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Abstract—In this paper we empirically investigate the benefits
of multi-view multi-instance (MVMI) learning for supervised
image classification. In multi-instance learning, examples for
learning contain bags of feature vectors and thus data from
different views cannot simply be concatenated as in the single-
instance case. Hence, multi-view learning, where one classifier
is built per view, is particularly attractive when applying multi-
instance learning to image classification. We take several diverse
image data sets—ranging from person detection to astronomical
object classification to species recognition—and derive a set of
multiple instance views from each of them. We then show via an
extensive set of 10×10 stratified cross-validation experiments that
MVMI, based on averaging predicted confidence scores, generally
exceeds the performance of traditional single-view multi-instance
learning, when using support vector machines and boosting as
the underlying learning algorithms.

I. INTRODUCTION

Object detection and recognition in images is an important
research area, and there has always been significant interest
in applying advances in machine learning to this challenging
problem domain. This is particularly true for the relatively
recent class of techniques developed for multi-instance learn-
ing [2], because image data can be represented naturally in
multi-instance form [15], [28].

When applying multi-instance learning to this kind of data,
an image is represented by a bag of feature vectors rather
than a single vector, and classification of an image is based
on this bag. Each feature vector may, for example, represent an
image patch, and the bag overall represents the entire image.
This increase in representational power provided by multiple
feature vectors makes this type of learning more challenging
than single-instance learning, because some instances will be
more relevant to the classification of a bag (image) than others.

In this paper we do not propose a new technique for multi-
instance learning. Rather, we investigate the benefit of using
multiple multi-instance representations of the same image,
where each representation is based on a different set of
features. These distinct sets of features are commonly called
“views” in the machine learning literature, and multi-view
learning aims to exploit different views on the same entity
to induce more accurate classification models. The classic
example of this is a web page, where one set of features
describes the textual content of the page and a second set
describes the links in this page.

TABLE I
SUMMARY OF THE DATASETS USED IN THE EVALUATION OF MVMI.

Dataset #Images #Classes
Bikes 200 2
Cars 200 2
People 200 2
Gender 418 2
Galaxy 1733 3
Scenes 3899 13
Caltech 1703 15
Moths 880 35

Multi-view learning is a very natural way to exploit differ-
ent multi-instance representations of the same image. Given
single-instance data, the multi-view approach is commonly
applied to implement semi-supervised learning, where most of
the training data is not labeled.1 However, whether the problem
is semi-supervised or not, in the single-instance case there is
always the option of simply concatenating the different views
into a single feature vector. In multi-instance learning, this
option does not exist, as it is unclear how to effectively and
efficiently join two bags of feature vectors to form a single
bag—the corresponding operation to concatenating feature
vectors in the single-instance case.

This makes a strong case for applying multi-view learning
to multi-instance problems, even in a strictly supervised set-
ting, provided improvements in classification accuracy can be
obtained. In this paper, we investigate whether this is the case
for image classification tasks, a prominent application area for
multi-instance learning. We perform an extensive empirical
evaluation on image classification datasets and show that
MVMI can indeed, in some cases, provide significant improve-
ments in classification accuracy over single-view learning.

II. DATASETS

In this section, we discuss the image datasets used in our
study, which vary considerably in the degree of difficulty and
style. Table I gives summary statistics of each of the datasets.

A. GRAZ02 Bikes, Cars and People
The GRAZ02 Dataset [19] is a popular natural scene

database. Although it contains only three classes, namely

1Note that there is also some existing work on adopting this approach for
semi-supervised multi-instance learning [10]



Fig. 1. Examples from the Bike, Car and Person classes in the GRAZ02
Dataset

Fig. 2. Examples of the Male and Female classes in the Gender Dataset

People, Bikes and Cars, (with an additional “background”
class), it is well known to be a difficult and challenging
dataset for three primary reasons: (i) significant occlusions
and background clutter, (ii) intra-class variability, and (iii) the
fact that the objects of interest are often not dominant in the
foreground of the images. Figure 1 gives some examples of
the images from GRAZ02.

