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Abstract 

The dissociation of the dihydroxyacetone (DHA) dimer in mānuka honey has 

previously been proposed to be the rate determining step in the overall conversion 

of DHA to methylglyoxal, the agent reported to be responsible for the non-

peroxide anti-bacterial activity displayed by mānuka honey. 

 

The 
1
H and 

13
C NMR spectra for the DHA dimer and the DHA monomer in 

DMSO-d6 were assigned using 1D and 2D NMR spectroscopy. 

 

1
H and 

13
C NMR spectroscopy were utilised to investigate the kinetics of the 

dissociation of the DHA dimer in DMSO-d6, an anhydrous solvent chosen to 

mimic the dehydrating conditions present in the honey matrix. 

 

Four series of kinetic experiments were conducted, one without catalysis, one 

with D2O catalysis, one with CD3COOD catalysis and one with 

CD3COOD/CD3COOD catalysis. Each of these experiments obtained the 

equilibrium constant, K and the rate constants k, k1 and k-1 for the dissociation of 

the DHA dimer under different conditions that may be present in the honey 

matrix, with the exclusion of the CD3COOD/CD3COOD catalysed experiments 

which were conducted as part of the investigation to determine a proposed 

reaction mechanism. 

 

Two reaction intermediates were observed in the CD3COOD catalysed 

experiments, they were characterised and provided supporting evidence for a 

proposed acid-catalysed reaction mechanism for the DHA dimer dissociation. The 

absence of reaction intermediates in the D2O catalysed experiments provided 

supporting evidence for a proposed base-catalysed reaction mechanism for the 

DHA dimer dissociation. 

 

Reaction mechanisms for the DHA dimer dissociation in DMSO-d6 and mānuka 

honey were proposed based on the findings of previous studies and the findings 

associated with the kinetic experiments conducted in this study. 
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1 

1 Introduction and literature review 

1.1 Mānuka honey 

Mānuka honey is produced by bees from the nectar obtained from mānuka 

(Leptospermum scoparium J.R. Forst & G. Forst (Myrtaceae)), a species of tree 

native to New Zealand and Australia. Mānuka honey has been found to be an 

effective topical agent for the healing of both acute wounds, including burns and 

lacerations, and chronic wounds, including diabetic ulcers and infected surgical 

wounds.
1,2

 An important healing property of mānuka honey is its antibacterial 

action, especially towards methicillin-resistant staphylococcus (MRSA) and 

vancomycin-resistant enterococcus (VRE) infections,
3,4

 which are wide spread 

bacterial strains that are of considerable concern to the medical community due to 

their resistance to antibiotics. Honey in general has wound healing properties 

resulting from its low pH (~pH 4),
5
 high osmolarity

6
 that restricts the amount of 

water available to bacteria, and the slow release of antibacterial hydrogen 

peroxide produced by the enzyme glucose oxidase as it catalyses the oxidation of 

glucose to D-glucono-δ-lactone.
7
 Mānuka honey, however, exhibits antibacterial 

activity that is substantially higher than that for other honeys.
8,9

 The increased 

antibacterial activity results from non-peroxide antibacterial activity attributed to 

methylglyoxal
9,10

 (MGO) that is found in mānuka honey.  

1.2 10
Identification of methylglyoxal as the non-peroxide 

antibacterial agent 

Methylglyoxal, IUPAC name: 2-oxopropanal, Figure 1.1, has been identified as 

the compound mainly responsible for the non-peroxide antibacterial activity in 

mānuka honey.
9,10

  

 

 

Figure 1.1: The molecular structure of MGO 
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Identification was achieved by isolating and characterising the bioactive HPLC 

fraction obtained from mānuka honey.
10

 Standard variety honey samples did not 

contain this HPLC fraction and had undetectable non-peroxide antibacterial 

activity. The MGO concentration of mānuka
9
 was recorded to be as high as 725 

mg kg
-1

. MGO was added to standard variety honey samples at equivalent  

concentrations of mānuka honey and these samples displayed similar non-

peroxide antibacterial activity to mānuka honey.
10

 These results strongly indicated 

that MGO was responsible for the non-peroxide activity observed in mānuka 

honey. 

1.3 Methylglyoxal 

Methylglyoxal is a reactive 1,2-dicarbonyl compound that exists as a yellow 

pungent liquid under standard conditions. MGO may be produced from triose 

starting material. In acidic conditions glyceraldehyde and DHA undergo 

irreversible dehydration to form MGO while in basic conditions, Figure 1.2, a 

mutual Lobry de Bruyn-van Ekenstein isomerisation
11

 between glyceraldehyde 

and DHA occurs as well as an irreversible dehydration that leads to the formation 

of MGO.
12

   

 

Figure 1.2: The proposed base catalysed reaction scheme 

MGO is produced in all living cells during the metabolism of glucose, 

triglycerides and proteins. In glycolysis, MGO is formed from the dissociation of 

glyceraldehyde 3-phosphate and dihydroxyacetone phosphate.
13-15

  MGO has been 

shown to modify lysine, arginine and cysteine residues in proteins to produce 
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advanced glycation end products (AGE’s) and to react with guanine residues in 

DNA causing DNA-DNA polymerase crosslinks and the degradation of DNA. 

These pathophysiological processes have linked MGO to diabetes, aging and 

neurodegeneration.
16,17

 

1.4 Identification of dihydroxyacetone as the precursor to 

methylglyoxal in mānuka honey 

Beekeepers store mānuka honey to increase its non-peroxide antibacterial 

activity.
18

 Fresh mānuka honey, obtained before any maturation had occurred, was 

analysed and it displayed relatively low levels of MGO but high levels of DHA. 

Over time the stored honey showed a decrease in DHA levels that was inversely 

proportional to an increase in MGO levels. DHA was added to clover honey, 

stored and showed a decrease in concentration inversely proportional to the 

formation of MGO similar to that observed in mānuka honey.
19

 This strongly 

indicated that the MGO present in the matured mānuka honey was the product of 

the conversion of the DHA present in the nectar of mānuka flowers. To determine 

whether the conversion process was enzymic or non-enzymic, an artificial honey 

containing no enzymes was developed to which DHA was added. It was observed 

that conversion of DHA to MGO had occurred, albeit at a reduced rate, strongly 

indicating that the conversion of DHA to MGO in mānuka honey occurs via a 

non-enzymic process.
19

  

1.5 Dihydroxyacetone 

Dihydroxyacetone is a ketotriose; one of the three possible triose 

monosaccharides along with its structural isomers L- and D-glyceraldehyde but, 

unlike its glyceraldehyde structural isomers, DHA is achiral. DHA was first 

prepared in 1897
20

 and in 1900 Wohl and Neuberg
21

 proposed the 1,4-dioxane 

hemiketal structure for the DHA dimer. The dissociation kinetics of the DHA 

dimer were shown to be first order in DHA and catalysed by acid, base and 

water.
22

 It was proposed that the mechanism for the dissociation would be similar 

to the mechanism for the mutarotation of glucopyranose.
22

  

In the solid state, DHA takes the dimeric hemiketal form with a cyclic dioxane 

structure.
20,22-25

 Upon heating or dissolution in aqueous media, the DHA dimer 

dissociates to give the DHA monomer. When solid DHA is dissolved in water it 

converts from the dimeric form to one of two monomeric forms, the free carbonyl 
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ketone form or the hydrate form with a 4 to 1 ratio.
23

 This study proposes that the 

mechanism for the DHA dimer dissociation is analogous to the ring opening 

mechanism in the mutarotation reaction of pento- and hexopyranose rings. The 

observation that the DHA dimer dissociation displays first-order kinetics
22,23

 

offers a similarity comparison to the mutarotation, as it too displays first order 

kinetics.
26-30

  

1.6 The structure of dihydroxyacetone 

1.6.1 1
H NMR assignment 

A 
1
H NMR study

23
 observing the species present in the DHA dimer to monomer 

conversion in both D2O and DMSO-d6 obtained unique 
1
H NMR signals for the 

DHA dimer and for the DHA monomer using a Varian A-60 (60 MHz) nuclear 

magnetic spectrometer.
1
 Davis assigned the 

1
H NMR spectrum for the DHA 

monomer and dimer in DMSO-d6, Table 1.1. This study described the DHA 

dimer structure as a centrosymmetric 1,4-dioxane ring in a chair conformation 

with two hydroxymethyl groups adopting equatorial positions and adjacent to 

these groups, endocyclic hydroxyl groups adopting axial positions, Figure 1.3. To 

obtain the spectra for the monomer, a sample was prepared in the solid state by 

lyophilising an aqueous solution of DHA.  

 

Figure 1.3: The DHA 1,3-dioxane dimer structure (A) 

In assigning the spectrum for the two monomer signals: a triplet at 5.10 ppm (
3
J 6 

Hz) was assigned to the two hydroxyl protons and a doublet at 4.26 ppm was 

assigned to the four methylene protons. For assigning the dimer spectrum: a 

singlet at 5.90 ppm was assigned to the two axial ring hydroxyl protons (OH-4) 

and a triplet at 4.75 ppm (
3
 J 6 Hz) was assigned to the two exocyclic hydroxyl 

protons (OH5). A doublet at 4.05 ppm (
2
J 12 Hz) was assigned to the two 

                                                 

1
 The Varian A-60 was an early model of NMR spectrometer that operated using the continuous 

wave signal acquisition method that gave very poor resolution. 
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equatorial protons (H1e) in the ring and the remaining methylene protons and the 

axial protons were assigned to a multiplet where their signals overlapped and 

could not be resolved. 

Table 1.1: Davis’s 1H NMR spectrum assignments
2
 of DHA in DMSO-d6 

Proton δ (ppm)* 
2
J (Hz) 

3
J (Hz) 

Dimer  

H1e 4.05 12 - 

OH4 5.9 - - 

OH5 4.75 - 6 

Monomer 

CH2 4.26 - 6 

OH 5.1 - 6 

 

Kobayashi and Takahashi
25

 assigned the spectra to the DHA monomer and 

multiple dimer forms using a 100 MHz spectrometer, Table 1.2. The monomer 

spectrum was assigned: a triplet at 4.99 ppm (
3
J 6.0 Hz) was assigned to the two 

hydroxyl protons and a doublet at 4.15 ppm was assigned to the four methylene 

protons.  

Table 1.2: Kobayashi’s and Takahashi’s 
1
H NMR spectrum assignments of DHA in 

DMSO-d6. The structures A, C and D are represented in Figure 1.4. 

Proton δ (ppm) 
2
J (Hz) 

3
J (Hz) 

4
J (Hz) 

Dimer A 

H-1a 3.94 11.3 - 1 

H-1e 3.32 11.3 - - 

H-3a 3.20 11.5 6.5 - 

H-3b 3.34 11.5 6.5 - 

OH-4 5.62 - - 1 

OH-5 4.62 - 6.5 - 

Dimer C 

H-7a 3.16 11.2 6.4 - 

H-7b 3.28 11.2 6.4 - 

H-3e 3.49 12.0 - - 

H-3a 3.64 12.0 - - 

H-11 4.58 - 6.4 - 

                                                 

2
 converted from the tau (τ) scale using 10 - τ 



 

6 

H-9 5.77 - - - 

Dimer D 

H-8a 3.35 11.5 7.2 - 

H-7 3.40 - 6.2 - 

H-6 3.48 - 6.0 - 

H-8b 3.51 11.5 5.2 - 

H-5a 3.73 8.2 - - 

H-5e 4.00 8.2 - - 

H-11 4.64 - 6.2 - 

H-10 4.80 - 6.0 - 

H-12 4.86 - 5.2 - 

H-9 6.15 - - - 

Monomer 

CH2 4.62 - 6.0 - 

OH 4.99 - 6.0 - 

 

The dimer spectrum was assigned : a doublet (
4
J 1.0 Hz) at 5.62 ppm was 

assigned to the OH-4 proton as the small J-coupling constant pointed to a long-

range coupling which required a coplanar W geometry and for this to occur the 

hydroxyl group needed to be axial. The small J-coupling constant (
4
J 1 Hz; 

2
J 11.3 

Hz) in the doublet of doublets at 3.94 ppm with the implied long-range coupling 

pointed to this proton being the axial ring proton signal as it needed to be in this 

position to have correct geometry to engage in long-range coupling with OH-4. 

The assignment of H-1a at 3.94 ppm and H-1e at 3.32 ppm is at odds with the 

assignments by Davis
23

 which has the equatorial proton further downfield. 

Although an equatorial proton is generally further downfield than an axial proton 

in pyranose rings, the long-range coupling coplanar requirement rules out that 

arrangement in this case.  

1.6.2 Infra-red assignment 

An infrared and Raman spectroscopy study
24

 focusing on the elucidation of the 

DHA dimer structure identified the presence of four DHA dimer polymorphs (α, ß, 

γ and δ) and one monomer crystal structure (ε) using powder X-ray diffraction. 

Four possible dimeric cyclic hemiketal molecular structures were originally 

conjectured, drawing from a previous study,
23

 to be either confirmed or eliminated 
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based on the experimental evidence to be obtained, Figure 1.4. The five 

polymorphs, four dimer and one monomer, were originally differentiated by their 

X-ray diffraction powder patterns. The four dimer polymorphs were obtained 

from methanol at different temperatures and the monomer crystal structure was 

obtained by lyophilisation of an aqueous solution of DHA. The polymorphs α, ß 

and δ were stable at room temperature while the γ polymorph transforms to the α 

form within 24 hours. The IR and Raman spectra for the ε form showed carbonyl 

stretching bands at 1730 cm
-1

 indicating that the ε form is the carbonyl monomer. 

The α, ß, γ and δ forms showed no carbonyl stretching bands indicating that there 

were no carbonyl functional groups present in the molecular structures of these 

polymorphs.  

 

Figure 1.4: Four structures conjectured by Kobayashi et al. 

The group theory rule of mutual exclusion states that centrosymmetric molecules 

cannot be both IR and Raman active.
31

 Mutual exclusion was observed for the α, ß 

and γ forms indicating that they possessed the structure of either A or B, the 

centrosymmetric conjectured structures, Figure 1.4. Mutual correspondence was 

observed for the δ polymorph implying that either the molecular structure was 

non-centrosymmetric or the crystal structure was non-centrosymmetric. All four 

polymorphs gave the same IR spectra when dissolved in DMSO-d6, pointing to 

them all having the same molecular structure, thus the δ polymorph had a non-

centrosymmetric crystal structure but a centrosymmetric molecular structure. Of 

the two conjectured centrosymmetric structures, it was determined that structure 

A was lower in energy due to the steric interactions of the hydroxymethyl and 

hydroxyl group and therefore the most likely structure for all four dimeric 
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polymorphs with different hydroxymethyl and hydroxyl substituent conformations 

for each polymorph. The double anomeric effect would be a major factor in 

increasing the stability of the dimer A
32

, Figure 1.4. 

1.6.3 Crystal structures 

A study
33

 focusing on the crystal structures of DHA identified three dioxane 

dimer crystal structures (α, β and γ), Figure 1.5, and one monomer crystal 

structure. The α polymorph was obtained by recrystallization from aqueous 

solution and the β polymorph was obtained by recrystallization from 2-propanol, 

both processes performed in ambient conditions. The γ polymorph was obtained 

by slow lyophilization from aqueous solution while the monomer polymorph was 

obtained by lyophilization from aqueous solution at a faster rate. All three dimer 

polymorphs adopted chair conformations and were present as trans isomers with 

the hydroxymethyl groups equatorial and the ring hydroxyl groups axial due to the 

anomeric effect.  

 

Figure 1.5: The ball and stick structures of the α, ß and γ dimer polymorphs 

The conformation of the hydroxymethyl groups differed with each polymorph. 

Taking the Newman projection of the exocyclic oxygen, the exocyclic carbon, the 

quaternary carbon and either the adjacent ring oxygen (for the first assignment) or 

adjacent ring carbon (for the second assignment) different conformations were 

assigned to each of the dimer polymorphs with the α dimer: gauche-anti, the ß 

dimer: gauche-gauche, and the γ dimer: anti-gauche. The axial ring hydroxyls 

were all gauche to the hydroxymethyl groups except for one of the ß-

polymorphs hydroxymethyl groups which adopted the anti conformation. The ß 

polymorph molecular structure was not centrosymmetric (point group P-1) while 

the α and γ polymorph molecular structures were centrosymmetric (point group 

P21/c).  

The different polymorphs resulted from different hydrogen bonding 

conformations within the unit cell. These crystal structures elucidate the 

molecular conformation in the solid-state but in solution we would expect the 

hydroxymethyl groups to be freely rotating to some degree. 
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1.7 The proposed kinetics of the dihydroxyacetone dimer 

dissociation by various experimental procedures 

1.7.1 Dilatometry 

In 1937 Bell and Baughan performed a series of dilatometric kinetics experiments 

which followed the change in volume of various aqueous solutions of DHA.
22

 The 

kinetics of the dimer to monomer conversion of DHA in water and various 

aqueous solutions containing carboxylic acids and carboxylate ions were observed 

using a dilatometer, an instrument that measures changes in volume as a chemical 

reaction or physical process progresses with time. The conversion of the DHA 

dimer to monomer in aqueous solution at 25 
o
C (± 0.005 

o
C) resulted in a molar 

volume increase (as one molar dimer dissociated to give two molar monomer)  

that was shown to be 36 mm
3
 g

-1
, a value that is very temperature dependent.

22
 

The dissolution process was exothermic and required a data acquisition delay of 

approximately 5 minutes to allow the solution temperature to drop back down to 

25 
o
C. The reaction progress was monitored every 4 min by reading the change in 

volume on a capillary with an accuracy of ± 0.05 mm. The dimer to monomer 

conversion in triple distilled water was shown to be pseudo-first order in DHA 

with a rate constant of 1.72 min
-1

 which was determined using the Guggenheim 

Method.
34

 A linear relationship was observed between the rate constants and acid 

concentrations suggesting that the dimer to monomer conversion is catalysed by 

acid and base.  

1.7.2 UV spectroscopy 

An ultraviolet spectroscopy kinetics experiment investigating the dissociation of 

the DHA dimer followed the formation of the DHA monomer carbonyl absorption 

band in aqueous D2O solution (25°C)
23

. With the progression of time an 

absorption band appeared in the spectrum at 275 nm which was attributed to the 

n-π* transition of the ketone monomer
23

. This kinetics experiment determined that 

the conversion of the DHA dimer to monomer in D2O has a first order rate 

constant of 0.034 min
-1

 which contrasts strongly with the value reported by Bell 

and Baughan of  1.72 min
-1

.  
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1.7.3 Infra-red spectroscopy 

Davis performed a somewhat impromptu qualitative infrared spectroscopy study 

that was able to monitor the dissociation of the DHA dimer whilst carrying out the 

previously mentioned NMR and UV experiments
23

. The DHA dimer dissociation 

was observed by following the formation of the DHA monomer carbonyl band 

with the evolution of time. DHA solid (dimer) was dissolved in D2O (25°C). At T 

(0) there was no carbonyl band as the dimeric 1,4-dioxane ring had yet to 

dissociate to the free carbonyl ketone monomer. With the progression of time, a 

strong absorption band appeared at 1730 cm
-1

 indicating the formation of the 

ketone monomer
23

. Although this was a qualitative experiment to provide 

supporting data for an NMR experiment, tracking the appearance of this band as a 

function of time would be a possible method for obtaining kinetic information for 

the dissociation of the DHA dimer if, for example, it was shown that the NMR 

timescale was to slow to observe the DHA dimer dissociation in DMSO-d6. 

A study
35

 focusing on the effects of temperature, pH and solvent on the 

dissociation of the diose glycolaldehyde (GLLA) dimer, Figure 1.6, was 

performed using infrared spectroscopy in D2O, acetone and DMSO.  

 

Figure 1.6: The molecular structures of GLLA (a) monomer (b) dimer 

GLLA, like DHA, exists as a dimer in the solid state with a cyclic 1,4-dioxane 

structure and upon heating or in solution phase it has been shown that the GLLA 

dimer converts to the monomer via a mutarotation-like mechanism similar to the 

proposed mechanism for the dissociation of the DHA dimer
35

. The IR spectra of 

GLLA obtained in D2O displayed absorption bands in the carbonyl region (1700 – 

1750 cm
-1

) and a band in the enediol region (1630 – 1700 cm
-1

); these bands were 

observed to intensify with time
35

 and upon equilibrium intensified with the 

application of heat and decreased in intensity when cooled. It was conjectured that 

a band at 1728 cm
-1

 resulted from the formation of the acyclic dimer, and that 

bands at 1744 cm
-1

 and 1703 cm
-1

 resulted respectively from the carbonyl 

monomer and the enediol monomer that were in equilibrium. Kinetic analysis of 
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the data allowed for a two-step process to be conjectured that incorporated a 

mutarotation like mechanism opening the ring to give the acyclic dimer 

intermediate which goes on to dissociate via the same mutarotation like 

mechanism to give monomeric GLLA which is in thermodynamic equilibrium 

with dimeric GLLA and two other conjectured species, one of which was an 

unlikely five membered ring. It was pointed out that the time scale for these 

interconversion were too fast for the NMR time scale
35

. This was a qualitative 

kinetics experiment that was done to determine what species were present during 

and after the dissociation of the dimer and to provide supporting evidence for a 

possible mechanism. Unfortunately no rate constants were obtained and recorded. 

This technique might be used to obtain the kinetic information for the DHA dimer 

dissociation by observing the increase in intensity of the carbonyl band as a 

function of time especially in instances where the NMR timescale is to slow.  

1.7.4 1
H NMR spectroscopy 

A cursory 
1
H NMR spectroscopy study of the DHA dimer dissociation in DMSO-

d6 at 25 °C provided kinetic data in the form a first order half-life of 64 hours.
23

 

This corresponded
3
 to a rate constant of 1.81 x 10

-4 
min

-1
 a result which allowed 

the comparison between the DHA dimer dissociation rate constants obtained in 

water (3.4 x 10
-2

 min
-1

) and obtained in DMSO-d6. The comparison suggested 

that the amphiprotic solvent water was catalysing the reaction at a faster rate than 

the aprotic DMSO-d6.  



A kinetics study observing the dimer to monomer conversion of glycolaldehyde 

(GLLA) in deuterated methanol, acetone and DMSO was monitored using 
1
H 

NMR spectroscopy.
36

 The rate of conversion was determined using a Varian A-

60-A (60 MHz) NMR spectrometer to monitor the disappearance of the dioxane 

ring, the appearance and subsequent disappearance of the intermediate and the 

appearance of the monomeric aldehyde, Figure 1.7. 

                                                 

3
 The value for the DHA dissociation in DMSO-d6 had to be determined rearranging the first order 

half-life equation… … to give the expression in terms of   , as the only kinetic 

information provided in the journal article consisted of the statement, “the conversion to monomer 

is only 50 % complete after 64h”. Therefore the rate constant was determined… 

= 1.81 x 10
-4

 min
-1

. 
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Figure 1.7: The originally proposed reaction scheme 

The conjectured intermediate was a five-membered dioxolane ring, Figure 1.7. 

The monitoring of these species was achieved by assigning a unique proton 

signal(s) to each of the three species and integrating each of these signals to give 

response factor values. The thus obtained response factor values were 

proportional to the concentration of the species from which these signals 

emanated. For the disappearance of the dioxane ring in DMSO-d6, the Hx proton 

signal (4.67δ) was followed, Figure 1.7. For the appearance of the proposed 

dioxolane intermediate and the monomer, the Hz (5.45 δ) and Hy (5.00 δ) signals 

were followed for the dioxolane ring and both the hydroxyl (4.11 δ) and aldehyde 

(9.43 δ) proton signals were followed for the monomer.  

The change in response factor value for each of these signals as a function of time 

was used to show an approximated first order two-step sequential process 

requiring two rate constants (k1 and k2) and involving an intermediate, Figure 1.8, 

with A: representing the dioxane ring, B: the intermediate and C: the monomer. 

 

Figure 1.8: The sequential equation approximation 

The rate constant determination was achieved by developing a set of differential 

rate equations that used the initial concentrations of the two cyclic species. These 

equations were integrated to give the rate equations in terms of concentration: 

 , 

 , 
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When these integrated rate equations were plotted with the appropriate initial 

concentrations, the resulting graphs showed a reasonable correlation with the 

graphs for the experimentally obtained data points. The rate constants at different 

initial concentrations of GLLA in methanol-d6 are given in Table 1.3. 

Table 1.3: The rate constants for the dissociation of GCLA in methanol-d6 

[A]0 (mol L
-1

) k1 min
-1 

k2 min
-1

 κ = k2/ k1 

1.46 5.8 x 10
-2 

3.9 x 10
-2

 0.68 

0.88 4.2 x 10
-2

 2.8 x 10
-2

 0.66 

0.47 3.4 x 10
-2

 2.2 x 10
-2

 0.64 

 

Unfortunately, as no error has been assigned to the data in Table 1.3, it was not 

possible to make any inferences about the relationship between concentration and 

the rate constants. The k2 values in deuterated acetone and DMSO were not 

determined because without an acid catalyst, this final step proceeded at a very 

slow rate. 

1.8 The anomeric effect 

The anomeric effect
7,37-40

 is a stereoelectronic effect that was first named in 

carbohydrate chemistry to describe an effect observed in pyranose rings 

containing electronegative substituents at the anomeric carbon (C-1). The term 

refers to the tendency of an electronegative substituent on the anomeric carbon of 

a pyranose ring to adopt the sterically unfavourable axial conformation. Were 

steric interactions alone taken into account, the bulkier substituents in a pyranose 

ring would preferentially adopt the equatorial position, as is the case for the 

cyclohexane analogues. Edward was the first to describe the high abundance of 

the α anomer of tetrahydro-2-methoxypyran, Figure 1.9, in terms of the 

geometrical arrangement of the lone pair of electrons on the ring oxygen relative 

to the position of the electronegative substituent in 1955.
37

 In 1958 Lemieux 

coined the term “anomeric effect” to refer to this observation while studying the 

anomerisation of a selection of acetylated aldohexopyranoses.
37
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Figure 1.9: The tetrahydro-2-methoxypyran anomer equilibrium 

Although the anomeric effect was first named in carbohydrate chemistry it is a 

general effect that can be observed in the system R-X-A-Y, Figure 1.10, with the 

preference of the sterically less favoured gauche-conformation over the anti-

conformation. The higher the electronegativity of Y, the greater the anomeric 

effect.
39

 The more established model for the anomeric effect is the “Antiperiplanar 

Lone Pair Hypothesis” (ALPH) which states that hyperconjugation resonance 

stabilises the axial configuration by distributing electron density from the HOMO 

non-bonding electrons (lone pair) of the X atom to the LUMO anti-bonding σ* 

orbital of the A atom
39

, Figure 1.10. 

