
Working Pap er Series
ISSN 11 70-487X

The Design of an Optimistic
AND-Parallel Prolog

by John G. Cleary & Ian Olthof

Working Paper 93 I 6

October, 1993

© 1993 by John G. Cleary & Ian Olthof
Department of Computer Science

The University of Waikato
Private Bag 3105

Hamilton, New Zealand

The Design of an Optimistic AND-Parallel Prolog

Ian Olthof*
John G. Clearyt

October 26, 1993

Abstract

A distributed AND-parallel Prolog implementation is described. The system can correctly bandle all pure
Prolog programs. In particular, it deals with the problem of distributed backtracking. Conflicts in variable
bindings are resolved by assigning a Lime value to every unification. Bindings with smaller Lime values are given
precedence over those with larger Lime values. The algorithm is based on the optimistic Tune Warp system,
with Prolog-specific optimizations. These optimizations include two new unification algorithms lhat permit
unification and ~acktracking in any order. The result is a system which can fully exploit the parallelism available
in both dependent and independent AND-parallelism.

1 Introduction

Many parallel implementations of Prolog and other logic prograimning languages already exist. Of those
exploiting AND-parallelism, most either fail to extract as much parallelism as possible, or in attempting to extract
that parallelism, give up the logical semantics of Prolog. The Time Warp model [Jefferson & Sowizral 1985) is
used here as a basis for combining independent ai1d dependent AND-parallelism with backlracking, thus achieving
maximum parallelism while retaining Prolog's logical semMtics.

The major hurdle in the successful exploitation of AND-parallelism is in handling backtracking in the presence
of shared variables. The na ve met11od of auacking this problem would be to avoid sharing altogether, having
each goal compute its own solutions independenlly and combining them afterward to find the complete solutions.
This method is seen to be infeasible [Conery 1987, DeGroot 1984]; thus, some other approach must be taken.

One approach-that taken by the independent AND-parallel systems-achieves parallelism by running inde­
pendent goals concurrently. Dependent goals-that is, goals that share variables-are run sequentially, usually
using some form of backtracking to produce all solutions. Parallelism is thus restricted to goals known to be
independent. Such knowledge may be gained staticaJly, dynamically, or by a combination of both.

Kale's REDUCE-OR Process Model [Kale 1985] uses static analysis to produceMnotations (specifically, data
join graphs) to control parallel execution. Such analysis must be conservative t0avoid pitfalls like aliased variables
that could result in dependent goals running in parallel. Conery's AND-OR process model [Conery 1987) uses
dynainic Malysis and needs no annotations. Bee,1use goal independence is detennined at run lime, independent
parallelism is maximized, though at the cost of a high run-time overhead. DeGroot's Restricted AND-Parallelism
(RAP) model [DeGroot 1984) takes a hybrid approach, combining aimotations generated at compile time with
simple run-lime checks for independence to handle difficult c.1.Ses.

The concurrent logic programming (CLP) languages take the opposite approach, trying to maximize paral­
lelism by allowing all goals-including those tllat share variables-to execute concurrently, while disallowing
backtracking. The fonn of parallelism exploited by these lMguages, combining independent and dependent par­
allelism, is known as stream AND-parallelism [Conery & Kibler 1985): shared variables act as couununication

• Author's address: Depanmenl of Computer Science, University of Calgary, 2500 University Dr. NW. Calgary, CANADA, TIN IN4.
Email: o l thof@cpsc. uca lga ry. ca

I Author's address: Deparunenl of Computer Science, Universi ty of Waikato, Hamilton, NEW ZEALAND.
Email:cleary@w.;ikato.ac. nz

channels between processes (goals). All goals-even I.hose wil.h variables in common-may execute concurrently.
Languages in I.his class include PARLOG [Clark & Gregory 1986], Concurrent Prolog [Shapiro 1987), and GHC
[Ueda 1987) and I.heir "flat" versions; newer languages like Strand [Foster & Taylor 1990] have recently come on
the scene as well.

Finally, I.he backtracking srream AND-parallel models feature both parallel execution of dependent and
independent goals and backtracking, at the cost of execution algorithms rat.her more complex than those in the
other two classes. The effort here is to gain I.he best of bol.h worlds, achieving maximum parallelism but still
allowing all solutions to be found. For several years, combining the two was deemed impractical. Recently,
however, a number of algorithms have been published that combine stream AND-parallelism and backtracking
[Cleary et al 1988, Pereira et al 1986, Somogyi et al 1988, Tebra 1987).

Central to all of l.hese algorithms (either implicilly or explicilly) is I.he notion of imposing a total ordering on
the goals executed by the system. The natural temporal goal ordering of sequential Prolog is what allows i t to
backtrack successfully, but in a distributed environment, there is no such ordering readily available. Thus, some
ordering must be imposed artificially.

The ordering is used to detem1ine I.he precedence of a goal: I.he earlier it appears in the ordering, the higher
its precedence. If two goals disagree on tl1e value of a binding, I.he binding made by I.he higher-precedence goal is
accepted; the lower-precedence goal must retract its binding and recompute. When a lower-precedence goal can
find no solution, it may ask a higher-precedence goal to recompute its bindings.

Some systems, like those of [Pereira et al 1986] and [Tebra 1987]. retain I.he depth-first ordering of sequential
Prolog. 01.hers, like I.hat of [Somogyi et al 1988), base I.he ordering on producer/consumer relationships between
goals. The least restrictive algorithm is I.hat of [Cleary et al 1988]: any ordering will suffice.

Our algorithm is based on that given in [Cleary et al 1988] and [011.hof 1991], with optimizations suggested in
those earlier works correclly incorporated into the main algorithm. The algorithm combines a number of desirable
features. Like Tebra's design, execution is optimistic, allowing fully parallel execution of dependent goals. Like
Somogyi 's algorithm, ours is based on message passing, allowing its direct implementation on distributed-memory
as well as shared-memory platfonns. It is also a highly-optimized algoril111n which minimizes wasted work by
exploiting I.he regularity of Prolog to optimize Time Warp. Finally, because of its use of timestamped bindings, it
is simple to add intelligent backtracking (based on the technique given in [Mannila & Ukkonen 1986)).

The next section provides an outline of virtual time and Time Warp, on which our AND-parallel Pro log system
is based. Virtual times provide a total ordering on I.he goals in an execution, and Tune Warp's rollback mechanism
offers an undo operation. Section 3 introduces I.he distributed Prolog algorithm itself, describing the data structures
and messages used, after which an execution model is given. Two specialized unification algorithms, designed lo
optimize the execution of t11e system, are described in Section 4. Section 5 illustrates the execution of an example
contrived to demonstrate I.he behavior of all phases of execution. This is followed by a detailed description of I.he
algorithm in Section 6. Section 7 outlines a number of furl.her optimizations to I.he basic algorithm. Section 8
derives some simple results on I.he amount of parallelism I.hat can be extracted by considering the limit when I.he
overheads of the algorit11m are negligible. Finally, Section 9 summarizes the work.

2 AND-Parallelism Using Virtual Time

A virtual time system [Jefferson 1985) imposes on a computation a temporal coordinate system; all events in I.he
computation are viewed in tenns of t11is coordinate system. Each process has its own local vinual lime (LVD;
each event receives its own Limestamp based on I.he current LVT. Time increases wil.h each event, and execution
is finished when all processes have a local virtual time of +oo (i.e. the global virtual time (GVD is +oo).

Virtual time is domain-specific and need not be related to real Lime. For example, in distributed simulation,
I.he natural basis for virtual time is simulation time. In a Prolog system, an ordering based on I.he search tree can
be used to constr11ct a virtual time system.

One of two strategies may be used to ensure t11at I.he ordering wil.hin a distributed virtual time system is
correct The consen,ative strategy defers I.he processing of ru1 event umil it is certain that no ol.her event with an
earlier virtual time I.hat can affect it is yet to be processed. Conversely, I.he op1imistic strategy allows an event lo
be processed immediaiely, on I.he (optimistic) assumption llrnt I.he real-time order of processing will agree with

2

the virtual-time event ordering. If at some point in a computaLion IJ1is assumption is found to be false, some form
of order repair must occur.

Optimistic distributed systems have been shown [Fujimoto 1990] Lo be significantly more efficient for dis­
tributed simulation than conservative ones. In ilie case where ilie optimistic assumption is correct and no order
repair is necessary, opLimism clearly provides more potential parallelism. Even in ilie case where order repair is
necessary, a process in a conservative system would have to wait until IJ1e out-of-order message arrived anyway.

The Time Warp mechanism [Jefferson & Sowizral 1985] was used in the first optimistic implementation of a
virtual lime system. This implementation was designed wiili parallel simulation in mind, but the ideas behind
it can be applied as well to parallel Prolog. In a Time Warp system, each simulation event is associated with a
message. Receiving an incoming message corresponds to processing the associated event. An outgoing message
schedules an event at some process.

The key component of IJ1e Time Warp mechanism is rollback, which is used to return IJ1e computation to an
earlier state so iliat an incorrect ordering can be repaired. When a message arrives out of order at a Tune Warp
process, the process performs a rollback to t11e virtual time of the message (given by its limestamp); then, forward
execution starts again, processing the incoming messages in IJ1e correct order. To accomplish a rollback to a given
time, a process must perform several operations:

• it must "unreceive" already-received messages whose timestamp is greater IJ1an IJ1e given lime;

• it must cancel outgoing messages whose timestamp is greater than the given time;

• it must restore its internal state to what it was at a time just before ilie given time.

Clearly, then, some fonn of state-saving is necessary. A Time Warp process uses iliree queues to do this: an
input queue (IQ), an output queue (OQ), ru1d a state queue (SO). The IQ contains (in timestamp order) incoming
messages for ilie process. The 00 holds nega1ive copies of all messages sent out by IJ1e process; a message
is cru1celled simply by sending out its corresponding negaLive message (or anti-message). The SQ contains
"snapshots" of the process at various virtual times; the internal state can be reconstructed using these snapshots.

Receipt of an anti-message may also cause a rollback. If its corresponding positive message is on the IQ but
not yet received, the two messages can just "annihilate" each other; if the positive message has been received, the
system must perfonn a rollback to the time of that message before rumihilation may occur.

3 Distributed Prolog Algorithm

In examining our distributed Prolog algorithm, we begin with a high-level description of the basic algorithm. We
describe ilie stack and ancillary data structures necessary to implement ilie algorithm. Next, tbe message types
required by the algorithm and ilieir behaviour in the message queues is considered. Finally, we give an execution
model in the form of a state diagram. Sections 5 and 6 are closely related, the fonner giving an example of parallel
execution and the latter providing a detailed description of the algoriilim.

3.1 High-Level Description

Our algorithm is based on the Time Warp system. Each unification corresponds to a Time Warp event and each
communication of binding infonnation corresponds to a Time Warp message. Each solver (process) works on
its own part of the whole computation, alternating local execution and message processing. As with basic Time
Warp, each event and message is uniquely timestamped.

Local execution may process forward (goal selection, clause selection, and unification) or backward (back­
tracking). When a unification results in shared variables being bound, a BIND message is sent to each oilier solver
sharing one or more of these variables. When backtracking causes bindings of shared variables to be retracted, an
ANTI-BIND message is sent out to each solver that shares such a backtracked variable, so that the original BIND
is annihilated. In a similar fashion, goals are allocated via GOAL messages and withdrawn via ANTI-GOAL
messages. Finally, a distributed Prolog execution occasionally requires IJ1at a solver be able to force anoilier to
backtrack. This requirement is met by using a FAIL message, which is not a Time Warp message-it bas no
anti-message counterpart.

3

chil J

s1b1°tng
-·+ parent

./
,,,,,, . .,,,,,,...

. /;
........

' ' ' ' ' ' ' ' '

•
I
' I
' \
' \
'
\

' '

timestamo

orialnator

aoal

C!dUSe list

\
marker

oaren t
~

siblina

child

1
uniaue ID

subooal list

variables

t

I
I

I
I

I
I

I
I

Figure 1: Stack structure and frame contents

I

This basic algorithm was first proposed by [Cleary er al 1988) and implemented in [Olthof 1991). Test results
from the latter exhibited good perfonnance (as measured by the number of unifications perfonned) for deterministic
test programs, but shallowly- and deeply-nondetenninisticprograms ran less successfully. These results motivated
a careful examination of the optimizations first proposed in [Cleary et al 1988). 1l1is examination culminated in
the unification algorit11ms of Section 4 and in the full Prolog algorithm of Section 6.

