusting the threshold, a fixed threshold will be used to test

the classification performance across all point-cloud pairs. The TCV verifica-

tion approach is examined using a selection of the datasets previously used to
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Table 8.1: The four possible outcomes when verification classification is com-
pared with the ground-truth classification.

Verification
Classification

Ground-Truth Classification

Aligned Misaligned

Aligned True Positive False Positive

Misaligned False Negative True Negative

test the translation correlation; Section 7.2 provides the details about the for-

mation of these datasets. The tested angles of rotational misalignment are 0◦,

2◦, 5◦, 10◦ and 15◦; a rotational misalignment of 1◦ is not included as it does

not sufficiently differ from 0◦ and 2◦. Voxelisation is performed by segment-

ing the point-cloud pair into 64 voxels along each side of the histogram cube,

allowing an adequate level of accuracy for fine registration while constraining

the computational cost. A point-cloud pair is deemed correctly aligned if the

resulting translation error is within 15 mean distances (see Section 7.2). A

single mean distance is the mean distance between neighbouring points of the

model from which the point-clouds are extracted. The impact of noise on the

TCV is also examined by using translation correlation datasets with Gaussian

noise with a standard deviation of three mean distances added; this is also

tested at the five angles of rotational misalignment.

Surface orientation consistency is examined in a similar manner to the

translation correlation value, by using the same datasets. The five tested angles

of rotational misalignment are used to simulate the effect that discretisation

error has on the rotation correlation. Artificial Gaussian noise is not tested due

to the difficulty of adding it in a manner that relates it to both the points and

the normals, as they are inherently connected. A threshold is applied to the

found difference in surface orientation, where if it is equal to or less than the

threshold, the point-cloud pair alignment is classified as correct, otherwise it

is classified as misaligned. The voxelisation of each aligned point-cloud pair is

performed using 64 voxels along each side of the histogram cube. The ground-

truth alignment remains the same as the TCV: a point-cloud pair alignment

is deemed correct if its translation error is within 15 mean distances.

The testing of the transform transitivity verification only examines the

number of consistent triplets that are formed from the transforms that link

all point-clouds in a set together. Due to only the transforms being relevant,
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testing with multiple datasets and parameters is unnecessary as the only factor

that changes is the percentage of correctly aligned point-cloud pairs drawn

from the overall set. The four tested datasets, each contain 120 point-clouds,

were constructed by registering the dragon dataset using different parameters.

The overall percentage of correctly aligned point-cloud pairs for these four

datasets are 23%, 37%, 60% and 79%. The transform linking a point-cloud

pair together is deemed correct if its rotational error is equal to or less than

5◦, and its translation error is within 15 mean distances when the point-clouds

are voxelised with 64 voxels along each side of the histogramming cube.

The accuracy of the transform transitivity is further tested by varying the

number of available point-clouds, for which three counts of point-clouds are

used: 6, 12 and 20. To provide a sufficient assessment, the 12 combinations of

point-cloud count and percentage of aligned point-cloud pairs are each evalu-

ated 10 000 times. It must be noted that the percentage of correct point-cloud

pairs is dependent upon the randomly selected point-clouds from each dataset,

therefore, the mean and standard deviation of correct alignment percentages

are taken across the 10 000 evaluations and are presented in the results section

for each combination. An individual evaluation is constructed by randomly se-

lecting the predefined number of point-clouds from the set of 120 point-clouds,

and then performing the transitivity verification. The counts of true positive,

true negative, false positive and false negative results for each evaluation are

individually summed together for each threshold. The threshold determines

the minimum number of consistent triplets that a transform needs to belong

for it to be classified as correct. The TPR and FPR for each threshold of the

12 combinations are calculated to form ROC curves.

The benefit that alternative rotation selection provides to the registration

pipeline is examined by counting the number of additional point-cloud pairs

that it brings into correct alignment. An alignment is correct if both its rota-

tion and translation error are within 5◦ and 15 mean distances, respectively.

The rotation correlation is performed using all normals from each point-cloud,

with each bin being normalised by its size. The initial rotation aligns approx-

imately 31% of the point-cloud pairs, providing alternative rotation selection

the opportunity to correctly align the remaining 69%. If correct alignment is

found by the tenth rotation check, excluding the initial rotation, then alterna-

tive rotation selection aids the registration pipeline. A rotation is discarded

and not included as a rotation check if it is within 5◦ of a previously tested

rotation.
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8.5 Results

The three verification approaches are evaluated by measuring their accuracy

when classifying alignments. The verification approaches are the translation

correlation value, surface orientation consistency and transform transitivity.

The benefit provided by alternative rotation is also examined.

8.5.1 Translation Correlation Value

Thresholding the TCV is suitable for classifying alignments, especially if noise

and rotational misalignment are minimised. The ROC curve presented in Fig-

ure 8.4 shows the TCV verification performance when point-clouds are uncon-

taminated by noise. When no rotational misalignment is present, the optimal

threshold correctly classifies the alignment 96% of the time. As the rotational

misalignment increases, the performance decreases as the separation between

the aligned and misaligned TCVs becomes less pronounced. This is shown

by the classification dropping to 90% and then 74% when the rotational mis-

alignment is 5◦ and 10◦, respectively. A rotational misalignment of 15◦ would

be misaligned, but as the ground-truth classification is based on translational

error only, correct alignments can still be achieved. At this error, a point-cloud

pair alignment is correctly classified 66% of the time when using the optimal

threshold. The optimal threshold value does differ with rotational misalign-

ment, though the difference is minimal; when the rotational misalignment is

0◦ the threshold is 0.059, which lowers to 0.032 as the rotational misalignment

increases to 15◦. This lowering of threshold value is related to the overall

decrease in alignment quality as rotational misalignment increases.

Contaminating the points with Gaussian noise (σ = 3 mean distances),

as shown in Figure 8.5, reduces the TCV separation between aligned and

misaligned point-cloud pairs, diminishing the achieved correct classification of

the TCV threshold. The TCV threshold correctly classifies 88% of the point-

cloud pairs when the noise is combined with 0◦ of rotational misalignment.

The percentage of correct classifications, when the rotational misalignment is

increased to 5◦, 10◦ and 15◦, is 83%, 74% and 69%, respectively. The added

noise combined with a rotational misalignment of 0◦ has an optimal threshold

value of 0.025, this threshold also lowers as rotational misalignment increases,

which at 15◦ is 0.022. Once again, this difference in threshold value is minimal,

thus allowing a single fixed value to adequately classify point-cloud pairs with

any amount of rotational misalignment.
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Figure 8.4: ROC curve showing how well different TCV thresholds work for
classifying point-cloud pairs at varying rotational misalignments.
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Figure 8.5: ROC curve showing how well different TCV thresholds work for
classifying point-cloud pairs at varying rotational misalignments when Gaus-
sian noise has been introduced to the points.