 

 

Figure 1.10: The conformational tendencies of the R-X-A-Y system. R represents 

hydrogen or carbon, X is an atom with a lone pair (s), A is usually carbon and Y is 

an electronegative atom. 
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Using the ALPH model, Figure 1.11, it can be shown that the high stability of the 

DHA dimer in the solid state results from a double anomeric effect afforded by 

the positions of the axial hydroxyl groups being anti-periplanar to the lone pair of 

electrons on the adjacent ring oxygens. The anti-periplanar geometry results in 

hyperconjugation between one of each of the ring oxygens lone pairs and the 

empty σ* antibonding orbitals extending from the carbon-hydroxyl carbon σ-

bonds. The delocalization of electron density on both sides of the ring lowers the 

energy of the system thus increasing the stability of the ring.  

 

Figure 1.11: Stabilisation of the DHA dimer using the ALPH model 

This effect is somewhat trivial in the case of the DHA dimer as the 

hydroxymethyl groups would be expected to be equatorial due to steric effects. A 

more demonstrable 1,4-dioxane example for the anomeric effect is the crystal 

structure for the glycolaldehyde dimer.
32

 Although the glycolaldehyde dimer, 

Figure 1.12, has no hydroxymethyl groups occupying the equatorial positions, the 

relatively bulky hydroxyl groups still occupy the sterically unfavourable axial 

positions as a result of the anomeric effect. 

 

 

Figure 1.12: Stabilisation of the GLLA dimer using the ALPH model 

1.9 Mutarotation 

Mutarotation in carbohydrate chemistry is the change in optical rotation resulting 

from the anomerization of reducing sugars. In 1846 Dubrunfaut
41

 observed that an 

aqueous solution of glucose experienced a change in optical rotation from ~110° 
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to ~52°. It has since been shown that this change in the optical rotation of D-

glucose is a result of the equilibrium reached between α-D-glucopyranose
42

 with 

an optical rotation of 112.2° and β-D-glucopyranose
42

 with an optical rotation of 

+18.7°,  via the mutarotation reaction to give an optical rotation of 52.5° at 

equilibrium for the racemic mixture.  

Mutarotation has been shown to be catalysed by both acid and base with the 

proposed mechanisms,
28,43,44

Figure 1.13 and Figure 1.14. The rate determining 

step in both acid catalysis and base catalysis is the opening of the ring. Due to the 

very low concentration of any acyclic aldose intermediate it has been proposed 

that the pyranose or furanose ring opens to give a “pseudo-acyclic” intermediate 

before promptly closing again.
44,45

 The conformation of the pseudo-acyclic 

intermediate is very close to that of the closed ring and free rotation around the 

anomeric and adjacent ring carbon allows for the anomerisation to proceed driven 

by opposing thermodynamic and anomeric effect contributions. 

1.9.1 The acid catalysed mutarotation mechanism 

The acid-catalysed mechanism, Figure 1.13, begins with a rapid and reversible 

proton exchange between the acid catalyst and the ring oxygen which is the fast 

1
st
 step. This is followed by the slow rate determining step that involves the 

abstraction of the anomeric hydroxyl proton with the transfer of electrons from the 

hydroxyl bond to form a carbonyl bond which initiates an electron transfer from 

the anomeric carbon to the ring oxygen to open the ring. Free rotation around the 

C-1 and C-2 bond (in this example) allows for a change in the anomeric hydroxyl 

orientation. The ring promptly closes with electrons being transferred back from 

the ring oxygen to the anomeric carbon and from the carbonyl bond to an 

available proton to give the anomeric hydroxyl group with a possible α orientation 

(36% for glucopyranose) or a possible β orientation (64% for glucopyranose). 

This step is followed by the abstraction of the ring oxygen proton to give the 

product.
28
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Figure 1.13: The acid catalysed mutarotation mechanism 

 

1.9.2 The base catalysed mutarotation mechanism 

The base catalysed mechanism, Figure 1.14, is initiated by the anomeric hydroxyl 

proton being abstracted with the transfer of electrons from the hydroxyl bond to 

form a carbonyl bond which initiates an electron transfer from the anomeric 

carbon to the ring oxygen to open the ring. Rotation of the anomeric carbon 

allows for a change in the anomeric hydroxyl orientation. The ring promptly 

closes again with electrons being transferred back from the ring oxygen to the 

anomeric carbon and from the carbonyl bond to an available proton and finally 

with the abstraction of the proton bonded to the ring oxygen to give the product.
28
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Figure 1.14: The base catalysed mutarotation mechanism 

 

1.9.3 The effect of the solvent 

Both acid catalysis and base catalysis each involve acid and base catalytic steps in 

their reaction mechanisms with classification depending on whether originally a 

proton was accepted by or abstracted from the cyclic sugar. Theoretical 

calculations
46

 focusing on a series of monosaccharides showed that the hydroxyl 

oxygens contain almost twice the electron density as the ring oxygen and it would 

therefore be expected, under the acidic conditions of acid catalysis, that the 

hydroxyl protons would be protonated rather than the ring oxygen. In 

aqueous/dipolar solvent however, hydrogen bonding of the solvent to the 

anomeric hydroxyl proton transfers electron density to the ring oxygen making it 

more basic and a more likely proton acceptor. Theoretical calculations
46

 indicate 

that the anomeric hydroxyl proton is the most acidic proton which corresponds to 

its preference for extraction in the mechanism.  
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Glucose is mainly present in its pyranose form in aqueous solution with 

insignificant traces of its furanose and aldehyde forms resulting in the 

mutarotation reaction exhibiting first order kinetics of the form α-D-

glucopyranose ⇌ β-D-glucopyranose.  

1.10 Dimethyl sulfoxide solvent 

All NMR kinetic experiments in this study of the dissociation of the DHA dimer 

were performed in anhydrous DMSO-d6 to simulate the dehydrating nature of the 

honey matrix. DMSO is a dipolar protophylic aprotic solvent that contains a 

trigonal pyramidal structure with a central sulphur atom and loan pair of electrons 

at the apex, Figure 1.15.  

 

Figure 1.15: The ball and stick model of DMSO 

DMSO is a relatively viscous liquid with a viscosity of 1.99 cP.
47,48

 For 

comparison, water has a viscosity of 0.89 cP
47

 and acetic acid has a viscosity of 

1.06 cP.
47

 DMSO is an effective hydrogen bond acceptor with the DMSO-water 

hydrogen bond being 1.33 times stronger than the water-water hydrogen bond,
49

 a 

result that is related to DMSO being 1.5 times more basic than water.
50

 

A permanent dipole results from the large difference in electronegativity between 

the electronegative oxygen atom (3.50 on the Pauling Scale)
47,51

 and the relatively 

electropositive sulphur atom (2.44 on the Pauling Scale).
47,51

 The methyl groups 

serve to shield the electropositive sulphur atom from engaging in intermolecular 

interactions thus effectively burying the positive component of the permanent 

dipole within the molecule. The buried positive component of the DMSO dipole 
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results in DMSO being able to stabilise and solvate cations via the electronegative 

oxygen atom but unable to stabilise or solvate anions. Anions are particularly 

reactive in DMSO as oxygen-cation solvation eliminates ion-pairing between the 

cation and anion resulting in the sulphur atom being unable to effectively solvate 

the anion and thus leaving the anion free to engage in reactions relatively 

unimpeded.
52

 

1.11  Aim of this thesis 

As the honey matrix is relatively dehydrating with the majority of its water 

content bound up in hydrogen bonding, it is reasonable to assume that the DHA in 

mānuka may exist, at least partially, in the dimeric form. The conversion of DHA 

in mānuka honey occurs in several steps over a period of approximately three 

months at a temperature of ~37 °C.
19

 A kinetics study of the formation of MGO in 

mānuka honey identified the dissociation of the DHA dimer as the rate 

determining step.
53

 

The aim of this study was to investigate the kinetics for the dissociation of DHA 

in mānuka honey by using DMSO-d6 as a honey matrix anhydrous analogue and 

tracing the dissociation reaction using 
1
H NMR spectroscopy.  
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2 Experimental 

2.1 Materials 

Dihydroxyacetone dimer (assay 97%), anhydrous sodium hydroxide (assay 97%), 

anhydrous dimethyl sulfoxide-d6 (99.9 atom % D, <50 ppm water, d. 1.19g mL
-1

), 

deuterium oxide (D2O) standard grade (99.98 atom %±0.01atom % D, d. 1.12 g 

mL
-1

), anhydrous acetic acid-d4 (99.5 atom % D), hydrochloric acid (HCl) (36 % 

w/w: d. 1.18 g mL
-1

) were all purchased from Sigma-Aldrich and used as 

supplied. 

2.2 Nuclear Magnetic Resonance (NMR) Experiments
4
  

2.2.1 Specifications
5
 

All NMR experiments were performed on the University of Waikato School of 

Sciences Bruker AVIII (400) NMR spectrometer running Topspin 3.0 software. 

The spectrometer was fitted with a 5mm ATMA BBI probe operating at 400.13 

MHz for 
1
H and 100.62 MHz for 

13
C spectrometry with all experiments being 

performed at 300.0 K (± 0.1). 

2.2.2 NMR kinetic experiments 

2.2.2.1 1H NMR 

1
H NMR spectra were calibrated using the DMSO-d6 solvent peak at 2.50 ppm 

(relative to TMS). The 
1
H NMR spectra that were acquired for standard kinetic 

data used 8 scans with a spectral width of 18.02 ppm. The kinetic experiments 

were performed with a fixed delay using the multi_zgvd Topspin 3.0 au program. 

For the standard 
1
H NMR kinetic experiments a fixed inter-experiment delay of 

70 seconds was used with the 8 scan experiment taking 50 seconds to give an 

overall inter-experiment acquisition cycle of 2 minutes. For experiments with 

half-lives less than 15 minutes no delay was used to give an overall acquisition 

cycle of 54 seconds. 

                                                 

4
 All processed 

1
H NMR spectroscopic data obtained from the kinetic experiments is held in a 

DVD that is attached to the appendices. 

 
5
 The parameters for all 1D and 2D NMR experiments are in the appendix: 10.2.1 – 10.2.9 
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2.2.2.2 13
C NMR 

13
C NMR spectra were calibrated using the DMSO-d6 solvent peak at 39.52 ppm 

(relative to TMS). The 
13

C NMR spectra that were acquired to obtain kinetic data 

used 128 scans with a spectral width of 238.89 ppm. The kinetic experiments 

were performed with a fixed delay using the multi_zgvd Topspin 3.0 au program. 

For the standard kinetic experiments a fixed delay of 10 seconds was used with 

the 128 scan experiment taking 296 seconds to give an overall acquisition cycle of 

5 minutes 6 seconds. Unfortunately this time could not be reduced for rapid 

experiments as the number of scans would need to be reduced which would 

greatly increase the noise in an already noisy baseline. 

2.2.2.3 Data acquisition and treatment 

On completion of the kinetic run the multicmd command in Topspin was used to 

automatically Fourier transform, phase and normalise the base line for all the 

spectra obtained. This was a very useful time saving device as the number of 

obtained spectra usually ran into the hundreds and sometimes into the thousands 

thus reducing a task that would have taken hours to complete to an automatic 

process that took 5 to 10 minutes to complete. 

The first spectrum of the experiment set had all the non-overlapping signals 

integrated, making sure that all the as yet unseen signal chemical shifts ranges 

were also integrated. This first spectrum was saved and written as a misc file 

(wmisc). The multi_integ3 au program, using the saved wmisc file, integrated all 

the spectra using the integration ranges obtained in the first spectrum. The 

integration data for all spectra, including chemical shift ranges, were saved as a 

text file which was imported into Excel where the kinetic data was able to be 

analytically processed and graphed. 

2.2.3 Sample preparation 

2.2.3.1 Assignment of spectra 

DHA dimer was weighed (~0.0200 g) in a vial and DMSO-d6 (0.550 mL) was 

transferred into this vial. The solution was mixed using a vortex mixer and 

transferred into a 5 mm NMR tube.  

 

2.2.3.2 Mutarotation experiments 

2.2.3.2.1 D2O mutarotation experiments 
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Glucose was weighed (~0.0050 g) in a vial and the required volume of D2O was 

determined using the equation: 

 

2.2.3.2.2 DMSO-d6 mutarotation experiments 

Glucose was weighed (~0.0050 g) in a vial and the required volume of DMSO-d6 

was determined using the equation: 

 

2.2.3.2.3 D2O catalysed with HCl mutarotation experiments 

A solution of appropriate concentration of HCl in D2O was prepared 

The concentration of HCl in the supplied aqueous solution was converted from 36 

% w/w to 11.65 mol L
-1

 utilising the provided specific density of 1.18 g mL
-1

 

using the following equation: 

 

To obtain the appropriate concentration of HCl in D2O using 0.100 mol L
-1

 as an 

example, 11.65 mol L
-1

 is converted to 0.1000 mol L
-1

 by… 

 

 

The obtained value of x was utilised in solving the following equation to obtain 

the required volume of HCl(aq)from a chosen volume of D2O. 

 

This relationship was derived from the previous relationship  as follows… 
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See footnote
6
 for symbol definitions. 

and  cancel out because . 

 

 

 

The reaction mixture was prepared 

Glucose was weighed (~0.0050 g) in a vial and the required volume of the D-

2O/HCl solution was determined using the equation: 

 

An example calculation  

This example used for a required HCl concentration of 0.100 mol L
-1

, a volume of 

2.00 mL of D2O, a volume of 0.58 mL of the D2O/HCl mixture, a required 

glucose concentration of 0.500 molL
-1

 and a glucose mass of 0.0540 g.   

The required volume of HCl(aq) was determined… 

 

This volume of HClaq was added to the volume of D2O and mixed in a vortex 

mixer. The volume of the required D2O/HCl was determined… 

 

This volume of the D2O/HCl mixture was transferred into the vial containing the 

weighed glucose and prepared for analysis on the NMR spectrometer. 

2.2.3.3 Uncatalysed DHA dimer dissociation kinetic experiments 

DHA dimer was weighed (~0.0050 g) in a vial and the required volume of 

DMSO-d6 was determined using the equation: 

                                                 

6
 ci = initial concentration (mol L

-1
), cf = final concentration (mol L

-1
), ni = initial amount (mol), nf 

= final amount (mol), vi = initial volume (mL), vf = final volume (mL) 

 



 

25 

 

This volume of the DMSO-d6 was transferred into the vial containing the weighed 

DHA dimer and a timer was immediately set to provide t(0) for the kinetic 

analysis. The reaction solution was mixed on the vortex mixer and transferred into 

an NMR tube and inserted into the NMR spectrometer 

2.2.3.4 D2O catalysed DHA dimer dissociation kinetic experiments 

The concentration of D2O in the solution of DMSO-d6 was represented as a mass 

percentage (m%) for comparison with the concentration of water in honey (~18 

m%) and as two liquids were being added together, the final volume was 

ambiguous thus this information was unavailable to determine a concentration in 

moles per litre.   

A solution of appropriate concentration of D2O in DMSO-d6 was prepared 

The mass of the predetermined volume of DMSO-d6 was calculated using the 

specific density of DMSO-d6 at 20°C (d. 1.19 g mL
-1

)… 

 

Using this determined mass of DMSO-d6 and the required m% to determine the 

required volume of D2O… 

 

 

 

 

 

 

Preparation for the addition of the DHA dimer to the mixture is as reported in the 

preceding subsection 2.2.3.3. 

An example calculation  

This example used a required m% of 10m%, a 0.600 mL volume of DMSO-d6, a 

mass of 0.0048 g of DHA dimer, a concentration of 0.25 mol L
-1

 for the DHA 
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dimer, a relative molecular mass (Mr) for the DHA of 180.16 gmol
-1

  and the 

specific densities of DMSO-d6 (d. 1.19 g mL
-1

) and D2O (d. 1.12 g mL
-1

). 

 

 

 

This calculated volume of D2O was added to the predetermined volume of 

DMSO-d6 in a vial and mixed on the vortex mixer.  

DHA dimer was weighed in a vial to give a mass 0.0248 g and the required 

volume of the DMSO-d6/D2O was determined… 

 

This volume of the DMSO-d6/D2O mixture was transferred into the vial 

containing the weighed DHA dimer and prepared for analysis on the NMR 

spectrometer. 

2.2.3.5 CD3COOD catalysed DHA dimer dissociation kinetic experiments 

The concentration of CD3COOD in the solution of DMSO-d6 was represented as 

a molar percentage (mol%) as this gave an intuitive appreciation on the relative 

amount of acid molecules present in a given reaction. The mol% was also used as 

two liquids were being added together with an ambiguous final volume thus this 

volume information was unavailable to determine a concentration in moles per 

litre.   

A solution of appropriate concentration of CD3COOD in DMSO-d6 was prepared 

The number of moles of the predetermined volume of DMSO-d6 was calculated 

using the specific density of DMSO-d6… 

 

Using this determined number of moles of DMSO-d6 and the required mol%, the 

required volume of  was determined … 
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Preparation for the addition of the DHA dimer to the mixture is as reported in the 

previous subsection 2.2.3.3. 

An example calculation  

This example used a required mol% of 65 mol%, a 1.200 mL stock solution 

volume of DMSO-d6, a mass of 0.00254 g of DHA dimer, a concentration of 0.25 

mol L
-1

 for the DHA dimer, a relative molecular mass for the DHA of 180.16 

gmol
-1

 and for CD3COOD of 64.08 gmol
-1

 and the specific densities of DMSO-d6 

(d. 1.19 g mL
-1

) and  (d. 1.12 g mL
-1

). 

 

 

 

This calculated volume of  was added to the predetermined volume of 

DMSO-d6 in a vial and mixed on the vortex mixer.  

DHA dimer was weighed in a vial to give the mass 0.0254 g and the required 

volume of the DMSO-d6/  mixture was determined… 

 

This volume of the DMSO-d6/D2O mixture was transferred into the vial 

containing the weighed DHA dimer and prepared for analysis on the NMR 

spectrometer. 
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2.2.3.6 CD3COOD/CD3COO- catalysed DHA dimer dissociation kinetic 

experiments 

The concentrations of DHA (0.25 M) and CD3COOD (10 mol%) were kept 

constant as the concentration of CD3COO
-
 was incrementally increased. The 

concentration of CD3COO
- 
was represented as a molar percentage (mol%) relative 

to the amount of CD3COOD present in the DMSO-d6 solution as these series of 

experiments were intended to examine the effect on the reaction rate constant as 

the concentration of CD3COO
-
 was increased against a constant concentration of 

CD3COOD. CD3COO
- 
was produced in situ by the addition of sodium hydroxide 

(NaOH) which, as a strong base, deprotonated an equimolar amount of 

CD3COOD thus producing an equimolar amount of CD3COO
-
. The molar amount 

of added NaOH was subtracted from the original amount of CD3COOD added 

when calculating the amount of DMSO-d6 to add to the CD3COOD/ CD3COO
- 

mixture. This was performed in order to maintain a constant concentration of 

CD3COOD. 

A stock solution of specified mol% of CD3COO
-
 to CD3COOH was prepared 

A weighed mass value of NaOH, that had been transferred to a vial, was 

converted to moles and together with the required mol% inputted into the 

equation… 

 

This molar value was converted to the volume value, by converting it to a mass 

value and dividing this by the specific gravity of CD3COOD (d. 1.12 g mL
-1

), and 

transferred to the vial containing the weighed NaOH and mixed with a vortex 

mixer for five minutes to give the stock solution of CD3COOD/CD3COO
-
. 

A mixture of CD3COOD/CD3COO
-
  of specified concentration was prepared from 

the stock solution 

A volume of stock was transferred to a vial. The molar amount of OH
-
 used, i.e. 

the molar amount of CD3COO
-
 present was determined by converting the volume 

value of the CD3COOD to the mass value using the specific gravity of CD3COOD 

and converting the mass value to the molar value. The determined molar value for 

CD3COOD and molar percentage of the stock were used in the equation… 
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to determine the amount of CD3COO
-
 present in the diminished volume of stock. 

This molar value of CD3COO
-
 and the required mol(x)% for the mixture were 

used to calculate what the total amount of CD3COOD in the CD3COOD/ 

CD3COO
-
 mixture would be… 

 

The original amount of moles of CD3COOD in the reduced volume of stock was 

subtracted from the calculated total amount of moles of CD3COOD that would be 

required to give the required mol%. This value for the difference in moles was the 

amount of moles of CD3COOD that needed to be added to the stock volume. This 

value was converted to the mass value that was divided by the specific gravity of 

CD3COOD to give the volume of CD3COOD that was to be added to the stock 

solution in the vial to give a CD3COOD/CD3COO
-
 of required mol%. 

Adding DMSO-d6 to the CD3COOD/CD3COO
-
 mixture  

The molar amount of DMSO-d6 to add to the CD3COOD/CD3COO
-
 mixture to 

produce the required mol% of CD3COOD in DMSO-d6 was determined using the 

equation… 

 

The molar amount of OH
-
 added to produce the CD3COOD/CD3COO

-
 mixture 

was subtracted from the molar amount of CD3COOD originally used in the 

production of the CD3COOD/CD3COO
-
 mixture as it was assumed that this had 

all been converted to CD3COO
-
. The calculated molar value of the required 

DMSO-d6 was converted to the mass value and then to the volume value of 

DMSO-d6 to be transferred into the vial containing the CD3COOD/CD3COO
-
 

mixture to give the DMSO-d6/CD3COOD/CD3COO
-
 mixture. 

Adding DHA to the DMSO-d6/CD3COOD/CD3COO
-
 mixture 

The volume of DMSO-d6/CD3COOD/CD3COO
-
 mixture to be added to a 

weighed amount of DHA was calculated using the equation…  

 

This volume of DMSO-d6/CD3COOD/CD3COO
-
 mixture was added to a weighed 

amount of DHA in a vial and prepared for analysis. 

An example calculation  
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A reaction mixture of DHA (0.25 M) in DMSO-d6 with CD3COOD (10 mol% 

relative to DMSO-d6) and CD3COO
-
 (4 mol% relative to CD3COOD) was 

prepared from a stock solution of CD3COO
-
 (8 mol% relative to CD3COOD) 

1. A stock solution of 8.00 mol% of CD3COO
-
 relative to CD3COOH was 

prepared 

The amount of NaOH was transferred to a vial and weighed (0.0371 g). This value 

was converted to moles… 

 

This value and the value for the mol% was used to determine the number of moles 

of CD3COOD needed… 

 

This molar value was converted to the mass value… 

 

This mass value was converted to the volume value… 

 

This volume of CD3COOD was transferred to the vial containing NaOH and 

mixed on the vortex mixer to produce the stock solution (actual 8.07 mol%) to be 

used for the series of CD3COOD/CD3COO
-
 catalysed experiments. 

A mixture of CD3COOD/CD3COO
-
 (4 mol%) was prepared from the stock 

solution 

An amount of CD3COOD (0.0700 mL) of stock solution was transferred to a vial 

and the molar amount of CD3COOD in the vial was calculated… 

 

 

This molar value was used to calculate the amount of CD3COO
-
 in the 0.0700 mL 

volume of stock solution… 

 

This molar value was used to calculate the total amount of CD3COOD required to 

produce a solution of concentration 4.00 mol%... 
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The amount of moles in the reduced stock solution was subtracted from the total 

amount of moles required for the 4.00 mol% and converted to a volume value to 

give the volume of CD3COOD to be added to the stock solution to give a solution 

of 4.00 mol% CD3COO
-
 relative to CD3COOD… 

 

 

 

This volume of CD3COOD was transferred to the vial containing the 0.0700 mL 

volume of stock solution and mixed on the vortex mixer to produce a mixture of 

CD3COOD/CD3COO
-
 of concentration 4.00 mol%. 

Adding DMSO-d6 to the CD3COOD/CD3COO
-
 4.00 mol% mixture to produce a 

mol% concentration of CD3COOD to DMSO-d6 of 10% 

A volume of the CD3COOD/CD3COO
-
 (0.0553 mL) mixture was transferred to a 

vial. The amount of moles of CD3COOD in this volume was calculated… 

 

 

This molar value and the mol% of 4 % were used to calculate the amount of 

CD3COO
-
 present… 

 

These molar values for CD3COOD and CD3COO
-
 with the required mol% of 8 % 

were used to calculate the amount of moles of DMSO-d6 required to produce a 

mixture of concentration CD3COOD to DMSO-d6 of 8 mol%... 

 

This molar value of DMSO-d6 was converted to a volume value… 
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Therefore 5.90 x 10
-1

 mL of DMSO-d6 was transferred to the vial containing 5.53 

x 10
-2

 mL of CD3COOD/CD3COO
-
 mixture to produce a DMSO-

d6/CD3COOD/CD3COO
-
 mixture with a CD3COOD concentration to DMSO-d6 

of 10.0 mol% and a CD3COO
-
 concentration to CD3COOD of 4.00 mol%. 

Adding DHA to the DMSO-d6/CD3COOD/CD3COO
-
 mixture 

An amount of DHA was transferred to a vial and weighed (0.0245 g). The   

volume of the DMSO-d6/CD3COOD/CD3COO
-
 mixture to be added to the 

weighed amount of DHA was calculated…  

 

This volume of DMSO-d6/CD3COOD/CD3COO
-
 mixture was transferred to the 

weighed amount of DHA in the vial and hastily prepared for analysis on the NMR 

spectrometer. 
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3 Assignment of the 
1
H NMR & 

13
C NMR 

spectra of the dihydroxyacetone dimer and 

monomer in DMSO-d6 

3.1 Introduction 

1D and 2D NMR spectra of the freshly prepared DHA dimer sample, Figure 3.1, 

in DMSO-d6 were obtained and the signals were assigned, Table 3.3, Table 3.6 

and Table 3.7, to elucidate which 
1
H and 

13
C signals could be traced in the kinetic 

experiments that follow the disappearance of the DHA dimer. The 
1
H and 

13
C 

NMR spectra for the DHA monomer were assigned, Table 3.7, to allow for the 

kinetic data for the formation of the DHA monomer to be obtained. The chemical 

shifts and signal assignments were compared to the results of two earlier studies 

carried out in the 1970s on low resolution instruments.
23,25

  

 

Figure 3.1: DHA 1,4-dioxane dimer structure showing labelling; due to symmetry 

there are only 2 carbon environments (C-1 and C-3 are equivalent and C-2) and 5 

proton environments ( H-1a, H-1e, C-2-OH, C-3-OH and the H-3a and H-3b 

environment)  

3.2 Assignment of the 
1
H NMR spectrum  

The 
1
H NMR spectrum for the DHA dimer, Figure 3.2, showed three discernible 

chemical environments at 5.62, 4.63 and 3.92 ppm and a multiplet in the 3.35 - 

3.15 ppm region.  
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Figure 3.2: The assigned 
1
H NMR spectrum of the DHA dimer in DMSO-d6 

 

3.2.1 Integration: 

Integration of the spectrum indicated that the three downfield signals resulted 

from single protons while the downfield portion of the multiplet contained two 

proton signals with the remainder of the multiplet containing one proton. This 

accounted for the six 
1
H environments. 

