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Abstract

One of the most costly diseases in the dairy industry is mastitis, which is an 

inflammation of the mammary gland. Mastitis influences the quality of milk and 

therefore reduces financial returns to both the farmer and the processor. Early 

detection of mastitis typically reduces treatment cost and a significant amount of 

research has been done in this field. 

Currently, the three major methods for mastitis detection are:  

The Foss Analysis, which physically counts each cell and is performed off-site. 

The Whiteside Test, which is based on a direct relationship between the 

number of the blood cells and the intensity of a gel formed between NaOH and 

cells. It was developed for on-site mastitis detection, but is no longer used 

routinely.

The California Mastitis Test (CMT), which can be done on-site, but is only a 

quantitative indication of the severity of the infection. 

The California Mastitis Test has previously been adapted to determine the somatic 

cell count (SCC) in infected milk by correlating viscosity to cell count. Although 

highly successful, some uncertainty exists regarding the rheology of the gel formed 

during the test as well as factors that may influence the accuracy of the test. 

In this thesis, studies were undertaken on the rheology of the gel formed during the 

California Mastitis Test in order to develop an understanding of the mechanism of gel 

formation and how various factors influence the rheology of the gel.  

Basic biochemistry and physico-chemistry of the gel has been reviewed and it was 

found that the CMT gel is a DNA/histone/surfactant complex, which forms when SDS 

is introduced into infected milk with elevated somatic cell counts. Based on literature 

and some initial experimentation it was found that the gel is a time- and shear-

dependent, non-Newtonian fluid. Since the reliability of the CMT hinges on the 

correlation between viscosity and SCC, this study investigated specific factors that 

may influence gelation, these were: 
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rheology

testing conditions, such as time delay prior to viscosity testing, shear rate and 

temperature 

surfactant type and concentration 

milk composition, including fat content, somatic cell count and protein content. 

It was found that when using capillary viscometry a linear relationship exists between 

the relative viscosity of the gel and the SCC. The surfactant concentration determines 

the slope of this linear relationship and it was found that at least 3% SDS is necessary 

for accurate results. Using more than 3% SDS resulted in more scatter in the data. It 

was also found that a linear relationship exists between the maximum apparent 

viscosity and SCC. Either capillary or Brookfield viscometry can be used, however, 

Brookfield viscometry was found to be more sensitive at the lower SCC range.  

It was found that the combination of surfactant concentration and SCC influenced the 

rheology of the gel. The lower the SCC the more SDS was required for gel formation. 

It was found that when using 1% SDS the critical SCC was 79 k cell/ml, while using 

3% SDS this was lowered to 59 k cell/ml. It was found that above the critical SCC the 

gel is a non-Newtonian rheopectic fluid. Dependent on shear rate, the gel shows 

rheodestructive behaviour. With a delay time, the peak viscosity of the gel formed 

faster with longer delay times. However, more than 30 seconds delay had no 

additional influence on gel formation. It was found that the shear rate or spindle speed 

influences both the time to reach the peak viscosity as well as the magnitude of this 

maximum. Higher shear rates shortened the time to reach the maximum apparent 

viscosity as well as the maximum viscosity. This is likely due to physical breakdown 

of the gel which is accelerated due to increased shear. 

Different surfactants have different effects on raw milk. Both acetic acid and Triton-

114 were found to be ineffective as CMT reagents. Acetic acid only denatures 

proteins and the increased viscosity is due to the precipitation of casein. Triton-114 

cannot lyse nuclei walls and therefore gel formation was prohibited due to no 

DNA/histone complexes being released.  Mixing SDS with Triton-114 was found to 

be less effective than SDS alone either due to the nucleus not being lysed, or because 



iv

of interaction effects between SDS and Triton-114, reducing the available SDS for 

gelation.

Lastly it was concluded that protein and fat content only contributes to the viscosity of 

milk by changing the solids content of milk and neither of these affects gelation 

during the CMT. Also, temperature only has a small influence on the relative viscosity 

and this influence could be neglected if the CMT is done around room temperature. 
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Notation 

 volume fraction 

 ( i) lwpcasfati )(

where fat = milk fat, cas = casein, wp = whey proteins and l = lactose 

max the assumed value of  ( i) for maximum packing of all dispersed 

particles 

i the volume fraction of a dispersed component with a particle size at 

least an order of magnitude greater than the size of the water 

molecule

 angle 

 ratio of outer wall radius and inner wall radius 

 shear 

 shear rate 

 viscosity 

a  apparent viscosity 
e
 equilibrium viscosity 

B Bingham viscosity 

0 viscosity of the portion of the product consisting of water and low 

molecular weight substances other than lactose 

 shear stress 
e
 equilibrium shear stress 

s  yield stress of solid 

 cone angle 

 angular velocity 

l length 

P pressure difference 

A area 

AA acetic acid 

ATP adenosine triphosphate 

a outer radius 

BSA bovine serum albumin  

CMC critical micellar concentration 

CMT California Mastitis Test 

cv,i  the volume concentration of the component in the product 

DNA deoxyribonucleic acid 

DNase I deoxyribonuclease I 

dt change of time 

dy change of distance 

dz change of displacement 

F force 

h height 

k cells/ml 1000 cells/ml 

l effective length of spindle 

LAS alkylbenzene sulfonate  

M torque 

N RPM 



x

PMN polymorphonucleus 

ppm parts per million 

Q volumetric flow rate 

R radius 

rad/sec radians per second 

Rb radius of spindle 

Rc radius of container 

RPM revolutions per minute 

r inner radius 

s
-1

 per second 

SCC somatic cell count 

sec second 

SEM scanning electron microscopy 

SDS Sodium dodecyl sulphate 

SDS/T mixture of SDS and Triton-114 

T Triton-114 

t time 

V voluminosity 

v velocity of displacement 

Vi  the voluminosity of component i 

X radius at which shear stress is calculated 

y distance 

z displacement 



xi

List of tables 

Table 1: Composition changes in milk constituents caused by mastitis infection [17]27 

Table 2: Changes of various proteins in milk with mastitic infection [17] .................28 

Table 3: Effect of mastitis on the level of anions and cations in milk [17] .................30 

Table 4: Summary of mastitis diagnostic tests [17].....................................................32 

Table 5: Micellar weights, aggregation numbers and CMC for some surfactants [35]

......................................................................................................................................46 

Table 6: Representative values of the viscosity of whole milk and fractions [44] ......58 

Table 7: Defined items in Equation 11 ........................................................................59 

Table 8: The value of voluminosity of various milk components [44]........................60 

Table 9: Reagents and their suppliers ..........................................................................68 

Table 10: Proteins and their suppliers..........................................................................68 

Table 11: Sample milk and its supplier........................................................................69 

Table 12: Experimental plan (1) ..................................................................................77 

Table 13: Experimental plan (2) ..................................................................................78 

Table 14: Comparison of time delay’s effect on the peak viscosity of the gel at 

different RPM ..............................................................................................................88 

Table 15: Apparent viscosity of powder and shop milk at different concentrations 

SDS, measured by Brookfield viscometry at 12 RPM. ...............................................93 

Table 16: Apparent viscosity of milk and different concentrations acetic acid at 12 

RPM .............................................................................................................................96 

Table 17: Apparent viscosity of milk and different concentrations Triton-114 at 12 

RPM. ............................................................................................................................96 

Table 18: Relative viscosities of different milk samples with and without SDS, 

measured by Ubbelohde viscometry. ...........................................................................99 

Table 19: Apparent viscosities of different milk samples with and without SDS, 

measured by Brookfield viscometry at 12 RPM..........................................................99 

Table 20: Relative viscosities of powder milk with and without additional protein, 

measured by Ubbelohde viscometry. .........................................................................100 

Table 21: Relative viscosities of shop milk with and without additional protein, 

measured by Ubbelohde viscometry. .........................................................................100 

Table 22: Relative viscosities of raw milk (158 k cells/ml) with and without additional 

protein, measured by Ubbelohde viscometry.............................................................101 



xii

Table 23: Relative viscosities of raw milk (186 k cells/ml) with and without additional 

BSA, measured by Ubbelohde viscometry. ...............................................................101 



xiii

List of Figures 

Figure 1: Shear and viscosity [6] ................................................................................4 

Figure 2:  versus  for time-independent fluids [6]....................................................8 

Figure 3: Flow of time-dependant fluids [6]..................................................................9 

Figure 4: Behaviour of a visco-elastic fluid [6; 13] .....................................................11 

Figure 5: Simple method to determine the visco-elastic behaviour in fluid by rotating 

a spindle in the fluid from Tiu and Boger [35] ............................................................12 

Figure 6: Flow of yield stress fluids [6].......................................................................13 

Figure 7: Types of shear deformation [6]: ...................................................................15 

Figure 8: Principle of capillary viscometer [6] ............................................................15 

Figure 9: Principle of a coaxial cylinders rotational viscometer [6]............................18 

Figure 10: Principle of  a typical cone-plate rotational viscometer [6] .......................20 

Figure 11: Milk plasma phase and serum phase [14] ..................................................22 

Figure 12: Comparison of different component of milk on average [14]....................25 

Figure 13: Photographs of cells in bovine milk stained according to the method of 

Pappenheim [23]: a-b =small lymphocytes; c = large lymphocyte; d-f = band 

neutrophils; g-i = segmented neutrophils; k = basophil (left) and band (right) 

neutrophil; l = basophile; m = eosinophil; n-q = macrophages; magnification × 1000-

fold ...............................................................................................................................36 

Figure 14: Electron micrograph of a plasma cell, a type of white blood cell that 

secretes antibodies [29]................................................................................................37 

Figure 15: Phospholipid monomers noncovalently assemble into bilayer structure, 

which forms the bases of all cellular membranes [29] ................................................38 

Figure 16: Diagram of structure of the plasma membrane [30]...................................39 

Figure 17: The watery interior of cells is surrounded by the plasma membrane, a two-

layered shell of phospholipids [29]..............................................................................39 

Figure 18: Structure of a typical nucleus envelope [31] ..............................................40 

Figure 19: Chromosome and three types of chromatin forms [29]..............................41 

Figure 20: Surfactant architecture-general representation of a surfactant molecule [33]

......................................................................................................................................42 

Figure 21: Major surfactant groups [33] ......................................................................44 

Figure 22: Structures of four common surfactants [29]...............................................44 



xiv

Figure 23: Schematic representation of the equilibrium of surfactant between 

monomeric, monolayer and micellar forms [35] .........................................................45 

Figure 24: Temperature-concentration phase diagram of SDS in 0.1 M NaCl/0.05M 

sodium phosphate buffer, pH7.4 (CMC, critical micellar concentration and CMT, 

critical micellar temperature) [35] ...............................................................................45 

Figure 25: Examples of surfactant aggregates [33] .....................................................47 

Figure 26: How tail group share can influence micelle shape [33] .............................48 

Figure 27: Diagram of the process that surfactant dissolves membranes [31] ............51 

Figure 28: DNA extruded from nucleus envelope of a bacteria E.coli [32] ................53 

Figure 29: Stained CMT gel at ~ 10 × magnifications showing non-homogeneous gel 

formation [5] ................................................................................................................53

Figure 30 The protocols of detergents (i.e.surfactants) dissolve the histones and 

histone-like proteins thus break chromatin structures and CMT gel structure ............57 

Figure 31: The SDS-coated proteins in milk/surfactant solution [29] .........................61 

Figure 32: A graph of apparent viscosity of high SCC interacts with SDS versus time, 

showing the whole process of gel formation and breakdown [10] ..............................62 

Figure 33: The Weissenberg effect of the CMT gel climbing a glass stirring rod 

rotated at approximately 100 RPM [5] ........................................................................63 

Figure 34: Change in apparent viscosity of CMT gel over time for various SCC: 2 

million cells/ml ( ); 1.3 million cells/ml ( ); 1.1 million cells/ml ( ); 0.7 million 

cells/ml ( ); homogenized and standardized milk ( ) [5] ........................................66 

Figure 35: Brookfield viscometer (Model DV-II) .......................................................70 

Figure 36: Ubbelohde viscometer (Model No. 1B M423)...........................................71 

Figure 37: Apparent viscosity of raw milk (3,884 k cells/ml) measured by Brookfield 

viscometry at 0.3 RPM and 1% SDS, indicating the whole process of the CMT gel 

formation and breakdown. ...........................................................................................79 

Figure 38: Apparent viscosity of milk with 1% SDS at different SCC at 12 RPM, 

showing the viscosity of the gel is time-dependant. ....................................................81 

Figure 39: Apparent viscosity of milk with 1% SDS with various SCC, measured at 

12 RPM. Results indicate that a critical SCC is necessary for gel formation..............82 

Figure 40: Relative viscosity versus SCC of raw milk at different surfactant 

concentrations, measured by Ubbelohde viscometry...................................................82 



xv

Figure 41: Maximum apparent viscosity versus SCC of raw milk at different 

surfactant concentrations, measured by Brookfield viscometry. .................................83 

Figure 42: Visco-elasticity during the interaction between high SCC milk (SCC > 

1,000 k cells/ml) and 1% SDS (a) and middle SCC milk (1,000 k cells/ml > SCC > 

500 k cells/ml) and 1% SDS (b). .................................................................................84 

Figure 43: Relative viscosity versus time delay for low SCC milk, using 3% SDS....86 

Figure 44: Relative viscosity versus time delay for milk with SCC between 738 and 

2,431 k cells/ml, using 1% SDS...................................................................................86 

Figure 45: Apparent viscosity versus time for low SCC milk (79 k cells/ml) for 

different time delays, using 1% SDS and at a spindle speed of 12 RPM. ...................87 

Figure 46: Apparent viscosity versus time for low SCC milk (79 k cells/ml) for 

different time delays, using 1% SDS and at a spindle speed of 30 RPM. ...................87 

Figure 47: Apparent viscosity versus time for low SCC milk (79 k cells/ml) for 

different time delays, using 1% SDS and at a spindle speed of 60 RPM. ...................88 

Figure 48: The effect of time delay and spindle speed on the time to reach peak 

apparent viscosity.........................................................................................................88 

Figure 49: Apparent viscosity versus time for low SCC (110 k cells/ml) milk at 

different RPM, using 3% SDS. ....................................................................................90 

Figure 50: Apparent viscosity versus time for middle range SCC (593 k cells/ml) milk 

at different RPM, using 3% SDS. ................................................................................90 

Figure 51: The effect of spindle speed on the maximum apparent viscosity and time to 

reach maximum viscosity ............................................................................................91 

Figure 52: Relative viscosity of 1% SDS solution versus temperature. ......................92 

Figure 53: Relative viscosity of different types of milk at different temperatures, using 

1% SDS........................................................................................................................92

Figure 54: Apparent viscosity versus time at different concentrations SDS for low 

SCC milk (59 k cells/ml) at 12 RPM. ..........................................................................94 

Figure 55: Apparent viscosity versus time at different concentrations SDS for middle 

range SCC (593 k cells/ml) milk at 12 RPM. ..............................................................94 

Figure 56: Apparent viscosity versus time at different concentrations SDS for high 

SCC (2,772 k cells/ml) milk at 12 RPM. .....................................................................95 

Figure 57: Apparent viscosity versus time for milk samples containing various levels 

of somatic cells, using 1% SDS and 2% Triton-114, at 12 RPM ................................97 



xvi

Figure 58: Apparent viscosity versus time for milk samples containing various levels 

of somatic cells, using 1% SDS, at 12 RPM................................................................98 



1

Chapter 1 Introduction 

Worldwide, the single most costly disease in the dairy industry is mastitis, which is an 

inflammation of the mammary gland. Mastitis influences the dairy farmer 

economically through reduced milk yield, discarded milk, drugs, veterinary expenses, 

culling, and increased labour cost [4]. 

The dairy industry operates at very strict quality standards. It is required that any milk 

sample contains less than a specified somatic cell count. All over the world farmers 

are therefore forced to ensure a low somatic cell count in their milk products. 

At present, farmers have no accurate or reliable method to measure somatic cells 

during production. Therefore, there is a strong market for technology enabling real 

time somatic cell measurement. Sensortec Ltd has recently developed technology that 

would enable online measurement of somatic cells. The technology is based around 

the automation of the California Mastitis Test (CMT) which relies on the changes in 

the rheology of milk as the somatic cell count (SCC) varies. In the test, anionic 

surfactant is mixed with milk and a gel is formed due to the interaction of the 

surfactant with the proteins in the somatic cells. The viscosity of the gel is 

proportional to the DNA content of the cells therefore SCC of the milk [5]. 

There are mainly two types of fluid systems: Newtonian fluid systems and Non-

Newtonian fluid systems. Newtonian fluids possess a constant viscosity at a given 

temperature, while for Non-Newtonian fluids the apparent viscosity depends on shear 

rate.

An understanding of the rehological behaviour of the gel is crucial in any sensor that 

depends on this to determine the SCC. Thus, the objective of this research project is to 

charaterise the rheological properties of various fluids encountered in the process of 

detecting somatic cells in milk. Also, this study will investigate specific factors that 

may influence the correlation between viscosity and SCC, these are:

rheology of milk and milk gel 
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testing conditions, such as time delay prior to viscosity testing, shear rate and 

temperature 

surfactant type and concentration 

milk composition, including fat content, somatic cell count and protein content. 
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Abstract 
 
One of the most costly diseases in the dairy industry is mastitis, which is an 

inflammation of the mammary gland. Mastitis influences the quality of milk and 

therefore reduces financial returns to both the farmer and the processor. Early 

detection of mastitis typically reduces treatment cost and a significant amount of 

research has been done in this field. 

 

Currently, the three major methods for mastitis detection are:  

• The Foss Analysis, which physically counts each cell and is performed off-site. 

• The Whiteside Test, which is based on a direct relationship between the 

number of the blood cells and the intensity of a gel formed between NaOH and 

cells. It was developed for on-site mastitis detection, but is no longer used 

routinely. 

• The California Mastitis Test (CMT), which can be done on-site, but is only a 

quantitative indication of the severity of the infection. 

 

The California Mastitis Test has previously been adapted to determine the somatic 

cell count (SCC) in infected milk by correlating viscosity to cell count. Although 

highly successful, some uncertainty exists regarding the rheology of the gel formed 

during the test as well as factors that may influence the accuracy of the test. 

 

In this thesis, studies were undertaken on the rheology of the gel formed during the 

California Mastitis Test in order to develop an understanding of the mechanism of gel 

formation and how various factors influence the rheology of the gel.  