3.2 Stack and Ancillary Structures

Like most sequential Prologs, the local execution of our algoritlun is based around a stack. Specifically, each
process in the distributed system uses its own stack, executing local goals sequentially and communicating with
ot11er processes in tJ1e system. The sequcmial interpreting engine is based on that given in [van Emden 1984).
Entries on the stack are frames. local frames are created during the nonnal process of forward execution. Remote
frames are created by the arrival of messages. The values in such a frame are inherited from some frame in another
process. The main role of remote frames is to function as placekeepers for backtracking. When backtracking
arrives at a remote frame, it is redirected to the remote originating frrune.

Each frame is divided into two parts, one containing infonnation related to its associated goal, and the other
with that related to the currentJy-selected clause for that goal. TI1ese parts are referred to respectively as goal
frames and clause frames. Frames are kept on the stack in timestrunp order: the frame with the earliest limestamp
is at the bottom of the stack; that with the latest timestamp is on the top. For local frames, this timestamp order
is exactJy the depth-first order; the distinction comes from the remote frames, which are interspersed among the
local frames in the timestan1p ordering.

The stack structure and the contents of each frame are illustraied in Figure 1. Each goal frame contains several
components:

• 1l1e timesramp is the virtual time at which the frame's associated goa.l is executed.

4

• The originator is used in a remote frame to contain Lhe ID of tl1e process whose stack contains Ille originating
frame. Ta.ken togetller witll tl1e timestamp and unique ID, tl1e originating frame can be unambiguously
identified from tllis process ID. In a local frame, Lhe originator is set to tlle local process ID.

• The goal is itself stored in the frame.

• The clause list identifies Ille clauses available to be unified witll Ille goal.

• The marker contains a timestamp and is used to optimize Ille processing of ANTI-BIND messages. The
t.imestamp refers to lbe time of a frame lower on Ille local stack. Each of tlle frames between (and including)
Ille current frame and tllat referred to by Ille t.imestamp must be handled specially on backtracking. All
unselected clauses must be revisited, ratl1er Lhan just those following tl1e current selection.

• The child, parent, and sibling pointers denote various related clause frames. The child pointer refers to tlle
goal frame's associated clause frame ru1d provides access LO clause variables on unification. The parent
pointer refers to tl1e clause frame for which Ille local goal is a body goal, and provides access to tlle parent
clause's variables (i.e. I.he goal variables) on unification. The sibling pointer refers to Ille frame in Ille stack
just above Ille current one, ru1d tl1us to Ille next frame to backtrack on failure of Ille current goal.

Each clause frame also contains several components:

• 'The unique ID distinguishes Ille frrune from any otller frame witll Ille same virtual time. This is necessary
because timestamps can be reused after a rollback or backtrack. For example, if a clause for some goal is
backtracked and anotller clause chosen, Ille frame witll Ille old clause and I.hat witll Ille new will have Ille
same timesc.amp. Since messages may arrive late, a message intended to affect an old frame may errantly
affect a new one instead. 1lws tllese frames must be disrunbiguated; a simple integer counter for each
process suffices.

• The subgoal list is a list of I.he goals in Ille body of tl1e current clause. (For a remote frame, tllis list is
empty.)

• The variable space contains allocated storage for each variable local to ilie clause.

This frrune structure could be optimized considerably, particularly in Ille case of remote frames. We defer
such optimization in order to concentrate on tlle distributed execution algoritllm.

In addition to tlle stack strucLUre, each process must maintain several oilier pieces of state information. These
include Ille following:

• Ille network addresses of itself and processes witll which it couununicates

• tlle current local virtual time (LVT)

• an integer counter for numbering stack frrunes (see above)

• an input queue (IQ) to bold incoming messages (see below)

• a list of goals to be executed (goaLlist)

3.3 Messages and Message Queues

We have chosen to describe Ille algorithm in Lerms of message passing ratller tllan, say, a shared memory
paradigm. This is done to ensure tllat U1e algoritlnn cru1 be applied Lo a wide range of machines. It should also be
straightforward to translaLe tlleaJgoritllm to one which uses shared memory directly.

In a message passing system, variable bindings must be disseminated explicitly, and on backtracking, tllese
bindings must be retracted explicitly. This hooks in neally to tlle Time Warp concept of message/anti-message
pairs. A binding is propagated via a BIND message; if tllat binding is later backtracked, it is witlldrawn via an
ANTI-BIND message tllat will annihilate tl1e original BIND.

5

The same principle applies to the allocation of work. Parallel goals may be created throughout the execution
and rescinded on backtracking, much as variable bindings are. A GOAL message is used to execute a goal at
some process at the virtual time given in the message. Such a goal may be withdrawn by sending an ANTI-GOAL
message.

A fifth type of message is necessary for a Prolog system, one Uiat does not fit the Time Warp mould. TI1is is
the FAIL message, through which a failing lower-precedence goal in one process may cause a higher-precedence
goal in another to backtrack.

Every message has certain basic information in common:

• a Limestamp, whose value is given by the virtual Lime of the current stack frame of the originating process;

• an originator-the process ID of the sending process and the machine ID of the processor it is running on;

• a unique ID, again taken from the stack frame associated with the message.

Some message types have additional fields:

BIND one or more variable/Lenn binding pairs, each indicating that U1e given variable is bound to the given term;

GOAL llle goal to be executed;

FAIL a contexr, identifying the sibling frame (with a Limestamp, originator, and a unique ID) of llle originating
frame. Such contexts are used to ensure that remote backtracking will search for all possible solutions.

ANTI-BIND and ANTI-GOAL messages contain no additional fields.
In order to support the transmission and receipt of all of these messages, the Prolog system needs to provide

its own versions of llle Time Warp input, output, and state queues (IQ, 00, and SQ, respectively). The SQ has
an immediate Prolog analogue: the stack. The contems of the stack up to a given virtual lime exactly specify the
state of a process at U1at Lime; rolling back Uie stack to a certain virtual Lime amounts to backtracking all frames
willl greater timestamps. The stack can also serve as an 00: messages sent at a given virtual time can have their
anti-messages stored willlin the stack frame of that time. Toe only queue that needs special treatment is the IQ,
since it may contain messages that are in U1e future of llle receiving process; U1e stack can only record messages
from the past.

The IQ bolds messages of all five kinds. The BIND message is a classic Time Warp message; after being
received it will remain in the input queue until its corresponding ANTI-BIND arrives and annihilates it. That is,
it remains in llle queue even after it bas been processed, so that if a rollback causes it to be "unreceived," it will
be reprocessed when U1e receiving process begins forward execution again.

The ANTI-BIND message is not persistent., since it annihilates its corresponding BIND immediately on arrival.
If no BIND corresponding to an arriving ANTI-BIND can be found, the BIND must have been rejected, and the
ANTI-BIND may be discarded.1 GOAL and ANTI-GOAL messages are treated exactly like BINDs and ANTI­
BINDs, respectively. The odd one out is U1e FAIL message. Since it is not a Time Warp message, a FAIL is
removed from Ule input queue immediately on being processed the first time, never to be replaced.

The 00 holds only ANTI-BIND and ANTI-GOAL messages, each to be sent off when a rollback causes llle
local virtual time 10 fall below Ulat message's Limestamp. No BIND messages are stored in the 00. For each
BIND sent out, Ule corresponding ANTI-BIND is enqueued in Ule 00; similarly for GOAL messages. FAIL
messages are never stored in the OQ either. Once sent out, they are forgotten completely by the sender.

In standard Time Warp, global virtual time GVT is calculated regularly, so lllat fossil collection may be
perfonned-entries in each of the queues whose timestamps are less lllan GVT are reclaimed. This is possible
because no process will ever roll back to before Ule current GVT. In the Prolog algorilllm, fossi l collection is not
done, because llle history of the computation must be reta.ined-GVT may decrease during backtracking. Thus,
GVT is calculated only to detennine tennination.

I lo this respect, we assume that tl1e underlying message-passings)'slem guaran1ees tha1 messages from one process 10 another are delivered
in the order they are sen!. If this is not the case. an ANTI-BIND with no corresponding BIND in the input queue would have to be retained
until that BIND arrived. TI1e same assumption applies to GOAL and ANTI-GOAL messages.

6

remot~
frame

installed __!.-.----
Remote

Backtracking

3.4 Execution Model

FAIL
ollback don

Solved

messages

BIND or ANTI /

rollback d/ ~valid BIND,
ANTI, or FAIL

Rollback

Figure 2: Execution model

Parallel execution is perfonned by processes. Each process attempts to solve exactly one top-level goal, which it
receives in a GOAL message. (This restriction is easily and naturally relaxed, but is employed here for simplicity
and fluency of exposition.)

A process may be active or inactive. A process is inactive either when it bas not yet been given any work (the
pending state), or when it has no work of its own left to do, and is merely waiting for messages to come in from
other processes (the solved state). When all processes are inactive and no messages are yet to be received, the
system bas terminated, either with a solution or in failure. (An algorithm like that given in [Dijkstra et al 1983]
suffices to detect tennination.) Otherwise, a process is active, and may be in one of five states: forward execution,
message processing, rollback, local bacl..tracking, or remote backtracking.

These states and their interactions are illustrated in Figure 2. A process begins in the pending state. On receipt
of a GOAL message, it begins actual Prolog execution. TI1is is done in t11e fonvard execution state: a goal and
clause are selected and unified. If unification succeeds, ru1y pending messages are read. (Messages need not
actually be processed at tllis time. They may arrive asynchronously and be stored in tlle input queue until they are
processed.) If unification fails, local backtracking begins. This continues until eitller a local goal can be retried,
in which case forward execution begins again, or a remote frrune is encountered, in which case backtracking
is forced on a remote process. Remote backtracking is forced by sending a FAIL message to tlle process that
originated the remote frame. The process that sends the FAIL then restarts forward execution.

During message processing, a message will eit11er be accepted or ignored. Examples of messages tllat will
be ignored are a BIND whose variable bindings conflict with earlier local bindings, and an ANTI-BIND destined
for a stack frame tllat has already been backtracked. If a message has a timestarnp earlier than tlle local virtual
time, execution must be rolled back to that timestarnp before the message can be processed. A special case of this
is tlle ANTI-GOAL message, which causes tlle entire stack to be rolled back, after which tlle process returns to
the pending state, awaiting another GOAL message. Alternatively, if tlle message is a FAIL, remote backtracking
occurs, after which forward execution resumes. Ot11erwise, furtller messages are processed (including those that

7

may have been processed earlier but later rolled back). When no messages remain to be processed, forward
execution resumes.

Execution continues to return to the forward execution phase until no goals remain to be executed, at which
point the process becomes inactive. It remains inactive until another message arrives, whereupon it processes the
message and (sooner or later) returns to forward execution.

4 Optimizing the Basic Algorithm

The simple form of Tune Warp has a rollback occurring whenever any low-timestamped message arrives. When
Tune Warp is specialized for Prolog execution, these rollbacks often can be avoided, thus reducing overheads and
improving total execution time. The results of [Ollhof 1991) show 1.hat this is particularly important for programs
that are nondeterministic. For example, when a program is shallowly nondeterministic, it is common for a BIND
to be sent, followed immediately by its ANTI-BIND. The net effect on a process receiving these messages is to
leave the binding environment unchanged, but in t11e meantime, t11e BIND and the ANTI-BIND will each have
caused a rollback of execution which needs to be redone.

ln a general Time Warp sysLem, it is difficulL to detennine whether t11e contents of a message arriving in
the past of a process will affect the computation "after" ic. Thus, such computation must be rolled back and
recomputed, though techniques like lazy cancellation [Gafni 1985) ru1d lazy reevaluation [West 1988] may be
employed to miLigate the effects of rollbc1ck. .

In a Prolog system, t11e effecL of a message 011 later computation is much easier to determine. Since BIND
messages consist purely of variable binding infonnation, and given the single-assignment property of Prolog,
binding conflicts are easily detected, and rollback need only be done when such a conflict occurs.

If a BIND message arrives out of order but no conflict arises, iL c,u1 be accepted without rolling back and
recomputing. If a conflict does occur, a local binding may have higher precedence, so that the BIND may be
rejected out of hand. Even if the incoming binding takes precedence, the solver need only roll back far enough to
remove the offending local binding.

