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Abstract

Exact solution to the vibration of rectangular plates is available only for plates
with two opposite edges subject to simply supported conditions. Otherwise, they
are analysed by using approximate methods. There are several approximate
methods to conduct a vibration analysis, such as the Rayleigh-Ritz method, the
Finite Element Method, the Finite Difference Method, and the Superposition
Method. The Rayleigh—Ritz method and the finite element method give upper
bound results for the natural frequencies of plates. However, there is a
disadvantage in using this method in that the error due to discretisation cannot be
calculated easily. Therefore, it would be good to find a suitable method that gives
lower bound results for the natural frequencies to complement the results from the
Rayleigh-Ritz method. The superposition method is also a convenient and
efficient method but it gives lower bound solution only in some cases. Whether it
gives upper bound or lower bound results for the natural frequencies depends on
the boundary conditions. It is also known that the finite difference method always
gives lower bound results. This thesis presents bounded eigenvalues, which are
dimensionless form of natural frequencies, calculated using the superposition
method and the finite difference method. All computations were done using the
MATLAB software package. The convergence tests show that the superposition
method gives a lower bound for the eigenvalues of fully clamped plates, and an
upper bound for the completely free plates. It is also shown that the finite
difference method gives a lower bound for the eigenvalues of completely free
plates. Finally, the upper bounds and lower bounds for the eigenvalues of fully

clamped and completely free plates are given.
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Introduction



1. INTRODUCTION

1.1. Vibration of plate

The rectangular plate is one of the most common components in engineering
machines and structures, for example, bridges, buildings or airplane wings. In
many design problems, static analysis of the plates alone is insufficient. Rather,
their design needs to include the effects of periodic or random time varying forces
causing vibration.

It is well known that there are a number of discrete frequencies at which
rectangular plates will oscillate with large displacements. They are called natural
frequencies of the plate. It is also known that there is a characteristic shape
associated with each natural frequency. It is called a modal shape or mode.

When periodic or random driving forces exist on the plate, and if the
frequency of excitation coincides with one of the natural frequencies of the plate,
a condition of resonance is encountered, and critically large oscillations that cause
the failure of structures may occur. Thus it is essential for the designer to conduct
an accurate vibration analysis of rectangular plates to determine the natural

frequencies, modes and the dynamic response.

1.2. Project scope

A rectangular plate can have 21 combinations of classical boundary
conditions, i.e. either clamped, simply supported or free. These can be divided
into two groups in respect of the boundary conditions. The first group is the plates
with at least two opposite edges simply supported. The second group is the plates
which do not have a pair of opposite edges simply supported. The first group of
problems have exact solutions. The other, including fully clamped and completely

free rectangular plates, are analysed by using approximate methods, for example



the Rayleigh-Ritz method, because functions which simultaneously satisfy the
governing differential equation and the boundary conditions have not yet been
found. An excellent review of the literature relating to vibration analysis of plates
was published by Leissa [1].

Most of these methods give upper bounds for the eigenvalues as the solution
is based on assumed shapes which effectively overconstrain the system. The most
popular method, namely the Rayleigh—Ritz method gives upper bound results for
the natural frequencies. However there is a disadvantage in relying on this method
alone, in that the error due to discretisation cannot be calculated easily. Therefore,
it would be good to investigate other methods which give a lower bound result
and thus complement those upper bound results.

Gorman has conducted free vibration analysis of fully clamped plate and
completely free plate by the method of superposition [2]. The superposition
method is very efficient and appears to give the best values for the natural
frequencies of plates with various aspect ratios. [3, 4]. A recent publication
predicts that the superposition method would give an upper bound or a lower
bound result depending on whether the boundary conditions of the building blocks
are stiffer or more flexible than those of the actual system [4].

The Finite Difference Method (FDM) is traditionally used to solve the static
and dynamic problems of plates. It gives a lower bound for the eigenvalues [5].

The purpose of this thesis is to numerically verify the prediction in the
recent publication [4] and also to obtain upper bound and lower bound values for
the natural frequencies of fully clamped and completely free rectangular plates
with various aspect ratios using the superposition method and the finite difference

method.
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2. BACKGROUND THEORY

The partial differential equation governing the out-of-plane vibration of

rectangular plates is

4 4 4 2
0 W(-fay)_i_za VI/Z(XJZ.)/)+6 W(fay)_pa) W(x,y)zO (21)
ox Ox~0y oy
For convenience, the governing equation is expressed in dimensionless form.
Gorman [2] uses dimensionless coordinates ¢ and #, where & = x/a, n = y/b, in
which a and b are the plate dimensions. The equation may be then written as
4 4 4
a W(fan) +2(D2 a VV2(§5727) +q)4 a W(é:ﬁ)
on on- o0& o0&

where A* = wa’+/p/D and ® is the plate aspect ratio b/a.

— AW, 77)} =0 (22

The bending moment distributed the edges perpendicular to the ¢ axis or the

n axis is expressed as follows

D’M(E)_ | W(En), g0 OW(Er) (2.3)
oD 5772 852 .
and
aM(y) __[o*w(gn), v aw(zn) (2.4)
D 0s* @ on’ |

The vertical edge reaction along the edges perpendicular to the ¢ axis and

the # axis are expressed as follows

bV(E)_ | 0W(En), g2 O W(En) 2.5)
aD on’ onog’ '
and
V) _ [ow(En) , v ow(En) 2.6)
D o oz’ |



2.1. The Superposition Method

The development of the eigenvalue matrix for fully clamped plates and
completely free plates by using the superposition method are described in an
earlier literature [2]. The derivations for the application of the superposition
method in this thesis are taken from the same reference and are therefore based on
quarter plate dimension shown in Figure 2.1. In the superposition method, two or
more plate problems which have exact solutions are considered. The plate
problems are often referred to as building blocks. In order to solve the original
plate problems, these building blocks are superimposed and constants existing in
the equations of motion of them are changed so that their combination satisfies the

boundary conditions of original plate problems.

», ()

Figure 2.1 A quarter segment of the plate

2.1.1. Fully Clamped Plate

Modes of free vibration of the plate may be categorised into the following
three types depending on the nature of the modes: (a) the modes fully symmetric
about the x (or ¢) axis and the y (or #) axis; (b) the modes fully antisymmetric
about both axes; (c¢) the modes symmetric about the x axis and antisymmetric

about the y axis or vice versa.

Doubly Symmetric Mode

Firstly, to solve the fully symmetric mode problem, only a quarter of the
fully clamped plate needs to be considered as shown in Figure 2.1. The original

fully clamped plate would have dimensions 2a x 2b so that the dimensions of the



quarter segment would be a x b. The building blocks used for the doubly
symmetric modes in the superposition method are depicted in Figure 2.2. The
edges £ =1 and 5 = 1 have simple support conditions and are subjected to bending
moment M;(¢) or M>(n). The edges & = 0 and n = 0 with two small circles imply
slip shear condition, which means no vertical edge reaction and no slope taken

normal to the edge.

a
—3 > ¢ 3 > ¢ ——"
b M:(n)
T = T wmen |+ T owen
NN N
% VAVAVAVEV)
v M](@ v
n n n

Figure 2.2 Building blocks used to analyse the doubly symmetric mode of fully
clamped plates

For the first and second building block, their solutions may have Lévy type

solution expressed as

HEM= 3 1, (eos™E @7
and

AEDRAGTL 23)

Substituting Equation 2.7 into Equation 2.2 one obtains

d4Ym§77)+2q)2[m27zj sz,,,(n)m)z‘{(%j _,14}ym(,7)=o (2.9)

dn dn’
The solution to Equation 2.9 depends on whether the eigenvalue A° is greater than
or less than (mn/2)°. The typical solutions that satisfy Equation 2.9 for A*>(mxn/2)’
are
Y (n)=A,sinh 8, n+B, coshf n+C, siny, n+D, cosy,n (2.10)
and for A’ <(mn/2)’,
Y (n)=A,sinh 8 n+B, coshf n+C, sinhy n+D, coshy n (2.11)



where S8, = ®\|A* +(mz/2) and y, = DyJ2* —(mz/2)’ for A* >(mz/2) or

V=D (77177/2)2—12 for /12<(m7r/2)2. Here, 4,, B, C, and D, are

constants to be determined.