 

Basic biochemistry and physico-chemistry of the gel has been reviewed and it was 

found that the CMT gel is a DNA/histone/surfactant complex, which forms when SDS 

is introduced into infected milk with elevated somatic cell counts. Based on literature 

and some initial experimentation it was found that the gel is a time- and shear-

dependent, non-Newtonian fluid. Since the reliability of the CMT hinges on the 

correlation between viscosity and SCC, this study investigated specific factors that 

may influence gelation, these were: 
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• rheology 

• testing conditions, such as time delay prior to viscosity testing, shear rate and 

temperature 

• surfactant type and concentration 

• milk composition, including fat content, somatic cell count and protein content. 

 

It was found that when using capillary viscometry a linear relationship exists between 

the relative viscosity of the gel and the SCC. The surfactant concentration determines 

the slope of this linear relationship and it was found that at least 3% SDS is necessary 

for accurate results. Using more than 3% SDS resulted in more scatter in the data. It 

was also found that a linear relationship exists between the maximum apparent 

viscosity and SCC. Either capillary or Brookfield viscometry can be used, however, 

Brookfield viscometry was found to be more sensitive at the lower SCC range.  

 

It was found that the combination of surfactant concentration and SCC influenced the 

rheology of the gel. The lower the SCC the more SDS was required for gel formation. 

It was found that when using 1% SDS the critical SCC was 79 k cell/ml, while using 

3% SDS this was lowered to 59 k cell/ml. It was found that above the critical SCC the 

gel is a non-Newtonian rheopectic fluid. Dependent on shear rate, the gel shows 

rheodestructive behaviour. With a delay time, the peak viscosity of the gel formed 

faster with longer delay times. However, more than 30 seconds delay had no 

additional influence on gel formation. It was found that the shear rate or spindle speed 

influences both the time to reach the peak viscosity as well as the magnitude of this 

maximum. Higher shear rates shortened the time to reach the maximum apparent 

viscosity as well as the maximum viscosity. This is likely due to physical breakdown 

of the gel which is accelerated due to increased shear. 

 

Different surfactants have different effects on raw milk. Both acetic acid and Triton-

114 were found to be ineffective as CMT reagents. Acetic acid only denatures 

proteins and the increased viscosity is due to the precipitation of casein. Triton-114 

cannot lyse nuclei walls and therefore gel formation was prohibited due to no 

DNA/histone complexes being released.  Mixing SDS with Triton-114 was found to 

be less effective than SDS alone either due to the nucleus not being lysed, or because 
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of interaction effects between SDS and Triton-114, reducing the available SDS for 

gelation. 

 

Lastly it was concluded that protein and fat content only contributes to the viscosity of 

milk by changing the solids content of milk and neither of these affects gelation 

during the CMT. Also, temperature only has a small influence on the relative viscosity 

and this influence could be neglected if the CMT is done around room temperature. 
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Notation 
 
Φ volume fraction 
∑ (Φi) lwpcasfati Φ+Φ+Φ+Φ=Φ∑ )(  

where fat = milk fat, cas = casein, wp = whey proteins and l = lactose 
Φmax the assumed value of ∑ (Φi) for maximum packing of all dispersed 

particles 
Φi the volume fraction of a dispersed component with a particle size at 

least an order of magnitude greater than the size of the water 
molecule 

α angle 
ε ratio of outer wall radius and inner wall radius 
γ shear 
•

γ  shear rate 
η viscosity 

aη  apparent viscosity 
ηe equilibrium viscosity 
ηB Bingham viscosity 
η0 viscosity of the portion of the product consisting of water and low 

molecular weight substances other than lactose 
σ shear stress 
σe equilibrium shear stress 

sσ  yield stress of solid 
ψ cone angle 
ω angular velocity 
∆l length 
∆P pressure difference 
A area 
AA acetic acid 
ATP adenosine triphosphate 
a outer radius 
BSA bovine serum albumin  
CMC critical micellar concentration 
CMT California Mastitis Test 
cv,i  the volume concentration of the component in the product 
DNA deoxyribonucleic acid 
DNase I deoxyribonuclease I 
dt change of time 
dy change of distance 
dz change of displacement 
F force 
h height 
k cells/ml 1000 cells/ml 
l effective length of spindle 
LAS alkylbenzene sulfonate  
M torque 
N RPM 



 x

PMN polymorphonucleus 
ppm parts per million 
Q volumetric flow rate 
R radius 
rad/sec radians per second 
Rb radius of spindle 
Rc radius of container 
RPM revolutions per minute 
r inner radius 
s-1 per second 
SCC somatic cell count 
sec second 
SEM scanning electron microscopy 
SDS Sodium dodecyl sulphate 
SDS/T mixture of SDS and Triton-114 
T Triton-114 
t time 
V voluminosity 
v velocity of displacement 
Vi  the voluminosity of component i 
X radius at which shear stress is calculated 
y distance 
z displacement 
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Chapter 1 Introduction 
 
Worldwide, the single most costly disease in the dairy industry is mastitis, which is an 

inflammation of the mammary gland. Mastitis influences the dairy farmer 

economically through reduced milk yield, discarded milk, drugs, veterinary expenses, 

culling, and increased labour cost [4]. 

 

The dairy industry operates at very strict quality standards. It is required that any milk 

sample contains less than a specified somatic cell count. All over the world farmers 

are therefore forced to ensure a low somatic cell count in their milk products. 

 

At present, farmers have no accurate or reliable method to measure somatic cells 

during production. Therefore, there is a strong market for technology enabling real 

time somatic cell measurement. Sensortec Ltd has recently developed technology that 

would enable online measurement of somatic cells. The technology is based around 

the automation of the California Mastitis Test (CMT) which relies on the changes in 

the rheology of milk as the somatic cell count (SCC) varies. In the test, anionic 

surfactant is mixed with milk and a gel is formed due to the interaction of the 

surfactant with the proteins in the somatic cells. The viscosity of the gel is 

proportional to the DNA content of the cells therefore SCC of the milk [5]. 

 

There are mainly two types of fluid systems: Newtonian fluid systems and Non-

Newtonian fluid systems. Newtonian fluids possess a constant viscosity at a given 

temperature, while for Non-Newtonian fluids the apparent viscosity depends on shear 

rate. 

 

An understanding of the rehological behaviour of the gel is crucial in any sensor that 

depends on this to determine the SCC. Thus, the objective of this research project is to 

charaterise the rheological properties of various fluids encountered in the process of 

detecting somatic cells in milk. Also, this study will investigate specific factors that 

may influence the correlation between viscosity and SCC, these are:  

 

• rheology of milk and milk gel 



 2

• testing conditions, such as time delay prior to viscosity testing, shear rate and 

temperature 

• surfactant type and concentration 

• milk composition, including fat content, somatic cell count and protein content. 
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Chapter 2 Rheology 
 

2.1 Introduction to Rheology 

Rheology is the science of fluid property characterisation. The study of rheology 

is the study of the deformation of material resulting from the application of a 

force [7]. According to Doublier and Lefebvre [6], a fluid can be defined as “a 

material which, when submitted to external forces, will undergo within the 

timescale of the experiment a deformation which will not be recovered upon 

removing the stress”.  

 

There are two main types of fluids: Newtonian and non-Newtonian fluids. 

Newtonian fluids possess a constant viscosity at a constant temperature, while 

for non-Newtonian fluids the apparent viscosity depends on shear rate [8; 9]. 

 

In the food industry, a common characteristic of most food fluid systems is their 

multi-phasic nature (e.g. liquid and solid phase). The flow properties of such 

systems are quite complicated and besides the Newtonian or non-Newtonian 

character, a clear distinction must be made between time-independent and time-

dependant flow [6]. 

 

2.2 Properties of Fluids 

2.2.1 Viscosity 

The fluid property that has the most dramatic influence on flow 

characteristics is viscosity. Viscosity is the fluid property that describes the 

magnitude of the resistance to flow due to shear forces within a fluid [9].  

 

When subjected to stress, a fluid will continuously deform, that is, it will 

flow. Different fluids exhibit different degrees of resistance to the applied 

stress. A more quantitative understanding of these viscous forces is 

developed in the following parts. 
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Consider a viscous, isotropic and incompressible fluid at a given temperature. 

Within the liquid, consider two parallel plates with area A and at a small 

distance dz between each other (Figure 1). When a constant force, F, is 

applied to the top plate, it will slide relatively to the other along the direction 

of F, the linear displacement being dy, during the time dt, while the bottom 

plate is stationary. This can apply to simple shear deformation in streamline 

flow too. The structure of the flowing fluid is taken as lamellar or a stacking 

of infinitely thin adjacent layers gliding over each other in a stratified manner 

without mixing between the individual layers [6; 8; 9]. 

 

 

Figure 1: Shear and viscosity [6]  

 

By definition, the applied shear stress σ, which can be expressed by
A
F

=σ , 

and the resulting shear strain is
dz

tzdytz ),(),( =γ .  Shear rate is expressed as 

the time-derivative of strain
dt
dγγ =

•

. When steady-state flow is established, 
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the linear relative velocity of displacement, ),( tzV  of the two plates 

becomes dependent on z alone, since
dt
dy  is constant. Therefore, 

 
dz

zdv
dz
dt
dyd

dt
dz
dyd

)(
=

⎟
⎠
⎞

⎜
⎝
⎛

=
⎟
⎠
⎞

⎜
⎝
⎛

=
•

γ       (1) 

In this equation, 
•

γ  is in fact a velocity gradient in the material. 

 

Viscosity is defined as the ratio of shear stress to shear rate: •=
γ

ση  and is in 

general, a function of temperature, shear rate and time. Flow behaviours for 

which, at a known temperature, η is a function of 
•

γ  only, are time-

independent and the relationship between stress σ and the strain rate 
•

γ  is 

sufficient to characterise the fluid’s rheology. For time-dependant fluids, one 

has to study both σ (
•

γ ) and σ (t) relations. 

 

When a fluid is submitted to a shear rate above a given value of
•

γ , the stream 

layers loose their individuality and increases the onset of the turbulent region 

of flow. Turbulent flow involves no other intrinsic property of the fluid, but 

because of the mixing motions superimposed to the mean direction of flow, 

there is an extra dissipation of energy through viscous friction. 

 

Strictly speaking, the above expressions for γ and 
•

γ  are valid only for shear 

with planar symmetry (simple shear). However, they generally provide very 

good approximation for other shear geometries, and will be used later [6]. 

2.2.2 Newtonian fluids 

For an incompressible Newtonian fluid in laminar flow, the resulting shear 

stress is equal to the product of the shear rate and viscosity of the fluid. At a 

given temperature, the shear rate may be expressed as the velocity gradient in 

the direction perpendicular to that of the shear force [6-9]: 
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⎥⎦
⎤

⎢⎣
⎡−==

dz
zdv

A
F )(ησ        (2) 

As illustrated in Figure 2b, a plot of σ against 
•

γ  provides a straight line 

passing through the origin, the slope of which is viscosity 
•

= γηση : . At a 

fixed temperature, one value of viscosity is sufficient to characterise the 

rheology of such fluids. 

 

Simple liquids (such as water), solutions of low molecular weight 

compounds, dilute dispersions and dilute polymer solutions show Newtonian 

behaviour, at least at relatively low stress or shear rate. In such fluids, no 

structural effects are shown at the time and stress scales of the experiment. 

 

2.2.3 Non- Newtonian fluids 

For non-Newtonian fluids, shear stress versus shear rate is non-linear. The 

apparent viscosity (shear stress divided by shear rate), is not constant at a 

given temperature and is dependent on flow conditions such as flow 

geometry, time and shear rate. Such materials may be grouped into the 

following general classes [6; 8]: 

• Those whose properties are independent of time under shear, called 

‘time-independent fluids’.  

• Those whose properties are dependent upon duration of shear, called 

‘time-dependant fluids’. 

• Those which exhibit a yield stress, which is the force that needs to be 

overcome before flow can occur, called ‘plastic or viscoplastic fluids’. 
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I. Time-independent behaviour 

For a time-independent fluid, viscosity is independent of the time 

during which solicitation (
•

γ  or σ) is applied (Figure 2a), but depends 

on the rate of solicitation. 

 

More concentrated dispersions or polymer solutions are typically non-

Newtonian, where viscosity is not constant and flow behaviour must be 

characterised by measurements of η over a large range of shear rates.  

 

Time-independent non-Newtonian fluids are further classified on the 

grounds of the shape of the non-linear shear vs strain rate function 

(Figure 2c) [8]. These are: 

 

• shear-thinning or Pseudoplastic fluids, where η is a decrease 

function of σ versus
•

γ , 

• shear-thicking or Dilatant fluids, where η is an increase function 

of σ versus
•

γ . 

 

Non-Newtonian flow properties are usually ascribed to the existence of 

interactions between particles or polymer chains adequately strong and 

long –lasted. Van der Waals and electrostatic interactions in 

dispersions or entanglements between chains in polymer solutions are 

examples of such interactions. In other instances, they are due to the 

alignment of rigid and very asymmetric macromolecules or particles in 

the movement of flow. At a fixed shear rate or stress, a quasi-

instantaneous equilibrium between the breakdown of “structure” or 

orientation and their build-up is approached. An increase in shear rate 

turns this equilibrium to less “structure” or more orientation (shear-

thinning) or to more structure (shear-thickening). On the other hand, a 

drop in shear rate acts the other way around [6]. 
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a. Principle 

 
b. Newtonian (Linear) 

 
c. Non-Newtonian 

 
1. Shear thinning  
2. Shear thickening 

Figure 2: 
•

γ  versus σ for time-independent fluids [6] 

 

II. Time-dependant behaviour 

When the earlier described equilibrium is not instantaneously achieved, 

the flow behaviour tends to be time–dependent. After a change in 
•

γ  

(or σ), it takes time before η or σ approaches equilibrium (Figure 3a).  
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Figure 3: Flow of time-dependant fluids [6] 

 
Time-dependant non-Newtonian fluids are further classified as: 

• thixotropic fluids 

• rheopectic fluids 

• visco-elastic fluids 

 
a) Thixotropic fluids, which experience a decrease in viscosity 

with time while subjected to constant shearing [10]. 

 

If the process of solicitation is reversible, which means leaving the 

liquid undisturbed for an appropriate time, the same viscosity vs 

time curve is obtained after a second solicitation identical to the 
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former, the flow behaviour is called thixotropic (η drops with the 

duration of shear) or anti-thixotropic (η elevates). In these cases, 

the rate constant of the formation and breakdown of interactions 

among particles are then of the same order of magnitude. However, 

in several cases, the process is merely partially reversible and the 

rate constants for structure breakdown (thixotropy) or structure 

build-up (anti-thixotropy) are not at the same level. 

 

Anti-thixotropy is rarely seen while thixotropy is rather typical 

of concentrated flocculated or aggregated dispersed systems 

and is related to the progressive breakdown of aggregates with 

time under shear [6]. 

 

b) Rheopectic fluids, which increase in apparent viscosity very 

rapidly upon being rhythmically shaken or tapped [11].  

 

In a rheopectic fluid the structure builds up by shear and breaks 

down while the material is at rest. Examples of these fluids are 

bentonite sols, protein solutions, coal water slurries, vanadium 

pentoxide sols and gypsum suspensions in water. This 

phenomenon has been observed under constant shear rate [6; 8]. 

 

c) Visco-elastic fluids, which have both elastic properties 

typically found in solids and viscous properties found in liquids 

[7]. 

 

Visco-elastic fluids are time-dependant and under non-steady 

flow conditions demonstrates transient effects which can bear 

qualitative resemblance to thixotropy. For example, as 

illustrated in Figure 4, at the beginning of shear flow, the 

difference compared to thixotropic behaviour (Figure 3a) 

appears when the flow is suddenly stopped. The stress relaxes  



 11

progressively (Figure 4) rather than droping to zero 

immediately.  

 

Many fluids of interest (such as polymer melts and solutions) 

display visco-elastic behaviour. One of the most easily seen 

experiments is so-called “soup bowl effect”. If a fluid in a dish 

is made to rotate by ways of stirring with a spoon, on removing 

the energy source of the spoon, the inertial circulation will die 

out as a result of the action of viscous forces. For a visco-

elastic fluid, the liquid would be observed to slow to a stop and 

later to unwind a bit. This type of behaviour is closely related 

to the tendency for a gel structure to form in the fluid. Such a 

factor of rigidity makes simple shear unlikely to occur (the 

shearing forces tending to act as couple to make rotation of 

fluid elements and pure slip). Also, such initial rotation causes 

a stress perpendicular to the direction of shear [8]. Another 

unusual phenomenon commonly ascribed to visco-elastic fluids 

is the effect of the fluid climbing up a spinning rod, which is 

also called the Weissenberg effect. As shown in Figure 5, by 

rotating a spindle in a fluid, a visco-elastic fluid would climb 

up the spinning rod [10; 12]. 

 

 
Figure 4: Behaviour of a visco-elastic fluid [6; 13] 
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    Fluid at rest            Inelastic Fluid   Visco-elastic Fluid 

        in Couette Flow       in Couette Flow 
 

Figure 5: Simple method to determine the visco-elastic behaviour in fluid by 

rotating a spindle in the fluid from Tiu and Boger [35] 

 

III. Plastic or viscoplastic fluids  

Plastic or viscoplastic fluids are fluids that only flow after a certain 

yield stress, sσ , is reached. The equilibrium σ-
•

γ  flow curves do not 

pass through the origin for these fluids but, intersects the stress axis 

at 0>= sσσ  ( sσ refers to the yield stress).This corresponds to an 

asymptotic behaviour of viscosity )0( →∞→
•

γη when [6]. 

 

If submitted to stresses sσσ < , the fluid behaves as an elastic or visco-

elastic solid: the solicitation leads to a finite strain. If sσσ > , it 

possesses a yield stress and a non-linear flow curve and is called a 

‘yield-pseudoplastic’ fluid (Figure 6a) [6; 8].  

 

The simplest case is that of a Bingham fluid. This kind of ideal liquid 

demonstrates linear behaviour above the yield stress sσ and flows as a 

Newtonian liquid charaterised by a constant Bingham viscosity ηB 

(Figure 6b) and a specific yield stress [8]. “Viscoplastic flow” is often 

associated with (partial) thixotropic shear thinning behaviour (Figure 

6c) [6]. Other examples of viscoplastic fluids include emulsions, blood 

and drilling mud [8]. 
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Yield Stress: nsn σσσ ≤<−1  

Figure 6: Flow of yield stress fluids [6] 

 

2.3 Measurement of rheology 

Rheology is the science that deals with deformation and flow of fluids. Viscosity 

is a term used to describe the resistance of these deformations to flow. The 

measurement of the rheology of Newtonian fluid is not difficult. However, for 

some non-Newtonian fluid, such as concentrated suspensions, particular 

foodstuff, rheological measurement is complicated by non-linear, dispersive, 

dissipative and thixotropic behaviours [8]. 

