

http://researchcommons.waikato.ac.nz/

Research Commons at the University of Waikato

Copyright Statement:

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

The thesis may be consulted by you, provided you comply with the provisions of the

Act and the following conditions of use:

 Any use you make of these documents or images must be for research or private

study purposes only, and you may not make them available to any other person.

 Authors control the copyright of their thesis. You will recognise the author’s right

to be identified as the author of the thesis, and due acknowledgement will be

made to the author where appropriate.

 You will obtain the author’s permission before publishing any material from the
thesis.

http://researchcommons.waikato.ac.nz/

This thesis is submitted in partial fulfillment of the requirements for the
Degree of Master of Computer Science at the University of Waikato.

January 2012

© 2012 Jinjin Ma

Parameter Tuning Using
Gaussian Processes

Jinjin Ma

Abstract

Most machine learning algorithms require us to set up their parameter val-

ues before applying these algorithms to solve problems. Appropriate parameter

settings will bring good performance while inappropriate parameter settings

generally result in poor modelling. Hence, it is necessary to acquire the “best”

parameter values for a particular algorithm before building the model. The

“best” model not only reflects the “real” function and is well fitted to existing

points, but also gives good performance when making predictions for new points

with previously unseen values.

A number of methods exist that have been proposed to optimize parameter

values. The basic idea of all such methods is a trial-and-error process whereas

the work presented in this thesis employs Gaussian process (GP) regression to

optimize the parameter values of a given machine learning algorithm. In this

thesis, we consider the optimization of only two-parameter learning algorithms.

All the possible parameter values are specified in a 2-dimensional grid in this

work. To avoid brute-force search, Gaussian Process Optimization (GPO) makes

use of “expected improvement” to pick useful points rather than validating every

point of the grid step by step. The point with the highest expected improvement

is evaluated using cross-validation and the resulting data point is added to the

training set for the Gaussian process model. This process is repeated until a

stopping criterion is met. The final model is built using the learning algorithm

based on the best parameter values identified in this process.

In order to test the effectiveness of this optimization method on regression

and classification problems, we use it to optimize parameters of some well-known

machine learning algorithms, such as decision tree learning, support vector ma-

chines and boosting with trees. Through the analysis of experimental results

i

obtained on datasets from the UCI repository, we find that the GPO algo-

rithm yields competitive performance compared with a brute-force approach,

while exhibiting a distinct advantage in terms of training time and number of

cross-validation runs. Overall, the GPO method is a promising method for the

optimization of parameter values in machine learning.

ii

Acknowledgements

It is a great pleasure to express my gratitude to the many people who made

this thesis possible.

First, I would like to thank my supervisors Associate Professor Eibe Frank

and Professor Geoff Holmes for supervising the thesis. They suggested many

new research ideas and explained things very clearly and simply with great effort

and enthusiasm. They provided a lot of help when I met different problems.

During the thesis-writing period, they always gave me much encouragement and

sound advice as well as good proof-reading. I also would like to thank Quan

Sun and John Moriarty for proofreading the draft of the thesis.

Further thanks go to my colleagues in the machine learning group. They

are a group of lovely people who always help each other. I enjoyed discussing

problems and sharing ideas with them. They provided such a friendly and

excellent research environment.

I wish to thank my friends for bringing me joy during the hard times. They

encouraged me, supported me and helped me all the time.

I also thank Clint Dilks for giving me technical support and maintenance

for my important experiments. A special thanks goes to the computer servers I

used for my experiments. They might be tired out if they keep running. They

may have spent a longer time than I did on this thesis.

I am very grateful to the scholarship from the Machine Learning Group.

Many thanks for the financial support during the study. I can not imagine doing

it without this huge help.

Lastly, and most importantly, I am forever indebted to my parents far away

from here. I thank them for giving every support and endless love when it was

most required. I dedicate this thesis to them.

iii

Contents

Abstract i

Acknowledgements iii

1 Introduction 1

1.1 Objectives of Parameter Optimization Using Gaussian Process

Models . 2

1.2 Structure of the Thesis . 3

2 Background 6

2.1 Gaussian Processes . 6

2.2 Decision Trees . 11

2.2.1 Information Gain . 14

2.2.2 ID3 . 15

2.2.3 C4.5 and J4.8 . 17

2.3 Boosting . 18

2.3.1 General Algorithm Description 19

2.3.2 LogitBoost . 20

2.4 Support Vector Machines . 22

2.5 Cross-Validation . 28

2.6 Summary . 31

3 Gaussian Process Optimization 32

3.1 Search Methods . 33

3.1.1 Grid Search . 33

3.1.2 Random Search . 35

iv

3.2 Expected Improvement . 36

3.3 Gaussian Process Optimization 37

3.4 The Effect of the GP Parameters 39

3.5 Stopping Criterion . 45

3.6 Summary . 51

4 Experimental Results 52

4.1 Regression . 53

4.1.1 Numeric Prediction Based on Gaussian Process Regression 53

4.1.2 Comparing GPO and Random Search 60

4.2 Classification . 66

4.2.1 Classification Prediction Based on SMO 67

4.2.2 Classification Prediction Based on C4.5 79

4.2.3 Classification Prediction Based on LogitBoost 86

4.3 Summary . 93

5 Conclusions and Future Work 94

5.1 Conclusions . 94

5.2 Future Work . 96

A Behaviour on the CPU data with γ = 0.1 and δ = 0.01 in the

first 10 iterations 98

B Behaviour on the CPU data with γ = 1 and δ = 0.01 in the first

10 iterations 104

v

List of Figures

2.1 A decision tree for the “weather” dataset 13

2.2 The relationship between the entropy and the probability 15

2.3 Pseudo-code of the General Boosting Algorithm [49] 20

2.4 Pseudo-code of the LogitBoost Algorithm for two-class problems

[12] . 23

2.5 A linear support vector machine 24

2.6 Support vector classification with outlier 26

2.7 The mapping from the original space to the feature space 27

2.8 Relationships of parameters and errors 29

2.9 Cross-validation methodology . 30

3.1 Flowchart of general search algorithm for two parameters 34

3.2 Predicted Values with γGPO = 10 and δGPO = 0.01 in 10 iterations 42

3.3 Standard Deviation with γGPO = 10 and δGPO = 0.01 in 10

iterations . 43

3.4 Expected Improvement with γGPO = 10 and δGPO = 0.01 in 10

iterations . 44

3.5 Actual Values with γGPO = 10 and δGPO = 0.01 in 10 iterations 46

3.6 Tendency charts for chosen points when exhausting the full pa-

rameter space with γGPO = 10 and δGPO = 0.01 based on the

“CPU” dataset . 49

3.7 Tendency charts for chosen points when exhausting the full pa-

rameter space with γGPO = 10 and δGPO = 0.01 based on the

“concrete” dataset . 50

4.1 Confusion matrix table . 66

vi

List of Tables

2.1 The Weather Data . 12

4.1 The search configuration of GPO and Grid Search in regression 54

4.2 Correlation Coefficient for GPO and Grid Search 56

4.3 Number of 2-Fold Cross-validation Runs in GPO and Grid Search 57

4.4 Number of 10-Fold Cross-validation Runs in GPO and Grid Search 58

4.5 Training Time of GPO and Grid Search 59

4.6 Correlation Coefficient of GPO and Random Search 61

4.7 Number of 2-Fold Cross-Validation Runs in GPO and Random

Search . 63

4.8 Number of 10-Fold Cross-Validation Runs in GPO and Random

Search . 64

4.9 Training Time of GPO and Random Search 65

4.10 The search configuration of GPO and Grid Search in classification

using SMO . 68

4.11 Percent Correct of GPO and Grid Search in UCI Classification

using SMO . 69

4.12 Number of 2-Fold Cross-validation Runs in GPO and Grid Search

in UCI classification . 70

4.13 Number of 10-Fold Cross-validation Runs in GPO and Grid Search

in UCI classification using SMO 71

4.14 Training Time of GPO and Grid Search in UCI classification

using SMO . 73

4.15 Number of 2-Fold Cross-validation Runs in GPO and Random

Search in UCI classification using SMO 74

vii

4.16 Number of 10-Fold Cross-validation Runs in GPO and Random

Search in UCI classification using SMO 75

4.17 Percent Correct of GPO and Random Search in UCI Classifica-

tion using SMO . 77

4.18 Training Time of GPO and Random Search in UCI classification

using SMO . 78

4.19 Search Configuration for J48 . 79

4.20 Percent Correct of Three Methods for J48 81

4.21 Training Time of Three Methods for J48 83

4.22 Number of 2-Fold Cross-validation Runs of Three Methods for J48 84

4.23 Number of 10-Fold Cross-validation Runs of Three Methods for

J48 . 85

4.24 Percent Correct of Three Methods for LogitBoost 88

4.25 Training Time of Three Methods for LogitBoost 90

4.26 Number of 2-Fold Cross-validation Runs for LogitBoost 91

4.27 Number of 10-Fold Cross-validation Runs for LogitBoost 92

viii

Chapter 1

Introduction

In recent years machine learning algorithms have been applied to various

areas; optimizing the model they produce is becoming a very important topic.

Apart from a few simple algorithms that do not have tuning parameters, most

machine learning algorithms may suffer from inappropriate parameter settings

because the parameter values must be set before applying algorithms to solve

problems [15], even though default values in some algorithms perform satisfac-

torily.

Generally, there is no clear and unique method to find the “best” parame-

ter settings, and a number of approaches have been proposed that try to search

for “good” parameter values. However, some of these approaches may easily

fall into a suboptimal situation [30], and others have to do a brute-force search,

such as Grid Search. Grid Search is an exhaustive approach without any opti-

mization during the search process, starting from the minimum point of a grid

of parameter values specified by the user to the maximum point. It has the

obvious advantage that every point in the grid is evaluated before the “best”

point is chosen. Assuming the grid is chosen appropriately, it guarantees that

the “best” point is close to the globally optimal parameters rather than in a

suboptimal area. The aim of this thesis is to achieve the same high-quality pa-

rameter settings as Grid Search using a speedier process by applying Gaussian

process regression to model performance depending on parameter settings.

There are prior works on parameter optimization methods for machine

1

learning algorithms. An idea based on principles of the design of experiments

(DOE) was presented in [43] that can identify the meta parameter settings

for support vector machines. This algorithm can successfully find optimal or

near-optimal parameters and has already been applied to several problems in

HP Laboratories. Lin [30] proposed a novel scatter search-based approach (SS

+ DT) to acquire parameter settings and demonstrated that the experimental

results using this approach for the C4.5 algorithm are better than those obtained

by other approaches. Genetic algorithms have also been applied as a parameter

optimization tool for finding maximum accuracy predictive models. However,

this kind of algorithm can not guarantee that the point found is near the optimal

solution due to the inherent limitations of the heuristic search approach [44].

Another approach is to learn a model in parameter space based on on-line

Gaussian process models. In [13], that approach is applied to the optimization

of support vector machines; and experimental results on a small collection of

benchmark datasets indicate that it is effective. In this thesis, the same basic

approach is evaluated more extensively using a great number of datasets and a

diverse set of learning algorithms.

1.1 Objectives of Parameter Optimization Us-

ing Gaussian Process Models

The goal of parameter optimization in machine learning is to build a model

using appropriate parameter settings to get the best predictive performance,

such as accuracy in a classification problem, or a particular correlation coef-

ficient in a regression problem. Applying a Gaussian process model to opti-

mize parameter values is a promising optimization methodology in terms of

the cost of computation and the effectiveness of the model. Gaussian Process

Optimization makes use of a Gaussian process model, trained on performance

scores collected already, to obtain predictive distributions in order to estimate

performance scores for new candidate points, which then decides suitable pa-

rameter settings from these. The basic approach for picking high-quality candi-

date points (i.e. parameter combinations) is to employ the so-called “expected

improvement” for each point [20], which is calculated based on the Gaussian

2

process model.

In this optimization context, the initial Gaussian process model learns

through a few data points corresponding to initial performance scores treated

as a training set. The next sample is selected by maximizing the expected

improvement with respect to this initial Gaussian process model amongst all

candidate data points in the search space. The new sample, paired with its per-

formance score, is estimated using methods such as cross-validation, and then is

added to the training set to update all the parameters of the Gaussian process

model. Each new point improves prediction accuracy and reduces uncertainty

to some extent. This process is applied iteratively until a stopping criterion

is met. Finally, the model, using optimized parameter values encountered in

the optimization process, can be applied to predict unknown class labels in the

classification case, or target values in the regression case.

This optimization methodology exploits the merits of Gaussian process

learning: not only can it obtain a full predictive distribution for any point

in space, thus making it possible to calculate expected improvement, but also

the properties of the known samples can be learned easily and flexibly using

a so-called “kernel function”. The natural characteristics of Gaussian process

models make the optimization solution simple.

In this thesis, we will consider this methodology to tune the parameters of

various machine learning algorithms, both in classification and regression prob-

lems. For most machine learning algorithms, two parameters or even multiple

parameters contribute to the functions of the model, even though in some spe-

cial cases there is no parameter to tune, e.g. in the case of a decision stump

classifier. We will discuss how optimization using the Gaussian process model

can be performed effectively and cheaply. As we will see, maximizing expected

improvement using Gaussian process model balances global and local searches

successfully and yields good parameter settings in an efficient manner.

1.2 Structure of the Thesis

The remainder of this thesis is organized into four chapters as follows.

Chapter 2 gives a theoretical explanation of Gaussian process learning with

3

relevant derivations of equations and then provides detailed background on some

well-known machine learning algorithms as the basis for subsequent chapters.

It also discusses cross-validation, which is used to evaluate the performance of

the generated model.

Chapter 3 briefly introduces Grid Search and Random Search as baseline

search methods to be compared to the Gaussian process search method. This

chapter also describes the concept of expected improvement and how it works

in Gaussian process models. It focuses on the specific procedure of Gaussian

Process Optimization and also provides a preliminary view of the performance

of optimization based on Gaussian processes. We will see that the selection of

Gaussian process parameter values can influence the outcome of the predictive

model. Three-dimensional plots of the specified Gaussian process parameter

values and the corresponding predictions help our understanding of the effect of

these parameters for a particular dataset. As we will see, it is noticeable that

the appropriate Gaussian process parameter values, including kernel function

values, are an important factor when building models for optimization. We

will provide an investigation of this phenomenon in this chapter. This chapter

also investigates a stopping criterion to show when the optimization process can

reliably stop without influencing the final predictive performance.

Chapter 4 provides a substantial amount of evidence, obtained using various

learning algorithms, to prove the effectiveness of Gaussian Process Optimization

in both regression and classification learning domains. The experiments are per-

formed on several classical datasets and compare the performance of Gaussian

Process Optimization with Grid Search and Random Search according to sev-

eral measures. Through the comprehensive analysis of these results, we find that

Gaussian Process Optimization generally has equivalent performance in terms

of the accuracy (classification) and the correlation coefficient (regression), and

a distinct advantage in terms of runtime and number of cross-validation runs

compared with the other two methods.

Chapter 5 concludes this thesis and finds that Gaussian Process Optimiza-

tion can be applied successfully to optimize the parameters of machine learning

algorithms. Due to the high-quality parameter values chosen by this process, it

becomes easier and faster to build a good model. Nevertheless, there is scope

4

for future work. The optimization methodology, as investigated in this thesis,

is limited to two parameters of the specified base algorithms. It would be use-

ful to investigate optimizing multiple parameters. In addition, because of the

computational complexity involved, the optimization process still consumes a

substantial amount of time on larger datasets. We should investigate further

modifications and perform research in the future to make the process even more

efficient.

5

Chapter 2

Background

This thesis is about parameter optimization in machine learning. In this

chapter, we review the learning algorithms that are used later in the parameter

optimization experiments. These learning algorithm typically have two inter-

acting parameters where optimal performance is obtained when a good pair

of values has been determined. They cover a wide range of approaches: re-

gression and classification, decision tree learning, kernel-based methods, and

ensemble classifiers. More specifically, Section 2.1 discusses Gaussian processes

for regression, Section 2.2 covers decision tree learning, Section 2.3 considers

ensemble learning using boosting and Section 2.4 explains the basics of support

vector machines. Section 2.5 discusses how cross-validation is used to estimate

performance. Section 2.6 contains a brief summary of this chapter.

2.1 Gaussian Processes

Suppose we are given a training dataset D of N data points XN with

inputs x and outputs (or targets) yN . The inputs x may contain just one

variable or may represent an I dimensional vector, i.e. in general there may be

many input variables (or attributes). For example, the “CPU” dataset from the

UCI repository has 6 input attributes, such as minimum memory and maximum

memory; and for the “glass” dataset, there are 10 input elements to discriminate

different kinds of glass. The targets yN are composed of a list of scalars, which

are continuous in the regression case, or discrete in the classification case because

6

there they belong to categorical objects. We consider the regression case only

in this section.

In the machine learning context, it is important to discover the relationships

between inputs and outputs of a given dataset so that the relationship or the

function f(x) built from the observed data points can be used to predict future

unknown values for new test data. Generally, there are two common approaches

to deal with the predictions [4]. One approach is to fix a certain function

according to the characteristic of the given dataset and the experience of the

analyst. The predictions of this approach may be accurate and yield good

performance if the target is modelled well by the selected function, or the dataset

is simple enough for such a function, but this approach may also easily run into

the danger of over-fitting, where it can obtain good predictions for the training

data, but perform badly when doing test predictions. The other approach is

to “give a prior probability to every possible function” [4], which means every

possible function will have a chance to become the function chosen afterwards,

and the preferred function is more likely to have higher probability.

The inference of the unknown function denoted as f(x) in the latter ap-

proach is expressed by the posterior probability, which is based on Bayes rule

as given in the following expression [32]:

P (f(x)|yN , XN) =
P (yN |f(x), XN)P (f(x))

P (yN |XN)
(2.1)

where the first probability in the numerator on the right hand side, P (yN |f(x), XN),

is the probability of outputs yN given inputs XN on the basis of the function

f(x), and the second distribution, P (f(x)), is the prior distribution assumed by

this model over functions.

For the sake of gaining a better understanding of the principles of Gaussian

process regression, let us start with the simple multiple linear regression model

f(x;w) with additive noise ε. The model can be stated as follows [4]:

f(x) = f(x;w) = xTw (2.2)

y = f(x;w) + ε (2.3)

In Equation 2.2, xT = {x1, x2, . . . , xi} and w = {w1, w2, . . . , wi}, where

i is the ith index of the inputs and wi is the coefficient corresponding to this

7

input. The noise model ε is normally considered to be independently, identically

distributed noise added to the function.

The objective of building the mapping function f(x) is not to optimize the

performance for the training data points, but to predict well the unknown values

for new data points. Ideally, the “real” underlying target function is found.

However, this is a question worthy of consideration in the second approach: if

there are uncountably many functions to use, it will be impossible to obtain the

real function through Equation 2.1. The idea of Gaussian process regression is

to omit unnecessary functions from the possible functions and infer the most

likely function in the process. More precisely, we try to make a suitable function

fit the observed data points (or be “close” to them), and get the full predictions

for the infinite objectives on the basis of the properties of the existing finite

objectives [4] [32]. Mackay [32] mentions that many popular non-linear modeling

methods, such as Bayesian models, neural networks and other related models,

e.g. support vector machines, are related to Gaussian process regression under

the mathematical viewpoint.

A Gaussian process, as a representative of a stochastic process, is a prin-

cipled process to learn the characteristics of previously collected samples and

to give predictions of likely values of y for future inputs x. The method is fre-

quently used in real-world supervised learning applications of machine learning

[2] [18] [17]. The key point for this process is that it can be thought of as a

generalization of a Gaussian distribution, as the predictive distribution for fu-

ture samples is obtained easily and the general properties of the model can be

learned from previous samples relatively easily. The model has low complexity

of inference when making predictions for future values of x.

According to the definition in a well-known textbook on Gaussian processes

[4], a Gaussian process is “a collection of random variables, any finite number

of which have a joint Gaussian distribution”. A Gaussian distribution is typi-

cally specified by its mean and covariance matrix. Similarly, from the view of

function-space, a Gaussian process is fully specified by a mean m(x) and co-

variance function k(x, x′) which declares the covariance of the function f(·) at

the points x and x′ [4]. For each sample x, f(x) is treated as a single Gaussian

distribution. Hence, a Gaussian process is aimed at functions while a Gaussian

8

distribution is defined over vectors. The covariance function is also called the

kernel function, formalized as k(·, ·). We will use this term later. Following [4],

we write the Gaussian process (GP) as

f(x) ∼ GP (m(x), k(x, x′)) (2.4)

The two functions m(x) and k(x, x′) are:

m(x) = GP [f(x)] (2.5)

k(x, x′) = GP [(f(x)−m(x))(f(x′)−m(x′))] (2.6)

The kernel function k(x, x′) between the pair of random variables x and x′

is used as a prior over functions and the covariance between the output targets

is expressed as a function of the input variables: k(x, x′) = cov(f(x), f(x′)).

The above expression implies that the connection between the functions at an

existing point and a new point depends on the relationship of these points. They

are likely to have similar target values when x′ is close to x, while a point x′ far

away from x will show a distinct target result normally [4].

There are many kernel functions to use, such as the linear kernel, polyno-

mial kernel and spline kernel [16]. In this thesis we will focus on the Radial

Basis Function (RBF) kernel function (or Gaussian kernel function):

k(xi, xj) = exp(−||xi − xj ||
2

2σ2
)

It can be re-defined in terms of γ as

k(xi, xj) = exp(−γ||xi − xj ||2),

where γ= 1
2σ2 and σ is the kernel width parameter. In this case, the output

of the kernel depends on the Euclidean distance of xi from xj with a certain

parameter γ, one of which will be the training data point and the other of which

can be regarded as the testing data point. A large σ (or small γ) implies a very

smooth fit, with a large neighbourhood of influence for a given data point, which

makes it possible to avoid reproducing noise in the samples and to avoid over-

fitting the model to the data samples used in the training procedure. Similarly,

small σ values (large γ) mean the parameter influence on the neighbourhood is

much restricted and they give steeper functions.

9

If users are highly focused on the results on the training data, that is, when

a large value of γ is given, it is natural that the results are better because that

allows the training procedure to adapt almost perfectly to the data given to

it. However, if the model is too adapted and fit to the training samples, the

prediction for unseen data samples will not be good. Therefore, deciding on an

appropriate value of the γ parameter in the kernel function is a crucial step to

get a good balance.

In the above discussion, the Gaussian process is used to define a prior

distribution over functions. The prior distribution is not dependent on the

training data, but reflects the properties of natural features of the function.

Now we will turn to how to make predictions with a Gaussian process. The key

assumption is that the posterior predictive distribution P (y∗|D) is Gaussian,

corresponding to a certain test point x∗, so that the predictive distribution for

an unseen target value y∗ can be treated as y∗ ∼ N (m(x∗), C(x∗)), for which

m(x∗) and C(x∗) can be computed from the covariance matrix and the observed

output values y.

We consider additive noise that is added to the function f(·) in real-world

modelling situations as y = f(x) + δ, where δ is a noise parameter in the

Gaussian process model. The δ is assumed to be Gaussian noise with mean zero

and variance σ2, which is distributed as δ ∼ N (0, σ2). So, the prior distribution

over xi and xj becomes

cov(f(xi), f(xj)) = k(xi, xj) + σ2δij ,

where δij is 1 when i = j and 0 otherwise. If we purely use the observed data

points X paired with their targets y, the equation can also be written as

cov(y) = K(X,X) + σ2I

.

For some test point x∗, we denote k(x∗) = k∗ as the vector of covariances

between the test point and the observed N training data points. The mean

function m(x∗) and the covariance function C(x∗) with noise parameter σ for

this test point can be defined as follows [4]:

m(x∗) = kT∗ (K(X,X) + σ2I)−1y (2.7)

10

C(x∗) = k(x∗, x∗)− kT∗ (K(X,X) + σ2I)−1k∗ (2.8)

The mean prediction can also be written in another way as a linear combination

of n kernel functions through

m(x∗) =

n∑
i=1

αik(xi, x
∗)

where α = (K(X,X)+σ2I)−1y. From the equations above, we can see that the

mean prediction at the test point x∗ is a linear combination of output values y

while the variance depends on the inputs only instead of the observed targets.

The mean prediction provides a point estimate for the target value of a

new test instance. The aim of the experiments presented later in the thesis is

to optimize the parameters of Gaussian process regression so that the accuracy

of these point estimates is maximized, based on minimizing their squared error.

There are two parameters in the expression for the mean: the kernel function,

which we assume to be an RBF kernel parameterized by γ, and the Gaussian

noise parameter σ. These need to be chosen appropriately for each dataset

to maximize the accuracy of the point estimates, and the various optimization

techniques investigated in this thesis will be applied to and compared in relation

to this problem.

2.2 Decision Trees

In the classification domain of supervised learning, decision tree learning

has an important position: it is one of the most widely used and practical

methods for categorical target problems. Decision tree learning builds rules

for classifying data on the basis of attributes. Table 2.1 provides an example

dataset including 14 instances, which is made up of four attributes and the class

category. These four attributes are the variables outlook, temperature, humidity

and windy, which are related to the weather. The class category has two choices:

whether to play, or not. People will make the decision to play or not on the

basis of the weather conditions. It is not easy to perform the decision making

merely on the basis of the raw table because people have to search every line of

the table to find one that matches the current weather situation. Suppose there

are thousands, or even millions of records in a table; it is very difficult to find

11

Table 2.1: The Weather Data

Outlook Temperature Humidity Windy Play

sunny hot high false no

sunny hot high true no

overcast hot high false yes

rainy mild high false yes

rainy cool normal false yes

rainy cool normal true no

overcast cool normal true yes

sunny mild high false no

sunny cool normal false yes

rainy mild normal false yes

sunny mild normal true yes

overcast mild high true yes

overcast hot normal false yes

rainy mild high true no

the right one in a short time. Moreover, we may not be able to find an exact

match. This is where decision tree learning comes to our rescue. A decision tree

gives people a graphical form based on a tree structure instead of a raw table.

Figure 2.1 below shows a common format for a decision tree for the “weather”

dataset, giving a summary of all instances recorded in Table 2.1, which makes

it easy for users to find the outcome according to the observed attributes.

According to different splitting rules used for learning, the data sample can

generate different decision trees, some of which are too closely fit to the training

samples and produce poor predictions, whereas others can classify instances

into correct categories and obtain very high accuracy but are too complicated

to be understood by everyone. If the user does not mind computing cost and

complexity, every attribute of the data could be given the opportunity to be

treated as the root node and decision nodes of the decision tree. The resulting

decision tree models could be totally different in terms of tree size, depth and

outcomes of classification.

In contrast to this exhaustive procedure, all practical decision tree learners

have the same form, which starts with a root node, using a top-down search

method to split each node recursively.

The nodes of the decision tree, except the root node, include two types: leaf

nodes and decision nodes. A leaf node assigns a classification, which contains the

class name and the expected value or category of the output; and the decision

12

Figure 2.1: A decision tree for the “weather” dataset

node is normally an attribute test with each branch being a possible value of

the attribute. The final result of a decision tree learner represents a possible

choice according to its learning heuristics.

Decision tree learning is suited to problems having the following character-

istics: instances are presented as attribute-value pairs, no matter whether the

values are numeric or discrete; the target function has discrete output values,

although it is possible to extend targets to real-valued outputs; and the training

data possibly contain errors, noise and missing values [38].

Decision tree learning is attractive for inductive learning for three reasons

[46]:

• A decision tree is built on account of training instances, and often makes

a good generalization for unobserved instances. These instances are the

test instances and exhibited with unknown categorical target values.

• The learning methods are generally efficient. The computational com-

plexity is only slightly worse than proportional to the number of observed

training instances in practice.

• As a form of expression in the classification process, decision tree learning

has great attraction for users, because it is not only readily understand-

able, but also “renders the classification process self-evident” [46].

Decision tree learning has been applied in a number of commercial practical

implementations, such as medical diagnosis [26] [45], credit risk assessment of

loan applications [42], and classification of plant diseases [36].

13

2.2.1 Information Gain

The key concern is how to choose a comparatively better decision tree

model from various tree models that are available. In other words, the task is

to optimize the structure of the decision tree. The main goal of the decision tree

learner is to try to get the purest leaf nodes. Therefore, there are two questions

that need to be solved: how to select the most useful attribute to be the decision

node to classify the given dataset and how to build trees with as few paths as

possible? Applying the so-called information gain as a splitting criterion is one

possible approach. Information gain is one of the most well-known splitting

criteria to measure the amount of information in a particular attribute that is

based on the “purity” of the resulting successor nodes.

In order to understand the information gain, we should first consider the

entropy, a measure used to calculate the information gain. Suppose an attribute

X has m values, V1,V2,. . . ,Vm, and the probability of each value has been given

as P(X = V1)= p1 , P(X = V2)= p2,. . . , P(X = Vm)= pm. Then the entropy

of X, H(x) [35] is defined as follows:

H(x) = −p1 log2 p1 − p2 log2 p2 − · · · − pm log2 pm

= −
m∑
j=1

pj log2 pj (0 < pj < 1)

For a two-class classification problem with a positive category and negative

category in the target classification, the entropy of H(x) can be written as

H(x) = −p+log2p+ − p−log2p−

Where p+ is the probability of positive target objectives, and p− is the proba-

bility of negative target objectives. The relation between H(x) and p is shown

in Figure 2.2 below.

When p+ gets closer to 0, which means the proportion of this category is

quite small or only a few instances belong to it, then log2p+ will be a negative

number that is large in absolute terms, and −p+log2p+ will be a small positive

number which is nearly zero; for the remaining part of the equation, because p+

and p− sum to 1, p− gets closer to 1, but log2p− will get close to 0, so −p−log2p−

will also be nearly zero. So the entropy of the entire result works out to be nearly

14

Figure 2.2: The relationship between the entropy and the probability

zero. When both p+ and p− are close to 0.5, the set is impure and the entropy

is nearly 1. Therefore, a high entropy of X means the distribution is uniform,

while low entropy of X means X is from a varied distribution [35].

In the context of decision tree learning, a large change of entropy based

on a particular attribute indicates that this attribute should perhaps become

the decision node to split the data. We are interested in how much information

can be gained due to splitting on this attribute and how to determine the best

attribute as the decision node in a tree. Information gain measures the difference

between the entropy on the dataset S before knowing the value of the input

attribute H(S) and the entropy after splitting the data on the attribute A

H(S,A). It can be stated mathematically as follows:

IG(S,A) = H(S)−
∑

v∈V (A)

|Sv|
|S|

H(Sv),

where Sv is the subset of S in which the attribute A has value v, V (A) is the

set of all values of the attribute A and |S| is the number of instances in S.

2.2.2 ID3

We will use the classic decision tree learning algorithm C4.5 as one of the

base learning algorithms in future chapters. Before introducing C4.5, we first

consider the ID3 algorithm, which is the predecessor of C4.5. ID3 is an algorithm

15

to generate a decision tree originally developed by J. Ross Quinlan [21]. ID3

uses a fixed set of examples to build a decision tree and the resulting tree is

used to classify future samples. It is used to classify a case by starting at the

root of the tree. As with other tree learners, ID3 picks the best attribute for

each internal node using a greedy search. If does so recursively until all the

instances of a subset fall into the same class - in other words, the final subset is

“pure” and becomes a leaf node. Alternatively, if there are no attributes left to

consider, tree growth stops. ID3 uses information gain to choose an attribute

for each decision node, in order to minimize tree depth. The attribute with the

highest information gain is selected because it has the most useful information

for classification. The algorithm can be stated in pseudo code as shown in

Algorithm 1 [50].

Algorithm 1 ID3(D)[50]

1: Tree = ∅

2: if all the instances belong to one category or D is “pure” then

3: a single node with the class value

4: end if

5: for all attribute a ∈ A do

6: compute information gain

7: end for

8: abest = decision node by choosing the highest information gain

9: Dv represents sub datasets from D with the node abest

10: remove abest from the set of instances

11: for all Dv do

12: Treev =ID3(Dv)

13: Attach Treev to the corresponding branch of Tree

14: end for

15: return Tree

Assume we have a set of training cases with class values. If all the instances

belong to one class, the decision tree process will generate a single node with the

corresponding class category or value. Otherwise, the ID3 algorithm will first

compute the entropy of the class distribution. The next step is to calculate the

16

information gain for every attribute. The attribute with the highest information

gain will be the root node of the decision tree, and the branches of the root

node are based on the values of this particular attribute. Once an attribute is

determined as the decision node, this attribute will be removed from the set of

instances. The decision tree model is gradually built by repeating this process

recursively until all the leaf nodes are pure or there are no more attributes left

for splitting.

ID3 enables the user to create easily understandable prediction rules from

the whole of the training data. It converges to locally optimal solutions when it

searches through the space of decision trees and never performs back tracking.

The most important feature of the algorithm is that it can build a small tree in

a small amount of training time.

However, if ID3 uses a small sample for training, the tree will probably be

over-fitted, and at any given time only one attribute will be selected to make a

decision. ID3 may make inaccurate decisions if the dataset contains much noise

or the number of training instances is small as it relies greatly on the quality

of the training dataset. Also, for continuous attributes, the process is more

computationally expensive because of break-point setting.

2.2.3 C4.5 and J4.8

C4.5, which is implemented as J4.8 in the Waikato Environment of Knowl-

edge Analysis (WEKA) software, is an extension of the ID3 algorithm that can

be applied to cases that ID3 has difficulty coping with. For data with continuous

attributes, C4.5 first sorts the particular attribute according to its correspond-

ing values and finds appropriate thresholds, then evaluates the information gain

for every possible position for this split point. After that, it chooses the at-

tribute with the highest information gain. The next enhancement C4.5 makes

to the ID3 learning algorithm deals with the problem of missing values. C4.5

splits the corresponding instance with a missing value into pieces, using a nu-

meric weighting method. A very important point is that C4.5 is robust in the

presence of noise because it applies a pruning method to avoid over-fitting. The

decision tree built by ID3 fits the training examples well but produces poor

predictions on test instances on some datasets because it tries to get the purest

17

leaf node, which makes the tree model too specific and results in the over-fitting

problem. It is important to utilize the decision tree model to predict the tar-

get values of future instances rather than pursuing optimal performance on the

known instances. There are some pruning methods to avoid this phenomenon,

such as post-pruning and pre-pruning. Post-pruning adopts pruning measures

to discard or replace parts of the decision tree after the tree has been fully

grown. Pre-pruning stops growing a branch when a data split is not statisti-

cally significant or when the classification becomes unreliable. However, the

main disadvantage of this pruning method is that it is difficult to find a stop-

ping threshold. It may terminate division too early and result in early-stopping

in the tree growth phase if the threshold is too high; on the other hand, too

low a threshold makes the tree pruning negligible, resulting in no significant

improvement from the unpruned tree [38].

C4.5 adopts a post-pruning heuristic that is based on computing an error

estimate from a statistical confidence interval. The size of this confidence in-

terval is based on a confidence level C, and C4.5 uses the estimated error to

determine whether the tree needs to be pruned or not. The default value of C is

0.25, which seems to work reasonably well in many tasks. But if the test error

rate of the pruned tree exceeds the estimated error rate, the user can choose

lower values of C to yield more pruning.

Another parameter to the algorithm is the minimum leaf size M . The tree

will be very large and will have many branches with smaller values of M , and

may easily over-fit. But if M is set to be large, then the tree may be too small

and there may be poor accuracy in classifying the training data. The pair of

parameters (C,M) determines the size of the resulting decision tree. Therefore,

it is an important task to find appropriate parameter values for building the

tree model using the C4.5 decision tree algorithm, and determining these two

parameters is an optimization problem [38].

2.3 Boosting

Boosting is one of the most crucial developments in classification in the ma-

chine learning and data mining fields in the last twenty years. Traditional clas-

18

sification uses a single classifier for prediction. Boosting combines several weak

classifiers into a single more complex and more accurate classifier. Early work

by Kearns and Valiant [23] indicated that weak learners, each of which performs

only slightly better than a random learner, can be integrated to yield accurate

performance based on the probably approximately correct (PAC) model. The

weak learner is defined as a classifier with a performance that is guaranteed to

be better than a coin flip, and a weak classifier will always have a training error

smaller than 50% for a dataset with two classes [39]. The weak learner itself

will struggle to get high accuracy as the result of the limitations and simplicity

of a single classifier system, while multiple classifier systems have been shown

to produce favorable performance compared with single-classifier systems [47].

Early boosting theory was rooted in the PAC framework for machine learn-

ing, which was introduced by Valiant [48] and Kearns and Vazirani [24]. Kearns

[22] first proposed the question whether a set of weak learners can create a

“strong” learner to combine the merits of these weak learners and to improve

the robustness of the generated learner. Schapire affirmed this was so and devel-

oped the first simple boosting approach in 1990, which had significant influence

in the development of boosting and machine learning [39]. Three years later,

Drucker, Schapire and Simard [7] carried out the first experiment in a practical

task (OCR) with the early boosting algorithms. After that, Freund [10] com-

bined many weak classifiers by adopting a “boost by majority” algorithm with

the purpose of improving performance. In the context of this boosting theory.

