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We describe the Snob program for unsupervised learning as it has evolved from its beginning in the

1960s until its present form. Snob uses the minimum message length principle expounded in

Wallace and Freeman (Wallace, C.S. and Freeman, P.R. (1987) Estimation and inference by

Compact coding. J. Roy. Statist. Soc. Ser. B, 49, 240–252.) and we indicate how Snob estimates

class parameters using the approach of that paper. We will survey the evolution of Snob from

these beginnings to the state that it has reached as described by Wallace and Dowe (Wallace,

C.S. and Dowe, D.L. (2000) MMM mixture modelling of multi-state, Poisson, Von Mises Circular

and Gaussian distributions. Stat. Comput., 10, 73–83.) We pay particular attention to the revision

of Snob in the 1980s where definite assignment of things to classes was abandoned.
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1. INTRODUCTION

In this article, we consider the work of Chris Wallace, his stu-

dents and collaborators, in unsupervised learning. This area is

also known as clustering, cluster analysis or numerical taxon-

omy. We focus our attention on the pioneering Snob program,

wryly so-called because it places individuals in classes (C.S.

Wallace, personal communication).

The Snob program [1, 2] represents a pioneer contribution

to a model-based approach to unsupervised learning. At the

same time, as Snob made an early contribution to model-based

clustering (as unsupervised learning based on probability dis-

tributions for the clusters), it also provided early evidence that

a form of inference based on coding theory could tackle non-

trivial applications involving substantial amounts of data.

Other approaches to clustering that appeared at approxi-

mately the same time in the statistical literature [3–9] also

considered a mixture model-based approach, primarily focuss-

ing on the assumption of normality for the component distri-

butions. In a related approach, Hartley and Rao [10] and

Scott and Symons [11] considered the so-called classifi-

cation—likelihood method of clustering.

As to be discussed later in more detail, the distinction

between the mixture and classification approaches to cluster-

ing is on how they are formulated and subsequently

implemented. Both work with the joint likelihood formed on

the basis of the observed data and the unobservable

class-indicator variables. However, with the classification

approach, these indicator variables are treated as unknown

parameters to be estimated along with the unknown par-

ameters in the assumed distributional forms for the class den-

sities corresponding to the clusters to be imposed on the data.

In contrast, with the mixture approach via the EM algorithm,

these class indicator variables are treated as ‘missing data’ and

at each iteration of that algorithm are replaced by the current

values of their conditional expectations, given the observed

data. The mixture approach thus circumvents the biases in

the parameter estimates produced by the classification

approach due to outright (hard) assignments of the obser-

vations during the iterative process. The Snob program

initially used hard assignments, but later switched to soft

(partial) assignments in its implementation of the minimum

message length (MML) approach.

2. AN INFORMATION MEASURE

Wallace and Boulton [1] do not present their work as a new

method for grouping cases into classes but rather as a criterion

for evaluating the results of such clusterings, as they state in

their introduction:

The aim in this paper is to propose a measure of the good-

ness of a classification, based on information theory,

which is completely independent of the process used to

generate the classification.
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Of course, once such a criterion is proposed, it is a small step

to seek a clustering that optimizes it. That there was and is a

need for such a criterion cannot be denied. Consulting works

such as [12] or [13] reveals an embarrassment of clustering

methods and the alternatives have only increased with the

passage of time. Consider, for example, traditional hierarchi-

cal clustering methods based on a distance or similarity

matrix. The method of calculating the distance or similarity

measure must be specified, as must the criterion used for com-

bining or dividing classes, and the level of similarity at which

the resulting dendrogram is cut. Each of these decision points

offer a profusion of choices, which multiply up to give the

final number of available methods.

The measure that Wallace and Boulton [1] proposed will

later be developed into a more general context as the principle

of MML. They considered a digital encoding of a message the

purpose of which is to describe the attribute values of each

observation. A useful classification will divide all the obser-

vations into a finite number of concentrated classes. This use-

fulness is reflected in the coding scheme by allowing a short

encoding of observations within a class. In their words

If the expected density of points in the measurement

space is everywhere uniform, the positions of the points

cannot be encoded more briefly than by a simple list of

the measured values. However, if the expected density

is markedly non-uniform, application of Shannon’s

theorem will allow a reduction in the total message

length by using a brief encoding for positions in those

regions of high expected density.