In a way, handling out-of-order ANTI-BIND messages is even simpler: tlle renwval of a binding cannot
possibly cause a conflict Thus, rollback in this case is in principle never necessary. Still, two complications arise.
The first of tllese occurs when a compatible but lower-precedence binding is possible for a variable unbound by
an ANTI-BIND. Had the BIND corresponding to t11at ANTI-BIND never arrived, tlle compatible binding would
have been recorded. Thal is, when a binding is witlldrawn, tlle next-highest-precedence binding must be recorded
to keep the computation correct.

The second complication is tllat when a binding at some virtual time is witlldrawn, the constraint on later
computation due co tllat binding is removed. That is, a clause tllat was rejected in forward execution because of
conflict witll an earlier remote binding must become a candidate clause again, and be reselected on backtracking.

In tllis section, we present two unification algorithms tllat support rollback avoidance. The first of these, tlle
order-independent unificarion (OIU) algoritllm, pennits BIND messages to be processed in any order, requiring
rollback only when an incoming binding conflicts with and has higher precedence tllan an existing binding.
Nonnally, unification proceeds with only minor aJterations to the stack and backtrack trail so chat both appear to
have been constructed in timesLamp order.

Our second algoritllm, the order-independenr /Jackrracking (018) algorithm, retains the functionality of the
first, and also avoids rollback when processing ANTI-BIND messages-tllat is, it allows bindings to be witlldrawn
in any order. To solve tlle first of tlle complications noted above, it uses a more complex binding environment tllat
maincains multiple (compatible) bindings for each shared variable. The second complication, tlla.t of reselecting
candidate clauses, is external to tlle 0 18 algorithm, but is handled by the nwrker algorirhm presented below.

For botll aJgorithms, we discuss the data structures required, the interface with the overlying Prolog system,
and tlle expected overhead.

4.1 Avoiding BIND rollbacks

As noted above, both tlle OIU and OIB aJgoritllrns permit BIND messages to be processed in any order and witll
any number of later frrunes on tlle stack. Each attempted unification is done at some unification time, given by

8

lhe timestamp of the BIND lhat is being processed. Each returns a failure time, the time to which a rollback
must occur for the binding to be accepted. Success (no binding conflicts whatsoever) results in a failure time of
+oo (i.e. no rollback). Complete failure (conflict with a binding whose timestamp is lower than the unification
time) gives a failure time equal to the unification time, and results in rejection of the message without recourse to
rollback. Finally, partial failure (conflict with a binding later than the unification time) causes a time greater than
lhe unification time but less lhan + oo to be returned. In this case, the binding conflict may be removed by rolling
back to lhe failure time.

4.2 Avoiding ANTI-BIND rollbacks

The 018 algorithm maintains redundant bindings for each shared variable. Although lhis incurs some overhead,
the following example demonstrates its necessity. Suppose that in some execution, the goal p (X} is to be
executed, wilh x a shared variable and lhe clauses for p/ 1 being:

p(3).

p(2).

p (7) .

Say lhat at time 1, a BIND with X = 2 is received. Later, at time 5, p (2) is executed. The clause p (3) . does
not unify, but p (2) . does. The redundant binding x = 2 is trailed at time 5, and forward execution continues.
Now, if an ANTI-BIND arrives at Lime 1, we want to withdraw the binding for x wilhout rolling back the stack.
If lhe remote binding (at time 1) is discarded, tl1en the local binding of X = 2 at time 5 remains, keeping the
binding environment as it would have been had the remote binding never occurred.

The overhead of maintaining mu ltiple redundam bindings for variables can be substantial, but it is mitigated by
two factors. At any given process, only bindings up to the first local binding need be maintained. Later bindings,
whether local or remote, will always be withdrawn before that local binding is backtracked. Also, multiple remote
bindings for a variable are unlikely, since it requires that two processors bind the same variable at almost the same
real time (before either one bears of the other's binding). Thus, the most complex situation likely to occur is that
of one remote binding and one local binding.

The second complication with optimizing ANTI-BIND processing is also illustrated in the example above.
Normally, only the clause p (7) . would be tried after backtracking p (2) . However, the clause p (3) . was
only rejected because of the (now withdrawn) binding X = 2 at time 1. Thus, both p (3) . and p (7) . need to
be retried on backtracking.

A wide range of algorilhms are possible to deal with this problem. These trade off execution overhead against
accuracy in determining which clauses need to be retried. We believe that the marker algorithm described below
is a good compromise. It requires only a small constant overhead on each ANTI-BIND and each time a frame is
backtracked or rolled back.

The simplest case requiring clause reselection occurs when a withdrawn binding is the only binding for some
shared variable. When such a binding is withdrawn, previously-rejected alternate clauses for goals with virtual
times between that of the message and lhe current LVT may become amdidates again. (Rollback accomplishes
tllis automatically, but eagerly; a lazy metl10d that retains the current solution path is preferable.) Our solution to
this problem is to set a marker at the current top of stack, and continue executing forward. This marker is given
t11e timestamp of the ANTI-BIND that caused it. (An unset or cleared marker is given the time +oo.) Wben a
set marker is encountered on backtracking some frame, all alternatives to the current (rejected) clause are retried,
even tllose previously rejected. The marker is then passed down to the next lower stack frame, and lhe minimum
taken with the marker on that frame. When t11e timestamp of tlle stack frame is less than that of tlle marker, lhe
marker is cleared. Rejected clauses for goals with lower timestamps need not be retried, since they could not
possibly have failed due to lhe presence of the withdrawn binding.

Setting a marker is necessary whenever tl1e highest-precedence binding for some shared variable is withdrawn
via an ANTI-BIND. If some lower-precedence binding exists, the marker is still given the timestamp of the
ANTI-BIND, but it is set in the remote frame corresponding to the highest-precedence remaining binding rather
than in the frame at the top of stack. For the frames above that of the remaining binding, no failed clauses need
be reselected, since lhey would still fail.

9

4.3 Order-Independent Unification

We presenl here an algorithm that avoids rollback as much as possible when unifying incoming bindings: the
order-independenl unification (OIU) algorithm. With a traditional unification algoriUun, all bindings must be
processed in timestamp order. Thus, when a binding with a certain Limestamp arrives, the local execution must
be rolled back far enough to undo any bindings with higher Limestamps. After the incoming binding is processed,
the undone bindings can only be recrealed through forward execution.

In contrast, the OIU algorithm attempts Lo insert each newly-processed binding into the stack according to its
timestamp. If the variable being bound is unbound, the only effect is to add the new binding to the trail. If the
variable is already bound, the situation becomes more complex, and two cases arise: either the bindings conflict,
or they are compatible.

If the bindings conflict, then binding Limestamps must be considered. If the existing binding has a lower
timestamp, then the unification fails, and I.he incoming binding is rejected-but no rollback is necessary. If the
incoming binding has a lower timestmnp, a rollback is unavoidable, though it need only go back far enough to
undo the exisling binding, i.e. a partial rollback. The variable is then bound to tl1e incoming binding, and the
unification succeeds.

If the bindings are compatible, little need be done. When tl1e incoming binding has the lower timestamp, the
existing binding must be modified to reflect that earlier binding time. Otherwise, the existing binding slands. If
tlle bindings are compound tenns, each argument of the incoming binding is unified with its existing counterpart,
and tlle success or failure of the entire unification rests on the success or failure of each sub-unification.

Since unification may require a partial rollback for success, some rollback time must be computed. Complete
success results in a rollback Lime of +oo, indicating tllat no rollback is necessary. Complete failure gives a rollback
time equal to the timesuunp of tlle incoming binding-that is, for tl1e incoming binding to succeed, it must itself
be rolled back, clearly a contradiction. A rollback time greater tllru1 tlle incoming binding time but less than +oo
indicates the need for a partial rollback, after which the unification cm1 succeed.

The only tricky part in calculating the rollback Lime comes in unifying compound tenns. In this case, the
rolJback Lime of the entire unification is the minimum of the rollback times of each argument unification. The
rolJback time is computed incrementally, ending only when no more argwnent pairs remain to be unified (success)
or when some argument pair fails to unify (failure).

Pseudocode for tlle OIU algorithm is given in Figure 3. The"@" notation used in this pseudocode deserves
mention. The line
LO : = RD @T

indicates that variable LO is being bound to tenn RD at virtual time T, ru1d that tl1e binding is recorded in the
backtrack trail of tlle stack frrune witll time T.

In the sections that follow, the algorithm is described from several perspectives. First, we consider its interface
to an overlying Prolog system. Next, we describe its dereferencing behaviour, ru1d then we examine the unification
algorithm in detail. At this point, we outline the data structures necessary to implement the algoritllm. Finally,
we discuss tlle time ru1d space overheads t11at the algoritllm incurs.

4.3.I Prolog Interface

The unification algoritlnn is called from two places in a distributed-memory parallel Prolog interpreter. The
first of these is in nonnal forward execution, in which case the algoritlun behaves exactly like a standard Prolog
unification algorithm. AIJ bindings on tlle trail have lower timestamps (and thus higher precedence) than the
bindings currently being created. Thus, tl1e unification aJgoritllm simply either succeeds or fails.

The second occasion for which unification is done is in receiving bindings from an interpreter on another
machine. In tllis case, the incoming bindings may have higher precedence thru1 some bindings already on the
stack. Therefore, in addition to tlle tl1e possibilities of success (no conflicts) and failure (conflict with a higber­
precedence binding), tllere is also tl1e possibility of conflict with a lower-precedence binding. If such a conflict
occurs, it is necessary to roll back to the time of t11at lower-precedence binding.

The unification algorithm is given three parameters: T, the vinual time of the unification; L, the local binding
term; and R, the remote (incoming) binding tenn. (In forward execution, L is the goal tenn ru1d R is the clause
term.) The algorithm returns a value indicating the success or failure of tlle unification.

10

unify(t.ime T, c.erm L, term R) returning rollback time RVAL

{TL, LD)
{TR, RD)

deref (T, L)
deref (T, R)

if LD : RD
return •inf

else if LD is an unbound variable
LD : : RD @T
return +inf

else if RD is an unbound variable
RD : : LO @T
return +inf

else if LD is a bound variable
if RD is a bound variable

RVAL :: unity(max(TL , TR), val{LD), val(RD))
if RVAL > max(TL, TR) ;• success •/

undo binding of LO
LD : : RD @T

end if
return RVAL

else / * RD is ·a compound t.erm • /
!<VAL : : unify (TL, va I (LD), RD)
if)WAL> TL

undo binding of LD
LD :: RD @T

end if
return RVAL

end if
else if RD is a bound variable

RVAL :: unify(TL, LD, val (RD))
it RVAL > TR

undo binding of RD
RD : • LD @T

end if
return RVAL

else if funct.ors/arities match
RVAL :• •inf
for each argwnenc pair (LDi, RDi)

RVAL :• min(RVAL, unify(T, LDi, RDI))
if RVAL • T

rec.urn RVAL
end if

end for
return RVAL

else /• functors o r arities don't match • ;
recurn T

end if

Figure 3: Pseudocode for order-independelll unification

I I

deref(time T, term VAR) returning pair (time T', tenn VAR')

if VAR is bound
Tb :; binding time of VAR
if T <; Tb

r eturn (Tb , VAR)
else

return deref(T, val(VAR))
end if

else / • VAR is unbound or a compound tenn • I
return (+inf, VAR)

end if

Figure 4: Variable dereferencing

The value returned by the algorit11m is in facl the time to which the caller must roll back Lo remove any
inconsistencies. If the value is infinity, no conflicts were found and the unification succeeded. If the value is less
than or equal to the original unification Lime, then the unification failed-the new bindings would themselves have
to be rolled back. Finally, if the value is somewhere between the two extremes, then the caller must roll back to
the Lime given by thal value to remove any conflicts.

It should be noted that failure may occur partway through the unification of a group of incoming bindings.
Because the unification algorithm alters existing bindings. care must be taken to ensure that the unification can be
undone. Thus, any previous bindings must be retained until the whole unification has succeeded (with or without
rollback). After this, d1e space consumed by the previous bindings may be reclaimed.

Because bindings may be altered, backtracking and rollback must also be performed carefully. A binding may
have been trailed in some frame, and 111en had its binding time altered. Such a binding, after being untrailed from
the removed frame (but not backtracked), must be appended to another trail: tlrnt of the slack frame whose virtual
time is equal to lbe binding time. Only when 111is frame is removed will the binding actually be backtracked. In all
other respects, backtracking and rollback are performed just as they are in systems using standard unification-e.g.
if a binding with a certain timestamp is withdrawn, all bindings with later timestamps must be rolled back before
the withdrawn binding is undone.