3.2.2 The signal at 5.62 ppm: 

The doublet at 5.62 ppm was assigned to the axial hydroxyl proton C-2-OH. This 

signal was furthest down field due to deshielding as a result of being bonded to 

the anomeric carbon. The signal had a coupling constant of 1.00 Hz indicating 

that it was engaged in long-range coupling with the axial proton (H-1a) as the two 

nuclei maintain a rigid planar W geometry.
54

 This geometry allows for coupling to 

occur through the “tail ends” of the carbon and oxygen p-orbitals, thus 

circumventing the C – O bond.
54

 If the C-2-OH group had been equatorial, there 

would have been no 1.00 Hz coupling constant as the rigid planar W geometry 

would not have been present. 

3.2.3 The signal at 4.63 ppm: 

The apparent triplet at 4.63 ppm was actually a doublet of doublets as the proton 

was coupling to a pair of non-equivalent protons. This signal was assigned to the 

hydroxymethyl hydroxyl proton (C-3-OH) which was coupled (
3
J) to the 

methylene protons (H-3a and H-3b) with a coupling constant of ~6.24 Hz. The 

C-2-OH 

C-3-OH 

H-1b 

H-1a 

H-3b 

H-3a 
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chemical shift is in the range for hydroxyl protons (3.9 – 4.7 ppm)
55

 in DMSO-d6 

and has the same shift as the hydroxyl proton in the primary alcohol ethanol.
55,56

 

3.2.4 The signal at 3.92 ppm: 

The doublet of doublets at 3.92 ppm was assigned to the axial proton (H-1a) as its 

larger coupling constant (11.36 Hz) was indicative of diastereotopic geminal 

coupling
54,57

 and its smaller coupling constant (0.74 Hz) was a indicative of long-

range spin-spin coupling with the C-2-OH proton. H-1a must be axial otherwise 

the W geometry would not be available to allow for long range coupling. 

3.2.5 The signal at 3.30 ppm in the multiplet: 

The peaks at 3.32 and 3.29 ppm in the multiplet were the doublet signal for the 

equatorial proton (H-1e) with a diastereotopic geminal (
2
J) coupling constant of 

11.36 Hz to H-1a. Unlike the axial proton, there was no long-range coupling with 

the axial hydroxyl proton as the geometry does not allow for p-orbital overlap.  

3.2.6 The second-order splitting in the multiplet: 

The remaining signals in the multiplet were assigned to the diastereotopic 

methylene protons (H-3a, H-3b) on the hydroxymethyl substituent. The complex 

splitting patterns of these two signals resulted from second-order (strong) 

coupling which alters the relative signal intensities and chemical shifts and 

therefore the true chemical shifts to be assigned to these protons needed to be 

calculated.  

When the difference in chemical shifts (Δ δν) and coupling constants (J) of a pair 

of coupling nuclei have the relationship: 

 

Where δν is over an order of magnitude greater than J, first-order (weak) coupling 

spectra are observed with simple splitting patterns where chemical shifts are at the 

centre of split lines and coupling constants are obtained directly from the 

spectrum. When the difference in chemical shifts and coupling constants 

approaches the same order of magnitude, the following relationship results: 
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Spectra start to exhibit complex second-order splitting effects where the signal 

intensities no longer follow Pascal’s triangle and the true chemical shifts cannot 

be obtained directly from the spectrum.
58

  

Second-order signals display characteristic splitting patterns often giving the 

“roofing” effect which can be useful in identifying coupling nuclei and the type of 

spin-system in simple systems. As the spin-system becomes more complex the 

second-order splitting patterns quickly become incomprehensible making manual 

interpretation of the spectrum impossible.  

For complicated spin-systems there is software available (e.g. WinDNMR) that 

will solve simultaneously the quantum mechanical wave equations to untangle the 

multiplet and assign true chemical shift and coupling constant values to second-

order splitting patterns.
54

 

One of the advantages of having a spectrometer with higher field strength is that 

as the field strength increases the difference in chemical shift (Δ δν) between two 

coupling nuclei (measured in Hertz) also increases whilst the coupling constant 

(J) remains the same. This results in the relationship Δ δν/J < 10 for second-order 

splitting converting to Δ δν/J > 10 for first-order splitting and thus simplifying the 

observed spectrum for manual inspection. 

3.2.6.1  Spin-system notation: 

The Pople notation incorporates letters of the alphabet to represent relative 

differences in chemical shift. The proton spin-system of the diastereotopic 

methylene and hydroxyl protons of the hydroxymethyl substituent is defined as 

ABX where A and B represent H-3a and H-3b that are of similar chemical shift 

and X representing C-2-OH that is of a relatively different chemical shift to both 

H-3a and H-3b. This simple spin-system is relatively common and has a 

characteristic splitting pattern that is easily recognisable. Before calculating the 

ABX chemical shifts an understanding of the simpler AB spin-system is required. 

3.2.6.2  The AB spin-system: 

The simplest second-order splitting pattern results from the AB spin-system that 

produces four lines in the spectrum and involves the spin-spin coupling of two 

nuclei with the relationship, Figure 1.3: 
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Second-order effects in this system result from the mixing of the four energy 

states predicted by quantum mechanics using the four spin-state combinations for 

the two coupling nuclei, Figure 1.4. This mixing alters the transition probabilities  

so that they can no longer be predicted by Pascal’s triangle due to signal intensity 

being transferred from the outer lines to the inner lines
58

 giving the characteristic 

“roofing” effect as can be seen in Figure 3.3. 

 

 

Figure 3.3: Second-order splitting for a AB spin-system with A arbitrarily further 

downfield   

 

The AB spin-system can be defined by arbitrarily assigning nucleus A with a 

greater chemical shift relative to nucleus B, labelling the lower energy aligned 

spins α and the higher energy opposed spins ß, with the following spin-state 

combinations:  αα, α ß, ß α and ß ß, Figure 3.4, and labelling the four lines a, b, c, 

d, from higher to lower chemical shifts.  
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Figure 3.4: The spin-states and transitions (associated to each line) for the nuclei in 

the AB system 

 

Labelling the true chemical shift separation (without second-order coupling 

effects) between nucleus A and nucleus B, ν0δ, and the true chemical shifts for the 

nuclei νA and νB we get the equation: 

 

Table 3.1 shows the mathematical relationships between the transition energies 

and their relative intensities with the centre of the splitting pattern. The splitting 

pattern centre is obtained using the equation: 

 

Table 3.1: The transition energies and intensities relative to the centre of the 

splitting 

Transition Energy (Hz) Relative intensity 

 
 

 

b  

 
 

 
 

 

 
 

 

 

From Figure 3.3 and Table 3.1, the relationship: 
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is derived. This relationship is constant for all ABX systems.  

The true value, ν0δ can be derived from Figure 3.3and Table 3.1 as follows: 

  

  

  

therefore: 

  

3.2.6.3 The ABX system 

The differences in chemical shifts between the AB nuclei and the X nucleus have 

the relationship Δ δν/J > 10, thus the X signal is not affected by second-order 

effects leaving only the A and B chemical shifts to each be calculated separately 

as simple AB systems. νA and νB will both be doublets as they are each coupled to 

X. 

3.2.6.4 Calculating chemical shifts for the hydroxymethyl methylene protons 

The eight peaks in the multiplet were labelled a to h moving from higher chemical 

shift to lower chemical shift (see figure 4). Lines a and c are a combination of the 

H-3a and H-1e signals which has distorted the chemical shift values for the two H-

3a lines. As the ABX system is centro-symmetric,
58

 the lines f and h were 

reflected through the midpoint between lines d and e to give the undistorted 

frequency values for lines a and c, Table 3.2. 

Table 3.2: The chemical shifts for the lines in the AB sub-system 

Line Chemical shift (ppm) Chemical shift (Hz) 

a 3.3145* 1326.23* 

b 3.2984 1319.79 

c 3.2860* 1314.83* 

d 3.2700 1308.43 

e 3.2374 1295.38 

f 3.2214 1288.98 

g 3.2090 1284.02 

h 3.1929 1277.58 

* Adjusted values 
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The eight lines constitute two AB sub-spectra with the bold lines in Figure 3.5 

representing the H-3a signal and the lighter lines representing the H-3b signal. The 

true chemical shift for each AB sub-spectrum was calculated by reducing the four 

lines of each sub-spectrum to two lines using the method for solving AB systems 

as previously described. The remaining four lines are two doublets that can be 

paired depending on their coupling constants where the pairs that have coupling 

constants close to the coupling constants for the C-3-OH triplet. 

  

 

Figure 3.5: The graphical representation of the ABX splitting pattern of the 

hydroxymethyl methylene protons in the 1H NMR spectrum 

The midpoints νAν and νBν were first determined: 

 

 

The true separations ν0δA and ν0δB were determined: 

 

 

The determined separations were halved and added to and also subtracted from 

the midpoints for each sub-spectrum to give the calculated doublet lines for H-3a 

and H-3b. 
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The coupling constant for the calculated lines 1 and 3 is 6.42 Hz as is the coupling 

constant for lines 2 and 4. This value is relatively close to the coupling constant 

6.24 Hz for the C-3-OH triplet therefore the H-3a doublet was assigned the 

chemical shifts 3.298 (3.30) ppm and 3.281 (3.28) ppm and the H-3b doublet was 

assigned the chemical shifts 3.226 (3.23) ppm and 3.210 (3.21) ppm.  

3.2.7 H,H-COSY 

 

Figure 3.6: The COSY spectrum of the DHA dimer and DHA monomer in DMSO-

d6 

 

The COSY spectrum, Figure 3.6, and the expanded spectrum, Figure 3.7, showed 

3
J correlations between the C-3-OH triplet at 4.63 ppm and the signals for H-3b 

C-2-OH 
C-3-OH 

H-1a 

H-1e 

monomer  

  

H-3a 

H-3b 
monomer  
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(3.22 ppm) and H-3a (3.29 ppm) in the multiplet which supported their assignment 

as hydroxymethyl protons in an ABX spin-system with A representing H-3a, B 

representing H-3b and X representing C-3-OH.  

 

 

Figure 3.7: The expanded COSY spectrum of DHA is DMSO-d6 showing the H-3a/ 

C-2-OH and H-3b/ C-2-OH correlations  

 

There was a relatively strong 
2
J correlation observed between the H-1a doublet 

signal at 3.92 ppm and the H-1e doublet signal at 3.30 ppm with coupling 

constants 
2
J 11.4 Hz, Figure 3.8. This large coupling constant supported the 

assignment of these two signals to diastereotopic geminal protons, with one 

proton being axial and the other being equatorial in the dioxane ring.
59

 The 

literature value range for diastereotopic geminal proton coupling in a 1,3-dioxane 

ring is 11-14 Hz.
57

 

C-3-OH 

H-3b 

H-3a 
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Figure 3.8: The expanded COSY spectrum of DHA is DMSO-d6 showing the H-3a/ 

C-2-OH and H-3a /C-2-OH correlations and the H-2e / H-2a correlations. There is an 

inexplicable correlation between the monomer methylene signal and the H-1a dimer 

signal. 

 

On enlargement of the contour plot at 3.3 ppm, a 
2
J correlation was observed, just 

off-diagonal, between the signals assigned to the H-3a and H-3b protons, Figure 

3.9, with 
2
J coupling constants of 11.4 Hz. This supported the assignment of as 

the two signals as the diastereotopic geminal methylene protons associated with 

the hydroxymethyl substituent. 

 

H-1a 

H-1e 

C-3-OH 

H-3b 

H-3a 

monomer 

H-1a 
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Figure 3.9: The expanded COSY spectrum of DHA is DMSO-d6 showing the H3a 

and H3b correlations 

 

The COSY spectrum shows no correlations for the signal at 5.62 ppm which 

supports the assignment of this signal to the axial hydroxyl proton in the ring as 

its closest couplings are 
4
J which are out of the range (

2
J - 

3
J) for the COSY 

experiment. 

In Figure 3.8 there is a weak correlation between the dimer H-1a and monomer 

methylene proton. This apparent correlation is a result of coherence transfer 

between vicinal ring protons in the DHA dimer or the DHA monomer that 

maintain their magnetisation during the dissociation, which is in dynamic 

equilibrium, due to the long spin-lock acquisition times used in 2D 

spectroscopy.
60,61

 During the long acquisition time the dimer has dissociated to 

form two monomer units and thus the monomer methylene protons, that had 

engaged in coherence transfer as dimer protons, appear to have coherence with the 

dimer. The same phenomena occurs in the reverse direction of the dynamic 

H-3b H-3b 
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equilibrium reaction. To verify that these correlations were artefacts of the COSY 

experiment the 1D SELCOSY experiment, with a shorter acquisition time, was 

performed to see if the dimer/monomer correlations would still be present. 

3.2.8 SELCOSY 

The SELCOSY experiment effectively takes slices from the F2 axis of the COSY 

experiment by exciting a selected signal and providing a 1D spectrum with 

correlating peaks to the excited signal being observed. To verify that the H-1a was 

not engaging in coherence transfer with the monomer methylene protons in the 

COSY experiment, the H-1a signal was excited in the SELCOSY experiment, 

Figure 3.10. The SELCOSY spectrum only showed a 
2
J correlation between the 

H-1a excited signal and the H-1e signal with a very weak 
4
J correlation between 

the H-1a excited signal and the C-2-OH signal. There was no correlation between 

the H-1a signal and the monomer methylene signal thus validating the assertion 

that the correlation observed in the COSY experiment was an artefact of that 

experiment. 

 

 

Figure 3.10: The H-1a excited SELCOSY spectrum (bottom) stacked with the 

standard 
1
H NMR spectrum. 

 

The monomer methylene signal was excited to observe whether or not that it had a 

correlation with the H-1a signal as was seen in the COSY experiment. The 

SELCOSY spectrum, Figure 3.11, only showed a correlation to the monomer 

hydroxyl proton with no correlation with the H-1a as seen in the COSY 

C-2-OH Monomer 
H-1e H-1a 

C-2-OH 

Irradiated H-1a signal 
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experiment. Thus providing further evidence that the correlation observed in the 

COSY experiment was an artefact. 

 

 

Figure 3.11: The monomer methylene excited SELCOSY spectrum (bottom) stacked 

with the standard 1H NMR spectrum. 

 

3.2.9 HSQC 

The HSQC experiment allowed differentiation between the two methylene 

carbons signals at 66.3 ppm and 63.2 ppm by the observation of their 
1
J 

correlations with the attached protons, Figure 3.12 and Figure 3.13.  

The 
13

C signal at 66.3 ppm showed a 
1
J correlation with the H-3a and H-3b signals 

in the multiplet thus allowing the 
13

C signal at 66.3 ppm to be assigned to C-3. 

The signal in the 
13

C spectrum at 63.2 ppm showed 
1
J correlations to the H-1a 

signal at 3.92 ppm and the H-1e signal in the multiplet at 3.3 ppm which allowed 

this 
13

C signal to be assigned C-1, Figure 3.13. 

The C-2 
13

C signal at 92.8 ppm showed no 
1
J correlations as it was a quaternary 

carbon and therefore could not engage in 
1
J coupling with any protons, Figure 

3.12. 

 

Monomer 

hydroxyl 

Monomer 

methylene 
H-1a 

C-2-OH C-3-OH 

Irradiated monomer methylene signal 

Monomer hydroxyl correlation 
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Figure 3.12: The HSQC spectrum of DHA dimer and DHA monomer in DMSO-d6 

showing correlations between carbon and proton signals.  
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48 

 

Figure 3.13: The expanded HSQC spectrum of DHA dimer and monomer in DMSO-

d6 showing correlations for C-1 with H-1a and H-1e and with correlations for C-3 

with H-3a and H-3b. The monomer methylene signal shows correlation with 

monomer methylene carbon. 

 

3.2.10 HMBC 

The HMBC 2D experiment, Figure 3.14, detected 
2
J and 

3
J correlations between 

the proton and carbon signals. There was a 
3
J correlation between the   C-2-OH 

and the C-1 and C-3 signals and a 
2
J correlation to the C-2 signal.  

The HMBC spectrum showed that there was a 
2
J correlation between the 

monomer hydroxyl proton and the methylene carbon and, as would be expected, 

there was no 
1
J correlation between the methylene proton and methylene carbon 

as the 
1
J correlations were suppressed. There was a 

2
J correlation between the C-

3-OH and C-3 and a 
3
J correlation to C-2. There was no correlation to C-1 as this 

would have been a 
4
J correlation which was out of range for this HMBC 

experiment.  

monomer 
H-1a 

H-1e 

H-3a 

H-3b 

monomer 

C-3 

C-1 
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There was a 
3
J correlation between H-1a and C-3 and a 

2
J correlation to C-2. 

There were 
2
J correlations between the H-3 protons in the multiplet and C-2 and 

3
J correlations to C-1. 

 

 

Figure 3.14: The HMBC spectrum showing 
2
J and 

3
J correlations between the 

proton and carbon signals 

 

There were monomer hydroxyl and monomer methylene proton correlations about 

1 ppm upfield from the C-2. This was a result of an artefact that can occur in 2D 

spectra in dynamic systems due to their extended acquisition times, see section 

3.2.7.  
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3.2.11 ROESY 

The NOESY and ROESY experiments observe through space correlations with 

the NOESY having phased peaks and the ROESY only having positive peaks. 

 

Figure 3.15: The ROESY spectrum of the DHA dimer and DHA monomer in 

DMSO-d6 

 

The ROESY spectrum, Figure 3.15, did not show the expected correlations 

between the axial C-2-OH and H1a protons to assist in verifying their assignment.  

The ROESY spectrum displayed unexpected correlations between the monomer 

hydroxyl protons and the H-1e signal and the monomer methylene protons and the 

H-1e signal. Two artefacts associated with the NOESY/ROESY experiments may 

be involved with these anomalous correlations. Exchangeable protons can result 

in the transfer of NOE effects via hydrogen bonding of non-exchangeable 

protons
61

 and in dynamic systems NOE effects from spatially close protons in one 

conformation/species can be transferred to a spatially distance protons in another 

C-2-OH C-3-OH 

Monomer hydroxyl Monomer methylene 

H1a H1e H1a+b 
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conformation/species,
61

 an effect analogous to the artefact observed in through 

bond 2D NMR experiments, see section 3.2.7. The monomer hydroxyl correlation 

possibly resulted from the exchangeable proton NOE transfer mechanism to the 

non-exchangeable H-1a
 

and H-1e protons while the monomer methylene 

correlation to the H-1a
 
and H-1e protons would more likely to be a result of the 

NOE artefact present in dynamic systems as there is no apparent involvement of 

an exchangeable proton. 

Verification of these two proposed NOE transference mechanisms was achieved 

by performing SELNOESY experiments on the two monomer signals. If the 

exchange mechanism is in effect, there will be exchange signals that are in the 

same phase as the excited signal.
61

 If the dynamic system mechanism is in effect 

all correlations, if they exist, will be out of phase with the excited signal.
54,61,62

 

3.2.12 SELNOESY 

The SELNOESY spectrum was obtained for the excited monomer hydroxyl 

proton, Figure 3.16, to determine if the mechanism for the transfer of NOE effects 

between the monomer hydroxyl proton and the dimer H-1e was via exchange. 

Subsequent correlations to the dimer hydroxyl protons and to the H-1e confirm 

that NOE effects were being transferred through the dimer hydroxyl protons and 

thus the exchange mechanism is in effect in this case. 

 

 

Figure 3.16: The SELNOESY experiment with the monomer hydroxyl proton 

excited (5.01 ppm) and correlations with the dimer hydroxyl protons, the monomer 

methylene proton and the dimer H-1e. The orientation of the C-2-OH and C-3-OH 

signals relative to the irradiated signal indicates correlations resulting from 

exchange 

C-2-OH 

C-2-OH 

The irradiated monomer hydroxyl signal 

The monomer methylene signal 
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The SELNOESY spectrum was obtained for the excited monomer methylene 

proton, Figure 3.17, to determine which NOE transfer mechanism was involved in 

the ROESY correlation between the monomer methylene proton and the dimer H-

1e. The lack of any correlations in the SELNOESY experiment confirms that the 

NOE transfer mechanism is not through exchange but as a result of NOE transfer 

occurring in one species being carried over to another species in the dynamic 

system. 

 

 

Figure 3.17: The SELNOESY experiment with the monomer methylene proton 

excited (4.16 ppm) and no correlations  

 

3.2.13 DHA dimer 1H NMR spectrum assignment 

The DHA dimer 
1
H NMR spectrum was fully assigned, Table 3.3. 

Table 3.3: Full assignment of the 
1
H NMR spectrum of DHA in DMSO-d6 

1
H 

1
H δ (ppm) Multiplicity 

2
J (Hz) 

3
J (Hz) 

4
J (Hz) 

H-1a 3.92 d, d 11.36 - 0.74 

H-1e 3.30  11.36 - - 

H-3a 3.29  d 6.42 - 

H-3b 3.22 d* d* 6.42 - 

C-2-OH 5.62 d - - 1.00 

C-3-OH 4.63 t - 6.24 - 

*Second-order coupling requiring calculated shifts and coupling constants 
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3.2.13.1 Comparison with the literature 

Davis’s 
1
H NMR chemical shift values were shifted downfield by about 0.22 ppm, 

Table 3.4. One would not expect closely matching values between the Varian A60 

60 MHz spectrometer used by Davis in 1973 and the Bruker AVIII 400 MHz 

NMR spectrometer used in the present study. The Varian A60 used an iron 

magnet and continuous wave acquisition, which took minutes to acquire one scan 

which resulted in a very low signal to noise ratio. Kobayashi and 

Takahashi’s    
1
H NMR chemical shift values and assignments, Table 3.5, on the 

other hand, were very close to those obtained in this study. Kobayashi and 

Takahashi used a JEOL PS-100 100 MHz spectrometer which became available 

after the Varian A60. The main advantage that the JEOL PS-100 held over the 

Varian A60, more so than it’s increase in magnetic field strength, was its switch 

from the use of continuous wave acquisition to the use of Fourier Transform
63

 

acquisition. A Fourier Transform deconvoluted the free induction decay signal 

resulting from an excitation pulse of all signals within range of a carrier frequency. 

This resulted in one scan being acquired in a matter of seconds allowing for many 

scans to be added together n times with an increased signal to noise ratio 

proportional to 
62,64

.  

Table 3.4: 
1
H NMR spectrum assignment of DHA dimer in DMSO-d6 by Davis

23
 

1
H 

1
H δ* (ppm) Multiplicity 

2
J (Hz) 

3
J (Hz) 

H-1e 3.95 doublet 12 - 

C-2-OH 5.90 singlet - - 

C-3-OH 4.75 triplet - 6 

 

The Davis study assigned H-1e the higher chemical shift relative to H-1a, which he 

stated was unresolved up field in a multiplet, based on the argument that 

equatorial pyranose protons in most cases are further down field than the axial 

protons.
65

 This differed in the case of the DHA dimer, as the W geometry was 

required to account for the long range coupling constant, the axial proton had to 

be assigned to the signal further down field than the equatorial proton. The 

Kobayashi and Takahashi study assigned H-1a further down field based on the 

long range coupling constant. 

Kobayashi and Takahashi assigned the signals in the multiplet by inspection 

without applying the second-order coupling calculations. 
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Table 3.5: 
1
H NMR spectrum assignment of DHA in DMSO-d6 by Kobayashi and 

Takahashi
25

 

1
H 

1
H δ* (ppm) Multiplicity 

2
J (Hz) 

3
J (Hz) 

4
J (Hz)

 

H-1a 3.94 doublet 11.5 - - 

H-1e 3.32 doublet 11.3 - - 

H-3a 3.20 doublet - 6.5 - 

H-3b 3.34 doublet - 6.5 - 

C-2-OH 5.62 singlet - - - 

C-3-OH 4.62 triplet - - 1.0 

 

Neither of the previous studies used 
13

C or 2D NMR techniques to verify the 

results they obtained with 
1
H NMR as these techniques were not available at the 

time.  

3.3 Assignment of the 
13

C NMR spectrum 

3.3.1 Decoupled 
13

C NMR 

The decoupled 
13

C NMR spectrum, Figure 3.18, showed three chemical 

environments for the DHA dimer carbons and the methylene signal for the DHA 

monomer. The signal at 92.3 ppm was assigned to the anomeric carbon (C-2) 

which is within the anomeric range of 90 ppm to 110 ppm and the HSQC 

spectrum, Figure 3.12, showed no correlations between this signal and any proton 

signals thus reinforcing the assignment of this signal as a quaternary carbon. The 

signals at 65.8 and 62.7 ppm are both in the range for methylene carbons bonded 

to an oxygen therefore the HSQC experiment, Figure 3.12 and Figure 3.13, was 

required to assign these signals. The signal at 66.3 ppm had correlations with the 

H-3a and H-3b signals in the multiplet so was assigned as C-3 and the signal at 

63.2 ppm had correlations with the H-1a signal at 3.92 ppm and the H-1e signal 

overlapped by the multiplet so was assigned C-1. 
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Figure 3.18: The 
13

C NMR spectrum of the DHA dimer in DMSO-d6 with the 

methylene monomer signal present 

 

3.3.2 Decoupled DEPT: Distortionless enhancement by polarisation 

transfer 

The DEPT experiment uses a five pulse heteronuclear coherence transfer 

sequence to pass magnetisation from the abundant 
1
H nucleus to the relatively rare 

13
C and with decoupling applied during acquisition obtain multiplicity 

information. Magnetisation can be transferred in two ways: 

1. By “z magnetisation” along the z-axis (i.e. parallel with applied field B0) 

in a through space process resulting in the Nuclear Overhauser Effect 

(NOE) which is used in the NOESY and ROESY experiments 

2. By coherence transfer via the xy-plane after the RF pulse (B1) tips the net 

magnetisation vector from the z-axis into the transverse plane and transfers 

the magnetisation through bonds via J-coupling, as for the DEPT 

experiments. 

By altering the tip angle θ of the last 
1
H pulse for different DEPT experiments, 

different multicity information may be obtained.  

   – all protonated carbons appear in the spectrum 

   – only methine carbons appear in the 

spectrum 

C-2 

C-3 

monomer 

C-1 
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   – methine and methyl carbons are phased 

positive and methylene carbons are phased negative (by convention) in the 

spectrum with quaternary carbons suppressed. 