One of the best-known boosting methods, AdaBoost (an abbreviation of Adap-

tive Boosting), was proposed by Freund and Schapire [11]. However, AdaBoost

has limitations when coping with noisy data, and Friedman et al. (2000) [12]

developed the LogitBoost algorithm that can deal with this problem to a certain

extent.

2.3.1 General Algorithm Description

The general idea of boosting is to combine multiple weak classifiers into a

“strong” classifier in order to obtain better classification performance. Boost-

ing uses voting in the classification step to combine the output of models. Each

individual model (weak classifier) is influenced by the performance of the pre-

19

model generation

1: Assign equal weight to each training instances

2: For each of t iterations:

Apply learning algorithm to weighted dataset and store resulting model

Compute error e of model on weighted dataset and store error

if e equal to zero, or e is greater or equal to 0.5, terminate model generation

For each instance in dataset:

If instance classified correctly by models, multiply weight of instances by e/(1− e).
3: Normalize weight of all instances.

classification

4: Assign weight of zero to all classes.

5: For each of the t models, add −log(e/(1− e)) to weight of class predicted by model

6: Return class with highest weight.

Figure 2.3: Pseudo-code of the General Boosting Algorithm [49]

vious model rather than models being built separately and independently. The

method to differentiate the correctly classified and misclassified instances is to

assign a set of different weights over the training instances. Boosting encour-

ages new classifiers to become experts to complement the earlier ones which

produced misclassification. The way to handle those incorrect predictions is to

increase the weight for the corresponding instances, and to decrease the weight

for correctly classified instances. This procedure will iterate at each round until

some stopping criterion is met. The weight of each instance will be re-weighted

after each iteration, which consequently will focus on “hard” instances to be

correctly classified by the next weak classifier. The final classifier is a weighted

majority vote of the sequence of classifiers. The boosting algorithm (AdaBoost)

is summarized in Figure 2.3 [49].

2.3.2 LogitBoost

Before introducing LogitBoost, we will consider the AdaBoost algorithm

from above in more detail. AdaBoost is one of the most used boosting algo-

rithms in practical classification prediction. The earliest and simplest AdaBoost

20

algorithm is the discrete AdaBoost algorithm, which is essentially equal to the

AdaBoost.M1 algorithms for two-class classification. Assume we have a dataset

with training instances with the format (x1,y1),(x2,y2),...,(xn,yn), where xi is

the feature vector and yi = −1, or 1. The output of the final hypothesis can

then be given as the following [40]:

F (x) = sign(

T∑
t=1

αtht(x))

where αt = 1
2 ln 1−et

et
and et = Pri∼Di

[ht(xi) 6= yi.] The AdaBoost procedure

trains the individual classifiers on weighted training samples, giving a higher

weight to misclassified cases. This process repeats several rounds until et is

equal to 0 or greater than 0.5. The classifications from each round are then

combined linearly.

AdaBoost with trees was regarded as the best “off-the-shelf classifier in the

world” in a NIPS workshop [3]. Boosting with trees is commonly used as an

ensemble method. Schapire and Singer [41] further developed the AdaBoost

algorithm, and extended the discrete predictions to real-valued or “confidence-

rated” predictions. More precisely, the weak classifier of each instance outputs a

mapping ht(x): X 7→ R, whose sign is the classification label -1 or 1 and |ht(x)|

is a measure of the “confidence” in the prediction.

AdaBoost can be interpreted as fitting an additive model

F (x) =

T∑
t=1

αtht(x)

to minimize the expectation of an exponential loss function E(e−yF (x)) [12].

However, it cannot deal with noisy data very well, which can cause over-fitting

problems [14]. The reason is that the exponential loss function changes expo-

nentially as the classification error increases, especially for noisy data samples.

But, as mentioned, AdaBoost can be interpreted as an estimation procedure for

fitting an additive regression model, which optimizes an exponential criterion.

It is possible to replace the exponential function by a binomial log-likelihood

criterion, yielding the so-called LogitBoost algorithm [12]. For two-class prob-

lems, y ∈ {−1, 1}, the expected loss can be converted to E(− log(1 + e−2yF (x)),

with F (x) = 1
2 log(p(x)/(1 − p(x))), where p(x) = P (y = 1|x), which changes

the output to be [0,1] and makes it less sensitive to noise.

21

The pseudo code for LogitBoost for two-classes is shown in Figure 2.4 [12].

LogitBoost is normally applied with regression trees because it requires the base

learner to perform numeric prediction. The maximum depth of these trees is an

important parameter: using trees that are too complex can lead to over-fitting.

To further reduce the likelihood of over-fitting, the predictions of the regression

tree are often “shrunk” by multiplying them with a user-specified shrinkage

parameter in [0,1]. In real-world problems, we often give a parameter ν to limit

the search step ŝm+1, which is 0.5 in the LogitBoost algorithm for the two-class

case, so the expression can be stated as: νŝm+1, 0 < ν < 1. This parameter

can be seen as a shrinkage parameter. Small shrinkage makes the boosting

algorithm learn more slowly and requires a larger number of iterations. For the

experiments in this thesis, the regression trees were built using the fast REP

tree learner in WEKA. Tree depth and shrinkage are the two parameters being

optimized in the experiments. Licamele et al. point out that REP tree can be

extremely powerful when it is used in combination with boosting [29].

2.4 Support Vector Machines

In this section, we will consider the support vector machine classifier (SVM),

one of the most robust and accurate machine learning methods. To learn an

SVM classifier, we will apply the Sequential Minimal Optimization (SMO) [37]

algorithm in the experiments presented later, which is a fast algorithm for train-

ing SVMs. Before talking about parameter optimization of SVM classifiers, it

is necessary to give an overview of the theoretical background.

Let us begin with the simple, linear form of an SVM in a two-class learning

task, y ∈ {±1}. The aim of the SVM method is then to find a separable hyper-

plane that can separate positive samples from negative samples by maximum

margin (see Figure 2.5). Examples beyond the upper right of the hyperplane

are positive examples marked by squares, while negative examples, marked by

diamonds, are positioned in the lower left. In this figure, it can be clearly seen

that the hyperplane separates the two classes with the margin that maximizes

distances to the closest points.

22

1: Start with weights wi = 1/N , i = 1,. . . ,N, F (x) = 0 and

probability estimates p(xi) = 1/2

2: Repeat for m = 1,2,. . . , M :

(a) Compute the working response and weights

zi =
y∗i − p(xi)

p(xi)(1− p(xi))

wi = p(xi)(1− p(xi))

(b) Fit the tree-base learner to the current working response

by weighted least squares, using the current weights wi;

the fit function is denoted by fm+1(x).

(c) Update

Fm+1(x) = Fm(x) + 0.5fm+1(x)

pm+1(x) =
eFm+1(x)

eFm+1(x) + e−Fm+1(x)

3: Output the classifier

sign[F (x) = sign[

M∑
m=1

fm(x)]

Figure 2.4: Pseudo-code of the LogitBoost Algorithm for two-class problems

[12]

The formula for the linear SVM output can be written as:

u(x) = wTx+ b (2.9)

where x is the input vector, and w and b are the weight vector and bias of the

optimal hyperplane respectively. The separating hyperplane can be regarded as

u = 0 and the nearest points are on the planes u = ±1. Hence, the distance

23

Figure 2.5: A linear support vector machine

from any point x to the separating hyperplane is

r =
u(x)

‖ w ‖
=

{
1
‖w‖ if u(x) = +1

− 1
‖w‖ if u(x) = −1

(2.10)

The margin of separation ρ can be written as follows:

ρ = 2r =
2

‖ w ‖

Consequently, finding the maximizing margin can be represented via the

following optimization expression:

minw,b
1
2 ‖ w ‖

2

subject to yi(w
Txi + b) ≥ 1, i = 1, 2, . . . , n

(2.11)

This optimization problem can be solved by the method of Lagrangian multipli-

ers, which converts it into a quadratic programming optimization problem. At

the same time, we can derive the relationship between each Lagrange multiplier

and each training data point, which is

w =

T∑
i=1

yiαixi,

hence, the classifier function for a new data point x can be written as follows:

f(x) =

N∑
i=1

yiαi < xi, x > +b (2.12)

The interesting point of this formula is that the prediction of the new point x is

dependent on the inner product of x and training points xi. It is computationally

24

complex to calculate every inner product for every training point, but in fact,

the α on all the non-support vectors is zero. The non-support vectors are those

data points that do not meet the condition y(wTx+b) = 1. Therefore, the inner

products involving the new data point are based only on the support vectors

rather than on all training data points. The reason is that the classification

completely depends on the hyperplane and the irrelevant points have no effect

on the classification.

This is the traditional and classic way of training SVMs, but the basic form

of the optimization algorithm takes longer to compute than is practical, espe-

cially for large training datasets; also, the corresponding algorithms are complex

and difficult for an average user to implement. Thus, John [37] proposes the

so-called SMO algorithm for training SVMs, which converts this large quadratic

programming (QP) problem into a series of smallest possible QP problems and

uses an analytic QP step instead of an inner loop.

Unfortunately, not all data points are linearly separable by a straight hy-

perplane in real-world problems, and it is impossible to solve cases with a few

noisy data points merely using the basic maximum margin algorithms. If some

of the positive samples and part of the negative samples are mixed together,

that is, a non-zero training error exists even for the maximum margin hyper-

plane, the question becomes how to separate them in order to reduce the error

as much as possible. Figure 2.6 shows an example. The original hyperplane

cannot divide these two sets of examples very well because noisy data exists.

In order to distinguish the two sets, the hyperplane has to move to the black

dotted line, which leads to the margin of the new hyperplane becoming smaller.

The situation will become worse if the outlier s move further left, and these two

sets of examples will mix together. Then, it is impossible to find a straight line

to separate them. Outlier data points can be ignored in some cases where they

have no effect on the classifier, while sometimes these data points are essential

because they are support vectors.

The “soft margin” introduced by Cortes and Vapnik [5] is a solution to

extend SVMs in order to allow a few noisy points to be misclassified. To achieve

this, there is a parameter C that trades off the margin with the number of

inseparable points, based on another set of parameters 1 > ξi > 0 that allows

25

Figure 2.6: Support vector classification with outlier

the margin constraints to be slackened. The expression of the optimization

problem can then be stated as:

minw,b,ξ
1
2 ‖ w ‖

2 +C
∑l
i=1 ξi

subject to yi(w
Txi + b) ≥ 1− ξi, i = 1, 2, . . . , n

(2.13)

The value of C varies with the dataset used and the optimal performance is

often assessed by evaluation, e.g. cross-validation in many cases. The change

of the parameter C will directly affect the value for ‖ w ‖2 and the level of the

other parameter, ξ. In other words, with the fluctuation of C through a series

of values, the minimum result moves to the corresponding outcome. It can be

seen that a larger value of C will lead to smaller ξ in this optimization problem.

By adapting the same method mentioned above, the soft margin problem

can also be solved using Lagrange multipliers αi [37].

minΨ(α) = min 1
2

∑N
i=1

∑N
j=1 yiyjαiαjx

T
i xj −

∑n
i=1 αi

subject to
∑n
i=1 αiyi = 0

0 ≤ αi ≤ C, i = 1, 2, . . . , n

(2.14)

This “soft margin” algorithm solves some real-world problems to a certain de-

gree, especially when only a few noisy data points exist and under the condition

that users do not require high performance. However, when the problem is non-

linear or exhibits heavily linearly inseparable structure, it is not ideal to insist

on using the preceding approach as it will produce many classification errors

[50].

Thus, Cortes and Vapnik [5] considered a proposition that maps the given

data into a feature space with higher dimension and then finds the optimal

26

Figure 2.7: The mapping from the original space to the feature space

hyperplane in this feature space. Figure 2.7 illustrates the mapping from the

original low dimensional space to higher dimensional space. The left part shows

that the given data points are not linearly separable originally but become

linearly separable after mapping into the higher dimensional feature space.

This process is a transformation between the original space and the higher

dimensional space in order to make the problem linearly separable. The key to

the transformation is a “kernel function”, which has been discussed earlier in this

chapter in the context of Gaussian process regression. The optimization problem

for the soft-margin SVM combined with a kernel function can be expressed as

[6]:

minΨ(α) = min 1
2

∑N
i=1

∑N
j=1 yiyjαiαjK(xi, xj)−

∑n
i=1 αi

subject to
∑n
i=1 αiyi = 0

0 ≤ αi ≤ C, i = 1, 2, . . . , n

(2.15)

Furthermore, the optimal classifier can be written in the following form:

f(x) =

n∑
i=1

α∗i yiK(xi, xj) + b∗ (2.16)

Many kernel functions can be used for the above settings, but only a few

functions work well in a wide variety of applications. In this thesis, we use

only the RBF kernel function, which is a recommended function for the SVM

27

classifier. Hence, Equation 2.14 can be rewritten as:

minΨ(α) = min 1
2

∑N
i=1

∑N
j=1 yiyjαiαjexp(−γ‖xi − xj‖2)−

∑n
i=1 αi

subject to
∑n
i=1 αiyi = 0

0 ≤ αi ≤ C, i = 1, 2, . . . , n

(2.17)

Given this expression, and an algorithm such as SMO for finding a solution

in an efficient way, the problem we address in this thesis is then to find the

optimal pair of parameter settings (C, γ), and thus to get the best support

vector classifier.

Figure 2.8 gives us trends of root relative squared error with the values of

these two parameters increasing on the “labour” dataset from the UCI reposi-

tory. These sub-figures exhibit the influence of one parameter on the error when

the other parameter value is fixed. Figure 2.8(a) shows the relationship between

different values of the parameter C and their corresponding error performance.

It seems that there are three stages for this trend: initially, it is at a stage be-

fore arriving at zero; next, it has a deep decrease until reaching one; and then it

increases slowly and remains stable after that. Figure 2.8(b) has a similar trend

as one noted above, but with two main differences. The lowest point is different

from that shown in Figure 2.8(a): the error is lowest when the parameter γ

is 0.1. Another difference is that it reaches a higher level of error at the later

stage. Therefore, finding a good parameter setting is a key step for building

the classification model, but unfortunately the “best” pairs of parameters vary

for different problems. Every pair of parameters corresponds to a potentially

different classification performance. The best performance will correspond to

the best parameter combination.

2.5 Cross-Validation

The standard method is to use cross-validation when determining tuning

parameters. Cross-validation is a powerful tool to evaluate the effectiveness of

the chosen parameters. John investigated the use of cross-validation to select

parameters for the C4.5 decision tree learning algorithm, which showed that the

accuracy of the induced trees on independent test sets is generally higher after

applying cross-validation than the accuracy when using the default parameter

28

(a) The relationship between lg(c) and error

(b) The relationship between lg(γ) and error

Figure 2.8: Relationships of parameters and errors

value [19]. Cross-validation is used for support vector machines as well. The

paper [34] considers leave-one-out cross-validation to estimate the measure of

goodness-of-fit in SVMs, which provides estimates of the bias of the excess error

in a prediction rule constructed with training samples.

Cross-validation is a statistical method for estimating the predictive per-

formance of models by dividing data into a certain amount of data for training

a model and the rest for testing. We always use this approach to measure the

prediction performance of the model learned from training data on future data

with unknown values. The original data can be divided into a training set and

a validation set. The model is learned from the training set repeatedly and we

test its performance on the remaining validation set. Normally, the subset used

for training is bigger than that for testing. It is better to use more than half of

the data for training. For example, one could use two-thirds of data randomly

selected for training and the remaining one-third for testing [49].

In cross-validation, the partition of the data can be specified by the user.

29

Figure 2.9: Cross-validation methodology

More partitions of data mean more precise performance estimates and more

time spent on running the procedure. The basic form of cross-validation is v-

fold cross-validation, that is, the whole dataset is partitioned into v parts of

equal size randomly [25]. First of all, a group of samples is randomly chosen

as a validation set, while other groups of datasets are used to build the model.

Next, the samples from the validation set are used to test the model’s predictive

performance. Then, we use the same method for the other groups in turn by

training the model on the remaining v − 1 groups. The final performance will

be the average of all the performance scores of all the groups, since every group

has its own performance score. Therefore, cross-validation requires that the

machine learning model be trained multiple times in order to obtain an average

performance score for a parameter setting [25].

We give a simple illustration to describe how cross-validation works to pick

the comparatively “best” parameter in Figure 2.9. In this figure, the parameter

or the combination of parameters to be evaluated is determined in advance. The

training set is divided into three blocks, and we repeatedly train the learning

algorithm using two of these three blocks as the “model construction set” and

the remaining one as the “validation set” to estimate the performance. We can

run this as many times as specified by the user and get the mean/median of

the performance criteria to get the best parameter. To simplify the process, the

figure is based on three runs only, which is also called “3-fold cross-validation”.

Although the number of folds in cross-validation is specified by users in

the experiment set-up, we generally use 10-fold cross-validation to test the per-

formance of certain algorithms. This is well accepted as the standard way of

30

predicting performance given a fixed sample of data. Thus the learning scheme

is executed 10 times on 10 subsets and an overall performance can be obtained

by averaging the 10 estimates. To obtain better estimates in some experiments,

it is a common procedure to repeat 10-fold cross-validation 10 times, which gives

100 results in total, and then average them. As a result, cross-validation can

be used to help prevent a model being over fitted. In short, this technique is a

standard tool for helping users develop and fine-tune data mining models.

2.6 Summary

In this chapter, we first considered the mathematical background of Gaus-

sian processes. Gaussian processes have some attractive characteristics, which

provide the global distribution for an unknown data point rather than just

the prediction of a single value. Then, we introduced the algorithms as well

as the parameters that will be optimized in the following chapters, including

common and well-known algorithms, such as decision tree learning, support

vector machines and boosting. The final section provided a description of the

cross-validation method, a procedure designed to evaluate the parameters of a

learning scheme in order to determine optimal values for those parameters.

31

Chapter 3

Gaussian Process

Optimization

A promising way to perform parameter optimization in machine learning, is

to use data for which performance scores have been collected to build a predictive

model, and then to select points from the search space. The search space can

be 2-dimensional or multi-dimensional depending on the number of parameters

to be optimized. This method is potentially effective when the data size is large

and the cost of applying the learning algorithm to be optimized is also large. In

contrast, in cases that need limited time to run the learning algorithm, perhaps

on a small dataset, it is efficient to use relatively inexpensive resources to apply

a more brute-force approach to finding appropriate parameter settings.

In this chapter, we will apply a suitable predictive model to search the pa-

rameter space for likely candidate points, and evaluate them with the criterion

specified by the user. The model used for this task has a full predictive distribu-

tion rather than a single prediction at each candidate point. This methodology

enables us to take predictive uncertainty into account when exploring the search

space instead of simply fitting the existing training data and obtaining the point

with the largest (or smallest) prediction.

The Gaussian process model that we apply for that purpose has distinct

advantages from this standpoint because it enables us to obtain the predic-

tive distribution easily and learn general properties of the learning algorithm’s

32

behaviour from previous samples by using an appropriate kernel function [9].

Based on this model, the chosen point of the search space is set where the ex-

pected improvement in the learning algorithm’s performance is highest. We will

also introduce a stopping criterion to stop the search procedure when further

expected improvement is likely to be small. The best point is then chosen from

all the points evaluated so far. We will use this pair of parameters to build our

final optimized model and thus use it to predict the unknown target value of

new instances with respect to their known attributes.

However, before discussing the Gaussian-process-based optimization method

in more detail, let us first briefly discuss two simple optimization methods that

will be used as baselines for the experiments in this thesis: Grid Search (as

implemented in the WEKA software), and Random Search.

3.1 Search Methods

The search methods to be used in this thesis includes Grid Search and

Random Search. These search methods are both based on the same general

idea, which is shown in Figure 3.1.

Both methods start with a pair of initial parameter values, and acquire

the corresponding performance based on a certain learning algorithm. The

following step is to generate a new data point (new parameter values) based on

the search method and to evaluate its performance. The new performance will

be compared with the old one. If the performance is improved, then we update

the parameter value in the parameter range. This process continues repeatedly

until there are no more improvements. The best pair of parameters is decided

in the final step. We will explain the different procedures of Grid Search and

Random Search in the following two sections.

3.1.1 Grid Search

Grid Search is a simple search methodology to identify appropriate param-

eter values for a machine learning method, where the points are located on a

grid in the parameter space. Any point in the grid has the opportunity to be

chosen as the best parameter combination. This method has the obvious ad-

33

Figure 3.1: Flowchart of general search algorithm for two parameters

vantage that it does a complete search of every point in the parameter grid that

is specified by the user, and one can usually find good parameters after this

brute-force search method. In detail, Grid Search involves setting up a grid of

parameter combinations in the space and evaluating the values of the objective

function at each grid point. The point corresponding to the best value of the

objective function is considered to be the optimum solution.

There are two drawbacks to this method [28]: one is that the number of

grid points increases exponentially with the number of decision variables, which

makes it computationally very costly; the other is that it is generally inefficient.

Suppose the given dataset has millions of instances or thousands of attributes

per instance and the search domain is large, with many grid points. Grid Search

will waste a great deal of time on unnecessary points.

The Grid Search methodology has been implemented in the WEKA soft-

ware. In this interface, the user can specify the parameter values, the search

increments (precision), the lowest value and the highest value for each parame-

34

ter, and the search direction: whether it will search by rows or columns. Once

the experimental set up has been completed, the grid of data points is searched

according to the specified direction. The increment determines the distance be-

tween neighbours: the smaller the increment, the finer the grid. This method

explores the space constrained by upper and lower bounds, where the upper

bound is the highest value of one parameter, and the lower bound is the low-

est value of the other parameter. It starts from the lowest value of the pair

of parameters, moving in an appropriate direction during each increment until

the last point in the grid. During this process, every point will be validated by

2-fold cross-validation and evaluated by the specified criterion, such as accuracy

or error. After that, the initial best point (parameter value) will be found by

comparing the performance scores obtained.

However, the above process is a coarse search process. Once an initial

best point has been found, a new nine-point grid is centred on this point and

evaluated using 10-fold cross-validation. This latter step is repeated when a new

best point is discovered in the nine-point grid. The optimization is completed

when the grid becomes centred on a point with the minimum performance or a

point with the maximum performance, which depends on the evaluation of the

objective function.

3.1.2 Random Search

An alternative to Grid Search is Random Search. The Random Search

method can be regarded as a stochastic search process. This method generates

solutions randomly for the model being optimized and finds the best solution by

comparing the corresponding objective function values. In the experiments of

this thesis, we specify a certain number of data points generated by the random

number generator. The data points here are actually pairs of parameters which

we have set in advance based on a grid - the same one as in Grid Search. For any

parameter, the user can set its minimum value and maximum value empirically.

For example, assume the parameter x has m possible values and the parameter

y has n possible values, thus pairs of these two parameters will have m ∗ n

combinations. The random number generator will choose a pair of parameters

among them randomly. Random Search has an obvious advantage in terms of

35

the cost of computation. In Chapter 4 we will see that Random Search has

better performance than the other methods considered in this thesis on some

datasets. However, the number of points to be evaluated needs to be specified

by the user.

3.2 Expected Improvement

Rather than using Grid Search or its randomized variant, we want to con-

sider using a Gaussian process model to search more intelligently. The key

component here is the so-called expected improvement, which we will discuss

first. Because the predictive distribution at any test point can be calculated

by the model built with existing points, we can use it to estimate how much

improvement we can expect at any candidate point. Here, we will adopt the

Expected Improvement (EI) to measure the improvement which is defined by

Johns [20] in the EGO optimization algorithm. The basic idea underlying EI is

to estimate the improvement of possible candidate points over the current best

value and to sample at the particular point next where the expected improve-

ment is maximum. Based on this approach, the algorithm can sample points in

the parameter space that the user has specified, and use the information it has

learned to decide where to sample next. Fortunately, the expected improvement

is easy to use and calculate when using a Gaussian process model.

We now discuss how EI can be calculated, closely following the exposition

in [9]. The predicted improvement I(x∗) at some test point x∗ in the parameter

space is defined as

I(x∗) = max((p(x∗)− fmax), 0)

in a maximization problem, where fmax is the current best of the existing values

and p(x∗) is the prediction at x∗ based on the model, which in the case of a

Gaussian process model is Gaussian distributed as p(x∗) ∼ N (µ̂(x∗), σ̂(x∗)2).

The function p(x∗) is a random variable that models the uncertainty at x∗, and

is treated as a normal density function with mean µ̂(x∗) and standard deviation

36

σ̂(x∗). The expected improvement can be obtained as follows:

E[I(x∗)] = E[max(0, I(x∗)]

=

∫ I=∞

I=0

Ip(I)dI

= (µ̂(x∗)− fmax)Φ(
µ̂(x∗)− fmax

σ̂(x∗)
)

+ σ̂(x∗)φ(
µ̂(x∗)− fmax

σ̂(x∗)
)

(3.1)

where Φ(·) is the standard normal cumulative distribution and φ(·) is the stan-

dard normal density function. The quantities σ̂(x∗) and µ̂(x∗) can be obtained

from the Gaussian process model, as explained in the previous chapter.

For a minimization problem, the predictive improvement I(x∗) at some

point x∗ is defined as

I(x∗) = max(0, (fmin − p(x∗)))

where fmin is the current minimum value. Therefore the equation above will

change as follows [20]:

E[I(x∗)] = E[max(0, I(x∗)]

=

∫ I=∞

I=0

Ip(I)dI

= (fmin − ˆµ(x∗))Φ(
fmin − µ̂(x∗)

σ̂(x∗)
)

+ σ̂(x∗)φ(
fmin − µ̂(x∗)

σ̂(x∗)
)

(3.2)

3.3 Gaussian Process Optimization

Gaussian Process Optimization (GPO), as considered in this thesis, is an

optimization process maximizing the expected improvement based on Gaussian

process predictions associated with a grid of candidate points. It is considered

as an alternative to a simple Grid Search to find the parameters of the learning

algorithm to be optimized. We assume that there are two parameters that are

to be optimized simultaneously. Our goal is to use as few points as possible to

find the best pair of parameter values in a search space, where the crucial point

is to update the Gaussian process model with a new performance observation

37

in each iteration. In other words, the training model changes in each iteration

as a new data point arrives.

The Gaussian Process Optimization method can be described in detail as

follows. First, our GPO method needs to collect some initial data points for

the initial Gaussian process model to be trained on. We do this by running

cross-validation for the four “corners” of the parameter space, whose positions

are specified by the user, using the base learning algorithm and the dataset

concerned. Second, the method builds a Gaussian process model from this initial

training data. The collected training data consists of two attributes representing

the parameter values and the target which is the performance score obtained

from cross-validation. Then, the “best” point in the parameter space can be

calculated in terms of maximizing expected improvement using the GP model.

Once the “best” point has been found after each iteration, the algorithm

will run a cross-validation using this pair of parameter values in order to obtain

the corresponding performance. This so-called “best” point becomes a new

training point for updating the Gaussian process model with its performance

score as y value. With an increasing number of data points used for training,

this process builds a model that more and more closely reflects the real function.

The process is applied iteratively: we find the next “best” point in the

parameter space using the same method as above until the stopping criterion

has been reached and compare the performance among those evaluated points

to look for the actual best one. In the implementation used in this thesis, 2-

fold cross-validation is used to obtain the performance estimates in this search

process.

The “best” point found through the above steps is likely to be close to the

real one. However, finally, we will perform 10-fold cross-validation at this point

and its eight neighbours, i.e. at nine points, to try to find out whether there

are even better points in the neighbourhood. This is done because 2-fold cross-

validation is fast but is more likely to miss the “true” best point than is 10-fold

cross-validation. This is the same process as in simple Grid Search and Random

Search, discussed in the previous sections. This search will stop when no better

points are found or the best one is on the border of the parameter space. In

the final stage, the algorithm will build the final model for the base learning

38

algorithm on the user-specified data using the best parameter combination found

using the above steps.

The pseudo code for the GPO algorithm as applied in this thesis is shown

in Algorithm 2.

3.4 The Effect of the GP Parameters

For any particular dataset, users need to choose the base learning algorithm

as the classifier to use, and specify parameters which they want to optimize.

These parameters can be parameters of the base learner combined with param-

eters of base learner components. For example, when optimizing parameters of

a Gaussian process algorithm as the base learning algorithm, parameters can

include the noise level parameter and the kernel parameter. However, the GPO

method itself uses a Gaussian process model with noise parameter δGPO and

the parameter of the kernel function, such as the RBF kernel parameter γGPO,

both values of which can be assigned by users.

To present the behaviour of GPO, we will search for pairs of parameters (δ,

γ) of a Gaussian process algorithm as the base learning algorithm, where δbase

is the noise level of the classifier and γbase defines the width of the RBF kernel

in the classifier (although σbase is actually the width of that kernel parameter).

The search range for each parameter is specified on an exponential scale with

exponents from -3 to 3 with step size 1. Hence, the parameter values will be

δbase ∈ {10−3, 10−2, . . . , 103} and γbase ∈ {10−3, 10−2, . . . , 103}. In this search

space, there are 45 points in total, excluding the four corners of the space, which

are (δminbase, γ
min
base), (δminbase, γ

max
base), (δmaxbase , γ

min
base), (δmaxbase , γ

max
base). In this case, 10−3

is the minimum value and 103 is the maximum of both ranges. The four points

with their performance scores are treated as initial training data points, and are

used for building the initial GP model to predict the likely best point in the grid

by finding the highest expected improvement. The number of remaining grid

locations decreases in each iteration, in that the chosen point in each iteration

will not take part in the calculation for the next looping. Each new point has a

predicted value obtained by the model built from the existing points.

We now consider the first 10 iterations of the search process as examples to

39

Algorithm 2 The GPO algorithm (excluding iterated Grid Search around

“best” point based on 10-fold cross-validation)

Input: Xmin , Xmax , Ymin , Ymax

Output: predicted value (P), standard deviation (SD), expected improvement

(EI), actual value (A)

1: d1 ← (Xmin, Ymin), d2 ← (Xmin, Ymax), d3 ← (Xmax, Ymin), d4 ←

(Xmax, Ymax) as the four corners of the grid

2: for i = 1→ 4 do

3: pi ← getPerformance(di, 2FoldsCrossvalidation)

4: i← i+ 1

5: end for

6: Training Data: D ⇐ (di, pi)

7: repeat

8: Create a new Gaussian process object with specified γ and δ parameters

9: Build a GP model on D

10: N ← 0

11: while N 6= the number of points in grid do

12: if Maximization problem then

13: EI ⇐ ExpectedImprovementMax(GP, dN)

14: N ← N + 1

15: else {Minimization problem}

16: EI ⇐ ExpectedImprovementMin(GP, dN)

17: N ← N + 1

18: end if

19: end while

20: EIbest ⇐ max(EIN)

21: dnew is the point of EIbest

22: Anew ← getPerformance(dnew, 2FoldsCrossvalidation)

23: until stopping criterion satisfied

24: dbest ⇐ max(dN)

25: Abest ← getPerformance(dbest, 10FoldsCrossvalidation)

40

illustrate the behaviour of GPO based on four measures. The following figures

show the plots of the predicted value, standard deviation, expected improvement

and actual value on the “CPU” dataset. In addition, we set the RBF kernel

parameter of the GP model γGPO as 10 and the Gaussian process noise δGPO

as 0.01. Note that we have found empirically that it is crucial to choose an

appropriate pair of parameter values (δGPO, γGPO) for the GP model in the

optimization process.

Figure 3.2 shows the predicted values for the first 10 iterations. The grid

diagram at the top of each plot shows how the predicted values change, and the

colour on the bottom plane surface indicates the magnitude of the predicted

values. The brighter the colour, the larger the value. We can easily identify

movements when putting the 10 iterations together.

The plot of Iteration i is relatively flat because no new points are added

except the four points on the Z axis that show the values of the four “corners” in

parameter space. The plots start to fluctuate as new points arrive and the GP

model for the predictions grows more precise as the iterations increase. Greater

fluctuation always occurs when the upcoming point is located far away from the

last existing point. If the plots of two iterations look similar, this implies that

the points fall into the same sub area of the grid.

Standard deviation measures the uncertainty at a certain point x. A lo-

cal point with large standard deviation implies substantial uncertainty at that

point, while lower standard deviation implies less uncertainty. Figure 3.3 shows

the standard deviation in the first 10 iterations. The central area has higher

standard deviation values in the first plot in that there is not enough informa-

tion and large changes may follow. In contrast, the corner areas have lower

standard deviation values because known values are located there. The stan-

dard deviation at some point x turns very small and close to 0 once this point

has already been chosen, and it gradually drops across the whole grid with new

added points until the tendency of the plots becomes flatter in the end.