 

Among non-Newtonian fluids, even the simple description of a shear rate versus 

shear stress relationship could be difficult as the shear rate can only be 

determined directly if it keeps constant. Devices with a narrow shearing gap, 

such as coaxial cylinders, capillary and cone-and-plate viscometers offer good 
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estimation to this need. These systems are seldomly used in the characterisation 

of non-Newtonian fluids, such as suspensions whose aggregate constituents 

prevent the use of narrow gaps. In the following paragraphs, the fundamental 

features of viscometry are presented.  

2.3.1 General conditions of viscosity measurements 

Viscometry is the application of a shear rate or shear stress to a fluid and 

measuring the flow under steady state conditions. Non-Newtonian 

characterisation requires that shear strain, γ, and shear stress, σ, can be 

altered and measured over a large range. 

 

Viscometers could be grouped into “basic” instruments, which permit the 

estimation of stress and shear rate, and semi-empirical and empirical 

instruments which do not allow these determinations. In the following 

paragraphs, “basic” instruments are discussed. 

 

To measure viscosity by using “basic” instruments, the following conditions 

should be met [6]: 

i. The fluid is incompressible, isotropic and can be considered as 

homogeneous in the range of the measuring instrument’s dimensions. 

ii. The flow must be streamlined. This provides a practical upper limit for 

shear rates for a given material and measuring instrument. 

iii. The system must be isothermal during measuring process. Viscosity 

leads to heat dissipation within the material, and also varies sharply 

with temperature. Efficient temperature control must be insured, 

especially for highly viscous fluids or measurements at high shear rates. 

iv. The measuring instrument allows no slippage of the fluid on its 

surfaces (the layer of the liquid touching the instrument surfaces must 

move at the same velocity).  

Generally, “basic” instruments belong to one of the following major types [6]: 

• Capillary viscometers, which measures liquid flow through capillary 

tubes (Figure 7c). 

• Rotational viscometers, which measures rotational shear in coaxial 

cylinders or cone-and-plate geometries (Figure 7b). 
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Figure 7: Types of shear deformation [6]: 

(A) Simple shear; (B) rotational; (C) telescopic; (D) twisting shear 

2.3.2 Capillary viscometers 

A fluid is allowed to flow through a cylindrical tube with diameter, 2a, 

relatively small compared to its length, ∆l, under a pressure difference, ∆P, 

(Figure 8).  

 
Figure 8: Principle of capillary viscometer [6] 

 

Both shear stress and shear rate varies in the fluid with the distance r, from 

the axis. Shear stress is zero at the middle of the capillary tube and reaches a 

maximum at the wall. Independent of the fluid, stress is provided by the 

relation
l
P

∆
∆

=
r

aσ , and reaches the value 
l
Pa

a ∆
∆

=σ  at the wall. The mode 

of change of shear rate relies on the velocity distribution, which is in turn 

determined by the flow behaviour of the fluid. In case of Newtonian fluids, 
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the velocity distribution is parabolic and the shear rate can be calculated by 

Poiseuille equation:  

 4

4(t)
a

Qr
π

γ =
•

         (3) 

In the equation, Q is the volumetric flow rate; 
•

γ   is zero at the centre of the 

tube and take the value 3a
4
a
Q

π
γ =
•

at the wall.  

 

In case of non-Newtonian fluids, the above expression for 
•

aγ  must be 

multiplied by a calibration factor (3+b)/4, with: 
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The quantity b is obtained as the slope of a log-log plot of  3

4
a
Q

a π
γ =
•

 

versus
l
Pa

a ∆
∆

=σ , for the case of non-Newtonian behaviour, 
•

aγ  is called 

the apparent or uncorrected shear rate. 

 

Capillary viscometers are usually unsuitable for time-dependant flow since 

there is no control over the duration of shear, the determination of the 

volumetric flow rate implying lapses of time that is up to the fluid. Due to 

stress changes radially, which even can be zero at the centre, their application 

is not advisable for yield stress fluids (e.g. emulsions and margarines). 

 

In spite of such limitations, capillary viscometers has many advantages [6; 8]:  

• simplicity, 

• relatively low cost 

• ability to provide very accurate measurements on Newtonian or quasi-

Newtonian fluids with either extremely low or high viscosities 

• ability to work in tough environments, at high temperatures 
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One of the most popular tube viscometers is the glass capillary, used where 

the pressure difference is provided by the weight of the column of the liquid 

over the exit of the capillary. This force is small and changes during 

measurement, and therefore the application of these instruments is bound to 

low-viscosity Newtonian fluids. 

 

For high viscosities and non-Newtonian fluids, instruments operating under 

external pressure to provide control of the stress or of the apparent shear rate, 

should be used. 

 

2.3.3 Rotational viscometers 

An immersed body that is rotated in a fluid experiences a viscous drag or 

retarding torque which is a function of the viscosity of the liquid and of the 

speed of rotation. If the geometry of the instrument is appropriate, the shear 

stress and shear rate at a given position in the liquid can be determined from 

measurement of the torque, angular speed and knowledge of the geometry [6]. 

 

1) Coaxial cylinders rotational viscometers 

Two coaxial cylinders constitute the most widely used measuring 

device (Figure 9). One of the cylinders is remained fast, the other is 

rotated at a constant angular velocity, ω. The fluid is therefore 

sheared in the gap between the walls of the two cylinders. Dragging 

torque is measured on either of the cylinders. Generally, it is the 

inner cylinder which is rotated and where the torque is measured. 

On several devices, the motor drives the outer cylinder and torque is 

measured on the inner one, a simpler solution from the mechanical 

point of view, but temperature control is more difficult. 
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Figure 9: Principle of a coaxial cylinders rotational viscometer [6] 

 

The stress changes across the gap and can be determined knowing 

the torque M: 

 

hr
Mr 22

)(
π

σ =        (5) 

 

Stress is a maximum at the inner wall (r =R1) and a minimum at the 

outer wall (r = R2). However, when compared to capillary 

viscosmetry, stress never becomes zero and its variation is usually 

very small because the gap between the cylinders is generally small 

(values of 
1

2

R
R

=ε normally close to 1.05). 

 

The angular velocity changes from zero at the steady wall to ω at the 

wall of the rotating cylinder (no-slip condition), but in a way which 

relies on the rheology of the flow. Different procedures have been 

suggested to allow approximate solutions of this problem. 
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When  
1

2

R
R

=ε  is very small, one can assume a fixed stress in the 

gap and use, 
2

)( 21 σσ
σ

+
=m . The shear rate is then also close to 

constant and provided by: 

( )
( )ωγ 2

2
2

1

2
2

2
1

1 RR
RR

+
+

=
•

       (6) 

This approximation is generally used by the manufacturers 

providing the stress and shear rate at the different velocities of the 

instrument. The above relation is generally accepted as a good 

approximation if ε < 1.05, and is often used up to ε =1.15. However, 

due to manufacturing and centring problems, gaps with ε <1.05 are 

rarely used. 

 

For accurate work with highly shear-thinning liquids, the Kreiger-

Elrod approximation is often used when 2.0)ln( <εm and for a 

rotating inner cylinder: 

hr
M

21 2π
σ =  

ε
ε

γ
ln

)ln1(1
1

mW +
=

•

       (7) 

With 
)(ln
)(ln

1

1

σd
wdm =  

 

2) Cone-plate rotational viscometers 

In cone-plate viscometers (Figure 10), when the cone angle, ψ, is 

less than 5°, the stress and shear rate can be regarded as constant 

across the gap:  

32
3

r
M
π

σ =         (8) 

ψ
ωγ =

•

        (9) 
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This feature makes the cone-plate geometry specially useful, for the 

study of yield-stress and time-dependant fluids since in each 

direction of the gap, the sample has the same mechanical history [6]. 

 
Figure 10: Principle of  a typical cone-plate rotational viscometer [6] 

2.3.4 Practical application and comparison 

Rotational viscometers can be shear rate controlled or shear stress controlled 

instruments (such as Brookfield viscometers). Rotational rheometers 

generally allow a wide range of shear rates and stresses to be used by 

changing the angular velocity or torque of the motor. As stress and shear 

rates are considered to be nearly uniform in the gap, coaxial cylinders and 

cone-plated devices are to be preferred to capillary viscometers, except in 

some special occasions (for measurements of high viscosities, the study of 

time-independent liquids and on-line measurements) [6; 9]. 

 

When using narrow-gap coaxial cylinders with a shear rate controlled device, 

operators should keep an eye on possible slippage of the material on the 

surfaces of the measuring system. In some cases, using measuring devices 

with roughened surfaces is advisable. Rotational rheometers also allow 

recording the decay or build-up of stress after a sudden change in shear rate. 

This is often the only solution to study time-dependant behaviour. However, 

high quality instruments and minimization or correction of inertial effects are 

required if time-dependant effects are relatively small or short-lasted [6; 9]. 
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When properly operated, rotational rheometers are useful for studying any 

flow behaviour over a wide range of viscosities and shear rates. However, 

their application for on-line measurements raises difficulties. Some rotational 

rheometers are adapted for on-line measurements, but operate under narrow 

experimental conditions [6]. 

 

In summary, capillary viscometers are not very suitable for time-dependant 

materials because there is no control over the duration of shear, as we 

mentioned above. However, they are simple, cheap, accurate and can be used 

at high shear rates and temperatures [6; 8]. Therefore, capillary viscometers 

are to be preferred to other viscometers for on-line measurements. 
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Chapter 3 Milk quality and mastitis 
 

3.1 Introduction 

According to Hurley [14], milk is an emulsion of fat globules and a suspension 

of casein micelles, which are composed of casein, calcium and phosphorous. 

These are all suspended in an aqueous phase that contains solubilised lactose, 

whey proteins and some minerals and salts (Figure 11). Leukocytes typically 

form part of the suspended phase. 

 

 
Figure 11: Milk plasma phase and serum phase [14] 

 
Milk quality plays an important role in milk production. Milk SCC is routinely 

used to evaluate udder health and milk quality [15].  

 

Milk is produced in the mammary gland of a cow and is known as the udder. 

The udder includes a teat, a duct system and lobes of secretory tissue. Most of 

the components in milk are produced in the secretory tissue. The following 

factors have critical impact on milk quality [10]: 

• bacterial infection (mastitis) 

• cows health 

• stage of lactation and season 

• level of nutrition 
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One of the most significant among all the factors above is bacterial infection. 

The single most costly disease of the dairy industry in the most of the world is 

mastitis, which is an inflammation of the mammary gland. Inflammation is 

characterized by redness, swelling, heat and pain in the tissue. 

 

Mastitis affects the dairy farmer financially through [4]: 

• decreased milk yield 

• discarded milk, due to antibiotic contamination  

• drugs and veterinary expenses 

• culling 

• increased labour 

 

The American National Mastitis Council evaluated the annual cost per cow in 

the USA to be $185, and the total annual cost of mastitis to be nearly $2 

billion. Blosser (1979) and Jasper et al. (1982) reported that the main cost of 

mastitis, which accounts for 65–70% of all expenses, is reduction in milk yield 

[4].  

 

Relying on the severity and duration of symptoms, mastitis may be classified 

as subclinical, clinical, or chronic. Clinical mastitis gives visual signs and can 

become subacute or acute. In subacute mastitis, milk can be discoloured, 

watery and have flakes or clots and the udder could be swollen. Acute mastitis 

is a sudden onset and is characterised by a red and swollen udder and 

abnormalities in the milk. Systemic signs of acute mastitis are fever, lack of 

appetite, impaired rumen function, dehydration, and weakness [4]. Subclinical 

mastitis causes no obvious abnormalities in the milk or udder and can only be 

found by laboratory analysis for characteristic signs of inflammation such as 

an increased somatic cell count (SCC) in the milk. Among chronic mastitis, 

subclinical signs are persistent, but clinical flare-ups sometimes occur that can 

last from hours to months.  

 

Somatic cells include epithelial and white blood cells, which consist of 

polymorphonucleus neutrophils, macrophages, and lymphocytes. Somatic cell 
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count in milk from a healthy udder is normally less than 100 k cell/ml, 

containing 0–7% epithelial cells and 30–74% macrophages. According to the 

American National Mastitis Council, a bovine quarter is regarded as having 

subclinical mastitis if SCC ≥ 200 k cell/ml and bacteria are separated in the 

absence of clinical changes. In a microbial infection, the cell count is elevated, 

with neutrophils accounting for 95% of the cell population [4].  

 

In New Zealand, any cow that produces milk with a SCC more than 200 k 

cell/ml is considered to have subclinical mastitis [10]. Federal regulations in 

the USA require milk to contain less than 750 k cell/ml. Somatic cell count is 

now accepted as a standard assessment of raw milk quality by dairy industries 

around the world. Therefore, SCC is applied to predict economical losses to 

dairy producers because of mastitis and the suitability of milk for human food 

and for the manufacturing of dairy products [4].  

 

During a biological infection, the bacteria themselves start a metabolic effect 

followed with an immune system response. This activates immune system 

response with “Leucocyte” infusion into the gland thereby elevating the 

number of somatic cells. If the infection worsens, it leads to an influx of 

extracellular fluid. This raises sodium, potassium and chloride concentrations, 

measured by conductivity. Early detection will provide the farmers the 

opportunity to deal with mastitis without using drugs and antibiotics, thus 

decreasing treatment cost [10].  

 

3.2 Composition of milk 

3.2.1 Normal milk 

Normally, milk is composed of water, fat, protein, hydrocarbons (lactose), 

minerals and vitamins, as well as somatic cells. Figure 12 shows more detail 

regarding the general composition of milk [14]. 
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Water, 86.00%

Fat, 4.60% Lactose, 5.00% Ash, 0.70%Protein, 3.60%

 
Figure 12: Comparison of different component of milk on average [14] 

 

• Major components 

o Fat 
Normally the average fat is 4.6% and ranges between 3.5% and 5.5%. 

Milk fat is lowest in the fore-milk and gradually rises up in percentage 

as the milk is removed. The last milk out of  the gland is highest in 

milk fat content [14; 16]. 

 

o Major milk proteins 
The major milk proteins are caseins and whey proteins. The caseins are 

composed of several similar proteins in the form of a granular structure 

called casein micelles. Generally the casein micelles are maintained as 

a colloidal suspension in milk. If the structure is disturbed, the micelles 

may come apart and the casein form the gelatious material called the 

curd. 

 

When casein has been removed, all other proteins left in the milk are 

whey proteins, which are mainly β-lactoglobulin and α-lactalbumin. 

The caseins, β-lactoglobulin and α-lactalbumin are synthesized in the 

mammary epithelial cells and are only produced by the mammary 

gland [14; 16]. 
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o Enzymes and other milk proteins 
Besides the caseins and whey proteins, there are other proteins in milk. 

They are immunoglobulins, serum albumin and enzymes. 

Immunoglobulins and serum albumins are absorbed from blood. An 

exception to this is that a limited amount of immunoglobulins is 

synthesized by lymphocytes, which reside in the mammary tissue. 

These latter cells contribute to the local immunity of the mammary 

gland [14]. 

 

o Hydrocarbons (lactose) 
Lactose is the main hydrocarbon in the milk of most cow species. 

Lactose is a disaccharide composed of the monosaccharide, D-glucose 

and D-galactose.  Hydrocarbons other than lactose are found in milk, 

but at low concentrations. Low concentrations of free glucose (about 

0.2mM) and free galactose (about 0.2mM) are found in cow milk [14; 

16]. 

 

o Minerals 
The major minerals found in milk are calcium and phosphorous. They 

are both mainly associated with the casein micelle structure. Milk also 

contains other minerals found in the body of the animal, which 

produces milk [14; 16]. 

 

•  Somatic cells 

Milk always contains leukocyte cells (i.e. somatic cells), but generally 

bovine milk from healthy glands has a low somatic cell count. Milk from 

individual quarters of healthy animals contains low levels ( 50-200 k cells/ml) 

of somatic cells, including lymphocytes, neutrophils and epithelial cells in 

the approximate ratio 1:1.5:14 [4; 15; 16]. 

3.2.2 Effects of mastitis on the composition of milk 

Usually, changes in milk composition are associated with mastitis and an 

elevated SCC. The following are some of the effects of mastitis on milk 

composition [10]: 
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• reduction in casein concentration 

• reduction in the ratio of casein : whey protein  

• increase in pH 

• breakdown of milk-fat  

Colonization of the bovine mammary gland by bacteria result in a series of 

events that lead to the main alterations in the composition of the milk secreted 

from the tissue cells [16]. Firstly, pathogenic bacteria increase, then the 

number of somatic cells increase. Associated with this, milk yield falls as a 

result of impaired synthetic ability of the secretory tissue, as well as major 

changes in the composition of the produced milk. 

 

Some of these compositional changes (e.g. somatic cell level and certain 

enzyme levels), are more pronounced and have been used as a basis for 

designing rapid diagnostic tests for udder infection [17]. Table 1, Table 2 and 

Table 3 provide a summary of the effect of mastitis on milk composition: 

 
Table 1: Composition changes in milk constituents caused by mastitis infection [17] 

Constituent Normal milk Mastitic milk 

Fat, % 3.45 3.2 

Protein, % 3.61 3.56 

Lactose, % 4.85 4.4 

Somatic cells, k cells/ml 20-1000 100-5000 

 
• Major components 

o Milk fats 
In general, total milk fat drops as a result of udder infection, but only 

by a small amount (e.g. 3.2%) [17]. However, the fat percentage in 

mastitic milk distinctly increases while the amount of milk synthesized 

decreases. Therefore, any pathological or physiological variation 

leading to reduced milk production would tend to improve the fat 

percentage but not the total fat [16].  

 

Nonetheless, as most of the alterations that occur in the level and 

composition of milk fat as a result of mastitis are comparably small, 
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and in most circumstances do not occur until the infection becomes 

severe, the value of these variables in diagnosing infection is therefore 

negligible [14; 16; 17]. 

 

o Milk proteins 
Total milk protein does not change much with raising SCC. However, 

it have been reported that the proteins largely synthesized in the 

mammary gland (α-casein, β-caseins, ß-lactoglobulin and α-

lactalbumin) decrease while other proteins, originating from the blood 

(BSA and IgGs), increase dramatically (Table 2). There is a close 

balance between these, resulting in the total protein content being 

constant [14; 16]. 