  

 

Figure 3.19: The DEPT135 spectrum of the DHA dimer in DMSO-d6 with absent C-

2 signal (92.8 ppm) and monomer methylene signal present 

 

A DEPT135 experiment was run on the DHA dimer in DMSO-d6, Figure 3.19, 

which allowed the assignment of C-2 to the signal at 92 ppm which is absent in 

the spectrum and therefore was produced by a quaternary carbon. Multiplicity of 

the two dimer carbon signals present in this spectrum was ambiguous as we could 

not know whether they were to be phased negative or positive as there was no 

unambiguous signal present to serve as a reference. That they both have the same 

phase supported the previous assignments to C-1 and C-3 as they had the same 

multiplicity and therefore it was expected that they would have the same phasing. 

The monomer methylene signal is present which supports the assignment of the 

dimer signals as methylene carbons. 

3.3.3 DHA dimer 
13

C NMR spectrum assignment 

The DHA dimer 
13

C NMR spectrum was fully assigned, Table 3.3. No studies 

could located that related to the 
13

C chemical shifts for carbon  in the DHA dimer 

and therefore no comparison could be made. 

C-3 

monomer 

C-1 
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Table 3.6: The  DHA dimer 
13

C NMR spectrum assignment in DMSO-d6 

13
C 

13
C δ

7
 (ppm) Bonding 

C-2 92.8 Quaternary 

C-3 66.3  methylene 

C-1 63.2 methylene 

 

3.4 Monomer assignment 

As the DHA monomer is a symmetric molecule, Figure 3.20, only two 
1
H signals 

were observed, one that represented the four methylene 
1
H signals and the other 

that represented the hydroxyl 
1
H signals. Two 

13
C signals were observed, one that 

represented the ketone 
13

C signal and the other that represented the two 

chemically equivalent methylene 
13

C signals. 

 

Figure 3.20: The DHA monomer structure 

 

3.4.1 1H NMR assignment of the DHA monomer 

The spectra of the DHA monomer in DMSO-d6, Figure 3.21 and Figure 3.22, 

were obtained by preparing solutions of the DHA dimer and allowing the dimer to 

dissociate over the period of a few days.  

                                                 

7
 All shifts relative to TMS 
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Figure 3.21: The 
1
H NMR spectrum for the DHA monomer in DMSO-d6 

 

The doublet signal at 4.16 ppm (
3
J = 5.92 Hz), Figure 3.21, represented the two 

methylene protons that were engaged in spin-spin coupling with the hydroxyl 

protons to give the observed multiplicity. The triplet signal at 5.01 ppm (
3
J = 5.94 

Hz), Figure 3.21, represents the hydroxyl protons that were engaged in spin-spin 

coupling with the two methylene protons. These hydroxyl protons were not 

observed in D2O as they engage in rapid exchange with the solvent.
23,66

 

 

 

Figure 3.22: The 
13

C NMR spectrum for the DHA monomer in DMSO-d6 

 

There were two signals observed in the 
13

C spectrum for the DHA monomer, 

Figure 3.22. The relatively diminished signal downfield at 211.7 ppm resulted 
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Methylene 

Quaternary 

Methylene 
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from the quaternary carbonyl carbon as this chemical shift value was within the 

range expected for a ketone (205-220 ppm).
31

 The signal at 66.1 ppm was 

assigned to the two methylene carbons bonded to hydroxyl groups, the chemical 

shift value was within the range expected for a methylene carbon directly bonded 

to a hydroxyl group (50-90 ppm)
31

 and the HSQC spectrum, Figure 3.12, shows a 

correlation between the 
13

C signal at 66.1 ppm and the 
1
H signal at 4.16 ppm. 

Table 3.7: NMR spectrum assignments for the DHA monomer 

1
H 

1
H δ (ppm) Multiplicity 

3
J (Hz) 

H-1 and H-3 4.16 doublet 5.92 

OH 5.01 triplet 5.94 

13
C 

13
C δ (ppm) Bonding  

C-1 and C-3 66.1 methylene  

C-2 211.7  Quaternary  

3.5 Conclusion 

Assignment of the 
1
H NMR spectrum verified the conformation of the substituted 

1,4-dioxane dimer structure in Figure 3.1. To obtain the kinetic data for the 

dissociation of the DHA dimer this spectral assignment identified three 

appropriate signals that may be followed in the 
1
H NMR spectrum, a doublet at 

5.62 ppm, a triplet at 4.63 ppm and a doublet at 3.92 ppm. If significant overlap 

was to occur between these signals and the signals for another compound that may 

be present, 
13

C NMR would be available by following the methylene signal at 

63.2 ppm. The data obtained from 
13

C NMR would contain a high level of scatter 

as the signal to noise ratio is relatively poor which would result in a high level of 

random variance with the integration values for these peaks. To obtain the kinetic 

data for the formation of the DHA monomer the 
1
H NMR triplet signal at 5.01 

ppm could be followed as could the doublet signal at 4.16 ppm. The 
13

C NMR 

dimer signal at 66.3 ppm and monomer signal at 66.1 ppm could not be followed 

in kinetics experiments because they are engaged in overlap.  
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4 Method development 

4.1 Introduction 

Kinetic NMR spectroscopy in organic chemistry generally utilises the 
1
H NMR or 

13
C NMR spectroscopy techniques. Both NMR techniques have their pros and 

cons when it comes to their ability to acquire kinetic data and these needs to be 

worked through to decide which technique to utilise in this study.  For kinetic data 

to be acquired using NMR spectroscopy, at least one unique signal emanating 

from one molecular species needs to be present and identified. For the NMR 

kinetic data to be useful, scatter in the integration values resulting from resolution 

and noise issued needs to be kept to a minimum. This could usually be achieved 

by increasing the number of scans and increasing the number of acquired data 

points for each scan but these measures had the effect of increasing the overall 

time for the spectrum to be obtained which resulted in less data points and 

increased scatter in the plotted graphs to determine the rate constants.  

The
 1

H NMR spectroscopy technique was tested with a preliminary study to 

determine the kinetics for the mutarotation of glucopyranose in D2O and DMSO-

d6. The mutarotation acid/base catalysed reaction mechanism of glucopyranose, 

see section 1.9, is analogous to the reaction mechanism proposed for the 

dissociation of the DHA dimer, see Chapter 6, therefore issues surrounding the 

acquisition of the mutarotation kinetic data and the analysis of this data can be 

assumed to be similar to those that one may encounter with the acquisition of the 

DHA dimer dissociation kinetic data and data analysis. 

4.2 NMR kinetic method 

4.2.1 1
H NMR 

An advantage to using the 
1
H isotope is that it has a high natural abundance 

(99.99%)
67

 and a relatively high gyromagnetic ratio (42.58 MHz T
-1

),
67

 conditions 

which allow for well resolved spectra to be obtained quickly with high resolution 

and a high signal to noise ratio. 

A disadvantage to using the 
1
H isotope is that 

1
H NMR spectra possess a small 

spectral width (18 ppm) which can produce crowded spectra resulting in signal 

overlap that makes integration unreliable. For integration to be utilised, unique 

signals emanating from a single species need to be present. 
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Figure 4.1: The 400 MHz 
1
H NMR spectrum of the DHA dimer in DMSO-d6 

 

The 
1
H NMR spectrum for the DHA dimer in DMSO-d6 was obtained in 50 

seconds, Figure 4.1, and three unique signals were identified at 5.62, 4.63 and 

3.91 ppm. These three unique signals allow 
1
H NMR spectroscopy to be used in 

the acquisition of kinetic data for the experiments in this study. As 
1
H NMR has a 

low level of noise in the baseline compared with that of 
13

C NMR, Figure 4.2, 
1
H 

NMR is the technique of choice for the acquisition of kinetic data in the current 

study. 

4.2.2 Decoupled 
13

C NMR 

An advantage to using decoupled 
13

C NMR is that the spectra to be obtained 

contain a relatively large spectral width of 220 ppm which generally allows for 

excellent signal separation which results in a low level of signal overlap. This is a 

condition that needs to be met in kinetic NMR experiments as signals emanating 

from more than one species are unsafe to integrate. 

A disadvantage to using decoupled 
13

C NMR is that the spectra contain a large 

amount of baseline noise which  results from 
13

C having a low natural abundance 

(1.11%)
67

 and a low gyromagnetic ratio (10.71 MHz T
-1

)
67

. When the signals with 

noisy baselines are integrated, the random spikes and troughs within the bounds of 

the integration range produce a high level of random scatter in the integration 

values resulting in unreliable rate constants being thus obtained. 
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Another disadvantage to using decoupled 
13

C NMR results from the Nuclear 

Overhauser effect (NOE) generated by the decoupling process which uses a 

broadband pulse to irradiate all the proton signals. This gives the result of 
13

C 

signals, emanating from carbons bonded to more protons, being more intense and 

thus having larger relative integration values than 
13

C signals emanating from 

carbons bonded to less protons. The NOE will not affect the kinetic data 

emanating from one signal but could be an issue when absolute concentration 

values are required to determine the equilibrium constant. 

 

 

Figure 4.2: The 400 MHz 
13

C NMR spectrum of the DHA dimer in DMSO-d6 

 

The 
13

C NMR spectrum for the DHA dimer in DMSO-d6 was obtained in 296 

seconds, Figure 4.2, and three unique signals were identified at 92.7, 66.2 and 

63.2 ppm. The high level of noise can be seen in the baseline when compared to 

the baseline for the 
1
H NMR spectrum, Figure 4.1. It is noted that this 

comparatively noisy spectrum to approximately six time longer to acquire than the 

1
H NMR spectrum that had very little noise. The three unique 

13
C signals allow 

13
C NMR spectroscopy to be used to acquire the kinetic data for the current study 

but the relatively noisy baseline makes 
13

C NMR only a possible second choice 

option in the evident that signal overlap occurs in the 
1
H NMR experiment. 

4.2.3 The concentration of DHA 

An investigation was carried out to ascertain the optimal DHA dimer 
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concentration to be used in this study. Preliminary experiments were performed 

(26.9 °C) at different DHA dimer concentrations and the rate constants for the 

dissociation of the DHA dimer in DMSO-d6 were obtained, Table 4.1. The data, 

Figure 4.3, showed a lot of scatter at lower DHA dimer concentration while at 

0.25 M the rate constant values overlap in the graph. The scatter at low 

concentration may be a result of hidden variables, such a water contamination 

having a greater influence on the rate constant as the concentration of water, for 

example, is proportionally higher. It was decided that the DHA dimer 

concentration of 0.25 M would be used in this study as it had less scatter 

associated with its rate constants. 

Table 4.1: The rate constants for the dissociation of the DHA dimer in DMSO-d6 at 

different concentrations with the mean value  

Reaction number Concentration (M) k (min
-1

) 

1 0.0125 6.75 x 10
-2 

2 0.025 1.45 x 10
-2

 

3 0.05 3.86 x 10
-2

 

4 0.05 8.39 x 10
-2

 

5 0.15 3.34 x 10
-2

 

6 0.25 2.54 x 10
-2

 

7 0.25 2.44 x 10
-2

 

Mean k values with standard 

error 

- 4.11 x 10
-2

 ± 2.53 x 10
-2

 

 

 

Figure 4.3: The graph for rate constant against concentration 
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4.2.4 Contamination of solvent 

The original experiments, in section 4.2.3, were performed using DMSO-d6 that 

had been sitting over 4Å molecular sieves to draw out any water that may have 

been present. When DMSO-d6 obtained from sealed ampoules was used the thus 

obtained rate constant values were of an order of magnitude lower than those thus 

obtained using the DMSO-d6 that had been sitting over molecular sieves. 

Referring to the literature associated with zeolites, one of the documented 

properties of zeolites is their ability to sorb organic molecules and catalyse proton 

exchange amongst a variety of other organic reactions.
68

 As proton exchange is an 

integral process in the proposed DHA dimer dissociation mechanism, it is likely 

that molecular sieve held in suspension in the DMSO-d6 was catalysing the 

dissociation of the DHA dimer thus giving elevated rate constant values. DMSO-

d6 obtained from sealed ampoules were used for all the following NMR 

spectroscopy experiments in this study. 

4.3 A kinetic study of the mutarotation of d-glucopyranose to 

confirm experimental procedure  

A series of kinetic experiments studying the mutarotation of D-glucose were 

performed using 
1
H NMR to assist in the development of a method to determine 

the kinetics of the proposed mutarotation-like reaction of the dissociation of DHA. 

This preliminary study tested the validity of using 
1
H NMR spectroscopy to obtain 

kinetic data for the investigation of the mutarotation reaction and therefore 

validated the use of 
1
H NMR spectroscopy to obtain the kinetic data for the DHA 

dimer dissociation.
 
 

4.3.1 d-Glucose kinetic experiments  

As the experiments for the mutarotation of D-glucose were followed by 
1
H NMR 

spectroscopy, it was a requirement that they were carried out in a deuterated 

solvent. The reaction reaches equilibrium with a literature equilibrium constant 

(K) value of 1.76
27

 in D2O and 1.20
69

 in DMSO-d6. The reaction is considered to 

be first order in D-glucopyranose as contributions from the less stable acyclic and 

furanose forms of glucose are negligible.
27,28,30,70
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4.3.2 Equilibrium and the determination of rate constants k, k1 and k2 

Reversible reactions with elementary first-order forward and backward reactions 

can be represented by the equilibrium illustrated in Figure 4.4. The observed rate 

constant, k, is the sum of the forward, k1 and reverse, k-1 rate constants.
67

 

 

Figure 4.4: The elementary first order equilibrium reaction 

The differential rate expression for A is written as: 

 

 
(1) 

Using the condition that at [A]0,  [B] = 0 we get: 

 
 (2) 

Rearranging equation (2) and inserting into equation (1) gives: 

 

 
(3) 

This rate expression, equation (3), is a separable 1
st
 order ordinary differential 

equation (ODE) that can be rearranged to give the integrated expression: 

 

 

(4) 

Equation (4) was evaluated using the standard integral  
67

 

and the initial conditions to give the expression in terms of [A]: 

 

 
(5) 

At equilibrium the value for t approaches infinity with the  term 

becoming  which approaches zero thus eliminating the term  

from equation (5) to give equation (6):  

 

 
(6) 

Rearranging equation (6) in terms of [A]0 to give equation (7): 
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(7) 

Substitute equation (7) into equation (3) and rearrange to give: 

 

 
(8) 

Equation (8) is a separable ODE which may be rearranged to give: 

 

 

(9) 

This integral was solved using a u-substitution to give: 

 

 
(10) 

The concentration and t values in this expression, equation (10), may be thus 

obtained experimentally and graphed as the log ratio expression against time to 

give  which is solved using K to give the rate constants, k, k1 and k-1. 

 

 

4.3.3 Assignment of the α-proton and ß-proton 
1
H NMR signals 

The anomeric proton signals for α-D-glucose and ß-D-glucose that were obtained 

experimentally in    D2O and DMSO-d6 were assigned using the coupling 

constants and chemical shift values and comparing these to the literature 

values,
65,71,72

 Table 4.2. The anomeric proton signals were integrated at 

equilibrium to determine the equilibrium constant (K) using the    anomer 

ratio.  
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Table 4.2: Chemical shifts and coupling constants for the D-glucopyranose anomeric 

protons 

Anomer Solvent D2O 

 δ Lit.
71

 δ Exp. 
3
JHH Lit.

71
 

3
JHHExp 

α 5.21 5.14 3.80 3.76 

ß 4.63 4.54 7.97 7.95 

Anomer Solvent DMSO-d6 

 δ Lit.
72

 δ Exp. 
3
JHH Lit.

72
 

3
JHH Exp. 

α 6.20 6.18 4.52 4.56 

ß 6.56 6.55 6.47 6.52 

 

The α-anomer has the hydroxyl substituents cis and the ß-anomer has the 

hydroxyl substituents trans, Figure 4.5. The ß-anomer is thermodynamically more 

stable than the α-anomer as the equatorial conformation of the anomeric hydroxyl 

group eliminates 1,3-diaxial interactions between the hydroxyl group and the axial 

protons. The relative prevalence of the α-anomer is a result of the anomeric effect, 

a stereoelectronic effect, that drives the tendency of substituent electronegative 

heteroatoms to adopt the more sterically hindered axial conformation.  

 

 

Figure 4.5: α-D-Glucopyranose (left) and ß-D-glucopyranose (right) 

 

The differences in the 
3
JHH coupling constants are a function of the dihedral angle 

of the coupling vicinal protons. This relationship is mathematically expressed by 

the Karplus equation
59

: 

 

The original equation has A = 7.76, B = -1.10 and C = 1.40 and is graphically 

represented in Figure 4.6. 
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Figure 4.6: The Karplus equation graph 

 

The α conformation has an approximate dihedral angle of approximately 60
°
, 

between H-1 and H-2, which gives a calculated 
3
JHH value of ~4.5 Hz and the ß 

conformation has an approximate dihedral angle of approximately 180° to give a 

calculated 
3
JHH value of ~12.4 Hz. Therefore the signal with 

3
JHH 3.76 Hz was 

assigned to the α-proton and the signal with 
3
JHH 7.95 Hz was assigned to the ß-

proton. 

Table 4.3: The literature and experimental values for the anomer ratios that were 

obtained at equilibrium 

Anomer Solvent D2O Solvent DMSO-d6 

  % Lit.
27

 % Exp. Temp.(°C) % Lit.
69

 % Exp. Temp(°C) 

α 36.2 36.4 26.9 45.4 43.3 26.9 

ß 63.8 63.5 26.9 54.6 56.7 26.9 
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Figure 4.7: The 
1
H NMR spectrum of D-glucopyranose in D2O 

 

To differentiate between the α and ß proton signals in DMSO-d6, the α and ß 

anomeric signal integration ratios at equilibrium were compared to the literature 

values, Table 4.3, and confirmed the assignments in Table 4.2. The coupling 

constants, point to the larger 
3
JHH 6.52 Hz at 6.55 δ being the ß-proton as the ß-

anomer has a larger dihedral angle than the α-anomer which has 
3
JHH 4.56 Hz at 

6.18 δ . The observation that the coupling constant values are closer in DMSO-d6 

than in D2O suggests a closer dihedral angle for the α proton but, on inspection of 

the Karplus equation, Figure 4.6, a decrease in the coupling constant value for the 

ß proton could be the result of either an increase or a decrease in the dihedral 

angle. This solvent dependant variance in dihedral angles is likely to be a result of 

the different solvation characteristics of D2O and DMSO-d6 as they engage in 

hydrogen bonding with the hydroxyl groups and ring oxygen in glucopyranose. 

These differences may be rationalized by the observation that D2O is both a 

hydrogen bond donor and accepter and relatively small whereas DMSO-d6 is 

essentially only a hydrogen bond acceptor, though its methyl protons do engage in 

exchange to a lesser degree,
73,74

 and is much larger DMSO-d6 than D2O. 

An interesting result of the assignment of the anomeric protons in the different 

solvents is the observation that in D2O the α-anomeric proton is downfield relative 

to the ß-anomeric proton while in DMSO-d6 the ß-anomeric proton is downfield 

relative to the α-anomeric proton, i.e. the chemical shift values have switched 

The α anomeric proton signal 

The β anomeric proton signal 
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relative to one other. The axial ß-anomeric proton signal in DMSO-d6 being 

further downfield than the equatorial α-anomeric proton signal goes against the 

literature which predicts that in a six-membered ring in the chair conformation the 

equatorial proton signal will be further downfield than an axial proton signal.
65,75

 

This observation  could be a result of a convergence in the α and ß dihedral angles 

in DMSO-d6, due to the hydrogen bond accepting action of the bulkier DMSO-d6  

molecule, with the α-proton becoming more axial and the ß-proton becoming 

more equatorial as predicted by the Karplus equation, Figure 4.6. 

 

Figure 4.8: The 
1
H NMR spectrum of D-glucopyranose in DMSO-d6 

4.3.4 1
H NMR kinetic experiments following the mutarotation of d-

glucose 

1
H NMR kinetic studies of the mutarotation equilibrium of D-glucose in D2O and 

DMSO-d6 were performed at various concentrations to verify the reaction order, 

to determine the mutarotation rate constants k, k1 and k-1 and to compare these 

values with those in the available literature and to determine if 
1
H NMR is an 

effective tool in the acquisition of kinetic data for mutarotation and therefore 

applicable to the acquisition of kinetic data for the mutarotation-like dissociation 

of the DHA dimer. All experiments were carried out at 300 K (~26.8°C). 

4.3.4.1 Graphical data the determine reaction order 

The kinetic data was graphed as zeroth order, first order and second order graphs 

for all experiments, Appendix A, to determine the reaction order. The front eighty 

The β anomeric proton signal 

 

The α anomeric proton signal 
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percent of the kinetic data was used for all kinetic analysis in this study as it 

represents approximately three first-order half-lives once the time lapse between 

the reaction starting and acquisition of the first spectrum is taken into account, 

which ranged from 5 to 15 minutes. The zeroth order graphs are presented with 

the full time frame of the experiments to give a sense of when and how 

equilibrium was reached. These graphs still allow inspection of the curvature of 

the graphs at 80% data acquisition. If the concentration against time graph, Figure 

4.9, revealed a straight line, the reaction would be zeroth order.  

 

Figure 4.9: Relative concentration against time example, D-Glucopyranose (0.5 M) 

in D2O. 

If the log of concentration vs time, revealed a straight line, as it does in the 

example, Figure 4.10, the reaction would be first order. 

 

Figure 4.10: Log of concentration vs time example, D-Glucopyranose (0.5 M) in 

D2O 
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If the graph of inverse concentration against time, Figure 4.11, revealed a straight 

line, the reaction would be second order. 

 

Figure 4.11: Inverse concentration against time example, D-Glucopyranose (0.5 M) 

in D2O. 

4.3.4.2 [A]0, k, k1 and k-1 thus obtained by a graphical method 

As the first order graph, Figure 4.10, was linear and the zeroth and second order 

graphs were curved, this reaction was regarded as occurring with first order 

kinetics. 

Equation (10) was rearranged to give… 

 

 (11) 

which was graphed to obtain the values for [A]0 and  which were 

used together with the value of K to determine the rate constants k1 and k-1. [A]eq 

was obtained by taking the mean concentration value from the set of data points 

starting from when equilibrium is reached to the last data point acquired. Where 

the equilibrium starts is decided by inspection of the graph of concentration versus 

time. [A]0 was obtained by graphing  vs time and substituting the 

graphical values into equation (11). 

The experimentally determined value of  thus obtained from the 

graph, denoted as x, was used to solve for [A]0… 
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 (12) 

The experimentally determined value of  was obtained from the 

graph, and is the total rate constant k, i.e. the negative slope of the line. The rate 

constants in this expression are solved simultaneously using their relationship 

with the equilibrium constant K. 

At equilibrium… 

 

 

 

Therefore… 

 
 

 

 

 

 
(13) 

K can be determined experimentally with 
1
H NMR by taking the ratio of the 

integrated signals for A and B at equilibrium. Solving for k-1 with   

and … 

  

 

 

  

  

 

To solve for k1 use… 

     

4.3.4.3 Error 

A source of error was arbitrarily choosing to use the first 80% of the acquired 

data. The proportional aspect of this range to the actual three half-lives for the 

reaction will vary depending on the delay between reaction start time and 

acquisition of the first spectrum. A proposed method to quantify some of this error 

related to the choice of using 80% of the first acquired data involved obtaining the 

rate constant using the first half of this selected data and obtaining the rate 
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constant using the second half of this selected data. The standard deviation 

fraction was obtained to calculate the standard error associated with the analytical 

method used in this study. 

4.3.4.4 α-d-glucose (0.05 M) in D2O: example calculation 

 

Figure 4.12: The graph to obtain [A]0, k1 and k-1 

The relative equilibrium concentration ([α]eq ) was obtained by taking the mean of 

109 
1
H NMR integrated signal data points from t(232 min) to t(1104 min) to give 

the value 0.5160. The length for each experiment is arbitrarily chosen to be well 

over the point that equilibrium is expected to be reached to ensure that 

equilibrium is reached. Excess data points after equilibrium is reached have 

minimal effect on the [α]eq value as they contain random scatter around the mean.  

The standard deviation fraction associated with the analytical method was 

determined by acquiring the rate constants for the first (1.757 x 10
-2 

min
-1

) and 

second half (2.088 x 10
-2 

min
-1

) of the selected data (first 80 %). The percentage 

standard deviation for 1.757 x 10
-2 

min
-1 

and 2.088 x 10
-2 

min
-1

 was calculated to 

be 0.1217. The thus obtained rate constants were multiplied by this value to give 

the absolute standard error associated with the analysis technique. 

The value 0.5160, was input into equation 11 to give, Figure 4.12… 

    

 

Substituting the value for  of -0.3423 into equation (12) gave… 

   moles 
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The value for  is 0.01861 min
-1

, Figure 4.12. This value, together 

with the value for K, was used to determine the rate constants k1 and k-1. 

K was experimentally determined by taking the ratio  to obtain the 

value 2.064. Substituting this value into equation (13) to give  and 

rearranging gave . This term was substituted into the term, 

… 

   min
-1  

   min
-1

  

   min
-1

  

   min
-1

  

   ± 7.3  min
-1

  

k1 is obtained by substituting the values of K and k-1 into… 

     

   min
-1

  

   ± 1.5 x 10
-3

 min
-1

  

Thus, the equilibrium constant and the three rates constants for the mutarotation 

of D-glucose were determined, Table 4.4, reaction 1.  

4.3.4.5 Calculations under different conditions 

The equilibrium constants and rate constants for seven mutarotation reactions, 

with varying conditions, were evaluated using the method described in section 

4.3.4.2. As this mutarotation study was merely a comparison for work already 

reported in the literature, experiment duplication was not performed. 

The rate constants for reactions 1 and 2, Table 4.4, match each other relatively 

closely and fall within the standard error for the averaged literature values for 

experiments carried out at 25 °C, Table 4.5. The K values are a slightly higher 

(17%) than the literature value but still within an acceptable range and were likely 

result from the slightly elevated temperature of 26.9 °C versus 25 °C.  
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Reactions 3 and 4, Table 4.4, were performed in DMSO-d6 with glucose 

concentrations 0.05 M and 0.5 M respectively. All rate constants match very 

closely thus strongly supporting the assertion that the reaction is first order. The 

averaged K value for reactions 3 and 4 (1.18) matches very closely the literature K 

value (1.20).
27

 These reactions had rate constants approximately 25 times smaller 

than the rate constants for reactions carried out in D2O. Since the postulated 

acid/base catalysis mechanism for the mutarotation of glucopyranose requires the 

donation of a proton and the abstraction of a proton, Literature Review: section 

1.9, and DMSO-d6 is a relatively reluctant proton donor, one would expect the 

rate constant in DMSO-d6 to be greatly reduced. It is important to note that 

although DMSO-d6 does not have any obvious exchangeable protons, the methyl 

protons of DMSO-d6 do undergo exchange
74,76,77

 albeit at a much reduced rate 

when compared to D2O. This would explain why mutarotation occurs at all in 

DMSO-d6. No previous studies could be found concerning the mutarotation of 

glucopyranose in DMSO-d6 with which to compare the experimental results. 