The criterion for evaluating a classification of points into

classes will be the length of a message that describes all

the attribute values of all the data points that are con-

structed with the assistance of the classification. The

message is divided into five parts communicating (i) the

number of classes; (ii) a dictionary of class names; (iii) a

description of the distribution function for each class; (iv)

for each point, the name of the class to which it belongs

and (v) for each point, its attribute values in the code set

up for its class.

We remark parenthetically that in all his writings on classi-

fication, Wallace has eschewed terms like ‘observation’,

‘case’ or ‘operational taxonomic unit’ in favour of the pithy

‘thing’. It is regrettable that this sensible lead was not followed

by most of the literature.

We refer the reader to the original paper for the details of the

message construction, but we will make brief comments on the

different components of the message.

2.1. Number of classes

Wallace and Boulton [1] effectively assume an equal prob-

ability for any number of classes up to some arbitrary

cut-off. This means a constant length for this part of the

message, which is therefore disregarded.

2.2. Class name dictionary

The receiver of the message is assumed to be in possession of a

‘code book’ containing a number of possible sets of class

names. This part of the message will tell the receiver which

set of names will be used in the message. If the code book con-

tains a large number of sets of names, then it will be possible

for the sender to select one such set in which the large classes

receive short names, which will be useful when sending the

class name for every observation. However, too large a code

book means that the part of the message that specifies which

set to use must itself be very large. Balancing these two

requirements leads to a fairly long technical discussion in

the appendix to [1].

2.3. Description of the class distribution function

It is assumed that within each class, the attributes are indepen-

dently distributed. This permits the multivariate distribution to

be described by simply concatenating the descriptions of the

distributions of each attribute. (Recent versions of Snob relax

this requirement.) The considerations for encoding the distri-

bution of a categorical attribute are similar to those discussed

for the class name dictionary. The encoding of a continuous

variable within a class is based on the assumption of a normal

distribution for the variable. Decisions must be made on the

values of mean and variance to state, and the precision with

which to state these. This leads to another technical section of

the paper to determine approximately optimal values.

2.4. Class and attribute values for each observation

These merely need to be stated in the coding schemes

described earlier in the message.

2.5. The form of the message

Putting all the components of the message together leads to a

large and not particularly elegant expression for message

length. While a drawback for analytical work, this is not a par-

ticular problem for comparing the message lengths corre-

sponding to various proposed clusterings of a data set, as the

lengths in any case would in practice be computed by a com-

puter program.

3. THE SNOB PROGRAM

The Snob program itself gets only a brief mention by Wallace

and Boulton [1] as a program that attempts to minimize the
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measure defined in the paper. We need to refer to [2] for a

description of the structure of Snob itself.

Beginning from a message length defined by an initial

classification, Snob employs a number of ‘tactics’ by which

the classification is improved, so that it has a reduced

message length.

3.1. Distribution adjustment

The number of classes and the assignment of observations to

classes are left unchanged, and it is sought to optimize the par-

ameters of the class distributions and the proportion par-

ameters for the classes.

3.2. Reclassifying

The number of classes, the proportion of observations

assumed to be in each class and the class distribution par-

ameters are held constant, and the observations are reassigned

to their most probable class.

3.3. Splitting

A single class is split into two, and the optimal proportion and

distribution parameters are determined for the new classes.

3.4. Merging

Two classes are combined and the optimal proportion and dis-

tribution parameters are determined for the new class.

3.5. Swapping

A class is split into two, and one of its parts is added to another

class and the optimal proportion and distribution parameters

are determined for the affected classes.

The distribution adjustment process is an MML estimation

applied separately to each class, as it is currently constituted.

The reclassifying process proceeds observation-by-

observation. For each observation, it works out the message

length for describing the attribute values of the observation

according to the encoding for each class. It assigns the obser-

vation to the class for which this length is smallest.

Snob considers each class to be divided into two subclasses.