One key method in the GP model for the GPO approach is to calculate

expected improvement. The expected improvement is a crucial step to decide

which point will be sampled and added into the training data to build the up-

dated model. This approach will search the whole space to look for the point

41

Iteration One of CPU(gamma=10,noise=0.01)

Predicted Values

-3 -2 -1 0 1 2 3x -3
-2

-1
 0

 1
 2

 3

y

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8

(a) Iteration i

 Iteration Two of CPU(gamma=10,noise=0.01)

Predicted Values

-3 -2 -1 0 1 2 3x -3
-2

-1
 0

 1
 2

 3

y

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

(b) Iteration ii

 Iteration Three of CPU(gamma=10,noise=0.01)

Predicted Values

-3 -2 -1 0 1 2 3x -3
-2

-1
 0

 1
 2

 3

y

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

(c) Iteration iii

 Iteration Four of CPU(gamma=10,noise=0.01)

Predicted Values

-3 -2 -1 0 1 2 3x -3
-2

-1
 0

 1
 2

 3

y

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9
 1

(d) Iteration iv

 Iteration Five of CPU(gamma=10,noise=0.01)

Predicted Values

-3 -2 -1 0 1 2 3x -3
-2

-1
 0

 1
 2

 3

y

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9
 1

(e) Iteration v

 Iteration Six of CPU(gamma=10,noise=0.01)

Predicted Values

-3 -2 -1 0 1 2 3x -3
-2

-1
 0

 1
 2

 3

y

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9
 1

(f) Iteration vi

 Iteration Seven of CPU(gamma=10,noise=0.01)

Predicted Values

-3 -2 -1 0 1 2 3x -3
-2

-1
 0

 1
 2

 3

y

-0.1
 0

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

-0.1
 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9
 1

(g) Iteration vii

 Iteration Eight of CPU(gamma=10,noise=0.01)

Predicted Values

-3 -2 -1 0 1 2 3x -3
-2

-1
 0

 1
 2

 3

y

-0.1
 0

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

-0.1
 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9
 1

(h) Iteration viii

 Iteration Nine of CPU(gamma=10,noise=0.01)

Predicted Values

-3 -2 -1 0 1 2 3x -3
-2

-1
 0

 1
 2

 3

y

-0.1
 0

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

-0.1
 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9
 1

(i) Iteration ix

 Iteration Ten of CPU(gamma=10,noise=0.01)

Predicted Values

-3 -2 -1 0 1 2 3x -3
-2

-1
 0

 1
 2

 3

y

-0.1
 0

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

-0.1
 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9
 1

(j) Iteration x

Figure 3.2: Predicted Values with γGPO = 10 and δGPO = 0.01 in 10 iterations

42

Iteration One of CPU(gamma=10,noise=0.01)

Standard Deviation

-3 -2 -1 0 1 2 3x -3
-2

-1
 0

 1
 2

 3

y

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

(a) Iteration i

 Iteration Two of CPU(gamma=10,noise=0.01)

Standard Deviation

-3 -2 -1 0 1 2 3x -3
-2

-1
 0

 1
 2

 3

y

 0.5
 0.55

 0.6
 0.65

 0.7
 0.75

 0.8
 0.85

 0.9
 0.95

 1

 0.5
 0.55
 0.6
 0.65
 0.7
 0.75
 0.8
 0.85
 0.9
 0.95
 1

(b) Iteration ii

 Iteration Three of CPU(gamma=10,noise=0.01)

Standard Deviation

-3 -2 -1 0 1 2 3x -3
-2

-1
 0

 1
 2

 3

y

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

(c) Iteration iii

 Iteration Four of CPU(gamma=10,noise=0.01)

Standard Deviation

-3 -2 -1 0 1 2 3x -3
-2

-1
 0

 1
 2

 3

y

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

(d) Iteration iv

 Iteration Five of CPU(gamma=10,noise=0.01)

Standard Deviation

-3 -2 -1 0 1 2 3x -3
-2

-1
 0

 1
 2

 3

y

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

(e) Iteration v

 Iteration Six of CPU(gamma=10,noise=0.01)

Standard Deviation

-3 -2 -1 0 1 2 3x -3
-2

-1
 0

 1
 2

 3

y

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

(f) Iteration vi

 Iteration Seven of CPU(gamma=10,noise=0.01)

Standard Deviation

-3 -2 -1 0 1 2 3x -3
-2

-1
 0

 1
 2

 3

y

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

(g) Iteration vii

 Iteration Eight of CPU(gamma=10,noise=0.01)

Standard Deviation

-3 -2 -1 0 1 2 3x -3
-2

-1
 0

 1
 2

 3

y

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

(h) Iteration viii

 Iteration Nine of CPU(gamma=10,noise=0.01)

Standard Deviation

-3 -2 -1 0 1 2 3x -3
-2

-1
 0

 1
 2

 3

y

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

(i) Iteration ix

 Iteration Ten of CPU(gamma=10,noise=0.01)

Standard Deviation

-3 -2 -1 0 1 2 3x -3
-2

-1
 0

 1
 2

 3

y

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

(j) Iteration x

Figure 3.3: Standard Deviation with γGPO = 10 and δGPO = 0.01 in 10 itera-

tions

43

Iteration One of CPU(gamma=10,noise=0.01)

Expected Improvement

-3 -2 -1 0 1 2 3x -3
-2

-1
 0

 1
 2

 3

y

 0.02
 0.04
 0.06
 0.08

 0.1
 0.12
 0.14
 0.16
 0.18

 0.2
 0.22

 0.02
 0.04
 0.06
 0.08
 0.1
 0.12
 0.14
 0.16
 0.18
 0.2
 0.22

(a) Iteration i

 Iteration Two of CPU(gamma=10,noise=0.01)

Expected Improvement

-3 -2 -1 0 1 2 3x -3
-2

-1
 0

 1
 2

 3

y

 0.02
 0.04
 0.06
 0.08

 0.1
 0.12
 0.14
 0.16
 0.18

 0.2
 0.22
 0.24

 0.02
 0.04
 0.06
 0.08
 0.1
 0.12
 0.14
 0.16
 0.18
 0.2
 0.22
 0.24

(b) Iteration ii

 Iteration Three of CPU(gamma=10,noise=0.01)

Expected Improvement

-3 -2 -1 0 1 2 3x -3
-2

-1
 0

 1
 2

 3

y

 0.02
 0.04
 0.06
 0.08

 0.1
 0.12
 0.14
 0.16
 0.18

 0.2
 0.22
 0.24

 0.02
 0.04
 0.06
 0.08
 0.1
 0.12
 0.14
 0.16
 0.18
 0.2
 0.22
 0.24

(c) Iteration iii

 Iteration Four of CPU(gamma=10,noise=0.01)

Expected Improvement

-3 -2 -1 0 1 2 3x -3
-2

-1
 0

 1
 2

 3

y

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0

 0.05

 0.1

 0.15

 0.2

 0.25

(d) Iteration iv

 Iteration Five of CPU(gamma=10,noise=0.01)

Expected Improvement

-3 -2 -1 0 1 2 3x -3
-2

-1
 0

 1
 2

 3

y

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

(e) Iteration v

 Iteration Six of CPU(gamma=10,noise=0.01)

Expected Improvement

-3 -2 -1 0 1 2 3x -3
-2

-1
 0

 1
 2

 3

y

 0.02
 0.04
 0.06
 0.08

 0.1
 0.12
 0.14
 0.16
 0.18

 0.2
 0.22
 0.24

 0.02
 0.04
 0.06
 0.08
 0.1
 0.12
 0.14
 0.16
 0.18
 0.2
 0.22
 0.24

(f) Iteration vi

 Iteration Seven of CPU(gamma=10,noise=0.01)

Expected Improvement

-3 -2 -1 0 1 2 3x -3
-2

-1
 0

 1
 2

 3

y

 0
 0.02
 0.04
 0.06
 0.08

 0.1
 0.12
 0.14
 0.16
 0.18

 0.2
 0.22

 0
 0.02
 0.04
 0.06
 0.08
 0.1
 0.12
 0.14
 0.16
 0.18
 0.2
 0.22

(g) Iteration vii

 Iteration Eight of CPU(gamma=10,noise=0.01)

Expected Improvement

-3 -2 -1 0 1 2 3x -3
-2

-1
 0

 1
 2

 3

y

 0
 0.02
 0.04
 0.06
 0.08

 0.1
 0.12
 0.14
 0.16
 0.18

 0.2
 0.22

 0
 0.02
 0.04
 0.06
 0.08
 0.1
 0.12
 0.14
 0.16
 0.18
 0.2
 0.22

(h) Iteration viii

 Iteration Nine of CPU(gamma=10,noise=0.01)

Expected Improvement

-3 -2 -1 0 1 2 3x -3
-2

-1
 0

 1
 2

 3

y

 0
 0.02
 0.04
 0.06
 0.08

 0.1
 0.12
 0.14
 0.16
 0.18

 0
 0.02
 0.04
 0.06
 0.08
 0.1
 0.12
 0.14
 0.16
 0.18

(i) Iteration ix

 Iteration Ten of CPU(gamma=10,noise=0.01)

Expected Improvement

-3 -2 -1 0 1 2 3x -3
-2

-1
 0

 1
 2

 3

y

 0
 0.02
 0.04
 0.06
 0.08

 0.1
 0.12
 0.14
 0.16
 0.18

 0
 0.02
 0.04
 0.06
 0.08
 0.1
 0.12
 0.14
 0.16
 0.18

(j) Iteration x

Figure 3.4: Expected Improvement with γGPO = 10 and δGPO = 0.01 in 10

iterations

44

with maximum expected improvement. The point that meets this requirement

will be the next candidate sample. Then, this sample coupled with its perfor-

mance will be added into the training set to update the model for sampling

the next point. The expected improvement of the first 10 iterations is shown

in Figure 3.4. In this figure, we have 10 points in total since a point is chosen

based on the maximum expected improvement in each iteration.

Once an appropriate point has been decided, its actual value is evaluated

using cross-validation. It is easy to sort these actual performance scores in

order to obtain the best performance, whose corresponding parameter values

will be used to build the final model. Based on the expected improvement

shown in Figure 3.4, we can easily identify the next most promising point in

the specified search space and obtain actual performance values through cross-

validation. Figure 3.5 shows the positions and values of actual points in the

first 10 iterations. The red mark indicates the real position of the actual sample

in the space. The dots mapped on the bottom grid demonstrate the pairs of

parameter values clearly. The best performance can be found by comparing the

actual values of these points.

Apart from the above values for the GPO parameters γGPO and δGPO, we

also did the same experiment based on different pairs of parameters. γ values

in the range from 0.01 to 100 were considered and the level of noise δ was set

to be 0.1 and 1. Some further example plots are shown in Appendix A and B.

Comparing all the experimental results obtained, we always observed slightly

better performance and quicker convergence to the optimal point when γ and δ

were set to 10 and 0.01 respectively, as in the plots discussed above. This was

also the case for other datasets that were considered.

3.5 Stopping Criterion

Comparing GPO with Grid Search, the main difference is that Grid Search

has to do a brute-force search exhaustively while GPO searches only the area

where it is likely to obtain better performance. In Grid Search, nothing to

necessitate making any prediction for the next sample as the search direction

and the search step is specified by the user beforehand. In contrast, GPO

45

-3
-2

-1
 0

 1
 2

 3 -3
-2

-1
 0

 1
 2

 3

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 Iteration One of CPU(gamma=10,noise=0.01)

Actual Values

x

y

(a) Iteration i

-3
-2

-1
 0

 1
 2

 3 -3
-2

-1
 0

 1
 2

 3

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 Iteration Two of CPU(gamma=10,noise=0.01)

Actual Values

x

y

(b) Iteration ii

-3
-2

-1
 0

 1
 2

 3 -3
-2

-1
 0

 1
 2

 3

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 Iteration Three of CPU(gamma=10,noise=0.01)

Actual Values

x

y

(c) Iteration iii

-3
-2

-1
 0

 1
 2

 3 -3
-2

-1
 0

 1
 2

 3

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 Iteration Four of CPU(gamma=10,noise=0.01)

Actual Values

x

y

(d) Iteration iv

-3
-2

-1
 0

 1
 2

 3 -3
-2

-1
 0

 1
 2

 3

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 Iteration Five of CPU(gamma=10,noise=0.01)

Actual Values

x

y

(e) Iteration v

-3
-2

-1
 0

 1
 2

 3 -3
-2

-1
 0

 1
 2

 3

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 Iteration Six of CPU(gamma=10,noise=0.01)

Actual Values

x

y

(f) Iteration vi

-3
-2

-1
 0

 1
 2

 3 -3
-2

-1
 0

 1
 2

 3

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 Iteration Seven of CPU(gamma=10,noise=0.01)

Actual Values

x

y

(g) Iteration vii

-3
-2

-1
 0

 1
 2

 3 -3
-2

-1
 0

 1
 2

 3

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 Iteration Eight of CPU(gamma=10,noise=0.01)

Actual Values

x

y

(h) Iteration viii

-3
-2

-1
 0

 1
 2

 3 -3
-2

-1
 0

 1
 2

 3

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 Iteration Nine of CPU(gamma=10,noise=0.01)

Actual Values

x

y

(i) Iteration ix

-3
-2

-1
 0

 1
 2

 3 -3
-2

-1
 0

 1
 2

 3

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 Iteration Ten of CPU(gamma=10,noise=0.01)

Actual Values

x

y

(j) Iteration x

Figure 3.5: Actual Values with γGPO = 10 and δGPO = 0.01 in 10 iterations

46

enables one to predict the position and the value of the next likely candidate

point even if sometimes prediction errors exist. Another difference is that GPO

will stop when further performance evaluations are likely to be irrelevant.

Of course, if there is no stopping criterion to meet, GPO will search all

points of the search space, run all iterations to collect all the performance scores,

and find out the best performance to build the final model. Nothing is gained

compared to brute-force Grid Search. Thus, the stopping criterion is significant.

Note also that some poor performance scores generally exist in the search space

and even sometimes can affect the final performance. It is unnecessary to waste

time at those points of the space and GPO needs to ignore them through its

stopping criterion. The ideal is to search as few points as possible among all

points without influencing the final performance.

As mentioned before, the user can specify the parameters of the base algo-

rithm’s search as well as the step size. Consider the “CPU” dataset, for instance.

We again choose the Gaussian process algorithm as the base classifier together

with the RBF kernel, so the parameters to be found are δ in the Gaussian pro-

cess and γ in the RBF kernel. Assume the minimum and the maximum value

for γ on the x axis as well as for δ on the y axis are -5 and 5 respectively (as

exponents) and the step size between neighbouring points is 1. Then the grid

includes 121 pairs of points altogether. Thus, the program will perform 121

iterations when not using a stopping criterion. This process is clearly inflexible

in general. Suppose the dataset we use has thousands of instances or plenty of

attributes, or the search space is very huge or the step size is quite fine: it will

cost a large amount of time to run the optimization process and the number of

performance scores for all points will be enormous. The most important point

is that most of the results will be useless.

Let us consider some further results and a concrete stopping criterion. To

obtain these results, we first collected the initial training data with the param-

eter points corresponding to the four corners of the search space. New data was

added into the training dataset after every iteration. As before, these training

data points are used for building the GP model with specified δGPO value and

specified γGPO value. In this case, we again set the γGPO value to 10 and the

δGPO value to 0.01.

47

Figure 3.6 shows six tendency curves observed during 121 iterations based

on the GP model with γGPO = 10 and δGPO = 0.01 on the “CPU” dataset.

These curves show actual value (a), predicted value (b), standard deviation (c),

expected improvement (d), actual improvement (e) and stopping criterion (f).

The actual values are observed performance scores of the chosen point. They

have been evaluated and cross-validated, and are treated as target values of the

training dataset for the GP model as well. The points in the grid with unknown

values are able to receive a prediction through this model but these predictions

are obviously not as accurate as the true values due to unavoidable uncertainty.

The standard deviation, in short, is the uncertainty at some point. The expected

improvement has been discussed in Section 3.2. Here, the expected improve-

ment is the maximum expected improvement of each iteration. Compared with

expected improvement, the difference between the current actual value and the

“best” actual previous value is defined as the actual improvement. The stopping

criterion we use is calculated according to the equation in [13] (further details

on the full criterion are given below):

stopping criterion =
(max(EI)− avg(EI))2

sd(EI)
< 0.1 (3.3)

where EI is the abbreviation of expected improvement, max(EI), avg(EI) and

sd(EI) is the maximum expected improvement, the average expected improve-

ment and the standard deviation of expected improvement respectively, based

on EI scores for all grid locations from the current iteration. This criterion is

designed to detect when the average expected improvement avg(EI) is close

to the current maximum expected improvement max(EI) with a low standard

deviation sd(EI). The optimization procedure can stop there. A small differ-

ence between the maximum expected improvement and the average indicates

that the search may have already found all valuable points, and a low standard

deviation means that the uncertainty becomes smaller and smaller.

Figure 3.7 shows the 6 measure charts with the same γGPO and δGPO values

on the “concrete” dataset. The plots have many differences from those in Figure

3.6 in terms of absolute values but are quite similar in tendency.

What we want is to identify the best performance among actual values, and

we can simply see that the best actual values appear in the early iterations in

both Figure 3.6 and Figure 3.7. In both cases, the evaluation (actual values) is

48

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120

Interation

CPU(Gamma=10,Noise=0.01)

Actual Values

(a) Actual Values

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120

Interation

CPU(Gamma=10,Noise=0.01)

Predicted Values

(b) Predicted Values

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120

Interation

CPU(Gamma=10,Noise=0.01)

Standard Deviation

(c) Standard Deviation

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120

Interation

CPU(Gamma=10,Noise=0.01)

Expected improvement

(d) Expected Improvement

-1

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120

Interation

CPU(Gamma=10,Noise=0.01)

Actual Improvement

(e) Actual Improvement

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120

Interation

CPU(Gamma=10,Noise=0.01)

Stopping Criterion

(f) Stopping Criterion

Figure 3.6: Tendency charts for chosen points when exhausting the full param-

eter space with γGPO = 10 and δGPO = 0.01 based on the “CPU” dataset

based on cross-validated correlation coefficient (because we are dealing with a

regression problem). The standard deviation decreases gradually though some

small fluctuations can be observed and it is close to 0 in the last few iterations.

Ideally, we stop in a way such that we not only include the “best” point, but

also search fewer points. The stopping criterion in [13] is applied here: we stop

if the current best value is smaller or equal to the old one, the squared difference

between the maximal expected improvement and the average expected improve-

ment is less than 0.1 of the standard deviation of the expected improvement (i.e.

Equation 3.3 has a value smaller than 0.1), and the current best value did not

change during the last 10 iterations in order to prevent long searches.

49

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120

Interation

Concrete_Data(Gamma=10,Noise=0.01)

Actual Values

(a) Actual Values

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120

Interation

Concrete_Data(Gamma=10,Noise=0.01)

Predicted Values

(b) Predicted Values

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120

Interation

Concrete_Data(Gamma=10,Noise=0.01)

Standard Deviation

(c) Standard Deviation

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120

Interation

Concrete_Data(Gamma=10,Noise=0.01)

Expected improvement

(d) Expected Improvement

-1

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120

Interation

Concrete_Data(Gamma=10,Noise=0.01)

Actual Improvement

(e) Actual Improvement

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120

Interation

Concrete_Data(Gamma=10,Noise=0.01)

Stopping Criterion

(f) Stopping Criterion

Figure 3.7: Tendency charts for chosen points when exhausting the full param-

eter space with γGPO = 10 and δGPO = 0.01 based on the “concrete” dataset

As we can see from Figure 3.6 and 3.7, this criterion applied to terminate

GPO search works very well for the “CPU” and “concrete” datasets. Note again

that the γGPO quantity for the GP model was set to 10 and the δGPO quantity

for the RBF kernel was set to 0.01. Empirically, other values considered result

in less desirable behaviour, in particular for the stopping criterion. In the next

chapter, this criterion, with these two parameter values, will be applied in both

regression and classification datasets to test the effectiveness of GPO in the

Experimenter interface of WEKA.

50

3.6 Summary

The goal of Gaussian Process Optimization is to pick the globally optimal

point with the highest expected improvement. The possible points are chosen

from the parameter range specified by the user’s empirical experience. The most

common method to pick the most likely point is a trial-and-error procedure, that

is, we try each point in the grid and get the lowest error point, as was described

in Section 3.1. In this thesis, we adopt the Gaussian Process Optimization

method to search for this optimal point. It is also important to perform the

appropriate parameter settings for the GP model, which was elaborated on in

Section 3.5. Apart from the above, we have considered the stopping criterion

that is used to determine when the GPO process stops. The progress observed

after each iteration was displayed in figures in order to show details clearly,

and thus to decide when it is appropriate to stop. Once the stopping criterion

applies, the evaluation based on 2-fold cross-validation will finish and the “best”

point from this first stage search is identified. The stopping criterion can prevent

the searching and evaluating processes going further, as only part of the range

of parameter values is worthy of analysis. In the next stage, the search will

perform 10-fold cross-validation around this “best” point of the above stage

until no better point is found.

51

Chapter 4

Experimental Results

In the previous chapter, we discussed the problem of parameter optimiza-

tion based on the Gaussian processes framework, which generalizes character-

istics from previous samples and provides predictions for future samples as

well. We have experimentally determined an appropriate pair of parameters

(δGPO, γGPO) for the Gaussian processes model, compared with other pairs of

parameters. In addition, the stopping criterion used to prevent the search from

going further than necessary has shown good behaviour in preliminary exper-

iments. However, there is so far not sufficient evidence that Gaussian Process

Optimization works well in practice when tuning machine learning algorithms.

Hence, it is important to perform experiments showing the effects of this opti-

mization method for some widely-used algorithms.

On the one hand, we will use this optimization algorithm with classification

learning, such as decision tree learning, i.e. C4.5, Support Vector Machines,

and Boosting. On the other hand, we will apply the optimization algorithm

with Gaussian process regression to test the effectiveness of the method on

regression problems. In this chapter, Sections 4.1 and 4.2 will show the results

of parameter optimization in regression and classification problems respectively

using the stopping criterion whose behaviour has been examined previously.

The quality of the Gaussian Process Optimization method will be determined

through statistical tests. All the outcomes of the experiments are based on

implementations in WEKA.

52

4.1 Regression

Regression problems refer to cases where the predictive outputs are con-

tinuous. There are many evaluation measures to estimate the performance on

the same regression problem for various algorithms. Different measurements

will bring different performance estimates. Measures for numeric prediction in-

clude mean-squared error, mean absolute error, relative absolute error, relative

squared error and correlation coefficient. All these measurements are concerned

with the relationship between predicted values for the test instances and the

actual values. Every evaluation measure has its own disadvantages and advan-

tages. The preferred performance measure for the learning algorithms differs

according to the user’s viewpoint [1]. The decision for choosing a measure de-

pends on the objective of a particular implementation.

In the following, we will use the correlation coefficient as the primary mea-

sure in numeric prediction problems. The correlation coefficient measures the

statistical correlation between the actual values and the predicted values. In

general, the value of the correlation coefficient ranges from -1 for no correla-

tion to 1 for correlated perfectly. In other words, an algorithm with a higher

correlation coefficient is better than one with a lower one when comparing two

performance scores. It is thus different from the other error measures, because

a larger value of the correlation coefficient indicates good performance, while

good performance for the latter ones is indicated by smaller values.

Apart from the above, another standard to estimate efficiency is the use of

time. Researchers are not willing to spend a long time to wait for outcomes of

experiments. Therefore, we will compare the run time for different optimization

algorithms on the same regression task. As a large amount of time is spent

on cross-validation, we will also consider the number of cross-validation runs

performed.

4.1.1 Numeric Prediction Based on Gaussian Process Re-

gression

Gaussian process regression is a widely used regression method. It is impor-

tant to note that the Gaussian process model being optimized in the following

53

Table 4.1: The search configuration of GPO and Grid Search in regression

Common points in GPO and Grid Search

Base algorithm: Gaussian process function

Search parameters: γ of RBF kernel function in

the classifier treated as x1 and the Gaussian noise δ

of the base algorithm in the classifier treated as x2

Search range: I∈ {−5,−4, . . . , 5}
Search step: 1

Search base: 10

Search expression: 10I

Search route: by columns

Difference in GPO and Grid Search

GPO algorithm builds GP model for predictive

distribution, the parameters of which are the

Gaussian noise δ and the width γ of the

RBF kernel function. We specify the γ value

as 10 and the noise level δ as 0.01.

is different from the GP model used inside the GPO process. We will first com-

pare GPO and Grid Search when optimizing a Gaussian process model. The

configuration for both GPO and Grid search is set in advance, see Table 4.1.

To make it easier to understand, we list the common points as well as the dif-

ferences of these two algorithms separately. It is clear that the only distinct

difference between GPO and Grid Search is the use of the GP model for predic-

tion. That is GPO uses the Gaussian processes distribution to evaluate all the

possible points in the grid before determining the next sample point.

First, we will compare the performance in terms of correlation coefficient

when optimizing it with both GPO and Grid Search. The performance on a

single dataset cannot determine the quality of the algorithm. Hence, we use

a large collection (see Table 4.2). We use cross-validation estimates to deter-

mine the mean performance for each dataset. Based on this we can determine

whether one algorithm significantly outperforms the other algorithm. Because

of a matched pair of results for each dataset for both learning algorithms, the

statistical test we use is known as the paired t-test. More precisely, taking 10-

fold cross-validation for example, a set of outcomes xi will be obtained using one

learning algorithm, and another set of outcomes yi will be obtained by the other

learning algorithm on the same dataset. The mean of the first set of outcomes

xi and the mean of the second set of outcomes yi can be calculated. Comparing

the two values of the mean, along with corresponding standard deviations, we

will know whether the first learning algorithm is significantly different from the

54

other one in terms of performance. The results shown in Table 4.2 were ob-

tained after running 10-fold cross-validation repeated 10 times. Thus, the value

of every entry in Table 4.2 is the average of 100 values.

The table shows that the correlation coefficient is similar for all datasets for

both GPO and Grid Search. There is no significantly greater, or significantly

lower result between GPO and Grid Search, even though the value of GPO in

some cases is a little bit higher than that of Grid Search, and the value of Grid

Search is a little better than that of GPO in some other ones. It is encouraging

that there are no statistically significant changes between these two algorithms

because Grid Search does a brute-force search in the range of the grid. It can

be observed that GPO performs equally well, and as we will see it only does

relatively few searches to find the best performance.

Let us now consider computational complexity. The number of cross-

validation runs is an important measure to test the GPO and Grid Search algo-

rithms. Only points selected based on expected improvement need to be cross-

validated in the GPO algorithm, whereas Grid Search will use cross-validation

for every point in the whole parameter search space. For the GPO algorithm

as well as the Grid Search algorithm, there are two stages of cross-validation.

The first stage is based on 2-fold cross-validation, and the second stage is based

on 10-fold cross-validation. The initial “best” point is found using 2-fold cross-

validation. However, based on 10-fold cross-validation after the first stage, this

point may fall into a sub-optimal area: there is the possibility that there are

better points around the point found in the first stage. Thus, it is essential

to run 10-fold cross-validation on surrounding points to obtain more accurate

estimates. Overall, dividing the cross-validation into two stages is done for two

main reasons: saving time and avoiding sub-optimum parameter settings.

Table 4.3 compares how many 2-fold cross-validation runs both GPO and

Grid Search perform. The hollow circles mean that the values of the second col-

umn exhibit a statistically significant improvement compared to the values of

the third column. The GPO algorithm outperforms the Grid Search algorithm

on the 2-fold cross-validation. Considering both Table 4.2 and Table 4.3, we

find the correlation coefficient does not decrease significantly with fewer 2-fold

cross-validation runs. Take the “basketball” dataset for example. The GPO

55

Table 4.2: Correlation Coefficient for GPO and Grid Search

Dataset GPO Grid Search

auto93.names 0.8443 ± 0.1227 0.8445 ± 0.1228

autoHorse.names 0.9494 ± 0.0968 0.9501 ± 0.0969

autoMpg.names 0.9315 ± 0.0253 0.9320 ± 0.0247

autoPrice.names 0.9030 ± 0.0757 0.9078 ± 0.0738

baskball 0.5778 ± 0.2282 0.5760 ± 0.2259

bodyfat.names 0.9838 ± 0.0295 0.9834 ± 0.0293

bolts 0.8844 ± 0.2438 0.8892 ± 0.2444

breastTumor 0.2234 ± 0.1864 0.2796 ± 0.1684

cholesterol 0.1528 ± 0.1818 0.1701 ± 0.1763

cleveland 0.7250 ± 0.0834 0.7222 ± 0.0838

cloud 0.9210 ± 0.0717 0.9196 ± 0.0779

cpu 0.9965 ± 0.0064 0.9966 ± 0.0064

detroit 0.1800 ± 0.5199 0.2200 ± 0.5041

echoMonths 0.6958 ± 0.1408 0.6970 ± 0.1409

elusage 0.8483 ± 0.1819 0.8432 ± 0.1814

fishcatch 0.9896 ± 0.0077 0.9899 ± 0.0080

fruitfly -0.1047 ± 0.2431 -0.0869 ± 0.2716

gascons 0.9391 ± 0.2868 0.9367 ± 0.2868

housing 0.9339 ± 0.0324 0.9405 ± 0.0299

hungarian 0.7137 ± 0.0995 0.7170 ± 0.0969

longley 0.5600 ± 0.5379 0.5800 ± 0.5160

lowbwt 0.7845 ± 0.0770 0.7835 ± 0.0777

mbagrade 0.3817 ± 0.4775 0.3920 ± 0.4804

meta 0.3797 ± 0.2337 0.3752 ± 0.2268

pbc 0.5931 ± 0.1020 0.5917 ± 0.1035

pharynx 0.6826 ± 0.1116 0.6898 ± 0.1105

pollution 0.7283 ± 0.2596 0.7367 ± 0.2569

pwLinear 0.9146 ± 0.0367 0.9167 ± 0.0372

quake 0.0818 ± 0.0899 0.0735 ± 0.0887

schlvote 0.1655 ± 0.5888 0.1862 ± 0.6143

sensory 0.5116 ± 0.0942 0.5149 ± 0.0921

servo 0.9173 ± 0.0514 0.9183 ± 0.0500

sleep 0.6102 ± 0.3872 0.6203 ± 0.3809

strike 0.5293 ± 0.1917 0.5299 ± 0.1984

veteran 0.3959 ± 0.2587 0.3828 ± 0.2566

vineyard 0.7242 ± 0.2707 0.7134 ± 0.3097

◦, • statistically significant improvement or degradation

algorithm performs just 18 2-fold cross-validations on average to get a slightly

better performance (an average of 0.5778 in correlation coefficient). The perfor-

mance is 0.5760 for Grid Search although it runs 121 2-fold cross-validations.

Once the initial “best” point has been decided using 2-fold cross-validation,

both GPO and Grid Search will perform 10-fold cross-validation around the

neighbours of this “best” point in order to find a potentially better one. In

both algorithms, the search does not stop until there is no improvement or the

searching point is on the boundary of the parameter space. As a result, both usu-

56

Table 4.3: Number of 2-Fold Cross-validation Runs in GPO and Grid Search

Dataset GPO Grid Search

auto93.names 22.8800 ± 8.0293 121.0±0.0 ◦
autoHorse.names 20.0200± 6.6286 121.0±0.0 ◦
autoMpg.names 17.6600± 7.3899 121.0±0.0 ◦
autoPrice.names 19.8000± 7.7277 121.0±0.0 ◦
baskball 17.4800± 7.4488 121.0±0.0 ◦
bodyfat.names 16.6200± 5.1006 121.0±0.0 ◦
bolts 16.4200± 5.0795 121.0±0.0 ◦
breastTumor 18.1900± 7.9629 121.0±0.0 ◦
cholesterol 16.6000± 6.9486 121.0±0.0 ◦
cleveland 15.6300± 3.8023 121.0±0.0 ◦
cloud 14.4300± 4.3491 121.0±0.0 ◦
cpu 15.0800± 4.4827 121.0±0.0 ◦
detroit 25.3500±10.0054 121.0±0.0 ◦
echoMonths 16.6600± 5.5473 121.0±0.0 ◦
elusage 16.4800± 6.0427 121.0±0.0 ◦
fishcatch 18.4600± 7.0316 121.0±0.0 ◦
fruitfly 13.3100± 4.5676 121.0±0.0 ◦
gascons 20.5800± 8.4736 121.0±0.0 ◦
housing 16.8700± 7.8504 121.0±0.0 ◦
hungarian 23.8900± 8.5527 121.0±0.0 ◦
longley 18.7200± 7.1096 121.0±0.0 ◦
lowbwt 16.0700± 4.3791 121.0±0.0 ◦
mbagrade 13.7700± 4.4966 121.0±0.0 ◦
meta 17.3900± 7.0980 121.0±0.0 ◦
pbc 20.1400± 6.4527 121.0±0.0 ◦
pharynx 17.3700± 6.5685 121.0±0.0 ◦
pollution 16.8500± 6.5310 121.0±0.0 ◦
pwLinear 22.2000± 9.4345 121.0±0.0 ◦
quake 14.9300± 5.0817 121.0±0.0 ◦
schlvote 17.8600± 7.4332 121.0±0.0 ◦
sensory 17.2500± 8.0156 121.0±0.0 ◦
servo 28.0900±11.4372 121.0±0.0 ◦
sleep 19.0600± 7.3551 121.0±0.0 ◦
strike 17.0300± 6.5635 121.0±0.0 ◦
veteran 18.6500± 8.7575 121.0±0.0 ◦
vineyard 15.3100± 5.7361 121.0±0.0 ◦
◦, • statistically significant improvement or degradation

ally perform several 10-fold cross-validation runs to get the final performance,

as illustrated in Table 4.4.

Normally, 10-fold cross-validation tends to cost more running time and

acquires more accurate performance estimates than 2-fold cross-validation. In

this case, the grid has 8 neighbours for each central point. For most datasets

here, the number of 10-fold cross-validation runs in GPO is smaller than that of

Grid Search, which is another piece of evidence that GPO exceeds Grid Search

in terms of computational efficiency.

57

Table 4.4: Number of 10-Fold Cross-validation Runs in GPO and Grid Search

Dataset GPO Grid Search

auto93.names 12.1500 ± 4.8770 12.3500 ±3.0563

autoHorse.names 8.4200 ± 5.8122 10.5500 ±3.7047

autoMpg.names 11.1100 ± 8.2949 11.1900 ±4.3986

autoPrice.names 13.0000 ± 7.3278 14.0300 ±5.6933

baskball 10.0200 ±10.1812 10.4700 ±8.6064

bodyfat.names 7.0100 ± 6.5590 9.9200 ±3.2989

bolts 3.2300 ± 6.2746 5.7000 ±8.2603

breastTumor 3.7100 ± 5.4054 7.1800 ±6.0759

cholesterol 5.4600 ± 7.4025 8.2400 ±6.0472

cleveland 3.8800 ± 5.6053 8.3700 ±5.2081 ◦
cloud 2.9300 ± 5.3791 4.6600 ±6.2137

cpu 2.0500 ± 4.4843 2.5400 ±5.0701

detroit 10.6400 ± 6.5095 12.8300 ±4.7738

echoMonths 3.5100 ± 5.2924 8.1800 ±4.9937 ◦
elusage 4.4500 ± 6.8230 5.3800 ±6.9293

fishcatch 10.5700 ± 6.9939 9.7600 ±4.8244

fruitfly 3.0000 ± 5.9645 5.8900 ±6.7643

gascons 9.4200 ± 7.5387 10.3900 ±4.5369

housing 8.9900 ± 9.4479 10.2300 ±6.0734

hungarian 9.4500 ± 5.8090 11.6700 ±4.3066

longley 6.9400 ± 6.5672 9.9200 ±6.5082

lowbwt 2.4700 ± 4.8021 4.0800 ±5.3817

mbagrade 2.8700 ± 6.3575 5.9500 ±9.7041

meta 4.2300 ± 6.5256 7.7400 ±6.4895

pbc 7.8100 ± 4.6898 8.3600 ±3.2178

pharynx 4.9500 ± 5.8021 3.9100 ±4.9054

pollution 6.2700 ± 5.9592 10.2000 ±3.8271

pwLinear 12.8300 ± 6.1760 12.7600 ±4.4859

quake 1.9200 ± 4.9781 3.3400 ±5.0836

schlvote 5.5800 ± 8.3414 8.6200 ±7.9096

sensory 7.8800 ± 7.8138 8.2100 ±6.0491

servo 11.3100 ± 4.9292 10.3600 ±2.7470

sleep 9.7500 ± 7.6599 11.1800 ±5.4539

strike 6.3900 ± 7.2361 10.7800 ±5.1081

veteran 9.3600 ± 9.5182 11.6600 ±7.5895

vineyard 5.3600 ± 7.1978 7.9400 ±7.9224

◦, • statistically significant improvement or degradation

The different amount of cross-validation and the GP model used for the

GPO algorithm are the main reasons for the difference in the training time.

Table 4.5 shows the training time for the 36 datasets for both GPO and Grid

Search. Grid Search spends twice as much training time on evaluating and

performing the search than GPO for most datasets, even four or five times as

much for some datasets, i.e. the “cleveland” dataset and the “breastTumor”

dataset. It is seen that GPO yields an obvious improvement in running time

when compared with Grid Search. GPO enables us to consume much less time

58

Table 4.5: Training Time of GPO and Grid Search

Dataset GPO Grid Search

auto93.names 2.0776± 0.5862 3.7351 ± 0.4251 ◦
autoHorse.names 2.9111± 1.4850 6.6518 ± 0.8424 ◦
autoMpg.names 10.6744± 6.9722 22.7175 ± 3.6393 ◦
autoPrice.names 2.5259± 1.1093 4.7633 ± 0.8689 ◦
baskball 1.4741± 1.0428 3.1960 ± 0.8363 ◦
bodyfat.names 2.8162± 1.9611 7.6328 ± 0.9593 ◦
bolts 0.7295± 0.5549 2.4083 ± 0.6702 ◦
breastTumor 2.6122± 2.3234 9.0870 ± 2.3489 ◦
cholesterol 3.5035± 3.2076 10.4319 ± 2.4815 ◦
cleveland 2.5867± 2.4628 10.1145 ± 2.1627 ◦
cloud 0.7651± 0.5988 2.7429 ± 0.6859 ◦
cpu 1.1469± 1.0599 4.1356 ± 1.1557 ◦
detroit 1.4964± 0.6292 2.9468 ± 0.5101 ◦
echoMonths 0.9556± 0.7170 3.3770 ± 0.5942 ◦
elusage 0.8495± 0.6595 2.4638 ± 0.5842 ◦
fishcatch 2.1211± 1.0380 4.0795 ± 0.6891 ◦
fruitfly 0.8277± 0.7609 3.1792 ± 0.8874 ◦
gascons 1.2890± 0.6686 2.7340 ± 0.4269 ◦
housing 15.3489± 14.0341 29.2449 ± 8.6990 ◦
hungarian 5.0440± 2.5017 10.8289 ± 1.7025 ◦
longley 1.0460± 0.6123 2.7156 ± 0.5761 ◦
lowbwt 1.1074± 0.9518 4.4642 ± 1.0368 ◦
mbagrade 0.6518± 0.5519 2.5233 ± 0.7918 ◦
meta 11.6704± 11.9962 42.3691 ± 11.8745 ◦
pbc 9.2670± 4.4986 21.6678 ± 2.9820 ◦
pharynx 2.7256± 1.8770 7.3625 ± 1.5262 ◦
pollution 1.0111± 0.5974 2.8566 ± 0.3346 ◦
pwLinear 3.2743± 1.2612 5.9724 ± 0.8656 ◦
quake 811.7735±1595.5955 2310.9863 ± 1985.8234

schlvote 0.9707± 0.7544 2.5678 ± 0.6119 ◦
sensory 20.1986± 17.0838 34.0367 ± 12.8195 ◦
servo 2.7390± 0.8268 4.4110 ± 0.4169 ◦
sleep 1.3778± 0.7495 2.8543 ± 0.4362 ◦
strike 20.7891± 19.7951 47.6723 ± 13.3069 ◦
veteran 1.8575± 1.3797 4.0907 ± 1.0864 ◦
vineyard 0.9049± 0.7119 2.5458 ± 0.6245 ◦
◦, • statistically significant improvement or degradation

but with comparative performance: Grid Search has to do the complete trial

process.

Overall, we discussed four measures above, including correlation coefficient

performance, number of 2-fold cross-validation runs, number of 10-fold cross-

validation runs and training time, comparing the GPO algorithm with the Grid

Search algorithm on regression problems. GPO is generally better in training

time and number of 2-fold cross-validation runs with similar correlation coeffi-

59

cients and this does not vary much in all datasets used in this test. At the same

time, most cases also exhibit relatively fewer 10-folds cross-validations for GPO

than for Grid Search. However, GPO does not work quite as well in some cases,

such as on the “detroit” dataset due to the relatively lower correlation coeffi-

cient and higher number of 2-fold cross-validation runs. Some possible reasons

are as follows:

1: The stopping criterion used here is not perfect and may not consider all

the best points. Some of them may be missed. As the result of this

stopping criterion, we can not search all the points as Grid Search does.