The total size of the GRAZ02 Dataset is 1280 images. We
randomly selected 100 images from each of the Bike, Car and
People classes. These images formed the positive classes for
three binary learning problems. To obtain the negative classes
for each of the three positive classes, we simply selected
100 images randomly from the remaining classes. Thus, we
formed three binary image datasets, each evenly balanced and
comprising exactly 200 images.

B. Gender

The Face Gender Recognition Dataset, derived from the
Feret face recognition dataset [20], was first proposed in [14]
for evaluating the effectiveness of complex face alignment
algorithms on gender recognition. Subsequent work on this
dataset is described in [17]. Each face image is neatly cropped
and centered. , and Figure 2 gives some examples of images
from this dataset. The dataset consists of 212 male face images
and 107 female face images.

C. Galaxy Zoo

The Galaxy Zoo Dataset is a set of astronomical images
obtained from the Galaxy Zoo project [11] and labeled with
ground truth data in [23]. There are three classes of galaxy
image in this dataset: Elliptical (comprising 215 images),
Spiral (247 images), and Edge-On (107 images). Examples
of these images are given in Figure 3. An interesting and A
challenging aspect of these images is that they tend to be low-
resolution (120×120 pixels) and very noisy.

Fig. 3. Examples of the Elliptical, Spiral, and Edge-On classes in the Galaxy
Dataset.

Fig. 4. Examples of the Highway, Kitchen and Forest classes in the Scenes
Dataset.

Fig. 5. Examples of the Anchor, Beaver and Camera classes from the Caltech
101 Dataset.

D. Scenes

The Scenes Dataset was first proposed in [9] and consists of
thirteen classes. Each class represents a natural scene such as
Bedroom, Inside City or Office. This is distinct from the other
datasets where a class usually denotes the presence or absence
of an object of interest. The dataset as originally used contains
in the order of hundreds of images per class; to reduce runtime,
we decreased this by random sampling without replacement,
to 50 images per class in our experiments. Figure 4 gives
examples of some of the images.

E. Caltech 101

The Caltech 101 Dataset [3] is a large and well known
object recognition dataset. It consists of 101 object classes
and a background class. This dataset tends to be somewhat
“easy” in the sense that each image contains the relevant
object explicitly in the foreground, and in a dominant position.
There is usually no interfering background. For the purposes
of evaluating MVMI, we did not use all 101 classes, but
instead selected only the first 15 classes in alphabetical order,
excluding the background class. These classes are: Accor-
dion, Airplanes, Anchor, Ant, Barrel, Bass, Beaver, Binocular,
Bonsai, Brain, Brontosaurus, Buddha, Butterfly, Camera, and
Cannon. Figure 5 gives examples from three of those classes.
There are 1,703 images in this subset.



Fig. 6. Examples of the classes from the Species Recognition Dataset.

Fig. 7. Two 3×3 pixel neighborhoods used to calculate the LBP of the
central pixel.

F. Species Recognition

The final dataset that we used, and the one with the highest
number of classes (35) is a moth species recognition dataset
first described in [24] and subsequently further analyzed
in [16]. This dataset is unique in that the moths were imaged
while alive. Consequently, there is often variation in the size,
position and pose of the moths in the images. Examples of
three different species of moth are depicted in Figure 6. The
total size of the dataset is 880 images.

III. VIEWS

Given the image datasets described in the previous section,
we now describe how the raw image data was converted into
different views for the MVMI experiments. As is standard,
each view corresponds to a fixed-length vector of features. In
the application considered here, all feature values are numeric.

A. View 1: Spatial Pyramid of Local Binary Patterns

View 1 represents the most traditional type of view used in
image recognition experiments. In this approach, each image
is mapped to a single feature vector of fixed length. Hence,
this first type of view actually yields a single-instance dataset–
or alternatively, a “multi-instance” dataset with one instance
per bag of instances. (The other views we consider are genuine
multi-instance views.)

