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Abstract 

 
Exact solution to the vibration of rectangular plates is available only for plates 

with two opposite edges subject to simply supported conditions. Otherwise, they 

are analysed by using approximate methods. There are several approximate 

methods to conduct a vibration analysis, such as the Rayleigh-Ritz method, the 

Finite Element Method, the Finite Difference Method, and the Superposition 

Method. The Rayleigh–Ritz method and the finite element method give upper 

bound results for the natural frequencies of plates. However, there is a 

disadvantage in using this method in that the error due to discretisation cannot be 

calculated easily. Therefore, it would be good to find a suitable method that gives 

lower bound results for the natural frequencies to complement the results from the 

Rayleigh-Ritz method. The superposition method is also a convenient and 

efficient method but it gives lower bound solution only in some cases. Whether it 

gives upper bound or lower bound results for the natural frequencies depends on 

the boundary conditions. It is also known that the finite difference method always 

gives lower bound results. This thesis presents bounded eigenvalues, which are 

dimensionless form of natural frequencies, calculated using the superposition 

method and the finite difference method. All computations were done using the 

MATLAB software package. The convergence tests show that the superposition 

method gives a lower bound for the eigenvalues of fully clamped plates, and an 

upper bound for the completely free plates. It is also shown that the finite 

difference method gives a lower bound for the eigenvalues of completely free 

plates. Finally, the upper bounds and lower bounds for the eigenvalues of fully 

clamped and completely free plates are given. 
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1. INTRODUCTION 
 
 

1.1. Vibration of plate 
 

The rectangular plate is one of the most common components in engineering 

machines and structures, for example, bridges, buildings or airplane wings. In 

many design problems, static analysis of the plates alone is insufficient. Rather, 

their design needs to include the effects of periodic or random time varying forces 

causing vibration.  

It is well known that there are a number of discrete frequencies at which 

rectangular plates will oscillate with large displacements. They are called natural 

frequencies of the plate. It is also known that there is a characteristic shape 

associated with each natural frequency. It is called a modal shape or mode.  

When periodic or random driving forces exist on the plate, and if the 

frequency of excitation coincides with one of the natural frequencies of the plate, 

a condition of resonance is encountered, and critically large oscillations that cause 

the failure of structures may occur. Thus it is essential for the designer to conduct 

an accurate vibration analysis of rectangular plates to determine the natural 

frequencies, modes and the dynamic response. 

 

 

1.2. Project scope 
 

A rectangular plate can have 21 combinations of classical boundary 

conditions, i.e. either clamped, simply supported or free. These can be divided 

into two groups in respect of the boundary conditions. The first group is the plates 

with at least two opposite edges simply supported. The second group is the plates 

which do not have a pair of opposite edges simply supported. The first group of 

problems have exact solutions. The other, including fully clamped and completely 

free rectangular plates, are analysed by using approximate methods, for example 
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the Rayleigh-Ritz method, because functions which simultaneously satisfy the 

governing differential equation and the boundary conditions have not yet been 

found. An excellent review of the literature relating to vibration analysis of plates 

was published by Leissa [1]. 

Most of these methods give upper bounds for the eigenvalues as the solution 

is based on assumed shapes which effectively overconstrain the system. The most 

popular method, namely the Rayleigh–Ritz method gives upper bound results for 

the natural frequencies. However there is a disadvantage in relying on this method 

alone, in that the error due to discretisation cannot be calculated easily. Therefore, 

it would be good to investigate other methods which give a lower bound result 

and thus complement those upper bound results.  

Gorman has conducted free vibration analysis of fully clamped plate and 

completely free plate by the method of superposition [2]. The superposition 

method is very efficient and appears to give the best values for the natural 

frequencies of plates with various aspect ratios. [3, 4]. A recent publication 

predicts that the superposition method would give an upper bound or a lower 

bound result depending on whether the boundary conditions of the building blocks 

are stiffer or more flexible than those of the actual system [4].  

The Finite Difference Method (FDM) is traditionally used to solve the static 

and dynamic problems of plates. It gives a lower bound for the eigenvalues [5].  

The purpose of this thesis is to numerically verify the prediction in the 

recent publication [4] and also to obtain upper bound and lower bound values for 

the natural frequencies of fully clamped and completely free rectangular plates 

with various aspect ratios using the superposition method and the finite difference 

method. 

 

 



 

 

 

 

 

 

Chapter II 

Background Theory 
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2. BACKGROUND THEORY 
 

 

The partial differential equation governing the out-of-plane vibration of 

rectangular plates is  

( ) ( ) ( ) ( ) 0,,,2, 2

4

4

22

4

4

4
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For convenience, the governing equation is expressed in dimensionless form. 

Gorman [2] uses dimensionless coordinates ξ and η, where ξ = x/a, η = y/b, in 

which a and b are the plate dimensions. The equation may be then written as 
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where Da /22 ρωλ =  and Φ is the plate aspect ratio b/a. 

The bending moment distributed the edges perpendicular to the ξ axis or the 

η axis is expressed as follows 
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The vertical edge reaction along the edges perpendicular to the ξ axis and 

the η axis are expressed as follows 
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y, (η) 

2b x, (ξ)

2a

2.1. The Superposition Method 
 

The development of the eigenvalue matrix for fully clamped plates and 

completely free plates by using the superposition method are described in an 

earlier literature [2]. The derivations for the application of the superposition 

method in this thesis are taken from the same reference and are therefore based on 

quarter plate dimension shown in Figure 2.1. In the superposition method, two or 

more plate problems which have exact solutions are considered. The plate 

problems are often referred to as building blocks. In order to solve the original 

plate problems, these building blocks are superimposed and constants existing in 

the equations of motion of them are changed so that their combination satisfies the 

boundary conditions of original plate problems.  

Figure 2.1 A quarter segment of the plate 
 

2.1.1. Fully Clamped Plate 

 
Modes of free vibration of the plate may be categorised into the following 

three types depending on the nature of the modes: (a) the modes fully symmetric 

about the x (or ξ) axis and the y (or η) axis; (b) the modes fully antisymmetric 

about both axes; (c) the modes symmetric about the x axis and antisymmetric 

about the y axis or vice versa.  

 

Doubly Symmetric Mode 

 

Firstly, to solve the fully symmetric mode problem, only a quarter of the 

fully clamped plate needs to be considered as shown in Figure 2.1. The original 

fully clamped plate would have dimensions 2a × 2b so that the dimensions of the 
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quarter segment would be a × b. The building blocks used for the doubly 

symmetric modes in the superposition method are depicted in Figure 2.2. The 

edges ξ = 1 and η = 1 have simple support conditions and are subjected to bending 

moment M1(ξ) or M2(η). The edges ξ = 0 and η = 0 with two small circles imply 

slip shear condition, which means no vertical edge reaction and no slope taken 

normal to the edge. 

Figure 2.2 Building blocks used to analyse the doubly symmetric mode of fully 
clamped plates 
 

For the first and second building block, their solutions may have Lévy type 

solution expressed as 

∑
∞

=

=
5,3,1

1 2
cos)(),(

m
m

mYW πξηηξ    (2.7) 

and 
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Substituting Equation 2.7 into Equation 2.2 one obtains 
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The solution to Equation 2.9 depends on whether the eigenvalue λ2 is greater than 

or less than (mπ/2)2. The typical solutions that satisfy Equation 2.9 for λ2>(mπ/2)2 

are  

ηγηγηβηβη mmmmmmmmm DCBAY cossincoshsinh)( +++=  (2.10) 

and for λ2<(mπ/2)2, 

ηγηγηβηβη mmmmmmmmm DCBAY coshsinhcoshsinh)( +++=  (2.11) 

ξ 

b 

a 
ξ 

η 

≡  + 

ξ 

ηη

W1(ξ,η) W2(ξ,η) 

M1(ξ) 

M2(η) 
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where ( )22 2/πλβ mm +Φ=  and ( )22 2/πλγ mm −Φ=  for ( )22 2/πλ m>  or 

( ) 222/ λπγ −Φ= mm  for 22 )2/( πλ m< . Here, Am, Bm, Cm, and Dm are 

constants to be determined.  

Now, only symmetric terms will remain because of symmetry about the ξ 

axis. Two coefficients are, therefore, eliminated. The other two coefficients are 

determined by enforcing the condition of zero displacement and the equilibrium 

of moment along the edge η = 1. It is considered that the bending moment 

distributed along the edge should fluctuate sinusoidally with the same frequency 

as the vibrating plate. The bending moment M1(ξ) could be expressed by the 

following Fourier expansion 

( )
2

cos
5,3,1

1
2 πξξ mE

aD
Mb

m
m∑

∞

⋅⋅⋅=

=     (2.12) 

Substituting Equation 2.7 into Equation 2.3, the boundary condition of 

equilibrium of moment at along the edge η = 1 can be written as 
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∂
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⎡

∂
∂

=

 (2.13) 

Since derivatives of W(ξ,η) with respect to ξ are zero along the edge η = 1, 

Equation 2.13 can be simplify to 

( )
m

m E
Y

−=
∂

∂

=1
2

2

η
η
η

    (2.14) 

The analytical function Ym(η) for λ2>(mπ/2)2 may be written as, 

( ) ( )ηγθηβθη mmmmmm EY coscosh 1211 +=    (2.15) 

where,  

( ) mmm
m βγβ

θ
cosh
0.1

2211 +
−

= , and  ( ) mmm
m γγβ

θ
cos

0.1
2212 +

=  

and for λ2<(mπ/2)2, 

( ) ( )ηγθηβθη mmmmmm EY coshcosh 2221 +=    (2.16) 

where,  

( ) mmm
m βγβ

θ
cosh
0.1

2221 −
−

= , and  ( ) mmm
m γγβ

θ
cosh

0.1
2222 −

=  
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Next, for the second building block, the analytical function, Yn(ξ), can be 

easily obtained from the first building block by interchange of coordinates due to 

symmetry. However, the aspect ratio must be replaced by its inverse and λ2 must 

be multiplied by Φ2. The analytical functions of the second building block are 

expressed as follows. 