 
Table 2: Changes of various proteins in milk with mastitic infection [17] 

Protein Normal milk  Mastitic 

milk 

Total casein, mg/ml 27.9 22.5 

Total whey protein, mg/ml 8.2-8.7 13.1-19.8 

Total immunoglobulin, mg/ml 0.25-1.33 2.45-8.8 

Proteose-peptone, mg/ml 1.82 9.24 

Lactoferrin, mg/ml 0.1-0.2 6.2 

MFGM protein, mg/100g fat 513.7 408.8 

 

Mastitis also leads to an alteration in the balance between micellar and 

soluble casein. Sharma and Singh [17; 18] found that micellar casein 

represents about 95% of the total casein in healthy milk, but mastitic 

milk has micellar casein levels only 46% of total casein. Changes in 

pH, Calcium ions and other dialyzable components were seen not to be 

adequate to explain the different ratios between soluble and micellar 

casein in normal milk compared to infected milk [16; 17; 19]. 

 

Other minor milk proteins such as serum albumin, α2-macroglobulin, 

IgG and proteose-peptone have also been shown to incease in infected 
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milk. The α2-macroglobulin is of blood serum origin while the 

proteose-peptone fraction might be increased because of increased 

breakdown of α-casein and β-casein by leucocyte protease as proposed 

by Anderson & Andrew [14; 16]. 

 

o Enzymic changes 
Enzymic variations have been used to diagnose disease states in 

humans for a long time. The present status of clinical enzymology in 

veterinary medicine was reported by Freedland & Kramer (1970), who 

concluded that little information was available concerning the 

alterations in enzyme levels in blood or biological fluids for many 

common animal diseases, of which bovine mastitis is known to be a 

crucial one [16-18; 20-22]. 

 

o Lactose 
The lactose content of milk from infected glands is typically lowered. 

The impaired lactose production is likely related to varied osmotic 

equilibrium caused by mastitis. Sodium chloride enters milk from the 

blood as a result of changed permeability and increases the osmotic 

pressure of milk. The osmotic pressure of milk is brought into 

equilibrium with blood by a decreasing in the secretion of lactose. The 

detailed mechanism of this is not yet known [16]. 

 
o Anions and cations 
The major anions and cations which appear in milk, known to be 

linked to secretory disorders in the mammary gland are Na+, K+ and 

Cl¯ (Table 3). The normal level of Na+ & K+ is determined by active 

pumping systems on the basal and lateral membranes of the secretory 

cell [17]. According to Schalm et al. [16], sodium chloride goes into 

milk from the blood as a result of varied permeability and increases the 

osmotic pressure of milk, thus the chloride level of mastitic milk is 

elevated apparently, and sodium raises along with chloride. Other than 

chloride and sodium, milk with mastitis has been found to have 

decreased levels of Ca, Pi and K. 
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Table 3: Effect of mastitis on the level of anions and cations in milk [17] 

Component Normal milk Mastitic milk 

Na, mg/100ml 43.6-57 60.3-104.6 

K, mg/100ml 172.5 157.3 

Cl, mg/100ml 75-130 111-198 

Total Ca, mg/100ml 129.8-136 49-124.3 

Total Mg, mg/100ml 12.1-18 6-12.8 

Pi, mg/100ml 26-38.1 6.4-32.8 

Conductivity, 

mM NaCl 

<53 >56.5 

pH 6.65 6.9-7.0 

 
• Somatic cells 

Although healthy milk contains some somatic cells, milk from diseased 

quarters has elevated somatic cell count ranging between 200- and 5000- k 

cells/ml. According to Kitchen [17], SCC values can also be affected by other 

factors such as: 

o stage of lactation  

o number of previous lactations  

o stress caused by poor farm management  

o nutritional problems  

o climatic conditions 

o other illnesses such as ephemeral fever 

 

Generally, stress presents to be factor only when superimposed upon an 

animal already having secretory disorders. The distinct increase in total 

somatic cell values in milks from infected animals is accompanied by a 

variation in the relative amounts of lymphocytes, neutrophils and epithelial 

cells in around ratio 1:10:10 [14-17; 23]. 
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3.3 Measurement of mastitis 

Generally speaking, mastitis detection in dairy cows will presumably occur at 

three different levels in milk industry. Firstly, the farmer or veterinarian will 

check animals at the farm for clinical and sub-clinical infections. Secondly, 

there would be more large scale testing of composite and bulk milk samples by 

government and private laboratories. Thirdly, dairy factories will check milk 

supplies so as to channel milk into the most suitable producing process. The 

particular type of test chosen by each of these different groups would rely on 

several factors such as simplicity, rapidity, expense, sample throughput, and 

sensitivity. A summary of presently acceptable mastitis diagnostic tests is 

displayed in Table 4. The area of large-scale detection of mastitis tends to be 

maturely built-up, with most laboratories opting for some form of somatic cell 

count technique [2; 17; 24; 25].  

 

In general, there are various changes in the composition of milk with mastitis, 

some of these compositional changes can be used to detect mastitis. The most 

important compositional change that can be used to detect mastitis online is 

SCC. Since mastitis is characterised by increased numbers of somatic cells in 

the cow’s milk, it is possible to detect mastitis by measuring SCC through 

several indirect methods. Three of the more commonly used methods are: 

 

• the Whiteside Test [1-3] 

• the Foss Analysis (Foss Electric, Hillerod, Denmark) [4] 

• the California Mastitis Test [1; 2; 5] 
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Table 4: Summary of mastitis diagnostic tests [17] 

Composition change  

caused by 

Tests and methodology 

Disease-combating response 

of animal 

Somatic cell counting 

• Direct microscope 

• Particle size analysis 

• Fluorescent staining of cell nuclei 

• Indirectly by viscosity tests 

• Chemical DNA determination 

• Cellular metabolite (ATP) 

determination 

Reduced synthetic ability of 

mammary gland 

Lactose determination 

• Colorimetric 

• Infrared 

Bovine serum albumin test 

• Immuno-diffusion 

• Immuno-electrophoresis 

Na, K, Cl 

• Flame photometry (Na+
, K+) 

• Conductivity measurements 

Tissue damage and blood 

capillary permeability 

Enzymes 

• Catalase 

• N-acetyl-β-D-glucosaminidase 

 

It has been shown that the California Mastitis Test and the Whiteside Test were 

useful in diagnosing subclinical mastitis in meat-producing flocks (e.g. cows 

and ewes) [1]. However, the two more commonly used methods to measure 

SCC are the California Mastitis Test and The Foss Analysis [4]. Each of these 

tests has different advantages, which will be discussed in subsequent paragraphs. 
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3.3.1 The Whiteside Test 

The relationship between the cell content of milk and the Whiteside Test 

results has been the subject of many investigations. Opinion on the Whiteside 

Test’s suitability for estimation of milk cell content varies, and the test is no 

longer commonly used [1; 20].  

 

In this test, NaOH is introduced to milk to form a transparent viscid gel with 

a direct relationship between the number of the blood cells and the intensity 

of the gel [26]. The underlying mechanism of Whiteside Test is not fully 

understood but, it has been proposed that gel formation is due to: 

i) The formation of sodium salts between NaOH and the nucleic acids of 

the white blood cells. This produces a gelatinous mass to which serum 

solids and fat globules can adsorb, which in turns forms a precipitate, 

characteristic of the Whiteside Test [16]. 

ii) adsorption of fibrin onto the white blood cells [27]. 

iii) clot formation due to the interaction between sodium with calcium ions 

and the cell albumen [2]. 

 

3.3.2 The Foss Analysis  

The Foss Analysis is an automated flow cytometer that counts individual 

cells in a sample. The deoxyribonucleic acid (DNA) of each cell is marked 

with ethidium bromide and when excited, emits light at 590 nm. Each dyed 

cell gives an electric pulse, which is counted and recorded automatically. The 

Foss Analysis 5000 can measure up to 500 samples an hour and has a 

repeatability of 4% when monitored at 500 k cell/ml [4]. 

 

In general, the Foss Analysis can provide an accurate and quick somatic cell 

count for mastitis detection. Unfortunately, it is very expensive and is not 

popular in online milking systems. 
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3.3.3 The California Mastitis Test  

Schalm and Noorlander [27] have developed the California Mastitis Test 

(CMT) for monitoring mastitis. The test involves the addition of an anionic 

surfactant to milk that results in gel formation. Gel formation is caused by 

the interaction between the surfactant and DNA and its associated proteins 

[10]. The thickness of the gel is often scored as negative, trace, 1, 2, or 3. 

The thicker the gel, the higher the score and the higher probability that the 

cow has mastitis [28].  

 

The CMT was originally designed for use with milk samples taken directly 

from the cow’s quarters. Quarters showing strong interactions were 

considered to be infected. The apparent success of the CMT with individual 

cow’s milk resulted in the test being used for bulk herd milk testing [28]. 

 

As a whole, the California Mastitis Test has the following advantages: 

i) simple 

ii) accurate 

iii) cheap 

iv) quick 

v) easy to control 

 

Therefore, it is more desirable to choose CMT rather than other tests for on-

line mastitis detection. 

3.3.4 Conclusion 

In conclusion, previous work into the development of an online mastitis 

measurement device utilized an adaptation of the California Mastitis Test [5]. 

Although highly successful, some uncertainty existed regarding the 

rheological properties of the gel formed during the interaction and to what 

extent this influenced the device. 

 

In subsequent chapters, a more in depth discussion into the CMT is presented 

in light of cell biology and protein chemistry, as well as a more in depth 

analysis into rheology of fluids. 
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Chapter 4 Characteristics of CMT gel 
 

4.1 Somatic cells 

Mastitis is characterised by increased numbers of somatic cells in the cow’s 

milk. Somatic cells are body cells such as white blood cells (i.e. leucocytes), 

which occur normally in milk in low numbers, but increase when mastitis is 

present. The CMT is associated with the interaction between DNA released 

from the nuclei of the leucocytes and a surfactant [20; 22]. This interaction 

causes a rapid increase in the viscosity of the milk [28]. Therefore, it is possible 

to detect mastitis by measuring SCC through measuring the viscosity of the gel 

formed. 

 

4.1.1 Different somatic cells in bovine milk 

The SCC in milk is used as an indicator of udder health status. Elevated SCC 

is generally considered as an indication of mastitis. In addition, the 

magnitude of various somatic cell counts might be a useful tool in research 

because each cell type has its own specific function in the immune response 

[23]. Figure 13 shows different white blood cells, which include 

polymorphonucleus (PMN) neutrophils, macrophages, and lymphocytes. 

 

All those different leucocyte cells can interact with ionic surfactants (such as 

SDS) to form a gel. However, if most of these leucocytes die, a gel cannot be 

formed [22]. It is also known that the time until cell death for each type is 

different, e.g. neutrophils die first. 

 

Scruggs & Ross [22] demonstrated that holding of milk at 5˚C results in 

graduated death of the leucocytes, which is accompanied by a decrease in the 

viscosity of the gel formed with surfactant. Thus, if bulk milk were held for 

several days before testing, the CMT score would not be expected to 

represent the total leucocyte count accurately [22].  
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Figure 13: Photographs of cells in bovine milk stained according to the method of 

Pappenheim [23]: a-b =small lymphocytes; c = large lymphocyte; d-f = band 

neutrophils; g-i = segmented neutrophils; k = basophil (left) and band (right) 

neutrophil; l = basophile; m = eosinophil; n-q = macrophages; magnification × 1000-

fold 

4.1.2 The structure of cells  

Bovine somatic cells are eukaryotic cells, which unlike prokaryotic cells 

comprise a defined membrane-bound nucleus and extensive internal 

membranes that enclose other compartments or organelles (Figure 14). The 

region of the cell lying between the plasma membrane and the nucleus is the 

cytoplasm, including the cytosol (aqueous phase) and the organelles. Figure 

14 is electron micrograph of a plasma cell, a type of white blood cell that 

secretes antibodies.  
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The defining characteristic of a eukaryotic cell is the segregation of cellular 

DNA within a defined nucleus which is bound by a double membrane. The 

outer nucleus membrane is continuous with the rough endoplasmic reticulum, 

a place for assembling proteins. Golgi vesicles process and modify proteins, 

mitochondria generate energy, iysosomes digest cell materials to recycle 

them, peroxisomes process molecules using oxygen and secretory vesicles 

carry cell materials to the surface to deliver them [29]. 

 
Figure 14: Electron micrograph of a plasma cell, a type of white blood cell that 

secretes antibodies [29] 
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I. The cell membrane 

In essence, any cell is simply a compartment with a watery interior that 

is isolated from the outer environment by a surface membrane (the 

plasma membrane) that avoids the free flow of molecules in and out of 

cells. In addition, bovine somatic cells are eukaryotic cells, which have 

wide internal membranes that further subdivide the cell into various 

compartments, the organelles. The plasma membrane and other cellular 

membranes are composed primarily of two layers of phospholipid 

molecules (Figure 15, Figure 16, and Figure 17). These phospholipid 

bipartite molecules have a hydrophilic end and a hydrophobic end. The 

two-phospholipid layers of a membrane are oriented with all the 

hydrophilic ends directed toward the inner and outer surfaces and the 

hydrophobic ends buried within the interior. Smaller quantities of other 

lipids, such as cholesterol and many kinds of proteins are involved into 

the phospholipid framework [29]. 

 

 

 
Figure 15: Phospholipid monomers noncovalently assemble into bilayer structure, 

which forms the bases of all cellular membranes [29] 
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Figure 16: Diagram of structure of the plasma membrane [30] 

 

 
Figure 17: The watery interior of cells is surrounded by the plasma membrane, a 

two-layered shell of phospholipids [29] 

 
II. The nuclei of cells 

The nucleus of a cell is shown in Figure 18. Nearly all the DNA in a 

eukaryotic cell is sequestered in the nucleus, which occupies 

approximate 10% of the cell volume. This compartment is delimited by a 

nucleus envelope made by two concentric lipid bilayer membranes that 

are punctured at intervals, called nucleus pores. The nucleus envelope is 

directly related to the extensive membranes of the endoplasmic reticulum. 

It is mechanically supported by two networks of intermediate filaments: 

one is nucleus lamina, which forms a thin sheet like meshwork inside the 

nucleus that is beneath the inner nucleus membrane; the other surrounds 

the outer nucleus membrane and is less systematically organized. 
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Figure 18: Structure of a typical nucleus envelope [31] 

 

III. The chromosome and DNA of cells 

DNA occurs in alternative forms in different cells. The single 

chromosome of prokaryotic cells is typically a circular DNA molecule. 

Proteins are associated with prokaryotic DNA but, unlike eukaryotic 

chromosomes, prokaryotic chromosomes are not uniformly organized 

into regular nucleoprotein arrays. The DNA molecules of eukaryotic 

cells, each of which defines a chromosome, are linear and richly covered 

with proteins. A class of arginine-and lysine-rich basic proteins named 

histones interact ionically with the anionic phosphate groups in the DNA 

backbone to form nucleosomes, in which the DNA double helix is 

wound around a protein “core” made up of pairs of four different histone 

polypeptides (Figure 19). Chromosomes also comprise a varying mixture 

of other proteins, so-called non-histone chromosomal proteins [32]. 
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Figure 19: Chromosome and three types of chromatin forms [29] 
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4.2 The interaction between surfactant and milk 

4.2.1 Structure of surfactant  

The term surfactant is a contraction of the term surface active agent, because 

a characteristic of surfactants is the tendency to adsorb or concentrate at 

interfaces between bulk phases. 

 

Surfactants are distinguished by their amphiphilic structure. Each surfactant 

molecule is composed of two fundamental parts: a water-soluble (hydrophilic) 

head group and an oil-soluble (hydrophobic) tail group (Figure 20). 

 
Figure 20: Surfactant architecture-general representation of a surfactant molecule [33] 

 

While the tail group is usually a hydrocarbon chain, the head group can be 

charged or uncharged. The basic surfactant structure is illustrated by sodium 

dodecyl sulphate in Figure 20. The anionic sulphate is the head group, the 

linear dodecyl chain is the tail group, and sodium is the counter ion (ion of 

opposite charge to the head group). Based on the hydrophilic and 



 43

hydrophobic regions of surfactant molecules, they are often referred to as 

amphiphiles or amphipaths. 

 

Based on their head groups, surfactants are typically classified into five main 

classes, as demonstrated in Figure 21. Anionic surfactants are the biggest 

volume of surfactants produced, with the linear alkylbenzene sulfonate (LAS) 

shown in Figure 21. SDS in Figure 22 is another commercially produced 

anionic surfactant, and it has been broadly used for the CMT [5; 10; 34]. 

Cationic surfactants, like those based on quaternary ammonium, have a 

positively charged head group. Non-ionic surfactants typically own a 

polymeric group or an uncharged hydrophilic group like poly (ethylene oxide) 

as the head group (see Figure 21 and Figure 22). Zwitterionic surfactants 

have both positive and negative charges on the head group. Amphoteric 

surfactants have a head group with a pH-dependent charge. The amineoxide 

displayed in Figure 21 is zwitterionic at high pH, but becomes cationic as 

protonation occurs at low pH. Because amphoteric surfactants are generally 

zwitterionic at certain pH, and zwitterionic surfactants are often amphoteric, 

in practice, the terms zwitterionic and amphoteric are used as synonyms, and 

the term ampholytic is used to describe both surfactant types [33]. 
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Figure 21: Major surfactant groups [33] 

 
Figure 22: Structures of four common surfactants [29] 

4.2.2 Surfactant solutions 

When a small amount of soluble surfactant is introduced to water, part of it is 

dissolved as monomers and part forms a monolayer at the air/water inter-

phase. When the monomer concentration reaches a critical level, the 
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surfactant begins to associate to form micelles (Figure 23). Micelles are 

defined as thermodynamically stable colloidal aggregates, spontaneously 

formed by surfactants above a certain concentration range (the critical 

micellar concentration, CMC) at temperatures above the critical micellar 

temperature [35]. 

 
Figure 23: Schematic representation of the equilibrium of surfactant between 

monomeric, monolayer and micellar forms [35] 

 
Figure 24: Temperature-concentration phase diagram of SDS in 0.1 M NaCl/0.05M 

sodium phosphate buffer, pH7.4 (CMC, critical micellar concentration and CMT, 

critical micellar temperature) [35] 

 

The influence of temperature on micelle formation and the meaning of the 

critical micellar temperature might best be known from the temperature 

versus concentration phase diagram of SDS in Figure 24. At low 

temperatures the surfactant forms insoluble crystals where the hydrocarbon 

regions as well as the polar groups are ordered. The monomer concentration 
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in equilibrium with the crystal phase is below the CMC. The equilibrium 

monomer concentration elevates with temperature, approaching the CMC at 

the critical micellar temperature, the lowest temperature at which micelles 

can form. The critical micellar temperature is observed as a sudden clearing 

of the cloudy crystalline suspension. The Krafft point is the temperature at 

which clearing happens in solutions where the concentration of surfactant is 

at the CMC. For most surfactants the critical micellar temperature and the 

Krafft point are synonymous. The CMC and aggregation number of some 

surfactants are shown in Table 5. The critical micellar temperature is very 

sensitive to impurities. This explains the range of values (10-23°C) published 

for SDS. The critical micellar temperatures of non-ionic surfactants are 

below 0°C [35]. 