4.3.2 Dereferencing

During the course of execution, a variable may become bound to anot11er unbound variable, and 111en to another,
and another This gives rise to a reference chain Lhal must be dereferenced when the variable is bound again
to a new value (either a compound term, a constant, or another variable). Thus, 111e first step in the OIU algorithm,
as in most unification algorithms, is to dereference bolh binding terms. (Remote or clause tenn dereferencing
is unnecessary at the top level, but subterms may well require dereferencing.) In standard algorithms, a term is
completely dereferenced- to an unbound variable or an integer, atom, or compound tenn. (For the balance of the
paper, consla11ts- integers and atoms-are treated as compound tenns with arity zero.)

Under the order-independent algorithm, a tenn might not be completely dereferenced. Instead, it is derefer­
enced only until the binding time of the current alias is greater tl1an the current unification time. 1l1is ensures 111at
when a reference chain is formed or extended, Ille bindings of Ille variables in the chain are strictly increasing
in timesLamp from Ille beginning of 111e chain to the end. In this way, the chain appears to have been built
up in timesLamp order, and may be backtracked in Ille "opposite" order wit11out destroying essential binding
information.

Pseudocode for Ille dereferencing algoritllm is shown in Figure 4. A (presumed) variable VAR is dereferenced
witl1 respect to some virtual time T . If VAR is an unbound variable or a compound tenn, it cannot be dereferenced,
and is simply returned along witll a "binding time" of +oo. Otherwise, VAR is bound to some otller tenn, so its
binding time, Tb, must be examined. If T exceeds Tb, dereferencing continues with VAR 's binding value. Finally,
if Tb exceeds T, dereferencing stops, and VAR is returned along with ilS binding time.

To see how this works, consider Ille situation depicted in Figure 5. Variable P is bound (via a long reference
chain) to Ille tenn f (X). The binding P = f (Y) arrives at virtual time 30. When P is dereferenced, the
dereferencing algorithm returns the bound variable Rand tl1e time 40. 1l1e unification algorithm tllen calls itself
recursively to unify 111e remainder of 111e reference chain (starting at s) witl1 f (Y) at time 40.

12

p

x

Figure 5: Binding structure before out-of-order unification

Figure 6: Binding structure after out-of-order unification

s is itself dereferenced, but not very far: the dereferencing algorithm returns s immediately, with binding
time 50. Again, the remainder of the reference chain, f (X), is unified with f (Y) , tl1is time at time 50. This
unification results in the binding of x to Y at time 50. Unwinding the recursion, s has its binding at time 50 to
f (X) removed, and is rebound to f (Y) at time 40. R then receives similar treatment, losing its binding to sat
time 40, but being bound to f (Y) at time 30. The resulting binding structure is shown in Figure 6; it is identical
to the structure that would have resulted from undoing the bindings at times 40 and 50, and then perfonning
unifications at times 30, 40, and 50.

4.3.3 Unification Algorithm in Depth

After dereferencing, unification begins in earnest. Each tenn may have been dereferenced to one of tllree types:
an unbound variable, a bound variable, or a compound tenn. This gives rise to nine cases; the pseudocode of
Figure 3 handles each of tllese cases.

The simplest case occurs when botll dereferenced variables (LD and RD) are unbound. Eitller tlley are identical,
or one must be bound to tlle other (by convention, LD is bound to RD) at time T. In eitller case, the unification
succeeds, returning a rollback time of +oo. When one term is unbound and the otller is a compound term (two
cases), the unbound variable is simply bound to the compound term with binding time T. Similarly, when one
tenn is unbound and tlle other bound (also two cases), the unbound variable is bound to the bound variable with
binding time T.

The remaining cases deal with unifying various combinations of bound variables and compound terms. The
simplest of these comes in unifying two compound tenns. No new bindings are made at Ille top level. If the terms
differ in functor or arity, the unification fails, returning rollback time T. Otherwise, Ille rollback time is computed
as Ille minimum of Ille return values from each pairwise argument sub-unification, and returned. (Atoms and
integers are deemed to have an arity of zero; thus, no sub-unifications are done and the computed "minimum" is
+oo.)

The final tllree cases-two of which unify a bound variable with a compound term, and one of which unifies
two bound variables-require one or more bindings to be altered. When a bound variable B is unified with a
compound tenn c at a unification time T (as in the example of Figures 5 and 6), a sub-unification must first be
done. c is unified with the remainder of B's reference chain, with a unification time equal to B's binding time.
1f this sub-uni fication succeeds, B's previous binding is undone, and replaced witll a binding to cat time T. ('Jbe
previous binding, tJ1ough compatible, had a greater virtual time, and thus would not have been created bad the
unifications occurred in virtual time order.) If tl1e sub-unification fail s, this modification is not performed. In both
cases, the rollback time received from the sub-unification is used as a return value.

Finally, when two bound variables are unified (assuming they are not identical), the remainders of their

13

respective reference chains are unified first. If this succeeds, then one of the bound variables (by convention,
LD) must have its old binding undone and be bound to the otl1er (RD) at time T. If the sub-unification fails, no
rebinding is done. Again, the retum value is given by the rollback lime returned by the sub-unification.

It should be noted here tl1at, like most other unification algorithms, the OIU algorithm performs no occurs
check. 1l1is also applies to the 018 algoritl1m, described in Section 4.4.

4.3.4 Data Structures

Willi respect to the data structures employed, the OIU algoritl1m differs from standard unification algorithms in
three ways. First, a timestamp must be associated with each variable binding, so that binding conflicts can be
resolved. Second, frames may be inserted at arbitrary points int.he execut.ion history (normally, tl1e stack). Third,
the backtrack trail associated with each stack frame must be extensible.

If tl1e timestamp information is simple enough (say, representable by a single integer), it may be kept directly
as part of each binding. TI1is provides fast access 1.0 binding times during unification. If a timestamp consumes
severaJ machine words, it may be more reasonable (in terms of space overhead) to have each binding contain a
pointer to the frame in which it was bound, and Lo store t.lle timestamps only in the stack frames. Accessing a
binding time on unification then requires a point.er dereference.

Because of the requirement for arbitrary insertion, a stack is no longer practical for maintaining the execution
history. InserLing a frame at some lime t would require tl1at all frames with timestamps greater than t be popped,
tl1e ne~ frame pushed, and the popped frames pushed back on the stack. More practical would be a linked list of
frames, allowing arbitrary insertions (and deletions). Since most operations on tl1is frame list remain "pushes"
and "pops" from tl1e end of the list, and in I.he interest of tenninological nonproliferation, we shall continue to
refer to it as a "st,'lck," and trust I.hat no confusion will result.

Finally, when a frame wilh some timestamp Tis rolled back or backtracked, any variable binding in its trail
with a binding lime of less than T must. not be undone. Rather, it. must be trailed again, in the frame corresponding
to its binding time. 1l1at is, if a variable is originally bound at virtual time T and later bound at time T - k, then
when the frame with timestamp T is removed due to rollback or backtracking, tl1e variable must be trailed in the
frame with timestamp T - k.

4.3.5 Overhead

The OIU algorithm incurs very little overhead over that of the standard Prolog unification algorithm. With respect
to space consumplion, the only addilional costs are in a timestamp for each binding, and in pointers to maintain
the frame list. in forward execution, the only time cost. is in setling the binding time of each binding produced. In
processing incoming bindings, the comparison of binding times adds a small constant overhead for each bound
variable unified with a compound lenn or another bound variable.

Otherwise, the only additional work is in adjusting bindings and binding times. Such adjustments occur
when an incoming binding takes precedence over an existing binding, whether that binding is compatible or not.
Unifying a variable with some binding may require several adjusunents if that variable is already bound to a
compound tenn or if it is parl of a variable reference chain. Finally, unifications involving unbound variables
incur neither tile times tamp comparison cost nor the binding adj usunent cost.

4.4 Order-Independent Backtracking

Although I.he OIU algoritlun optimizes the addition of bindings to the trail in arbitrary order, it does nothing
to mitigate the effects of removing such bindings. If a binding at some lime T is withdrawn, all work done at
later virtual times must be rolled back, and later redone. As an altemat.ive, we present the 018 algorithm, which
optimizes rollbacks due to binding withdrawal in addilion to those due to binding arrival.

This further optimization comes at a price, however. In the case of tl1e OIU algorithm, bindings can be added
in any order, and the resulling state will be idenlical to I.he state tJ1at would be reached by unifying these bindings
in virtual time order. Thus, only this "standard" state need be maintained. Because it allows bindings to be
removed arbitrarily, the 018 algorithm musl be able to go from a given state to a previous state. In fact, all
possible previous states must be accessible, not just actual previous states.

14

unify(time T, tenn L, tenn R) returning (rollback time RVAL, set OEP)

It L = R
return (+inf, (Jl

else if Lis a bound variable
LB :• binding value of L
TL := bindi ng time of L
if T >• TL

return deref(T, L, LB, R)
else If Risa bound variable

RB :: binding value of R
TR := binding time ot R
if T >= TR

return deref(T. R, L,
else if TL>= TR

rec.urn rebindtT, L, R,
else

return rebind!T, R, L.
end if

1• tenns a re identical , all done •1

/ • L Is bound, try to deref * /

/ • new binding Is later, so deref •/

J • R is bound, try to deref it • /

1 • new binding Is l ater , so deref • /
RB)

/ • L bound later than R, so rebind L • /
TL, LB)

/ • R bound later than L. so rebind R • I
TR. RS)

else 1 • R ls a compound r:.e1-m , so rebind L •/
r eturn r ebind (T, L, R, TL, LB)

end if
else if Ris a bound variable / • R is bound, try to deref • /

RB:• binding value of R
TR ,. binding time of R
I f T >• TR

return deref(T, R, L, RB)
1• new binding Is later, so deref • /

else / • new binding is earlier, so rebind •/
return rebind(T, R, L, TR, RB)

end it
else if Lis an unbound variable

L := R QT
return (· int, ((T, L)))

else if R Is an unbound variable
R : • L QT
ret.urn ~:r.~, ((T.R) I)

/ • terms are distinct, Lis unbound • /
/ • => bind L • /

/ • ct?rms ar":! -:!!scinct , R is unbound • /
1· => bind ?. • /

else if tunctors/arities match /' both Land R are compound cerms • 1
RVAL :• •inf / • inlt return value•/
tor each argument pair (Li, RI) / • unify arguments pairwise •1

(RV, 0) :• unify!T, Li. Ri)
if RV = T / • on failu re, quit right away • /

rec:urn (RV, I))
end if
RVAL :: m!n(RVAL, RV)
OEP :: union(OE?, 0)

end for
return (RVAL, OEP)

else
return (T, < l)

end if

1• get lowes t rollback time • /
/ • keep track of dependent bindings • 1

/ • functors or arlties don' t match • /
/ • return fa ilure • I

Figure 7: Main uuification routine for order-independenL backLracking

To accomplish this, we keep redundant binding infonnation. Each bound variable bas associated with it an
active binding and a list of inacti\•e bindings. The active binding for a variable is the lowesL-timestamped binding
for that variable, while the inacLive bindings are all those with greater timest,'Unps. Toe set of all active bindings
corresponds exaclly Lo the stale computed by the OIU algorithm; the inactive bindings constiLute redundant
information.

Bindings must be convertible from active Lo inactive and back. Aclive bindings are explicitly recorded as
substitutions, like nonnal Prolog bindings. Inactive bindings are recorded as pending unificalions. When a new
binding arrives whose timestamp is lower than any other binding for the same variable, it must become the new
active binding, and the existing active binding must be convened to an inacLive binding. When an active binding is
removed, the lowest-timestamped inactive binding (i f iL exists) for the same variable must become the new active
binding. These actions replace respecLively the binding-time adjusunen1 and rollback done by L11e OIU algorilhm
in the same siLuations.