Reactions 5, 6, and 7 had HCl added to the reaction solution with incrementally 

increased concentrations. Reactions 5 and 6 had closely matching rate constants 

which also corresponded closely with the values for reactions 1 and 2 thus 

indicating that the added amount of HCl was too small to have any significant 

catalytic effect. Reaction 7 had an approximate 5 fold rate constant increase when 

compared to reactions 1, 2, 5 and 6 thus indicating that the mutarotation reaction 

had been catalysed by HCl. The k value that was obtained in reaction 7 is within 

the range of values that were obtained in a previous study of the acid catalysis of 

the mutarotation of glucopyranose.
70

 

The kinetic data that were obtained in this preliminary mutarotation study 

reasonably corresponded to the kinetic data provided in the literature thus 

validating the use of the 
1
H NMR method to obtain kinetic data for the 

mutarotation-like dissociation of the DHA dimer. 

 



 

 

7
7
 

 

Table 4.4: The experimentally determined rate and equilibrium constants 

Glc conc. 

(M) 

Solvent Acid 

conc. (M) 

Temp.(°C) K (no units) k (min
-1

) k1 (min
-1

) k-1 (min
-1

) 

0.05 D2O n/a 26.9 2.064 1.86 x 10
-2  

± 2.2 x 10
-3

 

1.25 x 10
-2 

± 1.1 x 10
-3

 

6.07x 10
-3  

± 7.3 x 10
-4

 

0.5 D2O n/a 26.9 2.048 1.21x 10
-2 

* 8.19 x 10
-3

 * 4.00 x 10
-4

 *  

 

0.05 DMSO-

d6 

n/a 26.9 1.318 7.59 x 10
-4 

±3.0 x 10
-5

 

4.31 x 10
-4

 

±1.7 x 10
-5

 

3.27 x 10
-4

 

±1.3 x 10
-5

 

0.5 DMSO-

d6 

n/a 26.9 1.049 7.91 x 10
-4 

±6.4 x 10
-5

 

4.05 x 10
-4 

±3.3 x 10
-5

 

3.86 x 10
-4 

±3.1 x 10
-5

 

0.5 D2O 0.001 26.9 1.183 1.31 x 10
-2 

±2.2 x 10
-3

 

7.12 x 10
-3 

±1.2 x 10
-3

 

6.01 x 10
-3 

±1.0 x 10
-3

 

0.5 D2O 0.01 26.9 1.478 1.08 x 10
-2 * 

6.41 x 10
-3 * 

4.34 x 10
-3 * 

 

0.5 D2O 0.1 26.9 1.931 6.03 x 10
-2 

±1.6 x 10
-3

 

3.97 x 10
-2 

±1.1 x 10
-3

 

2.06 x 10
-2 *

 

* The error associated with the analytical method is below the order of magnitude for significant figures 
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Table 4.5: A selection of literature values for mutarotation rate constants. The 

results for experiments carried out at 25 °C were averaged for comparison 

No. Method Temp. (°C) k (min
-1

) k1 (min
-1

) k-1 (min
-1

) 

1 
1
H NMR

75
 34.2 1.20 x 10

-2 
  

2 Polarimetric
78

 22 4.60 x 10
-3 

1.66 x 10
-3 

2.95 x 10
-3 

3 Dilatometric
30

 25 9.6 x 10
-3   

4 Polarimetric
79

 25 1.1 x 10
-2 

7.0 x 10
-3 

4.1 x 10
-3 

5 G.L.C
79

 25 1.0 x 10
-2 

6.3 x 10
-3 

3.9 x 10
-3 

6 Polarographic
80

 25 3.18 x 10
-2  

 

7 Polarimetric
80

 25 2.40 x 10
-2 

 
 

8 G.L.C
26

 30 3.51 x 10
-2 

1.40 x 10
-2 

2.11 x 10
-2 

- Averaged 

experiments 3-7 

25 1.73 x 10
-2

 6.65 x 10
-3

 4.00 x 10
-3

 

All experiments were carried out in H2O except the 
1
H NMR experiment which 

was carried out in D2O 

4.4 Kinetic analysis 

4.4.1 Reversible reactions 

The DHA dimer dissociation is considered to be a reversible reaction that is 

pseudo-first order in DHA with H
+
 or OH

-
 in excess. The reaction kinetics in the 

forward direction were first order in DHA dimer and in the reverse direction, 

second order in DHA monomer, Figure 4.13. 

 

Figure 4.13: The reversible DHA dimer dissociation/dimer formation 

which gave a second order term to define K 

 

 

 
(14) 
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4.4.2 Conversion of signal values to concentration values 

Before K could be determined and therefore the forward and reverse rate 

constants k1 and k-1, the absolute concentration of the reactants and the products 

needed to be ascertained. As the product concentration is squared in the numerator 

of the equation associated with the determination of the equilibrium constant, the 

value of K becomes concentration dependent and therefore the absolute 

concentrations are required.  

The 
1
H signals utilised to trace the concentrations of the DHA dimer and 

monomer were the dimer doublet at 3.92 ppm, emanating from two axial 

methylene protons, and the monomer doublet at 4.16 ppm that emanates from 

eight methylene protons from the two monomer product molecules. The response 

of two protons was chosen to be Y, the standard response factor to define the 

concentration of all species identified in the kinetic experiments. As the monomer 

signal response emanated from four protons, this value was halved to convert the 

value to the standard response factor Y.  

The slanting of the Int#1 doublet signal at 3.59 ppm indicated that this signal 

represented half of a second order splitting pattern that would emanate from the 

two pairs of diastereotopic protons, one pair on either side of the ring, according 

to the proposed structure of Int#1. If the signal was emanating from diastereotopic 

protons the full signal must represent two pairs as Int#2 is symmetric as 

characterised by only having three signals in the 
13

C NMR spectrum. Therefore 

the Int#1 signal, emanating from two protons, is equivalent to Y, the standard 

response factor.  

The Int#2 doublet at 3.71 ppm was determined to emanate from a single proton 

resulting from the proposed protonated ring structure for Int#2 having lost 

symmetry with each proton of the DHA dimer in a different chemical 

environment. To determine the concentration of Int#2, its signal response is 

doubled to get its Y value as it emanates from only one proton. 

To determine the absolute concentrations for each species their values for [A], 

[A]o, Y, Yeq, and Yo were determined experimentally and inputted into the 

following equations… 

The DHA dimer data was inputted into… 
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…to obtain the absolute concentration and the monomer and the intermediate 

signals were inputted into… 

 

 

 

 

4.5 Discussion 

1
H NMR spectroscopy was chosen to be the NMR technique to be used to obtain 

kinetic data for this study incorporating a DHA dimer concentration of 0.25 M in 

DMSO-d6 to be obtained from sealed ampoules. The mutarotation of 

glucopyranose, subsection 4.3, is a system similar to the dissociation of the DHA 

dimer,
12,20,22

 consisting of a reversible acid or base catalysed reaction mechanism, 

therefore a similar method for the analytical treatment of the kinetic data used in 

subsection 4.3 will be employed in the treatment of the kinetics in this study of the 

dissociation of the DHA dimer in DMSO-d6 with. The difference between the two 

systems is how the value of K is obtained. The molecularity of the products for 

the dissociation of the DHA dimer to form two DHA monomer units will have K 

in this study to be determined as… 

 

 

 
 

 

 The NMR signal response values were converted to the standard Y form to be 

converted to absolute concentrations using the appropriate equation.  
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5 The kinetics of the dissociation of the DHA 

dimer in DMSO-d6 

5.1 First order reversible reaction as the rate determining step 

The kinetics for the dissociation of the DHA dimer to form two DHA monomer 

molecules in DMSO-d6 were first order in the DHA dimer. It is proposed by this 

study that the unimolecular reversible break-up of the protonated DHA dimer to 

form the acyclic DHA dimer is the rate determining step, Figure 5.1, as the 

rupturing of the ring as the rate determining step  is a common feature in reaction 

mechanisms for mutarotation in monosaccharides.
27,28,42,46,81

 A relevant example 

is the acetic acid catalysed mutarotation of glucopyranose which utilizes the A1 

(stepwise) mechanism with the rupturing of the protonated glucopyranose ring 

being the rate determining step.
28

   

 

Figure 5.1: The rate determining step of the protonated DHA dimer breaking to 

form the acyclic DHA dimer 

 

The proposed rate determining step is a first order reversible reaction represented 

by Figure 5.2. 

 

Figure 5.2: The elementary first order equilibrium reaction 

 

The change in concentration of the DHA dimerprotonated is described by the 

differential equation… 
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…using the integrated rate expression that was previously derived for the 

mutarotation reversible reaction, section 4.3.2, the following can be derived for 

this step… 

 

 

 

 

 

The kinetics for the DHA dimer to DHA monomer reversible reaction were first 

order in the DHA dimer as the equilibrium constant, K, was generally one to two 

orders of magnitude larger than one. 

k1 and k-1 were determined using the experimentally obtained equilibrium 

constant K value and  the slope of the graph … 

 

 
 

 

 … as described in section 4.3.2, for the mutarotation of glucopyranose. The slope 

of the graph represents the spontaneous reaction rate constant, k, defined as 

. 

5.2 The second order reversible reaction  

The overall reversible reaction for the dissociation of the DHA dimer to form two 

DHA monomer units, Figure 5.3, is a complex reaction consisting of multiple 

elementary reaction steps.  

 

Figure 5.3: The overall dissociation of the DHA dimer to monomer 

 

To determine the rate constants for the second order reversible reaction, that take 

into account the first order forward reaction kinetics and the second order 
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reversible reaction kinetics, the system of differential equations associated with 

both of these competing processes was solved. 

The second order reversible reaction is represented in Figure 5.4, with D 

representing the DHA dimer and M representing the DHA monomer. 

 

Figure 5.4: The second order equilibrium reaction 

 

The rate of change in the concentration of the DHA dimer is represented with the 

differential equation for [D]… 

 

 

 
 

 

A second order reversible reaction rate expression was derived from this equation 

using the MapleSoft
82

 software program in terms of the concentration of the DHA 

dimer. A series of algebraic operations
8
 were applied to the obtained derivation to 

get a rate expression in linear form so it could be applied to the kinetic data to 

determine the rate constants, k1 and k-1. 

 

 

 
 

 

5.3 Discussion 

This study investigated the DHA dimer dissociation equilibrium reaction that 

started with reactants and no products. This resulted in the first order forward 

reaction being the dominant component of the kinetics to describe the system.  

Another feature of the DHA dimer dissociation reaction is that the equilibrium sits 

well to the right, favouring products, which by definition means that k-1 is small 

and K is large.  

                                                 

8
 The full derivation is in appendix: 10.5 
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It can be shown that when K gets large the first order and second order rate 

expressions approach equality and therefore provide for the first order reversible 

reaction rate expression to be utilised for the processing of the raw kinetic data to 

obtain the rate constants k, k1 and k-1.  

The effect of K getting large on the equality between the two rate expressions can 

be investigated by making the right-hand sides of both expressions approximately 

equal. 

 

  

 

…allow t to cancel and the sign of the left hand side to be reversed in order to 

have both gradients positive… 

 

 

  

 

Substitute in  and pull k-1 out of the brackets… 

 

 

  

 

…allow k-1 to cancel… 

 

 

  

 

On inspection of this equality approximation, with the left-hand side representing 

the first order expression and the right-hand side representing the second order 

expression, when K gets large the other terms lose weight and can be 

approximated to zero. Therefore, on the left-hand side 1 drops out and on the 

right-hand side 16K[D]o will become small relative to K
2
 and therefore drops out.  

These two approximations leave… 
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…which implies that for large K the first order rate expression and the second 

order rate expression can be approximated as equivalent. 

If the value for K is large, the expression will behave as a first order integrated 

rate expression to give similar opposite-signed rate constant values to the first 

order integrated rate expression derived for the mutarotation of glucopyranose. If 

the value of K gets close to or below the value of one, the first order reversible 

rate equation would no longer be applicable and the second order reversible rate 

expression would be utilised to obtain the kinetic data in this system.  

One unhelpful consequence of using the second order rate expression is that the 

units for k obtained from the second order rate expression are in L.mol
-1

.min
-1

 

while the units for k obtained from the first order rate expression are in min
-1

. It 

would be inappropriate to assign second order reaction units to what is essentially 

a first order reaction. 

Therefore, based on the reasons given above, the first order integrated rate 

expression approximation was used to obtain the kinetic parameters k, k1 and k-1 

for the DHA dimer dissociation reactions investigated in this study. 
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6 Proposed acid-catalysed and base catalysed 

reaction mechanisms  

The glucopyranose and DHA carbohydrate molecules possess the same 

fundamental structural and chemical functional properties consisting of six 

membered rings with hemiketal/hemiacetal components incorporated into their 

rings that stabilise the ring structure via the anomeric effect, see section 1.8. With 

consideration of these parallels existing between the pyranose and DHA dimer 

systems, this study proposes that the DHA dimer dissociation reaction mechanism 

is analogous to the glucopyranose mutarotation reaction mechanism
28

 with both 

acid catalysis and base catalysis pathways. 

6.1 Acid catalysed dissociation of the DHA dimer in DMSO-d6 

The proposed acid catalysis reaction mechanism, Error! Reference source not 

found., begins with a rapid and reversible proton exchange between the acid 

catalyst and both ring oxygens. This process is presented as step 1 of the proposed 

reaction mechanism. Step 2, the slow rate determining step, involves a proton 

abstraction from the “anomeric” hydroxyl group of the protonated DHA dimer 

reaction intermediate with an electron transfer to form an oxygen-carbon carbonyl 

double bond and a concerted electron transfer to the cationic oxygen resulting in 

ring rupture.  

This process is repeated with the other tertiary hydroxyl group, albeit at an 

accelerated rate as ring stability resulting from the double anomeric effect has 

been lost when the DHA dimer lost its rigid ring conformation and the anomeric 

stability offered by the first acetal moiety.  
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Figure 6.1: The proposed acid catalysed reaction mechanism for the dissociation of 

the DHA dimer in solution 

 

6.2 The base catalysed dissociation of the DHA dimer in DMSO-

d6 

The proposed base-catalysed reaction mechanism, Error! Reference source not 

found., begins with the abstraction of a ring hydroxyl proton, the slow rate 

determining step, followed by an electron transfer from the hydroxyl proton to the 

adjacent anomeric carbon to form a carbonyl bond, with a concerted electron 

transfer from the anomeric carbon to the ring oxygen resulting in ring rupture. 

This process is repeated at the other acetal group at a much increased rate 

resulting from the loss of stability associated with the original ring structure and 

double anomeric effect.  
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Figure 6.2: The proposed base catalysed reaction mechanism for the dissociation of 

the DHA dimer in solution 

 

6.3 The kinetics 

As the rate determining step of the proposed reversible break-up of the DHA 

dimer ring to form the acyclic DHA dimer is a unimolecular reversible reaction, in 

both the acid-catalysed and base-catalysed mechanisms, the system would fit a 

first order reversible reaction model, see section 5.1. The break-up of the acyclic 

DHA dimer intermediate to form two DHA monomer molecules, Error! 

Reference source not found., is a mixed unimolecular bimolecular reversible 

reaction that would fit a mixed first order and second order reversible reaction 

model with the caveat that if the equilibrium was far enough to the right in favour 

of the products, the model would essentially become first order, see sections 5.2 

and 5.3. 

If the experimentally obtained kinetic data displayed second order kinetics, this 

would suggest that the equilibrium was closer to the centre and that the break-up 

of the acyclic intermediate to form two DHA monomer molecules was the rate 

determining step.  



 

89 

 

Figure 6.3: The second order bimolecular rate determining step 

The proposed acid-catalysed reaction mechanism is an example of general acid-

catalysis as the rate of reaction is dependent on the concentration of the buffer, i.e. 

the undissociated acid. Similarly, the proposed base-catalysed reaction mechanism 

is an example of general base-catalysis as the rate of reaction is dependent on the 

concentration of the buffer anion. 
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7 Results and Discussion 

7.1 The DHA dimer dissociation in DMSO-d6 without catalysis 

7.1.1 Introduction 

A set 
1
H NMR spectroscopy experiments were performed in triplicate to 

determine the equilibrium constant K and the k, k1 and k-1 rate constants for the 

proposed first order reversible acid/base catalysed reaction mechanism for the 

dissociation of the DHA dimer (0.25 M) to the DHA monomer in DMSO-d6.  

Both the first order and second order reversible reaction integrated rate 

expressions were used to determine the kinetics of the DHA dimer dissociation. 

This was performed to compare the results obtained by the two analytical methods. 

7.1.2 Results 

7.1.2.1 Reaction order determination
i
 

The order of reaction was determined by inspection of the zeroth, first and second 

order graphs for the concentration of the DHA dimer and the change in time 

(minutes). 

 

y = -0.000273x + 0.219824
R² = 0.966200
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Figure 7.1: The experimental zeroth order graph example for the uncatalysed 

dissociation of the DHA dimer in DMSO-d6: Reaction #1 

 

                                                 

i
 The completed set of zeroth, first and second order graphs are contained in the appendix: A1 – 

A6 
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The zeroth-order graphs were all curved Figure 7.1, thus indicating that zeroth 

order kinetics were not operating in the dissociation of the DHA dimer in this 

system. 

 

y = -0.00257x - 1.47237
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Figure 7.2: The experimental first order graph example for the uncatalysed 

dissociation of the DHA dimer in DMSO-d6: Reaction #1 

 

The first-order plots produced straight lines with strong R
2
 values, Figure 7.2. 

This indicated that first order kinetics were operating for the uncatalysed 

dissociation of the DHA dimer in DMSO-d6.  

 

 

Figure 7.3: The standard second order graph example for the uncatalysed 

dissociation of the DHA dimer in DMSO-d6: Reaction #1 
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The standard second-order graphs were all curved, Figure 7.3, thus indicating that 

second order kinetics were not operating in the dissociation of the DHA dimer in 

this system.  

7.1.2.2 Determination of rate constants using the second order reversible 

reaction integration expression
j
 

The triplicate 
1
H NMR experiments that traced the dissociation of the DHA dimer 

in DMSO-d6 obtained kinetic data that was processed and graphed, Figure 7.4, 

using the second order reversible rate expression in order to determine the rate 

constants k, k1 and k-1, Table 7.1, associated with the reversible dissociation of the 

DHA dimer.  

 

 

Figure 7.4: An example graph obtained from the second order reaction expression: 

Reaction #1 

7.1.2.2.1 An example calculation 

Using the equations…  

 

 
 

 

 
 

                                                 

j
 The completed set of the second order reversible reaction graphs are contained in the appendix: 

A7 and A8 
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…that were derived in section 5.2, the equilibrium constant, K, and the rate 

constants k,  k1 and k-1 were determined. 

The value for K was determined by taking the average of the K values obtained 

from each spectrum from time: 2000 minutes to time: 3150 minutes. Equilibrium 

was achieved by time: 2000 minutes. The obtained K value was 8.44 mol L
-1

. The 

value for K and the initial concentration, 0.25 mol L
-1

, were inputted into the 

logarithmic term that was graphed against time to obtain the slope provided by 

Excel with a trend-line. The values for K, k and [D]o were inputted into the 

derived k-1 expression... 

 

 
 

 

 
  

 

This calculated value for k-1 was utilised to calculate k1… 

 

 
 

 
 

This method was used to determine the values for K and the rate constants 

associated to the triplicate experiments that followed the dissociation of the DHA 

dimer in DMSO-d6, Table 7.2. 

 

7.1.2.3 Determination of the first order rate constants 

The triplicate 
1
H NMR experiments that traced the dissociation of the DHA dimer 

in DMSO-d6 obtained kinetic data to be used for the determination of the 

equilibrium and rate constants, Table 7.2, associated with the reversible 

dissociation of the DHA dimer.  

 



 

 

9
4
 

Table 7.1: The tabulated values for K and the three rate constants for the uncatalysed DHA dimer dissociation reaction obtained using the second order 

reversible reaction rate expression 

Reaction K (No units) k (L.mol
-1

.min
-1

) k1 (L.mol
-1

.min
-1

) k-1 (L.mol
-1

.min
-1

) 

1 8.44 2.78 x 10
-3 

2.29 x 10
-3

 2.71 x 10
-4

 

2 7.50 3.50 x 10
-3

 2.56 x 10
-3

 3.42 x 10
-4

 

3 6.74 5.07 x 10
-3

 3.34 x 10
-3

 4.95 x 10
-4

 

Average values 7.56 ± 0.85 3.78 x 10
-3

 ±  1.17 x 10
-3

 2.73 x 10
-3

 ± 5.43 x 10
-4

 3.69 x 10
-4

 ± 1.14 x 10
-4

 

 

 

 

Table 7.2: The tabulated values for K and the three rate constants for the uncatalysed DHA dimer dissociation reaction obtained using the first order 

reversible reaction rate expression 

Reaction K (No units) k (min
-1

) k1 (min
-1

) k-1 (min
-1

) 

1 8.44 2.57 x 10
-3 

2.30 x 10
-3

 2.72 x 10
-4

 

2 7.50 3.06 x 10
-3

 2.68 x 10
-3

 3.58 x 10
-4

 

3 6.74 4.33 x 10
-3

 3.77 x 10
-3

 5.59 x 10
-4

 

Average values 7.56 ± 0.85 3.31 x 10
-3

 ±  9.1 x 10
-4

 2.92 x 10
-3

 ± 7.6 x 10
-4

 3.96 x 10
-4

 ± 1.47 x 10
-4
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7.1.2.3.1 Example calculation  

Using the equations…  

 

  

 

 
 

  

 
 

   
   

 

derived in section 4.3.2, the equilibrium constant and rate constants k1 and k2 were 

determined. 

The value for K was determined from the kinetic data as describe in the previous 

section 7.1.2.2, to give... 

 

 

 

The value for K and the initial concentration, 0.25 mol L
-1

, were inputted into the 

logarithmic term that was graphed against time to obtain the slope provided by 

Excel with a trend-line. The values for K, k and [D]o were inputted into the 

derived k-1 expression 

k was obtained from the slope in the graph for ln[[A]-[A]∞] against time, in Error! 

Reference source not found., to calculate k-1… 

 

 

 

This calculated value for k-1 was utilised to calculate k1… 
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This method was used to determine the values for K and the rate constants 

associated to the triplicate experiments that followed the dissociation of the DHA 

dimer in DMSO-d6, Table 7.2. 

7.1.3 Discussion 

The uncatalysed DHA dimer dissociation in DMSO-d6 at 26.9 °C was shown to 

exhibit the kinetics of a first order reversible reaction with an mean reaction rate 

constant k of 3.31 x 10
-3

 min
-1

, a forward rate constant k1 of 3.96 x 10
-4

 min
-1

, a 

reverse rate constant k-1 of 3.96 x 10
-4

 min
-1

 and an equilibrium constant K of 7.56 

mol L
-1

. The uncatalysed DHA dimer dissociation also exhibited the kinetics of a 

second order reversible reaction, but as K was large, this was essentially another 

case of demonstrating first order kinetics. When the second order rate expression 

was used, the units for the kinetic terms were changed with the result that 

technically no comparison may be made between the values obtained from the 

different rate expressions. As the reaction exhibited first order kinetics with both 

rate expressions, the first order rate expression values will be used.  

The experimentally determined value obtained for k, of 3.31 x 10
-3

 min
-1

, was 

calculated to be 18.3 times greater than the literature value for the dissociation of 

the DHA dimer in DMSO-d6 of 1.81 x 10
-4

 min
-1 

at 25 °C. the often cited k value 

for the dissociation of the DHA dimer in DMSO
23

. This previous study used 
1
H 

NMR spectroscopy to determine the half-life for the dissociation of the DHA 

dimer in DMSO-d6 in 1973. No indication of the reproducibility of this 

previously obtained rate constant value was provided within the paper
23

 and it 

might therefore be regarded with a certain degree of suspicion.  
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7.2 The DHA dimer dissociation in DMSO-d6 catalysed with D2O 

7.2.1 Introduction 

A set of ten replicated 
1
H NMR kinetic experiments  (26.9 °C) were performed to 

determine the reaction order and the rate constants for the dissociation of the 

DHA dimer (0.25 M) to the DHA monomer in DMSO-d6 as the concentration of 

D2O was incrementally increased. The pKa value of H2O in DMSO is 31.4
52,83

 

which, when compared to the pKa value of 15.6
52,83

 for H2O in H2O, gives an acid 

dissociation constant that is reduced by 16 orders of magnitude. The ability of 

D2O to donate a proton in the dissociation reaction is greatly reduced in the 

DMSO-d6 reaction system. The concentration of D2O was represented as a mass 

percentage to allow for comparison with the concentration of H2O in honey which 

is commonly represented as a mass percentage. As the mutarotation of 

glucopyranose is catalysed by water
28,30,79

, the expectation of adding D2O to the 

dissociation reaction for the DHA dimer, which has a proposed reaction 

mechanism that is analogous to that for mutarotation, would be an increase in the 

forward rate constant values. For D2O to be behaving as a pure catalyst, with the 

absence of any hidden variables, a constant value of K would be expected across 

the concentration range. 

7.2.2 Results 

7.2.2.1 Reaction order determination
k
 

The order of reaction was determined by inspection of the zeroth, first and second 

order graphs for the concentration of the DHA dimer and the change in time 

(minutes).  

                                                 

k
 The completed set of first order graphs for the D2O catalysed dissociation reactions are contained 

in the appendix: A9 – A27 
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Figure 7.5: The experimental zeroth order graph example 

 

The zeroth-order graphs were all curved, Figure 7.5, thus indicating that zeroth 

order kinetics were not operating in the dissociation of the DHA dimer in this 

system. 

 

 

Figure 7.6: The experimental first order graph example 

The first-order plots produced straight lines with strong R
2
 values, Figure 7.6. 

This indicated that first order kinetics were operating for the D2O catalysed 

dissociation of the DHA dimer in DMSO-d6.  
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.  

Figure 7.7: The experimental second order graph example 

 

The standard second-order graphs were all curved, Figure 7.7, thus indicating that 

second order kinetics were not operating in the dissociation of the DHA dimer in 

this system.  

7.2.2.2 Determination of rate constants
l
 

The equilibrium and rate constant values for the [D2O] = 0 are the values 

determined in section 7.1.2 for the uncatalysed DHA dimer to monomer 

dissociation. The value for K and the rate constants were determined for ten 

duplicated 
1
H NMR kinetic experiments, Table 7.3, that were performed while 

applying an incrementally increasing concentration of the D2O catalyst for each 

successive experiment. The aim of this incremental D2O concentration increase 

was to determine the effect that this increase would have on the rate constant 

values for the dissociation of the DHA dimer to the DHA monomer reaction.  