If the program were hypothetically stopped at a T-class sol-

ution, there would also be information about a 2T-class sol-

ution. In the splitting procedure, all possible T þ 1-class

solutions generated by splitting one class are evaluated in

terms of the consequent reduction in message length. The

best choice is made and the two subclasses of the chosen

class are promoted to full classes and endowed with randomly

chosen subclasses (at the following iteration).

Merging brings two classes together, and the distribution

adjustment procedure is carried out for the new class. The

old classes become the two subclasses of the new class.

In the swapping process one of the four subclasses of the

two classes is made into a full class and gets two random

subclasses. The other three subclasses form a new class

with subclasses given by the transferred subclass and the

old class.

Snob is initialized either by starting from an initial classifi-

cation, which will then be improved in terms of Snob’s

message length criterion, or by a random start with a given

number of classes.

A feature of Snob added at the revision described in [14] is

similar to attribute selection, but more flexible. A facility is

provided whereby an attribute may be declared ‘significant

for a class’ and distributional parameters estimated specifi-

cally for that class, but a common form of the attribute’s dis-

tribution is assumed for those classes in which it is not

declared significant. A class by default, must have existed

for five iterations before attributes are tested to see whether

being made insignificant for that class results in a shortened

message length.

4. PARTIAL OR FULL ASSIGNMENT OF

OBSERVATIONS TO CLASSES?

The approach of Snob to unsupervised learning, as noted

above, involves the fitting of finite mixtures of probability dis-

tributions to data, more briefly: mixture modelling.

There are two ways in which this kind of model may be

formalized. Let yi, i ¼ 1, . . . ,S, be the collection of things

or observations. Each yi is a vector of D attributes

yi1, yi2, . . . , yiD and may belong to one of T classes.

In the first formalism we write the probability density

of yi as

f ðyiÞ ¼
XT

j¼1

pj f ðyi;fjÞ;

where the proportion parameters pj sum to 1.

In the second formalism, we introduce ST additional binary

parameters zij [ f0,1g with
P

jzij ¼ 1 and write the probability

density of yi as

fC ðyiÞ ¼
YT

j¼1

p
zij

j f ðyi;fjÞ
zij ;

where the proportion parameters pj sum to 1 as before. In this
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second formalism we interpret zij by

zij ¼
1 if yi [ Classj;
0 otherwise:

�

In the first formalism, when the model is fitted to data by

MML, maximum likelihood or some other optimization cri-

terion, we will speak of partial assignment; in corresponding

situations for the second formalism, we speak of full assign-

ment. This is because fitting under the second formalism

involves making a specific choice of class for each obser-

vation. Under partial assignment no class is definitely speci-

fied for an observation, although its membership

probabilities in the S classes may be worked out by a Bayes

rule calculation and may result in one class being strongly

favoured.

When the EM algorithm [15] is adopted to fit mixture

models with full assignment by maximum (possibly pena-

lized) likelihood, real-valued quantities similar to zij are intro-

duced and estimated, but these are not actual model

parameters.

Scott and Symons [11] note that many classical cluster

analysis methods for observations with continuous attributes

can be seen as mixture modelling with full assignment. Ban-

field and Raftery [16] describe a program for clustering with

full assignment that builds on the work of Scott and Symons

[11]. McLachlan and Basford [17, p. 31–35] discuss

maximum likelihood estimation under the full assignment

mechanism under the name classification likelihood, citing

earlier literature and drawing attention to the presence of

bias in the distributional parameters fj when estimated this

way.

It is not difficult to see why full assignment leads to bias in

the distributional parameters. Consider a mixture of two uni-

variate normal distributions in similar proportions where

both distributions have equal scale parameters. Suppose that

the two distributions substantially overlap. In this situation

under full assignment, there will be a critical value k such

that all observations greater than k are assigned to one distri-

bution, and all observations less than k are assigned to the

other. Thus the lower distribution loses its upper tail and

the upper distribution loses its lower tail. The separation of

the means is exaggerated and the variance of each distribution

is underestimated.

As the early version of Snob fully assigned observations to

classes, it is subject to this sort of bias. For this reason, Snob

was revised to work under partial assignment. In section 6.8.2

of [18] Wallace also considers a mixture of two univariate

normal distributions to show that full assignment leads to

inconsistent parameter estimates.