 
Table 5: Micellar weights, aggregation numbers and CMC for some surfactants [35] 

Surfactant Aggregation 

number 

Micellar 

weight 

(g/mol) 

CMC 

(mM) 

Conditions 

62 288 8.2 H2O SDS 

126 288 0.52 0.5(mol/ml) 

NaCl 

Triton X-100 140 642 0.240 H2O 

 

Shown in Figure 25 are several of the many aggregates formed by surfactants. 

For these systems, unaggregated surfactant (monomer) is in equilibrium with 

the aggregate. If an aqueous solution of surfactant is in connecting with air, 

the surfactant molecules adsorb at the air-water interface as a monolayer, 

with the head groups submerged in the water and the tails sticking in the air 

phase. If the aqueous solution forms an interface with a hydrophilic solid 

(e.g., cotton fabric or a clay), under particular conditions, bilayered 

aggregates, known as an admicelles, will form on the surface. In such case, 

the head groups of the first layer of surfactant can have attractive interactions 

with the solid surface (e.g. electrostatic attraction or hydrogen bonding), and 

the second surfactant layer has head groups exposed to the water. In 

admicelles, the tail groups interact to produce a hydrophobic interior [33]. 



 47

 

Figure 25: Examples of surfactant aggregates [33] 

 

The surfactant can also form aggregates in solution, such as micelles and 

vesicles. The spherical or cylindrical micelles illustrated in Figure 25 have a 

core of interacting tail groups, covered by the head groups exposed to water, 

a configuration in with the surfactant molecules can be in desirable 

environments. In contrast, if the surfactant is dissolved in an organic solvent, 

reverse or inverse micelles can occur, where the tail group is at the micelle 

surface exposed to the solvent, and the head groups are exposed to a droplet 

of water at the reverse micelle core. Vesicles have frames similar to cell 

membranes, and in solution, the phospholipids of the cell membrane 

spontaneously form vesicles. Surfactants can form other aggregated 

structures, only a few of which are demonstrated in Figure 25. In each case, 

the basic driving force for self-assembly is for every surfactant molecule’s 

dissimilar parts to be in an ideal environment; for aqueous solutions, this 

means that tail group should prevent contact with water. 

 

A typical spherical micelle in aqueous solution contains an average number 

of surfactant molecules, or aggregation number, of 40-100. The diameter of 

a spherical or cylindrical micelle is about 4-6nm for typical surfactants. The 

shape of the micelle relies on surfactant molecular structure, solution ionic 

strength, temperature, and the presence of organic solutes in solution. For 

instance, micellar structures often turn from spherical to cylindrical to planar 
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to reverse micelles as the tail group length falls, branching of the tail group 

elevates, diameter of the head group decreases, ionic strength of solution 

increases (for ionic surfactants) or surfactant concentration increases. This 

can be understood in terms of how the surfactant molecules best fit together 

to form aggregates. For a big head group and small diameter tail group, each 

surfactant can be approximated as a cone, which best fits together as a 

sphere in water. When the tail group becomes more branched, the molecules 

can invert to form reverse micelles, with the head group surrounding a 

droplet of water in the reverse micelle interior. This transition in aggregate 

type is displayed in Figure 26. The shape of the micelle can affect important 

physical properties. For example, cylindrical micelles (especially when they 

become long or thread-like) can substantially raise solution viscosity, even at 

a pretty low surfactant concentration, a phenomenon commonly used in 

shampoos [33]. 

 

Figure 26: How tail group share can influence micelle shape [33] 

 

4.2.3 Protein/surfactant interaction 

Bovine milk mainly consists of water, fat, protein, hydrocarbon (lactose), 

minerals and vitamins and somatic cells [14]. When a surfactant is 

introduced into milk without somatic cells, the major factor that could 

change the viscosity of the milk/surfactant solution is the interaction 

between the surfactant and proteins in milk [19].  
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In a study done by Lefebvre Cases et al. [36], it was observed that casein 

micelles could aggregate in the presence of SDS to form a gel. The most 

important effect of SDS on casein micelles seemed to be a micellar casein 

dissociation whose extent increased with the SDS concentration. This 

conclusion was supported by the work of Cheeseman [37] and Jeffcoat [36] 

who found that SDS interacts with isolated casein and causes the 

dissociation of the high-molecular weight casein aggregates. 

 

Results obtained for 21mM SDS indicated that milk gel formation can be 

correlated to the extent of micellar casein dissociation. Under these 

conditions is not only all the κ-casein dissociated from the micelles, but also 

a great part of the micellar α and β-casein. On the contrary, at lower and 

higher SDS concentrations, the amount of casein dissociated from the 

micelles was, respectively less or higher, but no gel could be produced. 

Consequently, it was concluded that SDS-induced milk gel formation 

requires a defined level of micellar casein dissociation [36]. 

 

According to the amphiphilic structure of the SDS molecular, three 

hypotheses can be proposed as to how SDS interacts with casein micelles 

[36]: 

i. The SDS molecule interacts with casein micelles with its anionic part 

resulting in an increase in the micellar hydrophobicity. SEM 

observations indicate that casein micelles interaction elevated with 

SDS concentration leading progressively to aggregates and fused 

casein particles. At higher SDS concentration (28mM), casein 

micelles seemed to fragment into small units or new casein particles. 

According to Cheeseman (1968) [15], anionic surfactants are 

competing with casein molecules for the sites in the interior of a 

micelle, and in doing so caused dissociation of the aggregates. 

ii. SDS molecule binds to a casein micelle with its hydrophobic part 

leading to an increase in the micellar negative charge. Results of 

Pearce [36] have shown that addition of SDS to milk leads to less 

interaction of casein micelles due to an increase in electrostatic 

repulsions.  
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iii. Both the above mentioned interactions are involved. The SDS 

concentration used by Pearce was less than that used in Lefebvre 

Cases’s study which could lead to the conclusion that two kinds of 

interactions could be involved depending on the SDS concentration 

[36]. 

4.2.4 Effect of surfactants on somatic cells in milk 

The effect of surfactants on somatic cells firstly focuses on the lysis of cell 

membranes by surfactants. According to Helenius and Simons [35], lysis by 

surfactants has been studied mainly using erythrocytes, as the process can be 

measured quantitatively by tracing the release of haemoglobin. Despite 

intensive research in this field the exact molecular mechanism of lysis is not 

yet clarified. However, the lytic process can be divided into five stages: 

(1) the surfactant monomers adsorb to the membrane 

(2) penetrate into the membrane 

(3) the surfactants induce a change in molecular organization 

(4) which leads to an alteration in permeability and in the osmotic 

equilibrium 

(5) which results in the leakage of haemoglobin 

 
Stages 2, 3 or 4 are rate limiting. It is widely believed that lysis results from 

an interaction between surfactant and lipids of the membrane. Haydon and 

Taylor [35] have suggested that surfactants may act as ‘wedges’ that destroy 

the natural orientation of the lipid bilayer.  

 

Generally, cell membranes are composed of lipids and proteins rich in 

hydrophobic residues. When surfactant is introduced to a suspension of 

phospholipid liposomes, part of it interacts with the bilayer lipids and part of 

it remains free in solution. Weak non-ionic surfactants (e.g. Triton) will lyse 

some membranes but leave the nucleus envelope intact. The reason is, in 

part, due to their distinct protein/lipid composition. In contrast, SDS is a 

strong ionic surfactant that solubilises firstly the plasma membrane (Figure 

27), and then lyses the nucleus envelope [38].  
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Figure 27: Diagram of the process that surfactant dissolves membranes [31] 

 

After the strong ionic surfactant (e.g. SDS) solubilise the plasma membrane 

and lyse the nucleus envelope, it will disrupt all chromatin structures, 

transforming the compacted DNA into extended protein-free DNA 

molecules [38]. 

4.3 Mechanism of gel formation in the CMT 

There are different mechanisms of gel formation proposed before, some of them 

conflicting. In the next section, an overview is given on the different theories, 

highlighting differences as well as similarities. 

4.3.1 Gel structure 

According to Whyte’s report [5], the length of DNA molecule could be at 

least 1 m per bovine cell. Thus the surface area of DNA is extremely large 

(Figure 28). This means that large DNA molecules, such as nucleus DNA, 

have an extremely high friction drag in solution. In physical terms, this 
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feature of DNA is reflected by its high viscosity in solution. The same DNA 

packaged in the nucleus (Figure 18 and Figure 28) has little influence on the 

viscosity of the solution because the relative surface area of the nucleus is 

much, much smaller.  

 

Figure 29 shows the random and chaotic distribution of 

DNA/protein/surfactant strands. Even at low magnification, it is clear that 

the gel is non-homogeneous and has a distinct strand-like structure. This 

supports the theory that the interaction between surfactant and somatic cells 

in milk forms a gel [5]. 

 

When Milne [39] investigated the formation of the CMT gel under a 

microscope at an unstated magnification, cells were clearly visible on the 

plates. At low concentrations of surfactant, the cell membranes demonstrated 

alteration, which meant that the surfactant disrupted somatic cell membranes. 

At a concentration of 4% and 1:1 surfactant to milk ratio, he observed that: 

“nucleus material is apparently re-located to form fibrillar links to adjacent 

nuclei” and, at high cell counts, “complex knots” are formed between nuclei. 

Milne’s work demonstrated that for dimensions comparable to a cell 

diameter, the gel was non-homogeneous. Whyte et al., [5] confirmed that 

this non-homogeneity is continued at a bulk level in the CMT gel. 

 

Nageswararao & Derbyshire [22] also investigated the CMT gel under 

500×magnification. Their samples were described as an irregularly arranged 

fibrillar network, a description that matches Whyte’s finding. 
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Figure 28: DNA extruded from nucleus envelope of a bacteria E.coli [32] 

 

 
Figure 29: Stained CMT gel at ~ 10 × magnifications showing non-homogeneous gel 

formation [5] 

 

4.3.2 Previous theories to explain gel formation 

It is widely accepted that with enough somatic cells (e.g. when SCC > 100 k 

cells/ml) in milk, cells can interact with surfactant to form a gel, which 

might change the milk/surfactant solution from a Newtonian fluid to non-

Newtonian fluid (depending on the amount of somatic cells). The following 

is some old theories that are related to the mechanism of gel formation 

presented over the last century: 
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Milne [39] pointed out that the CMT was first described by Schalm and 

Noorlander in 1957, however, the mechanism of this interaction have not 

been clearly demonstrated. There is common agreement that DNA from cell 

nuclei contribute to the viscous interaction, but there is also a disagreement 

about the role that protein play in the CMT. Basically most theories can be 

categorised as either disregarding the effect of protein or not. 

 

i) Protein has little or no effect on gel formation 

Jaartsveld in 1961 proposed that DNA of the somatic cell nuclei is 

responsible for the viscous interaction during the CMT [39]. In 1962, 

Carrol and Schalm [20] found that nucleated cells produced a typical 

CMT interaction when added to normal milk whereas non-nucleated 

cells did not. These workers also reported that the formation of gel in 

the CMT was prevented by treatment of the milk with DNase I, but 

not by treatment with RNA and trypsin, which was used as evidence 

to prove that DNA of the cell nuclei is responsible for the interaction. 

 

Dounce and Monty [40] demonstrated that a small amount of DNase 

I can cleave most of the DNA released from somatic cells. This 

caused extensive depolymerisation of DNA therefore destroying the 

gel-forming power of the nuclei. This proved that DNA from cell 

nuclei is responsible for the viscous interaction. [22]. 

 

The study of Milne in 1977 [39] was to provide visual evidence for 

the role of DNA in the CMT interaction. The photomicrographs 

demonstrated different stages in the development of a fibrillar mesh. 

Milne also pointed out that the role of protein in the CMT interaction 

can be ignored under bulk milk testing conditions and that the 

observation of Nageswararao and Derbyshire [22] that casein caused 

an increase in viscosity, cannot be confirmed. 
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ii) Protein contributes to gel formation 

In 1956, Bernstein believed that intermolecular bonds, in which 

proteins were the primary participants, determined gel structure of 

DNA/protein gels [22]. Christ [41] contended that proteins reacted 

with the surfactant, becoming precipitated, denatured or bound into a 

protein/surfactant complex. 

 

Dedie and Kielwein in 1960 considered milk protein to play some 

role in the interaction and this was confirmed by Nageswararao and 

Derbyshire [22], who found soluble casein increased the viscosity of 

the gel in the CMT interaction [39]. 

 

Nageswararao and Derbyshire reported that gel formation was 

caused by the interaction of surfactant combining with DNA and 

associated proteins. They concluded that the native polymer of DNA 

and a protein of the DNA-protein complex of nuclei are necessary for 

gel formation in the CMT. They postulated the mechanism of gel 

formation by milk containing leucocytes with surfactant to consist of 

the liberation of DNA/protein complexes from the leucocyte nuclei 

by the surfactant, followed by spontaneous gel formation by the 

DNA/protein complexes [22]. 

 

In most of the literature presented above, it was found that the viscosity of 

the gel is best measured under low shear [22; 42; 43]. In 1965, Blackburn 

claimed that the viscosity is the result of the binding effect through the milk-

reagent mixture of the fibrillar extensions apparently emanating from cell 

nuclei. Experience with smear preparation demonstrated that excessive 

vigour in mixing the milk and reagent caused destruction of these fibres, an 

observation that indicates the need for an instrument with low shear [22]. 

 

In studies by Whittlestone et al., [43] as well as Milne et al. [39] , it was 

shown that the rolling ball viscometer is a suitable instrument to characterise 

the rheology of the gel formed during the CMT. They found that rolling ball 
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viscometer has sufficient accuracy to detect small changes in viscosity 

during the interaction [39; 43]. To this extent, Richardson, G. H et al., 

pointed out that low shear viscometry can be used to correlate viscosity with 

SCC in infected milk [42]. 

 

With the advancement of biochemistry and development of modern analysis 

techniques, the mechanism of the gel formation has been further clarified, as 

described as below. 

4.3.3 Modern theories to explain gel formation 

In general, the CMT is associated with the release of DNA from the nuclei 

of leucocytes in abnormal milk [22]. 

 

According to the latest findings [5; 10; 34], gel formation and the breakdown 

process is broken down into the following steps: 

1. Break down of the cell wall. 

2. Break down of nuclei’s wall. 

3. Chromosome unwinds to expose DNA-binding histone. Gel formation 

occurs due to a fibrous network between cells containing DNA. 

4. SDS denatures the histones, which bind DNA, breaking down the 

fibrillar structure of the gel. 

 

It is well known that SDS is a strong anionic surfactant that solubilises the 

cells plasma membrane as well as its nucleus envelope, SDS therefore first 

lyse the somatic cells membrane (step 1) then the nuclei membranes (step 2) 

[38]. This interaction alters the cell’s permeability and hence the cell’s 

osmotic equilibrium. The cell then absorbs water and burst, allowing 

leakage of the cellular contents [5]. As a result, the large DNA molecule, 

which has an exceedingly large surface area, will not be packaged in the 

limited nucleus (Figure 28). Consequently, the very long and thin DNA 

molecules are expanded (step 3) to form a gel, elevating the viscosity of the 

milk/DNA/SDS complex [10]. Finally, the surfactant interacts with histones 

(step 4) in the DNA/histone complex and dissolves them (Figure 30), which 

causes the break down the fibrillar structure. Therefore, this causes the 
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viscosity of the gel to decline distinctly, and the Non-Newtonian fluid 

behaviour of CMT gel would disappear [5; 10; 34]. 

 

Protein molecule   +  

↓↓↓ 

    
Figure 30 The protocols of detergents (i.e. surfactants) dissolve the histones and 

histone-like proteins thus break chromatin structures and CMT gel structure. 

 
In summary, it can be seen that gel formation is a complex process and 

multiple factors can influence the process. In order to relate the viscosity of 

the gel to the SCC, an understanding of the rheology of milk as well as the 

CMT gel is necessary. 
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Chapter 5 Rheology of milk and the CMT gel 
 
The viscosity of milk can be measured by using a diversity of viscometers, the 

appropriate device (capillary, rolling ball, rotational viscometer) being chosen 

depending upon the range of viscosity to be measured. Normally, milk exhibits 

Newtonian behaviour. Non-Newtonian behaviour in raw milks and creams is seen 

under conditions that favour cold agglutination of fat globules (temperature < 40°C) 

and low shear rates. Shear thinning is commonly observed under these conditions [44]. 

In addition, non-Newtonian behaviour has also been observed when surfactants 

interact with somatic cells present in milk obtained from cows with mastitis [5; 10; 

34]. 

 

5.1 Newtonian behaviour of normal milk 

Fresh skimmed milk and whole milk is for most practical purposes Newtonian 

liquids under the following conditions [44]: 

• fat content < 40% (w/w), 

• temperature > 40°C (milk fat completely molten, no cold 

agglutination of fat globules), 

• moderate shear rates 

 

Under these conditions, representative values of the viscosity of whole milk and 

fractions derived from it are listed in Table 6 [44]. 
Table 6: Representative values of the viscosity of whole milk and fractions [44] 

Item Viscosity (m Pa ·s) 

Water 1.005 

5% lactose solution 1.150 

Rennet Whey 1.250 

Skim milk  1.790 

Whole milk  2.127 

 

Rheological behaviour is completely characterized by a temperature-dependent 

viscosity, which is defined by Newton’s law of viscosity: 
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•

= γησ  (Pa)         (10) 

In this equation, σ is the shear stress (Pa), 
•

γ  is the shear rate (s-1) and η is the 

viscosity (Pa ·s). Please see section 2.2 in Chapter 2 for more details. 

 

The viscosity of whole milk, skim milk and some milk concentrates, for 

conditions under which Newtonian behaviour occurs, can be predicted at a given 

temperature by Eiler’s semi-empirical equation: 
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Introduced terms present in Equation 11 are defined in Table 7 [44]: 

 
Table 7: Defined items in Equation 11 

Term Description Units
η Viscosity of milk product Pa ·s 
η0 Viscosity of the portion of the product consisting of water 

and low molecular weight substances other than lactose. 
 