We used histograms of Local Binary Patterns (LBPs) [13]
as the base image features in this view, because LBPs have
been successfully applied previously in diverse applications
ranging from texture classification (e.g. [13]) to face recog-
nition (e.g. [1]). Furthermore, the computation of LBPs can
be effectively approximated so that only integer calculations
are performed: this significantly speeds up feature extraction
while minimally affecting classification performance.

Briefly, a LBP is a property of a pixel in an intensity image,
calculated by comparing the pixel to its neighboring pixels

Fig. 8. The subdivision of an image into 21 regions using a spatial pyramid.
(Image courtesy of [17].)

in a 3×3 block. Each neighbor is labeled with either 1 or
0, depending on whether it is lighter or darker, as shown in
Figure 7. An 8-bit string is then calculated for each pixel
by starting at the top left corner and following the neighbors
clockwise. For example, for the neighborhood on the left in
Figure 7, the string is 11100000 and for the neighborhood on
the right, it is 10100110.

We ignore LBPs that are not uniform, where uniformity
means that there are no more than two 0 to 1 or 1 to 0
transitions as one traverses the bit string circularly. Thus, the
LBP for the pixel on the left in Figure 7 is uniform because it
comprises exactly two transitions in its bitstring, whereas the
LBP for the pixel on the right is not uniform, as it comprises
six transitions.

The type of each uniform LBP is then computed by con-
verting the bitstring into an integer. For example, the bitstring
11100000 is converted into 224, the bitstring 00011000 be-
comes 24, and 00000111 is 7. There are a total of 58 different
uniform LBPs possible for any 3×3 neighborhood, and the
effectively capture a variety of different classes of low-level
image features, from bright points (defined by a LBP such as
00000000) to straight edges (such as the left hand example in
Figure 7) to corners (for example, 111100011).

Once the LBP for each pixel has been computed, a fre-
quency histogram of LBPs across an entire image region
is computed. This histogram characterizes the image region.
Following previous works, we divide the image up into 21
overlapping regions of different sizes, according to the spatial
pyramid formulation [8]. A spatial pyramid involves first
extracting a global feature histogram, and then dividing the
image into 2×2 subregions. Four more histograms are then
extracted from each subregion. Next, the image is divided
again, this time into 4×4 subregions. Figure 8 illustrates the
division of an image into regions, using a sample image from
the Gender Dataset.

All 21 frequency histograms are normalized and then con-
catenated into a single feature vector describing the image
overall, consisting of 1,218 numeric features in total. An
advantage of using a spatial pyramid is that the feature vector
describes the image at both the coarse, global scale, as well
as the fine, detailed scale.

B. View 2: SIFT Keypoints

The second view we use in our experiments represents a
classic method of matching images using SIFT Keypoints [12],



which are essentially “interest points” detectable at multiple
scales. Unlike View 1, this view is a true multi-instance
view because each image can have any number of keypoints
derived from it, and there is no natural way to order keypoints
consistently across images (which would enable construction
of a single feature vector by concatenation). The group of
keypoints from a single image, where each keypoint is de-
scribed by a fixed-length numeric feature vector, forms a bag
for multi-instance learning.

In our implementation of the SIFT keypoints, each keypoint
consists of 256 numeric features, and on average there are 20-
100 keypoints per bag.

C. View 3: Uniform Patches

A “visual dictionary” is an interesting and increasingly-used
method to describe image sets (e.g. [25],[9]). Creating a visual
dictionary normally involves dividing the images into patches
or regions, and then clustering the patches to discover the
cluster centers. These then become the “words” in a dictionary,
and an image is considered a set of these words.

For View 3, we adopted this approach and divided the
image up into 5×5 uniformly distributed image patches. Thus,
each image was converted into a bag comprising 25 feature
vectors. We constructed a LBP histogram for each feature
vector, yielding 58 numeric features per vector. Rather than
clustering the patches explicitly, we provide the raw patches
to the MI learning algorithm instead, assuming that the MI
algorithm implicitly builds a visual dictionary via the learning
process.