The calculated results for K and the first order rate constants, Table 7.3, were 

graphed as rate constant against concentration of D2O, Figure 7.8, Figure 7.9, 

Figure 7.10 and Figure 7.11, to illustrate what the effect of increasing the 

concentration of D2O in the DHA dimer dissociation in DMSO-d6 had on the 

values for K and the rate constants. 

                                                 

l
 The completed set of first order graphs for the D2O catalysed dissociation reactions are contained 

in the appendix: A9 – A27 
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As all of the D2O catalysed dissociation reaction displayed first order kinetics, the 

first order reversible reaction integrated rate expression was used to determine the 

rate constants in this series of kinetic experiments.  

 

 

7.2.2.3 Graphs for rate constant against D2O concentration 

 

 

Figure 7.8: The graph for rate constant k against the concentration of D2O for the 

dissociation of the DHA dimer in DMSO-d6 

 

 

Figure 7.9: The graph for rate constant K against the concentration of D2O for the 

dissociation of the DHA dimer in DMSO-d6 
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Figure 7.10: The graph for rate constant k1 against the concentration of D2O for the 

dissociation of the DHA dimer in DMSO-d6 

 

 

Figure 7.11: The graph for rate constant k-1 against the concentration of D2O for the 

dissociation of the DHA dimer in DMSO-d6 



 

 

1
0
2
 

 

Table 7.3: : The tabulated values for K and the three rate constants evaluated with the first order reversible rate expression 

D2O concentration (m%) K (no units) k (min
-1

) k1 (min
-1

) k-1 (min
-1

) 

0 7.56 ± 0.85 3.31 x 10
-3 

± 9.1 x 10
-4

 2.92 x 10
-3

 ± 7.6 x 10
-4

 3.96 x 10
-4

 ± 1.47 x 10
-4

 

2.1
m

 22.0  1.29 x 10
-2

 1.23 x 10
-2

 5.61 x 10
-4

 

5.3 6.94 ± 0.97 4.34 x 10
-2 

± 1.58 x 10
-2

 3.08 x 10
-2 

± 1.44 x 10
-2

 5.38 x 10
-3

 ± 1.33 x 10
-3

 

9.9 8.86 ± 3.75  4.37 x 10
-2 

± 3.32 x 10
-3

 3.88 x 10
-2 

± 1.1 x 10
-3

 4.84 x 10
-2

 ± 2.18 x 10
-3

 

14.9 5.14 ± 1.43 5.24 x 10
-2

 ± 1.54 x 10
-2

 4.33 x 10
-2 

± 1.08 x 10
-2

 9.07 x 10
-3

 ± 4.62 x 10
-2

 

19.9 14.5 ± 1.0 1.08 x 10
-1 

± 2.1 x 10
-2

 1.01x 10
-1

 ± 2.0 x 10
-2

 6.94 x 10
-3

 ± 9.2 x 10
-4

 

25 16.9 ± 1.3 1.89 x 10
-1 

±  4 x 10
-3

 1.78 x 10
-1

 ± 5 x 10
-3

 1.06 x 10
-2

 ± 2 x 10
-4

 

29.8 18.9 ± 1.1 2.64 x 10
-1 

± 4.5 x 10
-2

 2.51 x 10
-1

 ± 4.2 x 10
-2

 1.34 x 10
-2

 ± 3.0 x 10
-3

 

34.5 19.2 ± 1.9 3.82 x 10
-1 

± 5.09 x 10
-2

 3.63 x 10
-1

 ± 5.0 x 10
-2

 1.88 x 10
-2

 ± 7 x 10
-4

 

39.0  16.5 ± 3.6 4.06 x 10
-1 

± 2.8 x 10
-2

 3.82 x 10
-1

 ± 2.2 x 10
-2

 2.38 x 10
-2

 ± 6.5 x 10
-3

 

44.6  14.6 ± 4.3 6.96 x 10
-1 

± 8.41 x 10
-2

 6.48 x 10
-1

 ± 6.6 x 10
-2

 4.70 x 10
-2

 ± 1.83 x 10
-2

 

 

                                                 

m
 This reaction was not duplicated 
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7.2.3 Example calculation 

Using the value for k obtained from the first order graph, Figure 7.5, and the 

equations…  

 

 
 

 

 
 

   
 

  
 

derived in section 4.3.2, K, k1 and k2 were determined. 

The values for [DHAdimer]eq and [DHAmonomer]eq were obtained from the kinetic 

data to calculate K… 

 

k, the experimental rate constant, was obtained from the slope in the graph for 

ln[[A]-[A]∞] against time, in Figure 7.5, to calculate k-1… 

 

This calculated value for k-1 was utilised to calculate k1… 

 

This method was used to determine the values for K and the rate constants 

associated with the ten replicate experiments that traced the D2O catalysed 

reversible dissociation of the DHA dimer in DMSO-d6, Table 7.3. 

7.2.4 Discussion 

The graphs of k, k1 (the forward rate constant) and k-1 (the reverse rate constant)   

against the concentration of D2O in DMSO-d6 illustrated a strong positive 

relationship between these rate constants and an increase in [D2O]. When the 

[D2O] got higher than 45 m%, the reaction proceeded at too high a rate to obtain 

meaningful data. The observation that the rate of reaction increased with the 

addition of D2O offered supporting evidence for the proposed mutarotation-like 

acid or base catalysed mechanisms, see sections 6.1 and 6.2, as D2O, being 

amphoteric, would be able to donate a proton in one step and abstract a proton in 

another step. This capability of D2O would be expected to produce an increase in 
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rate constant when added to the DMSO-d6/DHA dimer system where DMSO-d6 

can essentially only abstract a proton in the proposed reaction mechanism. 

A lag phase was observed in the rate constant against [D2O] graphs, Figure 7.8, 

Figure 7.9, Figure 7.10 and Figure 7.11 indicating that the D2O was unavailable 

for catalysis at lower concentrations which is likely to be the result of the DMSO-

d6 solvent mopping up the D2O with hydrogen bonding until a critical D2O 

concentration of ~15 mass% was reached. At this stage in the proposed process, 

the DMSO-d6 would have achieved D2O saturation, resulting in any further D2O 

added to the system being readily available to catalyse the DHA dimer 

dissociation in DMSO-d6.  

The graph for K against [D2O] displays a positive relationship with an increase in 

K as [D2O] is increased. This would indicate that D2O is not behaving strictly as a 

catalyst. If the D2O was behaving as a pure catalyst, the value for K would remain 

constant across all concentrations. 
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7.3 The DHA dimer dissociation in DMSO-d6 catalysed with 

CD3COOD 

7.3.1 Introduction 

A series of experiments were performed to determine the kinetics for the acetic 

acid-d4 (CD3COOD) catalysed dissociation of the DHA dimer in DMSO-d6 by 

incrementally increasing the concentration of CD3COOD whilst maintaining a 

constant concentration of DHA dimer. The kinetic data was evaluated using the 

first order reversible reaction rate expression as all experiments contained large 

values for K and displayed first order kinetics therefore rendering use of the 

second order reversible reaction rate expression unnecessary, see section 5.3.  

The concentration of CD3COOD was represented as a molar percentage (mol%) 

to give an intuitive appreciation for the relative amount of acid molecules present 

in the DMSO-d6. The concentration term mol L
-1

 could not be used as two liquids 

were being combined to give an ambiguous final volume.  

The pKa value for CH3COOH in DMSO is 12.3
50,52,83

 which is a relatively large 

value when compared to the pKa value of 4.45
52,83

 for CH3COOH in H2O. This 

represents an acid dissociation constant for CH3COOH in DMSO that is eight 

orders of magnitude lower than the acid dissociation constant for CH3COOH in 

H2O. CD3COOD’s ability to donate a proton is greatly reduced in the DMSO-d6 

reaction conditions. 

Two intermediate species (Int#1 and Int#2) were identified in this series of kinetic 

experiments by the appearance of their associated 
1
H signals, Figure 7.12, and 

13
C 

signals, Figure 7.18, in the NMR spectra and by the behaviour of these signals 

when graphed as concentration against time, Figure 7.13. The two intermediates 

evolved at different rates which allowed for differentiation between the two 

species and provided an extra tool in their proposed characterisation, in addition 

to 1D and 2D NMR spectroscopy. 
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Figure 7.12: The 1H NMR spectra of a mixture of DHA monomer and dimer (top) 

and a mixture of dimer, monomer and the 2 intermediates (bottom) 

 

To offer further evidence for the proposed acid catalysed mutarotation-like 

mechanism for the dissociation of the DHA dimer in solution, see section 1.9.1, 

sodium hydroxide was employed to ionise a portion of the CD3COOD to form the 

CD3COO
-
 anion. The proposed reaction mechanism predicts that an increase in 

anion available to abstract the axial hydroxyl proton would result in an increased 

rate constant. As CD3COOD can only donate a proton (deuterium) the available 

anion able to abstract the hydroxyl proton becomes the limiting agent in the 

reaction. For CD3COOD to be behaving as a pure catalyst, with the absence of 

any hidden variables, a constant value of K would be expected across the 

concentration range. 

 

Monomer methylene 

H-1a 

H-3a and H-3b 

H-1e 

Intermediate Intermediate 
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Figure 7.13: Graph of concentration vs time with the 2 intermediate species.  

 

7.3.2 Identification of the two reaction intermediates 

1D and 2D 
1
H NMR and 

13
C NMR techniques, predictive computational 

13
C 

NMR spectra and rate constant comparison provided partial characterisation as 

evidence for the proposed structures of the two intermediate species. 

7.3.2.1 1 
H NMR assignment 

The previously assigned DHA dimer signals were eliminated from the list signals 

to be investigated. The DHA dimer H-3a and H-3b signals in the multiplet had 

reduced multiplicity as their associated protons no longer coupled to the C-3-OH 

as that proton was engaged in exchange with the CD3COOD. 
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Figure 7.14: The 
1
H NMR spectrum containing a mixture of the DHA dimer and the 

2 intermediates 

 

The doublet at 3.59 ppm had a coupling constant of 11.96 Hz which was 

characteristic of a geminal diastereotopic proton in a 1,3-dioxane ring
84

 and 

closely matching the coupling constants for the geminal diastereotopic protons in 

the DHA dimer (11.36 Hz) . The signal emanating from this proton’s geminal 

partner is likely to be hidden amongst the signals in the multiplet, ranging from 

3.55 ppm to 3.20 ppm, as is the case for one of the geminal ring proton signals in 

the DHA dimer. The rate constant associated with this doublet at 3.59 ppm was 

3.85 x 10
-2

 min
-1

 at 18 mol% of CD3COOD, Figure 7.15, and was arbitrarily 

assigned as intermediate 1 (Int#1), the faster evolving intermediate. 

The doublet signals at 3.98 and 3.71 ppm with coupling constants 8.16 Hz and 

8.20 Hz respectively appeared to emanate from the same intermediate species due 

to these closely matching coupling constants. These two signals had very similar 

rate constants ( [CD3COOD] = 18 mol%) of 2.12 x 10
-2

, Figure 7.16, and 2.10 x 

10
-2

 min
-1

, Figure 7.17, respectively which is further evidence that these two 

signals were emanating from the same intermediate species and were thus 

arbitrarily assigned as intermediate (Int#2). The roofing effect (slanting) that can 

be observed with this pair of doublets is a strong indicator that these signals 

emanate from diastereotopic protons although their relatively low coupling 

constant of 8.18 Hz is not within the usual range (10 – 14 ppm) expected for 

diastereotopic protons.  

The region from 3.55 to 3.20 ppm contained signals engaged in overlap which 

rendered their associated rate constants unreliable. 

11.36 Hz 
11.36 Hz 

11.35 Hz 

11.38 Hz 

11.96 Hz 

8.16 Hz 8.20 Hz 

Dimer 

Dimer 

Int#1 

Int#2 

Int#2 
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Figure 7.15: The first order graph for Int #1 participating in the dissociation of the 

DHA dimer in DMSO-d6 catalysed with 18 mass% CD3COOD.  

 

 

Figure 7.16: The first order graph for Int #2 participating in the dissociation of the 

DHA dimer in DMSO-d6 catalysed with 18 mass% CD3COOD.  
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Figure 7.17: The first order graph for Int #2 participating in the dissociation of the 

DHA dimer in DMSO-d6 catalysed with 18 mass% CD3COOD.  

 

7.3.2.2 13
C NMR 

13
C NMR experiments were performed to further assist in the identification of the 

two reaction intermediates. The 
13

C NMR spectra, Figure 7.18 and Figure 7.19, 

showed nine signals that were unaccounted for, after the solvent and DHA dimer 

and monomer signals were eliminated and were therefore assumed to emanate 

from the two intermediate species. Nine signals provided two possible scenarios: 

1. Three intermediates species were present and they all contained symmetry 

resulting in each intermediate species giving rise to three signals. 

2. Two intermediates species were present with one intermediate containing 

symmetry to give rise to three signals and the other intermediate without 

symmetry giving rise to six signals. 
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Figure 7.18: The full 13C NMR spectrum of the DHA dimer, the DHA monomer, 

Int#1 and Int#2  in DMSO-d6 

 

13
C NMR kinetic experiments were performed on the dissociation of the DHA 

dimer in DMSO-d6 catalysed with CD3COOD (18 mol%) to help differentiate 

between the two intermediate signals by comparison of the rate constants 

associated with each signal. This data was further supported by a viewing of a 

sped up movie containing an ordered spectral set of images from experiments that 

were obtained once every five minutes. This method was employed because 
13

C 

NMR spectra, obtained in the time frame required by the kinetic experiment, had 

an excessive amount of scatter resulting from a noisy baseline and thus rendered 

the kinetic data unreliable in some instances. By observing a movie of the ordered 

spectral set, the intermediate signals that were observed to rise and fall in unison 

could be denoted as signals emanating from the same intermediate species even 

though the base line contained too much noise for the integration/rate constant 

method to be effective.  

 

Solvent 

Monomer 

carbonyl 

Int#1 

Dimer 

Int#2 

Int#2 



 

112 

 

Figure 7.19: The enlarged 
13

C NMR spectrum with the signals for the DHA dimer, 

the DHA monomer, Int#1 and Int#2 

 

The rate constant data for Int#1, Table 7.4, was very scattered as this species 

evolved relatively quickly and was never present at large concentrations, therefore 

the absolute values could not be trusted although the relative values associated 

with the signals at 95.1 ppm and 64.2 ppm strongly indicated that these signals 

arose from the same species. These signals were observed to move in unison in a 

movie of the ordered spectral set thus supporting the assertion that these two 
13

C 

signals emanated from the same species, Int#1.  

The rate constant data for Int#2 was relatively unscattered with R
2
 values ranging 

from 92 to 96. The average rate constant for Int#2 (1.82 x 10
-2

 min-1) matched 

closely to the rate constant value (1.98 x 10
-2

 min-1) obtained in the 
1
H NMR 

experiments for the formation of Int#2 at the same concentration of CD3COOD 

(18 mol%). This information connected the Int#2 
13

C signals to the Int#2 
1
H 

signals. Assignment of the Int#2 
13

C signals was achieved by comparison of rate 

constants and verified by observation of the spectra image movie. The 

intermediate signals at 64.2 ppm and 64.1 ppm overlapped and therefore no 

kinetic data could be obtained from these two signals. Therefore, to differentiate 

between these signals, observation of the spectral images moving in time was 

required resulting with the signal at 64.2 ppm being assigned to Int#1, as this 

signal was observed to move in unison with the signal at 61.6 ppm, and the signal 

at 64.1 ppm being assigned to Int#2 as it was observed to move in unison with the 

signals at 62.9 and 62.5 ppm.  

Dimer 

Monomer 

Dimer 

Int#1 
Int#1 

Int#2 Int#2 
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Table 7.4: The 
13

C NMR signals, rate constants and assignments of intermediates 

based on comparison of rate constants 

 Signal (ppm)  Rate constant (min-1) Assignment 

111.4 2.11 x 10
-2 

Int#2 

104.1 1.40 x 10
-2 

Int#2 

95.1 6.04 x 10
-2 

Int#1 

72.5 2.00 x 10
-2 

Int#2 

64.2 - Int#1
n
 

64.1 - Int#2
o
 

62.9 1.69 x 10
-2 

Int#2 

62.5 1.94 x 10
-2 

Int#2 

61.6 5.92 x 10
-2 

Int#1 

 

7.3.2.3 DEPT135 

The full DEPT135 spectrum, Figure 7.20, indicates that the Int#2 signals at 111.4 

and 104.1 ppm as well as the Int#1 signal at 92.7 ppm are associated with 

quaternary carbons while the Int#2 signal at 72.5 ppm is associated with a 

methylene carbon. 

 

 

Figure 7.20: The full DEPT135 containing the DHA dimer and monomer and the 2 

intermediated signals (bottom) stacked with the standard 
13

C NMR spectrum (top) 

 

                                                 

n
 Assigned using observation of the ordered spectral set moving in time 

o
 Assigned using observation of the ordered spectral set moving in time 

Int2 
Int2 

Int1 

Dimer 
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Figure 7.21: The expanded DEPT135 spectrum containing the DHA dimer and the 2 

intermediated signals (bottom) stacked with the standard 
13

C NMR spectrum (top) 

 

The expanded DEPT135 spectrum, Figure 7.21, indicates that the Int#1 signals at 

64.2 and 61.6 ppm and the Int#2 signals at 64.1, 62.9 and 62.5 ppm are all 

associated with methylene carbons as the dimer peak is known to emanate from a 

methylene carbon and the Int#1 and Int#2 peaks are present with the same phasing 

as the DHA dimer methylene peak. 

7.3.2.4 HSQC 

The HSQC spectrum, Figure 7.22, verified the results obtained from the DEPT135 

spectrum that the Int#2 
13

C signals at 111.4 and 104.1 ppm and the Int#1 
13

C
 

signal at 92.7 ppm were associated with quaternary carbons as they did not show 

coherence with any 
1
H signals in the HSQC spectrum. 

Figure 7.22 shows the methylene Int#2 carbon signal at 72.5 ppm has correlations 

with the Int#2 proton signals at 3.97 (
2
J 8.16 Hz) and 3.71 ppm (

2
J 8.16 Hz), 

indicating that these proton signals emanated from geminal diastereotopic 

methylene protons on a six membered ring
84

 thus strongly indicating that Int#2 

contains a six membered ring, though the 
2
J. This result served to confirm the 

earlier suggestion that these signals emanated from the same intermediate species. 

Int2 Int1 
Int1 

Int2 Dimer 
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Figure 7.22: The HSQC spectrum containing signals for the DHA dimer, the DHA 

monomer and Int#1 and Int#2 

 

The methylene Int#2 
13

C signal at 64.1 ppm had correlations with 
1
H

 
signals at 

3.48 and 3.34 ppm in the region where there was a lot of signal overlap which 

resulted in coupling constants and multiplicity being unattainable. The methylene 

Int#2 
13

C signal at 62.5 had correlations with the 
1
H

 
signal at 3.39 ppm and the 

methylene Int#2 
13

C signal at 62.9 had correlations with the 
1
H

 
signal at 3.46 ppm. 

The 
1
H correlations for both of these 

13
C Int#2 signals were in the signal region 

with a lot of signal overlap so that it was not possible to obtain the 
1
H coupling 

constants or multiplicity. 

Int#2 

Int#1 

1

 Int 2 
 

Dimer

 Int 2 
 

Int#2 

Int#2 Int#2 

2 

Dimer

 Int 2 
 

Int#1 

Int#1 
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Figure 7.23: The HSQC spectrum showing correlations between Int#1 signals at 61.6 

ppm and 3.70 ppm 

 

Figure 7.22 and Figure 7.23 show correlations between the Int#1 carbon signal at 

61.6 ppm and the two Int#1 proton doublets at 3.60 and 3.48 ppm with an 

associated coupling constant of ~11.96 Hz. This characteristic coupling constant
57

 

indicated that two diastereotopic methylene protons were in a 1,3-dioxane ring or 

at least an environment with restricted rotation. The Int#1 
13

C signal at 64.2 ppm 

had a correlation with the 
1
H signal at 3.47 ppm in the region where there is a lot 

of signal overlap thus rendering multiplicity and coupling constants unobtainable. 

The results obtained using HSQC served to confirm the earlier suggestion that 
1
H 

and 
13

C NMR signals emanated from the same intermediate species with no 

conflicting results 
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7.3.2.5 The proposed intermediate structures 

The 
13

C assignments indicated that Int#1 contained three carbon signals and 

therefore contained symmetry similar to the DHA dimer. Int#1 and the DHA 

dimer had very similar 
13

C chemical shifts, Table 7.5, implying that Int#1, like the 

DHA dimer, contains a 1,3-dioxane ring with hydroxymethyl group substituents. 

It was therefore proposed on these grounds that Int#1 was the DHA dimer 

involved in dynamic intermolecular interactions with the solvent and/or 

CD3COOD, Figure 7.24, resulting in a subtle alteration of chemical shifts but 

maintaining symmetry. 

 

Figure 7.24: The proposed Int#1 species engaging in rapid proton exchange with 

undissociated CD3COOD  

 

Table 7.5: The DHA dimer and Int#1 
13

C signal comparison with multiplicity 

obtained in DMSO-d6 with CD3COOD 

DHA dimer 
13

C signals Int#1 
13

C signals Multiplicity (see DEPT135) 

92.8 95.2 Quaternary 

66.3 64.2 Methylene 

63.2 61.6 Methylene 

 

The 
13

C assignments for Int#2, Table 7.4, contained six carbon signals and 

therefore Int#2 had lost symmetry. The methylene carbon chemical shifts are still 

relatively close to those expected in a 1,3-dioxane ring in the literature
84

,  and 

indeed close to those found in the DHA dimer. The quaternary carbon chemical 

shifts have moved downfield by 16.2 and 8.9 ppm but still fall within/close to the 

range  of 90-105 ppm expected for anomeric carbons.
71
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The possibility of Int#2 being the DHA acyclic intermediate species was 

investigated but quickly dispelled as all 
13

C signals are accounted for with  no 
13

C 

signal downfield in the ketone range, 220-189 ppm.
84

 This signal would be 

expected if this species was the opened 1,3-dioxane ring. 

It was therefore proposed that Int#2 was the protonated cyclic DHA dimer that 

had lost symmetry and undergone alterations to its 
13

C chemical shifts
 
resulting 

from protonation occurring on only one of the ring oxygens, Figure 7.25. 

 

 

Figure 7.25: The proposed cationic cyclic Int#2 species  

 

7.3.2.5.1 Computational 
13

C NMR to investigate Int#2 protonation 

Computational 
13

C NMR data for the predicted spectra of the DHA dimer and the 

protonated DHA dimer were provided by Annesofie Jenson.
85

 This data was 

obtained to investigate the possible 
13

C chemical shift changes one may observe 

when the ring oxygen of the DHA dimer is protonated.  

There was a difference in the predicted values and the experimentally obtained 

values for the DHA dimer with all 
13

C spectra of the predicted chemical shifts 

being further downfield than the experimentally determined chemical shifts by 

approximately the same amount, 9.3 ±0.9 ppm,  Table 7.6. This discrepancy was 

possibly a result of the predicted chemical shifts being obtained in the gas phase 

and thus not taking into account the solvation effects of DMSO-d6, which may be 

substantial as DMSO is a known hydrogen bond acceptor in systems containing 

hydroxyl groups.
49,84

 Although there is a difference in the absolute chemical shift 

values between the predicted spectra and experimental spectra, both data sets are 

qualitatively similar with respect to the shifts relative to the carbon positions and 

therefore provide a valid comparison for the effects of the protonation of the DHA 

dimer. 
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Table 7.6: The predicted and experimental 
13

C NMR chemical shifts for the DHA 

dimer with predicted shifts appearing downfield from experimental shifts 

Atom Predicted shifts (ppm) Experimental shifts (ppm) Difference 

C-2 102.6 92.8 9.8 

C-3 76.1 66.3 9.8 

C-1 71.5 63.2 8.3 

 

Table 7.7: The predicted and experimental 
13

C NMR chemical shifts for the 

protonated DHA dimer with predicted shifts appearing downfield from 

experimental shifts
p
 

Atom Predicted shifts (ppm) Experimental shifts (ppm) Difference 

C2 110.9 111.4 -0.5 

C5 105.1 104.1 1.0 

C4 78.0 72.5 5.5 

C3 74.5 62.9 11.6 

C6 73.8 62.5 11.3 

C1 71.1 64.1 7.0 

 

The change in chemical shifts on protonation of the DHA dimer predicated shifts 

are qualitatively similar to the change in chemical shifts obtained experimentally 

for Int#2, Figure 7.26 and Table 7.7, with the hemiketal carbon adjacent to the 

protonated ring oxygen engaging in a large shift downfield as a result of 

deshielding from the positively charged oxygen drawing electron density away 

from the neighbouring nuclei. Similar relative shifts for all nuclei were observed 

depending on their distance from the protonated ring oxygen. 

                                                 

p
 See carbon labelling in Figure 7.26 



 

120 

 

Figure 7.26: The 13C chemical shifts of labelled carbons for the protonation of the 

DHA dimer with predicted shifts (top) and the experimental shifts (bottom) for the 

proposed protonation of the DHA dimer 

 

The spectra changes predicted by computational 
13

C NMR for the protonation of 

the DHA dimer were qualitatively the same 
13

C NMR spectra changes observed 

experimentally between the DHA dimer starting material and Int#2. This 

observation offered support to the proposal that Int#2 was the protonated DHA 

dimer. 

7.3.3 Results 

7.3.3.1 The DHA dimer dissociation in DMSO-d6 catalysed with CD3COOD 

The doublet signal identified as emanating from the DHA dimer (3.92 ppm) was 

traced using 
1
H NMR spectroscopy to determine the equilibrium constant K and 

the rate constants, k, k1 and k-1 for the dissociation of the DHA dimer in DMSO-

d6 catalysed by CD3COOD. An increase in rate constants with an associated 

increase in [CD3COOD] would support the proposed acid-catalysed reaction 

mechanism for the DHA dimer dissociation as the amount of available protons 

able to engage in proton exchange with the DHA dimer ring would increase. 

7.3.3.1.1 Reaction order determination 

The zeroth, first and second order graphs, using the first 80 % of data to 

approximate three half-lives, were obtained for all the experiments to determine 

the order of the reaction. 
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Figure 7.27: The zeroth order graph for the dissociation of the DHA dimer in 

DMSO-d6 catalysed with CD3COOD 

 

The zeroth order graphs were all curved, Figure 7.27, thus indicating that zeroth 

order kinetics were not operating in the dissociation of the DHA dimer in this 

system. 