For Φ2λ2>(nπ/2)2 

( ) ( )ξγθξβθξ nnnnnn EY coscosh 1211 +=    (2.17) 

where, 

( ) nnn
n βγβ

θ
cosh
0.1

2211 +
−

= , and  ( ) nnn
n γγβ

θ
cos

0.1
2212 +

=  

and, for Φ2λ2<(nπ/2)2, 

( ) ( )ξγθξβθξ nnnnnn EY coshcosh 2221 +=    (2.18) 

where, 

( ) nnn
n βγβ

θ
cosh
0.1

2221 −
−

= , and  ( ) nnn
n γγβ

θ
cosh

0.1
2222 −

=  

( ) ( )222 2/1 πλβ nn +ΦΦ=   

and  

( )222 2/)/1( πλγ nn −ΦΦ=  or ( ) 2222/)/1( Φ−Φ= λπγ nn  whichever is real. 

 

Doubly Antisymmetric Mode 

 

A different set of building blocks will be considered when analysing 

different vibration modes. For fully antisymmetric modes, for example, slip-shear 

conditions must be replaced by simple support conditions along the ξ and η axes 

as shown in Figure 2.3. In such case, the displacement functions W1 and W2 may 

be expressed as 

∑
∞

=

=
2,1

1 sin)(),(
m

m mYW πξηηξ     (2.19) 

and 

( ) ( ) πηξηξ nYW
n

n sin,
2,1

2 ∑
∞

=

=     (2.20) 

respectively. 
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Figure 2.3 Building blocks used to analyse the doubly antisymmetric mode of 
fully clamped plates 
 

Similar to the doubly symmetric case, the bending moment distributed along the 

edge ξ = 1 and the edge η = 1 are expanded in series form as 

( )
πξ

ξ mE
aD
Mb

m
m sin

2,1

1
2

∑
∞

⋅⋅⋅=

=     (2.21) 

and 

( )
πη

η
nE

D
aM

n
n sin

2,1

2 ∑
∞

⋅⋅⋅=

=     (2.22) 

In contrast to doubly symmetric mode, the symmetric terms in Equation 2.10 and 

2.11 should be deleted because of the simple support condition along the edge η = 

0 and ξ = 0. Enforcing the boundary condition of zero displacement and the 

equilibrium of moment along the edge η = 1, the analytical function Ym(η) in the 

doubly antisymmetric modes for λ2>(mπ)2 may be written as, 

( ) ( )ηγθηβθη mmmmmm EY sinsinh 1211 +=    (2.23) 

where,  

( ) mmm
m βγβ

θ
sinh
0.1

2211 +
−

= , and  ( ) mmm
m γγβ

θ
sin

0.1
2212 +

=  

and for λ2<(mπ)2, the function Ym(η) is given by 

( ) ( )ηγθηβθη mmmmmm EY sinhsinh 2221 +=    (2.24) 

where,  

( ) mmm
m βγβ

θ
sinh
0.1

2221 −
−

= , and  ( ) mmm
m γγβ

θ
sinh

0.1
2222 −

=  

where, ( )22 πλβ mm +Φ=  and ( )22 πλγ mm −Φ= or ( ) 22 λπ −Φ m  
 

 

ξ 

b 

a 
ξ 

η 

≡  + 

ξ 

ηη

W1(ξ,η) W2(ξ,η) 

M1(ξ) 

M2(η) 
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Identically to the steps used in the doubly symmetric modes, the analytical 

function for the second building block, Yn(ξ), can be easily obtained from the first 

building block by interchange of coordinates. The aspect ratio must be replaced 

by its inverse and λ2 must be multiplied by Φ2. The analytical functions of the 

second building block are expressed as follows.  

For Φ2λ2>(nπ)2 

( ) ( )ξγθξβθξ nnnnnn EY sinsinh 1211 +=    (2.25) 

where, 

( ) nnn
n βγβ

θ
sinh
0.1

2211 +
−

= , and  ( ) nnn
n γγβ

θ
sin

0.1
2212 +

=  

and for Φ2λ2<(nπ)2, 

( ) ( )ξγθξβθξ nnnnnn EY sinhsinh 2221 +=    (2.26) 

where, 

( ) nnn
n βγβ

θ
sinh
0.1

2221 −
−

= , and  ( ) nnn
n γγβ

θ
sinh

0.1
2222 −

=  

where, ( ) ( )2221 πλβ nn +ΦΦ= ,  

and ( )222)/1( πλγ nn −ΦΦ=  or ( ) 222)/1( Φ−Φ λπn  

whichever is real. 

 

Symmetric-Antisymmetric Modes 

 

The building blocks used to analyse the symmetric-antisymmetric modes of 

fully clamped plates are illustrated in Figure 2.4. These building blocks have slip 

shear condition along the edge η = 0 and the simple support condition along the 

edge ξ =0. The edges ξ = 1 and η = 1 have simple support condition and are 

exposed to bending moment M1(ξ) or M2(η). 
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Figure 2.4 Building blocks used to analyse the symmetric- antisymmetric mode of 
fully clamped plates 

 

The first and second building blocks have Lévy-type solutions, respectively, 

which can be written 

∑
∞
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=
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1 sin)(),(
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m mYW πξηηξ     (2.27) 

and 
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2
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=
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Since the boundary conditions at the edges η = 0 and η = 1 of the first building 

block for the symmetric-antisymmetric modes are the same as those for the 

doubly symmetric modes, the analytical function Ym(η) can be expressed in the 

same manner as Equation 2.15 and 2.16. However, the quantity mπ/2 in βm and γm 

must be changed to mπ and all positive integers can be taken for m, because the 

trigonometric function employed in Equation 2.7 is replaced with sin(mπξ). It is 

written as follows. 

For λ2>(mπ)2 

( ) ( )ηγθηβθη mmmmmm EY coscosh 1211 +=    (2.29) 
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2211 +
−

= , and  ( ) mmm
m γγβ

θ
cos

0.1
2212 +

=  

and for λ2<(mπ)2, 

( ) ( )ηγθηβθη mmmmmm EY coshcosh 2221 +=    (2.30) 

where,  

( ) mmm
m βγβ

θ
cosh
0.1

2221 −
−

= , and  ( ) mmm
m γγβ

θ
cosh

0.1
2222 −

=  

ξ 
b 

a 
ξ 

η 

≡  + 

ξ 

ηη

W1(ξ,η) W2(ξ,η) 

M1(ξ) 

M2(η) 
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with, ( )22 πλβ mm +Φ=   

and ( )22 πλγ mm −Φ= or ( ) 22 λπ −Φ m  

whichever is real. 

Similarly the second building block solution can be obtained from the 

previous mode families. The boundary conditions at the edges ξ =0 and ξ = 1 are 

identical to those of the doubly antisymmetric modes. Thus, the analytical 

function Yn(ξ) in Equation 2.28 would have the same form as Equation 2.25 and 

2.26. However, the quantity nπ in βn and γn must be changed to nπ/2. It is 

expressed as follows. 

For Φ2λ2>(nπ/2)2 

( ) ( )ξγθξβθξ nnnnnn EY sinsinh 1211 +=    (2.31) 

where, 

( ) nnn
n βγβ

θ
sinh
0.1

2211 +
−

= , and  ( ) nnn
n γγβ

θ
sin

0.1
2212 +

=  

and for Φ2λ2<(nπ/2)2, 

( ) ( )ξγθξβθξ nnnnnn EY sinhsinh 2221 +=    (2.32) 

where, 

( ) nnn
n βγβ

θ
sinh
0.1

2221 −
−

= , and  ( ) nnn
n γγβ

θ
sinh

0.1
2222 −

=  

where, ( ) ( )222 2/1 πλβ nn +ΦΦ= ,  

and ( )222 2/)/1( πλγ nn −ΦΦ=  or ( ) 2222/)/1( Φ−Φ λπn  

whichever is  real. 