Now, only symmetric terms will remain because of symmetry about the ¢
axis. Two coefficients are, therefore, eliminated. The other two coefficients are
determined by enforcing the condition of zero displacement and the equilibrium
of moment along the edge # = I. It is considered that the bending moment
distributed along the edge should fluctuate sinusoidally with the same frequency
as the vibrating plate. The bending moment M;(&) could be expressed by the

following Fourier expansion

b*M,(¢) _ iEm cos 7% (2.12)

aD m=1,3,5- 2

Substituting Equation 2.7 into Equation 2.3, the boundary condition of

equilibrium of moment at along the edge # = I can be written as

0’ mné& , 0° mng | mné&
a772{}’”1(77)cos 5 }Lvd) o [Ym(n)cos 5 } =—F, cos 5 (2.13)

Since derivatives of W(&n) with respect to ¢ are zero along the edge n = I,

=1

Equation 2.13 can be simplify to

0Y,,(n)
on’

=—E (2.14)

m

n=1

The analytical function Y,,(3) for A°>(mz/2)’ may be written as,

Ym(n):Em(emllCOShﬂmn+0m12 COS}/mU) (215)
where,
-1.0 1.0
g . = , and 2 =
"By + 72 Jeosh B, * B+ 72 Jeosy,
and for 1°<(mn/2)’,
Ym (77): Em (0n121 COSh ﬁmn +9m22 COSh 7m77) (216)
where,
_ -1.0 and 0. — 1.0

O (B2 -72)cosh 8, "2 (B2 —y2 )coshy,



Next, for the second building block, the analytical function, Y,(<), can be
easily obtained from the first building block by interchange of coordinates due to
symmetry. However, the aspect ratio must be replaced by its inverse and A° must
be multiplied by &°. The analytical functions of the second building block are
expressed as follows.

For &°2”>(nm/2)°
Y,(§)=E,(0,, cosh B,& +0,,, cos 7,&) (2.17)
where,

—1. 1.
Feken ™ e,
and, for &°1°<(nx/2)’,

)]n(é:): En (enZI COShﬂné:-l_ 07122 COSh 7/;15) (218)

0111] =

where,
~1.0 1.0
d 0. =
(8272 )cosh g, = (g7 =52 )eoshy,
B, = (/@)W 20> +(nx/2)

and

‘9”21 =

v, = (U OWAD? —(nz/2) or y, = (/D) (nz/2) — 2D whichever is real.

Doubly Antisymmetric Mode

A different set of building blocks will be considered when analysing
different vibration modes. For fully antisymmetric modes, for example, slip-shear
conditions must be replaced by simple support conditions along the £ and # axes
as shown in Figure 2.3. In such case, the displacement functions W; and W, may

be expressed as

W,(En) = ZY () sinms (2.19)
and

w,(&,n)= 221/" (&)sinnzn (2.20)
respectively.



] > f > 5 > 5
[4PD)
b = Wi&n) + Wa&n) <P Ma(n)
A P
2 VEVEVAVEY)
v MJ(@ v
n n n

Figure 2.3 Building blocks used to analyse the doubly antisymmetric mode of
fully clamped plates

Similar to the doubly symmetric case, the bending moment distributed along the

edge & = I and the edge # = [ are expanded in series form as

M) &,
= E 2.21
D m; , sinmzé ( )
and
M = iEn sinnzn (2.22)
D n=1,2-

In contrast to doubly symmetric mode, the symmetric terms in Equation 2.10 and
2.11 should be deleted because of the simple support condition along the edge n =
0 and ¢ = 0. Enforcing the boundary condition of zero displacement and the
equilibrium of moment along the edge # = I, the analytical function Y,(7) in the

doubly antisymmetric modes for A°>(mx)’ may be written as,

Y, (7)=E, (6, sinh B,n+0,,siny,n) (2.23)

where,
-1.0 1.0
Hmll = 2 2. > and Hml2 = 2 2\ -
(B2 +72 )sinh 3, (B +72 Jsiny,
and for 1°<(mn)’, the function Yu(n) is given by
Ym (77) = Em (HmZI Sil’lh ﬂmn + 011122 Sinh ymn) (224)

where,
-1.0 1.0

=2 Jsinng, "™ %= T iy,

where, S8, = O\JA> +(mz)* and y, = /2> —(mz)* or O/(mx)’ - 22

0m21 =

10



Identically to the steps used in the doubly symmetric modes, the analytical
function for the second building block, Y,(<S), can be easily obtained from the first
building block by interchange of coordinates. The aspect ratio must be replaced
by its inverse and A’ must be multiplied by @*. The analytical functions of the

second building block are expressed as follows.

For &°4°>(nx)’
Y,(§)=E,(0,,sinh 8,£ +6,,,sin7,¢) (2.25)
where,
o =T y,flj(s)inh R ;;fo)sin 7
and for &°1°<(nz)’,
Y,(&)=E, (8, sinh B,E+6,,,sinhy, &) (2.26)
where,

-1.0 1.0
O =152 = Jsinn g, b2 = (g7~ sinhy,

where, g, = (/@ W 22®* +(nx)’ ,
and y, = (1/ WA D> —(nz)’ or (1/ D) (nz) - A 0?

whichever is real.

Symmetric-Antisymmetric Modes

The building blocks used to analyse the symmetric-antisymmetric modes of
fully clamped plates are illustrated in Figure 2.4. These building blocks have slip
shear condition along the edge # = 0 and the simple support condition along the
edge ¢ =0. The edges ¢ = 1 and # = 1 have simple support condition and are
exposed to bending moment M, (<) or Ms(n).

11



| 2 > < 2 > < 2 55 ¢
= micn | + WaEn) g M)
AANANANS
% VEVAVAVEY)
v M;i(&) v
n n n

Figure 2.4 Building blocks used to analyse the symmetric- antisymmetric mode of
fully clamped plates

The first and second building blocks have Lévy-type solutions, respectively,

which can be written

W)= S Y, () sinmé (2.27)
and
W)= 2, (E)oos ™" (2.28)

n=13,5
Since the boundary conditions at the edges # = 0 and # = 1 of the first building
block for the symmetric-antisymmetric modes are the same as those for the
doubly symmetric modes, the analytical function Y,(7) can be expressed in the
same manner as Equation 2.15 and 2.16. However, the quantity mz/2 in f,, and y,,
must be changed to mz and all positive integers can be taken for m, because the
trigonometric function employed in Equation 2.7 is replaced with sin(mzd). It is
written as follows.
For 1*>(mn)’
Y, (77) =F, (0,”” coshpB n+80,,cos ymn) (2.29)
where,
0 - -1.0 _and 0 - 1.0
" (B + 70 )eosh B, 8, +75 Jeos7,,

and for A’<(mn)’,

Ym (77) = Em (0/7121 COSh ﬂmﬂ + 6}7122 COSh 7m77) (230)

where,

0. -1.0 nd 0. - 1.0

" (g2 =y Jeosh g, "2 = (82 =y )eoshy,

12



with, B, = ®\|2* +(mz)’
and y, = O\JA* —(mx) or @(mz)’ - 22

whichever is real.

Similarly the second building block solution can be obtained from the
previous mode families. The boundary conditions at the edges ¢ =0 and £ = 1 are
identical to those of the doubly antisymmetric modes. Thus, the analytical
function Y,(¢) in Equation 2.28 would have the same form as Equation 2.25 and
2.26. However, the quantity nz in £, and y, must be changed to nz/2. It is

expressed as follows.

For &°4*>(nz/2)’

)]n(é:): En (enll Sinhﬂizé:+0r1l2 Sinyng) (231)
where,

-1.0 1.0
= ,and @ , =

" (Bl +y))sinh B, "B 4y Jsing,
and for &°A7<(nn/2)’,

Yn (5) = En (07121 Sinh ﬂné + 97122 Slnh ]/n {:) (232)
where,

-1.0 J 0. - 1.0

O =g s, 2 = (g7~ y?)sinhy,

where, 8, = (l/d))\/ﬂ,ZCD2 +(nz/2),

and 7, = (1/ @)W 2D —(nz/2) or (/D) (nx/2) - 2D
whichever is real.

In order to generate the eigenvalue equation, the two building blocks are
superimposed. The summation of contributions of each building block to the slope
along the edges £ = I and # = I should satisfy the boundary condition of zero net
slope normal to the edges ¢ = 1 and # = I. The net slope normal to these edges
should be expanded in appropriate trigonometric series [2]. If utilising Ky terms in
each of building blocks, one will obtain a set of 2K, homogenous algebraic
equations relating moment coefficients £. Eigenvalues of the set of 2K, equations
could be obtained by seeking the parameter A° which make the determinant of the

eigenvalue matrix vanish.