Some valuable and important points with lower expected improvement

and higher uncertainty may be ignored by the GPO algorithm.

2: In the GPO algorithm, we use a set of corner points with their correspond-

ing performance scores as an initial training dataset for the GP model,

which decides the beginning tendency for the future unknown points. If

the initial points have not been chosen suitably, it will result in some bias

in subsequent choices of points.

4.1.2 Comparing GPO and Random Search

We found that the GPO algorithm generally performs better than Grid

Search through the above analysis. We also found the weakness of Grid Search

is the usage of time because of its brute-force nature. Hence, we propose an

experiment to compare the efficiency of GPO to Random Search. Random

search is a simple search method that searches points randomly and does not

require as much time as Grid Search. Before we apply random search as the

search method, we set the number of random points first. More specifically, the

random numbers are the points in the grid generated by the random number

generator. If the number of random numbers is set to m, then we randomly

choose m points from the grid. In the following experiments, we will use five

values for m, from 5 to 25 with step size 5. For every experiment, a set of

outcomes will be obtained and compared with the GPO algorithm. We adopt

the same evaluation measures as before, namely correlation coefficient, number

of cross-validation runs and training time.

60

T
ab

le
4.

6:
C

o
rr

el
a
ti

o
n

C
o
effi

ci
en

t
o
f

G
P

O
a
n

d
R

a
n

d
o
m

S
ea

rc
h

D
a
ta

se
t

G
P

O
R

S
(2

5
)

R
S
(2

0
)

R
S
(1

5
)

R
S
(1

0
)

R
S
(5

)

a
u
to

9
3
.n

a
m

e
s

0
.8

4
5
8
±

0
.1

2
0
.8

6
4
4
±

0
.1

1
0
.8

6
4
4
±

0
.1

1
0
.8

4
5
1
±

0
.1

2
0
.8

4
5
1
±

0
.1

2
0
.8

4
5
1
±

0
.1

2

a
u
to

H
o
rs

e
.n

a
m

e
s

0
.9

5
8
1
±

0
.0

3
0
.9

5
0
9
±

0
.0

8
0
.9

5
0
9
±

0
.0

8
0
.9

5
1
7
±

0
.0

8
0
.9

5
9
2
±

0
.0

2
0
.9

5
8
4
±

0
.0

3

a
u
to

M
p
g
.n

a
m

e
s

0
.9

3
2
0
±

0
.0

2
0
.9

3
2
5
±

0
.0

2
0
.9

3
2
5
±

0
.0

2
0
.9

3
2
5
±

0
.0

2
0
.9

3
2
5
±

0
.0

2
0
.9

3
2
8
±

0
.0

2

a
u
to

P
ri

c
e
.n

a
m

e
s

0
.9

0
6
5
±

0
.0

7
0
.8

9
2
8
±

0
.0

7
0
.8

9
2
8
±

0
.0

7
0
.9

0
6
3
±

0
.0

7
0
.9

0
6
3
±

0
.0

7
0
.9

0
8
3
±

0
.0

7

b
a
sk

b
a
ll

0
.5

7
3
3
±

0
.2

3
0
.5

8
0
5
±

0
.2

2
0
.5

8
0
5
±

0
.2

2
0
.5

8
2
5
±

0
.2

2
0
.5

7
3
8
±

0
.2

3
0
.5

8
4
9
±

0
.2

2

b
o
d
y
fa

t.
n
a
m

e
s

0
.9

8
3
5
±

0
.0

3
0
.9

8
3
8
±

0
.0

3
0
.9

8
3
8
±

0
.0

3
0
.9

8
2
9
±

0
.0

3
0
.9

8
2
9
±

0
.0

3
0
.9

8
2
5
±

0
.0

3

b
o
lt

s
0
.8

9
8
2
±

0
.2

2
0
.8

8
3
3
±

0
.2

7
0
.8

8
3
3
±

0
.2

7
0
.9

3
2
9
±

0
.1

9
0
.9

2
6
1
±

0
.2

0
0
.9

2
6
1
±

0
.2

0

b
re

a
st

T
u
m

o
r

0
.2

7
7
0
±

0
.1

7
0
.2

6
8
8
±

0
.1

6
0
.2

6
6
7
±

0
.1

6
0
.2

6
5
6
±

0
.1

7
0
.2

7
8
3
±

0
.1

8
0
.2

0
6
0
±

0
.2

1

ch
o
le

st
e
ro

l
0
.1

6
6
6
±

0
.1

7
0
.1

6
0
2
±

0
.1

8
0
.1

6
5
7
±

0
.1

8
0
.1

6
8
6
±

0
.1

8
0
.1

7
8
2
±

0
.1

7
0
.1

1
8
9
±

0
.1

9

c
le

v
e
la

n
d

0
.7

2
3
7
±

0
.0

8
0
.7

2
0
3
±

0
.0

9
0
.7

2
3
8
±

0
.0

8
0
.7

2
4
3
±

0
.0

8
0
.7

2
4
3
±

0
.0

8
0
.7

1
6
1
±

0
.0

9

c
lo

u
d

0
.9

2
1
1
±

0
.0

7
0
.9

2
1
8
±

0
.0

7
0
.9

2
1
8
±

0
.0

7
0
.9

2
1
0
±

0
.0

7
0
.9

2
1
0
±

0
.0

7
0
.9

1
4
6
±

0
.0

8

c
p
u

0
.9

9
6
8
±

0
.0

1
0
.9

9
7
0
±

0
.0

1
0
.9

9
7
0
±

0
.0

1
0
.9

9
7
3
±

0
.0

1
0
.9

9
7
1
±

0
.0

1
0
.9

9
7
1
±

0
.0

1

d
e
tr

o
it

0
.2

2
0
0
±

0
.5

0
0
.2

2
0
0
±

0
.5

0
0
.2

2
0
0
±

0
.5

0
0
.2

4
0
0
±

0
.4

9
0
.2

4
0
0
±

0
.4

9
0
.2

4
0
0
±

0
.4

9

e
ch

o
M

o
n
th

s
0
.6

9
7
7
±

0
.1

4
0
.6

8
2
3
±

0
.1

5
0
.6

7
7
6
±

0
.1

6
0
.6

9
5
4
±

0
.1

5
0
.6

9
4
2
±

0
.1

5
0
.6

9
7
7
±

0
.1

4

e
lu

sa
g
e

0
.8

4
9
4
±

0
.1

8
0
.8

5
6
5
±

0
.1

8
0
.8

5
8
3
±

0
.1

8
0
.8

4
4
1
±

0
.1

9
0
.8

5
6
9
±

0
.1

7
0
.8

4
9
4
±

0
.1

7

fi
sh

c
a
tc

h
0
.9

8
9
9
±

0
.0

1
0
.9

8
7
3
±

0
.0

1
0
.9

8
7
3
±

0
.0

1
0
.9

8
7
4
±

0
.0

1
0
.9

8
9
6
±

0
.0

1
0
.9

9
0
1
±

0
.0

1

fr
u
it

fl
y

-0
.0

9
8
2
±

0
.2

7
-0

.1
2
5
4
±

0
.2

6
-0

.1
2
3
2
±

0
.2

6
-0

.1
4
4
5
±

0
.2

3
-0

.1
1
6
8
±

0
.2

3
-0

.0
5
2
1
±

0
.2

3

g
a
sc

o
n
s

0
.9

1
6
8
±

0
.3

5
0
.9

3
6
1
±

0
.2

9
0
.9

3
6
1
±

0
.2

9
0
.9

3
3
9
±

0
.2

9
0
.9

3
5
4
±

0
.2

9
0
.9

3
8
5
±

0
.2

9

h
o
u
si

n
g

0
.9

3
7
1
±

0
.0

3
0
.9

3
2
6
±

0
.0

3
0
.9

3
2
6
±

0
.0

3
0
.9

3
2
6
±

0
.0

3
0
.9

4
0
0
±

0
.0

3
0
.9

4
5
6
±

0
.0

3

h
u
n
g
a
ri

a
n

0
.7

1
7
1
±

0
.1

0
0
.7

1
7
8
±

0
.1

0
0
.7

1
6
8
±

0
.1

0
0
.7

1
7
5
±

0
.1

0
0
.7

1
7
5
±

0
.1

0
0
.7

1
7
5
±

0
.1

0

lo
n
g
le

y
0
.5

8
0
0
±

0
.5

2
0
.5

6
0
0
±

0
.5

4
0
.5

6
0
0
±

0
.5

4
0
.5

8
0
0
±

0
.5

2
0
.5

8
0
0
±

0
.5

2
0
.6

0
0
0
±

0
.4

9

lo
w

b
w

t
0
.7

8
4
5
±

0
.0

8
0
.7

8
1
4
±

0
.0

8
0
.7

8
1
4
±

0
.0

8
0
.7

8
4
8
±

0
.0

8
0
.7

8
4
8
±

0
.0

8
0
.7

8
0
5
±

0
.0

8

m
b
a
g
ra

d
e

0
.3

8
2
1
±

0
.4

9
0
.4

1
0
8
±

0
.4

6
0
.4

1
0
8
±

0
.4

6
0
.4

0
7
9
±

0
.4

6
0
.4

0
7
9
±

0
.4

6
0
.3

8
9
0
±

0
.4

8

m
e
ta

0
.3

6
8
1
±

0
.2

3
0
.3

9
2
3
±

0
.2

1
0
.3

9
2
3
±

0
.2

1
0
.3

9
1
7
±

0
.2

2
0
.3

7
5
4
±

0
.2

2
0
.3

4
5
4
±

0
.2

5

p
b

c
0
.5

9
2
4
±

0
.1

0
0
.5

9
3
9
±

0
.1

0
0
.5

9
3
9
±

0
.1

0
0
.5

9
3
9
±

0
.1

0
0
.5

9
3
9
±

0
.1

0
0
.5

9
3
1
±

0
.1

0

p
h
a
ry

n
x

0
.6

8
3
7
±

0
.1

2
0
.6

0
4
6
±

0
.1

3
•

0
.6

0
5
3
±

0
.1

3
•

0
.6

9
0
9
±

0
.1

1
0
.6

9
0
9
±

0
.1

1
0
.6

9
0
9
±

0
.1

1

p
o
ll
u
ti

o
n

0
.7

3
5
7
±

0
.2

5
0
.7

1
4
2
±

0
.2

7
0
.7

1
4
2
±

0
.2

7
0
.7

3
0
6
±

0
.2

6
0
.7

5
7
7
±

0
.2

4
0
.7

3
3
6
±

0
.2

7

p
w

L
in

e
a
r

0
.9

1
6
0
±

0
.0

4
0
.9

1
6
5
±

0
.0

4
0
.9

1
6
5
±

0
.0

4
0
.9

1
7
3
±

0
.0

4
0
.9

1
7
3
±

0
.0

4
0
.9

1
7
3
±

0
.0

4

q
u
a
k
e

0
.0

8
0
6
±

0
.0

9
0
.0

6
0
0
±

0
.0

9
0
.0

5
9
8
±

0
.0

9
0
.0

5
1
8
±

0
.0

9
0
.0

4
9
3
±

0
.0

9
0
.0

6
9
0
±

0
.0

7

sc
h
lv

o
te

0
.1

9
7
0
±

0
.5

9
0
.1

7
9
9
±

0
.6

0
0
.1

7
9
9
±

0
.6

0
0
.1

5
0
1
±

0
.6

0
0
.2

1
3
6
±

0
.5

7
0
.1

2
8
2
±

0
.5

9

se
n
so

ry
0
.5

1
4
4
±

0
.0

9
0
.5

1
3
5
±

0
.0

9
0
.5

1
3
5
±

0
.0

9
0
.5

1
5
4
±

0
.0

9
0
.5

1
5
4
±

0
.0

9
0
.5

0
2
7
±

0
.1

0

se
rv

o
0
.9

1
7
7
±

0
.0

5
0
.9

1
7
9
±

0
.0

5
0
.9

1
7
9
±

0
.0

5
0
.9

1
7
0
±

0
.0

5
0
.9

1
6
9
±

0
.0

5
0
.9

1
6
1
±

0
.0

5

sl
e
e
p

0
.5

9
5
2
±

0
.3

9
0
.6

0
6
2
±

0
.4

1
0
.6

0
6
2
±

0
.4

1
0
.6

0
1
4
±

0
.4

1
0
.6

0
0
7
±

0
.4

1
0
.5

6
2
7
±

0
.4

2

st
ri

k
e

0
.5

2
9
2
±

0
.2

0
0
.5

2
6
4
±

0
.2

0
0
.5

2
6
4
±

0
.2

0
0
.5

2
8
6
±

0
.2

0
0
.5

2
6
6
±

0
.2

0
0
.5

3
1
6
±

0
.2

0

v
e
te

ra
n

0
.3

9
4
8
±

0
.2

5
0
.3

8
5
3
±

0
.2

6
0
.3

8
5
3
±

0
.2

6
0
.3

8
8
2
±

0
.2

6
0
.3

9
4
4
±

0
.2

6
0
.3

6
5
1
±

0
.2

7

v
in

e
y
a
rd

0
.7

0
5
1
±

0
.3

0
0
.7

0
4
7
±

0
.3

1
0
.7

0
4
7
±

0
.3

1
0
.7

1
5
4
±

0
.3

1
0
.6

9
6
9
±

0
.3

1
0
.7

1
1
8
±

0
.3

0

A
v
e
ra

g
e

0
.6

4
9
7

0
.6

4
5
3

0
.6

4
5
5

0
.6

4
9
5

0
.6

5
2
9

0
.6

4
6
0

◦,
•

st
a
ti

st
ic

a
ll
y

si
g
n
ifi

c
a
n
t

im
p
ro

v
e
m

e
n
t

o
r

d
e
g
ra

d
a
ti

o
n

61

Table 4.6 shows the performance of GPO and Random Search based on

correlation coefficient. There is no statistically significant improvement after

changing from Grid Search to the Random Search. However, an interesting

phenomenon occurs for the particular dataset “pharynx”. The GPO algorithm

outperforms random search statistically significantly when 25 and 20 random

grid locations are used respectively. However, this phenomenon disappears after

decreasing the number of random grid locations. The reason is that the points

found in these two situations above are located on the border of the grid, and

the procedure prevents the search process going further.

The number of random grid locations is equal to the number of 2-fold cross-

validation runs in Random Search. According to Table 4.7, the average number

of 2-fold cross-validation runs is close to 25 using the GPO algorithm, where the

biggest value is around 30 and the smallest is about 19. As a result, the GPO

algorithm shows a statistically significant degradation with decreasing random

grid locations compared with the Random Search method when considering

2-fold cross-validation runs.

In contrast to the results for 2-fold cross-validation, the smaller numbers

of random grid locations lead to larger numbers of 10-fold cross-validations.

The 10-fold cross-validation runs are based on the 2-fold cross-validation ones,

and the “best” point found by 2-fold cross-validation is likely not to be the

optimal point when few random locations are explored. The goal of the 10-fold

cross-validation is to visit the nearby points and try to find a point with better

correlation coefficient. If too few 2-fold cross-validations are performed, the

point in the first stage is not good enough, and the search process has to run

10-fold cross-validation many times in order to find the “best” one. This is also

why the number of 10-fold cross-validation runs in the GPO algorithm is far

less than those for RS (15), RS (10), and RS (5).

We are mainly concerned with the training time of GPO and Random

Search. According to the statistically significant improvement or degradation,

the results for Random Search can be divided into two groups, see Table 4.9.

Random Search with 25 and 20 random points belongs to one group while

the remaining searches are in the other group. The GPO algorithm shows

comparative performance when the number of random grid locations in Random

62

Table 4.7: Number of 2-Fold Cross-Validation Runs in GPO and Random Search

Dataset GPO RS(25) RS(20) RS(15) RS(10) RS(5)

auto93 23.11±6.53 25±0.0 20±0.0 15±0.0 • 10±0.0 • 5±0.0 •
autoHorse 21.12±3.63 25±0.0 ◦ 20±0.0 15±0.0 • 10±0.0 • 5±0.0 •
autoMpg 22.82±4.59 25±0.0 20±0.0 15±0.0 • 10±0.0 • 5±0.0 •
autoPrice 23.36±4.23 25±0.0 20±0.0 • 15±0.0 • 10±0.0 • 5±0.0 •
baskball 25.33±6.22 25±0.0 20±0.0 • 15±0.0 • 10±0.0 • 5±0.0 •
bodyfat 22.84±5.42 25±0.0 20±0.0 15±0.0 • 10±0.0 • 5±0.0 •
bolts 19.98±4.69 25±0.0 ◦ 20±0.0 15±0.0 • 10±0.0 • 5±0.0 •
breastTumor 30.59±5.02 25±0.0 • 20±0.0 • 15±0.0 • 10±0.0 • 5±0.0 •
cholesterol 30.38±5.37 25±0.0 • 20±0.0 • 15±0.0 • 10±0.0 • 5±0.0 •
cleveland 22.89±5.46 25±0.0 20±0.0 15±0.0 • 10±0.0 • 5±0.0 •
cloud 19.49±3.33 25±0.0 ◦ 20±0.0 15±0.0 • 10±0.0 • 5±0.0 •
cpu 23.37±4.41 25±0.0 20±0.0 • 15±0.0 • 10±0.0 • 5±0.0 •
detroit 21.76±6.44 25±0.0 20±0.0 15±0.0 • 10±0.0 • 5±0.0 •
echoMonths 22.26± 5.7 25±0.0 20±0.0 15±0.0 • 10±0.0 • 5±0.0 •
elusage 23.61±4.93 25±0.0 20±0.0 • 15±0.0 • 10±0.0 • 5±0.0 •
fishcatch 23.94±5.04 25±0.0 20±0.0 • 15±0.0 • 10±0.0 • 5±0.0 •
fruitfly 29.58±6.00 25±0.0 • 20±0.0 • 15±0.0 • 10±0.0 • 5±0.0 •
gascons 22.32±4.78 25±0.0 20±0.0 15±0.0 • 10±0.0 • 5±0.0 •
housing 19.71±4.56 25±0.0 ◦ 20±0.0 15±0.0 • 10±0.0 • 5±0.0 •
hungarian 25.27±5.09 25±0.0 20±0.0 • 15±0.0 • 10±0.0 • 5±0.0 •
longley 22.62±5.62 25±0.0 20±0.0 15±0.0 • 10±0.0 • 5±0.0 •
lowbwt 19.99±3.34 25±0.0 ◦ 20±0.0 15±0.0 • 10±0.0 • 5±0.0 •
mbagrade 26.45±5.69 25±0.0 20±0.0 • 15±0.0 • 10±0.0 • 5±0.0 •
meta 30.13±5.69 25±0.0 • 20±0.0 • 15±0.0 • 10±0.0 • 5±0.0 •
pbc 22.98±4.82 25±0.0 20±0.0 15±0.0 • 10±0.0 • 5±0.0 •
pharynx 25.52±6.85 25±0.0 20±0.0 • 15±0.0 • 10±0.0 • 5±0.0 •
pollution 24.84±5.81 25±0.0 20±0.0 • 15±0.0 • 10±0.0 • 5±0.0 •
pwLinear 20.33±3.56 25±0.0 ◦ 20±0.0 15±0.0 • 10±0.0 • 5±0.0 •
quake 27.89±4.28 25±0.0 20±0.0 • 15±0.0 • 10±0.0 • 5±0.0 •
schlvote 28.29±6.21 25±0.0 20±0.0 • 15±0.0 • 10±0.0 • 5±0.0 •
sensory 30.14±5.94 25±0.0 • 20±0.0 • 15±0.0 • 10±0.0 • 5±0.0 •
servo 21.66±5.30 25±0.0 20±0.0 15±0.0 • 10±0.0 • 5±0.0 •
sleep 24.53±6.15 25±0.0 20±0.0 • 15±0.0 • 10±0.0 • 5±0.0 •
strike 30.29±5.58 25±0.0 • 20±0.0 • 15±0.0 • 10±0.0 • 5±0.0 •
veteran 29.91±5.57 25±0.0 • 20±0.0 • 15±0.0 • 10±0.0 • 5±0.0 •
vineyard 21.74±5.48 25±0.0 20±0.0 15±0.0 • 10±0.0 • 5±0.0 •
Average 24.47 25.0 20.0 15.0 10.0 5.0

◦, • statistically significant improvement or degradation

Search is close to the average of the number of 2-fold cross-validation runs in

GPO. If the set of random grid locations is too small, the GPO algorithm will

perform better than Random Search. Note that a substantial advantage of

GPO in practice is that it determines an appropriate number of cross-validation

runs automatically using its stopping criterion. However, the selection of points

based on expected improvement does not appear necessary in most cases.

63

T
ab

le
4.

8:
N

u
m

b
er

of
1
0
-F

o
ld

C
ro

ss
-V

a
li

d
a
ti

o
n

R
u

n
s

in
G

P
O

an
d

R
a
n

d
o
m

S
ea

rc
h

D
a
ta

se
t

G
P

O
R

S
(2

5
)

R
S
(2

0
)

R
S
(1

5
)

R
S
(1

0
)

R
S
(5

)

a
u
to

9
3
.n

a
m

e
s

1
0
.7

7
0
0
±

5
.6

0
0
.0

0
0
0
±

0
.0

0
•

0
.0

0
0
0
±

0
.0

0
•

1
7
.8

7
0
0
±

2
.9

8
◦

1
7
.8

7
0
0
±

2
.9

8
◦

1
7
.8

7
0
0
±

2
.9

8
◦

a
u
to

H
o
rs

e
.n

a
m

e
s

9
.3

5
0
0
±

5
.4

2
1
.2

2
0
0
±

4
.2

7
•

1
.2

2
0
0
±

4
.2

7
•

1
4
.7

5
0
0
±

3
.8

7
◦

1
5
.2

6
0
0
±

2
.8

7
◦

1
8
.9

2
0
0
±

2
.9

8
◦

a
u
to

M
p
g
.n

a
m

e
s

1
2
.3

6
0
0
±

6
.2

5
2
0
.1

4
0
0
±

3
.1

8
◦

2
0
.1

4
0
0
±

3
.1

8
◦

2
0
.1

4
0
0
±

3
.1

8
◦

2
0
.1

4
0
0
±

3
.1

8
◦

1
6
.5

2
0
0
±

2
.9

8

a
u
to

P
ri

c
e
.n

a
m

e
s

1
2
.7

4
0
0
±

6
.8

0
1
.9

2
0
0
±

5
.1

3
•

1
.9

2
0
0
±

5
.1

3
•

1
5
.5

4
0
0
±

5
.1

4
1
6
.5

8
0
0
±

3
.7

9
2
1
.4

6
0
0
±

5
.3

8
◦

b
a
sk

b
a
ll

8
.5

5
0
0
±

8
.4

2
1
2
.0

5
0
0
±

8
.4

5
1
2
.0

5
0
0
±

8
.4

5
1
4
.3

9
0
0
±

7
.4

0
1
7
.8

9
0
0
±

6
.5

0
◦

1
9
.6

1
0
0
±

6
.9

3
◦

b
o
d
y
fa

t.
n
a
m

e
s

8
.7

6
0
0
±

4
.3

0
4
.5

6
0
0
±

6
.5

1
4
.5

6
0
0
±

6
.5

1
1
1
.6

7
0
0
±

5
.1

3
1
2
.7

8
0
0
±

4
.0

2
◦

1
9
.0

2
0
0
±

2
.3

0
◦

b
o
lt

s
4
.2

4
0
0
±

7
.5

3
4
.2

8
0
0
±

6
.6

1
4
.2

8
0
0
±

6
.6

1
9
.8

3
0
0
±

7
.6

9
1
5
.7

9
0
0
±

2
.7

0
◦

1
8
.1

5
0
0
±

1
.8

7
◦

b
re

a
st

T
u
m

o
r

7
.1

4
0
0
±

5
.8

7
1
.9

0
0
0
±

5
.4

3
•

2
.2

2
0
0
±

5
.5

7
•

1
0
.0

2
0
0
±

3
.7

2
9
.4

9
0
0
±

3
.0

5
1
8
.8

6
0
0
±

7
.2

7
◦

ch
o
le

st
e
ro

l
7
.9

3
0
0
±

6
.7

8
5
.9

8
0
0
±

7
.4

1
6
.6

1
0
0
±

7
.4

4
1
1
.2

8
0
0
±

5
.5

6
1
1
.7

6
0
0
±

5
.4

9
1
8
.9

6
0
0
±

6
.0

9
◦

c
le

v
e
la

n
d

7
.2

9
0
0
±

5
.8

5
1
.2

8
0
0
±

3
.8

7
•

1
.2

8
0
0
±

3
.8

7
•

9
.7

8
0
0
±

2
.0

2
9
.7

8
0
0
±

2
.0

2
2
4
.5

1
0
0
±

5
.2

6
◦

c
lo

u
d

4
.4

1
0
0
±

6
.1

1
7
.4

6
0
0
±

5
.4

9
7
.4

6
0
0
±

5
.4

9
1
0
.8

7
0
0
±

3
.0

0
◦

1
0
.8

7
0
0
±

3
.0

0
◦

2
2
.0

5
0
0
±

3
.4

8
◦

c
p
u

3
.4

0
0
0
±

5
.1

8
0
.6

0
0
0
±

3
.0

2
0
.6

0
0
0
±

3
.0

2
0
.9

6
0
0
±

3
.8

8
1
6
.4

6
0
0
±

2
.3

2
◦

1
6
.9

1
0
0
±

2
.2

5
◦

d
e
tr

o
it

1
1
.5

2
0
0
±

6
.6

6
1
.4

0
0
0
±

4
.3

9
•

1
.4

0
0
0
±

4
.3

9
•

1
4
.1

2
0
0
±

6
.8

4
1
5
.4

9
0
0
±

5
.8

1
1
8
.2

7
0
0
±

5
.8

8
◦

e
ch

o
M

o
n
th

s
8
.2

3
0
0
±

5
.0

3
4
.3

0
0
0
±

6
.7

1
4
.1

5
0
0
±

6
.6

2
1
0
.8

6
0
0
±

2
.8

7
9
.0

0
0
0
±

0
.0

0
1
8
.7

4
0
0
±

2
.8

0
◦

e
lu

sa
g
e

6
.3

1
0
0
±

7
.6

5
4
.2

0
0
0
±

5
.0

3
4
.2

9
0
0
±

5
.0

3
9
.1

9
0
0
±

5
.4

4
1
0
.8

6
0
0
±

3
.9

5
2
2
.1

7
0
0
±

5
.2

1
◦

fi
sh

c
a
tc

h
9
.7

2
0
0
±

6
.3

4
0
.3

4
0
0
±

2
.4

3
•

0
.3

4
0
0
±

2
.4

3
•

0
.4

6
0
0
±

2
.6

9
•

1
9
.0

7
0
0
±

4
.2

3
◦

1
7
.7

1
0
0
±

2
.6

2
◦

fr
u
it

fl
y

5
.4

6
0
0
±

6
.0

4
3
.5

8
0
0
±

6
.5

1
3
.5

1
0
0
±

6
.5

3
8
.0

5
0
0
±

6
.7

1
8
.3

2
0
0
±

5
.9

1
1
2
.1

8
0
0
±

5
.3

6
◦

g
a
sc

o
n
s

1
1
.5

8
0
0
±

5
.3

1
1
0
.6

8
0
0
±

1
0
.0

2
1
0
.6

8
0
0
±

1
0
.0

2
1
1
.5

3
0
0
±

1
0
.0

1
1
9
.9

2
0
0
±

4
.1

2
◦

1
7
.1

4
0
0
±

2
.1

1
◦

h
o
u
si

n
g

7
.0

5
0
0
±

6
.3

3
4
.9

2
0
0
±

6
.1

1
4
.9

2
0
0
±

6
.1

1
4
.9

2
0
0
±

6
.1

1
1
8
.2

0
0
0
±

6
.7

5
◦

1
2
.2

8
0
0
±

1
.2

6
◦

h
u
n
g
a
ri

a
n

1
1
.3

5
0
0
±

3
.0

0
1
8
.1

6
0
0
±

4
.2

8
◦

1
8
.8

1
0
0
±

2
.8

8
◦

1
9
.1

9
0
0
±

0
.9

9
◦

1
9
.1

9
0
0
±

0
.9

9
◦

2
1
.2

8
0
0
±

1
.6

8
◦

lo
n
g
le

y
8
.7

2
0
0
±

6
.8

8
5
.3

8
0
0
±

5
.2

5
5
.3

8
0
0
±

5
.2

5
1
1
.1

0
0
0
±

4
.6

4
1
1
.7

2
0
0
±

3
.7

3
1
7
.6

1
0
0
±

3
.6

5
◦

lo
w

b
w

t
3
.5

6
0
0
±

5
.3

6
2
.9

0
0
0
±

5
.0

7
2
.9

0
0
0
±

5
.0

7
9
.5

4
0
0
±

2
.3

0
◦

9
.5

4
0
0
±

2
.3

0
◦

2
0
.7

7
0
0
±

4
.1

9
◦

m
b
a
g
ra

d
e

5
.3

7
0
0
±

9
.4

9
8
.0

5
0
0
±

6
.9

6
8
.2

9
0
0
±

7
.0

9
1
0
.3

7
0
0
±

6
.6

1
1
2
.4

7
0
0
±

4
.8

3
◦

2
1
.9

6
0
0
±

6
.7

4
◦

m
e
ta

6
.9

7
0
0
±

6
.8

2
7
.1

0
0
0
±

6
.4

6
7
.1

0
0
0
±

6
.4

6
1
1
.1

9
0
0
±

4
.0

6
◦

1
1
.7

1
0
0
±

4
.3

6
1
7
.7

9
0
0
±

3
.7

3
◦

p
b

c
8
.9

6
0
0
±

3
.4

5
5
.4

3
0
0
±

6
.9

4
5
.4

3
0
0
±

6
.9

4
1
3
.2

6
0
0
±

2
.7

0
◦

1
3
.2

6
0
0
±

2
.7

0
◦

2
1
.2

4
0
0
±

2
.1

7
◦

p
h
a
ry

n
x

4
.7

6
0
0
±

5
.6

0
0
.0

0
0
0
±

0
.0

0
•

0
.0

0
0
0
±

0
.0

0
•

1
7
.9

6
0
0
±

6
.4

6
◦

1
7
.9

6
0
0
±

6
.4

6
◦

2
2
.5

5
0
0
±

0
.7

0
◦

p
o
ll
u
ti

o
n

8
.7

1
0
0
±

4
.9

7
4
.0

7
0
0
±

6
.6

0
4
.0

7
0
0
±

6
.6

0
1
4
.0

6
0
0
±

5
.4

9
◦

1
6
.0

9
0
0
±

5
.8

4
◦

2
3
.5

8
0
0
±

2
.2

5
◦

p
w

L
in

e
a
r

1
2
.6

7
0
0
±

4
.6

5
1
8
.1

2
0
0
±

3
.8

4
◦

1
8
.1

2
0
0
±

3
.8

4
◦

1
8
.3

4
0
0
±

3
.3

9
◦

1
8
.5

0
0
0
±

3
.3

7
◦

2
0
.6

6
0
0
±

3
.5

1
◦

q
u
a
k
e

3
.5

7
0
0
±

5
.8

9
6
.8

3
0
0
±

7
.1

0
6
.8

0
0
0
±

7
.0

3
9
.6

1
0
0
±

7
.1

0
◦

8
.7

1
0
0
±

6
.8

1
1
0
.3

9
0
0
±

2
.8

6
◦

sc
h
lv

o
te

7
.3

7
0
0
±

7
.7

0
8
.6

8
0
0
±

7
.6

5
8
.6

8
0
0
±

7
.6

5
1
1
.8

0
0
0
±

6
.7

2
1
2
.7

5
0
0
±

5
.6

8
1
5
.9

3
0
0
±

7
.3

5
◦

se
n
so

ry
1
0
.3

2
0
0
±

5
.8

0
1
8
.2

3
0
0
±

4
.1

7
◦

1
8
.2

3
0
0
±

4
.1

7
◦

1
8
.8

8
0
0
±

2
.7

3
◦

1
8
.8

8
0
0
±

2
.7

3
◦

2
0
.2

7
0
0
±

2
.0

3
◦

se
rv

o
1
0
.3

5
0
0
±

3
.3

0
3
.1

3
0
0
±

6
.9

6
•

3
.1

3
0
0
±

6
.9

6
•

1
6
.7

0
0
0
±

2
.8

6
◦

1
6
.7

8
0
0
±

2
.9

0
◦

1
6
.4

1
0
0
±

2
.4

7
◦

sl
e
e
p

1
0
.8

7
0
0
±

5
.7

8
8
.8

3
0
0
±

9
.1

9
8
.7

9
0
0
±

9
.1

3
1
5
.7

9
0
0
±

5
.0

6
◦

1
4
.5

5
0
0
±

5
.0

9
2
1
.3

6
0
0
±

5
.4

9
◦

st
ri

k
e

1
0
.8

3
0
0
±

5
.4

8
9
.2

6
0
0
±

6
.3

9
9
.2

6
0
0
±

6
.3

9
1
2
.2

3
0
0
±

4
.2

2
1
2
.6

9
0
0
±

6
.1

8
1
7
.1

3
0
0
±

2
.7

7
◦

v
e
te

ra
n

1
1
.6

7
0
0
±

8
.6

1
1
3
.4

1
0
0
±

6
.6

9
1
3
.4

1
0
0
±

6
.6

9
1
4
.2

2
0
0
±

5
.8

0
1
6
.1

4
0
0
±

6
.1

0
1
6
.6

4
0
0
±

7
.4

5

v
in

e
y
a
rd

6
.3

1
0
0
±

7
.8

1
2
.2

6
0
0
±

6
.0

0
2
.2

6
0
0
±

6
.0

0
4
.8

3
0
0
±

7
.7

1
1
6
.0

1
0
0
±

4
.4

3
◦

1
8
.4

4
0
0
±

6
.2

1
◦

A
v
e
ra

g
e

8
.3

1
0
3

6
.4

0
6
9

6
.4

5
2
5

1
2
.0

9
1
7

1
4
.5

1
3
3

1
8
.7

5
9
4

◦,
•

st
a
ti

st
ic

a
ll
y

si
g
n
ifi

c
a
n
t

im
p
ro

v
e
m

e
n
t

o
r

d
e
g
ra

d
a
ti

o
n

64

T
ab

le
4.