Pa ·s 

Φ i The volume fraction of a dispersed component with a 
particle size at least an order of magnitude greater than the 
size of the water molecule. 
 

N/A 

)(∑ Φ i  lwpcasfati Φ+Φ+Φ+Φ=Φ∑ )(  

where fat = milk fat, cas = casein, wp = whey proteins 
and l = lactose,  
 

N/A 

Φ max The assumed value of ∑ (Φi) for maximum packing of all 
dispersed particles (0.9 for liquid products). Φ max may be 
somewhat higher than 0.9 for evaporated milk and somewhat 
lower for high-fat cream. 
 

N/A 

 

 

The volume fraction of an individual component is given by: 

ivii cV ,=Φ          (12) 

In this equation, Vi is the voluminosity of component i (m3/kg of dry component) 

and cv,i is the volume concentration of the component in the product (kg/m3 of 

product). Walstra and Jenness [44] reported typical values of voluminosity (V), 
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listed in Table 8. Voluminosity and volume fraction refers to hydrodynamic 

volume and thus account for particle shape as well as water of hydration. 

 
Table 8: The value of voluminosity of various milk components [44] 

Components The value of voluminosity 

Fat globules ~1.11×10-3 m3/kg of lipid in fat globules 

Casein ~3.9×10-3 m3/kg of dry casein 

Whey proteins ~1.5×10-3 m3/kg of dry protein 

Lactose ~1.0×10-3 m3/kg of lactose 

 

When 0)( →Φ∑ i , Equation 11 reduces to the well-known Einstein equation 

for the viscosity of a very dilute solution of hard spheres: 

 

)5.21(0 Φ+=ηη         (13) 

 

While Einstein’s equation assumes no particle-particle interaction, Eiler’s 

equation accounts for the presence of the dispersed phase as well as 

hydrodynamic interaction between particles during flow. 

 

The viscosity of Newtonian milk products depends on several factors besides 

those mentioned above. These include composition, concentration, temperature, 

thermal history and processing history. Viscosity increases with percentage total 

solids (w/w) but, for a given total solid percentage, is inversely proportional to 

percentage fat because of the lower voluminosity of fat compared with casein. 

When ∑(Φi) exceeds 0.6 (which corresponds to 10
0

≈
η
η ), viscosity increases 

steeply with ∑(Φi) and rheological behaviour becomes Non-Newtonian [44]. 

 

5.2 Newtonian behaviour of milk/surfactant 
solutions  

Figure 30 (in chapter 4) as well as Figure 31 shows the state of proteins in a 

milk/surfactant solution. Figure 31 illustrates that protein shows interaction with 
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SDS as well as being denatured by SDS [32]. However, the protein/SDS 

complex only increases to a limited extent and do not contribute to the non-

Newtonian fluid behaviour found in CMT gel. As a result, milk/surfactant 

solutions not containing somatic cells only exhibit Newtonian fluid behaviour.  

 
Figure 31: The SDS-coated proteins in milk/surfactant solution [29] 

 

5.3 Non-Newtonian behaviour of the CMT gel 

When there are enough somatic cells (e.g. when SCC > 1000 k cells/ml) in milk, 

cells can interact with surfactant to form a gel, which might change the 

milk/surfactant solution from a Newtonian fluid to a Non-Newtonian fluid. For 

instance, when an ionic surfactant (e.g. SDS) is introduced to milk with a high 

somatic cell count, it forms a gel displaying a complex time- and shear-

dependent rheology. Figure 32 demonstrates a typical apparent viscosity versus 

time graph for high SCC milk at a constant shear rate, using Brookfield 

viscometry [10].  
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Figure 32: A graph of apparent viscosity of high SCC interacts with SDS versus time, 

showing the whole process of gel formation and breakdown [10] 

 

Walmsley et al., [34] reported that high SCC-milk/surfactant solution 

demonstrated a non-Newtonian behaviour and observed a peak viscosity within 

two minutes, when using Brookfield viscometry. Whyte et al., [5] confirmed 

that CMT gel exhibits non-Newtonian behaviour and more specifically, the non-

Newtonian behaviour was shown to be visco-elastic, rheopectic as well as 

rheodestructive. 

5.3.1 Visco-elastic properties 

Visco-elastic fluids have both elastic properties typically found in solids and 

viscous properties found in liquids. Visco-elastic properties are found in 

fluids with long polymer chains that become entangled or cross-linked, such 

as a polymer melts and some polymer solutions. One simple test for visco-

elasticity is the “Weissenberg effect”, which occurs when a rod is rotated in 

a visco-elastic fluid. In this test, the fluid will climb up a rotating shaft 

instead of forming a vortex because visco-elastic fluids not only transmit 

shear forces like a Newtonian fluid but also transmit tensile forces through 
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the fluid [45]. This allows the fluid under certain conditions to show elastic 

characteristic of a solid material. 

 

Figure 33 illustrates the Weissenberg effect as observed in an adaptation of 

the CMT. Visco-elasticity has been unwittingly described in the original 

California Mastitis Test, where the procedure for sensing the properties of 

the gel is described by visually assessing the viscosity of the gel. A CMT 

score of 2 is assigned if the fluid mixture is swirled it tends to move toward 

the centre, leaving the bottom of the cup. To assign a score of 3 the swirling 

action of the test operator has to induce a distinct central peak [27]. 

Although not mentioned as such in the test description, this behaviour is 

characteristic of a visco-elastic fluid [5]. 

 

 
Figure 33: The Weissenberg effect of the CMT gel climbing a glass stirring rod rotated 

at approximately 100 RPM [5] 

5.3.2 Rheopectic properties 

Rheopectic fluids increase their viscosity over time with application of a 

constant shear force. In Figure 32, the time-dependant viscosity of the gel is 

illustrated. Helenius & Simons (1975) [35] proposed that surfactant 

molecules lyse cells by the absorption of individual surfactant molecules 

into the fat around the cell. This interaction changes the molecules into the 

bilipid layer of cell wall. This changes the molecular organization of the cell 

wall which, in turn, alters the cell’s permeability and hence the cell’s 

osmotic equilibrium. The cells absorb water and burst allowing leakage of 

the cellular contents. The property of the cells that form the gel would then 
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take a finite time to react with the surfactant [35]. Whyte et al., [5] suggested 

that the rheopectic nature of the gel is caused by the time taken for the cells 

to break open, release the DNA and for the DNA-surfactant binding to occur. 

 

Fell et al., [46] studied the effect of milk/surfactant mixing time on gel 

formation using a roll-tube mixer for 20, 40 and 60s. Increased mixing time 

resulted in increased viscosity of CMT gel, a result which confirms the 

rheopectic nature of CMT gel. However, they did not test mixing times 

longer than 60s. The results from Whyte et al., [5] showed that maximum 

gel formation occurred between 60s and 150s, improper mixing may have 

been a significant source of error in the earlier results obtained with the 

rolling ball viscometer. 

5.3.3 Rheodestructive properties 

In addition to the time-dependant formation of CMT gel, the gel also shows 

a time-dependant breakdown. If the time-dependant loss of viscosity is non-

reversible, the fluid is considered to have rheodestructive properties. As 

shown in Figure 32, continued shearing of the gel mixture leads to an 

irreversible decrease in the viscosity. 

 

It was proposed by Whyte et al., (2004) that the breakdown of the CMT gel 

may involve three mechanisms: enzymic, chemical and physical shearing [5].  

 

Enzymic 

 

According to Singh and Marshall [18], DNase I can stop gel formation. 

They measured the time taken for the gel to disappear from milk 

samples scored CMT 0 to 3 by using various concentrations of DNase. 

Gel reduction occurred within 1 minute at 24 ppm, within 1.3 minutes 

at 12 ppm, within 5 minutes at 2.4 ppm and at 0 ppm, the gel was 

reduced to a “trace” score within 5 minutes. Smith and Schultze also 

supported that the breakdown of the gel is due to enzymic involvement 
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[47]. Whyte et al., suspected but were unable to conclude whether 

DNase I is a crucial factor in gel breakdown [5]. 

 

Chemical 

 

Sodium dodecyl sulphate (SDS) is known as a strong protein 

denaturing surfactant [32], and the gel is the mixture of DNA, proteins 

and surfactant [5; 41]. After the gel formation, the surplus SDS in the 

milk/surfactant mixture will disassociate the proteins (which are 

mainly composed of histone and histone-like protein) from DNA and 

the speed at which this occurs is strongly dependent on pH [21]. 

Consequently, SDS denatures the histone and histone-like protein, thus 

break the structure of the gel. As a result, the viscosity of the gel falls 

greatly, the gel disappeared in the end. 

 

Physical shearing 

 

Previously, it has been shown that prolonged shearing of CMT gel 

leads to a decrease in viscosity [39; 43]. However, breakdown may 

only occur above a critical shear rate [48; 49]. Hermans [50] showed 

that the viscosity of DNA solutions is permanently reduced when 

sheared even below 0.1 Pa. In work done by Walmsley et al., (Figure 

34) CMT gel was sheared at 1.5 Pa and it was concluded that shear 

was likely the cause of gel breakdown [5; 34].  

 

However, the thought that physical shearing is the cause of breakdown 

of the gel was challenged by Carre(1970) [51], who found that once 

maximum gel had formed, the gel naturally broke down over 10-20 

minutes without any applied stress. 
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Figure 34: Change in apparent viscosity of CMT gel over time for various SCC: 2 

million cells/ml (○); 1.3 million cells/ml (●); 1.1 million cells/ml (∆); 0.7 million cells/ml 

(▲); homogenized and standardized milk (□) [5] 

 

5.4 Using viscosity to determine SCC in milk 

As discussed earlier, mastitis is characterised by increased numbers of somatic 

cells in milk. According to Vangroenweghe et al. [15], SCC is routinely used to 

evaluate udder health and milk quality. SCC from healthy, non-inflected glands 

should be lower than 200 k cells/ml, SCC between 200- and 300- k cells /ml are 

indicative of inflection, and a SCC of more than 300 k cells /ml should be 

regarded as abnormal milk. 

 

It has previously been shown there is a relationship between viscosity and SCC 

of gel formed during the interaction of surfactant (such as SDS) and infected 

milk. The interaction is associated with the release of DNA from the nuclei of 

the leucocytes (i.e. somatic cells) in abnormal milk [20] . The interaction of SDS 

with released DNA causes a rapid increase in viscosity. This viscosity change is 

used to estimate SCC in infected milk [28].  
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Kiermeier & Keis [52] found a linear relationship between CMT gel viscosity 

and SCC in 1964. This finding was confirmed by Whyte et al. [5; 10; 34], who 

reported that the slope of the apparent viscosity versus time graphs are directly 

proportional to the SCC. Plots of the change in viscosity of the CMT gel over 

time are shown in Figure 34, for milk samples with various SCC [5]. 

 

According to Liew et al., extremely high SCC should not affect the linear 

relationship between viscosity and SCC [10]. However, crucial detection zone 

was found to be between cell 200- to 1 000- k cells/ml. It was found that the 

accuracy and precision of viscosity measurement in this range was acceptable. 

Based on previous work done by Sensortec [10], the outputs of the ideal system 

should be divided into four bands of SCC, which could be indicative of different 

stages of mastitis: 

• <200 k cell/ml (non-infected stage) 

• 200- to 500- k cells/ml (early subclinical stage) 

• 500- to 1 000- k cells/ml (subclinical stage) 

• >1 000- k cells/ml (clinical stage) 
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Chapter 6 Experimental 
 

6.1 Materials 

6.1.1 Reagents 

Table 9: Reagents and their suppliers 

Reagent Grade Supplier 

Sodium dodecyl sulphate 

(SDS) in forms of  

Dodecysulfate-Na salts 

95% Merck Schuchardt OHG, 

Germany 

Acetic acid (AA) 99% Asia Pacific Specialty 

Chemicals Ltd, ABN 

Triton 114 (T) 100% BDH Chemicals Ltd, England 

 

6.1.2 Proteins 

Table 10: Proteins and their suppliers 

Protein Grade Supplier 

Bovine serum albumin 

(BSA) 

Fraction V Boehringer Mannheim GmbH, 

Germany 

Spray-dried whey from 

bovine milk 

Pure Sigma-Aldrich, Inc, USA 

Casein powder from 

bovine milk 

Pure Sigma Chemical, Co, USA 
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6.1.3 Milk 

Table 11: Sample milk and its supplier 

Composition Milk 

Protein 

(per 

100ml) 

Fat 

(per 

100ml)

SCC 

(per ml)

Supplier 

Raw milk*∆ 3.39 ~ 

4.58 g 

2.14 ~ 

6.13 g 

59 ~ 

6,500 k 

cells 

Dexcel’s Waikato 

pasture in Hamilton, 

New Zealand 

Powder milk#* 3.4 g 0.1 g 0 cell Anchor Instant milk 

powder, New Zealand 

Shop milk* 3.1 g 3.3 g 0 cell Anchor dark-blue shop 

milk, New Zealand 

*All milk samples were refrigerated at 4~7 Celsius until use 

∆Considering the great influence of prehistory of raw milk (because of cell death), all 

raw milk samples with somatic cells have to be used for experiments within 2 days 
#Powder milk was reconstituted using distilled water at a volume ratio 1: 4 (milk 

powder: water) and refrigerated at 4~7 Celsius until use 
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6.2 Equipment 

1. Brookfield Viscometer (Model DV-II) including: LV Spindle 1 and Sample 

Holder (as shown in Figure 35), equipped with an analogue to digital signal 

converter for data logging. 

 

2. Ubbelohde Viscometer (Model No. 1B M423) (Figure 36). 

 

3. General lab glassware and equipment. 

 

 
Figure 35: Brookfield viscometer (Model DV-II)  
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Figure 36: Ubbelohde viscometer (Model No. 1B M423)  

 

In this project a Brookfield viscometer was used, representative of a 

rotational viscometer to investigate the flow properties of the CMT gel under 

shear. An Ubbelohde viscometer was also used as a capillary viscometer to 

investigate the rheological properties of the CMT gel when the shear rate is 

nearly zero. 
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6.3 Methods 

6.3.1 Brookfield viscometry 

When using Brookfield viscometry, samples are prepared by mixing 300 ml 

milk with the same volume of surfactant at a given concentration in a 600 ml 

beaker, the exact procedure for is given in appendix 1. 

 

The viscosity measured by Brookfield viscometry is called apparent 

viscosity aη , which is calculated by using a gross assumption that the non-

Newtonian liquid is obeying Newton’s law of viscosity: 

⎥⎦
⎤

⎢⎣
⎡−==

dz
zdv

A
F

a
)(ησ  

Thus any shear rate may be expressed as the velocity gradient in the 

direction perpendicular to that of the shear force. The unit of apparent 

viscosity is centipoise ( sPacentipoise ⋅= −3101 ), the abbreviation of 

centipoise is cps. 

6.3.2 Ubbelohde viscometry 

When using Ubbelohde viscometry, 6.5 ml milk is mixed with the same 

volume of surfactant at a given concentration inside the Ubbelohde tube as 

shown in Figure 36. Details of the exact procedure followed are given in 

appendix 2. It must be noted that for each test, it takes 30 seconds for the 

Ubbelohde viscometer to be set up before the viscosity is measured. In other 

words, each relative viscosity of milk/surfactant solution obtained by using 

Ubbleohde viscometer includes a 30 seconds time delay due to the setup 

time. 

 

The viscosity of the gel measured by Ubbelohde viscometry is called relative 

viscosity, which is the ratio between the measured fluid’s viscosity (in forms 

of efflux time) and the water viscosity (in forms of efflux time) at the same 

condition (e. g. at room temperature). It is known that the viscosity of water 

at room temperature is 1 × 10-3 Pa ·s. 
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6.4 Experimental plan 

6.4.1 Scope 

It was shown earlier that the viscosity of the CMT gel is proportional to the 

SCC. It was decided to eliminate the factors listed below one by one, so that 

one can well recognize how they can affect the viscosity of the CMT gel. 

 

• SCC effect on viscosity of the gel 

To investigate the effect of SCC on the viscosity of the CMT gel, 

pasteurised milk (SCC = 0 k cells/ml) as well as raw milk with various 

SCC were used.  

 

The same concentration of surfactant was used in each viscosity test. By 

comparing the results, the effect of SCC on the viscosity of the gel can 

be determined. 

 

• Viscometry technique 

To investigate which viscometry technique is more effective for relating 

SCC to viscosity, the Brookfield viscometer was used to investigate the 

time-dependant flow behaviour at various shear rates. Shear rate was 

varied by changing the spindle speed of the viscometer. 

 

Ubbelohde viscometry was used in comparison to investigate the 

viscosity of CMT gel at very low shear rates. Ubbelohde viscometry 

only measures a single point representing viscosity and is not appropriate 

for the characterisation of non-Newtonian properties, which means a 

combination of Brookfield and Ubbelohde viscometry techniques is 

necessary. 

 
• Time delay 

It was shown earlier that the CMT gel demonstrated time-dependant 

non-Newtonian behaviour [5; 10]. Therefore, it was decided to 

investigate the effect of various interaction times on the viscosity of the 

gel. This would allow one to determine whether gel formation is 



 74

sensitive to mixing prior to testing. 

 
• Shear rate 

It was shown earlier that the CMT gel demonstrated shear-dependent 

non-Newtonian fluid behaviour [5; 10]. To investigate how shear rate 

affects on characterising the rheology of CMT gel, we separately use 

Brookfield viscometer and Ubbelohde viscometer to measure the 

viscosity of the CMT gel. The shear rate in the Ubbelohde viscometer 

can be regarded to be zero whereas the shear rate of Brookfield 

viscometer can be changed by varying the spindle speed. 

 

• Temperature 

The CMT was performed at different temperatures to estimate the 

sensitivity of the test to temperature. 

 

• Surfactant type and concentration 

It was previously reported that SDS is a commonly used surfactant in the 

CMT [5; 22; 51]. SDS is an anionic surfactant with a hydrophilic head 

group and hydrophobic tail group, (see Figure 20). In order to determine 

how SDS influences the viscosity of the CMT gel, other chemicals, with 

similar structure as SDS, were used as a comparison. Based on this, 

acetic acid and Triton-114 were used in this study. 

 

Each of these surfactants was used at the same concentration when 

compared to SDS under similar conditions. In addition, it was shown 

earlier that the surfactant concentration also affects the viscosity of the 

gel [10]. To further investigate this, the concentration of the various 

surfactants was varied.  