D. View 4: Random Patches

View 4 is similar to View 3, except that, instead of extract-
ing the patches uniformly, we extracted them from random
positions and at random sizes, with a minimum patch size of
5×5 pixels and no maximum patch size other than the size
of the image. A total of 25 patches were extracted per image,
making the bags the same size as those from View 3.

IV. LEARNING ALGORITHMS

We used two popular multi-instance learning algorithms,
implemented as MISMO and MIBOOST respectively, in our
evaluation. Both are implemented in the WEKA machine
learning workbench [6], and both yield models that output
confidence scores represented as class probability estimates.
To apply them to multi-view data (yielding MVMI classifiers)
we used the following straightforward strategy: Firstly, the
given algorithm (MISMO or MIBOOST) was trained on each
of the views individually, producing a classifier for each view.
Then, at prediction time, each individual classifier’s confidence
scores—one for each class from each view—were averaged
across views to compute the overall MVMI classifier’s predic-
tion for each class. Other more complex combining approaches
such as stacking [26] are possible but initial experiments did
not yield improved results and the training times were an order
of magnitude greater.

A. MISMO

MISMO constructs a support vector machine classifier for
multi-instance data. Support vector machines are linear models
that minimize a specific penalized loss function on the training
data—the so-called “hinge” loss. A quadratic penalty term
is normally included to control overfitting, and a kernel
function can be used to construct a non-linear classifier in the
original feature space by learning a hyperplane in the higher-
dimensional kernel-induced space.

As feature vectors only enter the support vector algorithm
through the kernel function, which can be viewed as a simi-
larity function with certain mathematical properties, all that is
needed to apply this kind of algorithm to multi-instance data
is an appropriate similarity measure for bags of instances.

MISMO is an implementation of the standard sequential
minimization algorithm for support vector learning [22], ap-
plied in conjunction with a multi-instance kernel as described
in [5]. We use the set kernel from that paper. Given an underly-
ing single-instance kernel function that can be applied to pairs
of individual feature vectors, the set kernel simply takes the
sum of all possible pairwise kernel applications for all pairs
of feature vectors from the two bags being compared. This
yields a similarity score for pairs of bags. In our experiments,
we use a quadratic polynomial kernel as the underlying single-
instance kernel. The complexity parameter C was left at 1,
which is WEKA’s default. To obtain multi-class probability
estimates, we configured MISMO with pairwise coupling [7]
and calibration using logistic regression models [21].

B. MIBOOST

MIBOOST implements a boosting algorithm for multi-
instance data [27]. Like other boosting schemes, this algorithm
greedily fits an additive model to the training data. In each
iteration of the sequential boosting process, an underlying
“weak” learner is applied to generate one component of
this additive model. The algorithm is a variant of the well-
known AdaBoost.M1 algorithm [4], adapted to minimize the
exponential loss function for bags of instances.

In our experiments, we used unpruned depth-limited de-
cision trees as the “weak” classifiers (i.e. components of
the additive models), generated using WEKA’s fast REPTree
algorithm. REPTree pre-sorts numeric attributes and chooses
splits by maximizing the information gain. The depth-limit was
set to three, meaning that each tree could model interactions
between up to three features. To tackle multi-class datasets,
we used the well-known one-vs-rest method, where each class
is discriminated against all other classes, and the normalized
scores are output at prediction time. We used 100 boosting
iterations.

V. EVALUATION OF MVMI

In this section, we describe the evaluation of MVMI that
we carried out and detail the results obtained.



A. Experimental Setup

Both multi-instance learning algorithms, MISMO and MI-
BOOST, were applied to all eight learning problems, yielding
a total of 16 algorithm/dataset combinations, and we also
have four different views of the datasets: View 1, a single
instance representation, and Views 2-4, both of which are
multi-instance representations. This resulted in a total of 16×4
or 64 non-MVMI algorithm/dataset/view combinations. Each
combination represents a single experiment on a single view
that we carried out, and these experiments can be thought of
as the set of “control” experiments.