13



2.1.2. Completely Free Plate

Similar to the case of the fully clamped plate, only quarter plate with

dimension of a % b is considered, and different family of modes are analysed
separately.

Doubly Symmetric Mode

The building blocks of the completely free plate for the doubly symmetric
modes are depicted in Figure 2.5. The origin of the quarter plate is taken on the
centre of original plate, and bending moment is applied on the edges £ = 1 and #
= [. A solution of the first block could also be expressed as Lévy-type, which is

Wi(&m) = DY, () cosmrg (2.33)
m=0,1

Equation 2.33 satisfies the shear-slip condition at the edges ¢ = 0 and ¢ = 1.

0 o . o) o [¢] >
0 >E 9] > ¢ o D > ¢
olo b — olo Wi(&n) oo ol Wa(&m) <P
= + D Ma(n)
ANANANANA) o

a Vv JJJ J °
v v M](f) v
n n n

Figure 2.5 Building blocks used to analyse the fully symmetric mode of the
completely free plate

Substituting Equation 2.33 into the governing differential equation, one will

obtain the typical solutions of Y,(7) as same as Equations 2.10 and 2.11
depending on A is greater than or less than (mz)’, where,

B, = DA + (mﬁ)2

and

y, =O\A —(mx) or ®y(mz) -2 .
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Again, because the solution must be symmetric about the -axis, two
coefficients will be eliminated so that only symmetric terms in Equation 2.10 and
2.11 will remain. The other two coefficients are determined by enforcing the
boundary condition of zero vertical edge reaction and the equilibrium of edge
rotation along the edge # = I. The edge rotation should be expressed by the

following Fourier expansion

M = iEm cosmmé (2.34)

on ol

Substituting Equation 2.10 and 2.11 without sine and hyperbolic sine terms into
Equation 2.5 and setting its left right hand side equal to zero, furthermore,
applying the relationship of Equation 2.34, then the analytical function Y,,(7) can
expressed in terms of the coefficients £, as follows.
For * > (mn)’

Y, (77): E ((9m11 coshpg n+6 , cosymn) (2.35)
where 0,,, =1/{(8, — 221y, /ZZ2)sinh B, }

and 6, = ZZ1/{ZZ2(B, - ZZ1y, |ZZ2)siny,, }
with  ZZ1=—-B, {82 ~v'®*(mz)’ |
and ZZ2=y, {7/; +V*(I)2(m7r)2}

and, for A° < (mn)’

Y (77) =E, (9m21 cosh 8,7 +86,,, cosh 7/m77) (2.36)

m

Where 9m21 = 1/{(ﬁm - ZZl}/m /ZZQ,)SlIlh le}
and 6, = ZZ1/{ZZ2(B, + 221y, | ZZ2)sinhy,, }

with  ZZ1=—-B, {82 —v'®*(mz) |

and ZZ2=y, {751 - V*(DZ(H’UT)Z}

Next, the analytical function Y,(¢) for the second building block can be
obtained from the first building block by interchange of coordinate due to
symmetry as explained in the fully clamped case. Once again the aspect ratio must
be replaced by its inverse and A° must be multiplied by @*. The displacement

function of the second building block is

00

wy(&m)= DY, (&)cosnan (2.37)

n=0,1,2
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The analytical functions are expressed as follows.
For &°2”>(nn)’

Y, (5) =E, (Hn” coshpB &+6 ,, cos ;/nf)
where 0, =1/{(B, — 221y, /ZZ2)sinh g, }

and 0, = 2Z1){zZ2(B, - ZZ1y, | ZZ2)siny, }

with  ZZ1=-B,{8> ~v'[®* (nz)’ |
and  Z22=y,> +v'[®* (nz) |
and, for &°4° < (nn)’
Y,(£)=E, (6,5 cosh 5,& +6,,, cosh &)
where 6, =1/{(8, —ZZ1y,/ZZ2)sinh B, }

and 6, = ZZ1/{Z22(B, + ZZ1y, |ZZ2)sinh y, }
with  ZZ1=-p,{82 —v'|®* (nz) |
and ZZ2=y, {;/,f—v*/CD2 (l’lﬂ)z}

with

B, =1/®\ DA + (mz)2

and

7, =1 @D* 1> —(nz) or 1/®/(nz) — D1

whichever is real.

Doubly Antisymmetric Mode

(2.38)

(2.39)

The steps to obtain the functions Y,(n) and Y,(&) are identical to those

explained in the doubly antisymmetric mode of fully clamped plate problem. For

fully antisymmetric modes, slip-shear conditions must be replaced by simple

support conditions along the ¢ and 7 axes as shown in Figure 2.6. In such case, the

displacement functions W; and W, will be expressed as

W, (&) = i Y, (7)sin ;“5

m=

and

(2.40)
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o0

wen)= 3, (E)sin"7

n=1,3,5

(2.41)

respectively. The trigonometric function employed in Equation 2.33 or 2.37 is

replaced by sin(mz&/2) or sin(nzn/2).

> £ > ¢
— Wi&n)
b = olo +
NN\
4 Vv JJUJJ
v v Ml(é)
n n

A

y

n

> ¢
D
W1(En) D
M
P 2(n)

Figure 2.6 Building blocks used to analyse the fully antisymmetric mode of the

completely free plate

These functions Y,,(n) and Y,(&) will take the same form as Equation 2.10

and 2.11 depending whether or not 4° is greater than (mz/2)° or (n/2)’. However,

the symmetric terms in Equation 2.10 and 2.11 should be deleted because of the

simple support condition along the edge # = 0 and ¢ = 0. Applying the boundary

conditions of zero vertical edge reaction and the equilibrium of edge rotation

along the edge n = I, the functions Y,,(%) written as follows
For * > (mn/2)’

Ym (77) = Em (emll Sinh /6;;177 + 6;1112 Sin 7m77)
where 6, =1/{(8, + 221y, /ZZ2)cosh 3, }

and 6, = ZZ1/{ZZ2(B, + ZZ1y, |ZZ2)cosy, }
with  ZZ1= B, |82 —v'®*(mz/2) |

and  Z22=y, 2 +v'®*(mz/2) |

and, for A’ < (mn/2)°

Y, (77) =E, (0m21 sinh 8,17+ 0,,,, sinh 7/m77)

where 6, =1/{(8, + 221y, /ZZ2)cosh B, }

and 6, = ZZ1/{ZZ2(B, + ZZ1y, | ZZ2)coshy, }
with  ZZ1=—p, |82 —v'®*(mz /2|

and  Z22=y, 1y —v'®*(mx/2) |

with

(2.42)

(2.43)
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B, =02 +(mz/2)
and

7, = O\ —(mr/2) or ®\(mz/2) -2

whichever is real.
The function Y,(¢) is obtained in the same manner of the doubly symmetric
mode. The aspect ratio is replaced by its inverse and A’ must be multiplied by &*

and for &’A*>(nr/2) the function Y,(&) is,
Y,(£)=E,(6,,sinh B, +6,,siny,¢) (2.44)
where 6, =1/{(B, + ZZ1y,/ZZ2)cosh B, }
and 6, = ZZ1/{ZZ2B, + ZZ1y, | ZZ2)cos y, }
with  ZZ1= 3,87 —v' /@ (n7/2)} |
and  Z22=y, > +v' |0 (nz/2) |
and, for &°A% < (nn/2)’
Y,(£)=E,(6,, sinh 5,£ +6,,, sinh &) (2.45)
where 6, =1/{(B, + ZZly,/ZZ2)cosh 3, }
and 6, = ZZ1/{Z22(B, + ZZ1y, | ZZ2)cosh y, }
with  ZZ1=—B, {82 —v'/®* (nz/2)’}
and  Z22=y,}? —v'/®* (nz/2) |

with

B, =1/®\O>2 +(nz/2)

and

7, =1/(D\/CI)2/12 —(nz/2) or 1/(1)\/(mr/2)2 —0*

whichever is real.

Symmetric-Antisymmetric Mode

The building blocks used to analyse the symmetric-antisymmetric modes of
the completely free plates are illustrated in Figure 2.7. These building blocks have

slip shear condition along the edge # = 0 and the simple support condition along

18



the edge & =0. The edges £ = 1 and # = 1 have shear slip condition and are
exposed to bending moment M, (<) or Ms(n).