Pseudocode for Lhe 018 algorithm is given in Figures 7 through 10. The algorithm consists of four main
routines: unify (Figure 7), deref (Figure 8), rebind (Figure 9), and undo (Figure 10). These routines

15

daref(t:ime T . term L, term R, cerm B) racurning (time RV, sec D)

(RV, DI := unify(T, R, B)
if RV> T

else

DEP(L) := union(DEP(L), D)
inser t(INACT (L) , (T, L , R))
return (RV , ((T, L)))

undo I DJ
return (RV , I 11

end if

/ • unify with the de!erenced term • t
t • successful unification • /
t • add in new dependent b indings • /
t • new binding is inacti v e at top level •;
/ • return success and inactive b!ndi no • I

/ • unification failed, undo • /
/ • return failure • /

Figure 8: Dereferencing in 018 unification

reb. r.c,,irr,e T • .:erm L. tenn R, time 'TB, term Bl rec.=c.:ng (clme RV, Silt OJ

unbind(L)
L := R GT
(RV, DJ :a unify(TB, B, RI
DEP(L) :s un ion (DEP(L I. DI
insert(INACT(L), (T , L. Bl)
return (RV, ((T, LI l l

undo(dependent set DJ

for all (T,Vl in D
undo(DE?(VI J
unbind IT.VJ

end tor

/ • remove old bindino fi r st • /
; • install new binding • /
t • unity sta~e further with new binding • ;
/ • add inn~~ dependent bindlnos • /
; • old binding becomes inactive • ;
/ • return success and new binding • /

Figure 9: Variable rebinding in 018 unification

/ • undo al I s..ibsidiory bindings • /
1• re!tlC've a ~!ogle binding ' /

Figure IO: Removal of dependent bindings in 018 unification

16

function as follows:

unify (T, L, R) unifies terms Land R at virtual time T. It decides what to do with each term depending on its
type and (if bound) its timestamp.

dere f (T, L, R, B) dereferences variable L by one step to tenn B. It then calls unify to unify term R with B.

rebind (T, L, R, TB, B) removes a binding B for variable L at virtual time TB, and replaces it with a new
binding, R, with a lower timest.amp, T. The old binding is lhen unified wilh lhe new via a call to unify, to
ensure their compatibility.

undo (D) backtracks a set. of bindings D, all of which depend on lhe existence of some olher binding (and which
must therefore be removed on lhe wilhdrawal of lhat binding).

4.4.1 Prolog Interface

The interface to a Prolog caller is very similar to that for t11e previous algori lhm. Like the OIU algorithm, lhe
018 aJgorilhm is also called in nonnal forward execution, and in processing incomfog bindings. Both receive
as parameters a unification time and two tenns to unify. Bolh compute and return to the caller a rollback lime,
RVAL, indicaling the success or failure of lhe unification.

Unlike lhe previous algorilhrn, however, lhe 018 algorilhrn is also called when an active binding is wilhdrawn.
When lhis occurs, t11e lowest-timestamped inactive binding for lhesame variable becomes lhenew active binding­
not via rollback, as in lhe OIU algorilhm, but rat.her by undoing t11e wilhdrawn binding and then unifying lhe new
active binding wit11 the current state.

Also unlike lhe OIU algorilhm, the 018 algorit111n computes and returns a set of dependent bindings DEP.
These are bindings which were made as a direct consequence of perfonning t11e top-level unification. When
the top-level unification is undone, any bindings in lhe dependency set must be undone as well. (In lhe OIU
algorithm, such dependent sets were unnecessary because any bindings created as a consequence of performing
some unification would automatically be rolled back if lhat unification were undone.)

As in the OIU aJgorilhm, failure may occur partway through a unification. In this case, however, no special
care is needed to clean up any partial unifications, since lhe partially-computed set of dependent bindings, DEP,
is also returned on failure. Thus, failure can be treated as binding wilhdrawal, and any bindings due to the failed
unification can be accessed through the returned depcndem set and undone.

Finally, when lhe 018 algorithm is used, lhe marker algorithm outlined in Section 4.1 must also be used, to
ensure lhat no potential solutions are overlooked.

4.4.2 Dereferencing

As with most unification aJgorilhms, lhe 018 aJgorilhm requires some way of dereferencing variable reference
chains, so tllat the last variable in a chain is lhe one bound, and accesses to any variable in lhe chain will return
lhe proper binding. Most unification algorilhms perform lhis dereferencing step explicitly, before performing the
actual unification.

Under lhe 018 scheme, dereferencing is integrated wilh lhe unification process itself. This is because the 018
algoritlun must record an inact.ive binding for each dereferencing step, ratller lhan just searching down the chain.
A simple example illustrates lhis behaviour.

Suppose lhat at virtual time 30 we perfonn the binding P = Q, at time 40 lhe binding X = Y, and at time
50 lhe binding P = 7. Under tlle OIU and standard schemes. t11e last unification would deference P to Q and
cause Q to be bound to 7. The infonnation tllat lhe last binding was originally made to P can be discarded safely,
since tlle last binding will always be removed before lhe first.

Under the 018 algorithm, lhis is no longer tlle case. The idea is that tlle binding P = Q can be removed
witllout having to undo all later bindings, only to redo aJI tllose bindings to restore tlle proper state. Instead, only
tlle wilhdrawn binding-and each of tlle bindings lhat depend on it-is undone, and lhe first available inactive
binding is recorded in its stead. Thus P = 7 must be recorded as an inactive binding for P when it is first
encountered, as well as causing Q = 7 to become tlle active binding for Q. If P = Q is later removed, the

17

p //,,"~

~' ail ail

{) - -

p ,,,,,,,,--Ji--Q

" nil /

/---+--
/

r <>
I

,, - - J
,, 7 ,,

Figure 11: Calculalion of dependent sets

binding for Q disappears, and P = 7 becomes I.he active binding for P, without rolling back and disturbing I.he
binding X = Y.

rn other respects, dereferencing behaviour is similar to I.hat of I.he OIU algorithm. In particular, a reference
chain may not be dereferenced completely: dereferencing stops when a binding is encountered in I.he chain whose
binding time is greater than the unification lime. 111us, a "fully-dereferenced" variable may still be bound.

4.4.3 Dependent Sets

Associated with each binding for a variable is a dependent set, which is initially empty. As a result of unifying
each previous binding for I.he variable with I.he new binding, I.his dependent set is augmented to include subsidiary
bindings tJ1at are directly due to the new binding-thus, if the new binding is removed, so will all I.he subsidiary
bindings. If I.he new binding is to a non ground tenn, such as anotJ1er variable or an incomplete compound term, I.he
dependent set will also be augmellled each lime a dereferenced or sublenn variable is bound due to a unification
I.hat references I.he non ground binding.

Consider I.he following execulion fragment, illustrated in Figure 11 and based on I.he example of I.he previous
section. Solid arrows in I.he diagrams denote pointers in I.he binding structure for each variable, while clashed
arrows denote bindings. The left-hand diagram illustrates I.he inilial state: at virtual time 30, P is bound to Q.

Then, at time 50, P is bound to 7. As a result, Q is also bound to 7 at time 50, resulting in I.he state shown in I.he
right-hand diagram.

This binding of Q is dependent on both bindings of P, and if either were withdrawn, it must be withdrawn
itself. That is, if either of P = Q or P = 7 is undone, I.he binding Q = 7 must be undone. Thus, I.he binding
for Q is put in I.he dependent sets of P's bindings at limes 30 and 50. Toe dependent sets are used in backtracking,
so I.hat when a binding is undone, any bindings I.hat depend on it-exactly I.he bindings in I.he dependent set-are
also undone.

4.4.4 Unification Algorithm in Depth

The main unification rouline is structured much like I.hat for the OIU algorithm. The tenns Land R may each be
either an unbound variable, a bound variable, or a compound tenn. TI1e algorithm thus decomposes into several
cases, each of which returns two values: a rollback time as in I.he o IU algorithm, and a set of dependent bindings.

Toe simplest case occurs when Land Rare identical. The unification succeeds inunediately, with a rollback
time of +oo and an empty dependent set. Also simple are I.he cases in which eitJ1er or both of Land Rare unbound.
If L is unbound, it is bound to R at time T returning a rollback time of +oo and a dependent set consisting of I.he
binding itself. Otherwise, if R is unbound, it is treated in a similar manner. Because dereferencing is integrated
into I.he algorithm, both L and R must be checked first to see whether either is bound. Otherwise an unbound
variable could be bound to some undereferenced bound variable, creating a reference chain I.hat violates I.he
increasing-timestamp condilion described in Section 4.3.2.

The remaining cases are more complex. If eitller or both of Land R are bound variables, some dereferencing
may be necessary. As with I.he OIU algoriU1m, dereferencing is required if a variable's binding time (TL or TR in
I.he pseudocode) is less t.hru1 I.he unification time T. If Lis a bound variable, it is dereferenced as mucb as possible;
I.hen I.he same is done for R.

18

Wben a variable has been dereferenced as much as possible and the tenn finally reached is still a bound
variable (i.e. the binding time of that final variable is greater than the unification time), then lhe final variable
must be rebound to the new value. Wben this is done, the old value must be unified with the new value. If this
unification succeeds, the old value is retained as an inactive binding (otherwise, it is simply discarded). When
both dereferenced tenns are still bound, one must be chosen to be rebound. 'Dlis is done on the basis of binding
age: the term with the greater binding time of the two is the one that is rebound.

Finally, when both terms are compound terms, functors and arities are compared. On success, corresponding
arguments from each term are unified, with return values and dependelll bindings being accumulated in lhe
process.

As well, several primitives are used in lhe pseudocode. Union (Sl, S2) gives the union of sets Sl and
S2; insert (L, B) inserts an inactive binding B into a list L of such bindings (sorted in timestarnp order);
unbind (T, V) backtracks !he binding for vat lime T. DEP (L) refers to the set of bindings dependent on L,
while IN ACT (L) refers to the list of inactive bindings for L.

4.4.5 Data Structures

Like the order-independent algorithm for unification alone, the 018 algorithm needs a timestamp associated wi!h
each binding in order to detennine the success or failure of a unification and to detennine a rollback time if binding
conflicts are detected. ll1e "stack" must again be a list, allowing the addition and deletion of internal frames.

As well, each binding must maintain a list of other bindings that depend on it, so that !hese depern;lent bindings
can be backtracked when the original binding is backtracked. A binding may depend on more than one other
binding, particularly when variables are bound to other variables (aliasing) or to incomplete compound tenns. In
the pseudocode, the set of dependent bindings dependent on the binding of R is known as DEP (R) .

To maintain infonnatfon about inactive bindings, each variable has associated witJ1 it a limestamp-ordered list,
referred to in the pseudocode as INACT (L) for some variable L. Each element of ilie list constitutes an inactive
binding.

4.4.6 Overhead

Overhead for the 018 algorithm is somewhat higher than for otJ1er unificat.ion algorithms, including the OIU
algorithm. This is mostly due to the cost of installing and removing inactive bindings and dependent sets. The
remaining overheads are identical to those faced by the OIU algoritJun. The execution "stack" is actually a list, so
that the arbitrary insertion and removal of stack frames is possible. To determine binding conflicts, each binding
must include a timestamp; this timestamp must be examined each lime tJ1e binding is accessed.

In any case, the cost of doing an 018 unification will be linear in the cost of a standard unification. Also, the
cost of doing a binding removal C<'Ul be arbitrarily lower than the corresponding backtrack and re-unification of
standard Prolog. In the worst case, the 018 cost will be linear in ilie standard cost (presumably with a somewhat
lower constant).

In cases where all bindings occur in limestamp order, 018 unification will behave almost identically to
standard unification, aliliough dependent sets will be created and variables will have multiple bindings recorded.
Even this cost can be ameliorated in tl1e usual case. Consider a variable bound as a result of a remote unification
from another processor. Any local attempt to match this variable with a clause bead will cause an inactive
binding to be recorded. However, this local binding can only be removed by backtracking, so later-timestamped
bindings-both local and remote-need not be recorded. This optimizat.ion means !hat the most common case
will be a variable bound with a single (active) binding marked as being local. Next most likely is a variable
with an active binding caused by a remote unification plus one local (inactive) binding. More complex binding
situations require relatively unlikely timing coincidences between remote processors.

5 Example

To illustrate the Prolog algorithm further, we present an example execution that enters each possible state. In
this example (and for the remainder of t11e paper), we assume iliat the 018 unification algorithm and the marker

19

a (X}, b (X) . a(X), b(X).

a(l} cl (X) a(2) c2(X}

cl (1} c2(2}

Figure 12: Proof trees for example

Pa Pb

0
Figure 13: Initialization

algorithm are used. The example has been carefully contrived to exhibit as much different message passing
behaviour as possible witl1 a very simple program. In fact, tile example given would most likely reach first
solution in tllree messages ratiler tilan tile eight shown below.

Consider the query

:- a(X) ,b(X}@Pb

run witil respect to tile program

a(l).

a (2} .

b(X)
b(X)

c2 (X}.

cl (X).
c2 (2) .

cl (1}.