In order to generate the eigenvalue equation, the two building blocks are 

superimposed. The summation of contributions of each building block to the slope 

along the edges ξ = 1 and η = 1 should satisfy the boundary condition of zero net 

slope normal to the edges ξ = 1 and η = 1. The net slope normal to these edges 

should be expanded in appropriate trigonometric series [2]. If utilising Kf terms in 

each of building blocks, one will obtain a set of 2Kf homogenous algebraic 

equations relating moment coefficients E. Eigenvalues of the set of 2Kf equations 

could be obtained by seeking the parameter λ2 which make the determinant of the 

eigenvalue matrix vanish. 
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2.1.2. Completely Free Plate 

 

Similar to the case of the fully clamped plate, only quarter plate with 

dimension of a × b is considered, and different family of modes are analysed 

separately. 

 

Doubly Symmetric Mode 

 

 The building blocks of the completely free plate for the doubly symmetric 

modes are depicted in Figure 2.5. The origin of the quarter plate is taken on the 

centre of original plate, and bending moment is applied on the edges ξ = 1 and η 

= 1. A solution of the first block could also be expressed as Lévy-type, which is 

∑
∞

=

=
1,0

1 cos)(),(
m

m mYW πξηηξ     (2.33) 

Equation 2.33 satisfies the shear-slip condition at the edges ξ = 0 and ξ = 1.  

 

Figure 2.5 Building blocks used to analyse the fully symmetric mode of the 
completely free plate 
 

 

Substituting Equation 2.33 into the governing differential equation, one will 

obtain the typical solutions of Ym(η) as same as Equations 2.10 and 2.11 

depending on λ2 is greater than or less than (mπ)2, where, 

( )22 πλβ mm +Φ=  

and  

( )22 πλγ mm −Φ=  or ( ) 22 λπ −Φ m . 

≡
a 

b 

η 

ξ 

η

W1(ξ,η) 

M1(ξ) 

ξ 

+ 

η

M2(η) 
W2(ξ,η) 

ξ 
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Again, because the solution must be symmetric about the ξ-axis, two 

coefficients will be eliminated so that only symmetric terms in Equation 2.10 and 

2.11 will remain. The other two coefficients are determined by enforcing the 

boundary condition of zero vertical edge reaction and the equilibrium of edge 

rotation along the edge η = 1. The edge rotation should be expressed by the 

following Fourier expansion 

( )
πξ

η
ηξ mE

W
m

m cos
,

1,0

1 ∑
∞

⋅⋅=

=
∂

∂     (2.34) 

Substituting Equation 2.10 and 2.11 without sine and hyperbolic sine terms into 

Equation 2.5 and setting its left right hand side equal to zero, furthermore, 

applying the relationship of Equation 2.34, then the analytical function Ym(η) can 

expressed in terms of the coefficients Em, as follows. 

For λ2 > (mπ)2 

( ) ( )ηγθηβθη mmmmmm EY coscosh 1211 +=    (2.35) 

where  ( ){ }mmmm ZZZZ βγβθ sinh21111 −=  

and  ( ){ }mmmm ZZZZZZZZ γγβθ sin212112 −=  

with  ( ){ }2221 πνββ mZZ mm Φ−−= ∗  

and  ( ){ }2222 πνγγ mZZ mm Φ+= ∗  

and, for λ2 < (mπ)2 

( ) ( )ηγθηβθη mmmmmm EY coshcosh 2221 +=    (2.36) 

where  ( ){ }mmmm ZZZZ βγβθ sinh21121 −=  

and  ( ){ }mmmm ZZZZZZZZ γγβθ sinh212122 +=  

with  ( ){ }2221 πνββ mZZ mm Φ−−= ∗  

and  ( ){ }2222 πνγγ mZZ mm Φ−= ∗  

Next, the analytical function Yn(ξ) for the second building block can be 

obtained from the first building block by interchange of coordinate due to 

symmetry as explained in the fully clamped case. Once again the aspect ratio must 

be replaced by its inverse and λ2 must be multiplied by Φ2. The displacement 

function of the second building block is  

( ) ( ) πηξηξ nYW
n

n cos,
2,1,0

2 ∑
∞

=

=     (2.37) 
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The analytical functions are expressed as follows. 

For Φ2λ2>(nπ)2 

( ) ( )ξγθξβθξ nnnnnn EY coscosh 1211 +=    (2.38) 

where  ( ){ }nnnn ZZZZ βγβθ sinh21111 −=  

and  ( ){ }nnnn ZZZZZZZZ γγβθ sin212112 −=  

with  ( ){ }2221 πνββ nZZ nn Φ−−= ∗  

and  ( ){ }2222 πνγγ nZZ nn Φ+= ∗  

and, for Φ2λ2 < (nπ)2 

( ) ( )ξγθξβθξ nnnnnn EY coshcosh 2221 +=    (2.39) 

where  ( ){ }nnnn ZZZZ βγβθ sinh21121 −=  

and  ( ){ }nnnn ZZZZZZZZ γγβθ sinh212122 +=  

with  ( ){ }2221 πνββ nZZ nn Φ−−= ∗  

and  ( ){ }2222 πνγγ nZZ nn Φ−= ∗  

with 

( )2221 πλβ nn +ΦΦ=  

and  

( )2221 πλγ nn −ΦΦ=  or ( ) 2221 λπ Φ−Φ n  

whichever is real. 

 

Doubly Antisymmetric Mode 

 

The steps to obtain the functions Ym(η) and Yn(ξ) are identical to those 

explained in the doubly antisymmetric mode of fully clamped plate problem. For 

fully antisymmetric modes, slip-shear conditions must be replaced by simple 

support conditions along the ξ and η axes as shown in Figure 2.6. In such case, the 

displacement functions W1 and W2 will be expressed as 

∑
∞

=

=
5,3,1

1 2
sin)(),(

m
m

mYW πξηηξ    (2.40) 

and 
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( ) ( )
2

sin,
5,3,1

2
πηξηξ nYW

n
n∑

∞

=

=    (2.41) 

respectively. The trigonometric function employed in Equation 2.33 or 2.37 is 

replaced by sin(mπξ/2) or sin(nπη/2). 

Figure 2.6 Building blocks used to analyse the fully antisymmetric mode of the 
completely free plate 
 

These functions Ym(η) and Yn(ξ) will take the same form as Equation 2.10 

and 2.11 depending whether or not λ2 is greater than (mπ/2)2 or (nπ/2)2. However, 

the symmetric terms in Equation 2.10 and 2.11 should be deleted because of the 

simple support condition along the edge η = 0 and ξ = 0. Applying the boundary 

conditions of zero vertical edge reaction and the equilibrium of edge rotation 

along the edge η = 1, the functions Ym(η) written as follows 

For λ2 > (mπ/2)2 

( ) ( )ηγθηβθη mmmmmm EY sinsinh 1211 +=    (2.42) 

where  ( ){ }mmmm ZZZZ βγβθ cosh21111 +=  

and  ( ){ }mmmm ZZZZZZZZ γγβθ cos212112 +=  

with  ( ){ }222 2/1 πνββ mZZ mm Φ−= ∗  

and  ( ){ }222 2/2 πνγγ mZZ mm Φ+= ∗  

and, for λ2 < (mπ/2)2 

( ) ( )ηγθηβθη mmmmmm EY sinhsinh 2221 +=    (2.43) 

where  ( ){ }mmmm ZZZZ βγβθ cosh21121 +=  

and  ( ){ }mmmm ZZZZZZZZ γγβθ cosh212122 +=  

with  ( ){ }222 2/1 πνββ mZZ mm Φ−−= ∗  

and  ( ){ }222 2/2 πνγγ mZZ mm Φ−= ∗  

with 

≡
a 

b 

η 

ξ 

η

W1(ξ,η) 

M1(ξ) 

ξ 

+ 

η 

M2(η) 
W2(ξ,η) 

ξ 
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( )22 2/πλβ mm +Φ=  

and  

( )22 2/πλγ mm −Φ=  or ( ) 222/ λπ −Φ m  

whichever is real. 

The function Yn(ξ) is obtained in the same manner of the doubly symmetric 

mode. The aspect ratio is replaced by its inverse and λ2 must be multiplied by Φ2 

and for Φ2λ2>(nπ/2) the function Yn(ξ) is, 

( ) ( )ξγθξβθξ nnnnnn EY sinsinh 1211 +=    (2.44) 

where  ( ){ }nnnn ZZZZ βγβθ cosh21111 +=  

and  ( ){ }nnnn ZZZZZZZZ γγβθ cos212112 +=  

with  ( ){ }222 2/1 πνββ nZZ nn Φ−= ∗  

and  ( ){ }222 2/2 πνγγ nZZ nn Φ+= ∗  

and, for Φ2λ2 < (nπ/2)2 

( ) ( )ξγθξβθξ nnnnnn EY sinhsinh 2221 +=    (2.45) 

where  ( ){ }nnnn ZZZZ βγβθ cosh21121 +=  

and  ( ){ }nnnn ZZZZZZZZ γγβθ cosh212122 +=  

with  ( ){ }222 2/1 πνββ nZZ nn Φ−−= ∗  

and  ( ){ }222 2/2 πνγγ nZZ nn Φ−= ∗  

with 

( )222 2/1 πλβ nn +ΦΦ=  

and  

( )222 2/1 πλγ nn −ΦΦ=  or ( ) 2222/1 λπ Φ−Φ n  

whichever is real. 