[©) A o) o

v

v

5 > £ Q) ¢ o D ¢
b — Wi&n) o Wxn) <P Ma(n)
NN T o <>
a Vv JJJUJ °
v v M](f) v
n n n

Figure 2.7 Building blocks used to analyse the symmetric-antisymmetric mode of
the completely free plate

The first and second building blocks have Lévy-type solutions, respectively,

which can be written

W= Y Y,@m)sin ’"j@g (2.46)
and
W, (Em)= 2 ¥, (E)cosny 47)

Since the boundary conditions at the edges # = 0 and # = 1 of the first building
block for the symmetric-antisymmetric modes are the same as those for the
doubly symmetric modes, the analytical function Y,,(77) can be expressed in the
same manner as Equation 2.35 and 2.36. However, the quantity mx in £, and y,,
must be changed to ma/2, because the trigonometric function employed in
Equation 2.33 is replaced with sin(mné/2). It is written as follows.
For A?>(mn/2)’

Y,(7)=E,(6,, coshB,n+86,,cosy,mn) (2.48)

Where Hmll = 1/{(ﬁm _ZZIym /ZZQ’)Sinhﬂm}
and 6, = ZZ1/{ZZ2B, - ZZ1y, | ZZ2)siny,, }

with  ZZ1=-p,18,> —v'®*(mz/2)} |

and ZZ2=y, {}/mz +v*(D2(m7r/2)2}
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and, for A° < (mn/2)

Ym (77) = Em (017121 COSh ﬂmn + 9}7122 COSh 7m77)

where 6,,, =1/{(B, —ZZ1y, /ZZ2)sinh B, }

and 0, = ZZ1/{ZZ2(B, + ZZ1y, | ZZ2)sinh y, |
with  ZZ1=-8,18,7 —v'®*(mz/2) |

and  Z22=y,1y,> —v'®*(mx/2) |

with,

B, =®\2 +(mz/2)

and

¥, =0\ —(mr/2) or ®y(mr/2) -2

whichever is real.

(2.49)

Similarly the second building block solution can be obtained from the

previous mode families. The boundary conditions at the edges & =0 and £ = 1 are

identical to those of the doubly antisymmetric modes. Thus, the analytical

function Y,(¢) in Equation 2.47 would have the same form as Equation 2.44 and

2.45. However, the quantity nz/2 in S, and y, must be changed to nz. It is

expressed as follows.
For &°4°>(nr)’
Y,(£)=E,(6,,sinh B,& +6,,sin7,£)
where 6, =1/{(B, + ZZ1y,/ZZ2)cosh B, }
and 6, = ZZ1/{ZZ2B, + ZZ1y, | ZZ2)cos y, }
with  ZZ1=B,{8> -v'|®* (nz)’ |
and  222=y,l2 +v'[®* (nz) |
and, for &°4° < (nn)’
Y,(§)=E, (0, sinh §,& +0,,,sinh y, &)
where 6, =1/{(B, +ZZ1y,/ZZ2)cosh 3, }

and 6, = ZZ1/{Z22(B, + ZZ1y, | ZZ2)cosh y, }

with  ZZ1=-B,{8> =v'[®* (nz)’ |

n

and ZZ2:)/n{;/f —v' /D2 (I’lﬂ')z}

(2.50)

2.51)
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with

B, =10\ 02 +(nx)

and

y, =1/ @\ ®*2* —(nz) or I/®+(nz) - D27 .

whichever is real.

The eigenvalue equation is generated in the same manner as for the fully
clamped plate. The summation of contributions of each building block to the
moment along the edges ¢ = / and n = [ should satisfy the boundary condition of
zero net moment along the edges £ = 7 and # = [. The eigenvalues are obtained
by searching for the parameter A° which cause the determinant of the eigenvalue

matrix to vanish.

2.2. The Finite Difference Method

The finite difference method is explained in detail by Smith [6]. For the sake
of completeness the essential derivations are presented here. When there is a
function U, and the function and its derivatives are finite and continuous function

of only x, then it can be expanded as follows using Taylor’s theorem,
Ulx, +h)=U(x,)+hU'(x,)+ %th"(x1 )+ éh3U"’(x1 )+ (2.52)
and
Ulx, = h)=Ux, )= hU'(x, )+ %th”(xl )- %lfU"’(xl ). (2.53)

Summation of the Equations 2.52 and 2.53 gives
Ulx, +h)+U(x, —h)=Ulx, )+ B°U"(x, )+ O(n*) (2.54)
where O(h?) denotes terms that contains fourth and higher powers of A. If it is
assumed that these terms can be ignored because they are much smaller than
lower powers of 4, then
U :(dzU] 1

P U(x, +h)-U(x,)+U(x, - h)} (2.55)

N

dx?
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Subtracting Equation 2.53 from Equation 2.52 and neglect terms containing third

and higher powers of 4, one obtains,

U'(x,) = (fj—gj = ﬁ{U(x1 +h)-U(x, —h)} (2.56)

Equation 2.56 is a central-difference approximation of the first derivative of

function U at x = x;.

In this thesis, the plate to be analysed is meshed as shown in Figure 2.8 (a)
and Equation 2.1 is approximated in the finite difference form with central-
difference approximation, in term of the nodal displacements. The molecular FD
equation at node (i,j) depends on the values of displacement of this and adjacent
nodes shown in Figure 2.8 (b). The FD molecules used in this thesis are based on

the literature [7]. The basic finite difference operators are given below.

— He
(o) P , X C:
!
T C2 Cs Cs
j-2
j-1
W.i,j : Cs Cs .C7 Cs Co
]
i+ Cuwo Cu Ce
jt2
Q
-2 1-1 1 i+l i+2 Cis
v
y (@) (b)

Figure 2.8 The F.D. Scheme for a plate (a) the mesh and a typical node and (b) the
F. D. molecular formula

(a_wj T G (2.57, 58)
o), 2H )~ 2K
s LJ

2 _ 2 —
(5 Wj Wity ~2Wo; + Wi, (5 Wj _ Wiy T 2W W
LJ L]

_ 2.59, 60
ox? H* ( )
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0w _ Wit o = Wi o~ Wic s T Wi ja 2.61)
oxoy | 2HK '
ij
o’w Wi, t 2Wi—1,_/' - 2Wi+1,j T Wi,
3 = ; (2.62)
ox y 2H
o’w _ Wy = 2W 0 F W g — (Wifl,_j—l —2w, , + Wi+1,_j—1) (2.63)
x>0y ). . 2H*K
ij
o’w Wi T 2Wi,j—1 - 2wi,j+l Wi
3 = ; (2.64)
oy g 2K
o*w _ Wi, j-1 _2Wi+1,j T Wi _(Wi—l,j—l _2Wi—1,j + Wi—l,j+l) (2.65)
oxoy® ). 2HK? '
l’.]
0w _ Wia, _4Wi—1,j + 6Wi,j _4Wi+1,j TW_ (2.66)
ox* y H* '
otw Wi _4Wi,j—1 + 6Wi,j _4Wi,j+1 W, 0 267
5‘)/4 - Kz ( : )
ij
o'w Wi T 2Wi,j—l TWi 2(Wi—l,j - 2Wi,j T Wi, )+ Wi~ 2Wi,j+1 T Wi
ox’oy’ g - H*K*
(2.68)
The FD form of Equation 2.1 is,
13
D> Cow; =0 (2.69)
=1
where,
w =w(i,j-2), w, =wi—-1,j-1), w;, =w(,j-1),
w, =wi+1Lj-1), w,=w(i-2,j), w, =w(i—1,)), wy =w(i, j),
wy =w(i+1,/), Wy =w(i+2,), Wiy =w(i—1j+1),
wy =w(i, j+1), wy, =w(i+1,j+1),  wi=w(,j+2) (2.70)
1 1
Cl = Cl3 F, CS = C9 = F (271, 72)
2 2
C2 = C12 = W N C4 = CIO = W (273, 74)
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1 1 1
C3=CH =_4(F+Wj, C6=C8 :—4{

2
C7= %+i4+ 28 5 o
H" K" H°K D

2.2.1. Fully Clamped plate

1

H*K?

j (2.75, 76)

(2.77)

The distribution of nodes which F.D. equation applied at on an edge of fully

clamped plate is shown in Figure 2.9, where w, to wy, are the deflections of the

nodes. The projected deflections outside of the plate need to be expressed in term

of the deflections at the internal nodes by using the boundary conditions. The

boundary conditions of a fully clamped plate, which are zero displacement and

zero slope at the edges, are expressed by the following equations,

i=P P+l

Figure 2.9 The node distribution at the edge of a fully clamped plate.

atx=0ora(i=0or P+]),

w=0

(G_W}o
ox
aty=0orb(j=0o0r Q+I),

w=0

5

(2.78a)

(2.78b)

(2.79a)

(2.79b)
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2.2.2. Completely Free Plate

Figure 2.10 (a) and (b) show the distribution of nodes which F.D. equation
applied at an edge and at a corner of the completely free plate respectively. Once
again the projected deflections outside of the plate need to be expressed in term of

the deflections at the internal nodes by using the boundary conditions.