8.5 Results 143

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive Fraction

T
ru

e
 P

o
s
it
iv

e
 F

ra
c
ti
o

n

 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive Fraction

T
ru

e
 P

o
s
it
iv

e
 F

ra
c
ti
o

n

0
o

2
o

5
o

10
o

15
o

Figure 8.6: ROC curve showing the performance of surface orientation consis-
tency at varying rotational misalignments.

8.5.2 Surface Orientation Consistency

The level of classification accuracy that surface orientation consistency pro-

vides is dependent upon the amount of rotational misalignment between two

point-clouds. Figure 8.6 shows that when there is no rotational misalignment,

a point-cloud pair has a 97% chance of being correctly classified when applying

the optimal threshold. The classification accuracy at a rotational misalignment

of 2◦ drops slightly to 95%, with the ROC curve following a similar trend as

that of 0◦. Increasing the rotational misalignment further causes the classifi-

cation trend to change, with 5◦ reaching a true positive fraction of one sooner

than 0◦ or 2◦. The classification accuracy of 5◦ does decrease though, with 90%

of the point-cloud pairs being correctly classified; at 10◦, the accuracy reaches

76%. While the classification accuracy can perform well, surface orientation

consistency is prone to false positive classifications as rotational misalignment

increases. The discussion below outlines why false positives are detrimental to

multiple point-cloud registration, and describes aspects of the surface orienta-

tion consistency that should be taken into consideration.
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8.5.3 Transform Transitivity

Transform transitivity differs from the other verification approaches as it needs

a minimum of three point-clouds for classification. The greater the point-

cloud count, the more triplets formed for testing transitivity, thus benefiting

verification as there is more cross-checking. This benefit does diminish as

the number of point-clouds increases as the greater level of cross-checking

becomes redundant. Figure 8.7 shows the performance of three point-cloud

counts, 6, 12 and 20, used for triplet verification; there is a greater classification

improvement between a point-cloud count of 6 and 12, but this improvement

is minimal between 12 and 20.

The aspect with the greatest influence on performance is the percentage of

correctly aligned point-cloud pairs used to perform the transitivity. When the

percentage is lower, a triplet has a greater chance of containing an incorrect

transform, which makes it inconsistent; the higher the percentage, the better

the classification accuracy. The percentage of correct point-cloud pair align-

ments for each of the four tested datasets are presented in Figure 8.7, which

are determined as the mean of correctly aligned point-cloud pairs from each

of the 10 000 evaluations. The associated standard deviation primarily relates

to the point-cloud count instead of the dataset, and is approximately 13%, 7%

and 4% for the point-cloud counts of 6, 12 and 20, respectively.

Classifying the transform between a point-cloud pair using transform tran-

sitivity requires a specified threshold, where if the number of consistent triplets

that the transform contributes to is equal to or greater than this threshold,

then it is classified as correct. The ROC curves presented in Figure 8.7 are

formed using every available threshold, though three thresholds, τa, τb and τc

(see Section 8.1.3), are specified to determine if any one threshold is suitable.

On the whole, only τa is suitable, though as point-cloud count increases so

does its false positive fraction; thresholds τb and τc are far too restrictive to be

viable. The results show that as the point-cloud count increases, the threshold

should also be increased accordingly. As the number of point-clouds to regis-

ter is known, a suitable threshold can be determined and applied that is more

appropriate than the three specified.

8.5.4 Alternative Rotation Selection

The ability of alternative rotation selection to identify the appropriate rotation

is dependent upon the formed correlation matrix. The impulse response for
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each rotation in the matrix is based on the representation quality of the normals

used when performing the correlation. Therefore, alternative rotation selection

will only find a suitable rotation when its impulse response is similar in size to

the global maximum impulse. Testing the alternative rotation selection found

that there are instances where checking through the sorted impulse responses

will identify a rotation that brings the point-cloud pair into alignment.

Using only the global maximum rotation, 31% of the point-cloud pairs in

the tested dataset were correctly aligned. By allowing five or ten alterna-

tive rotations to be checked, the number of correctly aligned point-cloud pairs

increased to 36% and 39%, respectively. Further increasing the allowable num-

ber of checks may correctly align more point-cloud pairs, but the total number

of rotations that are evaluated and discarded will grow. When five rotation

checks are performed, 16 rotations on average are discarded because they are

too similar to previously tested rotations. Increasing the number of checks to

10 further increases the number of discarded rotations to 46. The number of

discarded rotations grows at a faster rate than the number of checked rota-

tions as similar rotations will also have similar sized impulse response. While

alternative rotation selection is beneficial, its computational cost is its primary

limitation; this aspect was not revealed by Makadia et al. (2006) as they did

not analyse alternative rotation selection in any depth.

8.5.5 Efficiency

The three verification approaches have their own computational costs, which

are dependent upon what needs to be performed to evaluate whether correct

alignment has been achieved. The cost of each verification approach is outlined,

followed by the cost of performing alternative rotation selection.

The TCV is a cost-free verification approach as it is a by-product of the

translation correlation; all that it needs for classification is a comparison with

a threshold. Its only cost occurs if an initial evaluation needs to be performed

to ascertain an appropriate threshold value. The cost of performing surface

orientation consistency is dependent upon two primary factors: the number of

voxel divisions and the total number of points across both point-clouds. The

individual steps consist of binning the points, independently taking the mean

of the normals in each voxel for both point-clouds along with their angular

difference, then taking the mean of these angular differences. In the worst

case scenario, this will have a cost of O
(
n + v

)
, where n is the total number

of normals and v is the total number of voxels. Transform transitivity relies
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on triplets of point-clouds being tested for consistency, with each triplet com-

prising of three transforms, two of which get combined together and compared

with the third. The combination and comparison requires minimal process-

ing to perform, therefore, the number of triplets determines cost. Given m

point-clouds, the cost based on the number of triplets formed is O
(
m3
)
.

Alternative rotation selection can be an expensive extension to the registra-

tion pipeline, especially given that it requires both the translation correlation

and verification stages to be recalculated for every additional rotation check.

This cost does not include assessing the difference between the new rotation

and those that have been previously checked. While this cost can escalate, the

results show that alternative rotation selection can be a benefit to the registra-

tion pipeline, as long as the number of alternative rotational checks is limited

to the required computational performance of the registration process.