 

Symmetric-Antisymmetric Mode 

 

The building blocks used to analyse the symmetric-antisymmetric modes of 

the completely free plates are illustrated in Figure 2.7. These building blocks have 

slip shear condition along the edge η = 0 and the simple support condition along 
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the edge ξ =0. The edges ξ = 1 and η = 1 have shear slip condition and are 

exposed to bending moment M1(ξ) or M2(η). 

 

Figure 2.7 Building blocks used to analyse the symmetric-antisymmetric mode of 
the completely free plate 
 

The first and second building blocks have Lévy-type solutions, respectively, 

which can be written 

∑
∞

=

=
5,3,1

1 2
sin)(),(

m
m

mYW πξηηξ    (2.46) 

and 

( ) ( ) πηξηξ nYW
n

n cos,
2,1,0

2 ∑
∞

=

=     (2.47) 

Since the boundary conditions at the edges η = 0 and η = 1 of the first building 

block for the symmetric-antisymmetric modes are the same as those for the 

doubly symmetric modes, the analytical function Ym(η) can be expressed in the 

same manner as Equation 2.35 and 2.36. However, the quantity mπ in βm and γm 

must be changed to mπ/2, because the trigonometric function employed in 

Equation 2.33 is replaced with sin(mπξ/2). It is written as follows. 

For λ2>(mπ/2)2 

( ) ( )ηγθηβθη mmmmmm EY coscosh 1211 +=    (2.48) 

where  ( ){ }mmmm ZZZZ βγβθ sinh21111 −=  

and  ( ){ }mmmm ZZZZZZZZ γγβθ sin212112 −=  

with  ( ){ }222 21 πνββ mZZ mm Φ−−= ∗  

and  ( ){ }222 22 πνγγ mZZ mm Φ+= ∗  

 

 

 

≡
a 

b 

η 

ξ 

η

W1(ξ,η) 

M1(ξ) 

ξ 

+ 

η

M2(η) W2(ξ,η) 
ξ 
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and, for λ2 < (mπ/2) 

( ) ( )ηγθηβθη mmmmmm EY coshcosh 2221 +=    (2.49) 

where  ( ){ }mmmm ZZZZ βγβθ sinh21121 −=  

and  ( ){ }mmmm ZZZZZZZZ γγβθ sinh212122 +=  

with  ( ){ }222 21 πνββ mZZ mm Φ−−= ∗  

and  ( ){ }222 22 πνγγ mZZ mm Φ−= ∗  

with,  

( )22 2/πλβ mm +Φ=  

and  

( )22 2/πλγ mm −Φ= or ( ) 222/ λπ −Φ m  

whichever is real. 

Similarly the second building block solution can be obtained from the 

previous mode families. The boundary conditions at the edges ξ =0 and ξ = 1 are 

identical to those of the doubly antisymmetric modes. Thus, the analytical 

function Yn(ξ) in Equation 2.47 would have the same form as Equation 2.44 and 

2.45. However, the quantity nπ/2 in βn and γn must be changed to nπ. It is 

expressed as follows. 

For Φ2λ2>(nπ)2 

( ) ( )ξγθξβθξ nnnnnn EY sinsinh 1211 +=    (2.50) 

where  ( ){ }nnnn ZZZZ βγβθ cosh21111 +=  

and  ( ){ }nnnn ZZZZZZZZ γγβθ cos212112 +=  

with  ( ){ }2221 πνββ nZZ nn Φ−= ∗  

and  ( ){ }2222 πνγγ nZZ nn Φ+= ∗  

and, for Φ2λ2 < (nπ)2 

( ) ( )ξγθξβθξ nnnnnn EY sinhsinh 2221 +=    (2.51) 

where  ( ){ }nnnn ZZZZ βγβθ cosh21121 +=  

and  ( ){ }nnnn ZZZZZZZZ γγβθ cosh212122 +=  

with  ( ){ }2221 πνββ nZZ nn Φ−−= ∗  

and  ( ){ }2222 πνγγ nZZ nn Φ−= ∗  
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with 

( )2221 πλβ nn +ΦΦ=  

and  

( )2221 πλγ nn −ΦΦ=  or ( ) 2221 λπ Φ−Φ n . 

whichever is real. 

 

The eigenvalue equation is generated in the same manner as for the fully 

clamped plate. The summation of contributions of each building block to the 

moment along the edges ξ = 1 and η = 1 should satisfy the boundary condition of 

zero net moment along the edges ξ = 1 and η = 1. The eigenvalues are obtained 

by searching for the parameter λ2 which cause the determinant of the eigenvalue 

matrix to vanish. 

 

 

2.2. The Finite Difference Method 
 

The finite difference method is explained in detail by Smith [6]. For the sake 

of completeness the essential derivations are presented here. When there is a 

function U, and the function and its derivatives are finite and continuous function 

of only x, then it can be expanded as follows using Taylor’s theorem, 

( ) ( ) ( ) ( ) ( ) ⋅⋅⋅+′′′+′′+′+=+ 1
3

1
2

111 6
1

2
1 xUhxUhxUhxUhxU   (2.52) 

and 

( ) ( ) ( ) ( ) ( ) ⋅⋅⋅+′′′−′′+′−=− 1
3

1
2

111 6
1

2
1 xUhxUhxUhxUhxU   (2.53) 

Summation of the Equations 2.52 and 2.53 gives 

( ) ( ) ( ) ( ) ( )4
1

2
111 hOxUhxUhxUhxU +′′+=−++   (2.54) 

where O(h4) denotes terms that contains fourth and higher powers of h. If it is 

assumed that these terms can be ignored because they are much smaller than 

lower powers of h, then  

( ) ( ) ( ){ }hxUxUhxU
hdx

UdxU
xx

−+−+≅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=′′

=

11122

2

1
1)(

1

  (2.55) 
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Subtracting Equation 2.53 from Equation 2.52 and neglect terms containing third 

and higher powers of h, one obtains, 

( ) ( ){ }hxUhxU
hdx

dUxU
xx

−−+≅⎟
⎠
⎞

⎜
⎝
⎛=′

=
111 2

1)(
1

  (2.56) 

Equation 2.56 is a central-difference approximation of the first derivative of 

function U at x = x1. 

 

In this thesis, the plate to be analysed is meshed as shown in Figure 2.8 (a) 

and Equation 2.1 is approximated in the finite difference form with central-

difference approximation, in term of the nodal displacements. The molecular FD 

equation at node (i,j) depends on the values of displacement of this and adjacent 

nodes shown in Figure 2.8 (b). The FD molecules used in this thesis are based on 

the literature [7]. The basic finite difference operators are given below. 

 

Figure 2.8 The F.D. Scheme for a plate (a) the mesh and a typical node and (b) the 
F. D. molecular formula 
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The FD form of Equation 2.1 is, 

0
13

1
=∑

=

∗

k
kk wC       (2.69) 

where, 

)2,(1 −=∗ jiww , )1,1(2 −−=∗ jiww , )1,(3 −=∗ jiww , 

)1,1(4 −+=∗ jiww , ),2(5 jiww −=∗ , ),1(6 jiww −=∗ ,  ),(7 jiww =∗ , 

),1(8 jiww +=∗ , ),2(9 jiww +=∗ , )1,1(10 +−=∗ jiww , 

)1,(11 +=∗ jiww , )1,1(12 ++=∗ jiww , )2,(13 +=∗ jiww   (2.70) 
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1
H

CC ==     (2.71, 72) 
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KH

CC ==    (2.73, 74) 
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⎟
⎠
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KHH

CC  (2.75, 76) 

D
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2244

8667 ω
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⎠
⎞

⎜
⎝
⎛ ++=       (2.77) 

 

2.2.1. Fully Clamped plate 

 

The distribution of nodes which F.D. equation applied at on an edge of fully 

clamped plate is shown in Figure 2.9, where *
1w  to *

13w  are the deflections of the 

nodes. The projected deflections outside of the plate need to be expressed in term 

of the deflections at the internal nodes by using the boundary conditions. The 

boundary conditions of a fully clamped plate, which are zero displacement and 

zero slope at the edges, are expressed by the following equations, 

 

Figure 2.9 The node distribution at the edge of a fully clamped plate. 
 

at x = 0 or a (i = 0 or P+1), 

0=w       (2.78a) 

0=⎟
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∂
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x
w      (2.78b) 

at y = 0 or b (j = 0 or Q+1), 

0=w       (2.79a) 

0=⎟⎟
⎠

⎞
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⎛
∂
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y
w      (2.79b) 
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2.2.2. Completely Free Plate 

 
Figure 2.10 (a) and (b) show the distribution of nodes which F.D. equation 

applied at an edge and at a corner of the completely free plate respectively. Once 

again the projected deflections outside of the plate need to be expressed in term of 

the deflections at the internal nodes by using the boundary conditions. 

 

Figure 2.10 The node distribution for a completely free plate: (a) at the edge; (b) 
at the corner. 
 

The boundary conditions of a free edge are given in Leissa’s monograph [1]. 