The goals in tilis query indicate that a {X} is to be run locally by tl1e top-level process and b (X} to be run in
parallel on anotiler processor. The top-level process will be denoted by Pa, while the cooperating solver process
wiJJ be denoted by Pb. The query has two solutions, x = 1 and x = 2, witil proof trees as shown in Figure 12.

Figure 13 depicts process initialization. Pa begins by scanning the top-level query. It puts tile goal a (X) on
its own goal list. and allocates tile goal b (X} to Pb by sending Pb a GOAL message at virtual time 0.2 It tllen
begins forward execution. Pb receives tile GOAL message, puts b{X) on its own goal list, and begins forward
execution itself.

Pb selects goal b (x) and clause b (X} : - c2 (x) . , and unifies tilem, all at virtual time 1. It tllen checks
for incoming messages. Finding none, ii continues executing forward, selecting goal c2 (x} at time 6, unifying
it witil clause c2 (2} . . This unification produces a binding for the shared variable x; thus Pb sends a BIND
message binding x to tile value 2 10 Pa witil a timestamp of 6.

Meanwhile, Pa selects goal a (X) and clause a (1) .• and unifies tilem at Lime 3. This unification also
produces a binding for x. namely x = l. P" tl1erefore sends a BIND to Pb at Lime 3. Note tilat at tllis point, two
incompatible bindings have been generated (see Figure 14). This conflict is resolved quickly, as botll Pa and Pb
enter tile message processing phase.

Pa receives tile BIND at time 6 and discovers tilat tile bindingX = 2 conflicts witil its own binding of x = 1.
Seeing tilat its own binding ameda1es tlle incoming message, Pa discards tile message. (It could require Pb to
backtrack by sending it a FAIL, bu! tilis is unnecessary since Pb will handle tile conflict itself tilrougb rollback.)
Pa, having reswned forward execution, finds tl1at it bas no further goals to execute. It becomes inactive, setting
its virtual time to +oo and waiting for incoming messages.

2limes used io this example have been chosen arbitrarily, albeit increasing up tl1e stack.

20

Pa Pb

Key

t=l I stack

0 local frame
X=l t=3

BIN~ D remote frame

backtracking
link

__.,. message

Figure 14: Forward execution

Pa Pb

t=l

X=l =

Figure 15: Message receipt and rollback

21

Pa Pb

=

X=l

t=co

Figure 16: Forcing remote backtracking

Remote frame
inserted

Pa

Figure 17: Remote backtracking

Pb

t=l

Pb receives the BIND at time 3 and finds that the binding within conflicts with its own binding at time 6.
Thus, it rolls back to before Lime 6, undoing its local unification and sending Pa an ANTI-BIND message with
Lirnestamp 6. (This message could be optimized away, since every process receiving the BIND at time 6 would
aJso receive that at time 3.) It then accepts the incoming binding, and installs a remote frame at time 3 to contain
the binding. No further messages arrive, so it returns to forward execution. This message-handling activity is
illustrated in Figure 15.

Pa now receives the ANTI-BIND from Pb but finds no corresponding BIND. Pa thus discards the message and
returns to inactive status.

Pb selects goal c2 (1) (note the variable substitution) and clause c2 (2) . When unification fails, it begins
local backtracking, trying to find another clause to match c2 (1). Finding none, it backtracks a step further and
encounters the remote frame at time 3. Remote backtracking must now occur at Pa: Pb sends a FAIL to Pa so
I.hat I.he binding x = 1 will be retracted. (Included in this message is information about the sibling frame in Pb's
stack-that is, the local frame at time 1. Remote backtracking must be able to return eventually to Pb, since its
own bindings could have caused the original failure.) This situation is shown in Figure 16. Pb removes the remote
frame (and I.he binding for X) and resumes forward execution, executing goal c2 (X) again.

When Pa receives I.he FAIL from Pb, it returns to active status, rolling back to time 3. Before backtracking
from l11at point, it inserts a remote frame in its stack at lime 1 to direct remote backtracking back to Pb later in
backtracking (see Figure 17). (This remote frame will be used later when I.he second global solution is sought.)
It I.hen backtracks, sending out an ANTI-BIND Lo annihilate its originaJ BIND and removing its own binding of
x = 1. Next, it retries goaJ a (X) , l11is time with clause a (2) . , and unifies tllem to produce the binding x = 2.
Once again, it sends a BIND to Pb to convey the binding information. With tllis forward execution step complete,
Pa looks for incoming messages. Finding none, and finding no more goals to execute, it returns to the inactive
State.

Meanwhile, Pb has selected clause c2 (2) . and made !lie binding x = 2 again. Again, it sends out a
binding at time 6. Figure 18 shows ll1e status of ll1e system at this point, with two messages in transit from Pa to

22

Pa

X=2
1--­
BIND

Pb

t=l

Figure 18: Return to forward execution, wilh messages exchanged

Pb and one back from Pb to Pa. Pa becomes active briefly to accept !he BIND, and finds !he binding within to
be compatible. Since its local binding has higher precedence (timest.mnp 3) than the remote binding, the remote
binding is ignored. Since no new bindings were made (not even redundc'Un bindings), Pa does not add a remote
frc'Une to its stack. Instead, it. ignores t11e message and returns LO inactivity.

Pb processes its own incoming messages, finding an ANTI-BIND and a BIND at time 3. It finds no frame for
the incoming ANTI-BIND (since it destroyed that frame when sending the FAIL), and ignores it. In processing the
incoming BIND, it finds the binding within to be compatible with its own, but with a bigber precedence. Thus, it
installs a remote frame at time 3 without rolling back and trails the redundant binding. Pb then resumes forward
execution, but finds no more work to do. It too becomes inactive, as shown in Figure 19. Since both processes are
now inactive and no messages are pending, the system bas terminated, in this case finding the solution x = 2.

When another solution is requested, tlle point of introducing a new remote frame on receipt of a FAIL becomes
evident. Pa, as the top-level process, begins backtracking. Pa backtracks to time 3 and withdraws its binding of
x = 2, sending an ANTI-BIND to Pb. Pb receives the ANTI-BIND from Pa at time 3 and removes the remote
frame at tllat time. In its local frame at time 6, it sets the marker to time 3. (As it turns out, this marker is never
used, but more complex executions would require it to guarantee completeness.) After it sets the marker, Pb
returns to inactivity.

Pa, still backtracking locally, finds no further clauses LO match goal a (X) . It backtracks a step further and
encounters the remote frame at time 1, installed when it previously received the FAIL from Pb. Pa sends the
failure back to Pb at time 1, forcing remote backtracking, and restarts forward execution. (The frame at time O is
includedintheFAILascontext.) Pa triesgoala(X) anew, selectsclausea(l) .,andsendsaBINDattime3. It
then finds no messages and no further goals, and becomes inactive.

Pb receives the FAIL from Pa, wakes up, and rolls back to time 1 (in the process sending out an ANTI-BIND
at time 6). 1l1e marker disappears as rollback continues to before the marker's time. Pb then begins backtracking,
retrying b(X) with clause b(X) : - cl (X) .. It checks for incoming messages, finds the BIND from Pa,
and installs a remote frame at time 3 for the binding x = 1. Finally, it tries goal c 1 (1), unifies with clause
cl (1) . , and sends out its own (compatible) BIND at time 6. It !hen becomes inactive. Pa wakes up briefly to
accept tlle ANTI-BIND ands BIND messages, ignores them both, and returns tO inactivity. A second solution has
been found; the state of each process is illustrated in Figure 20.

If yet another solution is requested, the system finally concludes that no other solutions exist. This is
determined after several messages are sent: an ANTI-BIND, and a BIND with a new value for X from Pa, next an
ANTI-BIND mid a FAIL from Pb, and t11en an ANTI-BIND followed by a successive FAIL from Pa. Pb sends a
final FAIL to Pa at time 0, indicating that Pb's goal has failed completely.

23

Pa Pb

t=l

X=2

t=

Figure 19: Tennination with solulion

Pa Pb

=

t=l

X=l

t=

t=

Figure 20: Tennination wit.h second solution

24

lt may seem lliat lllis example is much to do about nollling. After all, eight interprocess messages have been
used to reacb the first solution of a problem lllat requires only lllrec unifications and one shallow backtrack on
a sequential system. However, the situation which is illustrated-Ille same variable being given incompatible
bindings on different machines-should be relatively rare. If eilller Pa or P0 were to bind X early enough that
the binding reached Ille oilier before it did its own binding, Ille first solution would be reached in only three
interprocess messages (a GOAL and two BIND messages). The faster Ille underlying message passing system,
the smaller the window in which such a conflicting binding can occur.

6 Deta iled Algorithm

The example above has illustrated most aspects of Ille optimized algorillun using the 018 unification algorithm.
In each of Ille sections that follow, pseudocode is given for one of !lie individual execution phases, together with
a detailed description of that phase.

6.1 Pending State

wait for GOAL message to arr ive
set LVT = timestamp of message
set up stack with remote frame ac LVT
put goal from message on goal_ list
continue with goal execution

A process is in Ille pending state when it has not yet received a goal to execute. The only way to leave lllis
state is lllrougb the receipt of a GOAL message, which contains a goal for tJ1e process to solve.

When a GOAL message arrives, Ille receiving process begins by selling up its stack willl a remote frame for
the GOAL message-Illus, failure of Ille goal results in a FAIL message being sent back to Ille goal's originator.
LVT is set to the timestamp of Ille message.

6.2 Forward Execution

Goal Execution

if goals exist on goal_list
select next goal to be e xecuted
increment LVT

else

create goal stack frame
continue with clause execution

enter terminated state
end if

Clause Execution

select clause to unify with goal
create clause stack frame
increment ID counter and use value as unique ID for frame
unify selected goal with selected clause
if unification succeeds then

find all shared variables bound by the unification
send one BIND message to each process sharing a variable

bound by the unification
for each subgoal in current clause

if subgoal is remote

25

send a GOAL message with LVT as timestamp
else

put goal on goal_list
end if

end for
continue with message processing

else
continue with clause failure

end if

Forward execut.ion is straightforward. Following from the goal frarne/clause frame separation, it is divided
into goal execution and clause execution components. Goal execution amounts to selecting tbe next goal to
execute, incrementing tbe local virtual time, and creating a goal frame for that time containing the necessary
information about that goal.

Clause execution begins with selecting a clause and creating a clause frame. The frame takes its unique ID
from the value of a counter that is incremented each lime a clause frame is created. Next, tbe current goal is
unified with the bead of the current clause. If the unification fails, local backtracking begins with clause failure.
Otherwise, all variables that were bound and are shared with other processes are identified. One BIND message
is sent to each process sharing one or more such shared variables. Subgoals of the clause may be sequential or
parallel. Sequential goals are added to the local list of goals to be executed; parallel goals are scheduled3 to be
run by some other process.

Unificat.ion is done according to the 018 unification algorithm described in Section 4.4. For local execution,
the effect is similar to that of standard unification: the a11empt either succeeds with new bindings, or it fails.

6.3 Message Processing

Top-level Processing

while incoming messages remain in IQ
select the next message from IQ
if message is a BIND

perform BIND processing
else if message is an ANTI-BIND

perform ANTI-BIND processing
else if message is an ANTI-GOAL

roll back entire stack
return to pending state

else/* message is a FAIL*/
perform FAIL processing

end if
end while

BIND Processing

create remote frame to hold bindings
unification_ time = messa g e timesta.mp
faliure_ time = +inf
for each binding pair (V,B} in message

failure_time = min(failure_time, unify(unification_time, V, B))
if failure_time <= unification_time /* unification fails*/

ignore message/* unif. cannot succeed, even after rollback*/

3Scheduling may be done in many ways, from hard-wired goal-10-process allocation through full-blown load-balancing scheduling.

26

undo unifications already done for message
return to top-level processing

end if
end for
if unification_time < failure_time <+inf/* partial rollback required*/

roll back to failure_time
end if
return to top-level processing

ANTI-BIND Processing

if remote frame referred to in message exists
end_time = start_time = min(marker_time of frame, time of ANTI-BIND)
for each variable binding in frame

if binding is first (earliest) for its variable
if next binding for that variable exists

start_time = max(start_time, time of next binding)
else

start time
end if

end if

time at top of stack

undo variable binding
end for
if start_time > end_ time / • some frame needs marker set*/

marker_time of frame at s tart time= end_time
end if

else/* remote frame doesn't exist*/
ignore message

end if
return to top- level processing

FAIL Processing

if frame referred to in message exists
if frame is local

roll back all frames later than FAILed frame
continue with remote backtracking

else/* frame is remote*/
install context frame in own stack
send FAIL message to originator of remote frame,

including sibling frame as context
perform ANTI-BIND processing on FAILed frame
return to top-level processing

end if
else/* frame doesn't exist*/

ignore message
r e turn to top-level processing

end if

Messages may arrive at any phase of lhe execution, but tl1ey are not processed immediately. Message
processing is perfonned after each successful unification (and only !hen-accepting messages at oilier times can
cause incorrect execution). Messages that bave ani ved since the last message processing phase are processed in
timesuunp order to minimize rollback.