We then considered two different MVMI classifiers obtained
by combining views. The first of these, MVa comprises only
Views 1 and 2, because they are the two most diverse views.
The second MVMI classifier, MVb, comprises all four views.
Thus, considering the eight datasets and two underlying MI
algorithms, there was a total of 16×2=32 MVMI combina-
tions, which formed the set of experimental conditions to be
compared to the controls.

Overall, therefore, a total of 64+32=96 experiments were
carried out. Each experiment consisted of 10 stratified 10-fold
cross validation experiments to obtain estimates of classifica-
tion accuracy, with the results averaged over the runs.

B. Experimental Results

Tables II and III present the average accuracy of each
classifier by dataset and view (or view combination). In both
tables, View 1 is the base view with which each of the other
views are compared for statistical significance testing, based
on a corrected resampled t-test [18]. We choose View 1 for
this role because it outperforms all the other individual multi-
instance views. We indicate in bold the best result for each
dataset in each of the tables.

Examining the tables, it can be observed that when MISMO
is used in conjunction with multiple views (columns MVa and
MVb in Table II), there is an improvement in mean accuracy
for five of the eight datasets compared to the first view, which
itself performs very strongly against the other individual views.
On two datasets, significant improvements can be obtained,
and there is no significant degradation. When MIBOOST is
the classifier (see Table III), it is possible to achieve a gain in
accuracy for all but one dataset using multiple views instance
of View 1. Significant improvements can again be obtained on
two datasets, but there is also a significant degradation on one
dataset.

Closer examination reveals that MIBOOST plus MVMI
produces the overall best results for five datasets: Bike,
Cars, Person, Galaxy, and Scenes. Interestingly, although MI-
BOOST+MVMI also produces a gain for the Moths dataset
when compared to the corresponding single-view classifiers, it
is MISMO+MVMI that produces the best result overall. Most
of the greatest improvements are achieved by using all four
views (namely MVb) although occasionally the largest gains
are achieved by combining only the first two views (MVa).

On the negative side, MVMI and in fact all the multi-
instance views (Views 2-4) fail to produce an improvement

for the Caltech data. The best result in this case is achieved
consistently by MISMO in conjunction with the single instance
view, View 1. Also, with respect to the individual multi-
instance views, when compared to the corresponding classifier
trained on single instance data only (i.e. comparing V2−4 vs.
V1 in the tables), the former tend to produce less accurate
classifiers in general. Sometimes the difference is very large
(e.g. considering the results for the Moths dataset in Table II).
However, there are exceptions to this rule, as the results for
the Scenes and Moths data in Table III show (V3 and V4),
and these are perhaps the most challenging datasets.

Nevertheless, combining the classifiers trained from the
single-instance and multi-instance views does generally pro-
duce the highest accuracy overall. What is most notable is
the apparent orthogonality of the classifiers that different
views lead to. For example, often the multi-instance views
(especially View 2, the keypoints-based view) perform worse
than the single-instance views, but when views are combined,
the overall MVMI classifier generally performs better than the
corresponding single-instance classifier. A good example of
this is the Moths Dataset in Table II: an MISMO classifier
built from View 1 achieves 60.68% accuracy whereas the
same classifier built from View 2 achieves only 32.03%. Their
combination, however, produces a startling improvement to
65.91%.

VI. CONCLUSION

In this paper, we have investigated the use of multi-view
learning in a strictly supervised context, namely for image
classification using multi-instance learning. Due to the nature
of multi-instance data, multi-view learning is particularly ap-
propriate in this scenario. Our results, based on comprehensive
experiments using six image datasets and two underlying
multi-instance learning algorithms, show that the multi-view
multi-instance approach can indeed, in some cases, deliver
significantly improved classification accuracy compared to
the standard method of using single-view (multi-instance)
learning.
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