8.6 Discussion

Correctly aligning every point-cloud pair, while advantageous, is not crucial if

the transforms classified as correct can be combined to bring all point-clouds

into cohesive alignment with the point-cloud that remains fixed. This is be-

cause many of the transforms linking point-clouds together are redundant as

global alignment can be achieved without them. However, global alignment

can only be achieved if there is a path of correct transforms between a given

point-cloud and the fixed point-cloud. Attempting to register all point-cloud

pairs increases the likelihood of global alignment occurring as the additional

transforms provide alternative paths that allow incorrect transforms to be cir-

cumvented. To ensure that the selected paths result in the desired alignment,

it is better if the verification approaches limit false positive classifications at

the cost of producing a higher false negative rate.

Verifying that point-clouds have been correctly aligned using the TCV re-

quires a suitable threshold to perform the classification. The TCV is the size of

the maximum impulse response once the translation correlation has been per-

formed, and as such, impulse size is governed by all aspects that influence the

translation. These include overlap, rotational misalignment, noise and voxel

count. Therefore, a fixed threshold will not be optimal for all point-cloud pairs,

as it will need to be adapted to point-cloud quality and the chosen registration

parameters. The threshold cannot be easily adapted to the overlap between

point-cloud pairs as the TCV fluctuates with the other aforementioned aspects,
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meaning that overlap can vary while still producing the same TCV. Currently

there is no automatic means of identifying the optimal TCV threshold for a

given set of point-clouds, thus, a suitable threshold needs to be determined

manually. This is achieved by calibrating the TCV by visually classifying both

correct and misaligned point-cloud pair alignments.

Surface orientation consistency was shown to be a viable verification strat-

egy for classifying alignments, though it does need further evaluation to better

define how it performs in all cases. This is because the results produced by the

evaluation revealed an unusual trend with 5◦ rotational misalignment reaching

a true positive fraction of one sooner than either 0◦ or 2◦. At present the

cause of this trend is undetermined as there are many factors influencing the

found difference in surface orientation; these include overlap, voxel count, both

rotational and translational misalignment, and noise. Because the consistency

takes the mean angular difference between normals from both point-clouds,

only voxels containing normals from both point-clouds can be used. This

means that if the overlap is low, the verification will not be as robust as when

overlap is higher. While increasing voxel count will provide a better measure

of consistency, it is limited by rotational and translational misalignment, and

noise. This is because misalignment and noise can change which normals oc-

cur in a given voxel, causing unrelated normals to be compared or limiting

the number of normals that can be compared. Surface orientation consistency

may provide a better classification once fine registration has been performed,

as points common to both point-clouds are more likely to occur in the same

voxel and their normals will have closer matching orientations.

The transform transitivity between a set of point-clouds has been shown

capable of providing very accurate verification, with some instances being able

to correctly classify 100% of the transforms. The advantage of this approach

is that it only requires the found transforms between point-clouds to perform

the verification and is therefore very efficient. Although transform transitivity

has these advantages, it does have its own inherent limitations that separate it

from the other verification strategies. The primary limitation is that it requires

a minimum of three point-clouds before transitivity can be evaluated. Because

transitivity uses multiple point-clouds to perform verification, its reliability is

intrinsically linked to the number of point-clouds in the set, as this dictates the

amount of cross-checking that can be performed on an individual transform.

The benefit provided by cross-checking does taper off as point-cloud count in-

creases, but the number of point-clouds does influence the overall reliability
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of each transform classification. Another limitation is that the accuracy of

the transitivity is influenced by the percentage of correct alignments. This is

because it only takes one incorrect transform to cause a triplet to be inconsis-

tent, therefore, more triplets in a set will be found inconsistent as the number

of incorrect transforms increases. The result is that more false negative clas-

sifications occur as there is a greater chance of a correct transform being a

member of inconsistent triplets. Transform transitivity is not limited to using

only point-cloud triplets, as any number of transforms can be combined and

compared with a single transform. This capability allows transform consis-

tency to be checked at a greater level, which may be necessary when triplets

are unable to be formed due to the overall overlap between acquisitions.

Alternative rotation selection can be a useful addition to the registration

pipeline, as it automatically selects and tests an alternative rotation if the

current one is incorrect. Because alternative selection starts at the largest im-

pulse response and works its way down, this approach provides the most benefit

when the impulse response of the correct rotation is nearly the same size as the

largest impulse. Therefore, alternative selection is dependent upon the repre-

sentation of the normals used for the rotation correlation, as this determines

the impulse size of each rotation. Due to this, it is still better to improve

the representation of the point-cloud surfaces and normals that are correlated,

even though improving the correlation will limit the benefit of alternative ro-

tation selection. In theory, alternative rotation selection will eventually find

the correct coarse rotation regardless of its impulse size, though achieving this

would be a computationally expensive endeavour as at a correlation bandwidth

of 128 there are over 16 million selectable rotations.

The artificial Gaussian noise applied to the points for testing the verification

based on the TCV threshold provided a minor improvement to the ROC curve

when the rotational misalignment was 10◦ or greater. It was expected that

the combination of noise and rotational misalignment would further decrease

the performance. Instead, what may have happened is that the points placed

into the suboptimal voxel by rotational misalignment have been shifted by the

noise, causing some to be shifted back into their optimal voxel. Those that are

shifted further away from their optimal voxel have less effect on the translation

correlation, and in turn the TCV, as their initial voxel is already suboptimal.

The applied noise does not provide a true representation of the noise that

would occur in a real imaging system for two reasons. The first is that at three

times the mean distance between points, the applied noise is assumed to be
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greater than what an imaging system would introduce. Secondly, the noise

introduced by an imaging system will not be Gaussian in all three dimensions,

as lens calibration will only allow point error caused by noise to occur along a

straight line between it and the imaging sensor. Chapter 9 examines the overall

ability of the coarse registration pipeline, including the proposed verification

strategies, using real data. These tests will provide an additional insight into

how well the verification strategies classify point-cloud alignments that contain

noise produced by an imaging system.

8.7 Summary

The three evaluated verification strategies were each capable of correctly clas-

sifying the majority of point-cloud pair alignments. Overall, transform tran-

sitivity has the best performance, with its ability improving as point-cloud

count increases, though this performance is dependent upon the percentage

of correctly aligned point-cloud pairs. Both the TCV threshold and surface

orientation have a similar performance of approximately 90% classification ac-

curacy when rotational misalignment is within 5◦. The advantage that these

verification strategies provide the coarse registration pipeline as a whole is that

they limit the need to manually verify point-cloud alignments. By being able

to automatically check the found alignment permits an alternative registra-

tion to be found if the first is incorrect. When applied to a set of point-clouds,

these verification strategies combined with multiple point-cloud registration

has a greater likelihood of bringing all point-clouds into the correct coarse

alignment as incorrect registrations can be circumvented. The addition of reg-

istration verification completes the coarse registration pipeline, as the set of

point-clouds to be registered together should now be in a position that allows

a fine registration algorithm to perform optimally.