9
:

T
ra

in
in

g
T

im
e

o
f

G
P

O
a
n

d
R

a
n

d
o
m

S
ea

rc
h

D
a
ta

se
t

G
P

O
R

S
(2

5
)

R
S
(2

0
)

R
S
(1

5
)

R
S
(1

0
)

R
S
(5

)

a
u
to

9
3
.n

a
m

e
s

1
.9

6
4
0
±

0
.6

9
0
.5

0
4
5
±

0
.0

1
•

0
.4

0
2
9
±

0
.0

1
•

2
.1

2
1
0
±

0
.3

0
2
.0

3
9
8
±

0
.3

1
1
.9

3
6
4
±

0
.3

1

a
u
to

H
o
rs

e
.n

a
m

e
s

3
.2

0
9
4
±

1
.2

6
1
.1

2
9
7
±

0
.9

7
•

0
.9

6
2
6
±

0
.9

7
•

3
.8

6
0
6
±

0
.8

9
3
.8

2
7
7
±

0
.6

7
4
.5

2
1
1
±

0
.6

8
◦

a
u
to

M
p
g
.n

a
m

e
s

1
3
.2

7
7
8
±

5
.0

0
1
7
.9

0
5
0
±

2
.6

1
◦

1
7
.5

6
6
2
±

2
.6

1
◦

1
7
.2

3
4
8
±

2
.6

1
◦

1
6
.7

9
5
7
±

2
.6

0
5
2
.6

7
0
9
±

1
0
.5

2
◦

a
u
to

P
ri

c
e
.n

a
m

e
s

2
.6

2
4
6
±

1
.0

2
0
.8

5
0
8
±

0
.7

1
•

0
.7

3
2
9
±

0
.7

1
•

2
.4

9
7
8
±

0
.7

1
2
.5

3
2
6
±

0
.5

3
3
.1

2
0
5
±

0
.7

5

b
a
sk

b
a
ll

1
.5

6
5
5
±

0
.8

6
1
.5

7
3
5
±

0
.7

8
1
.4

7
7
7
±

0
.7

8
1
.6

0
6
0
±

0
.6

9
1
.8

4
1
6
±

0
.6

0
1
.9

1
9
4
±

0
.6

4

b
o
d
y
fa

t.
n
a
m

e
s

3
.6

1
8
4
±

1
.2

7
2
.2

7
8
0
±

1
.8

3
2
.0

3
8
5
±

1
.8

3
•

3
.8

6
4
9
±

1
.4

4
4
.0

0
4
9
±

1
.1

3
5
.6

0
0
1
±

0
.6

4
◦

b
o
lt

s
0
.9

0
1
2
±

0
.6

3
0
.7

3
9
5
±

0
.5

1
0
.6

5
7
1
±

0
.5

1
1
.0

1
0
5
±

0
.6

0
1
.3

9
5
9
±

0
.2

1
◦

1
.4

9
9
0
±

0
.1

4
◦

b
re

a
st

T
u
m

o
r

4
.7

6
2
6
±

2
.3

2
1
.8

0
1
7
±

2
.0

9
•

1
.7

1
9
5
±

2
.1

4
•

4
.4

9
7
8
±

1
.4

3
4
.0

8
1
3
±

1
.1

7
9
.6

9
0
9
±

5
.7

2
◦

ch
o
le

st
e
ro

l
5
.6

9
8
0
±

3
.4

5
3
.9

3
6
3
±

4
.0

9
3
.9

8
2
2
±

4
.0

8
5
.8

5
1
3
±

3
.8

0
6
.0

9
7
0
±

4
.4

6
1
4
.8

9
2
4
±

7
.9

6
◦

c
le

v
e
la

n
d

4
.6

6
4
3
±

2
.5

8
1
.5

8
6
7
±

1
.6

0
•

1
.3

8
7
5
±

1
.6

0
•

4
.7

0
8
4
±

0
.8

4
4
.4

9
3
5
±

0
.8

4
1
1
.2

8
5
2
±

3
.6

2
◦

c
lo

u
d

1
.0

6
0
0
±

0
.6

3
1
.2

1
4
2
±

0
.5

5
1
.1

2
0
5
±

0
.5

5
1
.3

6
6
1
±

0
.3

0
1
.2

7
8
7
±

0
.3

0
2
.3

1
1
1
±

0
.3

5
◦

c
p
u

1
.7

7
1
7
±

1
.1

1
0
.8

7
7
8
±

0
.6

6
•

0
.7

3
2
1
±

0
.6

6
•

0
.6

6
8
3
±

0
.8

5
•

3
.8

9
5
8
±

0
.5

1
◦

3
.8

5
0
8
±

0
.4

9
◦

d
e
tr

o
it

1
.4

8
1
4
±

0
.5

5
0
.5

0
5
8
±

0
.3

3
•

0
.4

2
3
9
±

0
.3

3
•

1
.3

0
8
0
±

0
.5

2
1
.3

3
8
4
±

0
.4

4
1
.4

7
0
5
±

0
.4

5

e
ch

o
M

o
n
th

s
1
.6

6
5
4
±

0
.6

3
0
.9

9
8
7
±

0
.7

6
•

0
.8

7
9
7
±

0
.7

6
•

1
.5

3
6
5
±

0
.3

3
1
.2

2
6
4
±

0
.0

1
•

2
.2

5
2
4
±

0
.3

2
◦

e
lu

sa
g
e

1
.1

9
1
8
±

0
.6

6
0
.7

6
2
1
±

0
.4

1
0
.6

8
4
3
±

0
.4

1
0
.9

9
8
5
±

0
.4

4
1
.0

5
6
8
±

0
.3

2
1
.8

9
5
7
±

0
.4

2
◦

fi
sh

c
a
tc

h
2
.1

9
4
5
±

0
.8

9
0
.6

1
1
0
±

0
.3

4
•

0
.5

0
0
1
±

0
.3

4
•

0
.4

0
8
1
±

0
.3

7
•

2
.8

6
6
6
±

0
.5

7
◦

2
.6

9
0
1
±

0
.3

6

fr
u
it

fl
y

1
.6

3
8
7
±

0
.8

4
0
.9

2
0
6
±

0
.8

0
0
.8

0
5
5
±

0
.7

8
•

1
.2

2
7
9
±

0
.8

2
1
.1

5
8
6
±

0
.7

4
1
.5

2
1
2
±

0
.7

0

g
a
sc

o
n
s

1
.5

0
5
9
±

0
.4

1
1
.2

2
2
4
±

0
.7

7
1
.1

3
7
0
±

0
.7

7
1
.1

2
3
7
±

0
.7

7
1
.6

8
5
5
±

0
.3

2
1
.3

9
1
8
±

0
.1

6

h
o
u
si

n
g

1
3
.0

4
3
0
±

9
.3

8
1
0
.1

8
8
6
±

8
.8

7
9
.4

9
2
9
±

8
.8

7
9
.0

0
9
9
±

8
.8

7
2
7
.4

4
8
0
±

9
.6

4
◦

1
8
.6

3
6
2
±

1
.7

5

h
u
n
g
a
ri

a
n

6
.2

2
5
1
±

1
.2

2
8
.1

1
3
3
±

1
.6

8
◦

8
.1

7
1
1
±

1
.1

3
◦

8
.1

2
5
0
±

0
.4

0
◦

7
.9

0
7
8
±

0
.3

9
◦

1
9
.4

8
3
1
±

4
.8

2
◦

lo
n
g
le

y
1
.2

8
6
5
±

0
.5

5
0
.8

0
0
2
±

0
.3

9
•

0
.7

2
2
0
±

0
.3

9
•

1
.0

8
0
6
±

0
.3

5
1
.0

4
9
3
±

0
.2

9
1
.4

1
0
2
±

0
.2

8

lo
w

b
w

t
1
.5

5
3
9
±

1
.0

4
1
.1

7
2
2
±

0
.8

9
1
.0

4
4
4
±

0
.8

9
2
.0

8
5
5
±

0
.4

1
1
.9

6
1
8
±

0
.4

1
7
.7

2
1
5
±

1
.7

2
◦

m
b
a
g
ra

d
e

1
.1

9
0
9
±

0
.8

0
1
.0

7
8
8
±

0
.5

7
1
.0

1
2
9
±

0
.5

8
1
.1

0
0
2
±

0
.5

4
1
.1

9
4
9
±

0
.4

0
1
.8

8
3
7
±

0
.5

5
◦

m
e
ta

2
0
.6

2
0
6
±

1
2
.6

0
1
6
.7

8
7
6
±

1
1
.8

0
1
6
.0

7
7
5
±

1
1
.8

1
2
2
.8

1
6
3
±

7
.4

7
2
2
.9

3
6
7
±

8
.0

4
3
3
.5

0
3
9
±

6
.7

9
◦

p
b

c
1
1
.4

0
2
3
±

3
.1

8
6
.9

1
8
0
±

6
.2

8
•

6
.5

4
5
8
±

6
.2

8
•

1
3
.2

3
6
0
±

2
.4

6
1
2
.7

7
4
0
±

2
.4

4
4
4
.4

1
3
1
±

2
0
.9

6
◦

p
h
a
ry

n
x

3
.1

8
2
7
±

1
.8

5
1
.2

9
0
7
±

0
.0

1
•

1
.0

3
9
9
±

0
.0

1
•

6
.1

5
1
8
±

1
.9

4
◦

5
.9

8
0
1
±

1
.9

7
◦

7
.1

1
2
1
±

0
.2

2
◦

p
o
ll
u
ti

o
n

1
.4

2
8
5
±

0
.4

8
0
.7

5
4
4
±

0
.5

4
•

0
.6

7
1
8
±

0
.5

4
•

1
.4

0
6
6
±

0
.4

6
1
.4

9
3
1
±

0
.4

8
2
.0

2
8
3
±

0
.1

9
◦

p
w

L
in

e
a
r

3
.2

5
6
8
±

0
.8

7
4
.0

2
3
1
±

0
.7

2
3
.8

9
6
5
±

0
.7

2
3
.8

0
7
4
±

0
.6

4
3
.7

0
2
6
±

0
.6

3
3
.9

9
5
5
±

0
.6

6
◦

q
u
a
k
e

1
5
2
6
.2

9
9
2
±

2
0
0
7
.8

8
2
0
5
4
.3

7
3
8
±

2
0
4
0
.0

3
1
9
4
6
.7

8
1
6
±

1
8
9
9
.9

4
2
5
8
2
.2

7
9
3
±

1
8
7
8
.0

3
2
2
7
1
.0

8
8
9
±

1
7
3
7
.7

8
2
6
7
4
.1

7
1
6
±

1
1
6
9
.1

3

sc
h
lv

o
te

1
.3

5
6
8
±

0
.6

2
1
.0

7
6
5
±

0
.6

0
0
.9

9
5
2
±

0
.5

9
1
.1

9
2
0
±

0
.5

4
1
.1

5
9
7
±

0
.4

5
1
.3

3
6
2
±

0
.5

8

se
n
so

ry
2
7
.0

7
7
3
±

1
1
.8

7
4
2
.2

4
5
1
±

8
.8

4
◦

4
1
.5

6
6
6
±

8
.8

4
◦

4
1
.9

8
4
2
±

5
.7

9
◦

4
1
.2

9
3
8
±

5
.8

0
◦

4
3
.8

2
1
6
±

4
.3

7
◦

se
rv

o
2
.3

7
0
1
±

0
.5

3
1
.0

3
4
5
±

1
.0

3
•

0
.9

2
3
2
±

1
.0

2
•

2
.8

6
6
6
±

0
.4

2
2
.7

5
4
3
±

0
.4

3
2
.5

9
2
1
±

0
.3

7

sl
e
e
p

1
.5

7
6
5
±

0
.5

0
1
.1

3
0
8
±

0
.7

4
1
.0

4
5
7
±

0
.7

4
•

1
.5

4
7
9
±

0
.4

2
1
.3

4
9
5
±

0
.4

1
1
.8

2
5
0
±

0
.4

4

st
ri

k
e

3
4
.2

0
6
5
±

1
4
.3

9
2
8
.4

2
3
8
±

1
6
.6

5
2
7
.6

4
7
2
±

1
6
.6

6
3
4
.2

5
6
9
±

1
0
.9

3
3
4
.4

7
1
1
±

1
5
.8

8
4
5
.6

3
6
5
±

7
.0

5
◦

v
e
te

ra
n

2
.5

8
7
9
±

1
.2

3
2
.2

9
8
1
±

0
.8

7
2
.1

9
6
8
±

0
.8

7
2
.2

0
1
6
±

0
.7

5
2
.3

6
1
5
±

0
.7

7
2
.7

6
5
8
±

0
.8

5

v
in

e
y
a
rd

1
.1

1
8
2
±

0
.6

9
0
.5

8
8
5
±

0
.4

7
0
.5

1
0
2
±

0
.4

8
0
.6

3
4
4
±

0
.6

1
1
.4

4
0
4
±

0
.3

6
1
.5

5
1
5
±

0
.4

9

A
v
e
ra

g
e

4
7
.6

2
7
2

6
1
.7

1
4
3

5
8
.5

4
3
1

7
7
.5

4
6
5

6
9
.5

5
5
1

8
4
.4

0
0
2

◦,
•

st
a
ti

st
ic

a
ll
y

si
g
n
ifi

c
a
n
t

im
p
ro

v
e
m

e
n
t

o
r

d
e
g
ra

d
a
ti

o
n

65

4.2 Classification

In the last section, we described the application of the GPO algorithm for

regression problems. In this section, the focus is on how to apply the GPO

algorithm to classification problems. Although the class variable of classifica-

tion learning is a categorical object rather than a numeric value, we can still

use the Gaussian process regression approach for building the GP model to

tune parameter values of several well-known algorithms. Generally, different

tuning parameters will affect the performance of the final model. Some of the

models are useful for prediction while some of them are not appropriate. It

is impossible to enumerate through all the classification algorithms and their

control parameters for finding the optimal model. Here, we will present sup-

port vector machines, decision tree learning, and additive logistic regression as

representatives to test the effectiveness of the GPO algorithm.

Figure 4.1: Confusion matrix table

Before running experiments, we should consider the evaluation measures

which we will use later. There are many performance measures for classification

evaluation in machine learning, such as accuracy, error rate, precision, recall

[33] and the receiver operating characteristic curve (ROC) [8] [49]. Accuracy

is a widely used method while assessing and comparing the performance of

one learning algorithm to another, it is calculated as the percentage of the

number of correct predictions over the total number of predictions [27]. The

number of correct predictions is the count of the correct records predicted by the

model and the total number of predictions includes the correct predictions and

incorrect predictions. In the two-class classification case with classes “yes” and

“no”, these counts are shown as a confusion matrix table in Figure 4.2, where

the true classes are presented in rows while the predicted classes are presented

66

in columns. Hence, there are four possible outcomes for a single prediction:

true positive (TP), false negative (FN), false positive (FP) and true negative

(TN). TP and TN are correct predictions where TP indicates the number of

positive examples correctly predicted as yes and TN indicates the number of

negative examples correctly predicted as no by the model. In contrast, FP

refers to where the outcome is incorrectly predicted as yes when it is actually

negative. Similarly, FN occurs when the outcome should be yes but is incorrectly

predicted as negative. Both predictions are incorrect predictions. Consequently,

the number of correct predictions is the sum of TP and TN, while the number

of incorrect predictions is the sum of FN and FP.

The appropriate model to select not only depends on the accuracy of the

classification prediction, but also the computational cost. The running time

increases with the increase in the number of training examples and the number

of attributes in an example. Hence, running time and search time are important

measures to evaluate GPO for classifiers. In addition, good performance on

a particular dataset cannot determine whether one optimization algorithm is

better than another one. Thus, we are going to deploy several datasets with

different sizes and compare the accuracy, runtime, and number of search runs

among GPO, Grid Search and Random Search.

4.2.1 Classification Prediction Based on SMO

In Chapter 2, we briefly introduced the theoretical background and the

general algorithm of SMO. In this section, we will focus on applying the GPO

algorithm to optimise the parameters of SMO in order to obtain accurate classi-

fication predictions. First, we need to consider which two parameters we intend

to optimize and these two parameters will be regarded as the two dimensions

of the search space. Here, Cbase of the SMO function is one parameter to be

optimized. The slack parameter C in the classification permits individual sam-

ples to fall on the “wrong” side of the decision boundary. The Gaussian kernel

or RBF function together with the SMO classifier is the most popular choice of

kernel types by far. Another kernel function parameter we will use is γbase in the

RBF kernel. Thus the two parameters being optimized are Cbase of the support

vector classifier and γbase of the RBF kernel respectively. Secondly, we need to

67

decide the parameter ranges before doing any search. In this case, we specify

that these parameters range from 10−5 to 105 respectively, where the exponent

is increased with step size 1. Finally, as per the regression experiments, we fix

the noise δGPO of the GP model at 0.01 and the γGPO value in the RBF kernel

for the GP model at 10.

Table 4.10: The search configuration of GPO and Grid Search in classification

using SMO

Common points in GPO and Grid Search

Base algorithm:SMO function

Search parameters: γ of RBF kernel function in

the classifier treated as x1 and C of the base

algorithm in the classifier treated as x2

Search range: I∈ {−5,−4, . . . , 5}
Search step: 1

Search base: 10

Search expression: 10I

Search route: by columns

Difference in GPO and Grid Search

GPO algorithm builds GP model for predictive

distribution, the parameters of which are the

Gaussian noise δ and the width γ

of the RBF kernel function. We specify the

γ value equals 10 and the noise level

δ as 0.01.

The SVM parameter selection algorithm was evaluated through the Ex-

perimenter interface of WEKA. Table 4.10 presents the experiment set-up for

GPO and Grid Search in the SMO classification learning task. Both optimize

classification accuracy. The datasets that are used for the experiments are all

from the UCI machine learning repository.

Table 4.11 compares the accuracy of GPO and Grid Search algorithm on

the datasets. The result of a single dataset is the average accuracy estimation

over 100 results, because the system will run 10-fold cross-validation 10 times

in all. The two sets of results show that GPO is comparable with Grid Search

in terms of accuracy, because there is no statistical difference between these

two results except in one case, the “vowel” dataset. The main reason for this

special case is that the optimal point is located on the border of the grid when

running 2-fold cross-validation, which avoid search going further. We also find

that the result of the GPO algorithm is slightly better than Grid search for some

datasets while in some situations the GPO algorithm is inferior to Grid search.

68

Table 4.11: Percent Correct of GPO and Grid Search in UCI Classification using

SMO

Dataset GPO Grid Search

anneal 99.5106± 0.6946 99.4884± 0.7141

anneal.ORIG 89.3764± 2.9429 89.5880± 2.7189

arrhythmia 70.2449± 4.8209 70.2024± 5.3954

audiology 80.6719± 6.6037 80.8063± 6.6167

autos 76.7524± 8.6472 77.2762± 9.0314

balance-scale 99.7911± 1.1133 99.8559± 0.6068

breast-cancer 70.3325± 5.0278 71.6958± 6.3171

wisconsin-breast-cancer 96.5383± 2.0244 96.5385± 2.0944

horse-colic 83.7432± 5.3096 83.4707± 5.4324

horse-colic.ORIG 74.6704± 7.0865 75.1321± 6.7405

credit-rating 85.1449± 3.8887 85.5942± 3.9183

german-credit 75.4000± 3.5133 75.3200± 3.3208

pima-diabetes 76.7307± 4.4174 76.8209± 4.4732

ecoli 87.2923± 5.6084 87.2638± 5.8144

Glass 70.5671± 8.8021 70.5152± 9.4549

cleveland-14-heart-disease 82.4774± 5.7013 82.2839± 5.9605

hungarian-14-heart-disease 82.4000± 6.5175 82.5989± 5.8760

heart-statlog 83.2593± 6.2394 83.2222± 6.0814

hepatitis 83.6625± 8.5069 83.6958± 8.5354

hypothyroid 97.6858± 0.7089 97.6672± 0.7210

ionosphere 93.9063± 4.0718 94.0206± 3.8949

iris 95.8000± 4.7995 95.4000± 5.1635

kr-vs-kp 99.6560± 0.3280 99.6622± 0.3374

labor 90.2667±12.5232 90.1667±12.3581

lymphography 83.7190± 8.3062 83.1095± 8.6807

mushroom 100.0000± 0.0000 100.0000± 0.0000

optdigits 99.2544± 0.3574 99.2420± 0.3555

pendigits 99.6388± 0.1902 99.6388± 0.1902

primary-tumor 44.3699± 6.2497 44.8431± 6.3497

segment 97.0779± 1.1921 97.0866± 1.1960

sick 96.8929± 0.7723 96.9008± 0.7147

sonar 86.1143± 7.8486 86.3048± 7.6206

soybean 93.4706± 2.4040 93.3796± 2.5454

vehicle 84.7842± 3.0714 84.8190± 3.1110

vote 96.1094± 2.7120 95.9942± 2.7101

vowel 92.4040± 3.0708 99.2828± 0.9977 ◦
waveform 86.3460± 1.5114 86.3220± 1.4583

zoo 95.9545± 5.6180 96.0545± 5.5999

◦, • statistically significant improvement or degradation

However, it is encouraging that the two approaches have comparable accuracy

using a paired t-test.

Although accuracy plays a substantial role in classification predictions, one

cannot decide which algorithm is better based solely on this measure. Tables

4.12 and 4.13 give the number of runs of 2-fold cross-validation and 10-fold cross-

69

Table 4.12: Number of 2-Fold Cross-validation Runs in GPO and Grid Search

in UCI classification

Dataset GPO Grid Search

anneal 12.6000±3.3333 121.0 ± 0.0 ◦
anneal.ORIG 16.0800±5.0526 121.0 ± 0.0 ◦
arrhythmia 12.1400±3.7686 121.0 ± 0.0 ◦
audiology 12.8700±2.8343 121.0 ± 0.0 ◦
autos 14.2500±3.0957 121.0 ± 0.0 ◦
balance-scale 18.1700±3.8219 121.0 ± 0.0 ◦
breast-cancer 26.6200±9.4386 121.0 ± 0.0 ◦
wisconsin-breast-cancer 14.0900±5.2167 121.0 ± 0.0 ◦
horse-colic 12.7400±3.7026 121.0 ± 0.0 ◦
horse-colic.ORIG 13.5600±3.8490 121.0 ± 0.0 ◦
credit-rating 15.6500±4.5845 121.0 ± 0.0 ◦
german-credit 12.9000±4.1084 121.0 ± 0.0 ◦
pima-diabetes 14.5400±4.0487 121.0 ± 0.0 ◦
ecoli 13.9000±4.2319 121.0 ± 0.0 ◦
Glass 18.1800±3.9705 121.0 ± 0.0 ◦
cleveland-14-heart-disease 13.7600±4.4338 121.0 ± 0.0 ◦
hungarian-14-heart-disease 12.1800±3.7615 121.0 ± 0.0 ◦
heart-statlog 11.3100±2.3342 121.0 ± 0.0 ◦
hepatitis 13.7400±6.5298 121.0 ± 0.0 ◦
hypothyroid 12.2400±1.0456 121.0 ± 0.0 ◦
ionosphere 18.7300±4.4378 121.0 ± 0.0 ◦
iris 11.9100±2.6670 121.0 ± 0.0 ◦
kr-vs-kp 17.6100±2.3177 121.0 ± 0.0 ◦
labor 10.9800±1.7407 121.0 ± 0.0 ◦
lymphography 12.0400±2.9845 121.0 ± 0.0 ◦
mushroom 10.5700±1.6407 121.0 ± 0.0 ◦
optdigits 21.9100±3.1849 121.0 ± 0.0 ◦
pendigits 20.3500±1.4590 121.0 ± 0.0 ◦
primary-tumor 11.4200±2.3621 121.0 ± 0.0 ◦
segment 16.7000±2.9729 121.0 ± 0.0 ◦
sick 18.3200±5.0869 121.0 ± 0.0 ◦
sonar 16.1700±3.0717 121.0 ± 0.0 ◦
soybean 12.4300±3.1631 121.0 ± 0.0 ◦
vehicle 17.5500±3.3826 121.0 ± 0.0 ◦
vote 12.5600±3.4650 121.0 ± 0.0 ◦
vowel 11.9000±0.3015 121.0 ± 0.0 ◦
waveform 15.4700±4.8813 121.0 ± 0.0 ◦
zoo 10.7800±2.2046 121.0 ± 0.0 ◦
◦, • statistically significant improvement or degradation

validation respectively. GPO merely performs several 2-fold cross-validations

while Grid Search has to perform 2-fold cross-validations for every point in the

parameter space. It can be seen in Table 4.12 that the GPO algorithm utilizes no

more than 27 samples to find the C and γ values that gave the best classification

accuracy during the initial search process. By contrast, Grid Search has to run

70

Table 4.13: Number of 10-Fold Cross-validation Runs in GPO and Grid Search

in UCI classification using SMO

Dataset GPO Grid Search

anneal 8.4200±7.1706 4.0800±7.0920

anneal.ORIG 8.1400±6.0420 10.9400±4.4672

arrhythmia 5.4500±7.4473 7.6300±8.3165

audiology 13.5600±5.1253 0.7000±3.2208 •
autos 10.2700±6.4289 4.4800±7.2230

balance-scale 5.1400±5.1287 0.4500±1.9714 •
breast-cancer 7.2800±5.1602 9.4400±5.4482

wisconsin-breast-cancer 13.0900±5.3788 8.7200±7.0783

horse-colic 5.3300±6.7466 12.8500±6.6718 ◦
horse-colic.ORIG 8.5000±7.4894 6.0900±8.8775

credit-rating 7.6300±7.9387 12.4600±5.6985

german-credit 4.3200±6.3084 9.6200±5.4435 ◦
pima-diabetes 8.9700±6.7890 7.7300±6.1936

ecoli 12.5600±6.5649 9.4900±7.4880

Glass 9.9700±5.3588 9.4700±5.7427

cleveland-14-heart-disease 7.3200±7.3442 7.0200±7.7577

hungarian-14-heart-disease 5.9700±6.9347 6.3500±6.7545

heart-statlog 7.3600±7.6204 6.5500±8.7552

hepatitis 5.4600±8.4536 6.4300±8.7770

hypothyroid 0.1800±1.2663 0.3600±1.7725

ionosphere 12.0700±4.0856 10.4000±4.8990

iris 15.4000±8.5552 4.3900±8.6257 •
kr-vs-kp 9.8500±6.8922 7.6900±8.1992

labor 8.7900±7.5829 4.3500±7.7282

lymphography 7.5700±8.0092 3.0400±6.7028

mushroom 13.7000±2.1391 0.0000±0.0000 •
optdigits 10.1100±4.1485 5.7600±5.9342 •
pendigits 9.6800±1.9688 9.5900±2.1932

primary-tumor 1.6900±4.4488 10.4000±7.0825 ◦
segment 9.7800±5.0982 9.7200±5.1953

sick 7.0300±6.5342 2.7500±5.0219

sonar 12.5100±6.3683 4.3500±8.1728 •
soybean 5.3200±6.8886 6.7200±7.0526

vehicle 9.8400±4.1065 9.7900±4.2529

vote 10.3700±7.2748 5.9200±7.3782

vowel 0.0000±0.0000 6.8600±7.1039 ◦
waveform 8.6000±7.6317 10.6900±6.5516

zoo 17.4800±3.0067 0.1400±1.4000 •
◦, • statistically significant improvement or degradation

121 iterations to obtain the best accuracy in the initial searches, because there

are 11 values for each parameter in the range and thus the system has 11 × 11

samples in the search space.

Once the “best” point is decided after the 2-fold cross-validation runs, the

system will run 10-fold cross-validation around the point which is the center of

71

the new range. In the five of the thirty-eight datasets in Table 4.13 marked by

solid black circles, Grid search is statistical significantly better than the GPO

algorithm in terms of 10-fold cross-validation, whereas for four datasets marked

by hollow circles the GPO algorithm performs significantly better than Grid

Search. The rest of the datasets show comparable results for GPO and Grid

Search. This former situation occurs when the so-called “best” point identified

using the GP model is not actually close to the best one, and the system has

to jump to other sub-grids to acquire the optimal point through 10-fold cross-

validation. Conversely, the latter situation implies that the system has already

found a point close to the optimal point after the 2-fold cross-validation runs.

Comparing the 2-fold and 10-fold cross-validation runs of the GPO and Grid

Search algorithms, GPO often converges to the optimal area more quickly than

the Grid Search algorithm.

The training time for the predictive classification problems on each dataset

involves evaluating data, performing cross-validations and building the final

predictive model. It is shown in Table 4.14. The training time obviously varies

for different datasets. There are several reasons that affect the training time.

On the one hand, it depends on the nature of the dataset, such as the number

of instances and the number of attributes of each instance. On the other hand,

it also depends on the complexity of the base algorithm to be used: the easier

the algorithm, the quicker the experiment. Beyond that, we should consider

the number of runs performed, which includes 2-fold cross-validation as well as

10-fold cross-validation. It is clear that the time consumed by a 10-fold cross-

validation is much greater than that of a 2-fold cross-validation. As shown

in Table 4.14, the training time spent on the GPO algorithm is statistically

less than that spent on the Grid Search algorithm on most of the datasets.

For instance, the “horse-colic” dataset requires plenty of training time for Grid

Search in that it initially performs 121 2-fold cross-validation runs plus 13 10-fold

cross-validation runs afterwards. Hence, the GPO algorithm performs better

than Grid Search in terms of time, which can reduce the time cost.

Through the above analysis between GPO and Grid Search, it is clear to

see that Grid Search has obvious drawbacks in terms of runtime and number

of cross-validation runs, even if it has comparable accuracy to GPO. In order

72

Table 4.14: Training Time of GPO and Grid Search in UCI classification using

SMO

Dataset GPO Grid Search

anneal 50.4535± 37.8400 110.2238± 34.6561 ◦
anneal.ORIG 178.3583± 168.3954 351.6973± 199.6062 ◦
arrhythmia 87.9929± 75.4111 344.9478± 79.9634 ◦
audiology 318.4004± 99.3345 399.7094± 67.4793

autos 21.4786± 10.4381 39.7159± 11.1331 ◦
balance-scale 66.0901± 56.8101 28.7033± 23.3578

breast-cancer 6.3967± 12.6444 17.8793± 20.8893

wisconsin-breast-cancer 13.5801± 9.1229 18.6931± 8.2391

horse-colic 7.0305± 8.3607 18.0689± 8.2625 ◦
horse-colic.ORIG 17.9277± 12.4802 33.6782± 13.3403 ◦
credit-rating 74.6568± 141.6875 80.4682± 75.3732

german-credit 368.1510± 699.0174 390.9259± 585.3184

pima-diabetes 348.2567± 462.2978 528.3237± 484.0569

ecoli 39.1734± 17.6264 77.2833± 18.5122 ◦
Glass 36.8025± 22.5593 60.7217± 23.3581 ◦
cleveland-14-heart-disease 12.7705± 21.4263 20.4910± 24.9281

hungarian-14-heart-disease 21.5160± 36.2389 29.2801± 31.8227

heart-statlog 12.9722± 21.4542 15.7295± 18.6052

hepatitis 2.1328± 2.7104 4.3191± 2.6056

hypothyroid 254.5471± 536.4674 930.2017± 661.6887 ◦
ionosphere 7.0421± 3.2411 10.1883± 2.5223 ◦
iris 4.8671± 2.1852 7.2241± 2.2580 ◦
kr-vs-kp 906.2570± 593.8338 1256.2260± 699.7527

labor 1.1307± 0.6704 2.3982± 0.6854 ◦
lymphography 6.0971± 4.7855 13.2572± 3.9421 ◦
mushroom 10062.5831±4015.9588 20445.5426± 376.7559 ◦
optdigits 1712.6954± 462.3567 7366.6403± 633.4851 ◦
pendigits 3398.5689± 498.5419 16873.0792± 574.4115 ◦
primary-tumor 71.2509± 77.6824 495.6887± 116.4245 ◦
segment 241.0457± 130.1995 646.4394± 133.5034 ◦
sick 3011.5108±2826.1437 1650.2531±2148.5649

sonar 4.7662± 1.9875 5.1357± 2.3372

soybean 156.3681± 124.9832 611.8247± 122.9058 ◦
vehicle 745.5264± 422.8238 798.9005± 428.6658

vote 5.9170± 4.1354 8.6115± 3.8269

vowel 32.3381± 0.8078 326.4173± 93.5856 ◦
waveform 2681.5446±2266.6288 7000.6817±2261.8583 ◦
zoo 34.2251± 4.9468 40.1095± 3.1077 ◦

◦, • statistically significant improvement or degradation

to thoroughly understand the behaviour of GPO, we compare it with Random

Search using the same measures: accuracy, training time and number of cross-

validation runs. It is self-evident that Random Search should be cheaper than

Grid Search in exploring the search space.

There are more than 100 points in the grid in this experiment. GPO only

73

Table 4.15: Number of 2-Fold Cross-validation Runs in GPO and Random

Search in UCI classification using SMO

Dataset GPO RS(25) RS(20) RS(15) RS(10) RS(5)

labor 11.04±1.88 25±0.0 ◦ 20±0.0 ◦ 15±0.0 ◦ 10±0.0 5±0.0 •
zoo 10.56±1.85 25±0.0 ◦ 20±0.0 ◦ 15±0.0 ◦ 10±0.0 5±0.0 •
lymphography 11.96±2.99 25±0.0 ◦ 20±0.0 ◦ 15±0.0 ◦ 10±0.0 5±0.0 •
iris 11.82±2.47 25±0.0 ◦ 20±0.0 ◦ 15±0.0 ◦ 10±0.0 • 5±0.0 •
hepatitis 14.60±7.51 25±0.0 ◦ 20±0.0 15±0.0 10±0.0 5±0.0 •
autos 14.00±3.25 25±0.0 ◦ 20±0.0 ◦ 15±0.0 10±0.0 • 5±0.0 •
sonar 16.26±3.18 25±0.0 ◦ 20±0.0 ◦ 15±0.0 10±0.0 • 5±0.0 •
Glass 18.24±4.09 25±0.0 ◦ 20±0.0 15±0.0 • 10±0.0 • 5±0.0 •
audiology 12.86±2.86 25±0.0 ◦ 20±0.0 ◦ 15±0.0 ◦ 10±0.0 • 5±0.0 •
heart-statlog 11.48±2.75 25±0.0 ◦ 20±0.0 ◦ 15±0.0 ◦ 10±0.0 5±0.0 •
breast-cancer 26.14±9.27 25±0.0 20±0.0 15±0.0 • 10.0±0.0 • 5±0.0 •
hungarian 12.44±3.94 25±0.0 ◦ 20±0.0 ◦ 15±0.0 10±0.0 5±0.0 •
cleveland 14.76±4.81 25±0.0 ◦ 20±0.0 ◦ 15±0.0 10±0.0 • 5±0.0 •
ecoli 14.24±4.01 25±0.0 ◦ 20±0.0 ◦ 15±0.0 10±0.0 • 5±0.0 •
primary-tumor 11.36±2.02 25±0.0 ◦ 20±0.0 ◦ 15±0.0 ◦ 10±0.0 5±0.0 •
ionosphere 18.80±4.66 25±0.0 ◦ 20±0.0 15±0.0 • 10±0.0 • 5±0.0 •
horse-colic.ORIG 13.80±4.05 25±0.0 ◦ 20±0.0 ◦ 15±0.0 10±0.0 • 5±0.0 •
horse-colic 12.74±3.90 25±0.0 ◦ 20±0.0 ◦ 15±0.0 10±0.0 5±0.0 •
vote 12.64±3.35 25±0.0 ◦ 20±0.0 ◦ 15±0.0 10±0.0 • 5±0.0 •
arrhythmia 12.62±4.03 25±0.0 ◦ 20±0.0 ◦ 15±0.0 10±0.0 5±0.0 •
balance-scale 18.26±3.66 25±0.0 ◦ 20±0.0 15±0.0 • 10±0.0 • 5±0.0 •
soybean 12.26±3.24 25±0.0 ◦ 20±0.0 ◦ 15±0.0 ◦ 10±0.0 5±0.0 •
credit-rating 15.78±4.51 25±0.0 ◦ 20±0.0 ◦ 15±0.0 10±0.0 • 5±0.0 •
wisconsin 14.06±5.17 25±0.0 ◦ 20±0.0 ◦ 15±0.0 10±0.0 • 5±0.0 •
pima-diabetes 14.26±3.82 25±0.0 ◦ 20±0.0 ◦ 15±0.0 10±0.0 • 5±0.0 •
vehicle 18.10±3.16 25±0.0 ◦ 20±0.0 15±0.0 • 10±0.0 • 5±0.0 •
anneal 12.22±3.17 25±0.0 ◦ 20±0.0 ◦ 15±0.0 ◦ 10±0.0 5±0.0 •
anneal.ORIG 16.52±5.17 25±0.0 ◦ 20±0.0 15±0.0 10±0.0 • 5±0.0 •
vowel 11.90±0.30 25±0.0 ◦ 20±0.0 ◦ 15±0.0 ◦ 10±0.0 • 5±0.0 •
german-credit 12.64±3.65 25±0.0 ◦ 20±0.0 ◦ 15±0.0 10±0.0 5±0.0 •
segment 16.58±3.12 25±0.0 ◦ 20±0.0 ◦ 15±0.0 10±0.0 • 5±0.0 •
kr-vs-kp 17.54±2.02 25±0.0 ◦ 20±0.0 ◦ 15±0.0 • 10±0.0 • 5±0.0 •
sick 17.56±4.87 25±0.0 ◦ 20±0.0 15±0.0 10±0.0 • 5±0.0 •
hypothyroid 12.00±0.20 25±0.0 ◦ 20±0.0 ◦ 15±0.0 ◦ 10±0.0 • 5±0.0 •
optdigits 22.00±3.04 25±0.0 ◦ 20±0.0 15±0.0 • 10±0.0 • 5±0.0 •

◦, • statistically significant improvement or degradation

needs to evaluate approximately 15 points to obtain optimal performance, while

Grid Search has to evaluate all the data points of the grid, see Table 4.12. In

Random Search, the number of data points to be evaluated depends on the aim

of the user. Tables 4.15 and 4.16 list the results of Random Search when the

number of grid locations is specified as 25, 20, 15, 10 and 5 respectively. With

the decreasing number of grid locations, the data points to be explored initially

using 2-fold cross-validation are reduced as well.

74

T
ab

le
4.