W*1
°
W*1 .vv*z .W*3 .W*4
W*2 JW*3 wW*s W*s W*s W*7 W*s W*g
[ ] [ J [ J
W*s lw*s J[W*7 W*s W*o W*10) W*l:l.VV*lZ
7 e o
W*10] W*11.W*12 W*13
W*13
i=pP i= P
(a) (b)

Figure 2.10 The node distribution for a completely free plate: (a) at the edge; (b)
at the corner.

The boundary conditions of a free edge are given in Leissa’s monograph [1].
Bending moment and vertical edge reaction at a free edge are zero. Those
boundary conditions at the edges are expressed as,

atx=0ora(i=1orP),

2 2
(Z Vz”jw(‘z Z”] -0 (2.80a)
X y
3 3
(a ?Jw*( 0 WJ:O (2.80b)
ox Ox0y

aty=0orb (j=1orQQ),

2 2

(z Z”jw[g V;J:o (2.81a)
34 X
3 3

(a Z”Jw*( ow j:o (2.81b)
oy ox~0y
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The above boundary conditions are not enough to cover all nodes outside of the
plate at the corners. The following boundary condition at the corners [1], is also

needed.

2
ow | _ 0 (at the corners) (2.82)
Ox0Oy

26



Chapter III

Numerical Results



3.NUMERICAL RESULTS

The numerical results obtained using the superposition method and the finite
difference method (FDM) are presented in this chapter. The natural frequencies of

fully clamped plates and completely free plates are given in the dimensionless
form, A’ =wa’ p/D , which will be referred to as the eigenvalue. The

eigenvalue is importantly related to plate aspect ratio (@ = b/a) rather than the
dimensions of plate. All eigenvalues were calculated by using the software Matlab

in default double precision.

3.1. The Superposition Method

The eigenvalues of fully clamped plates and completely free plates obtained
using the superposition method are presented in this section. To make comparison
of results between the superposition method and the FDM easier, the eigenvalues
obtained by the superposition method are multiplied by a factor of four because
the frequency parameters for the plates used in the superposition method is based
on quarter size of original plate dimensions, while in the FDM analysis the non-
dimensionalisation was done with respect to the full size of plate. This was done

to facilitate comparison with published results.

3.1.1. Fully Clamped Plate

Table 3.1 shows the first 12 eigenvalues of fully clamped plates with aspect
ratios 1.0 to 3.0 obtained by the superposition method. The two letters adjacent to
the values express type of modal shapes. SS, AA, SA and AS mean that the mode
is symmetric about both the x and y axes, antisymmetric about both axes,
symmetric about the x-axis and antisymmetric about the y-axis, and antisymmetric

about the x-axis and symmetric about the y-axis respectively. The eigenvalues in
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different family of modes were calculated separately. Because of symmetry in the
boundary conditions, the eigenvalues for the SS and AA modes need to be
calculated for only aspect ratios @ of one or greater. The eigenvalues for the SA
modes, the aspect ratio varies from 1/3 to three due to lack of symmetry in the
boundary conditions. The eigenvalues for SA mode for aspect ratio of 1/3 through
to one would be the same as those for AS modes of the plates with aspect ratio of
three through to one.

The eigenvalues presented here were calculated by utilising 15 terms, i.e.
effective matrix size of 60 x 60, which is adequate for convergence to four

significant places. It will be proved in the following convergence tests.

Table 3.1 The eigenvalues of fully clamped plates obtained by the superposition
method (A° = wa’/p/D).

® =Dh/a
Mode 1 1.25 1.5
1 35.99 SS 29.89 SS 27.01 SS
2 73.39 52.51 AS 41.70 AS
3 73.39 SAorAS | 68.51 SA 66.13 SA
4 108.2 AA 89.25 SS 66.52 SS
5 131.6 SS 89.35 AA 79.81 AA
6 132.2 SS 124.3 SA 100.8 AS
7 165.0 127.5 SS 103.1 SA
8 165.0 SAorAS | 139.2 AS 125.3 SS
9 210.5 147.5 AS 136.1 AA
10 2105 SAorAS | 173.0 AA 138.6 AS
11 220.0 SS 181.3 SS 144.2 SS
12 242.2 AA 202.1 SS 161.2 SS
®=b/a
Mode 2 2.5 3
1 24.58 SS 23.64 SS 23.20 SS
2 31.83 AS 27.81 AS 25.86 AS
3 44.77 SS 35.42 SS 30.74 SS
4 63.33 AS 46.67 AS 38.09 AS
5 63.98 SA 61.49 SS 47.97 SS
6 71.08 AA 63.08 SA 60.30 AS
7 83.27 SA 67.39 AA 62.62 SA
8 87.25 SS 74.78 SA 65.51 AA
9 100.8 AA 79.76 AS 70.44 SA
10 116.4 AS 85.43 AA 75.04 SS
11 123.2 SS 99.46 SA 77.53 AA
12 123.7 SA 101.4 SS 86.90 SA
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Convergence test

A number of convergence tests were carried out for a range of aspect ratios

and modes. The results are shown as follows. From the tests, it can be seen that

the rate of convergence for the superposition method is rapid, and all of them

converge from below.
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Figure 3.1 Convergence test for the eigenvalues of fully clamped rectangular plate
computed by the superposition method (@ = 1.0)
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Figure 3.2 Convergence test for the eigenvalues of fully clamped rectangular plate
computed by the superposition method (@ = 1.25)
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Figure 3.3 Convergence test for the eigenvalues of fully clamped rectangular plate
computed by the superposition method (@ = 1.5)
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Figure 3.4 Convergence test for the eigenvalues of fully clamped rectangular plate
computed by the superposition method (@ = 2.0)
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Figure 3.5 Convergence test for the eigenvalues of fully clamped rectangular plate
computed by the superposition method (@ = 2.5)
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Figure 3.6 Convergence test for the eigenvalues of fully clamped rectangular plate

computed by the superposition method (@ = 3.0)

35




3.1.2. Completely Free Plate

The first 12 eigenvalues of completely free plates with aspect ratios 1.0 to
3.0 obtained by the superposition method are shown in Table 3.2. The two letters
adjacent to values express modal shapes. As with the case of the fully clamped
plate, the eigenvalues in different family of modes were calculated separately.
Making use of symmetry in the boundary conditions, the eigenvalues for the SS
and AA modes need to be calculated for only aspect ratio @ of one or greater. For
the SA modes, the aspect ratio varies from 1/3 to three due to lack of symmetry in
the boundary conditions. The eigenvalues for SA mode for aspect ratio from 1/3
to one would be the same as those for AS modes of the plates with aspect ratio

from three to one. All eigenvalues of the plate were computed with 15 terms.

Table 3.2 The eigenvalues of completely free plates obtained by the superposition
method (A4* =wa’/p/D, v =0.3).