Chapter 9

Performance Evaluation Using

Real Datasets

The ground-truth datasets used in the previous chapters allowed the perfor-

mance of different algorithmic aspects and parameters of the coarse registration

pipeline to be ascertained without the influence of noise or changes in sam-

pling density. This chapter will instead concisely evaluate the performance

of the pipeline using real-world data. Testing with real-world data further

characterises the the pipeline, revealing where it works well and where further

examination is required to mitigate its limitations. The chapter is broken into

two sections: the first describes the datasets, while the second provides an

evaluation of the registration performance for each dataset.

9.1 Real World Datasets

This section describes the five real-world datasets collected from different

sources and used to evaluate the performance of the coarse registration pipeline.

These datasets each have aspects that limit the performance of the registration

pipeline. The goal of using potentially difficult datasets is to identify situa-

tions where the pipeline needs additional attention and to also show where the

pipeline works well.

9.1.1 Angels

The angels dataset, rendered in Figure 9.1, is a high density dataset used

by Bonarrigo et al. (2011) for testing their algorithm. This dataset was sup-

plied by Bonarrigo et al. as they have copyright permission for it. Each of
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the eight scans that comprise this dataset were stated as being formed by a

commercial high-resolution structured-light scanner, which used a 1280×1024

pixel charge-coupled device (CCD) sensor (Bonarrigo et al., 2011). Not all

sample points within a given scan were provided, with those occurring outside

the object boundary or within shadowed areas having been discarded. The an-

gels in their entirety are approximately 320 mm high and 400 mm wide, which

at these dimensions produces very dense sampling.

Figure 9.1: A rendering of the angel model.

9.1.2 Gargoyle

The gargoyle dataset, rendered in Figure 9.2, is comparatively large with re-

spect to the other four datasets as it contains 27 individual point-clouds. This

dataset was supplied by Fantoni et al., and was used by them to test their

algorithm (Fantoni et al., 2012). It is stated that the sampling distribution

changes with each point-cloud, and that sampling noise is present. The num-

ber of points in each point-cloud varies, with the smallest having 19 433 points

and the largest having 86 286.
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Figure 9.2: A rendering of the gargoyle model.

9.1.3 Helicopter Gearbox

The helicopter gearbox dataset was provided for this research by Nova Me-

chanical Design Ltd (Novamech), a New Zealand based company that spe-

cialises in surveying, reverse-engineering and rapid prototyping related ser-

vices. The six overlapping point-clouds that compose this dataset were said

to be scanned from the tail-rotor gearbox-casing of a 1950s helicopter. This

acquisition was performed using a ROMER Absolute Arm with an integrated

scanner (Hexagon Metrology, 2014). While this system samples the scene with

respect to the arm, the manoeuvrability of the arm is limited, therefore, the

gearbox needed to be shifted and rotated to different orientations to scan it in

its entirety.

Novamech reconstructed the gearbox from these six overlapping segments,

giving a full representative model of its original form. This process was per-

formed in two stages via the commercial software package SolidWorks1. The

first stage required manually selecting at least three common points between

pairs of scans, allowing Solidworks to identify the set of transforms which bring

the segments into coarse alignment. In the second stage this alignment was

refined by using a built-in ICP algorithm. Following these two registration

1SolidWorks 3D CAD (Computer Aided Drafting) is a commercial software package
(http://www.solidworks.com) used to construct 3-D models.
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stages, the individual segments were merged together, giving the final model

shown in Figure 9.3; a photo of the original gearbox is also presented. The

acquisition and registration process used by Novamech is a standard process

within the surveying and reverse-engineering industry. Incorporating an au-

tomated coarse registration step into this process would minimise the manual

input required, thus improving the overall efficiency of the process.

(a) Model of gearbox. (b) Photo of gearbox.

Figure 9.3: The reconstructed model and photo of the helicopter gearbox.

9.1.4 Gnome and Stairs

The gnome and stairs datasets were captured using the Mesa SwissRanger 4000

(SR4K), which is a full-field AMCW range imaging camera. The SR4K has a

resolution of 176×144 pixels, and at the set modulation frequency of 30MHz

it has an ambiguity distance of 5m. Each image was acquired by taking the

mean of each sample point across 100 frames to improve the precision of each

sample point. Due to the inherent issues of this system (see Section 1.2), the

samples have limited accuracy due to noise. The impact of this noise is that

the normals produced by MeshLab do not provide an accurate representation

of a surface’s orientation. This is because MeshLab produces a normal at a

point by taking the average of the normals collected from the faces that include

the point; a face is the triangular region formed between three adjacent points.

To mitigate this issue, the normals were instead calculated by placing a plane

on each point and fitting it to its neighbours contained within a 7×7 window.

The normal used for each point is the normal of the fitted plane.

The gnome dataset was acquired by placing the gnome on a square table

in an enclosed room. A total of twelve point-clouds were acquired by placing
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(a) Gnome point-cloud

(b) Stair point-cloud

Figure 9.4: Rendering of a single point-cloud from each of the Gnome and
Stair datasets.
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the imaging system at roughly even spacings around the table. Figure 9.4a

presents a rendered version of one of these point-clouds. The stairs dataset

consists of four steps positioned against an office divider with three objects

placed on the steps. The steps were imaged from six poses, with Figure 9.4b

showing a rendering of one of the acquired point-clouds.

9.2 Evaluation Results

This section evaluates the performance of the coarse registration pipeline with

respect to each of the five real-world datasets. Each dataset tests the pipeline,

identifying how well it works for the given data quality and the relationship

between the individual point-clouds. The benefit of this additional testing is

that it further characterises the reliability of the pipeline in different situations.

As part of this evaluation, the strengths and weaknesses of the pipeline with

respect to each dataset are reviewed. This includes discussing the steps of

the pipeline that require future investigation to reduce these weaknesses and

further enhance its reliability.

The pipeline is constructed using the enhancements that were found to pro-

vide the most benefit to registration. With respect to this, both the spherical-

harmonic transform and correlation bandwidths are set to 128, and the trans-

lation correlation bandwidth is also set to 128. Each bin is normalised by the

size of its collection area, and a value of 2×10−8 is used to calculate the per-

centage of normals required for a bin to receive a value of one instead of zero.

The normals are weighted using the local surface curvature as determined by

the plane distance weighting. The weighting threshold used to cull the normals

is 0.9875, except for the two range imaging datasets, which use 0.95 due to the

lower quality sampling.