16
:

N
u

m
b

er
of

10
-F

ol
d

C
ro

ss
-v

al
id

a
ti

o
n

R
u

n
s

in
G

P
O

a
n

d
R

a
n

d
o
m

S
ea

rc
h

in
U

C
I

cl
a
ss

ifi
ca

ti
o
n

u
si

n
g

S
M

O

D
a
ta

se
t

G
P

O
G

ri
d

S
e
a
rc

h
R

S
(2

5
)

R
S
(2

0
)

R
S
(1

5
)

R
S
(1

0
)

R
S
(5

)

la
b

o
r

9
.0

8
±

7
.1

7
3
.3

4
±

6
.6

2
1
2
.0

8
±

7
.1

0
7
.6

8
±

8
.2

9
1
4
.3

4
±

3
.5

0
1
4
.3

4
±

3
.5

0
1
4
.6

0
±

4
.4

4

z
o
o

1
7
.7

4
±

2
.1

0
0
.0

0
±

0
.0

0
•

1
6
.4

4
±

5
.6

0
0
.2

8
±

1
.9

8
•

1
0
.1

0
±

2
.9

1
•

1
0
.1

0
±

2
.9

1
•

9
.6

4
±

2
.3

5
•

ly
m

p
h
o
g
ra

p
h
y

8
.7

8
±

8
.6

1
1
.9

2
±

5
.1

2
1
3
.0

2
±

7
.7

6
1
0
.8

2
±

7
.4

9
1
3
.9

8
±

3
.7

1
1
3
.9

8
±

3
.7

1
1
5
.6

0
±

4
.6

9

ir
is

1
6
.1

0
±

8
.5

6
3
.3

8
±

7
.9

2
•

9
.6

0
±

1
1
.0

6
4
.1

0
±

8
.8

1
•

1
3
.4

6
±

6
.9

9
1
0
.4

2
±

4
.7

3
1
0
.4

2
±

4
.7

3

h
e
p
a
ti

ti
s

6
.1

4
±

8
.5

8
6
.9

6
±

9
.1

4
1
6
.2

8
±

5
.9

0
◦

1
2
.6

8
±

5
.1

6
1
3
.7

8
±

3
.5

6
◦

1
4
.9

0
±

3
.2

2
◦

1
7
.0

4
±

5
.0

4
◦

a
u
to

s
9
.6

6
±

6
.9

3
3
.2

8
±

6
.7

2
•

9
.1

4
±

8
.7

3
1
.7

2
±

4
.1

8
•

1
0
.4

8
±

3
.3

8
1
0
.4

8
±

3
.3

8
1
0
.4

8
±

3
.3

8

so
n
a
r

1
2
.8

0
±

6
.1

6
6
.0

4
±

9
.1

7
1
4
.7

4
±

5
.6

3
1
1
.8

4
±

5
.7

9
1
2
.3

8
±

5
.3

3
1
7
.7

0
±

5
.6

9
1
7
.8

0
±

5
.6

2

G
la

ss
1
0
.4

0
±

4
.4

9
9
.4

2
±

5
.0

4
1
0
.1

6
±

3
.3

8
1
0
.1

6
±

3
.3

8
1
0
.7

0
±

2
.2

1
9
.1

8
±

0
.7

2
9
.1

8
±

0
.7

2

a
u
d
io

lo
g
y

1
3
.4

0
±

5
.3

4
0
.4

8
±

2
.4

5
•

7
.2

0
±

8
.8

4
1
.8

0
±

4
.4

6
•

9
.4

2
±

1
.8

3
9
.4

2
±

1
.8

3
9
.4

6
±

2
.0

2

h
e
a
rt

-s
ta

tl
o
g

8
.2

2
±

8
.2

3
5
.6

4
±

8
.8

9
1
3
.6

8
±

7
.0

2
1
2
.5

6
±

7
.4

4
1
4
.8

4
±

4
.4

3
◦

1
4
.1

8
±

3
.4

1
1
5
.9

0
±

4
.8

1
◦

b
re

a
st

-c
a
n
c
e
r

6
.8

2
±

5
.3

2
9
.8

6
±

5
.2

3
1
1
.1

4
±

4
.7

8
1
2
.7

8
±

3
.5

9
◦

1
2
.1

8
±

4
.7

9
1
1
.9

4
±

4
.4

6
◦

1
2
.0

8
±

2
.3

3
◦

h
u
n
g
a
ri

a
n

5
.6

2
±

7
.1

3
5
.3

0
±

6
.8

4
8
.3

2
±

8
.1

3
6
.5

0
±

7
.2

3
1
1
.9

2
±

3
.2

0
◦

1
2
.0

0
±

3
.3

0
◦

1
2
.0

0
±

3
.7

5
◦

c
le

v
e
la

n
d

8
.4

6
±

7
.1

3
7
.8

4
±

7
.7

2
1
0
.5

2
±

6
.4

5
9
.5

2
±

6
.3

7
1
3
.1

8
±

2
.8

3
1
3
.1

8
±

2
.8

3
1
3
.4

6
±

3
.3

5

e
c
o
li

1
3
.4

6
±

6
.4

3
1
0
.0

6
±

7
.0

1
4
.0

4
±

7
.2

7
•

2
.5

0
±

6
.4

8
•

1
1
.8

2
±

4
.5

5
1
0
.6

6
±

1
.7

6
1
0
.6

6
±

1
.7

6

p
ri

m
a
ry

-t
u
m

o
r

1
.3

0
±

3
.6

2
9
.8

0
±

6
.9

8
◦

1
4
.0

2
±

4
.7

1
◦

1
3
.4

4
±

4
.9

2
◦

1
4
.2

0
±

3
.6

5
◦

1
4
.2

0
±

3
.6

5
◦

1
4
.1

8
±

4
.2

4
◦

io
n
o
sp

h
e
re

1
1
.8

2
±

3
.8

5
9
.7

6
±

4
.8

3
1
2
.3

0
±

3
.8

1
1
2
.4

0
±

3
.7

9
1
2
.4

0
±

3
.7

9
1
9
.4

8
±

5
.0

2
◦

1
9
.3

6
±

4
.8

8
◦

h
o
rs

e
-c

o
li
c
.O

R
IG

8
.5

6
±

7
.8

3
5
.8

4
±

8
.5

3
1
4
.6

0
±

6
.0

3
1
2
.6

0
±

6
.9

4
1
4
.7

8
±

3
.9

5
◦

1
4
.7

8
±

3
.9

5
◦

1
5
.1

6
±

4
.5

6
◦

h
o
rs

e
-c

o
li
c

5
.2

2
±

6
.7

0
1
3
.0

8
±

6
.6

8
◦

1
4
.1

0
±

3
.3

9
◦

1
4
.0

4
±

3
.3

7
◦

1
4
.0

4
±

3
.3

7
◦

1
4
.0

4
±

3
.3

7
◦

1
4
.1

8
±

3
.7

7
◦

v
o
te

9
.8

8
±

7
.5

5
5
.6

4
±

7
.1

8
1
3
.7

8
±

4
.4

6
1
2
.9

8
±

5
.0

4
1
4
.3

4
±

2
.6

2
1
4
.3

4
±

2
.6

2
1
4
.2

8
±

3
.9

8

a
rr

h
y
th

m
ia

5
.3

8
±

7
.0

3
7
.2

8
±

7
.5

0
1
4
.8

8
±

6
.0

1
◦

1
3
.7

0
±

5
.1

3
◦

1
4
.9

0
±

3
.1

7
◦

1
4
.9

0
±

3
.1

7
◦

1
5
.6

0
±

4
.1

2
◦

b
a
la

n
c
e
-s

c
a
le

4
.6

0
±

5
.0

9
0
.3

6
±

1
.7

8
•

9
.2

6
±

1
.8

4
◦

9
.2

8
±

1
.9

8
◦

9
.2

8
±

1
.9

8
◦

9
.4

8
±

2
.4

1
◦

9
.2

8
±

1
.9

8
◦

so
y
b

e
a
n

5
.4

2
±

6
.5

6
6
.0

4
±

6
.7

3
1
3
.2

8
±

3
.4

3
◦

1
3
.7

0
±

3
.9

4
◦

1
4
.3

6
±

2
.8

3
◦

1
4
.2

6
±

2
.7

5
◦

1
3
.7

0
±

2
.9

0
◦

c
re

d
it

-r
a
ti

n
g

8
.1

6
±

8
.1

7
1
2
.7

0
±

5
.7

5
1
2
.4

2
±

3
.6

5
1
3
.6

2
±

2
.8

4
1
3
.9

0
±

2
.0

5
1
4
.0

4
±

2
.2

9
1
4
.2

4
±

3
.2

4
◦

w
is

c
o
n
si

n
1
3
.4

4
±

4
.9

7
8
.4

0
±

7
.0

1
1
2
.3

2
±

5
.4

9
1
0
.7

6
±

6
.0

5
1
2
.3

6
±

4
.2

4
1
4
.2

8
±

2
.7

8
1
5
.0

8
±

3
.9

3

p
im

a
-d

ia
b

e
te

s
9
.0

0
±

6
.4

5
7
.9

8
±

6
.3

6
1
0
.4

8
±

6
.4

2
7
.7

2
±

6
.2

0
1
0
.8

6
±

3
.3

6
1
0
.3

4
±

1
.9

8
1
0
.3

4
±

1
.9

8

v
e
h
ic

le
1
0
.0

6
±

4
.0

2
9
.9

2
±

3
.6

1
1
2
.0

0
±

1
.5

6
1
2
.0

0
±

1
.5

6
1
2
.0

0
±

1
.5

6
1
0
.4

4
±

2
.8

2
1
0
.6

8
±

2
.9

4

a
n
n
e
a
l

8
.2

0
±

7
.2

9
4
.0

2
±

7
.0

1
1
.9

2
±

5
.6

1
•

0
.6

4
±

2
.6

2
•

9
.4

0
±

1
.3

7
9
.4

0
±

1
.3

7
9
.4

0
±

1
.3

7

a
n
n
e
a
l.
O

R
IG

8
.0

6
±

6
.1

0
1
0
.4

8
±

4
.6

7
9
.0

0
±

6
.5

5
3
.6

0
±

6
.4

4
1
2
.9

4
±

3
.7

2
1
2
.6

2
±

3
.5

2
1
2
.6

2
±

3
.5

2

v
o
w

e
l

0
.0

0
±

0
.0

0
6
.3

6
±

7
.0

2
◦

9
.1

0
±

0
.7

1
◦

9
.1

0
±

0
.7

1
◦

9
.1

0
±

0
.7

1
◦

9
.1

8
±

0
.7

2
◦

9
.1

8
±

0
.7

2
◦

g
e
rm

a
n
-c

re
d
it

4
.1

8
±

6
.2

1
9
.6

8
±

4
.8

3
◦

9
.6

0
±

5
.8

5
9
.3

2
±

5
.9

7
1
2
.7

0
±

2
.8

6
◦

1
2
.7

0
±

2
.8

6
◦

1
2
.1

8
±

2
.3

1
◦

se
g
m

e
n
t

9
.6

4
±

4
.7

8
9
.2

2
±

5
.1

3
9
.8

8
±

1
.5

7
9
.8

8
±

1
.5

7
9
.8

8
±

1
.5

7
9
.0

6
±

0
.4

2
9
.0

6
±

0
.4

2

k
r-

v
s-

k
p

9
.6

0
±

7
.2

6
7
.8

0
±

8
.4

3
1
6
.9

4
±

2
.6

1
◦

1
2
.4

6
±

4
.3

5
1
2
.4

6
±

4
.3

5
1
2
.4

6
±

4
.3

5
1
2
.4

6
±

4
.3

5

si
ck

7
.8

2
±

6
.4

8
2
.3

4
±

4
.8

1
5
.7

6
±

5
.3

9
5
.7

6
±

5
.3

9
9
.8

8
±

1
.9

9
9
.5

0
±

1
.8

1
9
.5

0
±

1
.8

1

h
y
p

o
th

y
ro

id
0
.0

0
±

0
.0

0
0
.0

0
±

0
.0

0
1
0
.3

8
±

1
.5

1
◦

1
0
.3

8
±

1
.5

1
◦

1
0
.3

8
±

1
.5

1
◦

9
.0

0
±

0
.0

0
◦

9
.0

0
±

0
.0

0
◦

o
p
td

ig
it

s
9
.7

2
±

4
.0

5
5
.7

6
±

5
.3

8
1
0
.2

6
±

3
.1

5
1
0
.5

4
±

2
.9

8
1
0
.5

4
±

2
.9

8
1
3
.0

0
±

2
.9

1
◦

1
3
.0

0
±

2
.9

1
◦

◦,
•

st
a
ti

st
ic

a
ll
y

si
g
n
ifi

c
a
n
t

im
p
ro

v
e
m

e
n
t

o
r

d
e
g
ra

d
a
ti

o
n

75

Tables 4.15 and 4.16 show the number of 2-fold cross-validation runs and 10-

fold cross-validation runs respectively. The main difference in Table 4.15 is that

the number of cross-validation runs in GPO is determined by the stopping crite-

rion rather than the user, that is, we can not know how many cross-validations

will be used during the process. But fortunately, the GPO algorithm does not

waste time on unnecessary data points and only explores a small part of the

space to output the final result. Note that the general search process is com-

pletely the same when running 10-fold cross-validation both for GPO and for

Random Search. Once a near-optimal data point has been found after 2-fold

cross-validation, they will search neighbouring points around the near-optimal

data and determine whether any improvement occurs.

Let us focus on two columns in Table 4.16, which are GPO and Ran-

dom Search with 15 grid locations, because the average number of data points

searched in GPO is mostly close to 15. There are 12 out of 35 datasets marked

by “circles” that have statistically significant improvement in 10-fold cross-

validation runs in GPO. It implies that in some cases, the near-optimal point

found by GPO using 2-fold cross-validation is better than that found by Ran-

dom Search under the same number of points searched. The reason is that

Random Search can not guarantee that the near-optimal point in each run is

truly a good point, whereas the near-optimal point found through GPO is likely

to be a high-quality one in each run of the process.

Table 4.17 shows the accuracy using GPO and Random Search. It is en-

couraging that GPO does not fall behind in terms of accuracy in support vector

machine parameter optimization in most cases; however, it does not outper-

form the other algorithms here. Grid Search is a full-scale method, which can

consider every point in the search space, but the good performance of Random

Search is surprising.

Table 4.18 presents an interesting phenomenon involving training time for

larger and smaller datasets when comparing GPO and Random Search. Note

that the rows are sorted by the number of training instances. We find that

solid dots generally appear in the upper part of this table while circles often

appear in the lower part. For smaller datasets, GPO seems to have no improve-

ment in training time, and generally consumes more time than Random Search.

76

T
ab

le
4.

17
:

P
er

ce
n
t

C
or

re
ct

o
f

G
P

O
a
n

d
R

a
n

d
o
m

S
ea

rc
h

in
U

C
I

C
la

ss
ifi

ca
ti

o
n

u
si

n
g

S
M

O

D
a
ta

se
t

G
P

O
G

ri
d

S
e
a
rc

h
R

S
(2

5
)

R
S
(2

0
)

R
S
(1

5
)

R
S
(1

0
)

R
S
(5

)

la
b

o
r

8
8
.1

3
±

1
4
.4

5
8
8
.1

3
±

1
4
.4

5
8
7
.6

0
±

1
4
.8

2
8
6
.6

0
±

1
5
.1

0
8
6
.4

7
±

1
3
.9

7
8
6
.4

7
±

1
3
.9

7
8
7
.8

7
±

1
4
.3

8

z
o
o

9
5
.8

7
±

5
.9

7
9
6
.0

7
±

5
.9

3
9
5
.8

7
±

5
.9

7
9
6
.0

7
±

5
.9

3
9
5
.8

7
±

5
.9

7
9
5
.8

7
±

5
.9

7
9
5
.8

7
±

5
.9

7

ly
m

p
h
o
g
ra

p
h
y

8
3
.7

7
±

9
.0

4
8
2
.9

6
±

9
.6

0
8
3
.7

7
±

8
.7

5
8
3
.9

0
±

8
.6

4
8
4
.0

3
±

8
.6

2
8
4
.0

3
±

8
.6

2
8
4
.1

7
±

8
.9

1

ir
is

9
5
.6

0
±

4
.9

7
9
5
.2

0
±

5
.5

6
9
5
.8

7
±

4
.6

4
9
5
.8

7
±

4
.8

4
9
5
.8

7
±

4
.8

4
9
6
.0

0
±

4
.8

6
9
6
.0

0
±

4
.8

6

h
e
p
a
ti

ti
s

8
3
.2

8
±

8
.3

6
8
3
.6

3
±

8
.5

1
8
3
.7

8
±

8
.5

1
8
3
.5

7
±

8
.1

5
8
3
.8

1
±

7
.5

7
8
4
.9

6
±

7
.6

4
8
3
.7

9
±

8
.1

1

a
u
to

s
7
6
.8

8
±

8
.7

0
7
7
.1

6
±

9
.5

3
7
6
.3

1
±

9
.9

2
7
5
.6

1
±

9
.5

1
7
6
.1

0
±

9
.0

2
7
6
.1

0
±

9
.0

2
7
6
.1

0
±

9
.0

2

so
n
a
r

8
5
.5

7
±

7
.8

5
8
5
.4

9
±

6
.7

6
8
5
.7

6
±

6
.9

7
8
5
.3

8
±

7
.4

8
8
6
.1

4
±

7
.2

2
8
4
.5

0
±

7
.8

1
8
3
.8

4
±

7
.8

8

G
la

ss
7
0
.5

6
±

8
.8

2
7
0
.1

0
±

9
.6

1
6
9
.9

0
±

9
.4

0
6
9
.9

0
±

9
.4

0
7
0
.3

8
±

9
.2

4
6
9
.1

6
±

9
.1

6
6
9
.1

6
±

9
.1

6

a
u
d
io

lo
g
y

8
0
.7

4
±

6
.5

5
8
1
.1

0
±

6
.5

5
8
0
.7

5
±

6
.7

0
8
1
.3

7
±

7
.2

0
8
1
.3

7
±

7
.2

1
8
1
.3

7
±

7
.2

1
8
1
.3

7
±

7
.2

1

h
e
a
rt

-s
ta

tl
o
g

8
3
.3

3
±

5
.0

3
8
2
.8

9
±

4
.9

6
8
2
.5

2
±

5
.8

9
8
3
.0

4
±

4
.8

5
8
2
.8

9
±

4
.8

4
8
2
.9

6
±

4
.9

6
8
2
.4

4
±

5
.9

3

b
re

a
st

-c
a
n
c
e
r

7
0
.7

9
±

5
.8

8
7
1
.7

5
±

6
.5

6
7
1
.5

4
±

7
.1

2
7
2
.1

7
±

7
.0

7
7
2
.1

7
±

6
.6

2
7
2
.1

7
±

6
.6

4
7
2
.1

0
±

6
.7

0

h
u
n
g
a
ri

a
n

8
2
.5

4
±

6
.7

0
8
2
.9

5
±

6
.3

0
8
3
.1

6
±

6
.1

5
8
3
.3

0
±

6
.4

8
8
3
.0

9
±

6
.4

9
8
3
.0

9
±

6
.4

9
8
3
.4

9
±

6
.3

8

c
le

v
e
la

n
d

8
2
.3

8
±

5
.9

4
8
2
.0

5
±

6
.1

9
8
2
.1

1
±

6
.2

0
8
2
.1

8
±

6
.3

3
8
2
.9

7
±

6
.2

2
8
2
.9

7
±

6
.2

2
8
2
.4

4
±

6
.0

2

e
c
o
li

8
7
.2

1
±

6
.1

0
8
7
.2

7
±

6
.2

4
8
7
.5

0
±

5
.9

2
8
7
.4

4
±

5
.9

9
8
7
.6

3
±

5
.7

9
8
7
.5

1
±

5
.8

2
8
7
.5

1
±

5
.8

2

p
ri

m
a
ry

-t
u
m

o
r

4
4
.1

9
±

5
.7

6
4
4
.5

4
±

5
.6

2
4
4
.7

2
±

6
.0

4
4
4
.6

0
±

5
.9

7
4
4
.8

4
±

5
.9

8
4
4
.8

4
±

5
.9

8
4
4
.9

5
±

6
.1

8

io
n
o
sp

h
e
re

9
4
.4

8
±

4
.0

8
9
4
.4

2
±

4
.0

7
9
4
.3

7
±

4
.0

8
9
4
.3

7
±

4
.0

8
9
4
.3

7
±

4
.0

8
9
3
.7

4
±

4
.2

8
9
3
.7

4
±

4
.2

8

h
o
rs

e
-c

o
li
c
.O

R
IG

7
4
.9

5
±

6
.3

2
7
5
.3

8
±

5
.8

8
7
5
.4

9
±

6
.2

3
7
4
.7

3
±

6
.2

7
7
5
.1

1
±

6
.4

5
7
5
.1

1
±

6
.4

5
7
5
.6

0
±

6
.1

9

h
o
rs

e
-c

o
li
c

8
3
.5

2
±

5
.8

4
8
3
.4

6
±

5
.8

1
8
3
.5

2
±

5
.6

2
8
3
.4

1
±

5
.4

5
8
3
.4

1
±

5
.4

5
8
3
.4

1
±

5
.4

5
8
3
.4

6
±

5
.8

1

v
o
te

9
6
.0

8
±

2
.7

6
9
5
.9

9
±

2
.7

4
9
6
.3

2
±

2
.9

8
9
6
.1

3
±

3
.0

6
9
6
.2

3
±

2
.9

7
9
6
.2

3
±

2
.9

7
9
6
.6

0
±

2
.7

5

a
rr

h
y
th

m
ia

7
0
.0

0
±

5
.5

4
6
9
.8

7
±

6
.0

8
7
0
.1

8
±

6
.0

9
7
0
.1

8
±

6
.0

9
7
0
.4

5
±

6
.1

0
7
0
.4

5
±

6
.1

0
7
0
.4

0
±

6
.1

0

b
a
la

n
c
e
-s

c
a
le

9
9
.6

8
±

1
.4

9
9
9
.8

7
±

0
.6

3
9
9
.8

7
±

0
.6

3
9
9
.8

7
±

0
.6

3
9
9
.8

7
±

0
.6

3
9
9
.0

7
±

1
.3

4
9
9
.0

4
±

1
.3

4

so
y
b

e
a
n

9
3
.3

5
±

2
.4

3
9
3
.3

8
±

2
.5

6
9
3
.8

2
±

2
.4

7
9
3
.5

6
±

2
.5

7
9
3
.6

1
±

2
.5

5
9
3
.6

1
±

2
.5

5
9
3
.7

3
±

2
.5

0

c
re

d
it

-r
a
ti

n
g

8
5
.2

5
±

3
.6

4
8
5
.7

1
±

3
.6

5
8
5
.0

4
±

3
.7

2
8
4
.8

7
±

3
.7

3
8
4
.9

3
±

3
.6

9
8
4
.8

7
±

3
.7

5
8
4
.9

9
±

3
.5

8

w
is

c
o
n
si

n
9
6
.4

8
±

1
.9

8
9
6
.5

4
±

2
.0

2
9
6
.4

8
±

2
.0

9
9
6
.4

8
±

2
.0

9
9
6
.5

1
±

2
.0

5
9
6
.5

1
±

2
.0

0
9
6
.4

5
±

2
.0

1

p
im

a
-d

ia
b

e
te

s
7
6
.9

8
±

4
.5

9
7
7
.1

1
±

4
.4

4
7
7
.1

3
±

4
.2

9
7
7
.0

8
±

4
.4

1
7
6
.8

7
±

4
.6

4
7
6
.7

7
±

4
.7

7
7
6
.7

7
±

4
.7

7

v
e
h
ic

le
8
5
.3

0
±

3
.1

1
8
4
.9

4
±

3
.1

6
8
5
.3

2
±

3
.0

9
8
5
.3

2
±

3
.0

9
8
5
.3

2
±

3
.0

9
8
3
.7

1
±

3
.6

6
8
3
.6

4
±

3
.6

2

a
n
n
e
a
l

9
9
.4

4
±

0
.7

5
9
9
.4

0
±

0
.7

5
9
9
.4

7
±

0
.7

2
9
9
.4

9
±

0
.7

2
9
9
.3

6
±

0
.8

1
9
9
.3

6
±

0
.8

1
9
9
.3

6
±

0
.8

1

a
n
n
e
a
l.
O

R
IG

8
9
.7

1
±

3
.0

9
8
9
.7

6
±

2
.7

5
8
9
.4

0
±

3
.1

5
8
9
.2

2
±

2
.9

0
8
9
.7

8
±

2
.7

7
8
9
.8

7
±

2
.8

5
8
9
.8

7
±

2
.8

5

v
o
w

e
l

9
2
.4

6
±

2
.8

7
9
9
.3

5
±

0
.9

5
◦

9
9
.4

5
±

0
.9

4
◦

9
9
.4

5
±

0
.9

4
◦

9
9
.4

5
±

0
.9

4
◦

9
7
.3

1
±

1
.7

7
◦

9
7
.3

1
±

1
.7

7
◦

g
e
rm

a
n
-c

re
d
it

7
5
.5

2
±

3
.3

9
7
5
.6

6
±

3
.0

9
7
5
.5

0
±

3
.4

4
7
5
.4

4
±

3
.3

7
7
5
.5

0
±

3
.4

4
7
5
.5

0
±

3
.4

4
7
5
.4

6
±

3
.4

7

se
g
m

e
n
t

9
7
.2

0
±

1
.0

9
9
7
.2

2
±

1
.0

9
9
7
.1

2
±

1
.1

8
9
7
.1

2
±

1
.1

8
9
7
.1

2
±

1
.1

8
9
6
.9

8
±

0
.8

4
9
6
.9

8
±

0
.8

4

k
r-

v
s-

k
p

9
9
.6

6
±

0
.3

5
9
9
.6

5
±

0
.3

6
9
9
.6

5
±

0
.3

6
9
9
.5

7
±

0
.4

0
9
9
.5

7
±

0
.4

0
9
9
.5

7
±

0
.4

0
9
9
.5

7
±

0
.4

0

si
ck

9
6
.9

4
±

0
.8

4
9
6
.8

8
±

0
.8

2
9
6
.8

8
±

0
.7

7
9
6
.8

8
±

0
.7

7
9
6
.9

3
±

0
.8

2
9
6
.8

9
±

0
.8

1
9
6
.8

9
±

0
.8

1

h
y
p

o
th

y
ro

id
9
7
.6

6
±

0
.6

7
9
7
.6

6
±

0
.6

7
9
7
.5

7
±

0
.7

4
9
7
.5

7
±

0
.7

4
9
7
.5

7
±

0
.7

4
9
7
.6

7
±

0
.6

7
9
7
.6

7
±

0
.6

7

o
p
td

ig
it

s
9
9
.2

4
±

0
.3

7
9
9
.2

3
±

0
.3

7
9
9
.2

5
±

0
.3

8
9
9
.2

1
±

0
.3

8
9
9
.2

1
±

0
.3

8
9
9
.2

2
±

0
.4

2
9
9
.2

2
±

0
.4

2

◦,
•

st
a
ti

st
ic

a
ll
y

si
g
n
ifi

c
a
n
t

im
p
ro

v
e
m

e
n
t

o
r

d
e
g
ra

d
a
ti

o
n

77

T
ab

le
4.

18
:

T
ra

in
in

g
T

im
e

o
f

G
P

O
a
n

d
R

a
n

d
o
m

S
ea

rc
h

in
U

C
I

cl
a
ss

ifi
ca

ti
o
n

u
si

n
g

S
M

O

D
a
ta

se
t

G
P

O
G

ri
d

S
e
a
rc

h
R

S
(2

5
)

R
S
(2

0
)

R
S
(1

5
)

R
S
(1

0
)

R
S
(5

)

la
b

o
r

0
.3

9
±

0
.2

4
0
.7

0
±

0
.1

9
◦

0
.5

0
±

0
.2

5
0
.3

1
±

0
.2

2
0
.4

7
±

0
.0

9
0
.4

4
±

0
.0

9
0
.4

1
±

0
.1

2

z
o
o

9
.2

8
±

0
.9

1
1
1
.9

3
±

2
.3

6
◦

9
.5

6
±

2
.5

4
1
.9

3
±

0
.8

5
•

5
.8

1
±

1
.3

2
•

5
.3

6
±

1
.2

9
•

4
.6

7
±

1
.0

4
•

ly
m

p
h
o
g
ra

p
h
y

2
.2

0
±

1
.6

3
3
.7

2
±

1
.0

2
◦

3
.4

3
±

1
.7

1
2
.5

4
±

1
.3

5
3
.0

7
±

0
.6

7
2
.9

3
±

0
.6

7
2
.9

1
±

0
.7

5

ir
is

1
.5

5
±

0
.7

4
2
.2

2
±

0
.9

4
1
.3

1
±

1
.2

0
0
.6

1
±

0
.7

0
•

1
.1

9
±

0
.5

8
0
.8

5
±

0
.3

8
•

0
.7

8
±

0
.3

7
•

h
e
p
a
ti

ti
s

1
.0

9
±

1
.3

3
1
.9

4
±

1
.3

5
2
.6

1
±

1
.5

8
◦

1
.9

4
±

1
.2

5
2
.1

3
±

1
.1

7
2
.4

8
±

1
.1

3
◦

2
.0

6
±

1
.0

3

a
u
to

s
6
.7

4
±

3
.7

6
1
3
.3

9
±

5
.2

2
◦

8
.0

6
±

5
.6

7
2
.7

7
±

2
.4

2
•

7
.6

3
±

1
.7

3
7
.2

6
±

1
.7

3
6
.3

4
±

1
.6

4

so
n
a
r

2
.6

3
±

1
.1

3
2
.7

5
±

1
.4

2
3
.0

5
±

1
.2

9
2
.1

3
±

0
.9

2
2
.2

7
±

1
.1

3
4
.1

0
±

1
.1

0
◦

3
.1

7
±

0
.8

1

G
la

ss
1
4
.5

1
±

1
0
.1

8
2
3
.7

9
±

1
3
.0

9
3
1
.4

5
±

1
1
.9

2
◦

2
6
.8

1
±

8
.6

4
◦

2
7
.3

4
±

7
.3

0
◦

6
.1

0
±

2
.5

1
•

5
.3

6
±

2
.1

6
•

a
u
d
io

lo
g
y

8
2
.0

1
±

2
6
.8

3
1
1
4
.7

0
±

2
7
.1

7
◦

6
0
.0

4
±

4
7
.2

0
2
6
.2

3
±

2
1
.9

4
•

6
0
.0

4
±

9
.4

9
•

5
6
.3

0
±

9
.5

5
•

5
1
.6

7
±

1
0
.4

0
•

h
e
a
rt

-s
ta

tl
o
g

8
.5

7
±

1
3
.1

5
6
.7

7
±

8
.0

3
1
0
.4

9
±

1
5
.8

3
8
.4

5
±

1
3
.7

4
1
4
.9

5
±

1
7
.0

2
1
7
.0

0
±

1
8
.1

4
1
3
.1

5
±

1
3
.8

6

b
re

a
st

-c
a
n
c
e
r

3
.2

4
±

7
.9

9
1
0
.3

3
±

1
3
.2

8
7
.4

0
±

1
1
.7

2
6
.9

2
±

1
0
.5

3
◦

6
.4

6
±

1
0
.5

9
6
.7

8
±

1
0
.7

6
4
.8

3
±

1
1
.1

4

h
u
n
g
a
ri

a
n
-1

4
-h

e
a
rt

-d
is

e
a
se

9
.6

8
±

1
5
.6

2
1
1
.1

9
±

1
1
.1

9
1
6
.7

4
±

2
1
.8

1
1
3
.3

2
±

1
8
.6

8
2
9
.6

7
±

1
4
.8

6
◦

3
1
.6

0
±

1
4
.4

5
◦

2
1
.5

4
±

1
2
.3

8

c
le

v
e
la

n
d
-1

4
-h

e
a
rt

-d
is

e
a
se

6
.6

3
±

1
0
.4

7
9
.2

2
±

1
0
.1

4
1
0
.8

2
±

1
5
.0

3
9
.7

2
±

1
4
.6

8
1
6
.8

3
±

1
7
.5

7
1
6
.8

1
±

1
7
.6

7
1
0
.7

9
±

1
3
.5

9

e
c
o
li

1
2
.1

2
±

5
.9

5
2
4
.9

4
±

7
.4

0
◦

6
.1

6
±

4
.7

2
•

4
.2

0
±

4
.2

7
•

9
.9

8
±

3
.0

5
8
.5

0
±

1
.6

6
7
.7

3
±

1
.4

9

p
ri

m
a
ry

-t
u
m

o
r

1
7
.2

8
±

1
6
.4

8
1
3
1
.0

0
±

3
1
.9

9
◦

8
4
.9

2
±

2
7
.0

7
◦

7
2
.8

2
±

2
3
.4

8
◦

7
2
.5

6
±

1
8
.6

5
◦

6
8
.8

7
±

1
8
.6

5
◦

6
3
.5

0
±

2
0
.4

2
◦

io
n
o
sp

h
e
re

3
.9

3
±

2
.2

6
5
.5

7
±

1
.8

7
◦

4
.1

9
±

1
.7

4
3
.4

0
±

1
.1

8
3
.2

7
±

1
.1

8
9
.1

6
±

4
.9

7
◦

7
.5

3
±

4
.0

0

h
o
rs

e
-c

o
li
c
.O

R
IG

1
0
.4

1
±

7
.4

5
2
2
.9

2
±

1
1
.1

5
◦

1
9
.6

3
±

9
.1

5
◦

1
4
.6

5
±

6
.6

1
1
6
.4

2
±

3
.5

4
◦

1
5
.9

3
±

3
.6

0
1
4
.1

6
±

3
.6

8

h
o
rs

e
-c

o
li
c

3
.3

9
±

3
.9

1
9
.9

4
±

4
.9

7
◦

9
.5

4
±

6
.0

4
◦

8
.1

0
±

5
.3

0
7
.6

8
±

5
.2

4
7
.5

9
±

5
.2

6
5
.6

9
±

4
.3

4

v
o
te

2
.6

1
±

1
.9

2
4
.3

0
±

2
.1

7
◦

4
.4

4
±

2
.6

3
◦

3
.5

4
±

1
.7

4
3
.7

4
±

1
.4

6
3
.4

9
±

1
.3

8
2
.9

7
±

1
.3

9

a
rr

h
y
th

m
ia

3
6
.9

6
±

2
8
.9

9
1
5
8
.9

0
±

3
0
.9

8
◦

9
1
.0

7
±

3
6
.0

9
◦

7
0
.2

5
±

1
9
.3

4
◦

7
0
.2

5
±

1
2
.3

8
◦

6
4
.6

3
±

1
2
.3

6
◦

6
3
.2

9
±

1
4
.9

3
◦

b
a
la

n
c
e
-s

c
a
le

2
7
.9

7
±

2
6
.5

4
1
3
.9

6
±

9
.3

0
3
1
.0

6
±

9
.1

3
2
6
.4

7
±

7
.1

8
2
6
.0

1
±

7
.1

5
5
5
.2

2
±

9
.1

9
◦

4
4
.6

2
±

5
.7

9

so
y
b

e
a
n

5
7
.8

9
±

4
3
.4

2
2
3
8
.7

4
±

4
1
.4

0
◦

1
3
4
.9

7
±

4
4
.5

5
◦

1
1
1
.8

0
±

2
5
.0

5
◦

1
0
8
.1

3
±

1
9
.4

2
◦

9
8
.4

7
±

1
8
.8

6
◦

9
1
.5

8
±

1
9
.0

7
◦

c
re

d
it

-r
a
ti

n
g

4
2
.9

3
±

7
4
.5

3
4
9
.9

8
±

4
8
.6

8
1
3
8
.2

3
±

2
4
1
.2

6
1
4
4
.0

3
±

1
4
7
.1

4
◦

1
4
5
.2

2
±

1
4
5
.8

3
◦

1
4
9
.1

2
±

1
4
4
.2

0
◦

8
9
.3

6
±

1
2
2
.4

4

w
is

c
o
n
si

n
-b

re
a
st

-c
a
n
c
e
r

6
.3

4
±

4
.4

5
9
.5

4
±

4
.9

0
5
.5

5
±

3
.2

3
4
.2

8
±

2
.3

8
5
.7

9
±

3
.6

7
1
0
.4

0
±

6
.8

6
7
.1

5
±

3
.7

6

p
im

a
-d

ia
b

e
te

s
1
8
8
.1

5
±

2
5
4
.3

4
2
8
1
.4

6
±

2
7
7
.1

8
1
1
7
.5

3
±

2
3
3
.6

2
7
9
.4

0
±

1
6
0
.3

9
1
0
5
.2

2
±

1
7
9
.0

8
2
1
3
.3

9
±

3
0
0
.1

6
1
6
8
.1

2
±

2
2
7
.8

8

v
e
h
ic

le
3
8
6
.9

2
±

2
1
1
.6

4
5
3
2
.5

2
±

2
4
3
.5

1
◦

7
0
0
.4

0
±

2
6
1
.9

9
◦

5
6
2
.7

5
±

1
2
4
.0

9
5
6
1
.3

8
±

1
2
4
.2

0
1
8
9
.0

8
±

2
0
3
.3

2
1
8
0
.3

2
±

1
8
4
.7

3

a
n
n
e
a
l

2
4
.1

4
±

1
8
.4

4
6
0
.6

2
±

1
6
.3

2
◦

1
4
.7

9
±

1
4
.0

4
8
.8

7
±

4
.6

2
•

2
2
.1

3
±

2
.4

1
1
9
.4

5
±

2
.5

4
1
7
.1

2
±

2
.1

8

a
n
n
e
a
l.
O

R
IG

8
2
.3

5
±

8
0
.0

0
1
8
9
.9

3
±

1
2
9
.4

0
◦

1
0
1
.0

3
±

1
2
2
.3

3
7
3
.0

4
±

1
2
5
.1

1
2
3
3
.1

6
±

1
1
8
.5

3
◦

2
2
1
.0

4
±

1
1
4
.9

3
◦

1
8
0
.4

8
±

8
8
.4

9
◦

v
o
w

e
l

1
5
.1

2
±

0
.4

0
1
6
1
.3

1
±

5
3
.5

7
◦

9
8
.4

5
±

2
4
.5

7
◦

7
9
.9

9
±

5
.9

4
◦

7
5
.6

0
±

5
.9

2
◦

5
8
.9

3
±

5
.7

7
◦

5
1
.4

3
±

3
.2

3
◦

g
e
rm

a
n
-c

re
d
it

1
2
7
.0

8
±

2
2
8
.1

4
1
3
3
.8

6
±

1
5
4
.6

5
1
3
5
.7

2
±

2
3
8
.4

9
1
2
2
.7

5
±

2
4
0
.3

7
1
9
2
.0

1
±

2
8
8
.7

2
1
9
5
.3

9
±

2
9
7
.1

6
1
7
2
.9

7
±

2
4
4
.1

4

se
g
m

e
n
t

1
2
5
.3

4
±

7
2
.2

0
3
5
1
.0

4
±

7
6
.7

9
◦

2
7
9
.1

5
±

8
2
.2

0
◦

2
2
1
.6

8
±

2
6
.3

1
◦

2
1
1
.0

6
±

2
6
.4

1
◦

5
7
.1

5
±

1
1
.0

5
•

4
4
.7

6
±

8
.8

4
•

k
r-

v
s-

k
p

5
3
1
.5

7
±

4
2
8
.0

3
8
0
7
.2

2
±

5
0
0
.1

6
◦

1
0
5
0
.3

2
±

3
7
2
.2

5
◦

5
2
3
.5

7
±

1
9
0
.8

2
5
0
7
.7

9
±

1
9
0
.9

9
4
9
0
.8

6
±

1
9
0
.9

1
4
2
0
.6

9
±

1
8
4
.8

7

si
ck

1
8
8
5
.8

1
±

1
6
3
3
.2

3
8
1
4
.4

1
±

1
0
6
3
.3

6
1
0
1
0
.7

7
±

1
6
2
0
.6

5
8
6
2
.9

0
±

1
3
1
8
.4

6
1
0
9
2
.7

0
±

1
2
0
5
.8

7
6
2
1
.2

8
±

5
1
2
.1

2
•

5
2
8
.0

1
±

3
8
4
.5

7
•

h
y
p

o
th

y
ro

id
1
0
0
.0

5
±

3
4
.9

5
4
8
8
.6

2
±

1
1
8
.8

0
◦

2
8
3
5
.7

7
±

1
0
5
0
.4

2
◦

2
2
4
3
.6

8
±

3
5
1
.4

5
◦

2
2
3
1
.2

6
±

3
5
1
.6

4
◦

5
4
0
.9

5
±

6
3
.1

4
◦

4
7
5
.8

6
±

4
7
.6

5
◦

o
p
td

ig
it

s
1
0
7
0
.5

1
±

3
7
4
.5

9
4
5
2
7
.7

9
±

3
2
3
.3

6
◦

1
5
1
2
.2

9
±

3
4
2
.0

5
◦

1
8
1
2
.1

1
±

1
5
9
.6

7
◦

1
6
4
3
.0

6
±

1
5
9
.6

0
◦

1
0
4
9
.5

4
±

1
7
8
.7

5
8
9
0
.1

4
±

1
7
5
.6

2

◦,
•

st
a
ti

st
ic

a
ll
y

si
g
n
ifi

c
a
n
t

im
p
ro

v
e
m

e
n
t

o
r

d
e
g
ra

d
a
ti

o
n

78

By contrast, Random Search generally consumes more time for larger datasets

than GPO. It shows a distinctive trend: GPO reveals its advantage with the

increasing size of datasets. This is an attractive point for GPO, which spends

a comparatively short amount of time when applied to larger datasets.