Bending moment and vertical edge reaction at a free edge are zero. Those 

boundary conditions at the edges are expressed as, 

at x = 0 or a (i = 1 or P), 

02

2

2

2

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

y
w

x
w ν       (2.80a) 

02

3

3

3

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂∂
∂

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂ ∗

yx
w

x
w ν      (2.80b) 

at y = 0 or b (j = 1 or Q), 
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The above boundary conditions are not enough to cover all nodes outside of the 

plate at the corners. The following boundary condition at the corners [1], is also 

needed. 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂∂

∂
yx

w2

 = 0 (at the corners)    (2.82) 
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3. NUMERICAL RESULTS 
 

 

The numerical results obtained using the superposition method and the finite 

difference method (FDM) are presented in this chapter. The natural frequencies of 

fully clamped plates and completely free plates are given in the dimensionless 

form, Da ρωλ 22 = , which will be referred to as the eigenvalue. The 

eigenvalue is importantly related to plate aspect ratio (Φ = b/a) rather than the 

dimensions of plate. All eigenvalues were calculated by using the software Matlab 

in default double precision. 

 

3.1. The Superposition Method 
 

The eigenvalues of fully clamped plates and completely free plates obtained 

using the superposition method are presented in this section. To make comparison 

of results between the superposition method and the FDM easier, the eigenvalues 

obtained by the superposition method are multiplied by a factor of four because 

the frequency parameters for the plates used in the superposition method is based 

on quarter size of original plate dimensions, while in the FDM analysis the non-

dimensionalisation was done with respect to the full size of plate. This was done 

to facilitate comparison with published results. 

 

3.1.1. Fully Clamped Plate 

 

Table 3.1 shows the first 12 eigenvalues of fully clamped plates with aspect 

ratios 1.0 to 3.0 obtained by the superposition method. The two letters adjacent to 

the values express type of modal shapes. SS, AA, SA and AS mean that the mode 

is symmetric about both the x and y axes, antisymmetric about both axes, 

symmetric about the x-axis and antisymmetric about the y-axis, and antisymmetric 

about the x-axis and symmetric about the y-axis respectively. The eigenvalues in 
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different family of modes were calculated separately. Because of symmetry in the 

boundary conditions, the eigenvalues for the SS and AA modes need to be 

calculated for only aspect ratios Φ of one or greater. The eigenvalues for the SA 

modes, the aspect ratio varies from 1/3 to three due to lack of symmetry in the 

boundary conditions. The eigenvalues for SA mode for aspect ratio of 1/3 through 

to one would be the same as those for AS modes of the plates with aspect ratio of 

three through to one. 

The eigenvalues presented here were calculated by utilising 15 terms, i.e. 

effective matrix size of 60 × 60, which is adequate for convergence to four 

significant places. It will be proved in the following convergence tests. 

 

Table 3.1 The eigenvalues of fully clamped plates obtained by the superposition 
method ( Da ρωλ 22 = ). 

 Φ = b/a 
Mode 1 1.25 1.5 

1 35.99 SS 29.89 SS 27.01 SS 
2 73.39 52.51 AS 41.70 AS 
3 73.39 SA or AS 68.51 SA 66.13 SA 
4 108.2 AA 89.25 SS 66.52 SS 
5 131.6 SS 89.35 AA 79.81 AA 
6 132.2 SS 124.3 SA 100.8 AS 
7 165.0 127.5 SS 103.1 SA 
8 165.0 SA or AS 139.2 AS 125.3 SS 
9 210.5 147.5 AS 136.1 AA 

10 210.5 SA or AS 173.0 AA 138.6 AS 
11 220.0 SS 181.3 SS 144.2 SS 
12 242.2 AA 202.1 SS 161.2 SS 

       
 Φ= b/a 
Mode 2 2.5 3 

1 24.58 SS 23.64 SS 23.20 SS 
2 31.83 AS 27.81 AS 25.86 AS 
3 44.77 SS 35.42 SS 30.74 SS 
4 63.33 AS 46.67 AS 38.09 AS 
5 63.98 SA 61.49 SS 47.97 SS 
6 71.08 AA 63.08 SA 60.30 AS 
7 83.27 SA 67.39 AA 62.62 SA 
8 87.25 SS 74.78 SA 65.51 AA 
9 100.8 AA 79.76 AS 70.44 SA 

10 116.4 AS 85.43 AA 75.04 SS 
11 123.2 SS 99.46 SA 77.53 AA 
12 123.7 SA 101.4 SS 86.90 SA 
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Convergence test 

A number of convergence tests were carried out for a range of aspect ratios 

and modes. The results are shown as follows. From the tests, it can be seen that 

the rate of convergence for the superposition method is rapid, and all of them 

converge from below. 

 

 
Figure 3.1 Convergence test for the eigenvalues of fully clamped rectangular plate 
computed by the superposition method (Φ = 1.0) 

 

35.00

35.50

36.00

36.50

37.00

4 8 1216 2024 28 3236 4044 48 5256 60

Matrix size

λ,
 1

st
 m

od
e

73.00

73.10

73.20

73.30

73.40

73.50

λ,
 2

nd
 m

od
e

1st mode
2nd mode

72.00

73.00

74.00

75.00

4 8 12 16 2024 28 3236 4044 48 5256 60

Matrix size

λ,
 3

rd
 m

od
e

107.0

107.5

108.0

108.5

λ,
 4

th
 m

od
e

3rd mode
4th mode

131.0

131.5

132.0

132.5

4 8 1216 2024 28 3236 4044 48 5256 60

Matrix size

λ,
 5

th
 m

od
e

131.0

131.5

132.0

132.5

λ,
 6

th
 m

od
e

5th mode
6th mode

164.0

164.5

165.0

165.5

166.0

4 8 12 16 2024 28 3236 4044 48 5256 60

Matrix size

λ,
 7

th
 m

od
e

164.0

164.5

165.0

165.5

166.0

λ,
 8

th
 m

od
e

7th mode
8th mode

207.0

208.0

209.0

210.0

211.0

212.0

4 8 1216 2024 28 3236 4044 48 5256 60

Matrix size

λ,
 9

th
 m

od
e

207.0

208.0

209.0

210.0

211.0

212.0

λ,
 1

0t
h 

m
od

e

9th mode
10th mode

217.0

218.0

219.0

220.0

221.0

222.0

223.0

4 8 12 16 2024 28 3236 4044 48 5256 60

Matrix size

λ,
 1

1t
h 

m
od

e

238.0

239.0

240.0

241.0

242.0

243.0

λ,
 1

2t
h 

m
od

e

11th mode
12th mode



 31

 
Figure 3.2 Convergence test for the eigenvalues of fully clamped rectangular plate 
computed by the superposition method (Φ = 1.25) 
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Figure 3.3 Convergence test for the eigenvalues of fully clamped rectangular plate 
computed by the superposition method (Φ = 1.5) 
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Figure 3.4 Convergence test for the eigenvalues of fully clamped rectangular plate 
computed by the superposition method (Φ = 2.0) 

 

24.40

24.50

24.60

24.70

24.80

4 8 1216 2024 28 3236 4044 48 5256 60

Matrix size

λ,
 1

st
 m

od
e

31.60

31.70

31.80

31.90

λ,
 2

nd
 m

od
e

1st mode
2nd mode

44.00

44.50

45.00

45.50

4 8 12 16 2024 28 3236 4044 48 5256 60

Matrix size

λ,
 3

rd
 m

od
e

62.50

62.75

63.00

63.25

63.50

λ,
 4

th
 m

od
e

3rd mode
4th mode

63.00

63.50

64.00

64.50

65.00

4 8 1216 2024 28 3236 4044 48 5256 60

Matrix size

λ,
 5

th
 m

od
e

69.00

69.50

70.00

70.50

71.00

71.50

λ,
 6

th
 m

od
e

5th mode
6th mode

82.00

83.00

84.00

85.00

4 8 12 16 2024 28 3236 4044 48 5256 60

Matrix size

λ,
 7

th
 m

od
e

85.00

86.00

87.00

88.00

λ,
 8

th
 m

od
e

7th mode
8th mode

100.0

100.5

101.0

101.5

4 8 1216 2024 28 3236 4044 48 5256 60

Matrix size

λ,
 9

th
 m

od
e

115.2

115.7

116.2

116.7

λ,
 1

0t
h 

m
od

e

9th mode
10th mode

122.5

123.0

123.5

124.0

4 8 12 16 2024 28 3236 4044 48 5256 60

Matrix size

λ,
 1

1t
h 

m
od

e

120.5

121.5

122.5

123.5

124.5

λ,
 1

2t
h 

m
od

e
11th mode
12th mode



 34

 
Figure 3.5 Convergence test for the eigenvalues of fully clamped rectangular plate 
computed by the superposition method (Φ = 2.5) 
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Figure 3.6 Convergence test for the eigenvalues of fully clamped rectangular plate 
computed by the superposition method (Φ = 3.0) 
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3.1.2. Completely Free Plate 

 

The first 12 eigenvalues of completely free plates with aspect ratios 1.0 to 

3.0 obtained by the superposition method are shown in Table 3.2. The two letters 

adjacent to values express modal shapes. As with the case of the fully clamped 

plate, the eigenvalues in different family of modes were calculated separately. 