The triplet transitivity and translation correlation strategies are used for

the verification step to better characterise their classification accuracy. The

classification accuracy is confirmed by visually inspecting the alignment of

each point-cloud pair. In order to produce a concise evaluation of the intro-

duced components of the pipeline, and to limit computational cost, the surface

orientation verification and alternative rotation selection are not included.

9.2.1 Angels

The eight point-clouds of the angel dataset produced a total of 28 point-cloud

pair combinations, of which ten were correctly aligned in the initial registration
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Figure 9.5: Graph showing which angel point-cloud pairs achieved correct
alignment.

attempt. All combinations are checked as the registration pipeline has no prior

knowledge of acquisition order. The algorithm by Bonarrigo et al. (2011) was

constrained to only registering consecutive point-cloud pairs that required a

minimum of 20% overlap; this order is the same as that shown in Figure 9.5.

The initial registration had a similar performance as Bonarrigo et al. (2011) for

consecutive point-clouds. Visually inspecting each alignment revealed that all

point-cloud pairs achieved correct rotational alignment, but the translational

alignment was often misaligned. The size of the bounding cube placed around

each point-cloud was identified as the cause of the misalignment.

The translational shift that occurs between two point-clouds is limited by

the size of the bounding cube. This is because the correlation is only able to se-

lect a translation that is up to half a side length of the cube. Setting the size of

the bounding cubes to encompass both point-clouds as tightly as possible (see

Section 3.3) reduces the coarseness of the translational alignment. However,
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using this sized bounding box is not conducive for registering all point-cloud

pairs, as identified for the angel dataset. The issues with translation arise due

to a combination of minimal overlap and the shape of the angel point-clouds.

To guarantee that the translation correlation is able to select a translation that

is appropriate for all situations, the found side length of the bounding cube

was doubled.

Doubling the side lengths of the bounding cube restored the capability

of the translation correlation, permitting the coarse registration pipeline to

correctly align 19 of the 28 point-cloud pairs. Figure 9.5 presents a graph

showing which point-clouds were correctly aligned together. The additional

nine correct alignments occur between point-clouds that have minimal overlap,

such as that between point-clouds one and five. The nine point-cloud pairs

that do not achieve correct alignment are due to their overlap being either

minuscule, such as between point-clouds three and six, or non-existent.

Verifying correct alignment was performed using both the translation corre-

lation value (TCV) and triplet transitivity. The TCV can provide an accurate

means of verification if an appropriate threshold is selected, which for the an-

gel dataset is 0.03. The mean and standard deviation of the TCV for the cor-

rect and incorrect alignments are 0.115±0.065 and 0.021±0.002, respectively.

While the TCVs of the correct and incorrect alignments for this dataset can be

neatly split, this is not guaranteed for other datasets as the TCV varies with

point-cloud shape, overlap and the found alignment. Additionally, as there is

currently no method of automatically calculating the threshold, it needs to be

manually chosen. Due to these aspects, verifying the alignment via the TCV

can produce false positive and negative classifications. Triplet transitivity was

able to correctly classify all point-cloud alignments of the angel dataset. The

advantage of using transitivity is that it avoids the need for fine-tuning as it

is dataset invariant.

9.2.2 Gargoyle

The gargoyle dataset is a failure case for the registration pipeline, with none of

the total 351 point-cloud pairs being confirmed as correctly aligned; visually

inspecting all point-cloud pairs was not feasible, and as such, there may be

correct but unconfirmed alignments. This performance is in contrast with the

algorithm by Fantoni et al. (2012), which was able to correctly bring the point-

clouds into alignment. It is suspected that a variety of factors contribute to

the gargoyle being a failure case, with the primary cause being the reduced
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quality of the normals. MeshLab calculates the normal for a point by averaging

the normals from the faces around the point. Combining this small surface

area for calculating normals with the rough texture of the gargoyle and lower

sample point quality, the normals can be scattered quite extensively, giving a

poor representation of surface orientation. Using a high weighting threshold

of 0.9875 is a secondary cause that may have compounded the difficulty of

point-cloud registration. The result is that the produced representation of the

normals is predominantly noise, effectively making the pipeline incapable of

identifying the correct rotation.

The gargoyle dataset identifies the need to examine and tailor the calcu-

lation of the normals in a manner that provides an accurate representation of

surface orientation. Additionally, the pipeline parameters need to be set ap-

propriately for each dataset, especially considering that an automatic means

of achieving this has yet to be devised. These issues principally pertain to

the rotation steps of the pipeline, with the translation and verification steps

being more robust, though the translation is dependent upon the rotation be-

ing correct. The triplet transitivity correctly classified all transforms as being

misaligned, though this occurs if there is a minimal number of correct trans-

forms available. Depending on the chosen threshold, the TCV classification

is a relatively accurate verification strategy, as the overall mean and standard

deviation of the TCVs are 0.014±0.006. Using a threshold of 0.03 would still

produce nine false positives, with the greatest TCV being 0.056.

9.2.3 Helicopter Gearbox

Registering together the six point-clouds of the helicopter gearbox correctly

aligned ten of the fifteen point-cloud pairs. The alignment relationship between

each point-cloud is shown in Figure 9.6. The ten correct alignments are easily

sufficient for bringing all six point-clouds into the same coordinate system,

which is the desired goal. The five incorrect alignments were primarily due to

two factors, the first is insufficient overlap, which typically occurs when point-

cloud overlap is 10% or less, and is caused by large difference in the capturing

poses with respect to the gearbox. The second factor is the structure of the

gearbox which produces a distribution of normals which are near symmetric,

resulting in an incorrect rotation appearing to be the appropriate solution.

Figure 9.7 provides examples of incorrect rotations due to symmetry within

the normals between point-clouds one and four, and two and three. In this

situation, the incorporation of alternative rotation selection may be beneficial.
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Figure 9.6: Registration connections that correctly aligned each gearbox ac-
quisition.

Triplet transitivity is the best verification strategy for this dataset due to

both a sufficient number of available point-clouds, and an adequate number

achieving correct alignment allowing triplets to be formed. The transitivity

correctly classified all 15 transforms using a threshold of one; Chapter 8 showed

that a threshold of one is the most applicable when registering six point-clouds.

The TCV based verification is able to classify this dataset if an appropriate

threshold is selected. The mean and standard deviation of the TCV for the

correct and incorrect alignments is 0.099±0.085 and 0.024±0.012, respectively.