5. PARTIAL ASSIGNMENT FOR SNOB

Wallace [14] describes some revisions to Snob which changed

Snob from a full assignment to a partial assignment clustering

program. This was done in order to avoid the bias problems

associated with full assignment. Wallace [14] shows that

with partial assignment a shorter message length can be

obtained than for full assignment, giving partial assignment

an MML justification. The technique is known in the MML

community as the coding trick.

The ingenious construction that is carried out reorganizes

only parts 5 and 6 of the message as described in Section

2. Initially we reorder these so that the encoded class and attri-

bute values for each observation are together. Wallace [14]

describes how to proceed next, and we repeat this now with

only light editing.

Consider the message segment encoding the class and attri-

bute values of a particular observation which is not the last

such segment to be encoded in the message. According to

the choice of class for each observation there are T ways of

encoding the class and attribute values. Let the lengths of

the several possible code segments be l1, . . . ,lT.

Define

pj ¼ 2�lj ; j ¼ 1; . . . ;T :

These pj values may be identified with the probabilities of

getting the data by each of the several mutually-exclusive

routes, all consistent with the mixture model.

Define

P ¼
XT

j¼1

pj and qj ¼
pj

P
; j ¼ 1; . . . ;T :

To choose the encoding for the data segment, first construct

according to some standard algorithm a Huffman code

optimized for the discrete probability distribution fqj: j ¼ 1,

. . . ,Tg. Note that this distribution is the Bayes posterior distri-

bution over the mutually exclusive routes, given the model and

the data segments. From the standard theory of optimal codes,

the length mj of the code word in this Huffman code for route j

will be mj ¼ 2log qj, the code will have the prefix property,

and every sufficiently long binary string will have some

unique word of the code as its prefix. Now examine the

binary string encoding the remainder of the data, that is, the

data following the segment being considered. This string

must begin with some word of the Huffman code, say the

word for route k. Then encode the data segment using route

k, hence using a code segment of length lk. Then the first mk

bits of the binary string for the remainder of the data need

not be included in the explanation, as they may be recovered

by a receiver after decoding the present data segment.
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Consider the net length of the string used to encode the data

segment, that is, the length the string used minus the length

which need not be included for the remaining data. The net

length is

lk � mk ¼ � log pk þ log qk

¼ � log ð pk=qkÞ

¼ � log P

¼ � log
XT

j¼1

pj

 !

Merely choosing the shortest of the possible, encodings for

the data segment would give a length of

� log Max
T

j¼1
pj

� �
:

The coding device, therefore, has little effect when one

possible coding is much shorter (more probable a posteriori)

than the rest, but can shorten the explanation by as much as

log T if they are all equally long.

Still following [14] but less closely, we note that the net

length of the message describing the data is the same as

would be obtained by assigning no observations to classes

and using the mixture density

f ðyiÞ ¼
XT

j¼1

pj f ðyi;fjÞ

directly to encode the attribute values. However, direct optim-

ization of the mixture density is difficult.

The coding trick uses the following part of the message in

order to select which of the T classes is used to do the encoding

of the attribute values for the observation being considered. As

that code segment has nothing to do with the current obser-

vation, it is like making a random choice of the class used

with probability given by the posterior class probability for

that observation (as that is how the classes are encoded).

If the above procedure were used directly to assign obser-

vations to clusters, there would be some similarity between

Snob and the stochastic EM method [19, 20]. However

instead the fqjg for the ith thing are used to define weights

wij and the ‘distribution adjustment’ for the jth class is

carried out with all data but with weights wij. (This is not

entirely obvious from [14] but is discussed in [21].) The

‘coding trick’ for MML estimation of mixture models and

the reason why it leads to a form of the EM algorithm are

again expounded by Wallace in Section 6.8.3 of [18].