27

If the message is a BIND, the values it contains are unified with the local copies of the shared variables bound
in the message. If the unification succeeds without conflicts occurring, nothing more need be done. If it fails,
then some higher-precedence local binding conflicts with an incoming binding, and the message is rejected. If
a conflict with a lower-precedence local binding is detected, a partial rollback to the time of the local binding is
necessary. (If more than one local binding must be undone, the process must roll back to the time of the earliest
such binding.) Toe time to which execution must be rolled back is given by the failure time, computed by the
018 unification algorithm described in Section 4.

If the message is an ANTI-BIND, the remote frame created for its corresponding BIND must be removed.
When no such frame exists, the ANTI-BIND is ignored-either the original BIND was ignored, or the frame has
already been backtracked. If the frame does exist, it is removed from the stack and all variable bindings due
to it are undone. If the remote frame's marker is set, the time of that marker must be Laken into accounl when
calculating the new marker time (the vinual time at which the marker may be cleared). If any variable becomes
completely unbound as a result of the ANTI-BIND, the frame at the top of the stack must be marked with the
marker time given by the minimum of tJ1e marker time of the old frame and with ilie virtual time of ilie removed
frame.

If the message is an ANTI-GOAL, ilie entire stack is rolled back, and the process becomes inactive, returning to
the pending state. (Note iliat the message can never be a GOAL, given the single-goal assumption of the execution
model given in Section 3.4). Finally, if ilie message is a FAIL, the frame it refers to must be backtracked. If this
frame does not exist, I.he FAIL is ignored. If ilie frame is remote, the context of ilie FAIL is inst.ailed in ilie stack,
the remote frame is removed, and a FAIL is sent to ilie originator of I.he remote frame. Otherwise, all frames later
than ilie FAILed frame are rolled back, remote backtracking begins, and no further messages are processed until
after the next successful unification.

6.4 Rollback

end_time = LVT
while LVT > rollback_time

send any ANTI-BINDs stored in current frame
undo bindings associated with frame
for each subgoal of clause associated with frame

if s ubgoal is remote
send ANTI-GOAL message to process solving subgoal

else
remove subgoal from g oal_list

end if
end for
if current goal frame's marker_time < rollback_time

end_ time = min(end_time, marker_ time)
end if
de-allocate goal and clause frames
set LVT = time of sibling frame

end while
if end_time < LVT

frame's marker_time = min(marker_time, e nd_ time)
end if

Rollback is done in order to handle two types of incoming messages: a BIND whose acceptance would result
in binding conflicts without the removal of "later" (lower-precedence) local bindings, and a FAIL directed at a
local stack frame. In ilie first case, ilie stack is rolled back far enough to remove any conflict; in ilie second,
rollback is done back to the timestamp of the FAIL. During rollback, marker times must be propagated down the
stack so that frames not rolled back but requiring clause retrial will be handled correctly.

When a process rolls back from a virtual time t2 to an earlier time t 1, all work between these times is undone.
Any bindings made after t1 are backtracked; BIND messages sent out after t1 are cancelled by sending out their

28

corresponding ANTI-BIND messages. In this, rollback appears much like backtracking. The salient distinction
between the Lwo is that rolling back a goal resets the list of clauses with which it may unify, while backtracking
causes the current clause to be discarded and the next to be selected. As well, rollback causes all work past a
specific time to be undone, while backtracking goes back only far enough to find an untried clause or remote
frame.

6.5 Local Backtracking

Clause Failure

if marker_time of current frame<= LVT
ensure all clauses other than the currently-selected one will

eventually be selected on backtracking
make rejected clauses available for retrial
if marker_ time <= timestamp of previous frame

previous frame's marker_time =
min(previous marker_time, marker_time)

end if
end if
select next clause
if no alternative clauses.for current goal

replace goal on goal list
delete goal frame
set LVT = timestamp of sibling stack frame
continue with goal failure for sibling stack frame

else
continue with clause execution for selected clause

e nd if

Goal Failure

backtrack all bindings associated with clause frame
if current stack frame is a remote frame

send FAIL message to originator {include timestamp and
unique ID of sibling frame as context in stack)

delete clause frame and parent goal frame
continue with goal execution

else/* frame is local*/
send one ANTI-BIND message for each outgoing message of current frame
for each subgoal of clause associated with frame

if subgoal is remote
send ANTI-GOAL message to process solving subgoal

else
remove subgoal from goal_list

end if
end for
delete clause frame
continue with clause failure

end if

Local backtracking begins as a result of a failed attempt at unification of a goal and a clause bead. This is
known as clause failure; I.he next available clause for I.he goal must be tried. If another clause is available, forward
execution resumes. 01.herwise, goal failure results, and I.he current goal must be backtracked. From this point,
I.he previous clause frame on I.he stack is backtracked. If t11e previous frame is local, the clause frame is undone

29

as for rollback and backtracking continues with clause failure. 1f the previous frame is remote, failure is passed
on to the originator of the remote frame via a FAIL message.

In the process of backtracking, marker times are propagated down the stack. If a backtracked frame's marker
time is less than its own time, all of its clauses are made available again. If the current LVT becomes less than the
marker time, the marker is reset to +oo. Also, if a marker time is propagated down to a frame that already has its
own marker time, the lower marker time prevails.

It is important to note that simply being able to make another process backtrack is not sufficient for correct
remote backtracking. The bindings rejected by the sender of the FAIL may not be the cause of that sender's failure;
they may merely have the latest timestamp of a large group of "suspects," each of which could have contributed to
the failure. An earlier binding in that group may be the real culprit. Thus, a process that receives a FAIL message
needs some context with that message, since it may eventual ly backtrack to the time of the next-latest suspect.
To provide this context, it is sufficient to include !lie timestamp and unique ID of U1e sender's sibling stack frame
with the FAIL message. (However, see Section 7.1, which optimizes !l1is process.)

6.6 Remote Backtracking

if remote frame with timestamp and unique ID equal
to those in context of message does not yet exist

create a remote frame based on context given in FAIL
(process that sent FAIL, timestamp, frame ID)

insert in the local stack according to timestamp
end if
continue with goal failure from current frame

Remote backtracking begins at a process as a result of receiving a FAIL message from some other process. It
is identical to local backtracking except t1u1t two preparatory steps must be taken. First, the FAILed process must
roJI back to the virtual time given in the FAIL. (Details are given in the sections on message receipt and rollback.)

Second, the FAILed process must ensure that it takes the coutext provided by the FAil's originator into
account. This context may be maintained in the stack of a FAil's recipient by inserting a remote frame whose
originator is the FA il's sender ru1d whose timestamp is that of !l1e sender's sibling stack frame. (See Figures 16
and 17 for an example of this.) If it encounters this frame during later backtracking, it reacts as it would to any
otherremote frame. Once these steps have been taken, nonnal backtracking begins with goal failure of the FAILed
frame.

6.7 Solved State

wait for some message to arrive
continue with message processing

Actions perfonned in t11e solved state are straightforward. A solved process simply waits until a message
arrives, and resumes execution by processing it.

7 Further Optimizations

Although the most significant optimizations suggested in [Cleary et al 1988] have been incorporated into tlle
current algoriilim, further optimizations are still possible. FAIL messages may be optimized to send multiple
contexts, making it more likely that a later FAIL will be sent directly to the originator of a rejected binding,
rather than to some intennediate process. As well, the algorithm is amenable to the application of intelligent
backtracking techniques, particularly the scheme proposed in [Mannila & Ukkonen 1986]. Related to tllis are two
"intelligent retrial" techniques.

30

Pa Pb Pa Pb

t::::2

t::::5

Figure 21 : Process Pa initiates remote backtracking, causing Pb to fail. Pb backtracks to the time given in the
FAil's context without finding a new solution, and sends a FAIL back to Pa, which then backtracks again.

Pa Pb Pc Pa Pb Pc

t::::2 t ::::2

t::::5

Figure 22: As for two-process backtracking, except that Pa passes failure on to Pc immediately on receiving the
FAIL itself.

7.1 FAIL Optimization

The aim of trying to optimize FAIL messages is to reduce the number of FAIL messages sent, and consequently
to minimize wasted message processing and stack examination. In the unoptimized algorithm, the context sent
with a FAIL message refers to the timestamp of the previous frame on the sender's stack. If the FAil's recipient
cannot find an alternative without backtracking to before that timestamp, it sends a FAIL message back to the
sender (along with its own previous frame as context, of course).

In some cases (for example, in Figure 21), the previous frame sent as context is local to the sender; in this
case, if the failure comes back to it, the original sender will backtrack locally. Often, however, the context refers
to a remote frame, as in Figure 22. In this case, when a FAIL is directed back at the original sender, that process
checks back through its stack only to discover that t11e FA I Led frame is due to a third process. It must then install a
new context frame in its stack, remove the FA I Led frame, and send out its own FAIL message to the third process
before returning to forward execution. This is wasteful: an extra FAIL message is sent, and processing is done
to remove a remote frame that would be removed ~myway on transmission of tl1e appropriate ANTI-BIND, which
happens as soon as the FAIL reaches its final destination.

An attractive idea is to direct failure immediately to the third process, bypassing the originator completely.
This may be accomplished by including the process ID of the previous frame's originator in the context, along
with its timestamp; this metJ1od is illustrated in Figure 23. This saves process Pa from having to roll back, and

31

Pa Pb Pc Pa Pb Pc

t=2 t=2

t =5

Figure 23: Rather than sending a FAIL back through Pa, Pb can send it directly to P.,, and avoid making Pa receive
and process a FAIL.

resullS in one less FAIL message being sent out.
Though attractive, this optimization must be implemented carefully. It is important lhat the context provided

in the FAIL message always make it possible to direct failure back to the process that sent the FAIL. If lhis is not
done, situations can arise that cause possible solutions to be missed and thus incorrect execution [Olthof 1991].

The solution to this problem is to use a multi-place context, such lhat the ith component of the context
corresponds to the (i + 1)1

h last frame in the sender's stack, be that frame local or remote. The exception is the
last component of the stack, which must direct failure back to lhe sender, whether lhe corresponding frame on the
sender's stack is local or remote.

Setting the number of contexlS in a FAIL message to some small number seems appropriate. This might be
determined by a natural message size in Ll1e implementation. We expect lhat sending three or four contexlS will
cover almost all available optimization.

7.2 Intelligent Backtracking

Through lhe use of FAIL messages, the distributed algorilhm already exhibits a simple fonn of intelligent
backtracking. When a process receives a FAIL for one of its bindings, it i1mnediately rolls back to the virtual
time of that binding, rather than uselessly retrying later goals. The cause of failure is obvious and localized to a
specific group of bindings, and no amount of struggling with later bindings will remove the failure.

The challenge is to make this sort of backtracking possible for local execution as well. The intelligent
backtracking algorithm proposed in [ManniJa & Ukkonen 1986) seems ideal for lhis purpose. Like our algorithm,
it keeps track of binding timestamps. Though their reason for maintaining such timestamps differs from ours, the
meLllod is so similar as to be nearly identical.

The central idea of their algorithm is that when all clauses for a goal have failed, backtracking should proceed
to the latest-timestamped unification whose bindings could have contributed to the failure of any of the clauses.
As each clause is tried and rejected, the bindings that caused it to be rejected-or rather their timestamps-are
recorded. Adding such behaviour to our algorithm is straightforward and incurs little additional space overhead.

8 Extraction of Available Parallelism

While it is difficult to make accurate predictions about the execution time of a complex system such as this it is
very desirable that some comparison be made with other similar parallel algorithms. We do this in this section by
examining tlle amount of parallelism that can be extracted by the TtmeWarp algorithm.

Estimating tlle parallelism available is essentially Llle same as predicting perfonnance in tlle limit when
overheads such as order independent unification, message passing and rollback are free. An example of sucb

an analysis can be found in [Hermenegildo & Rossi 1990) where it is shown that a "Non-Strict Independent
AND-Parallel" system will never run slower than a sequential execution. In the first sub-section below we show
informally, that basic TII11eWarp will never run slower than a sequential SLD execution.