Making use of symmetry in the boundary conditions, the eigenvalues for the SS 

and AA modes need to be calculated for only aspect ratio Φ of one or greater. For 

the SA modes, the aspect ratio varies from 1/3 to three due to lack of symmetry in 

the boundary conditions. The eigenvalues for SA mode for aspect ratio from 1/3 

to one would be the same as those for AS modes of the plates with aspect ratio 

from three to one. All eigenvalues of the plate were computed with 15 terms. 

 

Table 3.2 The eigenvalues of completely free plates obtained by the superposition 
method ( Da ρωλ 22 = , ν = 0.3). 

 Φ = b/a 
Mode 1  1.25  1.5  

1 13.47 AA 10.76 AA 8.931 AA 
2 19.60 SS 13.59 SS 9.517 SS 
3 24.27 SS 22.39 SS 20.60 SA 
4 34.80 25.89 SA 22.18 SS 
5 34.80 SA or AS 30.38 AS 25.65 AS 
6 61.09 39.45 AS 29.79 AS 
7 61.09 SA or AS 50.30 AA 38.16 AA 
8 63.69 SS 51.49 SS 43.93 SS 
9 69.27 AA 60.94 SA 53.35 SS 

10 77.17 AA 69.49 AA 60.05 SA 
11 105.5 76.58 SS 64.92 SA 
12 105.5 SA or AS 80.48 AS 65.75 AS 

       
Mode 2  2.5  3  

1 5.366 SS 3.433 SS 2.382 SS 
2 6.644 AA 5.278 AA 4.375 AA 
3 14.62 SA 9.541 AS 6.617 AS 
4 14.90 AS 11.33 SA 9.244 SA 
5 22.00 SS 18.63 SS 13.03 SS 
6 25.38 AA 18.92 AA 15.07 AA 
7 26.00 AS 22.45 SS 21.31 AS 
8 29.68 SS 24.44 AS 22.23 SS 
9 36.04 SS 28.75 SA 22.29 SA 

10 40.05 SA 31.45 SS 24.35 AS 
11 48.45 AS 31.63 AS 28.67 SS 
12 50.58 AS 41.22 AS 31.23 AA 
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Convergence tests 

The results of convergence tests for the eigenvalues of completely free 

plates with aspects ratios 1.0 to 3.0 obtained by the superposition are shown 

below. The rate of convergence is as fast as that of the fully clamped plates. No 

change is found in the fourth decimal place once the effective matrix size reaches 

20 × 20. 

 

 
Figure 3.7 Convergence test for the eigenvalues of completely free rectangular 
plate computed by the superposition method (Φ = 1.0) 
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Figure 3.8 Convergence test for the eigenvalues of completely free rectangular 
plate computed by the superposition method (Φ = 1.25) 
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Figure 3.9 Convergence test for the eigenvalues of completely free rectangular 
plate computed by the superposition method (Φ = 1.5) 
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Figure 3.10 Convergence test for the eigenvalues of completely free rectangular 
plate computed by the superposition method (Φ = 2.0) 
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Figure 3.11 Convergence test for the eigenvalues of completely free rectangular 
plate computed by the superposition method (Φ = 2.5) 

 

3.430

3.432

3.434

3.436

3.438

3.440

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60

Matrix size

λ,
 1

st
 m

od
e

5.276

5.277

5.278

5.279

5.280

λ,
 2

nd
 m

od
e

1st mode
2nd mode

9.500

9.550

9.600

9.650

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60

Matrix size

λ,
 3

rd
 m

od
e

11.28

11.30

11.32

11.34

11.36

11.38

λ,
 4

th
 m

od
e

3rd mode
4th mode

18.45

18.65

18.85

19.05

19.25

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60

Matrix size

λ,
 5

th
 m

od
e

18.85

18.90

18.95

19.00

λ,
 6

th
 m

od
e

5th mode
6th mode

22.40

22.45

22.50

22.55

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60

Matrix size

λ,
 7

th
 m

od
e

24.35

24.40

24.45

24.50

λ,
 8

th
 m

od
e

7th mode
8th mode

28.70

28.75

28.80

28.85

28.90

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60

Matrix size

λ,
 9

th
 m

od
e

31.30

31.40

31.50

31.60

λ,
 1

0t
h 

m
od

e

9th mode
10th mode

31.40

31.60

31.80

32.00

32.20

32.40

32.60

32.80

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60

Matrix size

λ,
 1

1t
h 

m
od

e

41.10

41.15

41.20

41.25

41.30

41.35

λ,
 1

2t
h 

m
od

e

11th mode
12th mode



 42

 
Figure 3.12 Convergence test for the eigenvalues of completely free rectangular 
plate computed by the superposition method (Φ = 3.0) 
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3.2. The Finite Difference Method 
 

From the convergence tests in the section of the fully clamped plates using 

the superposition method, the eigenvalues were found to be lower bounds as 

expected. As the objective of this thesis is to find both upper bound and lower 

bounds for the natural frequencies of those plates, and the lower bound values 

using the superposition method seem to be accurate enough, the eigenvalues of 

fully clamped plate calculated by using the FDM have been omitted. Therefore, 

only the eigenvalues of completely free plates are presented in this section. 

 

3.2.1. Completely Free Plate 

 

The first 12 eigenvalues of completely free plates with aspect ratios 1.0 to 

3.0 obtained by the FDM are shown in Table 3.3. The maximum number of nodes 

used to compute the eigenvalues is limited to 55 × 55, i.e. 3025 simultaneous 

equations to solve, because of the software’s limitation.  
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Table 3.3 The eigenvalues of completely free plates obtained by the superposition 
method ( Da ρωλ 22 = , ν = 0.3). 

Convergence test 

The convergence tests were conducted for the eigenvalue of completely free 

plates with aspect ratio 1.0 to 3.0 obtained by the FDM as well. The results are 

shown below. As can be seen, all eigenvalues converge from below. 

 

 

 

 

 

 Φ = b/a 
Mode 1 1.25 1.5 

1 13.46 AA 10.75 AA 8.926 AA 
2 19.57 SS 13.57 SS 9.503 SS 
3 24.24 SS 22.36 SS 20.57 SA 
4 34.75 25.86 SA 22.15 SS 
5 34.75 SA or AS 30.34 AS 25.58 AS 
6 60.90 39.34 AS 29.73 AS 
7 60.90 SA or AS 50.15 AA 38.05 AA 
8 63.56 SS 51.39 SS 43.84 SS 
9 69.04 AA 60.74 SA 53.07 SS 

10 76.95 AA 69.27 AA 59.82 SA 
11 105.1 76.17 SS 64.63 SA 
12 105.1 SA or AS 80.23 AS 65.55 AS 

       
 Φ = b/a 
Mode 2 2.5 3 

1 5.358 SS 3.428 SS 2.379 SS 
2 6.640 AA 5.275 AA 4.373 AA 
3 14.60 SA 9.511 AS 6.596 AS 
4 14.85 AS 11.31 SA 9.233 SA 
5 21.97 SS 18.53 SS 12.96 SS 
6 25.31 AA 18.87 AA 15.04 AA 
7 25.96 AS 22.41 SS 21.16 AS 
8 29.53 SS 24.40 AS 22.19 SS 
9 35.97 SS 28.62 SA 22.19 SA 

10 39.86 SA 31.38 SS 24.29 AS 
11 48.16 AS 31.39 AS 28.60 SS 
12 50.33 AS 40.96 AS 31.02 AA 
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Figure 3.13 Convergence test for the eigenvalues of completely free rectangular plate computed by the finite difference method (Φ = 1.0) 
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Figure 3.14 Convergence test for the eigenvalues of completely free rectangular plate computed by the finite difference method (Φ = 1.25) 
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Figure 3.15 Convergence test for the eigenvalues of completely free rectangular plate computed by the finite difference method (Φ = 1.5) 
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Figure 3.16 Convergence test for the eigenvalues of completely free rectangular plate computed by the finite difference method (Φ = 2.0) 
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Figure 3.17 Convergence test for the eigenvalues of completely free rectangular plate computed by the finite difference method (Φ = 2.5) 
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Figure 3.18 Convergence test for the eigenvalues of completely free rectangular plate computed by the finite difference method (Φ = 3.0) 
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4. DISCUSSION 
 

 

The free vibration analyses of the fully clamped and completely free 

rectangular plates were carried out by using the superposition method and the 

finite difference method (FDM). All calculated eigenvalues of both fully clamped 

and completely free plates converge as shown in the previous chapter. However, 

the direction of convergence in the superposition method depends on the 

boundary conditions of the actual plates and those of the building blocks, and 

there is a significant difference in the rate of convergence between the 

superposition method and the FDM. 

 

4.1. Fully Clamped Plate 
 

As Figure 3.1 to 3.6 shows, the eigenvalues of fully clamped plate computed 

by the superposition method converge as the matrix size is increased. The rate of 

convergence is remarkably rapid. All eigenvalues of the fully clamped plates have 

no change in fourth digit when the effective matrix size is more than 28 × 28. All 

of those convergences occur from below, which appear to be lower bounds. This 

confirms the prediction in a recent publication, which is that the superposition 

method would give a lower bound for the eigenvalues if its building blocks have 

more flexible boundary conditions than those of the system being modelled [4].  