6. THE EM ALGORITHM FOR MIXTURE MODELS

Outside the MML community mixture models such as

f ðyiÞ ¼
XT

j¼1

pj f ðyi;fjÞ

are commonly fitted by maximum likelihood using the EM

algorithm (see, e.g. [22]). Here we seek to maximize the like-

lihood

LðuÞ ¼
YS

i¼1

XT

j¼1

pj f ðyi;fjÞ

" #
;

where u is the vector of unknown parameters, containing the

mixing proportions pj and the component parameters fj for

j ¼ 1, . . . ,T. With respect to this likelihood, we may define

the observed information matrix I(u; y) to be the is the nega-

tive Hessian of the log-likelihood for u evaluated at the data

vector y and the parameter vector u. The expected or Fisher

information matrix F(u) is then defined by

FðuÞ ¼ Eu ½Iðu; yÞ�:

In the EM approach, it is also common to introduce the class

assignment indicator variables zij, i ¼ 1, . . . ,S, j ¼ 1, . . . ,T

considered above. These are not observed but a function

LCðuÞ ¼
YS

i¼1

fC ðyiÞ ¼
YS

i¼1

YT

j¼1

p
zij

j f ðyi;fjÞ
zij

is introduced that would be a likelihood function if zij had been

observed. Note that ‘C(u) ¼ log LC(u) splits into a part invol-

ving the T proportion parameters p and, for each class j, a part

involving the parameters fj. Bayesian maximum posterior

estimation with prior h(u) may be accomplished just as

easily if log h(u) also decomposes in a corresponding way.

The EM algorithm proceeds iteratively from initial esti-

mates for the parameters u. Each iteration comprises two

steps: a step involving an expectation (the E-step) and a step

involving a maximization (the M-step).

In the E-step we take the conditional expectation of the zij

given the data and the current parameters obtaining

qij ¼
pj f ðyi;fjÞPT
j¼1 pjf ðyi;fjÞ

:

In the M-step ‘C(u), with the zij replaced by the qij, is maxi-

mized with respect to the parameters, and the maximizing

values of p and the fj become the updated parameter

estimates.
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The new pj are thus given by

pj ¼

Pn
i¼1 qij

n

and for j ¼ 1, . . . ,T the new fj are obtained by T separate

weighted maximum likelihood estimations in which the data

yi with weight qij come from the distribution f(yi ; fj).

Maximum posterior estimation may be obtained similarly if

the log prior splits in the way mentioned above. In this case,

we would estimate the T þ 1 parameter set by T þ 1 separate

weighted maximum posterior estimations.

With respect to LC , referred to as the complete-data likeli-

hood, we may define the complete-data observed information

matrix IC(u; y, z) and the complete-data expected information

matrix FC(u), in the usual way. We can also define the

complete-data conditional expected information matrix

ICðu; yÞ ¼ Eu½ICðu; y; zÞjy�:

7. THE WALLACE–FREEMAN APPROACH
TO INFERENCE

Wallace and Freeman [23] present what seems to be the most

comprehensive approach to MML inference published prior to

[18]. They motivate and present the following estimate of

message length:

� log hðuÞ þ
1

2
log jFðuÞj � log f ðy; uÞ þ

1

2
np log knp

þ
1

2
np; ð1Þ

where h(u) is a prior distribution for the parameter values, F(u)

the expected (Fisher) information matrix, f(y;u) the likelihood

function, np the number of parameters being estimated and kn

the n-dimensional optimal quantizing lattice constant ([24],

table 2.3]).

The approximated expected message length (1) is very

similar to the negative of the following approximation to the

logarithm of the integrated likelihood, log g(y) ¼ log
Ð

h(u)f

(y; u) du, obtained by Laplace’s method [22, section 6.9.2].

log gðyÞ �

log f ðy; ~u Þ þ log hð ~u Þ �
1

2
log jHð ~u Þj þ

1

2
np logð2pÞ: ð2Þ

Here ũ is the posterior mode, and H(ũ ) is the negative

Hessian of the log-posterior for u evaluated at u¼ũ .

An important variant on (2) is

log gðyÞ �

log f ðy; û Þ þ log hðû Þ �
1

2
log jIðû ; yÞj þ

1

2
np logð2pÞ: ð3Þ

where the posterior mode is replaced by the MLE û and H

(û ) is replaced I(û ; y), the observed information matrix eval-

uated at û . The right-hand side of Equation (3) is termed the

Laplace empirical criterion (LEC) by McLachlan and Peel

[22]. The apparent similarity of the LEC and MML criteria

is confirmed by a recent study [25], which found for a simu-

lation study involving generalized Dirichlet mixtures that

MML and LEC performed similarly in determining the

number of clusters and better than the other alternatives

considered.