This distribution shows that a single threshold cannot guarantee perfect classi-

fication as correct and incorrect alignments can produce similar TCVs. Using

a threshold of 0.05 ensures no false positive classifications, but it does result in

four false negative classifications. These false negatives are due to the pipeline

correctly aligning point-clouds with very low overlap, which stunts the size

of the TCV; an example of this is the alignment between point-clouds one

and six. While this classification is not perfect, there is still enough correctly

classified transforms to bring all the point-clouds into global alignment.
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(a) Point-clouds one and four. (b) Point-clouds two and three.

Figure 9.7: Two misalignments between helicopter gearbox point-clouds.

9.2.4 Gnome

The manner in which the gnome dataset was acquired did not facilitate regis-

tering all point-cloud pairs together. This is due to the SR4K imaging system

being shifted in steps around the gnome, restricting registration to the two

immediate neighbours of each acquisition. As such, only twelve point-cloud

pairs were registered, of which nine were correctly aligned. Figure 9.8 presents

an alignment example, which shows that adjacent acquisitions (those that are

immediate neighbours) still have large sections with minimal overlap, espe-

cially on the back wall. The three misaligned point-cloud pairs were a result

of this being a particularly difficult dataset to register due to the combination

of acquisition poses, scene structure, and the method for calculating normals.

The scene structure resulted in each point-cloud producing a very similar

distribution of normals across each acquisition. This is because the back wall

and the table have the two most distinctive groupings of normals, and their

positions with respect to each other maintain a relatively consistent relation-

ship. The surfaces of the gnome itself produce a distribution of normals that

remains the same from different poses, as it does not provide a distinctive

representation of the surface. This is because each normal is calculated from

across a relatively large patch of points, which is akin to smoothing the surface

of the gnome. The normals were calculated in this fashion to improve their

quality, otherwise they would be ineffective for calculating the rotation due to

noise from both the lower quality and sparseness of the sample points provided

by the SR4K. Despite these limitations, the majority of adjacent point-clouds

achieved correct alignment.
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Figure 9.8: Top-down view of a correct alignment between two adjacent point-
clouds from the gnome dataset. The sample points in what should be empty
space are the mixed pixels.

Automatically verifying whether correct alignment has been achieved is also

difficult with the gnome dataset. The triplet transitivity strategy was unable

to be applied as no correct triplets could be formed due to the acquisition

steps. If additional acquisitions from different poses were included, then triplet

transitivity should improve as more point-clouds would link together. Using

the TCV showed promise, with the mean and standard deviation of the correct

alignments being 0.3±0.063, compared to 0.17±0.064 for the incorrect adjacent

alignments. Using a threshold of 0.21 would adequately classify the alignments,

though this would only be applicable to adjacent point-clouds, if all point-

cloud pairs were registered this TCV threshold is unlikely to be suitable. In

this situation it is expected that manual verification would be required.

9.2.5 Stairs

The stairs dataset proved to be a challenge for the pipeline as the majority

of its surfaces are perpendicular to each other, which carried through to the
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Figure 9.9: Rendering of two correctly aligned point-clouds from the stairs
dataset. The resolution of the two point-clouds are the same, but their sam-
pling density differs due to their size difference.

representation of the normals. The symmetry within the normals only al-

lowed five of the fifteen point-cloud pairs to achieve correct alignment, with

the incorrect rotations corresponding to this symmetry. While more correct

alignments are preferred, those found brought five of the six point-clouds into

global alignment with each other. The manner in which the normals were cal-

culated resulted in two of the objects placed on the stairs only adding noise to

the scene, instead of providing distinguishable surfaces. The pipeline was able

to handle this noise along with the mixed pixels that occur within each ac-

quisition. It was also confirmed that smaller point-clouds can be aligned with

larger point-clouds as shown in Figure 9.9. It must be noted that the resolution

of these two point-clouds are the same, therefore their sampling densities are

different. This shows that the pipeline is able to register point-clouds acquired

at different distances from the object, even though this distance changes their

respective sampling density and size.

The low number of correct alignments restricted the performance of triplet

transitivity, as only one triplet was produced. This triplet does however cor-

rectly classify three of the five correct alignments. The incorporation of al-

ternative rotation selection, while computationally expensive, is expected to

alleviate the issues of symmetry, thus improving the results. This would in

turn increase the classification performance of triplet transitivity. Using TCV
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with a threshold of 0.1 correctly classified three of the five point-cloud pairs,

the other two are incorrectly classified as their TCV is indistinguishable from

the point-cloud pairs with incorrect alignments. The stairs dataset shows that

symmetry within the normals is still an issue that can be detrimental to reg-

istration performance.

9.3 Summary

Concisely evaluating the performance of the coarse registration pipeline using

real-world data helped to further characterise its strengths and weaknesses.

The pipeline was able to correctly align all the point-clouds of both the an-

gel and gearbox datasets, as well as correctly classifying each point-cloud

pair alignment. This allowed point-clouds with minimal overlap to be cor-

rectly aligned, outperforming alternative registration algorithms. However,

the pipeline is not infallible, as the other three datasets showed that rotational

alignment needs further refinement. Its weakness was attributed to the quality

and distribution of the normals. If the normals do not accurately reflect the

true orientation of the point-cloud surfaces from which they are extracted, then

the pipeline is susceptible to identifying an incorrect rotation. Additionally, if

the representations of the normals contain a form of symmetry, then a rotation

linked to this symmetry may be selected. Both of these issues have a higher

priority than being able to handle low overlap, as their effect on registration

is invariant to overlap.

The performed evaluation was also able to identify a limitation in the trans-

lation correlation with respect to the size of the bounding cube. Correcting

this limitation allowed the translation correlation to select translational shifts

of up to twice their previous size, which depending on the dataset, can be

necessary. Triplet transitivity continued to perform exceptionally well when

enough point-cloud pairs were correctly aligned; if this was not the case then

it had a tendency of classifying all transforms as misaligned. The TCV based

verification also achieved a reasonable level of accuracy, though it is more sen-

sitive to changes in the structure of the two point-clouds it was classifying.

The classification threshold was manually tuned to each dataset as a means of

automatically calculating it has yet to be established; if an individual thresh-

old could be produced to classify each alignment, then its true positive and

negative classifications would increase.
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Conclusion

The task of accurately and efficiently bringing point-clouds into coarse align-

ment has been achieved by the coarse registration pipeline analysed in this

thesis. The pipeline was constructed from distinct steps which, due to the

mathematical techniques used, calculated the rotation and translation inde-

pendently from each other, before combining them together as a single trans-

form. The final step then automatically verified whether the found transforms

successfully aligned the point-clouds.