In the second sub-section we show that full TimeWarp is able to extract as much parallelism as any of a
wide class of conservative AND-parallel algorithms. (All proposed AND-parallel algorithms that we are aware
of are conservative). Formal proofs of these results can be found in [Cleary 1993). Similar results comparing
zero-overhead TimeWarp (for distributed simulation) with conservative algorithms are cited in [Fujimoto 1990).

8.1 Basic Algorithm

In this sub-section I will sketch an informal proof that the basic TimeWarp algorithm will execute at least as
fast as a sequential SLD execution. This result needs to be qualified in two ways. First, the comparison is
with an SLD execution algoritlun which selects goals for execution in the same order as the timestamps in the
TimeWarp execution. Second, TimeWarp must execute on either one or an unbounded number of processors.
This last condition is necessary and the result does not hold for imermediate numbers of processors. To see this,
consider the case when multiple goals are mapped to L11e same processor. When a goal is executed optimistically
an earlier timestamped goal (on L11e same processor) may become available for execution, for example, when an
ANTI-BIND is received. The optimisticly executing goal will then block ilie rollback and re-execution of the
goal with the earlier timestamp. Meanwhile the SLD execution will have executed the goals in the correct order
without blocking.

We start the proof with some definitions. At each point in real time there will be some event in the Tune Warp
system - eimer forward execution or backtracking - which bas the smallest virtual time. We will refer to this
as the global event. (Because other operations such as message passing and rollback are assumed to have zero
execution time L11ey can be ignored). We show by induction on me sequence of global events that each global event
corresponds to some event in tl1e sequential SLD execution and tile real time of its SLD execution will always be
later tilan t11e real time of its Time Warp execution. This is trivially true at t11e start of execution. Consider tile
point when a new global event starts execution.

Ifilie new global event is a forward execution, tilen tile previous global event must have completed successfully
(otilerwise ilie new global event would be a backtrack operation). Also, because tl1e new global event has tile
lowest virtual time, tilere are no pending goals witil a lower virtual time, and so it must be a goal in the SLD tree.
In tl1e SLD execution the new global event will certainly be executed later tl1en me old one (otherwise it would
have been scheduled first) and they may be separated by any number of events (even an infinite number) which
were opt.imisticly executed in the TtmeWarp execution (or cut by a smart backtrack). The upshot of all this is that
the new global event cannot complete later than tlle corresponding event in the SLD execution.

If the new global event is a backtrack (with its consequent ANTI-BIND, and ANTI-GOAL messages) then its
virtual time may be earlier ilian me previous global event which may or may not have completed. Assuming tbe
correctness of ilie TimeWarp algoriilim, tl1e SLD execution must eventually backtrack to tl1e destination of the
Time Warp backtrack without generating any solutions in the meantime. (Because of tlle "smartness" inherent in
the Tune Warp algoriilim it may have immediately backtracked a number of events).

At tl1e end of execution ilie last event executed will be a global event so ilie Time Warp execution will terminate
while tl1e SLD execution is still running.

It is also notable that tile basic TimeWarp algoriilim bas better tennination properties tilan the sequential
SLD algorithm - any SLD computation which fin itely fails will also finitely fail under TimeWarp and there are
compuwtions which finitely fail under Time Warp and do not finitely fail under sequential execution.

8.2 Full Algorithm

It is difficult to place a lower bound on L11e execution time of all possible AND-parallel algorithms. Instead we
compare TimeWarp wil11 a class of consen1ative algoril1uns defined as follows. An AND-parallel algorithm is
conservative if iliere is a partial ordering between tile goals in an execution such iliat the following rules are obeyed:
if two goals can born bind tl1e same variable they are ordered; a child goal lies after it's parent in the ordering; once
a goal has been selected for execution its ordering is fixed; and if two goals are ordered, the execution of ilie earlier
goal will complete before ilie later goal starts execution ru1d all alternative clause selections for the later goal will

33

complete before any alternative clause selections are explored for the earlier goal. All proposed non-optimistic
AND-parallel algorithms that we are aware of are conservative. Of course, other classes of algorithms such as
combined AND/OR-parallel algorithms and ones that dynamically re-organize the goal ordering might achieve
lower execution times.

Given these definitions a strong result is available for the full Tune Warp algorithm (with both the BIND and
ANTI-BIND optimizations). It is able to execute as fast as any conservative algorithm when both are executed on
an unbounded number of processors. To achieve Ibis the Tune Warp aJgorithm must use the unbounded number
of processors by allocating each new goal its own processor.

The proof is essentiaJly the same as above. We show by induction on the sequence of global events that each
global event corresponds to some event in the conservative execution and that the real time of its conservative
execution will always be later than the real time of itS Tune Warp execution. This is trivially true at the start of
execution. Consider the point when a new global event starts execution.

If the new global event is a forward execution, then the previous global event must have completed successfully
(otherwise the new global event would be a backtrack operation). As each goal is on itS own processor it is always
immediately scheduled for execution, so the beginning of execution of the new global event must have been
preceded either by the successful execution of itS parent goal or by a rollback caused by an incompatible binding.
Because of the ordering restrictions on the conservative algorithm the global event could not have executed
any earlier within the conservative execution. (A goal is ordered after its parent and to be rolled-back by an
incompatible binding it must share a vruiable with an earlier timestamped goal). The upshot of all Ibis is that the
new global event cannot complete later than the corresponding event in the conservative execution.

If the new global event is a backtrack (with its consequent ANTI-BIND, ru1d ANTI-GOAL messages) then
its virtual time may be earlier than the old global event which may or may not have completed. Assuming the
correctness of the Time Warp algorithm and t11e ordering restrictions on backtracking in a conservative execution,
the conservative execution must eventually backtrack to the destination (of the Time Warp backtrack). The earliest
Ibis can happen is at the same time or after some (potentially unbounded) nwnber of conservative events.

It is also notable that the full Time Warp algorithm has at least as good termination properties as any conservative
algorithm - any conservative computation which finitely fails will also finitely fail under Time Warp.

9 Summary and Future Work

In arriving at the fully-optimized algorithm, an interesting process has been followed. A well-understood
sequential algorithm, namely backtracking for Prolog, has been transformed into a distributed algorithm by
"applying" Tune Warp lo it. Time Warp was originally described as an algoritlun for distributed simulation.
However, every sequential algorithm bas a virtual temporal coordinate system imposed by the order of operations
during a sequential execution. By extracting this order and making it explicit, Time Warp can execute the algorithm
in parallel. In this case, the resulting algorithm was sufficienlly specialized that significant optimizations to the
rollback processing of Time Warp were available. More "traditional" Prolog oplimizations, like those for
intelligent backtracking, may slill be applied. We look forward to seeing other sequential algorithms, for which
it is difficult to construct ru1 efficient distributed version, transfonned in the srune fashion.

An implementation of the optimized algoritllm is planned for the near future. Results are ex peeled to compare
favourably with concurrent logic lru1guages for detenninistic programs and with independent AND-parallel
systems for nondetenninistic programs, as well as wit11 tlle unoptimized algorithm implemented in [Oltbof 1991].

One area that we will be exploring with t11e implementation is the effect that differem timestamp allocation
algorithms have on perfonnance. At one extreme, we can mimic tlle standard depth-first backtrack order by
appropriate timestamp selections. However, we believe that some programs will respond well to other orderings
that the flexibility of Time Warp allows.

Also, with care, it is possible to ensure tlial tlie timest.amps assigned side-effecting operatjons such as assert,
retract, and input/output operations will be in the same order as in a purely sequential execution. Coupled
with database mruiipulation and VO operations t11at can be rolled back, this would allow transparent distribulion
of programs containing such side effects.

34

10 Acknowledgements

This work was supported by the NaturaJ Science and Engineering Research Council of Canada and Jade Simula­
tions International Corporation.

References

[Clark & Gregory 1986)

[Cleary 1993)

[Cleary er al 1988)

[Conery 1987)

[Conery & Kibler 1985]

[DeGroot 1984)

[Dijkstra er al 1983)

[Foster & Taylor 1990)

[Fujimoto 1990)

[Gafni 1985)

K.L. Clark and S. Gregory. PARLOG: parallel programming in logic, ACM
TOPLAS, 8(1):1-49, 1986.

J.G. Cleary. Complereness of an Oprimisric AND-parallel Algorirhm. Technical
Report, Dept. Computer Science, University of Waikato, New Zealand, 1993.

J.G. Cleary, B.W. Unger, and X. Li. A distributed AND-parallel backtracking
algorithm using Virtual Time, In Proceedings of rhe Distribured Simulation Con­
ference, pages 177-182, San Diego, February 1988.

John S. Conery. Parallel Execurion of Logic Programs. Kluwer Academic Pub­
lishers, 1987.

John S. Conery and Dennis F. Kibler. AND parallelism aud nondeterminism in
logic programs, New Generarion Compuring, 3(1):43- 70, 1985.

Doug DeGroot. Restricted AND-parallelism, In Proceedings of rhe 1984 Interna­
tional Conference on Fifth Generation Computer Systems, pages 471-478, ToJ...-yo,
November 1984.

E.W. Dijkstra. W.HJ. Feijen, and AJ.M. van Gasteren. Derivation of a termination
detection algorithm for distributed computations, Information Processing Letters,
16:217-219, 1983.

Ian Foster and Steve Taylor. Strand: New Concepts in Parallel Programming.
Prentice-Hall, 1990.

Richard M. Fujimoto. Parallel dicrete event simulation, CACM, 33(10):30-53,
1990.

Anat Gafni. Space Management and Cancellation Mechanism for Time Warp.
PhD thesis, University of Southern Califomia. 1985.

[Hermenegildo & Rossi 1990) M. Hermenegildo and F. Rossi. Non-strict Independent And-Parallelism, In Logic
Programming: Proceedings of the Seventh International Conference, JerusaJem,
1990.

[Jefferson 1985] David R. Jefferson. Vinual Time, ACM TOPLAS, 7(3):404-425, July 1985.

[Jefferson & Sowiual 1985] David R. Jefferson and Henry A. Sowiz.ral. Fast concurrent simulation using
the Time Warp mechanism, In Proceedings of the SCS Distributed Simulation
Conference, San Diego, CA, January 1985.

[Kale 1985] L.V. Kale. Parallel Architectures for Problem Solving. PhD thesis, Department of
Computer Science, SUNY Stony Brook, 1985.

[Mannila & Ukkonen 1986) Heikki Mannila and Esko Ukkonen. Timestamped tenn reprsentation for imple­
menting Prolog, In Proceedings of the 1986 Symposium on Logic Programming,
pages 159- 165, Salt Lake City, Utah, 1986.

35

[Olthof 1991)

[Pereira et al 1986)

[Shapiro 1987)

(Somogyi et al 1988)

[Tebra 1987)

[Ueda 1987)

[van Emden 1984)

[Wesl 1988)

Ian Olthof. An Optimistic AND-Parallel Prolog Implementation. Master's thesis,
Deparunent of Computer Science, University of Calgary, 1991.

L.M. Pereira, L. Monteiro, J. Cunha, and J.N. Apar cio. Della Pro log: a distributed
backtracking extension with events, In Proceedings of the Third International
Conference on Logic Programming, pages 69-83, 1986. published as Lecture
Notes in Computer Science 225 by Springer-Verlag.

Ebud Shapiro. A subset of Concurrent Prolog and its interpreter, In Concurrent
Prolog-Collected Papers, chapter 2, pages 27-83. MIT Press, 1987.

Z. Somogyi, K. Ramamohanarao, and J. Vaghani. A stream AND-parallel execu­
tion algorithm with backtracking, In Fifth International Conference and Sympo­
sium on Logic Progranuning, pages 386-403, Seattle, August 1988.

Hans Tebra. Optimistic AND-parallelism in Prolog, In Parallel Architectures
and Languages Europe, pages 420-431, 1987. published as Lecture Notes in
Computer Science 258 by Springer-Verlag.

K. Ueda. Guarded Hom clauses, In Concurrent Prolog-Collected Papers, chap­
ter 4, pages 140-156. MIT Press, 1987.

M.H. van Emden. An interpreting algorithm for Prolog programs, In Implemen­
tations of Prolog, pages 93-110. Ellis Horwood, 1984.

Darrin West. Lazy Re-evaluation in Ttme Warp. Master's thesis, Deparunent of
Computer Science, University of Calgary, 1988.

36