Expression (1) is unable to be used directly in Snob because

the expected information matrix F(u) is very difficult to calcu-

late for mixture models. Even its commonly used approxi-

mation, the observed information matrix, I(û ; y), is difficult

to obtain for mixture models. The EM algorithm may not be

adapted in a way similar to the way it can be adapted for

maximum posterior estimation because log jF (u)j cannot be

written as the sum of T þ 1 parts each involving only one of

the parameter subsets p and the fj for j ¼ 1, . . . ,T.

In Snob (1) is not applied directly to the whole mixture

model, but, in a weighted form, to the individual models for

each component. This is similar to approximating the Fisher

information matrix F (u) by the complete-data information

matrix FC(u) [26].

We note that the determinants of the complete-data

expected information matrix FC (u) and the (incomplete

data) information matrix F (u) can be quite different. To see

this note the rate of convergence of the EM algorithm

towards the maximum likelihood estimate (MLE) û depends

on the smallest eigenvalue of

ICðu; yÞ�1ICðu; yÞ:

The EM algorithm can converge very slowly, in particular,

when the components of the mixture are not well separated,

which indicates that these two matrices, IC(u; y) and

IC(u; y), can be quite different. Now the observed information

matrix I (û ; y) should be quite similar to the Fisher information

matrix F (û ); and for component distributions belonging to the

regular exponential family, IC(û ; y) is equal to FC (û ). This

suggests that the determinants of FC(û ) and F (û ) can be

quite different.

Despite this there are situations in which the determinant of

FC(û ) may replace the determinant of F (û ) in (1) with little

effect on the estimated parameters. Jorgensen [27] shows

that, in the case of the single-factor analysis model studied
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by Wallace and Freeman [28], using an EM algorithm to

implement a version of MML in which the determinant of

F (û ) is replaced by that of FC (û ) yields very similar

results to those of [28]. Jorgensen [27] also shows that the

evaluation of the determinant of F (û ) can be very intricate.

SNOB TODAY

Another strand in MML work in unsupervised learning

began in 1998 with Wallace’s article [29] in which

Wallace considers strategies for incorporating spatial infor-

mation into mixture model clustering. The basic setup is

in terms of Markov random fields. A contribution to the

research programme envisaged in [29] appears in [30]

which gives more information about the message length

approximations used.

The most recent reference on the Snob program as such is

[31]. Snob has been extended to allow univariate Poisson

and von Mises circular variables (attributes) in addition to

the normal and discrete variables originally allowed.

Because Snob assumes that all variables are independent

within each cluster, it should not be difficult to extend Snob

to cope with other types of variable distribution once the

problem of MML estimation for such variables has been

solved. There seem to be relatively few examples of successful

MML approaches to genuine multivariate distributions, so

extending Snob to have the ability to fit more complicated

component distributions is a harder problem. However,

Agusta and Dowe [32] have succeeded in developing an

MML approach to fitting mixtures of multivariate normal dis-

tributions. It appears that Snob’s model search strategy may

have to be rethought as the possibility of groups of multi-

variate normal vectors of attributes opens up a much larger

model space to be searched in.

Hunt and Jorgensen [33] consider the maximum likeli-

hood fitting of mixture models similar to Snob for continu-

ous and categorical variables. The continuous variables may

be assumed to have block-diagonal covariance structure

within mixture components. In the prostate cancer data

studied by Hunt and Jorgensen [33], there was strong evi-

dence of within-component associations in the two-,

three-, and four-component mixtures fitted. However, the

actual most probable assignments of the observations to

clusters did not change markedly from the independent-

within-clusters model when the stronger associations were

added to the model, suggesting that Snob would have

done well with this data. It is likely, though, that data

sets exist in which allowing a more complex model in the

components allows one to use substantially fewer com-

ponents. Of course, it is just such trade-offs that MML is

designed to evaluate, so perhaps one day there may be a

Super-Snob with such capabilities.
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