® = b/a
Mode 1 1.25 1.5
1 13.47 AA 10.76 AA 8.931 AA
2 19.60 SS 13.59 SS 9.517 SS
3 24.27 SS 22.39 SS 20.60 SA
4 34.80 25.89 SA 22.18 SS
5 34.80 SAorAS 30.38 AS 25.65 AS
6 61.09 39.45 AS 29.79 AS
7 61.09 SAorAS 50.30 AA 38.16 AA
8 63.69 SS 51.49 SS 43.93 SS
9 69.27 AA 60.94 SA 53.35 SS
10 77.17 AA 69.49 AA 60.05 SA
11 105.5 76.58 SS 64.92 SA
12 105.5 SAor AS 80.48 AS 65.75 AS
Mode 2 2.5 3
1 5.366 SS 3.433 SS 2.382 SS
2 6.644 AA 5.278 AA 4,375 AA
3 14.62 SA 9.541 AS 6.617 AS
4 14.90 AS 11.33 SA 9.244 SA
5 22.00 SS 18.63 SS 13.03 SS
6 25.38 AA 18.92 AA 15.07 AA
7 26.00 AS 22.45 SS 21.31 AS
8 29.68 SS 24.44 AS 22.23 SS
9 36.04 SS 28.75 SA 22.29 SA
10 40.05 SA 31.45 SS 24.35 AS
11 48.45 AS 31.63 AS 28.67 SS
12 50.58 AS 41.22 AS 31.23 AA
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Convergence tests

The results of convergence tests for the eigenvalues of completely free

plates with aspects ratios 1.0 to 3.0 obtained by the superposition are shown

below. The rate of convergence is as fast as that of the fully clamped plates. No

change is found in the fourth decimal place once the effective matrix size reaches

20 x 20.
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Figure 3.7 Convergence test for the eigenvalues of completely free rectangular
plate computed by the superposition method (@ = 1.0)
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Figure 3.8 Convergence test for the eigenvalues of completely free rectangular
plate computed by the superposition method (@ = 1.25)
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Figure 3.9 Convergence test for the eigenvalues of completely free rectangular
plate computed by the superposition method (@ = 1.5)
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Figure 3.10 Convergence test for the eigenvalues of completely free rectangular
plate computed by the superposition method (@ = 2.0)
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Figure 3.11 Convergence test for the eigenvalues of completely free rectangular
plate computed by the superposition method (@ = 2.5)
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Figure 3.12 Convergence test for the eigenvalues of completely free rectangular
plate computed by the superposition method (@ = 3.0)
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3.2. The Finite Difference Method

From the convergence tests in the section of the fully clamped plates using
the superposition method, the eigenvalues were found to be lower bounds as
expected. As the objective of this thesis is to find both upper bound and lower
bounds for the natural frequencies of those plates, and the lower bound values
using the superposition method seem to be accurate enough, the eigenvalues of
fully clamped plate calculated by using the FDM have been omitted. Therefore,

only the eigenvalues of completely free plates are presented in this section.

3.2.1. Completely Free Plate

The first 12 eigenvalues of completely free plates with aspect ratios 1.0 to
3.0 obtained by the FDM are shown in Table 3.3. The maximum number of nodes
used to compute the eigenvalues is limited to 55 % 55, i.e. 3025 simultaneous

equations to solve, because of the software’s limitation.
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Table 3.3 The eigenvalues of completely free plates obtained by the superposition
method (4> =wa’\/p/D,v =10.3).

@ =b/a
Mode 1.25 1.5
1 13.46 AA 10.75 AA 8.926 AA
2 19.57 SS 13.57 SS 9.503 SS
3 24.24 SS 22.36 SS 20.57 SA
4 34.75 25.86 SA 22.15 SS
5 34.75 SAor AS 30.34 AS 25.58 AS
6 60.90 39.34 AS 29.73 AS
7 60.90 SAorAS 50.15 AA 38.05 AA
8 63.56 SS 51.39 SS 43.84 SS
9 69.04 AA 60.74 SA 53.07 SS
10 76.95 AA 69.27 AA 59.82 SA
11 105.1 76.17 SS 64.63 SA
12 105.1 SAor AS 80.23 AS 65.55 AS
b =b/a
Mode 2.5 3
1 5.358 SS 3.428 SS 2.379 SS
2 6.640 AA 5.275 AA 4.373 AA
3 14.60 SA 9.511 AS 6.596 AS
4 14.85 AS 11.31 SA 9.233 SA
5 21.97 SS 18.53 SS 12.96 SS
6 25.31 AA 18.87 AA 15.04 AA
7 25.96 AS 22.41 SS 21.16 AS
8 29.53 SS 24.40 AS 22.19 SS
9 35.97 SS 28.62 SA 22.19 SA
10 39.86 SA 31.38 SS 24.29 AS
11 48.16 AS 31.39 AS 28.60 SS
12 50.33 AS 40.96 AS 31.02 AA

Convergence test

The convergence tests were conducted for the eigenvalue of completely free

plates with aspect ratio 1.0 to 3.0 obtained by the FDM as well. The results are

shown below. As can be seen, all eigenvalues converge from below.
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Figure 3.13 Convergence test for the eigenvalues of completely free rectangular plate computed by the finite difference method (@ = 1.0)
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4. DISCUSSION

The free vibration analyses of the fully clamped and completely free
rectangular plates were carried out by using the superposition method and the
finite difference method (FDM). All calculated eigenvalues of both fully clamped
and completely free plates converge as shown in the previous chapter. However,
the direction of convergence in the superposition method depends on the
boundary conditions of the actual plates and those of the building blocks, and
there is a significant difference in the rate of convergence between the

superposition method and the FDM.

4.1. Fully Clamped Plate

As Figure 3.1 to 3.6 shows, the eigenvalues of fully clamped plate computed
by the superposition method converge as the matrix size is increased. The rate of
convergence is remarkably rapid. All eigenvalues of the fully clamped plates have
no change in fourth digit when the effective matrix size is more than 28 x 28. All
of those convergences occur from below, which appear to be lower bounds. This
confirms the prediction in a recent publication, which is that the superposition
method would give a lower bound for the eigenvalues if its building blocks have
more flexible boundary conditions than those of the system being modelled [4].

In the literature [1], first ten eigenvalues of the fully clamped plates for
various aspect ratios are available, which are retrieved from Claassen and
Thorne’s publication [8]. Those values are expected to be upper bounds. Bazley,
Fox and Stadter also give accurate upper bounds and lower bounds for the
frequencies of doubly symmetric mode of fully clamped plates [9]. The
eigenvalues obtained by the superposition method are compared with the values in
reference [1] and shown in Table 4.1, which gives the upper bounds and lower
bounds of natural frequencies of the fully clamped rectangular plates. There is

almost no difference between the upper bounds and the lower bounds in fourth
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digit number. This shows that exact results have been delimited accurately, in

most cases to the fourth significant place.

Table 4.1 The lower bound and the upper bound for the eigenvalues of fully
clamped rectangular plates with an aspect ratio of 1:3 (1° = wa’/p/D ) [8],
*: [9]

1 1.25 15
Lower Upper Lower  Upper Lower Upper
bound  bound bound  bound bound  bound
Mode | (SM) [8] (SM) [8] (SM) [8]
1| 35.99 35.99 SS 29.89 29.89 SS 27.01 27.01 SS
2| 73.39 73.39 SAor| 5251 5251 AS 41.70 41.71 AS
3| 73.39 73.39 AS 68.51 6851 SA 66.13 66.13 SA
4| 108.2 108.2 AA 89.25 89.26 SS 66.52 66.53 SS
5| 131.6 131.6 SS 89.35 89.35 AA 79.81 79.81 AA
6| 132.2 132.2 SS 124.3 124.3 SA 100.8 100.8 AS
7| 165.0 165.0 spaor| 1275 1275 SS 103.1 103.1 SA
8| 165.0 165.0 AS 139.2 139.2 AS 125.3 125.3 SS
9| 210.5 2105 SAor| 1475 1475 AS 136.1 136.1 AA
10 | 2105 AS 173.0 173.0 AA 138.6 138.6 AS
11| 220.0 *220.1 SS 181.3 *181.3 SS 144.2 *144.2 SS
12| 242.2 242.2 AA 202.1 *202.1 SS 161.2  *161.2 SS
2 2.5 3
Lower Upper Lower  Upper Lower Upper
bound  bound bound  bound bound  bound
Mode | (SM) [8] (SM) [8] (SM) [8]
1| 24.58 24.58 SS 23.64 2364 SS 23.20 23.20 SS
2| 31.83 31.83 AS 27.81 2781 AS 25.86 25.86 AS
3| 44.77 44.77 SS 35.42 3542 SS 30.74 30.75 SS
4| 63.33 63.33 AS 46.67 46.67 AS 38.09 38.11 AS
5] 63.98 63.98 SA 61.49 6150 SS 47.97 48.00 SS
6| 71.08 71.08 AA 63.08 63.08 SA 60.30 60.35 AS
7| 83.27 83.27 SA 67.39 67.39 AA 62.62 62.62 SA
8| 87.25 87.25 SS 7478 7478 SA 65.51 65.51 AA
9| 100.8 100.8 AA 79.76  79.76 AS 70.44 40.45 SA
10 | 116.4 116.4 AS 85.43 85.43 AA 75.04 SS
11| 123.2 *123.3 SS 99.46 SA 77.53 77.55 AA
12 | 123.7 SA 101.4 SS 86.90 SA
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4.2. Completely Free Plate

Eigenvalues of the completely free plates for aspect ratios 1.0 to 3.0 were
computed by using the superposition method and the FDM, and convergence tests
were carried out for all the above aspect ratios and modes. Results of the tests are
presented in Figure 3.7 through to Figure 3.18. As can be seen from these figures,
both methods give results that converge as the matrix size is increased. The rate of
convergence of the FDM is significantly slower than that of the superposition
method but for all cases tested the convergence was from below as predicted by
Weinberger [5]. However, the results of tests for the FDM show that some
unexpected higher eigenvalues are found around small number of matrix size in
Figure 3.16, 3.17 and 3.18. It is considered that the FDM does not give reliable
results for higher modes with small number of nodes (coarse meshes) because
there are not enough mesh points to express higher modal shapes.