In the literature [1], first ten eigenvalues of the fully clamped plates for 

various aspect ratios are available, which are retrieved from Claassen and 

Thorne’s publication [8]. Those values are expected to be upper bounds. Bazley, 

Fox and Stadter also give accurate upper bounds and lower bounds for the 

frequencies of doubly symmetric mode of fully clamped plates [9]. The 

eigenvalues obtained by the superposition method are compared with the values in 

reference [1] and shown in Table 4.1, which gives the upper bounds and lower 

bounds of natural frequencies of the fully clamped rectangular plates. There is 

almost no difference between the upper bounds and the lower bounds in fourth 
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digit number. This shows that exact results have been delimited accurately, in 

most cases to the fourth significant place. 

 

Table 4.1 The lower bound and the upper bound for the eigenvalues of fully 
clamped rectangular plates with an aspect ratio of 1:3 ( Da ρωλ 22 = ) [8],  
*: [9] 
 1 1.25 1.5 

Mode 

Lower 
bound 
(SM) 

Upper 
bound 

[8]  

Lower 
bound 
(SM) 

Upper 
bound 

[8]  

Lower 
bound 
(SM) 

Upper 
bound 

[8]  
1 35.99 35.99 SS 29.89 29.89 SS 27.01 27.01 SS 
2 73.39 73.39 52.51 52.51 AS 41.70 41.71 AS 
3 73.39 73.39 

SA or 
AS 68.51 68.51 SA 66.13 66.13 SA 

4 108.2 108.2 AA 89.25 89.26 SS 66.52 66.53 SS 
5 131.6 131.6 SS 89.35 89.35 AA 79.81 79.81 AA 
6 132.2 132.2 SS 124.3 124.3 SA 100.8 100.8 AS 
7 165.0 165.0 127.5 127.5 SS 103.1 103.1 SA 
8 165.0 165.0 

SA or 
AS 139.2 139.2 AS 125.3 125.3 SS 

9 210.5 210.5 147.5 147.5 AS 136.1 136.1 AA 
10 210.5  

SA or 
AS 173.0 173.0 AA 138.6 138.6 AS 

11 220.0 *220.1 SS 181.3 *181.3 SS 144.2 *144.2 SS 
12 242.2 242.2 AA 202.1 *202.1 SS 161.2 *161.2 SS 

          
 2 2.5 3 

Mode 

Lower 
bound 
(SM) 

Upper 
bound 

[8]  

Lower 
bound 
(SM) 

Upper 
bound 

[8]  

Lower 
bound 
(SM) 

Upper 
bound 

[8]  
1 24.58 24.58 SS 23.64 23.64 SS 23.20 23.20 SS 
2 31.83 31.83 AS 27.81 27.81 AS 25.86 25.86 AS 
3 44.77 44.77 SS 35.42 35.42 SS 30.74 30.75 SS 
4 63.33 63.33 AS 46.67 46.67 AS 38.09 38.11 AS 
5 63.98 63.98 SA 61.49 61.50 SS 47.97 48.00 SS 
6 71.08 71.08 AA 63.08 63.08 SA 60.30 60.35 AS 
7 83.27 83.27 SA 67.39 67.39 AA 62.62 62.62 SA 
8 87.25 87.25 SS 74.78 74.78 SA 65.51 65.51 AA 
9 100.8 100.8 AA 79.76 79.76 AS 70.44 40.45 SA 

10 116.4 116.4 AS 85.43 85.43 AA 75.04  SS 
11 123.2 *123.3 SS 99.46  SA 77.53 77.55 AA 
12 123.7  SA 101.4  SS 86.90  SA 
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4.2. Completely Free Plate 
 

Eigenvalues of the completely free plates for aspect ratios 1.0 to 3.0 were 

computed by using the superposition method and the FDM, and convergence tests 

were carried out for all the above aspect ratios and modes. Results of the tests are 

presented in Figure 3.7 through to Figure 3.18. As can be seen from these figures, 

both methods give results that converge as the matrix size is increased. The rate of 

convergence of the FDM is significantly slower than that of the superposition 

method but for all cases tested the convergence was from below as predicted by 

Weinberger [5]. However, the results of tests for the FDM show that some 

unexpected higher eigenvalues are found around small number of matrix size in 

Figure 3.16, 3.17 and 3.18. It is considered that the FDM does not give reliable 

results for higher modes with small number of nodes (coarse meshes) because 

there are not enough mesh points to express higher modal shapes.  

The work shows that Gorman’s superposition method gives excellent 

convergence in its results for the eigenvalue with only 20 terms. These results also 

confirm the prediction in a recent paper [4] that Gorman’s results are expected to 

be upper bounds for a free plate. Thus the exact natural frequencies of a 

completely free plate are bracketed by the results of the method of superposition 

and the FDM. These results are shown in Table 4.2. 
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Table 4.2 The lower bound and the upper bound for the eigenvalues of completely 
free rectangular plates with an aspect ratio of 1:3 
( Da ρωλ 22 = , ν = 0.3) 

 1 1.25 1.5 

Mode 

Lower 
bound 
(FDM) 

Upper 
bound 
(SM)  

Lower 
bound 
(FDM) 

Upper 
bound 
(SM)  

Lower 
bound 
(FDM) 

Upper 
bound 
(SM)  

1 13.46 13.47 AA 10.75 10.76 AA 8.926 8.931 AA 
2 19.57 19.60 SS 13.57 13.59 SS 9.503 9.517 SS 
3 24.24 24.27 SS 22.36 22.39 SS 20.57 20.60 SA 
4 34.75 34.80 25.86 25.89 SA 22.15 22.18 SS 
5 34.75 34.80 

SA or 
AS 30.34 30.38 AS 25.58 25.65 AS 

6 60.90 61.09 39.34 39.45 AS 29.73 29.79 AS 
7 60.90 61.09 

SA or 
AS 50.15 50.30 AA 38.05 38.16 AA 

8 63.56 63.69 SS 51.39 51.49 SS 43.84 43.93 SS 
9 69.04 69.27 AA 60.74 60.94 SA 53.07 53.35 SS 

10 76.95 77.17 AA 69.27 69.49 AA 59.82 60.05 SA 
11 105.1 105.5 76.17 76.58 SS 64.63 64.92 SA 
12 105.1 105.5 

SA or 
AS 80.23 80.48 AS 65.55 65.75 AS 

          
 2 2.5 3 

Mode 

Lower 
bound 
(FDM) 

Upper 
bound 
(SM)  

Lower 
bound 
(FDM) 

Upper 
bound 
(SM)  

Lower 
bound 
(FDM) 

Upper 
bound 
(SM)  

1 5.358 5.366 SS 3.428 3.433 SS 2.379 2.382 SS 
2 6.640 6.644 AA 5.275 5.278 AA 4.373 4.375 AA 
3 14.60 14.62 SA 9.511 9.541 AS 6.596 6.617 AS 
4 14.85 14.90 AS 11.31 11.33 SA 9.233 9.244 SA 
5 21.97 22.00 SS 18.53 18.63 SS 12.96 13.03 SS 
6 25.31 25.38 AA 18.87 18.92 AA 15.04 15.07 AA 
7 25.96 26.00 AS 22.41 22.45 SS 21.16 21.31 AS 
8 29.53 29.68 SS 24.40 24.44 AS 22.19 22.23 SS 
9 35.97 36.04 SS 28.62 28.75 SA 22.19 22.29 SA 

10 39.86 40.05 SA 31.38 31.45 SS 24.29 24.35 AS 
11 48.16 48.45 AS 31.39 31.63 AS 28.60 28.67 SS 
12 50.33 50.58 AS 40.96 41.22 AS 31.02 31.23 AA 
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In Table 4.3, the eigenvalues obtained by using the FDM are compared with 

the results published in Leissa’s review [1]. The upper bound and lower bound 

results by Leissa were taken from [10]. It is seen that the results of the FDM are 

lower than published upper bounds but higher than the lower bounds. The present 

results are higher than the previously published lower bounds and very close to 

the upper bounds indicating these may be the best lower bound solutions available 

to date. 

 
Table 4.3 Comparison of eigenvalues obtained by the 
FDM with those in Leissa’s monograph [1] for the 
doubly antisymmetric modes of the square free plate (ν 
= 0.3) 

 
Present Leissa[1] 

  
Lower 
bound 

Upper 
bound 

b/a = 1 
13.46 13.092 13.474 
69.04 66.508 69.576 
76.95 75.146 77.411 

b/a = 1.25 
10.75 10.479 10.761 
50.15 48.352 50.487 
69.27 67.665 69.746 

b/a = 1.5 
8.926 8.6667 8.9351 
38.05 36.651 38.294 
66.50 64.844 66.965 

b/a = 2 
6.640 6.4563 6.6464 
25.31 24.417 25.455 
58.32 56.151 59.051 
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5. CONCLUSION and RECOMMENDATIONS 
 

 

The eigenvalues of fully clamped and completely free rectangular plates 

with various aspect ratios were computed by using the superposition method and 

the finite difference method (FDM). The upper bounds and lower bounds for the 

eigenvalues of these plates were successfully obtained. 