 

• Mixed surfactant 

It was reported that some non-ionic surfactant can lyse plasma 

membrane of somatic cells but not its nucleus envelope [29; 31]. SDS is 

a strong anionic surfactant which can lyse both the plasma membrane 

and the nucleus envelope [38]. It was also known that SDS can denature 
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proteins [38]. To investigate the possible effects of mixed surfactants on 

the viscosity of the CMT gel, it is decided to mix 2% Triton-114 with 

1% SDS. The results can then be used as comparison to the performance 

of SDS solution alone. 

 
• Milk composition 

It was found in previous studies that there is a linear relationship 

between SCC and viscosity [6]. However, the milk has complex 

composition, which include proteins, fat, SCC and hydrocarbons [4]. To 

investigate how milk composition affects gel formation and possibly the 

correlation between SCC and viscosity, the relative quantities of the 

main milk fractions were varied by using different kinds of milk. 

� Raw milk contains proteins, fat and SCC. 

� Deep blue Anchor shop milk contains proteins, fat, but no SCC. 

� Green Anchor non-fat instant milk powder contains proteins, 

nearly no fat, and no SCC.  

To investigate the effect of protein content on the viscosity, various 

proteins had to be added to milk. It is well known that milk contains 

mainly whey, casein and BSA [14]. BSA, whey, and casein were added 

separately to different types of milk samples to allow its concentration to 

be 1% more than its original concentration in the milk samples. 

6.4.2 Experimental design 

The key target for this project is to develop an understanding of the 

mechanism of the CMT gel formation, and how various factors influence the 

rheology of the gel that formed. This can be achieved by monitoring the 

viscosity of CMT gel’s formation and breakdown process. Factors that may 

influence the rheology of gel, which are investigated are: 

1. rheology 

2. testing conditions, including time delay, shear rate and temperature, 

3. surfactant type as well as concentration of the surfactant, 

4. composition of milk, including fat, somatic cells, milk protein 

content. 
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To investigate the relative importance of these factors, an experimental plan, 

as shown in Table 12 and Table 13 was followed. The following factors 

were the major variables: 

o rheology and fluid type 
To this extent, milk up to a SCC of 6,321 k cells/ml was used, 

categorized as: 
1. zero SCC pasteurised milk 

2. low SCC milk (SCC < 500 k cell/ml ) 

3. middle SCC milk (1,000 k cells/ml > SCC > 500 k cells/ml) 

4. high SCC milk (SCC > 1,000 k cells/ml) 

o testing conditions 

1. time delay to consider time-dependant gel formation prior to 

viscosity testing. Reagent and milk were mixed and left for a 

predetermined time to allow gel formation prior to viscosity 

testing 

2. shear rate or spindle speed 

3. temperature 

o surfactant type with varied concentrations: 
1. SDS solutions at 1%, 3%, 6% w/w 

2. acetic acid solutions at 1%, 3%, 6% w/w 

3. Triton-114 solution at 1% w/w 

4. mixed surfactant (2% Triton-114 and 1% SDS) 

o composition of milk 
1. milk type with different concentrations of fat: 

1) homogenized and pasteurized (shop milk)  

2) homogenized, pasteurized, and reconstituted (milk 

made from milk powder) 

2. milk protein: 

1) adding enough Bovine Serum Albumin (BSA) to reach 

1% extra BSA in milk 

2) adding enough casein (from bovine milk) to reach 1% 

extra casein in milk 

3) adding enough whey protein (from bovine milk) to 

reach 1% extra whey in milk 
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Table 12: Experimental plan (1) 

0 30 45 60 75 90 0 30 45 60 75 90 0 10 15 20 30 45 60 75 90 150 0 30 60 90 150 270
SDS 9 9 9 9 9 9
AA 9 9
SDS 3 9 9 9 9 9 9 9
SDS 9 9 9 9 9 9
AA 9 9
SDS 1 9 9 9 9 9 9
SDS 3 9 9 9 9 9 9 9
SDS 6 9 9 9 9 9 9 9
SDS 9 9 9 9 9 9 9 9 9 9
AA 9 9 9 9
T 9
SDS 9 9 9 9 9 9 9 9 9 9
AA 9 9 9
SDS/T 9 9
SDS 9 9 9 9 9 9 9 9 9 9
AA 9 9 9 9

0.3 RPM SDS 1 9
SDS 0 9 9 9 9
SDS 1 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
SDS 3 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
SDS 6 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

SDS 0 9 9 9
SDS 1 9 9 9 9 9 9 9 9 9
SDS 3 9 9 9 9 9 9 9 9 9
SDS 6 9 9 9 9 9 9 9 9 9
SDS 0 9 9 9
SDS 1 9 9 9 9 9 9 9 9 9
SDS 3 9 9 9 9 9 9 9 9 9
SDS 6 9 9 9 9 9 9 9 9 9

SDS 0 9
SDS 1 9 9 9
SDS 3 9 9

1% Casein

U
bb

el
oh
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co

m
et

er

N/A

1% BSA

1% Whey

Time delay (second)Time delay (second)

Powder milk Shop milk Farm milk
Low SCC Middle and High SCC
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) Time delay (second)

None
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6
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None

60 RPM

30 RPM

12 RPM

 
9 refer to experiment done 
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Table 13: Experimental plan (2) 

Temperature Powder milk Shop milk Low SCC raw milk  Water 

(Celsius) Concentration of SDS (%) 

  0 1 3 0 1 3 0 1 3 1 3 6 

20 9 9 9 9 9 9   9 9 9 9 9 

10 9 9 9 9 9 9 9 9 9 9 9 9 

0                   9     

9 refer to experiment done 
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Chapter 7 Results and discussion 
 
Figure 37 shows a typical viscosity versus time response obtained for abnormal milk 

during the CMT. In this test a spindle speed of 0.3 RPM was used and a 1% SDS 

solution was added to the milk. This graph is representative of most cases where the 

SCC is above 1000 k cells/ml. The process can be broadly divided into two stages: 

firstly gel formation, followed by gel breakdown. In Chapter 4, various mechanisms 

were discussed to explain different steps within each stage. These were: 

• Break down of cell wall (step 1) and nucleus envelope (step 2) and subsequent 

unwinding of chromosomes. This exposed the DNA bound histones and gelation 

occurs (step 3). This is collectively referred to as gel formation, as shown in 

Figure 37. 

• Histones were extracted from the DNA chains by SDS and subsequently the 

fibrous network was lost (step 4). This is the gel breakdown stage, as shown in 

Figure 37. 
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Figure 37: Apparent viscosity of raw milk (3,884 k cells/ml) measured by Brookfield viscometry 
at 0.3 RPM and 1% SDS, indicating the whole process of the CMT gel formation and breakdown. 
 
In this study, the mechanism of gel formation was further investigated. Various 

aspects of the mechanism of gel formation have been discussed in Chapters 2 to 5. 

Even though the mechanism of gel formation is the main purpose of the investigation, 

it has to be kept in mind that the CMT was designed to detect mastitis in milk, and 
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only later it was slightly adapted to correlate viscosity to a somatic cell count. 

Therefore, it is also important to make sure that the method of viscosity measurement 

is appropriate and accounts for factors that might influence the measurement. Based 

on Chapters 2 to 5, the most important aspects that could potentially influence the 

ability to successfully measure a somatic cell count would therefore include: 

• rheology 

• testing conditions and shear rate 

• surfactant type 

• composition of the milk. 

7.1 Rheology 

Viscosity measurement techniques were discussed in Chapter 2 and it was found 

that most literature regarding measuring the viscosity of the gel mentioned low 

shear devices. To this extent, the rolling ball viscometer proved very popular in 

earlier studies. In this study the Brookfield and Ubbelohde viscometers were 

used. The Brookfield viscometer allows for an adjustable spindle speed or shear 

rate. The viscosity can be monitored over an appropriate time scale and under 

constant shear rate, allowing for detecting time dependant effects. On the other 

hand, the Ubbelohde viscometer can be treated as a device with a very low shear 

rate. Unfortunately, the Ubbelohde viscometer only measures a single point 

representing viscosity and would not allow non-Newtonian characterisation of 

the fluid. 

 

From the literature discussing the nature of the CMT gel, it was indicated that 

the gel behaves as either as a Newtonian fluid or as a non-Newtonian fluid, 

depending on the SCC. It was shown that the viscosity is time dependant as well 

as visco-elastic, when the fluid is non-Newtonian. To investigate the non-

Newtonian behaviour, the Brookfield viscometer was used, for reasons 

mentioned above.  

 

The time dependence of the gel cannot be considered without also considering 

the SCC in abnormal milk. Therefore the viscosity was always measured at 

different SCC and compared to healthy milk.  
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Figure 38 and Figure 39 show the apparent viscosity versus time graphs for milk 

with various SCCs. From these graphs it can be seen that the larger the SCC in 

raw milk, the higher the peak viscosity of the gel. The results also show that the 

viscosity of the gel is time-dependant. It reaches a maximum within two minutes 

of testing for abnormal milk with high SCC, after which it drops due to gel 

breakdown (Figure 38). If the SCC is less than 100 k cells/ml, the viscosity of 

the milk/surfactant solution is constant and Newtonian (Figure 39). If the SCC is 

between 100 k cells/ml and 300 k cells/ml, only a vague peak viscosity is 

observed. Above 300 k cells/ml, a strong peak is observed and the fluid is 

clearly a time-dependant non-Newtonian fluid (Figure 39). Not evident from the 

figures is the effect of shear rate and the surfactant concentration, which will be 

discussed in the following sections. 

 

0
50

100
150
200
250
300
350
400

0 30 60 90 12
0

15
0

18
0

21
0

24
0

27
0

30
0

33
0

Interaction time (sec)

A
pp

ar
en

t v
is

co
si

ty
 (c

ps
)

Middle SCC milk
(598k cells/ml)
High SCC milk
(1,650kcells/ml)

 
Figure 38: Apparent viscosity of milk with 1% SDS at different SCC at 12 RPM, showing 

the viscosity of the gel is time-dependant. 
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Figure 39: Apparent viscosity of milk with 1% SDS with various SCC, measured at 12 

RPM. Results indicate that a critical SCC is necessary for gel formation. 

 
In Figure 40 the relative viscosity of various gels measured by Ubellohde 

viscometers at different SCCs is shown. It can be seen a linear relationship 

exists between cell count and relative viscosity for cell counts up to 6,300 k 

cells/ml. It can be seen that this relationship is dependent on the surfactant 

concentration. Three or more percent SDS is necessary for accurate 

measurement, but using higher concentrations resulted in great scatters in the 

data. 
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Figure 40: Relative viscosity versus SCC of raw milk at different surfactant concentrations, 
measured by Ubbelohde viscometry. 
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In Figure 41, it can be seen that maximum apparent viscosity measured by 

Brookfield viscometry is proportional to SCC. The slope of the linear 

relationship depends on the surfactant concentration. Compared to Figure 40, 

Brookfield viscometry has a greater sensitivity to changes in SCC. For 3% SDS 

the slope of the linear correlation, using Brookfield viscometry is almost two 

orders of magnitude greater than using Ubbelohde viscometry. 
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Figure 41: Maximum apparent viscosity versus SCC of raw milk at different surfactant 

concentrations, measured by Brookfield viscometry. 

 
Despite the linear relationship between SCC and maximum apparent viscosity, 

different flow characteristics were observed at different SCC. For a SCC of 

more than 1,000 k cells/ml, visco-elastic flow behaviour was observed at all 

SDS concentrations. Figure 42 (a) illustrates the Weissenberg effect, typically 

found in visco-elastic fluids. If the SCC is between 500 and 1,000 k cells/ml, 

only vague non-Newtonian flow behaviour is observed, as illustrated in Figure 

42 (b). In general, no visco-elasticity was observed if the SCC was less than 500 

k cells/ml. This could be one of the reasons for greater scatter in the SCC versus 

apparent viscosity data at high SCC and stronger SDS concentrations. 
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Figure 42: Visco-elasticity during the interaction between high SCC milk (SCC > 1,000 k 

cells/ml) and 1% SDS (a) and middle SCC milk (1,000 k cells/ml > SCC > 500 k cells/ml) 

and 1% SDS (b). 

 

In summary, for an extremely low SCC (SCC < 100 k cells/ml), when SDS was 

added to milk, the milk/surfactant solution mainly behaved Newtonian despite 

some gel formation. The Newtonian behaviour of the milk/surfactant solution 

outweighed the non-Newtonian behaviour of the gel, thus the whole 

milk/surfactant solution demonstrated Newtonian behaviour. However, for SCC 

between 100 k cells/ml and 500 k cells/ml, the milk/surfactant solution 

demonstrated time-dependant, non-Newtonian behaviour. For SCC above 500 k 

cells/ml, the milk/surfactant complex not only demonstrated a time-dependant 

behaviour but also visco-elasticity. 

 

It was also found that capillary viscometry is a successful technique for 

correlating SCC with relative viscosity. It does not offer insight into the non-

Newtonian behaviour of the gel, but this is often not necessary when only a 

correlation between SCC and viscosity in sought. Brookfield viscometry, on the 

other hand, enables a much more comprehensive investigation into time and 

shear dependent behaviour of the gel. The two techniques lead to the same 

a b
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conclusions regarding the relationship between SCC and viscosity, but it was 

found that Brookfield viscometry is slightly more sensitive at low SCC. 

7.2 Testing conditions and shear rate 

To fully understand the impact that the non-Newtonian behaviour of the gel 

might have on the detection of SCC, one also have to investigate the testing 

conditions. This was done by measuring the apparent viscosity at different shear 

rates (spindle speeds). Also, the Ubbelohde viscometer was used as a device 

with nearly zero shear rate. In addition to investigate whether sufficient time is 

allowed for the gelation interaction prior to viscosity measurement, various time 

delays were introduced prior to testing. This involved mixing the surfactant with 

milk and then leaving it for a specified time to interact. The apparent viscosity 

versus time was then measured using Brookfield viscometry, or the relative 

viscosity by means of the Ubbelohde viscometer. 

7.2.1 Time delay 

Figure 43 demonstrates that for low SCC milk (SCC < 500 k cells/ml), time 

delay had no significant influence on the relative viscosity and the viscosity 

was constant over the whole time of testing. The same was found for 

pasteurised milk. Therefore, the results match well with literature findings 

stating that normal milk should be Newtonian and therefore not time-

dependant. 

 

Figure 44 shows that when 1% surfactant solution was introduced to 

different ranges of higher SCC raw milk (SCC > 500 k cells/ml), time delay 

can influence the relative viscosity of the milk/surfactant solution 

significantly. For raw milk with higher SCC, the viscosity of the 

milk/surfactant solution increases with longer time delays. This indicates 

that the gel formation process is time-dependant and the viscosity 

measurement technique could potentially influence the correlation between 

SCC and viscosity. In Figure 45, Figure 46 and Figure 47 the apparent 

viscosity versus time graphs are shown for various milk samples. The results 

show that 30 seconds is sufficient to allow gel formation. In these figures, 

different rotational speeds (shear rate) were also used. The effect of this on 
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the peak viscosity and the time to reach this viscosity is summarised in 

Figure 48 and Table 14, respectively. 
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Figure 43: Relative viscosity versus time delay for low SCC milk, using 3% SDS. 
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Figure 44: Relative viscosity versus time delay for milk with SCC between 738 and 

2,431 k cells/ml, using 1% SDS. 
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Figure 45: Apparent viscosity versus time for low SCC milk (79 k cells/ml) for 

different time delays, using 1% SDS and at a spindle speed of 12 RPM. 
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Figure 46: Apparent viscosity versus time for low SCC milk (79 k cells/ml) for 

different time delays, using 1% SDS and at a spindle speed of 30 RPM. 
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Figure 47: Apparent viscosity versus time for low SCC milk (79 k cells/ml) for 

different time delays, using 1% SDS and at a spindle speed of 60 RPM. 
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Figure 48: The effect of time delay and spindle speed on the time to reach peak 
apparent viscosity 
 
Table 14: Comparison of time delay’s effect on the peak viscosity of the gel at different 

RPM 

No delay 30 seconds 
delay 

60 seconds 
delay 

Spindle speed 

Maximum apparent viscosity (cps) 
12 RPM 19.5 20.0 19.5 

30 RPM 14.2 14.8 14.2 

60 RPM 13.0 12.6 12.7 

 
From Figure 48 and Table 14, it can be seen that time delay shortens the 

time it takes for the apparent viscosity to reach a maximum, the magnitude 
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of which is independent of the delay time. The decrease in time to peak 

viscosity was also more than the delay time, showing overall faster 

measurement times would be possible if a delay time is used. However, the 

shear rate or spindle speed influences both the time to reach the peak 

viscosity as well as the magnitude of this maximum and will be discussed 

further below. 

7.2.2 Shear rate 

Figure 49 and Figure 50 show that the higher the shear rate, the lower the 

peak viscosity of the gel and the shorter the time it takes to reach the peak 

viscosity. From Figure 51, it can be seen that the SCC also influences this 

observation and the effect of shear rate is more prominent at higher SCCs. 

Figure 38 shows that for high SCC milk (SCC > 1,000 k cells/ml) and low 

shear rate (12 RPM), the peak viscosity is reached within 2 minutes. 

 

When the shear rate is extremely low and the SCC is extremely high (SCC > 

3,000 k cells/ml), the peak viscosity is only reached after about 20 minutes 

(Figure 37, viscosity measurement was done at 0.3 RPM). 

 

In summary, the above findings match well with the earlier report of Liew et 

al., and Walmsley et al. [10; 34], which mentioned that peak viscosity and 

viscosity before the peak is proportional to SCC but, is greatly influenced by 

shear rate. Therefore, to measure the viscosity of the CMT gel accurately, an 

identical shear rate for each measurement is required. Also, higher shear 

rates seem to promote gel breakdown, supporting earlier findings that the 

mechanism of gel breakdown is a physical process. 
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Figure 49: Apparent viscosity versus time for low SCC (110 k cells/ml) milk at 

different RPM, using 3% SDS. 
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Figure 50: Apparent viscosity versus time for middle range SCC (593 k cells/ml) milk 

at different RPM, using 3% SDS. 
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Figure 51: The effect of spindle speed on the maximum apparent viscosity and time to 

reach maximum viscosity 

7.2.3 Temperature 

Figure 53 indicates that temperature only slightly influence the relative 

viscosity of the gel. From Figure 52 and Figure 53, it can be seen that the 

relative viscosity of SDS solutions as well as milk/SDS mixtures are 

inversely proportional to temperature. Nevertheless, the change of gel’s 

viscosity caused by temperature alone is so small compared with the change 

of the viscosity caused by gelation. 
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Figure 52: Relative viscosity of 1% SDS solution versus temperature. 
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Figure 53: Relative viscosity of different types of milk at different temperatures, using 

1% SDS. 