The work shows that Gorman’s superposition method gives excellent
convergence in its results for the eigenvalue with only 20 terms. These results also
confirm the prediction in a recent paper [4] that Gorman’s results are expected to
be upper bounds for a free plate. Thus the exact natural frequencies of a
completely free plate are bracketed by the results of the method of superposition
and the FDM. These results are shown in Table 4.2.
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Table 4.2 The lower bound and the upper bound for the eigenvalues of completely
free rectangular plates with an aspect ratio of 1:3

(A =wa’\lp/D,v=10.3)

1 1.25 15

Lower  Upper Lower  Upper Lower Upper

bound bound bound  bound bound bound

Mode | (FDM) (SM) (FDM) (SM) (FDM) (SM)
1| 13.46 13.47 AA 10.75 10.76 AA | 8.926 8.931 AA
2| 1957 19.60 SS 13.57 1359 SS | 9.503 9.517 SS
3| 2424  24.27 SS 2236 2239 SS | 2057 20.60 SA
4| 3475 34.80 SAor | 2586 25.89 SA | 2215 2218 SS
51 3475 34.80 AS 30.34 30.38 AS | 2558 25,65 AS
6| 60.90 61.09 SAor | 39.34 3945 AS | 29.73 29.79 AS
7 | 60.90 61.09 AS 50.15 50.30 AA | 38.05 38.16 AA
8| 63.56 63.69 SS 51.39 5149 SS | 4384 4393 SS
9| 69.04 69.27 AA 60.74 60.94 SA | 53.07 5335 SS
10 | 76.95  77.17 AA 69.27 69.49 AA | 59.82 60.05 SA
11| 105.1 105.5 SAor | 76.17 7658 SS 64.63 64.92 SA
12 | 105.1 105.5 AS 80.23 8048 AS | 65.55 65.75 AS

2 2.5 3

Lower  Upper Lower  Upper Lower Upper

bound bound bound  bound bound bound

Mode | (FDM) (SM) (FDM) (SM) (FDM) (SM)
1] 5.358 5.366 SS 3.428 3433 SS | 2.379 2382 SS
2| 6.640 6.644 AA 5275 5278 AA | 4.373 4375 AA
3| 14.60 14.62 SA 9.511 9541 AS | 6.596 6.617 AS
4| 14.85 14.90 AS 11.31 11.33 SA | 9.233 9.244 SA
5| 21.97 22.00 SS 18.53 18.63 SS 12.96 13.03 SS
6| 25.31 25.38 AA 18.87 18.92 AA | 15.04 15.07 AA
7| 25.96  26.00 AS 2241 2245 SS | 21.16 21.31 AS
8| 29.53 29.68 SS 2440 2444 AS | 2219 2223 SS
9| 35,97 36.04 SS 28.62 2875 SA | 2219 2229 SA
10 | 39.86  40.05 SA 31.38 3145 SS 24.29 2435 AS
11 | 48.16  48.45 AS 31.39 3163 AS 28.60 28.67 SS
12 | 50.33 50.58 AS 4096 4122 AS 31.02 31.23 AA
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In Table 4.3, the eigenvalues obtained by using the FDM are compared with

the results published in Leissa’s review [1]. The upper bound and lower bound

results by Leissa were taken from [10]. It is seen that the results of the FDM are

lower than published upper bounds but higher than the lower bounds. The present

results are higher than the previously published lower bounds and very close to

the upper bounds indicating these may be the best lower bound solutions available

to date.

Table 4.3 Comparison of eigenvalues obtained by the
FDM with those in Leissa’s monograph [1] for the
doubly antisymmetric modes of the square free plate (v

=0.3)
Present Leissa[1]
Lower Upper
bound bound
bla=1

13.46 13.092 13.474

69.04 66.508 69.576

76.95 75.146 77.411
b/a=1.25

10.75 10.479 10.761

50.15 48.352 50.487

69.27 67.665 69.746
bla=1.5

8.926 8.6667 8.9351

38.05 36.651 38.294

66.50 64.844 66.965

b/a=2

6.640 6.4563 6.6464

25.31 24.417 25.455

58.32 56.151 59.051
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5. CONCLUSION and RECOMMENDATIONS

The eigenvalues of fully clamped and completely free rectangular plates
with various aspect ratios were computed by using the superposition method and
the finite difference method (FDM). The upper bounds and lower bounds for the
eigenvalues of these plates were successfully obtained.

The superposition method has given the lower bound for the eigenvalues of
fully clamped plates. Almost no difference was noted between these values and
those upper bound values in the early literature but the superposition method
converged significantly faster than all other procedures.

The results by the FDM appear to be the best lower bounds for the
eigenvalues of completely free rectangular plates available so far, and there is
excellent agreement between these results and those upper bound values found by
the superposition method. The exact results for the completely free plates have
therefore been bracketed between these results. The FDM results seem to
converge to exact eigenvalues of the plates as the mesh size approaches to zero.
The rate of convergence, however, is slower than that of the superposition method.

The FDM does not give reliable results for higher modes with small number
of nodes (coarse meshes) because there are not enough mesh points to express
higher modal shapes. The maximum number of nodes used to compute the
eigenvalues is limited to 55 x 55 due to the software or memory limitations. It is
expected that closer values to exact eigenvalues of the plate would be obtained if
more nodes are used. The work also shows that Gorman’s superposition method
gives excellent convergence for the eigenvalues with only 20 terms.

The results presented in this thesis could be useful to give an estimate of the
maximum possible error in the values of the natural frequencies of fully clamped
and completely free plates.

The methods used in this thesis can also be applied to more complex
vibration problems, for example, orthotropic plates, shells and also for the
determination of buckling loads. It is recommended that where possible the

superposition method be used to obtain eigenvalues because of its rapid rate of
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convergence and accuracy. It is also recommended that further research be carried
out to investigate the possibility of using the superposition method for the

determination of eigenvalues of more complicated systems such as shells.
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Appendix I: Theory of Thin Rectangular Plate

The elementary theory of the elastic bending of beams is well known. This

leads in the case of pure bending about principal axes to the familiar formula,

2
M =-EI % , where M is the bending moment, £ Young’s modulus, w the
X

transverse deflection and x the longitudinal co-ordinate. A similar relationship can

be obtained for a plate.

Figure Al. 1. The elastic bending of a beam

In Elementary theory of elastic plates [11], Jaeger presents a comprehensive
and a simple deviation of the plate bending theory. For convenience and
completeness, the relevant parts are presented here. Consider the case of a
rectangular plate subjected to distributed moments, shown in Figure Al. 2.
Considering an infinitesimal element of the plate (Figure Al. 3a), the middle
surface is taken as the neutral surface and it is assumed that the cross section
(plane perpendicular to the middle surface) still remain flat after bending (Figure
Al. 3b). Then, the longitudinal strains in both x and y directions; &, and ¢, are
proportional to the distance z from the neutral surface. For the elastic behaviour,

stress is, therefore, also proportional to z.

Y

Figure Al. 2 A rectangular plate subjected to distributed moments
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Neutral
surface

7

(a)

Figure A1. 3 A small piece of the plate

If a distributed moment M, is applied on the plate only through normal stress
distribution in the direction parallel to the y axis (Figure Al. 4a), the stresses at

the surface ABCD will be given by o, =z, o, =0, where & is some constant

(Figure Al. 4b). The constant £ can be found by equating the applied moment M,

to the resisting elastic moment per unit length. This gives

12M
M, =["kdz =" and so k=% (AL1)

/2 h’

where /4 is the plate thickness.