 

 

Figure 7.28: The first order graph for the dissociation of the DHA dimer in DMSO-

d6 catalysed with CD3COOD 

 

The first-order plots produced straight lines with strong R
2
 values, Figure 7.28, 

This indicated that first order kinetics were operating for the CD3COOD catalysed 

dissociation of the DHA dimer in DMSO-d6. 
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Figure 7.29: The second order graph for the dissociation of the DHA dimer in 

DMSO-d6 catalysed with CD3COOD 

 

The standard second-order graphs were all curved, Figure 7.29, thus indicating 

that second order kinetics were not operating in the dissociation of the DHA 

dimer in this system 

7.3.3.1.2 Effects of increasing CD3COOD concentration on the DHA dimer 

dissociation
q
 

The values for K and the rate constants for [CD3COOD] = 0 were obtained from 

the results for the uncatalysed DHA dimer dissociation in section 7.1.2. Six 

duplicated experiments were performed that incrementally increased the 

concentration of CD3COOD to determine if CD3COOD catalysed the dissociation 

reaction of the DHA dimer in DMSO-d6 as predicted by the proposed reaction 

mechanism. 

The results in  

 

Table 7.8 were graphed as rate constant against concentration, Figure 7.30, Figure 

7.31, Figure 7.32 and Figure 7.33 to demonstrate the effect on the rate constant as 

the concentration of CD3COOD was increased. 

                                                 

q
 The completed set of first order graphs for the CD3COOD catalysed dissociation reaction are 

contained in the appendix: A28 – A37 
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Figure 7.30: The graph for rate constant k against concentration of CD3COOD for 

the DHA dimer dissociation in DMSO-d6 

  

 

Figure 7.31: The graph for rate constant k1 against concentration of CD3COOD for 

the DHA dimer dissociation in DMSO-d6 
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Figure 7.32: The graph for rate constant K against concentration of CD3COOD for 

the DHA dimer dissociation in DMSO-d6 

 

 

Figure 7.33: The graph for rate constant k-1 against concentration of CD3COOD for 

the DHA dimer dissociation in DMSO-d6 

 

7.3.3.1.3 Discussion 

The graphs in Figure 7.30 and Figure 7.31, which portray the change in rate 

constants k and k1 with the change in [CD3COOD], show a lag phase at low 

concentration suggesting that a critical concentration level of CD3COOD was 

required before any added amount of CD3COOD would become available to 

catalyse the DHA dimer dissociation. The subsequent rate constant increase with 

the increase in [CD3COOD] supports the proposed acid-catalysed reaction 
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mechanism, section 6.1, as more available CD3COOD would increase the rate at 

which the DHA dimer ring would be protonated. 

 



 

 

1
2
6
 

 

 

Table 7.8: The tabulated values for K and the three rate constants with the averaged values and standard error 

CD3COOD conc. (mass%) K (no units) k (min
-1

) k1 (min
-1

) k-1 (min
-1

) 

0 7.56 ± 0.85 3.31 x 10
-3

 ±  9.1 x 10
-4

 2.92 x 10
-3

 ± 7.6 x 10
-4

 3.96 x 10
-4

 ± 1.47 x 10
-4

 

9.51
r
 15.4 1.28 x 10

-2
 1.20 x 10

-2
 7.80 x 10

-4
 

18.2 7.58 ± 1.94 1.20 x 10
-2 

± 6 x 10
-4

 1.05 x 10
-2 

± 9 x 10
-4

 1.42 x 10
-3 

± 2 x 10
-4

 

31.7 15.3 ± 11.5 2.18 x 10
-2 

± 7.9 x 10
-3

 2.02 x 10
-2

 ± 8.6 x 10
-3

 1.54 x 10
-3

 ± 6.0 x 10
-4

 

51.4 30.0 ± 17.5 4.17 x 10
-2

 ± 4.1 x 10
-3

 4.00 x 10
-2 

± 3.0 x 10
-3

 1.73 x 10
-3

 ± 1.14 x 10
-3

 

57.8 58.1 ± 26.8 6.12 x 10
-2 

± 4.1 x 10
-3

 6.00 x 10
-2

 ± 3.6 x 10
-3

 1.17 x 10
-3

 ± 6.0 x 10
-4

 

 

 

                                                 

r
 This experiment was not duplicated 
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7.3.3.2 The effects on the rate constant k for Int#1 and Int#2 as the 

concentration of CD3COOD was increased  

The two doublet signals identified as emanating from Int#2 (3.98 ppm and 3.71 

ppm) and single doublet signal identified as emanating from Int#1 (3.59 ppm) 

were traced by 
1
H NMR spectroscopy to determine the experimental rate 

constants, k, for the formation of these species in the DHA dimer dissociation 

reaction in DMSO-d6 catalysed by CD3COOD with incrementally increasing 

concentration with each successive experiment. 

7.3.3.2.1 Reaction order determination
s
 

The zeroth, first and second order graphs were obtained for all the experiments to 

determine the order of the reaction. On inspection of the graphs all reactions were 

determined to be first order. 

7.3.3.2.2 The effects on rate constant k for Int#1 as the concentration of 

CD3COOD was increased
t
  

Five kinetic experiments followed the Int#1 doublet signal. Of the five 

experiments only two of the experiments, at low concentration, provided viable 

data, Table 7.9. This was a result of the reactions proceeding at too high a rate 

when reaching concentrations of 51.4 mol% and upwards. At these concentrations 

the signals were only observed to diminish.   

Table 7.9: The CD3COOD concentration and rate constants for the formation of 

Int#1 

CD3COOD conc. (mol%) k (min
-1

) Std Dev (min
-1

) 

18.2 3.97 x 10
-2 

6.8 x 10
-3 

31.7 2.14 x 10
-1 

1.00 x 10
-1 

 

The two data points follow a positive relationship between the rate constant for 

the formation of Int#1 and an increased concentration CD3COOD. 

7.3.3.2.3 The effects on rate constant k for Int#2 as the concentration of 

CD3COOD was increased
u
  

                                                 

s
 The zeroth, first and second order graphs tracing Int#1 in the CD3COOD catalysed dissociation 

reaction are contained in the appendix: A38 – A40 
t
 The first order graphs tracing Int#1 in the CD3COOD catalysed dissociation reaction are 

contained in the appendix: A41 – A44 
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Six kinetic experiments followed the Int#2 doublet signal. The results of these 
1
H 

NMR
 
kinetic experiments were in Table 7.10, and graphed as rate constant versus 

concentration, Figure 7.34, to demonstrate the effect on the rate constant as the 

concentration of CD3COOD was incrementally increased. 

Table 7.10: The CD3COOD concentration and rate constants for the formation of 

Int#2 

CD3COOD conc. (mol%) k (min
-1

) Std Dev (min
-1

) 

9.51
v
 1.96 x 10

-2
  

18.2 2.00 x 10
-2 

5 x 10
-4 

31.7 3.50 x 10
-2 

1.29 x 10
-2 

51.4 1.41 x 10
-1 

5.9 x 10
-2 

57.8 2.47 x 10
-1 

1.24 x 10
-1 

65
w
 4.99 x 10

-1 
- 

 

7.3.3.2.4 Discussion 

The graph in Figure 7.34, illustrating the relationship between k and the increase 

in [CD3COOD] for the formation of Int#2, displays a lag phase at low 

concentration in the dissociation of the DHA dimer. This signifies that a critical 

concentration level of CD3COOD was required to be reached before the rate for 

the formation of Int#2 starts to increase with an increase in [CD3COOD]. 

 

                                                                                                                                      

u
 The zeroth, first and second order graphs for reaction order determination and the first order 

graphs tracing Int#2 in the CD3COOD catalysed dissociation reaction are contained in the 

appendix: A45 – A57 
v
 This experiment was not duplicated 

w
 This experiment was not duplicated 
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Figure 7.34: The graph for the rate constant k against concentration of CD3COOD 

for the formation of Int#2 

 

7.3.3.3 The DHA dimer dissociation in DMSO-d6 catalysed with 

CD3COOD/CD3COO
-
 

To offer supporting evidence for the proposed acid-catalysed reaction mechanism 

for the dissociation of the DHA dimer in solution in which base is also required, 

see section6.1, OH
-
 was added to the mixture of DMSO-d6 and CD3COOD to 

deprotonate CD3COOD and thus produced CD3COO
-
 in situ. In the DMSO-

d6/CD3COOD system the free acid is in great excess relative to its conjugate base 

(CD3COO
-
) resulting in the system’s ability to abstract a proton abstraction being 

limited. If the proposed mechanism was operating, an increase in rate constant 

would be expected as a result of an increase in CD3COO
-
 concentration as more 

anion would be available to abstract the hydroxyl ring proton in step 2 of the 

proposed acid catalysed reaction mechanism. 
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Figure 7.35: The graph for concentration against time for the disappearance of the 

DHA dimer and the formation and disappearance of Int#1 and Int#2 in the 

CD3COOD/CD3COO- catalysed dissociation reaction 

 

The CD3COOD/CD3COO
-
 catalysed dissociation of the DHA dimer in DMSO-d6 

had Int#1 and Int#2 present, Figure 7.35. 

7.3.3.3.1 Reaction order determination
x
 

The zeroth, first and second order graphs were obtained for all the experiments to 

determine the order of the reaction. On inspection of the graphs all reactions were 

determined to be first order. 

7.3.3.3.2 The effects of increasing the concentration of CD3COO
-
 in the 

DMSO-d6/ CD3COOD reaction system
y
 

The concentrations of the DHA dimer (0.25M) and CD3COOD (10 mol%) were 

held constant as the concentration of CD3COO
-
 was incrementally increased.  

The results, Table 7.11, were graphed as rate constant against the concentration of 

OH
-
 relative to the amount of CD3COOD, Figure 7.36, Figure 7.37, Figure 7.38 

and Figure 7.39 to demonstrate the effect on the rate constant as the concentration 

of CD3COO
-
 was incrementally increased. 

 

 

                                                 

x
 The zeroth, first and second order graphs for the CD3COO

-
 catalysed dissociation reaction are 

contained in the appendix: A58 – A60 
y
 The completed set of first order graphs for the CD3COO

-
 catalysed dissociation reaction are 

contained in the appendix: A61 – A74 
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Figure 7.36: The graph for rate constant k against concentration of CD3COO
-
 for 

the DHA dimer dissociation in DMSO-d6 

 

 

Figure 7.37: The graph for rate constant k1 against concentration of CD3COO
-
 for 

the DHA dimer dissociation in DMSO-d6 
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Figure 7.38: The graph for rate constant K against concentration of CD3COO
-
 for 

the DHA dimer dissociation in DMSO-d6 

 

 

Figure 7.39: The graph for rate constant k-1 against concentration of CD3COO
-
 for 

the DHA dimer dissociation in DMSO-d6 

 

7.3.4 Discussion 

The graphs for the forward rate constants, k and k1, against the concentration of 

CD3COO
-
 displayed a positive linear relationship. This result supported the 

proposed reaction mechanism as the incremented increase in [CD3COO
-
] would 

be expected to increase the rate of proton abstraction. The lag phase that was 

observed in the D2O and CD3COOD catalysed experiments was not presents in 

these series of experiments 
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. 



 

 

1
3
4
 

  

Table 7.11: The tabulated values for K and the three rate constants for the dissociation of the DHA dimer in DMSO-d6 catalysed with CD3COOD/OH
-
 

[OH
-
] (mol%) K(no units) k (min

-1
) k1 (min

-1
) k-1 (min

-1
) 

0 7.56 ± 0.85 3.31 x 10
-3

 ±  9.1 x 10
-4

 2.92 x 10
-3

 ± 7.6 x 10
-4

 3.96 x 10
-4

 ± 1.47 x 10
-4

 

0.500 26.0 ± 0.7 6.04 x 10
-2

 ± 7.8 x 10
-3

 5.82 x 10
-2

 ± 7.4 x 10
-3

 2.24 x 10
-3

 ± 3.4 x 10
-4

 

1.00 25.2 ± 0.9 9.13 x 10
-2

 ± 4.9 x 10
-3 

8.78 x 10
-2

 ± 4.8 x 10
-3 

3.49 x 10
-3

 ± 6x 10
-5 

2.00 32.0 ± 0.6 1.50 x 10
-1

 ± 2 x 10
-3 

1.46 x 10
-1

 ± 2 x 10
-3 

4.56 x 10
-3

 ± 1.5 x 10
-4 

3.00 39.7 ± 2.1 1.95 x 10
-1

 ± 1.2 x 10
-2 

1.90 x 10
-1

 ± 1.2 x 10
-2 

4.81 x 10
-3

 ± 5.6 x 10
-4 

4.00 47.9 ± 7.8 2.58 x 10
-1

 ± 6 x 10
-3

 2.52 x 10
-1

 ± 5 x 10
-3

 5.34 x 10
-3

 ± 9.8 x 10
-4

 

5.00 59.7 ± 5.9 2.85 x 10
-1

 ± 4 x 10
-3

 2.81 x 10
-1

 ± 3 x 10
-3

 4.73 x 10
-3

 ± 5.2 x 10
-4

 

6.00 69.0 ± 1.0 3.32 x 10
-1

 ± 6 x 10
-3 

3.27 x 10
-1

 ± 6 x 10
-3 

4.75 x 10
-3

 ± 1.5 x 10
-4 
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7.4 Summary of result 

7.4.1 Experiment analysis 

All kinetic experiments displayed first order behaviour. Therefore the first order 

reversible reaction rate expression was used, without exception, to process the raw 

kinetic data to obtain the rate constants, k, k1 and k-1.  

7.4.1.1 The uncatalysed experiments 

The kinetics for the uncatalysed dissociation of the DHA dimer in DMSO-d6 were 

shown to be first order in DHA dimer with a reaction rate constant of 3.96 x 10
-4

 

min
-1

. This value is approximately eighteen times greater than the literature value
23

 

that used a less precise method to obtain its value. 

7.4.1.2 The D2O catalysed experiments 

The D2O catalysed DHA dimer dissociation reaction experiments showed a strong 

positive relationship between an increase in [D2O] and an increase in the value for 

the reaction rate constants. These observations supported both the acid-catalysed, 

Figure 7.41, and base-catalysed, Figure 7.40, proposed reaction mechanisms as 

D2O is able to donate and abstract protons. Reaction mechanisms for the 

mutarotation of various pyranose analogues in H2O, presented in the 

literature,
27,28,86

 assign the base-catalysed reaction mechanism. The absence of the 

two intermediate species in the D2O catalysed system suggests that the proposed 

base-catalysed mechanism is operating in this system as it is reported to do for the 

H2O catalysed mutarotation reaction mechanism for glucopyranose.
27,28,45

 In the 

base catalysed reaction mechanism proposed in this study, the first step is the slow 

rate determining step that is the deprotonation of an axial hydroxyl group on the 

DHA dimer ring with no lingering intermediate species as all successive steps are 

fast. 



 

136 

 

Figure 7.40: The proposed base catalysed reaction mechanism for the dissociation of 

the DHA dimer in solution 

 

A lag phase in rate constant increase was observed as [D2O] was increased at low 

concentration up to ~15 mass%, suggesting that the DMSO-d6 solvent was 

utilising the D2O with hydrogen bonding until the DMSO-d6 reached a level of 

saturation through hydrogen bonding. 

The concentration range of H2O content in honey is 13 – 25 m%
5
 but the low 

water activity of honey (~0.6 aw)
5
 would suggest that most of this H2O is bound 

up in the honey matrix with hydrogen bonding and would  be unavailable to 

catalyse the DHA dimer dissociation in mānuka honey. Without a H2O catalyst, 

the ability of the DHA dimer to dissociate to form the DHA monomer in the 

honey matrix is greatly reduced resulting in a large proportion of the DHA present 

in mānuka honey being in its dimeric form. When there is sufficient H2O, the 

DHA dissociation will utilise the proposed base-catalysed reaction mechanism. 

There is a positive relationship between an increase in [D2O] and an increase in K 

which indicates that not only does D2O catalyse the DHA dimer dissociation, it 

also moves the equilibrium further to the right in favour of DHA monomer. This 
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may be a result of H2O destabilising the DHA dimer ring with solvation that 

disrupts the electron delocalisation afforded by the anomeric effect. 

7.4.1.3 The CD3COOD catalysed experiments 

As with the D2O experiments, the CD3COOD catalysed experiments show a lag 

phase at low concentration up to, in this case, a concentration of ~20 mol%. This 

indicates that the DMSO-d6 solvent needs to reach a level of CD3COOD 

saturation before any added CD3COOD becomes available to catalyse the DHA 

dissociation reaction. The subsequent positive relationship between an increase in 

[CD3COOD] and an increase in rate constant the supports the proposed acid-

catalysed reaction mechanism, Figure 7.41.  

There was an observed increase in K as [CD3COOD] was increased indicating 

that the addition of CD3COOD was moving the DHA dimer dissociation reaction 

equilibrium to the right. 

7.4.1.4 The CD3COOD/CD3COO
-
 catalysed experiments 

The CD3COOD/CD3COO
-
 catalysed experiments showed a positive relationship 

between an increase in [CD3COO
-
] and an increase in reaction rate constants 

which supported the proposed acid-catalysed reaction mechanism as an increase 

in CD3COO
-
 anion would increase the rate at which the axial hydroxyl proton 

may be abstracted. There was no observed lag phase associated with low 

concentration and reaction rate constant increase suggesting that the level of 

solvation required for this process had already been achieved by the CD3COOD 

present in the reaction system. 

7.4.2 Identification of intermediates 

The incorporation of CD3COOD to catalyse the DHA dimer dissociation reaction 

resulted in the appearance of two reaction intermediate species participating in the 

DHA dimer dissociation in DMSO-d6. Symmetry, NMR spectroscopic kinetic 

data supported by visual inspection of the NMR spectral signals moving in time, 

1
H and 

13
C NMR chemical shifts and computationally predicated 

13
C NMR 

spectral information provided evidence for the two intermediate structures (Int#1 

and Int#2) to be characterised and to determine their mechanistic relevance to the 

proposed DHA dimer acid-catalysed dissociation reaction mechanism.   
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7.4.2.1 Int#1 

It was proposed that the Int#1 NMR signals were emanating from the DHA dimer 

reaction adduct that was engaged in rapid proton/deuterium exchange via its ring 

oxygens and hydroxyl groups with the CD3COOD catalyst, a dynamic process 

that produced symmetric and slightly altered 
13

C NMR signals that were a 

statistical representation of the DHA dimer species in a dynamic environment.  

7.4.2.2 Int#2 

It was proposed that the Int#2 NMR signals were emanating from an asymmetric 

cationic DHA dimer intermediate species that had been protonated at a single ring 

oxygen, which was the result of the Int#1 reaction adduct having covalently 

bonded to an exchanging proton/deuterium after engaging in rapid 

proton/deuterium exchange.  

7.4.3 The proposed acid-catalysed reaction mechanism 

7.4.3.1 Step 1 of the proposed acid-catalysed reaction mechanism 

This study proposes that Int#1 is a DHA dimer reaction adduct engaging in rapid 

proton exchange with the CD3COOD catalyst. This process is presented as the 

first step in the proposed acid-catalysed reaction mechanism, Figure 7.41. After an 

undefined thresh-hold condition has been met, an exchanging proton covalently 

bonds to an Int#1 ring oxygen to form Int#2. This process is also the first step in 

the proposed reaction mechanism in a study that investigated the acetic acid 

catalysed mutarotation of glucopyranose using a method that tested whether a 

thermodynamically unstable intermediate would have to react faster than the 

diffusion-control limit.
28

 The same study proposes that the first step in the H2O 

catalysed mutarotation mechanism is not the fast acid catalysed process but the 

slow base catalysed process, as is proposed in this study for the D2O catalysed 

DHA dimer dissociation to explain the absence of reaction intermediate signals in 

the NMR spectra. 
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Figure 7.41: The proposed acid catalysed reaction mechanism for the dissociation of 

the DHA dimer in solution 

 

7.4.3.2 Step 2 of the proposed acid-catalysed reaction mechanism 

This study proposes that Int#2 is the cationic protonated DHA dimer represented 

in step 2 of the proposed acid-catalysed reaction mechanism. The formation of 

Int#2 is followed by the slow rate determining step that has CD3COO
- 
abstracting 

a proton from the axial hydroxyl group adjacent to the protonated ring oxygen 

with an electron transfer from the hydroxyl oxygen to the adjacent anomeric 

carbon to form a carbonyl bond and an electron transfer from the anomeric carbon 

to the ring oxygen resulting in ring cleavage. The acyclic DHA dimer species is 

assumed to be unstable, as is the case for the pseudo-acyclic intermediate that has 

been proposed in the mutarotation reaction mechanism.
29,45,81,87

 The pseudo-

acyclic intermediate was proposed to account for the undetectably low 

concentration of the acyclic carbonyl species in the mutarotation reaction and to 

account for the relatively slow exchange of the 1-
18

O in labelled glucopyranose 

with the 
16

O in H2O which indicates that the ring is rupturing then closing very 

rapidly, before the carbonyl is able to become hydrated. The pseudo-acyclic 

intermediate is the ruptured ring that maintains its ring conformation before it 



 

140 

rapidly closes again. It would be reasonable to assume that the same process may 

be operating in the DHA dimer dissociation system, with the protonated DHA 

dimer ring rupturing to form a pseudo-acyclic intermediate and then rapidly 

closing again with a percentage of ring ruptures continuing on to step 3 of the 

proposed mechanism in this study. 

7.4.3.3 Step 3 of the proposed acid-catalysed reaction mechanism 

Protonation of the ether oxygen on the ruptured ring restricts the rings ability to 

close again as this would result in a 2+ cationic cyclic dimer which is 

energetically very unfavourable. Therefore step 3 rapidly leads to step 4 of the 

proposed reaction mechanism. 

7.4.3.4 Step 4 of the proposed acid-catalysed reaction mechanism 

Proton abstraction from the tertiary hydroxyl group in step 4 is relatively rapid 

when compared to step 2, as there is no equilibrium associated with a rupturing 

ring forming a pseudo-acyclic intermediate that rapidly closes again, as is the case 

in step 2. When the acyclic intermediate is protonated, step 3, a proton is rapidly 

abstracted from the hydroxyl group with an electron transfer from the hydroxyl 

oxygen to its adjacent carbon to form a carbonyl and from the carbonyl carbon to 

the ether oxygen quickly results in the formation of two DHA monomer 

molecules. The energy barrier would be expected to be much larger for the 

reforming of the acyclic dimer from two DHA monomer molecules than the 

energy barrier for the pseudo-acyclic dimer closing to form the protonated cyclic 

DHA dimer. 

7.4.3.5 Summary of the proposed acid-catalysed reaction mechanism 

This proposed acid-catalysed reaction mechanism is analogous to the accepted 

acid-catalysed reaction mechanisms for the mutarotation
44

 of reducing 

monosaccharides,
45,81

 which  describes a fast reversible proton exchange between 

the ring oxygen followed by a slow rate determining rupturing of the ring due to 

an equilibrium between the protonated ring and a pseudo-acyclic intermediate. In 

the case of the dissociation of the DHA dimer, this process is repeated on the 

other hemiketal group but without the slow rate determining equilibrium which 

results in a fast rupturing of the C-O bond and break-up of the DHA dimer to form 

two DHA monomer molecules. 
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8 Conclusions and suggestions for further 

work 

8.1 Background 

It has been shown in previous studies
9
 that the unique non-peroxide bioactivity 

exhibited in matured mānuka honey was mainly a result of the MGO found to be 

present in mānuka honey in relatively high concentrations. DHA, present in 

mānuka flowers in high concentrations, was identified as the precursor to the 

MGO present in matured mānuka honey,
19

 a reaction that had been studied 

previously with a proposed reaction mechanism that required DHA to be in its 

monomeric form. DHA exists in the solid state in its dimeric form
20,22,24,25,88,89

, a 

form of DHA that is also stabilised in anhydrous environments. Due to the 

dehydrating nature of honey it is possible that the DHA in honey exists in dimeric 

form and it has been proposed that the conversion of the DHA dimer to the DHA 

monomer in mānuka honey is the rate determining step for the overall conversion 

of DHA to MGO.
53,90,91

 

8.2 The current study 

This studied utilised 
1
H and 

13
C NMR spectroscopy to perform a series of kinetic 

experiments that determined the kinetics of the DHA dimer dissociation in the 

anhydrous environment of DMSO-d6, to mimic to anhydrous conditions of 

mānuka honey. 

8.3 Proposed reaction mechanisms 

Reaction mechanisms were proposed for the acid-catalysed and a base-catalysed 

dissociation of the DHA dimer based on accepted reaction mechanisms for the 

mutarotation of glucopyranose
27,28,30,42,45,46,81,92

 and the experimental results 

obtained in the current study. 

8.4 Experimental results 

8.4.1 Uncatalysed DHA dimer dissociation 

First order kinetics for the DHA dimer dissociation reaction in DMSO-d6 were 

identified, with an experimental rate constant of 3.78 x 10
-3

 min
-1

 for the 

uncatalysed reaction.  
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8.4.2 D2O catalysed DHA dimer dissociation 

A series of D2O catalysed DHA dimer dissociation experiments identified an 

increase in the experimental rate constant with an increase in [D2O] offering 

evidence for the catalytic role of D2O in the dissociation of the DHA dimer with 

the observation that before D2O could catalyse the DHA dimer dissociation, the 

solvent was required to reach a level of saturation.  

8.4.3 CD3COOD catalysed DHA dimer dissociation 

A series of CD3COOD catalysed DHA dimer dissociation experiments identified 

an increase in the experimental rate constant with an increase in [CD3COOD] 

providing evidence for the catalytic role of CH3COOH, and other organic acids 

present in the honey matrix
5
, in the dissociation of the DHA dimer. A lag phase 

was observed at low concentration suggesting a pre-saturation requirement that 

can be assumed to be met in the relatively acidic environment contained within 

honey.  

8.4.4 CD3COO- catalysed DHA dimer dissociation 

A CD3COO
-
 catalysed series of experiments offered further evidence supporting 

the proposed reaction mechanism as an increase in [CD3COO
-
] resulted in an 

increase in experimental rate constants, which is predicted by the proposed 

reaction mechanism as an increase in available anion would increase the rate at 

which the axial hydroxyl group could be deprotonate in step 2. 

8.4.5 Acid-catalysed reaction intermediates 

The CD3COOD catalysed experiments identified the two reaction intermediates 

that are predicated by the proposed acid-catalysed reaction mechanism, thus 

offering evidence for the proposed reaction mechanism.  