4.2.2 Classification Prediction Based on C4.5

The decision tree learning algorithm C4.5 is implemented as J48 in WEKA,

and several datasets will be experimented with using this software to gain insight

into the effectiveness of the GPO algorithm when building decision trees. Here

we adopt J48 as the base algorithm to optimize the parameters of C4.5 decision

trees using the GPO, Grid Search and Random Search algorithms respectively.

There exist two principal parameters of concern, which are MinNumObj denoted

as M , and ConfidenceFactor denoted as C. M determines the minimum number

of instances per leaf, for which the default value is 2. As discussed earlier,

the C4.5 algorithm divides the dataset on attributes according to the greatest

information gain. This process continues throughout the creation of the entire

tree until the leaf nodes exhibit the minimum number of instances. If a leaf has

less than the minimum number of examples from the dataset, the parent node

and its children will be compressed into a single leaf node. If a dataset has a

lot of noise, the setting value of M should be increased.

Table 4.19: Search Configuration for J48

Configuration Random Search Grid Search GPO

ConfidenceFactor min 2−8

max 2−1

step 1 (exponent)

MinNumObj min 1

max 50

step 1

Random Grid Locations 25,20,15,10,5

GP γ 100

GP δ 0.01

C is the confidence threshold for pruning. The default confidence value is

set at 25% and works reasonably well in most cases; however, if the actual error

rate on a test set is much greater than the estimated error rate, it should be set

to a lower value. The lower the confidence level, the more pruned the decision

79

tree.

Thus, the parameters to be optimized are M and C. The detailed config-

uration for the experiment can be seen in Table 4.19.

For all search algorithms, the search for C starts from 2−8 to 2−1, increasing

the exponent by 1 in each step, and the M increases to the maximum 50 from the

minimum number 1. “Random grid locations” refers to the searching points for

Random Search, in other words, that is how many points need to be randomly

searched in total. This value is controllable. In this case, we set these values

as 25, 20, 15, 10 and 5. There is a reason for these chosen numbers: 15 is the

average number of grid locations evaluated using 2-fold cross-validation by the

GPO algorithm in the specified datasets. The parameters γ as 100 and δ as

0.01 for the GP model applied in GPO proved to be the most appropriate ones

in preceding experiments and are used again here.

We will again use the UCI datasets to analyse the performance of these

three algorithms. Table 4.20 shows the percentage of correct classifications.

There is no significant difference between Grid Search and GPO, which indicates

that both are comparable in terms of accuracy. The results for Random Search

are not as good as those for the other two algorithms in some cases. This

is especially serious for some datasets with larger numbers of instances: for

“letter”, there is a nearly 2% difference. With decreasing random grid locations,

fewer significant differences exist. The reason is that the implementation has to

do more 10-fold cross-validation runs around the current “best” point to seek

a relatively better one because fewer random grid locations are evaluated using

2-fold cross-validation. Take 5 random grid locations for example: although

the experiment only randomly chooses 5 points to be 2-fold cross-validated at

the initial stage, it will do multiple 10-fold cross-validation runs in sub-grids

around the “best” point found in this initial stage. It will perform 10-fold cross-

validation recursively until no better point is found. In short, GPO and Grid

Search exhibit significant improvements over Random Search in terms of percent

correct.

Table 4.21 clearly shows nearly all cases cost a large amount of time for

searching, evaluating and cross-validation in Grid Search. GPO has a relatively

large advantage in terms of time cost. The training time for Random Search

80

T
ab

le
4
.2

0
:

P
er

ce
n
t

C
o
rr

ec
t

o
f

T
h

re
e

M
et

h
o
d

s
fo

r
J
4
8

D
a
ta

se
t

G
P

O
G

ri
d
S
e
a
rc

h
R

S
(2

5
)

R
S
(2

0
)

R
S
(1

5
)

R
S
(1

0
)

R
S
(5

)

la
b

o
r

7
8
.7

3
3
3
±

1
6
.2

9
7
8
.3

0
0
0
±

1
6
.0

1
7
8
.8

3
3
3
±

1
6
.7

7
7
7
.9

6
6
7
±

1
7
.5

6
7
8
.7

6
6
7
±

1
7
.7

6
7
8
.7

6
6
7
±

1
7
.7

6
7
7
.5

0
0
0
±

1
6
.3

5

z
o
o

9
3
.8

0
0
0
±

7
.0

8
9
3
.2

0
0
0
±

7
.2

3
9
1
.6

3
6
4
±

7
.0

1
9
1
.6

3
6
4
±

7
.0

1
9
1
.7

2
7
3
±

6
.9

4
9
1
.7

2
7
3
±

6
.9

4
8
9
.9

3
6
4
±

7
.8

1

ly
m

p
h
o
g
ra

p
h
y

7
5
.6

4
7
6
±

9
.6

0
7
4
.9

5
2
4
±

9
.8

7
7
5
.5

0
0
0
±

9
.7

2
7
5
.5

8
5
7
±

9
.6

8
7
5
.0

3
8
1
±

1
0
.3

4
7
4
.8

3
8
1
±

1
0
.5

7
7
4
.7

0
4
8
±

9
.5

1

ir
is

9
3
.8

6
6
7
±

5
.5

0
9
3
.7

3
3
3
±

5
.7

5
9
3
.8

0
0
0
±

5
.6

3
9
4
.0

0
0
0
±

5
.7

2
9
4
.0

0
0
0
±

5
.3

2
9
4
.0

0
0
0
±

5
.3

2
9
3
.6

6
6
7
±

5
.7

9

h
e
p
a
ti

ti
s

7
8
.9

8
3
3
±

8
.3

4
7
9
.2

5
0
0
±

7
.9

7
7
9
.7

5
0
0
±

7
.3

0
7
9
.9

4
1
7
±

7
.3

3
8
0
.9

6
6
7
±

7
.2

6
8
1
.1

0
0
0
±

7
.1

2
8
0
.6

5
8
3
±

7
.1

0

a
u
to

s
8
3
.2

1
9
0
±

8
.7

0
8
3
.0

2
3
8
±

9
.1

2
7
1
.9

6
1
9
±

1
1
.1

6
•

7
2
.4

9
2
9
±

1
1
.3

0
•

7
1
.9

3
5
7
±

1
2
.8

8
•

7
0
.8

6
4
3
±

1
3
.2

8
•

7
1
.5

0
2
4
±

1
1
.7

8
•

so
n
a
r

7
3
.2

4
0
5
±

8
.8

9
7
1
.9

3
3
3
±

9
.0

7
7
2
.9

5
0
0
±

9
.2

4
7
2
.6

6
4
3
±

9
.1

9
7
2
.4

7
6
2
±

8
.9

8
7
2
.5

2
3
8
±

8
.9

9
7
4
.0

0
9
5
±

9
.9

2

G
la

ss
6
7
.1

4
9
4
±

9
.7

2
6
7
.0

0
6
5
±

1
0
.0

4
6
7
.4

0
0
4
±

9
.4

4
6
7
.2

1
0
0
±

9
.6

5
6
7
.7

0
5
6
±

9
.2

0
6
7
.7

0
7
8
±

9
.2

6
6
6
.7

9
8
7
±

1
0
.2

6

a
u
d
io

lo
g
y

8
3
.3

7
3
5
±

8
.0

8
8
2
.7

5
3
0
±

8
.1

6
7
1
.9

8
6
2
±

7
.0

1
•

7
2
.1

2
2
5
±

7
.0

7
•

7
1
.2

9
6
4
±

5
.9

1
•

7
1
.2

0
5
5
±

5
.9

6
•

7
4
.4

3
2
8
±

9
.1

7
•

h
e
a
rt

-s
ta

tl
o
g

7
7
.8

8
8
9
±

7
.8

2
8
0
.3

7
0
4
±

6
.9

3
8
0
.7

4
0
7
±

8
.2

9
8
0
.5

5
5
6
±

8
.3

0
7
9
.3

3
3
3
±

8
.5

2
7
9
.4

8
1
5
±

8
.5

0
7
9
.7

4
0
7
±

8
.1

8

b
re

a
st

-c
a
n
c
e
r

7
1
.9

4
5
8
±

6
.2

0
7
3
.0

6
1
6
±

6
.2

8
7
2
.5

3
8
2
±

6
.1

2
7
2
.0

4
8
0
±

6
.0

0
7
2
.3

3
0
0
±

6
.0

0
7
2
.3

3
0
0
±

6
.0

0
7
1
.7

9
9
3
±

5
.8

9

h
u
n
g
a
ri

a
n
-1

4
-h

e
a
rt

-d
is

e
a
se

8
0
.6

6
6
7
±

7
.6

6
8
0
.4

9
5
4
±

7
.6

9
8
0
.7

6
7
8
±

7
.4

1
8
0
.6

6
7
8
±

7
.3

7
8
0
.6

7
2
4
±

7
.3

7
8
0
.5

6
9
0
±

7
.3

6
8
0
.5

6
9
0
±

7
.3

5

c
le

v
e
la

n
d
-1

4
-h

e
a
rt

-d
is

e
a
se

7
5
.3

0
8
6
±

6
.9

4
7
6
.0

7
7
4
±

6
.7

9
7
5
.5

8
0
6
±

7
.0

8
7
5
.6

1
4
0
±

7
.1

6
7
5
.0

5
8
1
±

7
.0

1
7
5
.0

5
8
1
±

7
.0

1
7
4
.3

9
1
4
±

6
.8

5

e
c
o
li

8
1
.2

8
7
0
±

5
.7

1
8
1
.0

1
8
7
±

5
.9

2
8
0
.8

5
0
3
±

5
.9

9
8
0
.9

3
9
4
±

5
.9

0
8
1
.0

5
2
6
±

5
.8

9
8
1
.0

5
1
7
±

5
.8

8
8
0
.0

0
2
7
±

5
.7

1

p
ri

m
a
ry

-t
u
m

o
r

4
1
.1

8
5
4
±

6
.7

7
4
0
.0

9
4
5
±

6
.8

4
4
0
.7

9
9
5
±

6
.5

5
4
0
.8

8
7
7
±

6
.4

6
4
0
.8

0
1
2
±

6
.4

7
4
0
.6

8
4
5
±

6
.3

5
4
0
.1

2
3
0
±

6
.7

1

io
n
o
sp

h
e
re

8
9
.2

0
7
9
±

4
.3

1
8
9
.2

0
5
6
±

4
.8

4
8
9
.0

6
2
7
±

4
.9

5
8
9
.2

3
4
9
±

4
.8

1
8
8
.6

9
5
2
±

4
.7

9
8
8
.7

2
3
0
±

4
.8

0
8
8
.8

3
4
1
±

4
.5

0

h
o
rs

e
-c

o
li
c
.O

R
IG

6
5
.2

8
3
0
±

4
.5

7
6
4
.8

4
0
1
±

5
.3

7
6
4
.1

9
1
4
±

5
.0

8
6
4
.3

8
5
9
±

5
.2

1
6
3
.8

6
6
4
±

4
.9

5
6
3
.9

4
7
4
±

4
.9

5
6
6
.0

0
6
8
±

4
.3

8

h
o
rs

e
-c

o
li
c

8
5
.2

3
2
7
±

5
.7

6
8
5
.3

4
3
1
±

5
.8

5
8
5
.6

9
5
2
±

5
.6

9
8
5
.5

8
6
3
±

5
.8

3
8
5
.4

5
2
0
±

5
.7

6
8
5
.5

0
6
0
±

5
.7

7
8
5
.3

7
1
6
±

5
.8

7

v
o
te

9
5
.6

9
9
3
±

2
.7

8
9
5
.8

1
2
4
±

2
.6

8
9
5
.3

5
5
7
±

2
.8

8
9
5
.5

8
5
1
±

2
.7

4
9
5
.5

8
5
1
±

2
.7

4
9
5
.6

0
8
4
±

2
.7

3
9
5
.6

3
1
6
±

2
.7

6

a
rr

h
y
th

m
ia

6
9
.7

9
4
7
±

5
.9

1
6
9
.4

4
8
3
±

5
.9

5
6
9
.7

5
4
1
±

5
.9

4
6
9
.5

5
6
0
±

5
.5

8
6
9
.6

6
9
1
±

5
.5

5
6
9
.6

4
6
4
±

5
.4

1
6
9
.7

1
1
6
±

5
.6

0

b
a
la

n
c
e
-s

c
a
le

7
8
.2

5
2
7
±

3
.8

9
7
8
.2

3
5
5
±

3
.8

1
7
7
.4

5
3
1
±

3
.9

7
7
7
.5

4
8
6
±

3
.9

3
7
6
.6

6
9
5
±

4
.5

3
7
6
.6

3
7
2
±

4
.5

6
7
7
.0

3
3
5
±

4
.3

3

so
y
b

e
a
n

9
2
.0

2
0
5
±

3
.2

3
9
2
.2

5
4
9
±

3
.0

3
8
9
.3

4
1
6
±

3
.2

2
•

8
9
.3

4
1
6
±

3
.2

2
•

8
9
.3

1
2
2
±

3
.2

1
•

8
9
.3

1
2
2
±

3
.2

1
•

8
9
.7

5
1
3
±

3
.6

1
•

c
re

d
it

-r
a
ti

n
g

8
4
.8

8
4
1
±

3
.9

8
8
5
.7

8
2
6
±

3
.7

6
8
5
.2

1
7
4
±

3
.8

1
8
5
.1

8
8
4
±

3
.8

3
8
5
.2

8
9
9
±

3
.9

9
8
5
.2

7
5
4
±

4
.0

0
8
5
.4

2
0
3
±

3
.9

8

w
is

c
o
n
si

n
-b

re
a
st

-c
a
n
c
e
r

9
4
.5

6
4
2
±

2
.7

2
9
4
.6

0
8
3
±

2
.6

6
9
4
.4

0
6
8
±

2
.7

7
9
4
.3

6
4
2
±

2
.8

1
9
4
.2

9
2
5
±

2
.8

3
9
4
.2

7
8
3
±

2
.8

4
9
4
.3

9
3
0
±

2
.7

8

p
im

a
-d

ia
b

e
te

s
7
4
.9

5
8
1
±

4
.6

4
7
4
.6

0
5
9
±

4
.6

9
7
4
.5

6
9
7
±

4
.9

1
7
4
.8

2
8
8
±

4
.9

3
7
4
.8

0
1
8
±

4
.8

3
7
4
.8

4
1
1
±

4
.8

3
7
4
.5

2
8
9
±

4
.8

1

v
e
h
ic

le
7
2
.0

7
0
9
±

4
.4

1
7
1
.9

3
7
4
±

4
.1

8
7
1
.7

4
9
7
±

4
.2

2
7
1
.5

4
9
7
±

4
.3

7
7
1
.2

4
2
4
±

4
.5

8
7
1
.3

0
1
0
±

4
.6

1
7
0
.9

2
2
0
±

4
.7

2

a
n
n
e
a
l.
O

R
IG

9
3
.5

8
6
4
±

2
.4

8
9
3
.6

5
2
7
±

2
.4

8
9
2
.0

5
0
8
±

3
.1

7
9
2
.0

5
0
8
±

3
.1

7
9
0
.0

3
6
0
±

3
.7

1
•

9
0
.0

3
6
0
±

3
.7

1
•

9
0
.3

3
5
2
±

3
.5

5
•

a
n
n
e
a
l

9
9
.2

9
9
3
±

0
.9

0
9
9
.2

5
4
8
±

0
.9

2
9
8
.3

7
4
3
±

1
.4

0
•

9
8
.4

1
9
2
±

1
.3

6
•

9
8
.0

4
0
4
±

1
.5

3
•

9
8
.0

4
0
4
±

1
.5

3
•

9
6
.7

1
6
1
±

1
.7

3
•

v
o
w

e
l

8
2
.6

5
6
6
±

4
.1

7
8
2
.7

5
7
6
±

4
.1

5
7
8
.0

0
0
0
±

5
.3

4
•

7
8
.0

0
0
0
±

5
.3

4
•

7
8
.0

3
0
3
±

5
.4

3
•

7
8
.0

3
0
3
±

5
.4

3
•

8
1
.1

1
1
1
±

4
.5

7
•

g
e
rm

a
n
-c

re
d
it

7
2
.3

0
0
0
±

4
.0

6
7
2
.2

0
0
0
±

3
.8

3
7
1
.7

1
0
0
±

3
.2

7
7
1
.8

0
0
0
±

3
.2

1
7
2
.0

6
0
0
±

3
.6

7
7
2
.0

6
0
0
±

3
.6

7
7
2
.2

1
0
0
±

3
.6

8

se
g
m

e
n
t

9
6
.8

8
7
4
±

1
.2

7
9
6
.8

6
1
5
±

1
.2

4
9
6
.1

5
1
5
±

1
.4

2
•

9
6
.1

8
6
1
±

1
.4

0
•

9
6
.3

5
0
6
±

1
.3

7
9
6
.3

4
6
3
±

1
.3

9
9
6
.2

1
2
1
±

1
.4

0

sp
li
c
e

9
4
.0

0
0
0
±

1
.3

0
9
4
.0

1
5
7
±

1
.2

9
9
4
.0

7
2
1
±

1
.3

7
9
4
.0

7
2
1
±

1
.3

7
9
4
.0

9
4
0
±

1
.3

6
9
4
.1

0
3
4
±

1
.3

5
9
3
.7

7
1
2
±

1
.4

5

k
r-

v
s-

k
p

9
9
.3

3
9
9
±

0
.3

6
9
9
.4

4
6
3
±

0
.3

7
9
9
.3

0
5
5
±

0
.4

0
9
9
.3

0
5
5
±

0
.4

0
9
9
.3

2
7
4
±

0
.4

6
9
9
.3

1
4
9
±

0
.4

6
9
9
.2

4
6
1
±

0
.3

9

h
y
p

o
th

y
ro

id
9
9
.5

2
2
9
±

0
.3

3
9
9
.5

3
8
8
±

0
.3

3
9
9
.4

5
1
3
±

0
.3

2
9
9
.4

5
3
9
±

0
.3

3
9
9
.4

6
1
9
±

0
.3

3
9
9
.4

6
4
5
±

0
.3

2
9
9
.4

3
0
1
±

0
.3

4

si
ck

9
8
.6

8
5
0
±

0
.5

8
9
8
.7

6
4
6
±

0
.5

8
9
8
.6

5
3
2
±

0
.6

8
9
8
.6

4
7
9
±

0
.6

8
9
8
.5

1
5
3
±

0
.7

6
9
8
.5

0
4
7
±

0
.7

6
9
8
.5

7
6
3
±

0
.7

2

w
a
v
e
fo

rm
7
6
.3

6
8
0
±

1
.9

2
7
6
.4

6
6
0
±

1
.8

0
7
6
.5

2
0
0
±

1
.8

7
7
6
.4

5
8
0
±

1
.8

6
7
6
.4

1
4
0
±

1
.8

0
7
6
.3

9
2
0
±

1
.7

9
7
6
.5

8
0
0
±

1
.7

8

o
p
td

ig
it

s
9
0
.6

2
2
8
±

1
.2

2
9
0
.6

5
4
8
±

1
.2

2
9
0
.3

5
5
9
±

1
.3

0
9
0
.3

5
5
9
±

1
.3

0
9
0
.3

7
7
2
±

1
.2

9
9
0
.3

7
7
2
±

1
.2

9
9
0
.2

9
3
6
±

1
.2

1

m
u
sh

ro
o
m

1
0
0
.0

0
0
0
±

0
.0

0
1
0
0
.0

0
0
0
±

0
.0

0
1
0
0
.0

0
0
0
±

0
.0

0
1
0
0
.0

0
0
0
±

0
.0

0
1
0
0
.0

0
0
0
±

0
.0

0
1
0
0
.0

0
0
0
±

0
.0

0
1
0
0
.0

0
0
0
±

0
.0

0

p
e
n
d
ig

it
s

9
6
.6

4
4
8
±

0
.5

6
9
6
.6

4
8
4
±

0
.5

7
9
6
.2

0
1
8
±

0
.6

7
•

9
6
.2

0
1
8
±

0
.6

7
•

9
6
.2

1
1
8
±

0
.6

6
•

9
6
.2

1
1
8
±

0
.6

6
•

9
6
.6

0
0
2
±

0
.5

5

le
tt

e
r

8
8
.5

2
0
5
±

0
.8

3
8
8
.5

2
4
0
±

0
.8

3
8
6
.8

3
4
5
±

0
.8

6
•

8
6
.8

3
4
5
±

0
.8

6
•

8
6
.8

3
4
5
±

0
.8

6
•

8
6
.8

3
4
5
±

0
.8

6
•

8
8
.4

2
7
0
±

0
.8

3

A
v
e
ra

g
e

8
3
.6

6
7
4

8
3
.6

5
3
2

8
2
.7

3
9
3

8
2
.7

3
2
2

8
2
.5

9
4
7

8
2
.5

6
7
5

8
2
.6

7
3
7

◦,
•

st
a
ti

st
ic

a
ll
y

si
g
n
ifi

c
a
n
t

im
p
ro

v
e
m

e
n
t

o
r

d
e
g
ra

d
a
ti

o
n

81

depends on the number of random grid locations as well as the size of the

datasets. Random search for smaller datasets is usually distinctly better than

GPO and Grid Search whereas for larger datasets it is evidently worse than

GPO, which mainly depends on the 10-fold cross-validation times. Overall,

these results indicate that GPO can work very well on larger datasets compared

with Grid Search and Random Search.

Note that, at the beginning, the system will perform 2-fold cross-validation

for every algorithm. The number of points to be searched can be figured out

in Grid Search through simple calculation in advance; the number of search

points for random search is fixed; GPO is the only one for which the number of

search points is different for each dataset: it depends on the stopping criterion.

For example, in this experiment, Grid Search will perform 400 2-fold cross-

validations for all the UCI datasets, while this process does not stop in GPO

until the stopping requirement is met, as shown in Table 4.22. Grid Search is

much worse than the other two algorithms in this comparison.

As always in the implementations used in this thesis, once the “best” point

is found in the preceding process and it is not in a border position, the software

will perform multiple 10-fold cross-validation at locations surrounding this point

and at the point itself. Table 4.23 compares the number of runs of 10-fold cross-

validation among GPO, Grid Search and Random Search, which shows GPO

improves significantly on Random Search, but not on Grid Search.

Overall, the GPO algorithm works well for C4.5 decision tree learning as

we have seen through the analysis of the accuracy of the tree classification,

experiment cross-validation runs and training time. This optimization method

makes it possible to save a large amount of time when exploring the optimal

parameters compared to trying every possible pair of values exhaustively. In

addition, the accuracy obtained by its few searches is comparable with the one

obtained through the whole grid search. The nature of the GPO algorithm is

to find the points with useful information, and ignore those points which do not

much help on the predictions. The core of the optimization algorithm is to apply

the Gaussian process with the expected improvement in the search process, and

this appears to identify high-quality parameter values for C4.5 decision tree

induction.

82

T
ab

le
4.

2
1
:

T
ra

in
in

g
T

im
e

o
f

T
h

re
e

M
et

h
o
d

s
fo

r
J
4
8

D
a
ta

se
t

G
P

O
G

ri
d
S
e
a
rc

h
R

S
(2

5
)

R
S
(2

0
)

R
S
(1

5
)

R
S
(1

0
)

R
S
(5

)