The superposition method has given the lower bound for the eigenvalues of 

fully clamped plates. Almost no difference was noted between these values and 

those upper bound values in the early literature but the superposition method 

converged significantly faster than all other procedures. 

The results by the FDM appear to be the best lower bounds for the 

eigenvalues of completely free rectangular plates available so far, and there is 

excellent agreement between these results and those upper bound values found by 

the superposition method. The exact results for the completely free plates have 

therefore been bracketed between these results. The FDM results seem to 

converge to exact eigenvalues of the plates as the mesh size approaches to zero. 

The rate of convergence, however, is slower than that of the superposition method. 

The FDM does not give reliable results for higher modes with small number 

of nodes (coarse meshes) because there are not enough mesh points to express 

higher modal shapes. The maximum number of nodes used to compute the 

eigenvalues is limited to 55 × 55 due to the software or memory limitations. It is 

expected that closer values to exact eigenvalues of the plate would be obtained if 

more nodes are used. The work also shows that Gorman’s superposition method 

gives excellent convergence for the eigenvalues with only 20 terms. 

The results presented in this thesis could be useful to give an estimate of the 

maximum possible error in the values of the natural frequencies of fully clamped 

and completely free plates. 

The methods used in this thesis can also be applied to more complex 

vibration problems, for example, orthotropic plates, shells and also for the 

determination of buckling loads. It is recommended that where possible the 

superposition method be used to obtain eigenvalues because of its rapid rate of 
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convergence and accuracy. It is also recommended that further research be carried 

out to investigate the possibility of using the superposition method for the 

determination of eigenvalues of more complicated systems such as shells. 
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Appendix I: Theory of Thin Rectangular Plate 

 

 

The elementary theory of the elastic bending of beams is well known. This 

leads in the case of pure bending about principal axes to the familiar formula, 

2

2

dx
wdEIM −= , where M is the bending moment, E Young’s modulus, w the 

transverse deflection and x the longitudinal co-ordinate. A similar relationship can 

be obtained for a plate. 

 

Figure A1. 1. The elastic bending of a beam 
 

In Elementary theory of elastic plates [11], Jaeger presents a comprehensive 

and a simple deviation of the plate bending theory. For convenience and 

completeness, the relevant parts are presented here. Consider the case of a 

rectangular plate subjected to distributed moments, shown in Figure A1. 2. 

Considering an infinitesimal element of the plate (Figure A1. 3a), the middle 

surface is taken as the neutral surface and it is assumed that the cross section 

(plane perpendicular to the middle surface) still remain flat after bending (Figure 

A1. 3b). Then, the longitudinal strains in both x and y directions; εx and εy are 

proportional to the distance z from the neutral surface. For the elastic behaviour, 

stress is, therefore, also proportional to z. 

Figure A1. 2 A rectangular plate subjected to distributed moments 
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Figure A1. 3 A small piece of the plate 
 

If a distributed moment Mx is applied on the plate only through normal stress 

distribution in the direction parallel to the y axis (Figure A1. 4a), the stresses at 

the surface ABCD will be given by kzx =σ , 0=yσ , where k is some constant 

(Figure A1. 4b). The constant k can be found by equating the applied moment Mx 

to the resisting elastic moment per unit length. This gives 

12

32

2

2 khdzkzM
h

hx == ∫− , and so 3

12
h
M

k x=     (A1.1) 

where h is the plate thickness. 

 

Figure A1. 4 The plate applied a distributed moment only in the direction parallel 
to the y axis 
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The stress σx is also given by xx Eεσ = , where εx is the strain in the x direction. 

This gives, 

x
x

x Ez
h
M

εσ == 3

12
       (A1.2) 

From Figure A1. 3b, εx will be  

( )
R
z

R
RzR

x =
−+

=
θ

θθε       (A1.3) 

From Equations A1.2 and A1.3 

3

121
Eh

M
R

x=         (A1.4) 

For small deflections, 2

21
x
w

R ∂
∂

−= , then 

32

2 12
Eh

M
x
w x−=

∂
∂         (A1.5) 

There will also be a strain in the y direction due to the Poisson’s ratio effect. 

The strain εy should be given by εy = -νεx, where ν is the Poisson’s ratio. This 

leads to the following relationship. 

32

2 12
Eh

M
y
w xν=

∂
∂         (A1.6) 

From the relationship of Equations A1.5 and A1.6, if the distributed moment Mx is 

applied on the plate in the direction parallel to the y axis, it will produce the 

curvature of the plate not only in the xw plane but also in the perpendicular plane 

yw. The curvature in the yw plane is ν times of the curvature in the xw plane and 

of opposite sign. Thus a sagging moment of Mx per unit length produces sagging 

curvature in the xw plane and hogging curvature in yw plane as shown in Figure 

A1. 5. 

 

Figure A1. 5 The plate applied a sagging moment 
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Mx 
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From the above argument and using the principle of superposition, it is 

possible to obtain the curvature of the plate when applying moments per unit 

length Mx and My simultaneously. The contribution of Mx and My to the curvature 

in the xw plane are 12Mx/Eh3 and –ν12My/Eh3 respectively. 

Hence,  

( )yx MM
Ehx

w ν−=
∂
∂

− 32

2 12      (A1.7a) 

Similarly 

( )xy MM
Ehy

w ν−=
∂
∂

− 32

2 12      (A1.7b) 

Rearranging Equations A1.7, the moment Mx and My will be expressed in terms of 

the curvature as follows. 
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and 
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where ( )2

3

112 ν−
=

EhD  and it is called the plate rigidity. 

 

So far the situation where only the bending moment applied on the plate was 

considered. In general, equilibrium of plate requires the presence of bending and 

twisting moment in any direction. In the following part, the general case will be 

examined and the relationship between twisting moments and twisting curvatures 

will also be established. 

Bending moments Mx and My, and twisting moment Mxy are applied to a 

plate (Figure A1. 6a). Considering the equilibrium of the wedge, some bending 

moment Mn and twisting moment Mnt are acting on arbitrarily chosen plane as 

shown in Figure A1. 6b. Let the n, t axes be at an angle α to the x, y axes.  
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Figure A1. 6 The plate bending moments Mx and My, and twisting moment Mxy are 
applied 
 

Taking moment around the t axis then gives, 
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Similarly taking moments about the n axis gives, 
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To obtain maximum or minimum of Mn, let 0=
∂
∂
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02cos22sin
2

2 =−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
− αα xy

yx M
MM

   (A1.9c) 

Thus  

( )yx

xy

MM
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−

−
=

2
2tan α       (A1.9d) 

It should be noted that from EquationsA1.9b and c, Mnt will be zero when 

Mn is maximum or minimum. The twisting moment is absent only on these two 

orthogonal sections, which are called principal sections. The form of Equations 

A1.9c and d are identical with that obtained when considering stress at a point and 

finding direct and shear stresses in various directions. The bending moment and 
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twisting moments at a point in a plate may therefore be represented on a Mohr’s 

circle as shown in Figure A1. 7. 

From Equation A1.9d 

( ) 22 4
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and 

( )
( ) 22 4

2cos
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Hence, Equation A1.9a becomes, 

( ) ( ) 22 4
2
1

2 xyyx
yx

n MMM
MM

M +−+
−

=    (A1.11a) 

Similarly, Equation A1.9b becomes, 

0=ntM         (A1.11b) 

 

Figure A1. 7 The Mohr’s circle presenting the bending moment and twisting 
moments at a point in a plate 
 

 

From Figure A1. 7, 
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Also, 
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Because n, t are the principal directions (Mnt = 0), then 
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By simply repeating differentiation and algebraic manipulations, the relationship 

between twists and curvatures, which are represented by on a Mohr’s circle as 

shown in Figure A1. 8 and the following equations, can be obtained. 
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Figure A1. 8 The Mohr’s circle presenting twists and curvatures at a point in a 
plate 

 

 

From Equations A1.12c, d and A1.13c, 
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In addition, Equations A1.12a and b leads to the following equations, 
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Adding and subtracting Equations A1.13, 
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By using Equations A1.8 
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Substituting Equations A1.17 onto Equation A1.15a, and using the relationship of 

Equations A1.16 
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Similarly, 
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Thus, the following Equations are always true not only in the principal direction 

but in any direction. 
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Next, the rectangular plate under transverse loading is considered. Figure A1. 

9a shows an element δx × δy of the plate on which shear stress per unit length Qx 

and Qy etc. are working. The bending and twisting moments acting on the element 

are also shown in Figure A1. 9b. 

 

 

Figure A1. 9 An element δx × δy of the plate on which shear stress and bending 
and twisting moments are acting 
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Taking vertical reaction of the element gives, 
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Taking moments about an axis parallel to the x axis gives, 
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Similarly about y axis, 
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Assuming that Mx, My and Mxy are related to the deflection w and substituting 

Equations A1.19 into above Equations gives, 
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and similarly 
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Substituting for Qx and Qy in Equation A1.20 from Equations A1.22, 
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Equation A1.23 is the governing equation of the rectangular plate under transverse 

loading q per unit area. 
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