8.5 Experimental evidence for the proposed acid-catalysed 

reaction mechanism 

8.5.1 Int#1 

The reaction intermediate in step 1 of the proposed reaction mechanism is 

engaged in rapid proton exchange, a condition that explains the retention of 

symmetry and similar 
13

C NMR signals to the DHA dimer reactant of the NMR 
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observed reaction intermediate, Int#1, and therefore it is propose that Int#1 is the 

intermediate species in step 1.  

8.5.2 Int#2 

The second reaction intermediate identified by NMR spectroscopy (Int#2) is 

proposed to be the protonated DHA dimer predicated in step 2 of the proposed 

reaction mechanism which accounts for Int#2s observed 
13

C NMR chemicals 

shifts and loss of symmetry. Theoretical investigation of the 
13

C NMR chemical 

shifts of this species supported the characterisation of Int#2 as the protonated 

DHA dimer. 

8.6 Proposed reaction mechanisms for the dissociation of the 

DHA dimer in DMSO-d6 

This study proposes, based on accepted reactions mechanisms
27,28,30,81,93-95

 

proposed for the analogous hemiacetal and hemiketal hydration reactions 

conducted under different conditions and based on the experimental evidence 

obtained in this kinetic study, that the CD3COOD catalysed DHA dimer 

dissociation reactions utilised the proposed acid-catalysed reaction mechanism 

and that the D2O catalysed DHA dimer dissociation reactions utilised the 

proposed base-catalysed reaction mechanism. 

8.7 Proposed reaction mechanisms for the dissociation of the 

DHA dimer in mānuka honey 

This study proposes that if the amount of available organic acid present in the 

honey matrix was greater than the amount of available water the DHA dimer 

dissociation would utilise the proposed acid-catalysed reaction mechanism while 

if the amount of available water was greater than the amount of available organic 

acid, the proposed base-catalysed reaction mechanism would be utilised by the 

system. 

8.8 Suggestions for further work 

8.8.1 A variable temperature NMR study 

The activation energies for the DHA dimer dissociation reaction intermediates 

might be determined using variable temperature NMR spectroscopy. This would 

allow fine tuning of storage temperatures for maturing mānuka honey.  



 

144 

8.8.2 Intermediate rate constants in the acid-catalysed reaction 

A study investigating the effects on the rate constants of the acid-catalysed 

reaction intermediates as the concentrations of various catalysts known to be 

present in mānuka honey, for example proline, are increased may provide further 

evidence for the DHA dimer dissociation reaction mechanism in mānuka honey. 

8.8.3 A numerical study 

Application of the proposed reaction mechanism produces a reversible reaction 

system that will require numerical treatment,
96

 Figure 8.1. 

 

 

Figure 8.1: The overall reversible reaction system for the dissociation of the DHA 

dimer 

 

Analysing this system, acquisition of the equilibrium constant, , 

becomes a non-trivial procedure with… 

 

 

 

This will require numerical treatment using the equilibria and mass balance of all 

species present in the system with… 

 

 

And mass balance… 
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10 Appendices 

10.1 Introduction 

10.2 Experimental 

10.2.1 1H NMR 

PULPROG zg Current pulse program 

TD 65536 Size of FID 

SW [ppm] 18.0229 Spectral width 

AQ [sec] 4.5438795 Acquisition time 

DW [μsec] 69.333 Dwell time 

DE [μsec] 6.50 Pre-scan-delay 

D1 [sec] 0.500 Relaxation delay 

FIDRES [Hz] 0.110039 Fid resolution 

FW [Hz] 125000 Filter width 

DS 2 Number of dummy scans 

NS 8 Number of scans 

OP1 [ppm] 7.500 Transmitter frequency offset 

SF01 [MHz] 400.1330010 Frequency of channel 1 

P1 [μsec] 7.75 F1 ch. high power pulse 

 

10.2.2 13
C NMR 

PULPROG zgpg70 Current pulse program 

TD 32768 Size of FID 

SW [ppm] 238.894 Spectral width 

AQ [sec] 0.6816244 Acquisition time 

DW [μsec] 20.800 Dwell time 

DE [μsec] 6.50 Pre-scan-delay 

D1 [sec] 1.500 Relaxation delay 

FIDRES [Hz] 0.733596 Fid resolution 

FW [Hz] 125000 Filter width 

DS 4 Number of dummy scans 

NS 128 Number of scans 
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OP1 [ppm] 110.000 Transmitter frequency offset 

SF01 [MHz] 100.6238364 Frequency of channel 1 

P1 [μsec] 14.00 F1 ch. high power pulse 

 

10.2.3 H,H-COSY 

PULPROG cosygpqf Current pulse program 

TD 1024 Size of FID 

SW [ppm] 0.899 Spectral width 

AQ [sec] 1.42218 Acquisition time 

DW [μsec] 1388.800 Dwell time 

DE [μsec] 6.50 Pre-scan-delay 

D1 [sec] 1.500 Relaxation delay 

D16 [sec] 0.00020000 Delay for gradient recovery 

DS 4 Number of dummy scans 

NS 128 Number of scans 

OP1 [ppm] 3.600 Transmitter frequency offset 

SF01 [MHz] 400.1314405 Frequency of channel 1 

P1 [μsec] 14.00 F1 ch. high power pulse 

 

10.2.4 HSQC 

PULPROG hsqcgpph Current pulse program 

TD 1024 Size of FID 

SW [ppm] 1.2003 Spectral width (F2) 

SW [ppm] 164.9975 Spectral width (F1) 

AQ [sec] 1.06610 Acquisition time (F2) 

AQ [sec] 0.0077097 Acquisition time (F1) 

FIDRES[Hz] 0.4690 Fid resolution (F2) 

FIDRES[Hz] 64.853424 Fid resolution (F1) 

DW [μsec] 1041.067 Dwell time 

DE [μsec] 6.50 Pre-scan-delay 

CNST2 145.0000 =J(XH) 

D1 [sec] 1.500 Relaxation delay 
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D16 [sec] 0.00020000 Delay for gradient recovery 

DS 4 Number of dummy scans 

NS 8 Number of scans 

 

10.2.5 HMBC 

PULPROG hmbcgplpndqf Current pulse program 

TD 2048 Size of FID (F2) 

TD 128 Size of FID (F1) 

SW [ppm] 3.000 Spectral width (F2) 

SW [ppm] 40.0014 Spectral width (F1) 

AQ [sec] 0.8531103 Acquisition time (F2) 

AQ [sec] 0.0159007 Acquisition time (F1) 

FIDRES[Hz] 0.586125 Fid resolution (F2) 

FIDRES[Hz] 31.445107 Fid resolution (F1) 

DW [μsec] 416.533 Dwell time 

CNST2 145.0000 =J(XH) 

CNST13  =J(XH) long range 

D1 [sec] 1.500 Relaxation delay 

D16 [sec] 0.00020000 Delay for gradient recovery 

DS 4 Number of dummy scans 

NS 16 Number of scans 

 

10.2.6 ROESY 

PULPROG roesyph Current pulse program 

TD 2048 Size of FID (F2) 

TD 320 Size of FID (F1) 

SW [ppm] 4.0000 Spectral width (F2) + (F1) 

IN_F [μsec] 624.80 Increment for delay 

AQ [sec] 0.6398452 Acquisition time (F2) 

AQ [sec] 0.0999680 Acquisition time (F1) 

FIDRES[Hz] 0.781500 Fid resolution (F2) 

FIDRES[Hz] 5.001600 Fid resolution (F1) 
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DW [μsec] 312.4 Dwell time 

DE [μsec] 6.50 Pre-scan-delay 

D1 [sec] 1.500 Relaxation delay 

D16 [sec] 0.00020000 Delay for gradient recovery 

DS 4 Number of dummy scans 

NS 8 Number of scans 

 

10.2.7 SELCOSY 

PULPROG selco Current pulse program 

TD 32768 Size of FID 

SW [ppm] 18.0229 Spectral width 

AQ [sec] 2.2719646 Acquisition time 

DW [μsec] 69.333 Dwell time 

DE [μsec] 6.50 Pre-scan-delay 

D1 [sec] 1.0000 Relaxation delay 

D14 [sec] 0.0350000 Delay for evolution 

FIDRES [Hz] 0.220079 Fid resolution 

FW [Hz] 125000 Filter width 

DS 4 Number of dummy scans 

NS 96 Number of scans 

OP1 [ppm] 3.460 Transmitter frequency offset 

SF01 [MHz] 400.1330010 Frequency of channel 1 

P1 [μsec] 7.75 F1 ch. high power pulse 

 

10.2.8 SELTOCSY 

PULPROG selmlgp Current pulse program 

TD 32768 Size of FID 

SW [ppm] 18.0229 Spectral width 

AQ [sec] 2.2719646 Acquisition time 

DW [μsec] 69.333 Dwell time 

DE [μsec] 6.50 Pre-scan-delay 

D1 [sec] 1.0000 Relaxation delay 
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D9 [sec] 0.01000 TOCSY mixing time 

D16 [sec] 0.0002000 Delay for gradient recovery 

FIDRES [Hz] 0.220079 Fid resolution 

FW [Hz] 125000 Filter width 

DS 4 Number of dummy scans 

NS 32 Number of scans 

OP1 [ppm] 3.923 Transmitter frequency offset 

SF01 [MHz] 400.1330010 Frequency of channel 1 

P1 [μsec] 15.00 F1 ch. high power pulse 

 

10.2.9 SELNOESY 

PULPROG awselnogp4 Current pulse program 

TD 32230 Size of FID 

SW [ppm] 18.0229 Spectral width 

AQ [sec] 2.2346632 Acquisition time 

DW [μsec] 69.333 Dwell time 

DE [μsec] 6.50 Pre-scan-delay 

D1 [sec] 1.0000 Relaxation delay 

D8 [sec] 0.50000 mixing time 

D16 [sec] 0.0002000 Delay for gradient recovery 

FIDRES [Hz] 0.220079 Fid resolution 

FW [Hz] 125000 Filter width 

DS 4 Number of dummy scans 

NS 8 Number of scans 

OP1 [ppm] 3.923 Transmitter frequency offset 

SF01 [MHz] 400.1330010 Frequency of channel 1 

P1 [μsec] 7.50 F1 ch. high power pulse 
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10.3 Assignment of DHA spectra 

10.4 Method development 

10.5 The kinetics of the DHA dissociation 

The differential equation for [D] is… 

 

 𝑑[D]

𝑑𝑡
= −𝑘1[D] + 𝑘−1[𝑀]2  

 

Using the initial conditions… 

 

 [𝑀] = 2([D]0 − [D]) 
 

…and the relationship 

 

 
𝑘1 = 𝐾𝑘−1 

 

 

[M] and k1 were replaced and the equation was rearranged… 

 

 𝑑[D]

𝑑𝑡
= −𝐾. 𝑘−1[D] + 4𝑘−1[[D]0 − [D]]

2
 

 

𝑑[D]

𝑑𝑡
= −𝐾. 𝑘−1[D] + 4𝑘−1([D]0

2
− 2[D][D]0 + [D]2) 

 

𝑑[D]

𝑑𝑡
= −𝐾. 𝑘−1[D] + 4𝑘−1[D]

2 − 8𝑘−1[D][D]0 + 4𝑘−1[D]0
2
 

 

𝑑[D]

𝑑𝑡
= 4𝑘−1[D]

2 + [D](−𝐾. 𝑘−1 − 8𝑘−1[D]0) + 4𝑘−1[D]0
2
 

 

𝑑[D]

𝑑𝑡
= 4𝑘−1[D]

2 + [D]𝑘−1(−𝐾 − 8[D]0) + 4𝑘−1[D]0
2
 

 

The final expression is a quadratic equation that was rearranged to give the 

quadratic integral… 
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∫

𝑑[D]

4𝑘−1[D]2 + [D]𝑘−1(−𝐾 − 8[D]0) + 4𝑘−1[D]0
2 = ∫ 𝑑𝑡

𝑡

𝑡0

[D]

[D]0

 
 

 

The quadratic integral was evaluated using the Maplesoft computer program to 

obtain the integrated equation in terms of [D]… 

 

[D] =
1

8𝑘−1
[𝐾𝑘−1 + 8𝑘−1[D]0 − 𝑘−1√𝐾2 + 16𝐾[D]0. 𝑡𝑎𝑛ℎ(

𝑘−1√𝐾2 + 16𝐾[D]0
2

𝑡)] 

 

The integrated rate expression was required to be in terms of some expression 

containing [D] on the left hand side and some constant of proportionality of time 

containing k-1 on the right hand side. This condition is required in order to provide 

a linear equation of the form, 𝑦 = 𝑚𝑥 + 𝑐, so that k-1 may be extracted from the 

constant of proportionality when the data is graphed using Excel. Therefore the 

expression needed to be manipulated. 

The brackets were expanded and the k-1 terms outside the tanh term cancelled… 

 

 
8([D] − [D]0) − 𝐾 = −√𝐾2 + 16𝐾[D]0. 𝑡𝑎𝑛ℎ(

√𝐾2 + 16𝐾[D]0
2

𝑘−1𝑡)  

 

The external root term was moved to the left-hand side… 

 

 8([D]0−[D]) + 𝐾

√𝐾2 + 16𝐾[D]0
= 𝑡𝑎𝑛ℎ(

𝑘−1√𝐾2 + 16𝐾[D]0
2

𝑘−1𝑡)  

 

The arctanh operator was applied to the equation to extract k-1 and t from the tanh 

term and t was made the subject of the equation… 

 

 
𝑡 =

1

𝑘−1

2

√𝐾2 + 16𝐾[D]0
𝑎𝑟𝑐𝑡𝑎𝑛ℎ(

8([D]0−[D]) + 𝐾

√𝐾2 + 16𝐾[D]0
) 

 

 

The identity, arctanh(𝑥) = 
1

2
ln(

1+𝑥

1−𝑥
), was applied to the arctanh term… 
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𝑡 =
1

𝑘−1

2

√𝐾2 + 16𝐾[D]0
ln(

1 +
8([D]0−[D]) + 𝐾

√𝐾2 + 16𝐾[D]0

1 −
8([D]0−[D]) + 𝐾

√𝐾2 + 16𝐾[D]0

) 
 

 

The denominator and numerator of the logarithmic term were simplified… 

 

 
𝑡 =

1

𝑘−1

2

√𝐾2 + 16𝐾[D]0
ln(

−8([D] − [D]0) + 𝐾 + √𝐾2 + 16𝐾[D]0

8([D] − [D]0) − 𝐾 + √𝐾2 + 16𝐾[D]0
) 

 

 

k-1 and the root term were carried over to t to be defined as the constant of 

proportionality… 

 

 
ln (

−8([D] − [D]0) + 𝐾 +√𝐾2 + 16𝐾[D]0

8([D] − [D]0) − 𝐾 + √𝐾2 + 16𝐾[D]0
) = 𝑘−1√𝐾2 + 16𝐾[D]0. 𝑡  

 

This expression is a linear equation of the form, 𝑦 = 𝑚𝑥 + 𝑐, and therefore if… 

 

 
ln (

−8([D] − [D]0) + 𝐾 +√𝐾2 + 16𝐾[D]0

8([D] − [D]0) − 𝐾 + √𝐾2 + 16𝐾[D]0
) 

 

 

…is graphed against time, k-1 can be obtained using the value for m obtained from 

the linear equation, 𝑦 = 𝑚𝑥 + 𝑐, provided with the trend-line in Excel, with m 

representing the experimental rate constant, k. 

 

 
𝑘−1√𝐾2 + 16𝐾[D]0 = 𝑘 ∴ 𝑘−1 =

𝑘

√𝐾2 + 16𝐾[D]0
 

 

 

k1 may be obtained using the k-1 value and the experimentally obtained K value… 

 

𝑘1 =𝑘−1. 𝐾 
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10.6 The proposed acid- and base-catalysed reaction 

mechanisms 

10.7 The DHA dimer dissociation without catalysis 

10.7.1 Zeroth, first and second order graphs 

 

A1: Zeroth order plot for the uncatalysed DHA dimer dissociation in DMSO-d6: reaction # 2 

 

A2: Zeroth order plot for the uncatalysed DHA dimer dissociation in DMSO-d6: reaction # 3 

y = -0.000331x + 0.220258 
R² = 0.962131 
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A3: First order plot for the uncatalysed DHA dimer dissociation in DMSO-d6: reaction # 2 

 

A4: First order plot for the uncatalysed DHA dimer dissociation in DMSO-d6: reaction # 3 

y = -0.00306x - 1.46109 
R² = 0.99551 
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A5: Second order plot for the uncatalysed DHA dimer dissociation in DMSO-d6: reaction # 2 

 

A6: Second order plot for the uncatalysed DHA dimer dissociation in DMSO-d6: reaction # 3 

10.7.2 The graphs obtained using the second order reversible reaction 

rate expression 
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A7 : DHA dimer dissociation in DMSO-d6 processed using the second order rate expression: reaction 

#2 

 

 

 

A8: DHA dimer dissociation in DMSO-d6 processed using the second order rate expression: reaction 

#3 
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A9: The first order graph for ln concentration against time with a D2O concentration of 2.00 mol% 

 

 

 

A10: The first order graph for ln concentration against time with a D2O concentration of 5.00 mol% 
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A11: The first order graph for ln concentration against time with a D2O concentration of 5.58 mol% 

 

 

A12: The first order graph for ln concentration against time with a D2O concentration of 9.90 mol% 

 

y = -0.0545x + 2.0874 
R² = 0.9998 

0

0.5

1

1.5

2

2.5

0 5 10 15 20 25 30 35

ln
{[

A
]-
[A

]∞
} 

Time (minutes) 

y = -0.0413x + 0.2246 
R² = 0.9993 

-1.8

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0 10 20 30 40 50

ln
{[

A
]-
[A

]∞
} 

Time (minutes) 



167 

 

 

 

A13: The first order graph for ln concentration against time with a D2O concentration of 9.90 mol% 

 

 

 

A14: The first order graph for ln concentration against time with a D2O concentration of 14.9 mol% 
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A15: The first order graph for ln concentration against time with a D2O concentration of 14.9 mol% 

 

 

 

A16: The first order graph for ln concentration against time with a D2O concentration of 19.8 mol% 
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A17: The first order graph for ln concentration against time with a D2O concentration of 19.9 mol% 

 

A18: The first order graph for ln concentration against time with a D2O concentration of 24.9 mol% 
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A19: The first order graph for ln concentration against time with a D2O concentration of 25.0 mol% 

 

A20: The first order graph for ln concentration against time with a D2O concentration of 29.6 mol% 
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A21: The first order graph for ln concentration against time with a D2O concentration of 29.9 mol% 

 

A22: The first order graph for ln concentration against time with a D2O concentration of 34.3 mol% 

y = -0.296x - 1.093 
R² = 0.997 

-4.5

-4

-3.5

-3

-2.5

-2

4 5 6 7 8 9 10 11

ln
{[

A
]-
[A

]∞
} 

Time (minutes) 

y = -0.418x - 0.110 
R² = 0.999 

-3.5

-3

-2.5

-2

-1.5

-1

3 4 5 6 7 8

ln
{[

A
]-
[A

]∞
} 

Time (minutes) 



172 

 

 

A23: The first order graph for ln concentration against time with a D2O concentration of 34.6 mol% 

 

A24: The first order graph for ln concentration against time with a D2O concentration of 39.0 mol% 
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A25: The first order graph for ln concentration against time with a D2O concentration of 39.1 mol% 

 

 

A26: The first order graph for ln concentration against time with a D2O concentration of 44.5 mol% 
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A27: The first order graph for ln concentration against time with a D2O concentration of 44.6 mol% 

10.9 The DHA dimer dissociation with CD3COOD catalysis 

10.9.1 The graphs for the DHA dimer dissociation in DMSO-d6 

catalysed with CD3COOD 

10.9.1.1 The first order graphs for the DHA dimer dissociation in 

DMSO-d6 catalysed with CD3COOD 

 

A28: First order graph for the DHA dimer dissociation in DMSO-d6 catalysed with 9.51 mol% 

CD3COOD 
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A29: First order graph for the DHA dimer dissociation in DMSO-d6 catalysed with 18.2 mol% 

CD3COOD 

 

A30: First order graph for the DHA dimer dissociation in DMSO-d6 catalysed with 18.2 mol% 
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A31: First order graph for the DHA dimer dissociation in DMSO-d6 catalysed with 31.3 mol% 

CD3COOD 

 

A32: First order graph for the DHA dimer dissociation in DMSO-d6 catalysed with 32.1 mol% 
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A33: First order graph for the DHA dimer dissociation in DMSO-d6 catalysed with 51.1 mol% 

CD3COOD 

 

A34 First order graph for the DHA dimer dissociation in DMSO-d6 catalysed with 51.7 mol% 

CD3COOD 
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A35: First order graph for the DHA dimer dissociation in DMSO-d6 catalysed with 57.1 mol% 

CD3COOD 

 

 

A36: First order graph for the DHA dimer dissociation in DMSO-d6 catalysed with 58.4 mol% 

CD3COOD 
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A37: First order graph for the DHA dimer dissociation in DMSO-d6 catalysed with 65.0 mol% 

CD3COOD 

10.9.2 The graphs for the formation of Int#1 in DMSO-d6 catalysed 

with CD3COOD 

10.9.2.1 The zeroth, first and second order graphs for the 

formation of Int#1 in DMSO-d6 catalysed with CD3COOD 

 

A38: The zeroth order graph for the formation of Int#1 in DMSO-d6 catalysed with CD3COOD 
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A39: The first order graph for the formation of Int#1 in DMSO-d6 catalysed with CD3COOD 

 

 

A40: The second order graph for the formation of Int#1 in DMSO-d6 catalysed with CD3COOD 
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10.9.2.2 The first order graphs for the formation of Int#1 in DMSO-

d6 catalysed with CD3COOD 

 

A41: The first order graph for the formation of Int#1 in DMSO-d6 catalysed with 18.2 mass% 

CD3COOD 

 

 

A42: The first order graph for the formation of Int#1 in DMSO-d6 catalysed with 18.2 mass% 
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A43: The first order graph for the formation of Int#1 in DMSO-d6 catalysed with 31.3 mass% 

CD3COOD 

 

 

A44: The first order graph for the formation of Int#1 in DMSO-d6 catalysed with 32.1 mass%  

CD3COOD 
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10.9.3.1 The zeroth, first and second order graphs for the 

formation of Int#2 in DMSO-d6 catalysed with CD3COOD 

 

A45: The zeroth order graph for the formation of Int#2 in DMSO-d6 catalysed with CD3COOD 

 

A46: The first order graph for the formation of Int#2 in DMSO-d6 catalysed with CD3COOD 
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A47: The second order graph for the formation of Int#2 in DMSO-d6 catalysed with CD3COOD 

10.9.3.2 The first order graphs for the formation of Int#2 in DMSO-

d6 catalysed with CD3COOD 

 

A48: First order graph for the formation of Int#2 in the dissociation reaction of DHA in DMSO-d6 

catalysed with 9.51 mol% CD3COOD 
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A49: First order graph for the formation of Int#2 in the dissociation reaction of DHA in DMSO-d6 

catalysed with 18.2 mol% CD3COOD 

 

A50: First order graph for the formation of Int#2 in the dissociation reaction of DHA in DMSO-d6 

catalysed with 18.2 mol% CD3COOD 
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A51: First order graph for the formation of Int#2 in the dissociation reaction of DHA in DMSO-d6 

catalysed with 31.3 mol% CD3COOD 

 

 

A52: First order graph for the formation of Int#2 in the dissociation reaction of DHA in DMSO-d6 

catalysed with 32.1 mol% CD3COOD 
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A53: First order graph for the formation of Int#2 in the dissociation reaction of DHA in DMSO-d6 

catalysed with 51.1 mol% CD3COOD 

 

 

A54: First order graph for the formation of Int#2 in the dissociation reaction of DHA in DMSO-d6 

catalysed with 51.7 mol% CD3COOD 
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A55: First order graph for the formation of Int#2 in the dissociation reaction of DHA in 

DMSO-d6 catalysed with 57.1 mol% CD3COOD 
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A56: First order graph for the formation of Int#2 in the dissociation reaction of DHA in DMSO-d6 

catalysed with 58.4 mol% CD3COOD 

 

 

A57: First order graph for the formation of Int#2 in the dissociation reaction of DHA in DMSO-d6 

catalysed with 65.0 mol% CD3COOD 
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10.9.4.1 The zeroth, first and second order graphs for the DHA dimer 

dissociation in DMSO-d6 catalysed with CD3COOD/CD3COO- 

 

A58: The zeroth order graph for the DHA dimer dissociation in DMSO-d6 catalysed with 1.00 mol% 

CD3COO- 

 

A59: The first order graph for the DHA dimer dissociation in DMSO-d6 catalysed with 1.00 mol% 
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A60: The zeroth order graph for the DHA dimer dissociation in DMSO-d6 catalysed with 1.00 mol% 

CD3COO- 

10.9.4.2 First order graphs for the DHA dimer dissociation in DMSO-d6 

catalysed with CD3COOD/CD3COO- 

 

 

A61: The first order graph for the DHA dimer dissociation in DMSO-d6 catalysed with 0.500 mass% 
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A62: The first order graph for the DHA dimer dissociation in DMSO-d6 catalysed with 0.500 mass% 

CD3COO- 

 

  

A63: The first order graph for the DHA dimer dissociation in DMSO-d6 catalysed with 1.00 mass% 
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A64: The first order graph for the DHA dimer dissociation in DMSO-d6 catalysed with 1.00 mass% 

CD3COO- 

 

  

A65: The first order graph for the DHA dimer dissociation in DMSO-d6 catalysed with 2.00 mass% 
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A66: The first order graph for the DHA dimer dissociation in DMSO-d6 catalysed with 2.00 mass% 

CD3COO- 

 

  

A67: The first order graph for the DHA dimer dissociation in DMSO-d6 catalysed with 3.00 mass% 

CD3COO- 
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A68: The first order graph for the DHA dimer dissociation in DMSO-d6 catalysed with 3.00 mass% 

CD3COO- 

 

  

A69: The first order graph for the DHA dimer dissociation in DMSO-d6 catalysed with 4.00 mass% 
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A70: The first order graph for the DHA dimer dissociation in DMSO-d6 catalysed with 4.00mass% 

CD3COO- 

 

  

A71: The first order graph for the DHA dimer dissociation in DMSO-d6 catalysed with 5.00 mass% 
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A72: The first order graph for the DHA dimer dissociation in DMSO-d6 catalysed with 5.00 mass% 

CD3COO- 

 

  

A73: The first order graph for the DHA dimer dissociation in DMSO-d6 catalysed with 6.00 mass% 

CD3COO- 
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A74: The first order graph for the DHA dimer dissociation in DMSO-d6 catalysed with 6.00 mass% 

CD3COO- 
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