The initial motivation for undertaking this research was to register sparse

range images acquired by AMCW based imaging systems. The coarse registra-

tion pipeline proposed by Makadia et al. (2006) was identified as a promising

solution, but it had minimal investigation since its conception. Because of

this lack of investigation, the objective of this thesis became analysing and

characterising the pipeline to determine its strengths and weaknesses, an ex-

amination that has not been performed previously. Based on this analysis,

enhancements have been developed and incorporated to significantly improve

the pipeline’s performance.

The remainder of this conclusion is divided into three parts, a summary

of the analysis performed at each step and the associated findings. This is

followed by an overview of the contributions made to the registration field

by the beneficial enhancements identified throughout the performed research.

The thesis is then concluded by exploring the future directions in which this

coarse registration pipeline can be taken to further improve its performance.
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10.1 Summary of Analysis and Findings

The coarse registration pipeline was able to efficiently calculate the rotation

and translation by independently correlating the normals and vertices in the

frequency domain, respectively. This approach permitted point-clouds with

any rotational and translational misalignment to be registered as long as they

overlap. The introduced enhancements correctly aligned point-clouds with

overlap as low as 5%, which is a significant improvement in comparison to the

45% attained by the initial incarnation of the pipeline proposed by Makadia

et al. (2006). These low levels of overlap are achieved by the enhanced pipeline

as it is able to provide a superior representation of the normals, thus making the

correlation more effective. The coarse registration pipeline’s capabilities can

be further refined by performing additional analysis, especially with respect to

using a variety of real data from different sources.

The primary weakness of the pipeline is calculating the rotational align-

ment, which is affected by the normals. Binning the normals on the unit sphere

is unable to include the position from which they were extracted, therefore,

normals from disparate surfaces on a point-cloud can be collected by the same

bin. However, this is a minor issue, as the main problem is producing normals

that adequately represent surface orientation. The quality of this representa-

tion is affected if sampling accuracy is reduced due to noise, or if the sampling

density is sparse. Given that these issues occur in range images acquired by

AMCW based imaging systems, their registration by this pipeline can be chal-

lenging. While the pipeline does have moderate success registering AMCW

range images, it is recommended that they first be filtered and preprocessed

to improve their sample point accuracy, and thus the quality of their normals.

The flow on effect is that their overall registration accuracy will be improved.

In this thesis, each step of the coarse registration pipeline was analysed

using ground-truth data to provide exact measures of overlap, rotational mis-

alignment and translational misalignment. This allowed the ability of each

step to be quantified as well as permitting a means of measuring the bene-

fit provided by potential enhancements. The remainder of this section sum-

marises the performed analysis and the enhancements applied at each step of

the pipeline and details the key findings that were made.
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10.1.1 Binning Normals

The manner in which sets of normals are discretely represented in prepara-

tion for spherical-harmonic conversion and correlation affects the calculated

rotation, both in accuracy and in efficiency. Therefore, it was important to

identify and use an appropriate binning scheme. By investigating three binning

schemes (equiangle, icosahedron and Fibonacci) the effects of bin distribution

on the sphere were determined. Intuitively it would be expected that the icosa-

hedron and Fibonacci schemes should be preferred due to their near uniform

bin distribution. However, in practice they are unsuitable as they do not have

a natural affinity for spherical-harmonic conversion, making their use imprac-

ticably expensive. With respect to their accuracy, they are only marginally

better than equiangle binning at a bandwidth of 64.

Equiangle binning was found to be the optimal scheme as its bin distribu-

tion both efficiently collects normals and has a natural affinity for spherical-

harmonic conversion. The non-uniform distribution of its bins were mitigated

by applying correct normalisation, a step that is not stated by Makadia et al.

(2006) as being included. The analysis also found that orientating the normals

to the pole of the sphere, instead of the equator, improved registration perfor-

mance. This is because equiangle binning has an increased bin density at the

pole, allowing the normals to be sampled more finely. The predominant benefit

of equiangle binning is its efficient conversion to spherical harmonics at higher

bandwidths. Increasing the bandwidth improves the representation of normals

and reduces rotation error as there are more selectable rotations. This im-

provement is exemplified by the 50% increase in correct rotational alignments

when doubling the bandwidth from 64 to 128.

10.1.2 Weighting Normals

Weighting the normals of partially overlapping point-clouds is an essential

step for improving the reliability of the registration, as simply binning the

normals is unlikely to provide a faithful representation of the surfaces. This is

because the representation varies with sample distribution, noise and discon-

nected surfaces contributing normals to the same bins. A range of different

weighting schemes and parameters were used to help mitigate these detriments,

with these schemes falling into two categories. The first reweighted prominent

bins (bins that contained a sufficient number of normals), while the second

weighted and culled normals based on their surrounding surface curvature.
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The representation of normals and subsequently the rotational performance

were improved by both weighting scheme categories.

The best representation of the normals was found by introducing the idea

of encoding both the reweighting of prominent bins and the surface curva-

ture value into a complex value. This was possible as the spherical-harmonic

correlation inherently handles complex values. By maintaining the mean sur-

face curvature weighting of the normals kept by a bin, each bin received an

additional distinguishing aspect, instead of simply indicating that it contains

normals. Representing the equiangle bins using these complex values increased

registration performance by over 100% in comparison to the representation pro-

posed by Makadia et al. (2006). As such, this novel combination significantly

enhanced registration performance, making this coarse registration pipeline

have state-of-the-art capabilities.

10.1.3 Translational Alignment

The translational alignment of point-clouds had exceptional performance, as

it aligns any point-cloud pair if their overlap is greater than 5% and they

have correct rotational alignment. This ability is linked to point-clouds only

depicting the surfaces of a scene, resulting in many voxels remaining empty. It

is this aspect that allows the correlation to easily identify the optimal coarse

translation. The translational alignment does have the weakness in that its

accuracy is fundamentally linked to the rotational alignment accuracy; the

greater the rotation accuracy, the greater the translation accuracy. It is for

this reason that if the translational alignment fails, the rotational alignment

should be investigated. In the unlikely event that translational alignment fails

when the rotation is correct, it can be presumed that a repetitive structure

exists within the point-clouds. While not explored as part of this research,

this step could incorporate a weighting scheme similar to that of the normals,

helping to mitigate this situation.

10.1.4 Verification of Correct Alignment

Visually checking to confirm successful alignment is undesirable as this step

of the pipeline is preferably automated. Reducing the required manual inter-

vention was achieved by checking that the aligned point-clouds met predefined

criteria stipulating what defines correct alignment. Three verification strate-

gies (surface orientation, TCV thresholding, and transform transitivity), each
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specifying a different criterion, were evaluated to determine their classification

reliability. Because each of their criterion are different, it is possible to use

all three strategies in conjunction with each other. Makadia et al. (2006) used

verification for identifying if an alternative rotation should be selected, but the

conducted research found that alternative rotation selection provided minimal

improvement considering its computational expense. The benefit of verifica-

tion is that it identifies which transforms should be kept or discarded when

bringing all point-clouds into the same coordinate system.