D C

Mx‘f %/glx oy =hz < >0, =kz
A B

|

o, =0
(a) (b)
Figure Al. 4 The plate applied a distributed moment only in the direction parallel
to the y axis
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The stress oy is also given by o= E¢_, where ¢, is the strain in the x direction.
This gives,
_12M

X h3

X

o z=Ee, (A1.2)

From Figure Al. 3b, ¢, will be
(R + 2)9 -RO z

L= 20 2 (A1.3)
From Equations A1.2 and A1.3
12M
% = Eh; (Al1.4)
2
For small deflections, l = —8—?} , then
R ox
’w  12M,
e =— K (AL.5)

There will also be a strain in the y direction due to the Poisson’s ratio effect.
The strain ¢, should be given by &, = -ve,, where v is the Poisson’s ratio. This

leads to the following relationship.

W 12M
‘2;2” v (AL.6)

From the relationship of Equations A1.5 and A1.6, if the distributed moment M, is
applied on the plate in the direction parallel to the y axis, it will produce the
curvature of the plate not only in the xw plane but also in the perpendicular plane
yw. The curvature in the yw plane is v times of the curvature in the xw plane and
of opposite sign. Thus a sagging moment of M, per unit length produces sagging
curvature in the xw plane and hogging curvature in yw plane as shown in Figure

Al.S.

Figure Al. 5 The plate applied a sagging moment
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From the above argument and using the principle of superposition, it is
possible to obtain the curvature of the plate when applying moments per unit
length M, and M, simultaneously. The contribution of M, and M, to the curvature

in the xw plane are /2M,/Eh’ and —vI 2My/Eh3 respectively.

Hence,
o’w 12
= (M, —vu) (Al.7a)
Similarly
o'w 12
o7 " (M, —v,) (A1.7b)

Rearranging Equations A1.7, the moment M, and M, will be expressed in terms of

the curvature as follows.

M, = —D( g;” +v Z;VZVJ (Al.8a)
and
M, = —D(Z;V Z;VJ (A1.8b)
Eh’

where D = al—zj and it is called the plate rigidity.
-V

So far the situation where only the bending moment applied on the plate was
considered. In general, equilibrium of plate requires the presence of bending and
twisting moment in any direction. In the following part, the general case will be
examined and the relationship between twisting moments and twisting curvatures
will also be established.

Bending moments M, and M,, and twisting moment M,, are applied to a
plate (Figure Al. 6a). Considering the equilibrium of the wedge, some bending
moment M, and twisting moment M,, are acting on arbitrarily chosen plane as

shown in Figure A1l. 6b. Let the n, ¢ axes be at an angle a to the x, y axes.
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(a) (b)
Figure Al. 6 The plate bending moments M, and M,, and twisting moment M,, are
applied
Taking moment around the ¢ axis then gives,

M, =M, cos’a+M,sin®a-2M sinacosa

M. +M )\ (M.-M, , (A1.9a)
= 5 =+ 5 = [cos2a — M sin2a

Similarly taking moments about the » axis gives,

M, =M sinacosa—M, sinazcos05+Mxy(cos2 a —sin’ a)

M -M, (A1.9b)
= Ty sin2a + M, cos2a
To obtain maximum or minimum of M, let p = =0, then
o
M -M .
- Z(Tyj sin2a —2M  cos2a =0 (A1.9¢)
Thus

—-2M
tan 2a (_)Mx M (A1.9d)
It should be noted that from EquationsA1.9b and ¢, M, will be zero when
M, is maximum or minimum. The twisting moment is absent only on these two
orthogonal sections, which are called principal sections. The form of Equations
A1.9c and d are identical with that obtained when considering stress at a point and

finding direct and shear stresses in various directions. The bending moment and
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twisting moments at a point in a plate may therefore be represented on a Mohr’s

circle as shown in Figure Al. 7.

and

From Equation A1.9d

. -2M
sin2a = 2) - (A1.10a)
J1, M f van
W, -M,)
cos2a = - 2 (A1.10b)
Jo1, —mf +anr
Hence, Equation A1.9a becomes,
(Mx -M ) 1 2 2
M, :Ty+§\/(Mx—My) +4M (Al.11a)
Similarly, Equation A1.9b becomes,
M, =0 (Al.11b)
Twisting
moment M
Ml‘ K
Mxy .
2a Bending
0 A B moment
M|
M,

Figure Al. 7 The Mohr’s circle presenting the bending moment and twisting
moments at a point in a plate

From Figure Al. 7,

Also,

M. +M, =M, +M, =2.04B

M,-M, = (M, —M,)cos2a

M,, =(M, + M, )sin2a

(Al.12a)

(A1.12b)

(Al.12¢)
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Because n, ¢ are the principal directions (M,,, = 0), then

82w_ 0w
on®  ot?

M,-M, = —D(l—v)( (A1.12d)

By simply repeating differentiation and algebraic manipulations, the relationship
between twists and curvatures, which are represented by on a Mohr’s circle as

shown in Figure Al. 8 and the following equations, can be obtained.

2 2 2 2 2
Ow _1f0%w Ow) 10w 0w g (A1.13a)
ox 2\ On ot 2\ On ot
2 2 2 2 2
Ow _1[0w Ow) /0w 0w) ira (AL13b)
oy- 2\ on ot 2\ on” ot
2 2 2
a w :_l a_‘;v_a_l;} Sinza (A113C)
Ox0y 2\ on ot
2
Twist ow
ox’ |
62
ot’ 5
7w
0 20 0Ox0y Curvature
A B C
o*w
NN
62
on’

Figure Al. 8 The Mohr’s circle presenting twists and curvatures at a point in a
plate

From Equations A1.12¢, d and A1.13c,
0w

Ox0y

M =D(1-v) (A1.14)
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In addition, Equations A1.12a and b leads to the following equations,

1 1
M, :E(Mn +Mt)+E(Mn — M, )cos2a (Al.152)
M, = %(Mn +M,)—%(Mn — M, )cos2a (A1.15b)
Adding and subtracting Equations A1.13,
2 2 2 2
0w 0w _Ow, Ow (Al.16a)
ox~ Oy on ot
and
2 2 2 2
0w _Ow_[0W 0w os2a (A1.16b)
ox~ oy on ot
By using Equations A1.8
2 2
M, =—p| Iy Y (A1.17a)
on ot
and
o’w  d*w
M,=-D v Al.17b
' ( ot on’ j ( )

Substituting Equations A1.17 onto Equation Al.15a, and using the relationship of

Equations A1.16

2 2
M, =-p| I, Y (A1.18a)
ox oy
Similarly,
2 2
M, =D LW W (A1.18b)
g Oy ox

Thus, the following Equations are always true not only in the principal direction

but in any direction.

2 2
M, =-p| T4, OV
ox oy
2 2
M, =-p| LW, Y (A1.19)
! oy ox
2
M = D(1-v) Y
Y Ox0y
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Next, the rectangular plate under transverse loading is considered. Figure Al.
9a shows an element dx % dy of the plate on which shear stress per unit length O,
and Q, etc. are working. The bending and twisting moments acting on the element

are also shown in Figure Al. 9b.

(b)

Figure Al. 9 An element ox x dy of the plate on which shear stress and bending
and twisting moments are acting
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Taking vertical reaction of the element gives,

(% §xjéj/ + (aaQy éj/]é‘x +qdxdy =0
Y

ox
ie.
0
%-l- Qy+q:0 (A1.20)
ox oy

Taking moments about an axis parallel to the x axis gives,

oM | oM |
(0,80 )9 —| —= 6 |oc+| —2 8¢ |5y =0
! oy Ox
ie.
oM & oM
y _ Y -0, =0 (Al.21a)
oy ox ’
Similarly about y axis,
oM
oM, My -0, =0 (A1.21b)
Ox oy

Assuming that M., M, and M,, are related to the deflection w and substituting

Equations A1.19 into above Equations gives,

3 3 3
0. =—D(a W+v 0w J—D(l—v) 0w

ox’ oxoy’ oxoy’
ie.
o’w  'w
=-D + Al.22a
0. ( ox®  oxoy’ j ( )
and similarly
3 3
0, =-D 0 i 0 > (A1.22b)
oy~ 0yox

Substituting for O, and O, in Equation A1.20 from Equations A1.22,

4 4 4
0w 0w [ 0Ww_4q (A1.23)
ox ox“oy~ Oy D

Equation A1.23 is the governing equation of the rectangular plate under transverse

loading ¢ per unit area.
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