 

7.3 Surfactant type 

The first two steps of gel formation are concerned with the breakdown of cell 

walls and nuclei envelopes. As discussed in Chapter 4, the cell wall consists of a 

lipid bi-layer which is disrupted by the action of a strong surfactant. It was 

previously shown that SDS is very effective in lysing cell walls as well as nuclei 

envelopes. To understand the effect of SDS, other chemicals with similar 

structures were studied in addition to SDS. 
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• To further confirm that SDS is so far more effective than other reagents 

for CMT, SDS with various concentrations were used for comparison. 

• Acetic acid was used for the fact that this molecule has a polar head and 

a short hydrophobic tail. This is very similar to the amphiphilic nature of 

SDS. However, SDS is anionic and has a 12 carbon hydrophobic tail. 

• Triton-114 is a non-ionic surfactant with a long hydrophillic 

hydrocarbon chain as well as a long hydrophilic chain. This surfactant is 

known to lyse cell membranes, but not the nuclei envelope. 

• A combination of Triton-114 and SDS, in order to observe possible 

interaction effects between the surfactants. 

7.3.1 SDS 

It was found that when using SDS as CMT reagent, no matter at what 

concentration it was introduced into powder milk or shop milk, the viscosity 

of the solution was constant and no gel formed (Table 15).  

 

From Figure 54 it can be seen that when SDS is introduced to milk with a 

SCC of less than 100 k cells /ml, 1% SDS is not sufficient to cause gelation. 

When 3% or 6% SDS is used the viscosity of the mixed solution increase 

distinctly. 

 

If the SCC in raw milk is above 500 k cells/ml, Figure 55 and Figure 56 

indicate that the apparent viscosity of the CMT gel is proportional to the 

surfactant solution concentration. It can therefore be concluded that SDS is 

an effective surfactant in the CMT. 

 
Table 15: Apparent viscosity of powder and shop milk at different concentrations SDS, 

measured by Brookfield viscometry at 12 RPM. 

SDS addition Powder milk 

(cps) 

Shop milk 

(cps) 

Adding 1% SDS 3.51 ± 0.50 4.01 ± 0.50 

Adding 3% SDS 4.51 ± 0.50 5.01 ± 0.50 

Adding 6% SDS 5.01 ± 0.50 6.01 ± 0.50 
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Figure 54: Apparent viscosity versus time at different concentrations SDS for low SCC 

milk (59 k cells/ml) at 12 RPM. 
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Figure 55: Apparent viscosity versus time at different concentrations SDS for middle 

range SCC (593 k cells/ml) milk at 12 RPM. 
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Figure 56: Apparent viscosity versus time at different concentrations SDS for high 

SCC (2,772 k cells/ml) milk at 12 RPM. 

 

To better understand how SDS causes gel formation, other chemicals with 

similar structures were also tested as potential CMT reagents. Acetic acid 

has a polar head and a short hydrophobic tail, which is similar to the 

amphiphilic nature of SDS, except that SDS is anionic and has a 12 carbon 

hydrophobic tail. The effect of acetic acid on gel formation is discussed 

below. 

 

7.3.2 Acetic acid 

Table 16 indicate that acetic acid can interact with milk proteins to 

precipitate the proteins at different concentrations, thus changing the 

viscosity of the mixture. However, the increased viscosity is still almost 

constant. Acetic acid can be expected to denature proteins and cause 

precipitation of casein. The change of viscosity is therefore only due to the 

protein interaction and not to a gel formation mechanism. Although this do 

not prove that acetic acid did not lyse any membranes, it could be that it 

denatured all the proteins, even those in the histone bound DNA therefore 

destroying any gel formation capability. 
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Table 16: Apparent viscosity of milk and different concentrations acetic acid at 12 
RPM 

Concentration of Acetic acid Milk type 

1% 6% 

Powder milk 6.01 ± 1.50 cps 11.01 ± 1.50 cps 

Shop milk 34.10 ± 4.50 cps 35.40 ± 5.00 cps 

Low SCC milk (159 k 

cells/ml) 

65.10 ± 3.00 cps Drops from 60.1 cps to 

36.1 cps  

Middle SCC milk 

(645 k cells/ml) 

41.40 ± 4.50 cps 30.10 ± 3.00 cps 

 

In order to confirm whether or not it is the charge of SDS that enables cell 

and nuclei lysing, Triton-114 was used as a reagent in the CMT. It is a non-

ionic surfactant with a long hydrophilic hydrocarbon chain as well as a 

hydrophobic tail.  

7.3.3 Triton-114 

Results show that when 1% Triton-114 is introduced to high SCC milk, even 

though the SCC in the sample is more than 2000 k cells/ml, the viscosity of 

the Triton-milk solution remained constant (Table 17). Knowing that Triton-

114 does not lyse nuclei wall, the results suggest that DNA wasn’t released 

from the nuclei which prohibited gel formation. Based on this as well as the 

result from acetic acid addition, it can therefore be confirmed that a strong 

anionic surfactant is necessary for gel formation. 

 
Table 17: Apparent viscosity of milk and different concentrations Triton-114 at 12 

RPM. 

Concentration 

of Triton-114 

(%) 

Low SCC (197 k 

cells/ml) milk 

(cps) 

High SCC (2,431 

k cells/ml) milk 

(cps) 

1 3.51± 0.50 4.01± 0.50 

3 4.01± 0.50 5.01± 0.50 

 

Lastly, it was decided to use SDS in combination with Triton-114 in order to 

potentially increase the efficiency of SDS. The hypothesis was that if Triton-
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114 is used for cell wall lysing, more SDS would be available for gelation, 

due to nuclei lysing. 

7.3.4 Mixed surfactant 

Figure 57 demonstrates that the mixed surfactant is less effective than SDS 

alone at the same concentration (Figure 58). In the case of milk with a low 

and middle SCC, there is no gel formed and the viscosity of the 

milk/surfactant solution is constant. However, high SCC milk formed a gel, 

but the viscosity was much lower than compared to the case when only SDS 

is used as surfactant. A much higher SCC is therefore necessary before 

gelation occurs. SDS must therefore be somehow prevented from forming a 

gel with the DNA/histone complex within the nucleus, either due to the 

nucleus not being lysed, or because of interaction effects between SDS and 

Triton-114, reducing the available SDS. 
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Figure 57: Apparent viscosity versus time for milk samples containing various levels of 

somatic cells, using 1% SDS and 2% Triton-114, at 12 RPM 
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Figure 58: Apparent viscosity versus time for milk samples containing various levels of 

somatic cells, using 1% SDS, at 12 RPM 

 

In addition to the above mentioned effects, the composition of milk may also 

influence the ability to accurately correlate SCC with viscosity. The major 

components in milk are: 

• fat 

• proteins (casein and whey) 

• hydrocarbons (lactose) 

• water. 

 

The relative proportion of these may have some influence on gel formation 

and is discussed below. 

7.4 Composition of milk 

It is known that water and hydrocarbons have little effect on gel formation and 

therefore, this investigation focussed on the effects of protein and fat content on 

gel formation. 

7.4.1 Fat content 

Without SDS, both powder milk and shop milk demonstrated a constant 

viscosity. When 1% SDS was introduced into powder milk or shop milk 

(Table 18 and Table 19), only a slight increase in viscosity was observed. 

This viscosity is compared to powder milk and shop milk with the 
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equivalent amount of water added to account for dilution effects when 

introducing the surfactant solution. The relative viscosity difference between 

powder milk and shop milk is very small when SDS solution is added. 

Therefore, when SDS is introduced to milk without somatic cells, the mixed 

solution shows no gel formation and the viscosity is constant.  

 
Table 18: Relative viscosities of different milk samples with and without SDS, 

measured by Ubbelohde viscometry. 

 Powder milk with low 

fat (≤ 0.1 g /100ml) 

Shop milk with fat 

(3.3 g / 100 ml) 

Without SDS, with 

water dilution 

1.38 ± 0.03 1.46 ± 0.04 

With SDS, without 

water dilution 

1.79 ± 0.03 1.99 ± 0.02 

Adding 1% SDS 

solution 

1.77 ± 0.03 1.80 ± 0.03 

 
Table 19: Apparent viscosities of different milk samples with and without SDS, 
measured by Brookfield viscometry at 12 RPM. 

 Powder milk with fat 

(≤ 0.1 g /100ml) 

Shop milk with fat 

(3.3 g / 100 ml) 

Without SDS, without 

water dilution 

4.01 ± 0.50 cps 4.51 ± 0.50 cps 

Adding 1% SDS 

solution 

3.51 ± 0.50 cps 4.01 ± 0.50 cps 

 

7.4.2 Protein content 

Results in Table 20, Table 21, Table 22 and Table 23 indicate that the 

different types of milk proteins have a very limited influence on the viscosity 

of the CMT gel. Extra protein does not lead to gel formation, and the 

proteins’ influence on the viscosity of the milk/surfactant solutions is 

negligible. 
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It was found that the viscosity of raw milk/surfactant solution with 1% BSA 

added is smaller than the viscosity of the raw milk/surfactant solution 

without BSA addition (see Table 23). This result matches well with Milne’s 

finding that bovine albumin causes a viscosity decrease when added to 

somatic cell suspensions. 

 
Table 20: Relative viscosities of powder milk with and without additional protein, 

measured by Ubbelohde viscometry. 

 Powder milk without 

adding 1% SDS but 

with water dilution 

Powder milk with 

adding 1% SDS 

Without adding 

extra protein 

1.49 ± 0.02 1.77 ± 0.03 

Adding 1% BSA  1.49 ± 0.02 1.76 ± 0.03 

Adding 1% Whey 1.49 ± 0.02 1.77 ± 0.04 

 
Table 21: Relative viscosities of shop milk with and without additional protein, 

measured by Ubbelohde viscometry. 

 Shop milk without 

adding 1% SDS but 

with water dilution 

Shop milk with 

adding 1% SDS 

Without adding 

extra protein 

1.52 ± 0.03 1.80 ± 0.03 

Adding 1% BSA  1.52 ± 0.03 1.78 ± 0.04 

Adding 1% Whey 1.52 ± 0.03 1.77 ± 0.06 
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Table 22: Relative viscosities of raw milk (158 k cells/ml) with and without additional 

protein, measured by Ubbelohde viscometry. 

 Raw milk without 

adding 1% SDS but 

with water dilution 

Raw milk with adding 

1% SDS 

Without adding 

extra protein 

1.52 ± 0.07 1.92 ± 0.03 

Adding 1% casein 1.52 ± 0.07 1.83 ± 0.03 

Adding 1% Whey 1.52 ± 0.07 1.88 ± 0.03 

 
Table 23: Relative viscosities of raw milk (186 k cells/ml) with and without additional 

BSA, measured by Ubbelohde viscometry. 

 Raw milk without 

adding 1% SDS but 

with water dilution 

Raw milk with adding 

1% SDS 

Without adding 

extra protein 

1.55 ± 0.04 1.95 ± 0.03 

Adding 1% BSA 1.55 ± 0.04 1.88 ± 0.03 

 
Generally, adding protein caused a slight viscosity increase, most likely 

caused by the increased solid content (refer to equation 11 in chapter 5). 

When SDS is added a small decrease in relative viscosity is observed 

compared to samples without protein addition. This is most likely due to the 

solution being diluted when the SDS solution is added to the milk. Overall, 

the protein content of milk does not influence the measurement of somatic 

cells in abnormal milk. 
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Chapter 8 Conclusions and recommendations 
 
Somatic cells occur normally in milk in low numbers, but increase when mastitis 

occurs. It is possible to monitor mastitis by measuring SCC through the California 

Mastitis Test, which is associated with the release of DNA from nuclei of the 

leucocytes by the action of a surfactant. A change in viscosity is used to indirectly 

measure the SCC. 

 

In our experiments, Brookfield and Ubbelohde viscometry were used to measure the 

viscosity of the CMT gel. The results showed that the gel is a time- and shear-

dependent non-Newtonian fluid with visco-elastic, rheopectic and rheodestructive 

properties. 

 

Furthermore, it was concluded that: 

• When using Ubbelohde viscometry, there is a linear relationship between the 

relative viscosity and SCC for SCC levels up to 6,321 k cells/ml. The surfactant 

concentration determines the slope of this linear relationship and it was found that 

at least 3% SDS is necessary for accurate results. Using more than 3% SDS 

resulted in more scatter in the data. It was also found that a linear relationship 

exists between the maximum apparent viscosity and SCC when using Brookfield 

viscometry. It was found that either capillary or Brookfield viscometry can be 

used, however, Brookfield viscometry generally was found to be more sensitive at 

lower somatic cell counts. 

• The combination of surfactant concentration and SCC influenced the rheology of 

the gel. The lower the SCC the more SDS was required for gel formation. It was 

found that when using 1% SDS the critical SCC was 79 k cell/ml, while using 3% 

SDS this was lowered to 59 k cell/ml. It was found that above the critical SCC the 

gel is a non-Newtonian rheopectic fluid. Over time, and also dependent on shear 

rate, the gel shows rheodestructive behaviour. With a delay time, the peak 

viscosity of the gel formed faster with longer delay times. It was found that the 

shear rate or spindle speed influences both the time to reach the peak viscosity as 

well as the magnitude of this maximum. Higher shear rates shortened the time to 

reach the maximum apparent viscosity as well as the maximum viscosity. This is 
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likely due to physical breakdown of the gel which is accelerated due to increased 

shear.When a delay time is introduced, the peak viscosity of the gel forms faster 

with longer delay times. After 30 seconds delay no additional change was 

observed. 

• Different surfactants have different effects on raw milk. Both acetic acid and 

Triton-114 were found to be ineffective as CMT reagents. Acetic acid only 

denatures proteins and the increased viscosity is due to the precipitation of casein. 

Triton-114 cannot lyse nuclei walls and therefore gel formation was prohibited 

due to no DNA/histone complexes being released. Mixing SDS with Triton-114 

was found to be less effective than SDS alone either due to the nucleus not being 

lysed, or because of interaction effects between SDS and Triton-114, reducing the 

available SDS for gelation. 

• Temperature has a limited influence on the viscosity of CMT gel, and this 

influence could be neglected if the CMT is done around room temperature. 

• The effect of protein and fat content on the rheology of the gel can be neglected. 

 

Based on the literature research and experimental findings, it is recommended that: 

• The theory of the gel formation should be clarified on a cellular level.  

• The exact structure of the gel is currently unknown and needs to be understood in 

order to fully explain its rheology. 

• Future work on surfactant part should focus on identifying a surfactant with a 

similar structure than SDS, but with increased efficiency and reduced cost. 

 



 104

 

Chapter 9 Appendices 
 

9.1 Appendix one: Experimental procedure of 
Brookfield viscometer 

1. Connect the Brookfield viscometer (Figure 35) with a laptop used as a data 

recorder 

2. The viscometer is switched on 

3. The balance of the viscometer is verified by ensuring that the bubble located 

behind the viscometer is centred.  

4. The rotational speed is set to 12 RPM with no spindle attached 

5. Switch on the motor with no spindle attached, and press the auto-zero button 

to allow the viscometer to zero position the electronics and pointer shaft 

displacement. 

6. Motor was then switched off, placing the viscometer in standby mode. 

7. Sample is firstly prepared by pouring 300 ml of milk solution into 600 ml 

beaker. 

8. The guard leg is mounted on the viscometer. Desired spindle was attached 

onto the lower shaft. Attached spindle with care, refer to Brookfield 

viscometer operating instruction for more instruction. 

9. Position the beaker which contains 300 ml sample milk, lower the spindle 

and insert the spindle into the milk sample until the lowest place without 

touching the bottom of the beaker, so that later on the fluids level could 

reach the immersion groove in the spindles shaft, avoid trapping air bubble 

in this process. 

10. Press the SPDL button to enter the spindle number. Press the CPS button 

after the two digits are entered.  

11. Pour out 300 ml reagent according to the need into the beaker which 

contains 300 ml sample milk (make sure the fluids level could reach the 

immersion groove in the spindles shaft before switch on the viscometer). 
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12. The motor is switched on to make viscosity measurement. Time is given for 

the viscometer to stabilize before results are collected. This depends on the 

rotational speed and the characteristic of the sample. 

13. Use stopwatch to control time delay of the interaction if necessary. 

9.2 Appendix two: Experimental procedure of 
Ubbelohde viscometer 

1. Attach the Ubbelohde viscometer (Figure 36) to a clamp stand; make sure it 

is parallel with the clamp stand pole and is upright the board/ground. 

2. Introduce around 6.5 ml milk sample through tube L of the viscometer into 

the low reservoir of the viscometer. 

3. Use a pipette to introduce 6.5 ml reagent into the low reservoir of the 

viscometer, make sure to introduce enough sample to bring the level 

between lines G and H. (alterably use a water bath to control the temperature 

when necessary)  

4. Place a finger over tube M and then quickly apply suction to tube N until the 

liquid reaches the centre of bulb D. Remove suction from tube N. Remove 

finger from tube M, and immediately place it over tube N until the excess 

sample drops away from the lower end of the capillary into bulb B. Then 

remove finger and measure the efflux time. 

5. Use a stopwatch to measure the efflux time, allow the liquid sample to flow 

freely down past mark E, measuring the time for the meniscus to pass from 

mark E to mark F. 

6. Then stop the stopwatch right after the fluid falls to pass through mark F. 

7. Record the recording time from the stopwatch, and then calculate the relative 

viscosity of the sample according to the relative viscosity of distilled water 

in that day. 

8. For the time delay experiments, use another stopwatch to control the time 

delay of the interaction starting from step 3, then repeat steps 4 to 7. 
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9.3 Appendix three: Some information about 
Brookfield Viscometer 

Brookfield Viscometer measures the torque required to rotate the spindle in milk. 

The spindle is driven by a synchronous motor through a calibrated spring. The 

resistance to flow is proportional to the spindles speed of rotation and related to 

spindle size and shape. For non-Newtonian analysis, cylindrical spindle was 

selected. The following equations apply to the cylindrical spindle: 

 

Shear rate (s-1): 
)(

2
222

22

bc

bc

RRX
RR
−
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Shear stress (dynes/cm2): 
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Viscosity (poise): •=
γ

ση    (16) 

 

Where   ω = angular velocity of spindle (rad/sec)* 

 Rc = radius of container (cm) 

 Rb = radius of spindle (cm) 

 X = radius at which shear stress is calculated 

 M = torque input by instrument 

 l = effective length of spindle 

 * = (
60
2π ) N; N=RPM 

 

More information about Brookfield Viscometer could be found at 

www.brookfieldengineering.com. 
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