The surface orientation and the TCV thresholding strategies had similar

classification performances. The advantage of the TCV is that it is compu-

tationally free, as it is a by-product of the translation correlation. It does

have the limitation of being linked to overlap, as overlap decreases the TCV

corresponding to the correct alignment will also decrease. Identifying a means

of automatically adjusting the threshold will mitigate this issue. Transform

transitivity produced the best results, with it being capable of correctly clas-

sifying all point-cloud pairs. This ability is dependent upon there being three

or more point-clouds and the percentage of correct point-cloud alignments;

correct alignments are necessary for forming consistent triplets. If the classi-

fication performance of transform transitivity is inadequate, then it is better

to focus on repairing limitations further up the pipeline. The verification step

completes the coarse registration pipeline, with any necessary refining of align-

ment being performed by a fine registration algorithm.

10.2 Contributions to Knowledge

The major contributions to knowledge produced throughout this dissertation

are now listed in a concise manner:

• A comprehensive analysis which quantified registration performance at

each step of the pipeline.

• Evaluated an extensive number of modifications and parameters to these

steps to ascertain which provide the most benefit.

• A new algorithm was developed for assigning points on a sphere to the

closest Fibonacci bin.

• Equiangle binning was found to only have a marginal decrease in accu-

racy when compared against more uniform bin distributions, but its bin-
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ning efficiency and affinity for conversion to spherical harmonics makes

it the superior choice.

• Established that the orientation of normals on the sphere can impact reg-

istration; orientating the normals to the pole of the spherical coordinate

system improves registration performance as bin density is greater.

• Applied the plane distance scheme for weighting normals to the spherical-

harmonic correlation, showing it to be a beneficial addition.

• Introduced the novel combination of using two weighting schemes to-

gether by encoding them as complex values, providing a significant in-

crease in registration performance.

• Showed that the quality of the translation correlation is fundamentally

dependent upon the rotation accuracy, if rotation is correct, the transla-

tion is rarely incorrect.

• Introduced the alignment verification strategy based on thresholding the

translation correlation value.

• Introduced the transform transitivity verification strategy and analyt-

ically identified its limitations; this strategy was the most accurate if

particular criteria were met.

• Revealed that alternative rotation selection does not provide much ad-

vantage due to its high computational cost and minimal gain.

• Showed that the generic nature of the coarse registration pipeline makes

it applicable to the majority of 3-D point-clouds, while being able to

produce state-of-the-art results.

10.3 Future Directions

Improving the coarse registration pipeline with new and novel enhancements

will further increase its robustness for consistently aligning point-clouds which

have minimal overlap and increasing levels of noise. In order to achieve this,

the focus of any future work should be directed towards the two steps used

to calculate the rotational alignment. This is because selecting the correct

rotation is both the most important and difficult step, as the subsequent steps

in the pipeline rely upon the accuracy of the rotation. With respect to this,
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the future direction that should be predominately explored is the binning and

weighting of normals to provide a more faithful representation of the point-

cloud surfaces on the unit sphere. However, solely investigating alternative

binning schemes is unlikely to offer any substantial improvements to registra-

tion ability, as equiangle binning has been shown capable of performing at

a level similar to that provided by more uniform bin distributions. If a new

binning scheme is deemed necessary, it should be accompanied by appropri-

ate weighting schemes. However, the recommendation is to continue using

equiangle binning and to concentrate on improving the weighting schemes.

The weighting schemes currently used are limited by their static thresholds,

which do not readily cater to the variations in scene structure or sampling

quality. The incorporation of a measure which examines either the global

surface structure of the two point-clouds or the distribution of normals on the

unit sphere will help provide a means of dynamically adjusting the thresholds

used with the weighting schemes. The advantage of dynamic thresholds is

that they would inherently handle a greater variety of scenes and imaging

systems, therefore intrinsically increasing the likelihood of correct alignment.

Enhancing or replacing these weighting schemes is also possible, as alternative

schemes applicable to spherical-harmonic correlation could be developed. This

is especially true if two weighting schemes which complement each other are

combined via the proposed complex values weighting scheme. An example of a

future enhancement that should be suitable for the complex values weighting is

to incorporate the sign into the measure of surface curvature about each vertex.

Surfaces that are concave would receive a negative value, planar surface would

still be zero, while convex surfaces would be positive. Because different types

of surface structure are distinguished, an improved representation of a point-

cloud will likely be attained.

The mathematics underlying the spherical-harmonic correlation fundamen-

tally determines the achieved registration performance. Increasing the trans-

form bandwidth improves the representation of normals in the frequency do-

main, which combined with a high correlation bandwidth enhances registration

accuracy. It is however unknown whether there is an upper limit to the benefit

provided by further increasing these two bandwidths. It is presumed that there

is an upper limit, but identifying it was restricted by the available computa-

tional resources. Further analysis in this area will determine if a more efficient

algorithm or more computational resources sufficiently benefits registration.

There is also the possibility of expanding the base mathematics to further
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extend the idea of using multiple pieces of information, as established by the

complex values weighting. This would allow additional measures of the surface

structure to be incorporated, allowing the characteristics of the point-clouds

to be better distinguished and correctly matched by the correlation.

Currently, both the rotation correlation and translation correlation are

coarse registration algorithms, but there is the potential of converting them

into fine registration algorithms. Sub-pixel registration has been shown feasible

in the frequency domain (Balci and Foroosh, 2006; Tzimiropoulos et al., 2011)

for correlating 2-D images. There is the possibility of using similar techniques

for either spherical-harmonic correlation or 3-D correlation. At present trans-

lation correlation is exceptionally robust; it is unlikely that any enhancements,

other than sub-voxel registration, will produce additional benefit.

An area that was not investigated, but is applicable to the verification step

is the incorporation of constraints that restrict which rotations or translations

can be selected. These constraints would be based on prior knowledge of the

image acquisition process, such as when acquisition order is known or when

the maximum rotational difference between two poses must be less than a

particular angle. There are any number of usable verification strategies that

could be designed for a particular scene or acquisition scenario. Enhancing and

expanding the available strategies would further guarantee that the calculated

transforms are the ones desired for achieving correct alignment.

The future directions suggested here are by no means the only ones worth

exploring, as any additional analysis will help refine the characterisation of the

coarse registration pipeline. The incorporation of additional enhancements will

further expand its state-of-the-art capabilities, allowing it to draw ever closer

to the goal of truly automated 3-D registration.
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