la
b

o
r

0
.1

6
1
3
±

0
.0

5
0
.1

7
8
3
±

0
.0

2
0
.0

4
5
5
±

0
.0

2
•

0
.0

4
6
6
±

0
.0

2
•

0
.0

2
8
3
±

0
.0

2
•

0
.0

2
8
0
±

0
.0

2
•

0
.0

4
5
4
±

0
.0

2
•

z
o
o

0
.1

5
5
2
±

0
.0

3
0
.2

1
3
0
±

0
.0

1
◦

0
.0

3
6
3
±

0
.0

3
•

0
.0

3
3
3
±

0
.0

3
•

0
.0

2
8
4
±

0
.0

3
•

0
.0

2
8
5
±

0
.0

3
•

0
.0

8
2
3
±

0
.0

1
•

ly
m

p
h
o
g
ra

p
h
y

0
.1

8
6
2
±

0
.0

7
0
.2

6
2
1
±

0
.0

3
◦

0
.0

8
1
0
±

0
.0

3
•

0
.0

8
1
5
±

0
.0

4
•

0
.0

6
6
9
±

0
.0

5
•

0
.0

6
5
5
±

0
.0

5
•

0
.0

9
8
8
±

0
.0

4
•

ir
is

0
.1

5
0
9
±

0
.0

3
0
.2

4
0
3
±

0
.0

1
◦

0
.0

5
0
9
±

0
.0

1
•

0
.0

4
0
4
±

0
.0

2
•

0
.0

1
8
5
±

0
.0

1
•

0
.0

1
7
6
±

0
.0

1
•

0
.0

4
6
8
±

0
.0

2
•

h
e
p
a
ti

ti
s

0
.3

3
6
8
±

0
.2

0
0
.3

2
9
5
±

0
.0

9
0
.1

3
2
0
±

0
.0

7
•

0
.1

1
9
1
±

0
.0

7
•

0
.0

6
0
8
±

0
.0

7
•

0
.0

6
3
3
±

0
.0

8
•

0
.1

0
7
8
±

0
.0

8
•

a
u
to

s
0
.1

9
4
0
±

0
.0

6
0
.7

3
6
3
±

0
.0

5
◦

0
.4

6
2
3
±

0
.1

9
◦

0
.4

6
4
9
±

0
.2

1
◦

0
.5

3
4
9
±

0
.2

8
◦

0
.5

1
9
2
±

0
.2

8
◦

0
.6

9
2
7
±

0
.2

1
◦

so
n
a
r

1
.3

9
4
0
±

1
.1

3
2
.3

7
9
0
±

0
.6

8
◦

1
.2

6
5
4
±

0
.9

9
1
.2

8
2
8
±

1
.1

1
1
.0

6
7
9
±

1
.1

5
1
.0

3
5
3
±

1
.1

2
1
.9

9
4
5
±

0
.9

7

G
la

ss
0
.3

9
1
8
±

0
.2

5
0
.7

8
8
1
±

0
.2

0
◦

0
.3

3
7
7
±

0
.2

1
0
.3

2
9
8
±

0
.2

1
0
.3

3
4
2
±

0
.2

6
0
.3

2
2
0
±

0
.2

5
0
.5

6
1
2
±

0
.2

0

a
u
d
io

lo
g
y

0
.2

2
0
4
±

0
.0

7
0
.6

4
8
9
±

0
.0

6
◦

0
.1

4
9
0
±

0
.1

6
0
.1

4
0
2
±

0
.1

6
0
.0

7
7
3
±

0
.1

3
•

0
.0

7
4
4
±

0
.1

2
•

0
.5

5
1
0
±

0
.1

8
◦

h
e
a
rt

-s
ta

tl
o
g

0
.3

6
0
4
±

0
.2

2
0
.6

8
0
1
±

0
.1

6
◦

0
.3

1
5
3
±

0
.1

2
0
.3

3
5
8
±

0
.1

5
0
.3

4
3
7
±

0
.2

2
0
.3

4
8
8
±

0
.2

2
0
.3

8
7
3
±

0
.1

9

b
re

a
st

-c
a
n
c
e
r

0
.3

3
8
1
±

0
.1

5
0
.2

8
4
4
±

0
.0

3
0
.0

6
8
0
±

0
.0

4
•

0
.0

5
9
9
±

0
.0

4
•

0
.0

3
6
9
±

0
.0

5
•

0
.0

3
8
6
±

0
.0

5
•

0
.0

3
6
3
±

0
.0

4
•

h
u
n
g
a
ri

a
n
-1

4
-h

e
a
rt

-d
is

e
a
se

0
.3

2
1
6
±

0
.1

7
0
.5

7
6
7
±

0
.1

6
◦

0
.2

4
2
5
±

0
.1

7
0
.1

4
5
7
±

0
.1

3
•

0
.1

2
1
5
±

0
.1

4
•

0
.1

2
9
9
±

0
.1

6
•

0
.1

7
9
0
±

0
.1

3
•

c
le

v
e
la

n
d
-1

4
-h

e
a
rt

-d
is

e
a
se

0
.2

9
5
7
±

0
.2

1
0
.6

1
8
6
±

0
.1

0
◦

0
.2

2
0
0
±

0
.1

0
0
.2

1
9
0
±

0
.1

2
0
.1

8
1
0
±

0
.1

5
0
.1

8
1
1
±

0
.1

5
0
.2

2
8
7
±

0
.1

9

e
c
o
li

0
.3

3
2
2
±

0
.2

2
0
.8

2
7
6
±

0
.1

7
◦

0
.2

8
2
6
±

0
.1

8
0
.2

8
1
8
±

0
.1

9
0
.2

4
6
9
±

0
.2

0
0
.2

3
9
6
±

0
.1

9
0
.4

2
3
4
±

0
.1

4

p
ri

m
a
ry

-t
u
m

o
r

0
.4

2
0
9
±

0
.2

2
0
.8

1
6
2
±

0
.1

6
◦

0
.2

7
4
7
±

0
.1

4
0
.2

7
5
2
±

0
.1

4
0
.2

6
3
1
±

0
.1

6
0
.2

5
8
1
±

0
.1

6
0
.2

8
4
7
±

0
.1

1

io
n
o
sp

h
e
re

1
.6

8
1
0
±

1
.3

2
3
.7

1
8
2
±

1
.0

0
◦

2
.1

3
1
6
±

1
.1

3
1
.9

5
2
4
±

1
.2

2
1
.4

0
3
5
±

1
.4

5
1
.4

0
8
5
±

1
.4

6
2
.7

1
3
3
±

0
.9

5
◦

h
o
rs

e
-c

o
li
c
.O

R
IG

0
.4

7
5
0
±

0
.1

8
0
.7

8
5
2
±

0
.1

0
◦

0
.1

9
1
0
±

0
.1

4
•

0
.1

4
1
2
±

0
.1

3
•

0
.0

9
1
8
±

0
.1

2
•

0
.1

0
1
4
±

0
.1

4
•

0
.1

8
1
2
±

0
.1

1
•

h
o
rs

e
-c

o
li
c

0
.4

0
2
4
±

0
.2

3
0
.7

5
7
4
±

0
.1

8
◦

0
.2

5
6
8
±

0
.1

6
0
.3

1
6
0
±

0
.1

9
0
.1

5
8
8
±

0
.1

9
•

0
.1

6
0
3
±

0
.1

9
•

0
.2

3
0
5
±

0
.0

9
•

v
o
te

0
.4

5
2
4
±

0
.1

7
0
.4

0
7
6
±

0
.0

2
0
.1

5
3
6
±

0
.0

5
•

0
.0

7
8
7
±

0
.0

2
•

0
.0

3
2
4
±

0
.0

3
•

0
.0

3
5
8
±

0
.0

4
•

0
.0

1
0
0
±

0
.0

0
•

a
rr

h
y
th

m
ia

2
5
.8

5
3
7
±

1
6
.6

0
6
1
.6

4
5
0
±

2
0
.6

0
◦

3
0
.9

6
9
4
±

1
6
.5

3
3
1
.3

0
4
8
±

1
7
.1

4
2
9
.5

0
6
2
±

1
9
.1

0
2
9
.3

2
5
0
±

1
9
.2

5
3
5
.0

9
4
7
±

1
3
.7

6

b
a
la

n
c
e
-s

c
a
le

0
.2

7
1
4
±

0
.1

6
0
.8

7
0
2
±

0
.1

1
◦

0
.3

3
2
4
±

0
.1

0
0
.3

1
6
0
±

0
.1

1
0
.3

7
7
4
±

0
.1

8
0
.3

7
0
2
±

0
.1

8
0
.5

0
4
6
±

0
.1

3
◦

so
y
b

e
a
n

0
.3

0
7
2
±

0
.0

7
1
.7

9
1
0
±

0
.1

1
◦

0
.2

4
7
3
±

0
.3

0
0
.2

2
3
6
±

0
.3

0
0
.1

7
8
6
±

0
.2

9
0
.1

7
8
7
±

0
.3

0
1
.0

7
4
3
±

0
.3

9
◦

c
re

d
it

-r
a
ti

n
g

0
.8

5
2
5
±

0
.4

8
1
.7

1
4
0
±

0
.3

8
◦

0
.6

7
2
8
±

0
.4

1
0
.4

9
4
0
±

0
.3

9
0
.2

1
7
6
±

0
.3

5
•

0
.2

1
9
5
±

0
.3

5
•

0
.2

5
9
6
±

0
.4

4
•

w
is

c
o
n
si

n
-b

re
a
st

-c
a
n
c
e
r

0
.3

3
9
3
±

0
.2

3
1
.1

4
6
6
±

0
.1

8
◦

0
.3

9
4
8
±

0
.2

1
0
.3

9
9
5
±

0
.2

4
0
.3

4
5
9
±

0
.2

8
0
.3

3
9
0
±

0
.2

8
0
.6

1
7
1
±

0
.1

8
◦

p
im

a
-d

ia
b

e
te

s
1
.0

4
8
0
±

0
.7

5
2
.2

6
7
2
±

0
.4

4
◦

0
.8

3
2
8
±

0
.7

0
0
.7

3
9
0
±

0
.7

3
0
.5

1
7
0
±

0
.7

8
0
.5

5
2
0
±

0
.8

2
0
.8

5
9
0
±

0
.6

7

v
e
h
ic

le
1
.3

6
9
2
±

1
.2

7
5
.7

8
6
0
±

1
.3

8
◦

2
.4

6
0
6
±

1
.1

8
2
.4

5
1
8
±

1
.2

3
2
.2

2
0
1
±

1
.3

8
2
.2

0
8
6
±

1
.3

7
2
.8

1
7
5
±

1
.0

9
◦

a
n
n
e
a
l.
O

R
IG

0
.3

4
2
1
±

0
.1

5
2
.8

9
9
7
±

0
.3

2
◦

1
.4

3
7
6
±

0
.3

1
◦

1
.3

9
8
7
±

0
.3

1
◦

1
.2

1
1
7
±

1
.1

5
◦

1
.2

1
0
3
±

1
.1

4
◦

2
.9

1
0
2
±

0
.8

3
◦

a
n
n
e
a
l

0
.4

4
0
5
±

0
.3

0
2
.7

5
8
0
±

0
.0

9
◦

1
.4

2
6
6
±

0
.6

3
◦

1
.3

3
2
9
±

0
.6

5
◦

1
.3

0
6
3
±

0
.8

3
◦

1
.3

1
0
7
±

0
.8

4
◦

1
.7

1
2
9
±

0
.4

3
◦

v
o
w

e
l

0
.6

3
5
1
±

0
.0

2
9
.8

9
4
0
±

0
.2

2
◦

2
.7

7
5
1
±

3
.0

4
◦

2
.6

5
1
0
±

3
.0

4
2
.3

9
5
8
±

3
.1

3
2
.3

9
4
1
±

3
.1

3
8
.8

1
2
0
±

1
.0

4
◦

g
e
rm

a
n
-c

re
d
it

0
.5

2
7
5
±

0
.3

2
2
.2

0
7
2
±

0
.4

2
◦

0
.5

4
6
7
±

0
.4

8
0
.4

4
7
6
±

0
.4

8
0
.1

8
5
2
±

0
.3

1
•

0
.1

8
5
0
±

0
.3

1
•

0
.4

4
9
5
±

0
.9

6

se
g
m

e
n
t

1
.6

0
0
2
±

1
.7

8
2
1
.7

3
9
9
±

2
.1

7
◦

6
.4

9
0
8
±

4
.6

1
◦

6
.2

2
0
3
±

4
.6

3
◦

6
.3

2
1
3
±

5
.2

5
◦

6
.2

9
2
1
±

5
.2

1
◦

1
1
.5

5
1
4
±

3
.5

6
◦

sp
li
c
e

4
.8

4
6
9
±

3
.5

2
1
6
.8

9
8
6
±

3
.4

6
◦

7
.5

6
4
4
±

1
.8

8
◦

7
.3

9
9
8
±

1
.8

9
8
.1

3
7
3
±

1
.3

1
◦

8
.1

3
3
2
±

1
.3

1
◦

1
1
.0

2
3
1
±

2
.8

0
◦

k
r-

v
s-

k
p

0
.4

3
5
1
±

0
.2

3
5
.4

6
6
1
±

0
.2

7
◦

2
.2

9
7
8
±

0
.8

1
◦

2
.2

1
3
0
±

0
.8

0
◦

2
.2

1
5
3
±

0
.9

0
◦

2
.1

9
0
3
±

0
.8

9
◦

3
.2

2
2
6
±

0
.3

8
◦

h
y
p

o
th

y
ro

id
0
.9

7
8
0
±

0
.8

2
8
.6

4
0
3
±

1
.1

1
◦

1
.3

1
4
2
±

1
.2

8
1
.2

3
0
6
±

1
.3

5
1
.0

1
4
5
±

1
.3

1
0
.9

9
5
1
±

1
.2

6
4
.2

9
3
4
±

1
.3

5
◦

si
ck

1
.6

1
7
6
±

1
.8

8
9
.9

2
1
8
±

1
.6

5
◦

4
.4

4
3
3
±

2
.3

2
◦

4
.2

9
4
0
±

2
.2

9
◦

4
.1

3
0
0
±

3
.3

0
◦

3
.9

7
9
7
±

3
.1

4
◦

7
.6

8
1
6
±

2
.3

2
◦

w
a
v
e
fo

rm
5
1
.0

9
6
9
±

3
4
.9

0
1
9
3
.5

2
0
7
±

2
7
.6

5
◦

5
8
.4

2
3
2
±

2
8
.5

1
5
3
.3

1
9
3
±

2
7
.6

2
4
9
.0

6
2
3
±

2
9
.4

1
4
8
.1

4
7
6
±

2
8
.7

3
5
9
.7

6
8
6
±

1
7
.0

7

o
p
td

ig
it

s
1
4
.2

0
6
3
±

1
6
.7

8
1
5
5
.5

3
1
1
±

2
2
.0

0
◦

3
8
.7

1
7
2
±

4
0
.1

7
3
6
.7

6
2
0
±

4
0
.0

3
3
4
.3

2
4
7
±

4
0
.0

0
3
4
.2

8
3
1
±

3
9
.9

4
9
2
.4

3
5
2
±

2
9
.0

1
◦

m
u
sh

ro
o
m

0
.8

9
2
3
±

0
.3

1
5
.4

8
4
2
±

0
.1

8
◦

1
.0

5
1
3
±

0
.3

2
0
.9

6
9
4
±

0
.3

4
0
.2

7
6
7
±

0
.0

1
•

0
.2

7
6
4
±

0
.0

1
•

0
.9

9
5
1
±

0
.3

4

p
e
n
d
ig

it
s

5
.4

5
0
1
±

0
.7

0
1
1
3
.4

1
7
7
±

3
.4

4
◦

2
9
.0

1
8
6
±

2
8
.1

0
◦

2
7
.5

0
9
6
±

2
8
.0

1
◦

2
6
.5

3
5
4
±

2
9
.3

3
◦

2
6
.7

7
0
8
±

2
9
.6

2
◦

7
6
.4

1
3
6
±

4
.4

8
◦

le
tt

e
r

1
7
.7

4
1
4
±

1
.3

9
3
0
1
.9

6
7
9
±

9
.5

7
◦

3
2
.9

6
1
5
±

5
6
.1

3
3
0
.0

4
9
5
±

6
0
.0

3
2
5
.4

5
5
5
±

5
7
.8

0
2
5
.5

5
1
9
±

5
8
.1

6
3
5
8
.9

0
3
0
±

4
0
.1

9
◦

A
v
e
ra

g
e

3
.4

7
8
0

2
3
.5

2
0
4

5
.7

7
6
9

5
.4

5
1
8

5
.0

2
5
8

4
.9

9
9
2

1
7
.2

5
6
3

◦,
•

st
a
ti

st
ic

a
ll
y

si
g
n
ifi

c
a
n
t

im
p
ro

v
e
m

e
n
t

o
r

d
e
g
ra

d
a
ti

o
n

83

T
ab

le
4.

22
:

N
u

m
b

er
o
f

2
-F

o
ld

C
ro

ss
-v

a
li

d
a
ti

o
n

R
u

n
s

o
f

T
h

re
e

M
et

h
o
d
s

fo
r

J
4
8

D
a
ta

se
t

G
P

O
G

ri
d
S
e
a
rc

h
R

S
(2

5
)

R
S
(2

0
)

R
S
(1

5
)

R
S
(1

0
)

R
S
(5

)

la
b

o
r

1
1
.4

1
0
0
±

3
.4

5
4
0
0
.0

0
±

0
.0

0
◦

2
5
.0

0
±

0
.0

0
◦

2
0
.0

0
±

0
.0

0
◦

1
5
.0

0
±

0
.0

0
◦

1
5
.0

0
±

0
.0

0
◦

5
.0

0
±

0
.0

0
•

z
o
o

1
0
.0

7
0
0
±

0
.7

0
4
0
0
.0

0
±

0
.0

0
◦

2
5
.0

0
±

0
.0

0
◦

2
0
.0

0
±

0
.0

0
◦

1
5
.0

0
±

0
.0

0
◦

1
5
.0

0
±

0
.0

0
◦

5
.0

0
±

0
.0

0
•

ly
m

p
h
o
g
ra

p
h
y

1
1
.9

3
0
0
±

3
.6

2
4
0
0
.0

0
±

0
.0

0
◦

2
5
.0

0
±

0
.0

0
◦

2
0
.0

0
±

0
.0

0
◦

1
5
.0

0
±

0
.0

0
◦

1
5
.0

0
±

0
.0

0
◦

5
.0

0
±

0
.0

0
•

ir
is

1
0
.3

6
0
0
±

1
.3

1
4
0
0
.0

0
±

0
.0

0
◦

2
5
.0

0
±

0
.0

0
◦

2
0
.0

0
±

0
.0

0
◦

1
5
.0

0
±

0
.0

0
◦

1
5
.0

0
±

0
.0

0
◦

5
.0

0
±

0
.0

0
•

h
e
p
a
ti

ti
s

1
8
.9

2
0
0
±

1
0
.7

6
4
0
0
.0

0
±

0
.0

0
◦

2
5
.0

0
±

0
.0

0
2
0
.0

0
±

0
.0

0
1
5
.0

0
±

0
.0

0
1
5
.0

0
±

0
.0

0
5
.0

0
±

0
.0

0
•

a
u
to

s
1
0
.2

0
0
0
±

0
.6

7
4
0
0
.0

0
±

0
.0

0
◦

2
5
.0

0
±

0
.0

0
◦

2
0
.0

0
±

0
.0

0
◦

1
5
.0

0
±

0
.0

0
◦

1
5
.0

0
±

0
.0

0
◦

5
.0

0
±

0
.0

0
•

so
n
a
r

1
4
.3

9
0
0
±

4
.7

8
4
0
0
.0

0
±

0
.0

0
◦

2
5
.0

0
±

0
.0

0
◦

2
0
.0

0
±

0
.0

0
◦

1
5
.0

0
±

0
.0

0
1
5
.0

0
±

0
.0

0
5
.0

0
±

0
.0

0
•

G
la

ss
1
3
.4

2
0
0
±

4
.3

3
4
0
0
.0

0
±

0
.0

0
◦

2
5
.0

0
±

0
.0

0
◦

2
0
.0

0
±

0
.0

0
◦

1
5
.0

0
±

0
.0

0
1
5
.0

0
±

0
.0

0
5
.0

0
±

0
.0

0
•

a
u
d
io

lo
g
y

1
0
.3

8
0
0
±

1
.2

0
4
0
0
.0

0
±

0
.0

0
◦

2
5
.0

0
±

0
.0

0
◦

2
0
.0

0
±

0
.0

0
◦

1
5
.0

0
±

0
.0

0
◦

1
5
.0

0
±

0
.0

0
◦

5
.0

0
±

0
.0

0
•

h
e
a
rt

-s
ta

tl
o
g

1
5
.3

8
0
0
±

6
.2

4
4
0
0
.0

0
±

0
.0

0
◦

2
5
.0

0
±

0
.0

0
◦

2
0
.0

0
±

0
.0

0
◦

1
5
.0

0
±

0
.0

0
1
5
.0

0
±

0
.0

0
5
.0

0
±

0
.0

0
•

b
re

a
st

-c
a
n
c
e
r

2
0
.3

4
0
0
±

8
.4

8
4
0
0
.0

0
±

0
.0

0
◦

2
5
.0

0
±

0
.0

0
2
0
.0

0
±

0
.0

0
1
5
.0

0
±

0
.0

0
1
5
.0

0
±

0
.0

0
5
.0

0
±

0
.0

0
•

h
u
n
g
a
ri

a
n
-1

4
-h

e
a
rt

-d
is

e
a
se

1
6
.1

7
0
0
±

7
.6

2
4
0
0
.0

0
±

0
.0

0
◦

2
5
.0

0
±

0
.0

0
◦

2
0
.0

0
±

0
.0

0
1
5
.0

0
±

0
.0

0
1
5
.0

0
±

0
.0

0
5
.0

0
±

0
.0

0
•

c
le

v
e
la

n
d
-1

4
-h

e
a
rt

-d
is

e
a
se

1
5
.1

8
0
0
±

8
.6

4
4
0
0
.0

0
±

0
.0

0
◦

2
5
.0

0
±

0
.0

0
◦

2
0
.0

0
±

0
.0

0
1
5
.0

0
±

0
.0

0
1
5
.0

0
±

0
.0

0
5
.0

0
±

0
.0

0
•

e
c
o
li

1
2
.7

9
0
0
±

3
.9

7
4
0
0
.0

0
±

0
.0

0
◦

2
5
.0

0
±

0
.0

0
◦

2
0
.0

0
±

0
.0

0
◦

1
5
.0

0
±

0
.0

0
1
5
.0

0
±

0
.0

0
5
.0

0
±

0
.0

0
•

p
ri

m
a
ry

-t
u
m

o
r

1
5
.3

4
0
0
±

5
.7

5
4
0
0
.0

0
±

0
.0

0
◦

2
5
.0

0
±

0
.0

0
◦

2
0
.0

0
±

0
.0

0
◦

1
5
.0

0
±

0
.0

0
1
5
.0

0
±

0
.0

0
5
.0

0
±

0
.0

0
•

io
n
o
sp

h
e
re

1
4
.9

3
0
0
±

5
.4

3
4
0
0
.0

0
±

0
.0

0
◦

2
5
.0

0
±

0
.0

0
◦

2
0
.0

0
±

0
.0

0
◦

1
5
.0

0
±

0
.0

0
1
5
.0

0
±

0
.0

0
5
.0

0
±

0
.0

0
•

h
o
rs

e
-c

o
li
c
.O

R
IG

2
2
.6

2
0
0
±

9
.2

3
4
0
0
.0

0
±

0
.0

0
◦

2
5
.0

0
±

0
.0

0
2
0
.0

0
±

0
.0

0
1
5
.0

0
±

0
.0

0
•

1
5
.0

0
±

0
.0

0
•

5
.0

0
±

0
.0

0
•

h
o
rs

e
-c

o
li
c

1
3
.7

3
0
0
±

5
.0

2
4
0
0
.0

0
±

0
.0

0
◦

2
5
.0

0
±

0
.0

0
◦

2
0
.0

0
±

0
.0

0
◦

1
5
.0

0
±

0
.0

0
1
5
.0

0
±

0
.0

0
5
.0

0
±

0
.0

0
•

v
o
te

2
8
.4

7
0
0
±

8
.8

1
4
0
0
.0

0
±

0
.0

0
◦

2
5
.0

0
±

0
.0

0
2
0
.0

0
±

0
.0

0
•

1
5
.0

0
±

0
.0

0
•

1
5
.0

0
±

0
.0

0
•

5
.0

0
±

0
.0

0
•

a
rr

h
y
th

m
ia

1
5
.7

5
0
0
±

4
.7

5
4
0
0
.0

0
±

0
.0

0
◦

2
5
.0

0
±

0
.0

0
◦

2
0
.0

0
±

0
.0

0
◦

1
5
.0

0
±

0
.0

0
1
5
.0

0
±

0
.0

0
5
.0

0
±

0
.0

0
•

b
a
la

n
c
e
-s

c
a
le

1
2
.1

5
0
0
±

3
.6

9
4
0
0
.0

0
±

0
.0

0
◦

2
5
.0

0
±

0
.0

0
◦

2
0
.0

0
±

0
.0

0
◦

1
5
.0

0
±

0
.0

0
◦

1
5
.0

0
±

0
.0

0
◦

5
.0

0
±

0
.0

0
•

so
y
b

e
a
n

1
2
.2

3
0
0
±

2
.3

4
4
0
0
.0

0
±

0
.0

0
◦

2
5
.0

0
±

0
.0

0
◦

2
0
.0

0
±

0
.0

0
◦

1
5
.0

0
±

0
.0

0
◦

1
5
.0

0
±

0
.0

0
◦

5
.0

0
±

0
.0

0
•

c
re

d
it

-r
a
ti

n
g

2
8
.6

9
0
0
±

1
0
.3

0
4
0
0
.0

0
±

0
.0

0
◦

2
5
.0

0
±

0
.0

0
2
0
.0

0
±

0
.0

0
•

1
5
.0

0
±

0
.0

0
•

1
5
.0

0
±

0
.0

0
•

5
.0

0
±

0
.0

0
•

w
is

c
o
n
si

n
-b

re
a
st

-c
a
n
c
e
r

1
3
.4

7
0
0
±

5
.2

1
4
0
0
.0

0
±

0
.0

0
◦

2
5
.0

0
±

0
.0

0
◦

2
0
.0

0
±

0
.0

0
◦

1
5
.0

0
±

0
.0

0
1
5
.0

0
±

0
.0

0
5
.0

0
±

0
.0

0
•

p
im

a
-d

ia
b

e
te

s
2
0
.7

6
0
0
±

7
.6

7
4
0
0
.0

0
±

0
.0

0
◦

2
5
.0

0
±

0
.0

0
2
0
.0

0
±

0
.0

0
1
5
.0

0
±

0
.0

0
•

1
5
.0

0
±

0
.0

0
•

5
.0

0
±

0
.0

0
•

v
e
h
ic

le
1
4
.4

4
0
0
±

5
.0

5
4
0
0
.0

0
±

0
.0

0
◦

2
5
.0

0
±

0
.0

0
◦

2
0
.0

0
±

0
.0

0
◦

1
5
.0

0
±

0
.0

0
1
5
.0

0
±

0
.0

0
5
.0

0
±

0
.0

0
•

a
n
n
e
a
l.
O

R
IG

1
0
.5

1
0
0
±

1
.2

8
4
0
0
.0

0
±

0
.0

0
◦

2
5
.0

0
±

0
.0

0
◦

2
0
.0

0
±

0
.0

0
◦

1
5
.0

0
±

0
.0

0
◦

1
5
.0

0
±

0
.0

0
◦

5
.0

0
±

0
.0

0
•

a
n
n
e
a
l

1
0
.1

3
0
0
±

0
.7

1
4
0
0
.0

0
±

0
.0

0
◦

2
5
.0

0
±

0
.0

0
◦

2
0
.0

0
±

0
.0

0
◦

1
5
.0

0
±

0
.0

0
◦

1
5
.0

0
±

0
.0

0
◦

5
.0

0
±

0
.0

0
•

v
o
w

e
l

1
0
.0

4
0
0
±

0
.2

4
4
0
0
.0

0
±

0
.0

0
◦

2
5
.0

0
±

0
.0

0
◦

2
0
.0

0
±

0
.0

0
◦

1
5
.0

0
±

0
.0

0
◦

1
5
.0

0
±

0
.0

0
◦

5
.0

0
±

0
.0

0
•

g
e
rm

a
n
-c

re
d
it

1
7
.2

4
0
0
±

6
.7

2
4
0
0
.0

0
±

0
.0

0
◦

2
5
.0

0
±

0
.0

0
◦

2
0
.0

0
±

0
.0

0
1
5
.0

0
±

0
.0

0
1
5
.0

0
±

0
.0

0
5
.0

0
±

0
.0

0
•

se
g
m

e
n
t

1
2
.0

8
0
0
±

3
.1

6
4
0
0
.0

0
±

0
.0

0
◦

2
5
.0

0
±

0
.0

0
◦

2
0
.0

0
±

0
.0

0
◦

1
5
.0

0
±

0
.0

0
◦

1
5
.0

0
±

0
.0

0
◦

5
.0

0
±

0
.0

0
•

sp
li
c
e

1
3
.2

1
0
0
±

3
.8

5
4
0
0
.0

0
±

0
.0

0
◦

2
5
.0

0
±

0
.0

0
◦

2
0
.0

0
±

0
.0

0
◦

1
5
.0

0
±

0
.0

0
1
5
.0

0
±

0
.0

0
5
.0

0
±

0
.0

0
•

k
r-

v
s-

k
p

1
0
.7

7
0
0
±

1
.7

0
4
0
0
.0

0
±

0
.0

0
◦

2
5
.0

0
±

0
.0

0
◦

2
0
.0

0
±

0
.0

0
◦

1
5
.0

0
±

0
.0

0
◦

1
5
.0

0
±

0
.0

0
◦

5
.0

0
±

0
.0

0
•

h
y
p

o
th

y
ro

id
1
8
.4

7
0
0
±

5
.0

6
4
0
0
.0

0
±

0
.0

0
◦

2
5
.0

0
±

0
.0

0
◦

2
0
.0

0
±

0
.0

0
1
5
.0

0
±

0
.0

0
1
5
.0

0
±

0
.0

0
5
.0

0
±

0
.0

0
•

si
ck

2
0
.5

6
0
0
±

6
.5

9
4
0
0
.0

0
±

0
.0

0
◦

2
5
.0

0
±

0
.0

0
2
0
.0

0
±

0
.0

0
1
5
.0

0
±

0
.0

0
•

1
5
.0

0
±

0
.0

0
•

5
.0

0
±

0
.0

0
•

w
a
v
e
fo

rm
1
9
.3

6
0
0
±

6
.5

9
4
0
0
.0

0
±

0
.0

0
◦

2
5
.0

0
±

0
.0

0
◦

2
0
.0

0
±

0
.0

0
1
5
.0

0
±

0
.0

0
1
5
.0

0
±

0
.0

0
5
.0

0
±

0
.0

0
•

o
p
td

ig
it

s
1
3
.3

9
0
0
±

3
.7

3
4
0
0
.0

0
±

0
.0

0
◦

2
5
.0

0
±

0
.0

0
◦

2
0
.0

0
±

0
.0

0
◦

1
5
.0

0
±

0
.0

0
1
5
.0

0
±

0
.0

0
5
.0

0
±

0
.0

0
•

m
u
sh

ro
o
m

2
2
.7

7
0
0
±

2
.9

2
4
0
0
.0

0
±

0
.0

0
◦

2
5
.0

0
±

0
.0

0
◦

2
0
.0

0
±

0
.0

0
•

1
5
.0

0
±

0
.0

0
•

1
5
.0

0
±

0
.0

0
•

5
.0

0
±

0
.0

0
•

p
e
n
d
ig

it
s

1
1
.2

2
0
0
±

2
.1

2
4
0
0
.0

0
±

0
.0

0
◦

2
5
.0

0
±

0
.0

0
◦

2
0
.0

0
±

0
.0

0
◦

1
5
.0

0
±

0
.0

0
◦

1
5
.0

0
±

0
.0

0
◦

5
.0

0
±

0
.0

0
•

le
tt

e
r

1
0
.8

7
0
0
±

1
.1

8
4
0
0
.0

0
±

0
.0

0
◦

2
5
.0

0
±

0
.0

0
◦

2
0
.0

0
±

0
.0

0
◦

1
5
.0

0
±

0
.0

0
◦

1
5
.0

0
±

0
.0

0
◦

5
.0

0
±

0
.0

0
•

A
v
e
ra

g
e

1
5
.1

0
3
5

4
0
0
.0

0
2
5
.0

0
2
0
.0

0
1
5
.0

0
1
5
.0

0
5
.0

0

◦,
•

st
a
ti

st
ic

a
ll
y

si
g
n
ifi

c
a
n
t

im
p
ro

v
e
m

e
n
t

o
r

d
e
g
ra

d
a
ti

o
n

84

T
ab

le
4.

23
:

N
u

m
b

er
o
f

1
0
-F

o
ld

C
ro

ss
-v

a
li
d

a
ti

o
n

R
u

n
s

o
f

T
h

re
e

M
et

h
o
d

s
fo

r
J
4
8

D
a
ta

se
t

G
P

O
G

ri
d
S
e
a
rc

h
R

S
(2

5
)

R
S
(2

0
)

R
S
(1

5
)

R
S
(1

0
)

R
S
(5

)

la
b

o
r

3
.1

5
0
0
±

6
.6

6
1
.3

0
±

4
.5

3
1
1
.7

8
±

6
.7

0
◦

1
2
.9

5
±

8
.8

5
◦

6
.9

5
±

9
.4

4
6
.7

8
±

9
.2

5
1
6
.1

1
±

7
.6

3
◦

z
o
o

4
.2

9
±

5
.7

5
0
.0

0
±

0
.
•

3
.7

9
±

6
.9

2
3
.7

9
±

6
.9

2
3
.6

1
±

6
.8

9
3
.6

1
±

6
.8

9
2
2
.8

3
±

2
.6

3
◦

ly
m

p
h
o
g
ra

p
h
y

3
.8

9
±

7
.2

4
2
.5

1
±

5
.7

5
1
1
.5

0
±

6
.8

6
◦

1
2
.3

4
±

8
.3

8
◦

1
0
.0

8
±

1
0
.1

1
9
.9

0
±

9
.8

7
1
9
.1

2
±

7
.3

2
◦

ir
is

2
.9

6
±

5
.5

4
0
.1

2
±

1
.2

0
8
.2

9
±

4
.4

8
◦

7
.6

8
±

4
.4

6
0
.7

9
±

3
.5

5
0
.7

9
±

3
.5

5
1
1
.1

0
±

4
.6

0
◦

h
e
p
a
ti

ti
s

8
.6

4
±

1
1
.1

8
4
.8

9
±

1
0
.3

5
1
4
.3

2
±

8
.1

9
1
2
.5

6
±

8
.0

5
5
.0

6
±

9
.0

3
5
.5

4
±

9
.9

8
1
2
.6

1
±

1
0
.7

4

a
u
to

s
0
.2

7
±

1
.5

4
0
.1

8
±

1
.2

7
1
4
.0

1
±

6
.5

3
◦

1
4
.3

7
±

7
.2

7
◦

1
7
.1

1
±

1
0
.0

1
◦

1
6
.6

0
±

9
.9

5
◦

2
4
.3

0
±

6
.6

7
◦

so
n
a
r

1
1
.2

7
±

1
2
.3

3
2
.0

7
±

5
.5

7
•

1
1
.6

9
±

9
.8

2
1
1
.6

8
±

1
0
.6

0
9
.2

1
±

1
0
.0

9
8
.9

6
±

9
.9

0
1
8
.7

9
±

6
.7

8

G
la

ss
5
.4

8
±

7
.1

6
4
.7

9
±

6
.4

0
9
.9

1
±

7
.7

4
9
.8

8
±

7
.7

3
1
0
.3

6
±

9
.2

8
1
0
.0

5
±

9
.1

6
1
9
.9

5
±

6
.9

3
◦

a
u
d
io

lo
g
y

0
.3

6
±

1
.7

7
0
.2

3
±

1
.6

6
3
.9

0
±

6
.8

9
3
.8

8
±

6
.8

6
1
.6

7
±

6
.1

1
1
.5

4
±

5
.6

8
2
4
.5

4
±

7
.1

2
◦

h
e
a
rt

-s
ta

tl
o
g

6
.4

3
±

9
.1

1
4
.0

2
±

7
.5

4
1
3
.4

2
±

6
.2

7
◦

1
4
.6

9
±

7
.9

8
◦

1
4
.9

2
±

1
1
.0

3
1
5
.2

8
±

1
1
.4

2
1
9
.6

5
±

1
0
.3

2
◦

b
re

a
st

-c
a
n
c
e
r

9
.0

1
±

1
3
.6

4
2
.6

2
±

5
.7

5
1
1
.8

8
±

1
2
.7

5
1
1
.1

4
±

1
3
.5

7
4
.2

8
±

1
1
.3

2
5
.±

1
3
.1

3
7
.9

3
±

1
2
.2

5

h
u
n
g
a
ri

a
n
-1

4
-h

e
a
rt

-d
is

e
a
se

6
.5

8
±

1
1
.6

9
6
.6

5
±

1
4
.3

4
1
8
.2

3
±

1
6
.7

9
1
0
.7

9
±

1
1
.2

0
7
.4

9
±

1
1
.5

6
8
.5

3
±

1
4
.1

5
1
4
.2

1
±

1
2
.6

5

c
le

v
e
la

n
d
-1

4
-h

e
a
rt

-d
is

e
a
se

3
.8

3
±

6
.5

8
2
.8

3
±

5
.1

7
1
1
.0

7
±

6
.7

6
◦

1
1
.4

1
±

8
.3

6
◦

8
.6

4
±

9
.1

5
8
.6

4
±

9
.1

5
1
4
.1

9
±

1
4
.3

6

e
c
o
li

5
.4

0
±

8
.3

6
5
.3

1
±

7
.1

0
1
0
.4

7
±

8
.0

5
1
0
.7

9
±

8
.7

1
9
.5

6
±

9
.3

6
9
.2

8
±

9
.1

0
1
9
.1

5
±

5
.8

9
◦

p
ri

m
a
ry

-t
u
m

o
r

6
.6

8
±

6
.5

5
8
.0

9
±

7
.1

3
1
2
.2

3
±

7
.3

6
1
2
.3

0
±

7
.3

4
1
1
.6

1
±

8
.0

6
1
1
.6

4
±

8
.4

8
1
6
.6

0
±

6
.2

9
◦

io
n
o
sp

h
e
re

9
.4

0
±

9
.0

8
3
.2

4
±

6
.4

0
1
3
.7

9
±

7
.3

1
1
3
.1

2
±

7
.7

3
8
.6

0
±

1
0
.2

4
8
.6

7
±

1
0
.4

1
1
9
.4

0
±

6
.8

0
◦

h
o
rs

e
-c

o
li
c
.O

R
IG

8
.4

1
±

8
.4

0
2
.8

4
±

5
.6

1
9
.0

5
±

1
1
.1

3
5
.5

7
±

8
.8

1
3
.6

2
±

8
.8

6
4
.4

2
±

1
0
.8

9
1
2
.7

6
±

8
.9

7

h
o
rs

e
-c

o
li
c

8
.2

0
±

1
0
.7

0
4
.±

8
.8

1
1
0
.6

7
±

9
.0

6
1
3
.7

8
±

1
0
.9

9
5
.4

8
±

9
.1

5
5
.6

2
±

9
.5

0
1
0
.9

4
±

3
.8

9

v
o
te

4
.5

0
±

5
.1

1
0
.3

6
±

1
.7

7
•

1
5
.8

4
±

6
.6

1
◦

9
.1

0
±

1
.
◦

0
.8

1
±

3
.1

6
1
.0

7
±

5
.0

3
0
.±

0
.
•

a
rr

h
y
th

m
ia

1
1
.3

4
±

8
.4

9
9
.6

6
±

9
.5

7
1
3
.1

5
±

8
.0

2
1
3
.4

0
±

8
.4

0
1
2
.7

5
±

9
.1

9
1
2
.6

9
±

9
.2

1
1
6
.1

6
±

7
.4

5

b
a
la

n
c
e
-s

c
a
le

2
.4

0
±

4
.6

8
2
.0

5
±

4
.2

3
1
1
.7

9
±

4
.5

6
◦

1
1
.5

1
±

4
.7

3
◦

1
4
.2

0
±

8
.0

6
◦

1
3
.9

9
±

8
.0

5
◦

2
3
.0

8
±

5
.4

1
◦

so
y
b

e
a
n

0
.0

9
±

0
.9

0
0
.2

3
±

1
.6

6
1
.7

5
±

5
.2

3
1
.7

5
±

5
.2

3
1
.4

8
±

5
.0

8
1
.4

8
±

5
.0

8
1
9
.5

0
±

7
.0

2
◦

c
re

d
it

-r
a
ti

n
g

9
.2

5
±

1
2
.2

4
4
.9

1
±

8
.7

0
1
5
.8

8
±

1
3
.4

4
1
0
.7

8
±

1
0
.6

6
3
.4

1
±

8
.8

3
3
.4

3
±

8
.7

6
5
.6

7
±

1
1
.2

3

w
is

c
o
n
si

n
-b

re
a
st

-c
a
n
c
e
r

3
.6

4
±

6
.8

0
3
.7

5
±

6
.0

6
1
1
.1

2
±

7
.7

9
◦

1
1
.7

1
±

8
.4

4
◦

1
0
.3

7
±

1
0
.2

1
1
0
.0

6
±

1
0
.0

1
2
1
.5

2
±

6
.2

3
◦

p
im

a
-d

ia
b

e
te

s
1
4
.5

1
±

1
7
.4

5
5
.9

3
±

9
.9

6
1
5
.0

1
±

1
6
.9

4
1
2
.9

9
±

1
7
.0

9
9
.0

8
±

1
7
.8

4
9
.8

6
±

1
8
.8

6
1
6
.6

5
±

1
5
.2

4

v
e
h
ic

le
5
.0

9
±

7
.1

0
5
.7

2
±

7
.6

1
1
2
.1

7
±

6
.8

7
◦

1
2
.4

0
±

7
.1

3
◦

1
1
.4

4
±

7
.8

7
1
1
.3

6
±

7
.7

7
1
6
.4

6
±

6
.0

7
◦

a
n
n
e
a
l.
O

R
IG

0
.0

9
±

0
.9

0
0
.4

1
±

2
.0

7
9
.2

3
±

2
.1

4
◦

9
.2

3
±

2
.1

4
◦

7
.6

4
±

8
.0

7
◦

7
.6

4
±

8
.0

7
◦

2
3
.3

9
±

5
.6

7
◦

a
n
n
e
a
l

0
.6

3
±

2
.3

1
0
.±

0
.

1
1
.4

2
±

5
.8

7
◦

1
0
.8

7
±

6
.1

6
◦

1
1
.1

1
±

7
.9

1
◦

1
1
.1

1
±

7
.9

1
◦

1
8
.7

7
±

4
.3

2
◦

v
o
w

e
l

0
.0

0
±

0
.0

0
0
.0

0
±

0
.0

0
5
.5

5
±

8
.2

3
5
.5

5
±

8
.2

3
5
.2

4
±

8
.4

5
5
.2

4
±

8
.4

5
2
3
.6

7
±

2
.8

6
◦

g
e
rm

a
n
-c

re
d
it

3
.8

8
±

6
.0

3
3
.5

7
±

5
.8

4
5
.6

1
±

6
.7

6
4
.1

7
±

6
.4

7
1
.1

2
±

4
.1

5
1
.1

2
±

4
.1

5
8
.3

9
0
0
±

2
0
.8

7

se
g
m

e
n
t

0
.7

8
±

2
.9

3
1
.5

3
±

4
.0

0
9
.3

1
±

8
.5

3
◦

9
.2

7
±

8
.5

3
◦

9
.9

2
±

9
.6

1
◦

9
.8

7
±

9
.5

3
◦

2
0
.7

5
±

6
.5

3
◦

sp
li
c
e

6
.5

7
±

6
.3

6
7
.1

0
±

6
.4

0
1
5
.0

1
±

3
.2

5
◦

1
5
.0

1
±

3
.2

5
◦

1
6
.6

2
±

1
.8

0
◦

1
6
.6

2
±

1
.8

0
◦

2
5
.3

3
±

5
.5

7
◦

k
r-

v
s-

k
p

0
.2

7
±

1
.5

4
0
.3

5
±

2
.0

3
1
4
.6

8
±

6
.1

5
◦

1
4
.6

8
±

6
.1

5
◦

1
5
.1

8
±

6
.9

1
◦

1
5
.0

4
±

6
.9

0
◦

2
4
.5

5
±

3
.1

4
◦

h
y
p

o
th

y
ro

id
0
.8

2
±

4
.2

6
0
.9

7
±

3
.5

7
3
.8

9
±

7
.0

6
4
.0

6
±

7
.4

5
3
.4

9
±

7
.1

8
3
.3

9
±

6
.9

3
2
3
.0

4
±

5
.7

3
◦

si
ck

2
.2

3
±

7
.0

3
1
.8

1
±

4
.0

2
1
1
.3

9
±

6
.5

1
◦

1
1
.3

5
±

6
.5

2
◦

1
1
.5

4
±

1
0
.0

3
◦

1
1
.0

9
±

9
.6

7
◦

2
3
.5

0
±

5
.4

8
◦

w
a
v
e
fo

rm
1
0
.1

8
±

8
.5

8
1
2
.0

7
±

6
.5

9
1
1
.5

2
±

6
.7

9
1
0
.8

3
±

6
.6

4
1
0
.2

6
±

7
.0

7
1
0
.0

4
±

6
.8

8
1
3
.6

7
±

4
.1

7

o
p
td

ig
it

s
1
.1

9
±

3
.3

4
1
.9

0
±

4
.4

3
5
.9

5
±

8
.3

7
5
.9

5
±

8
.3

7
5
.8

4
±

8
.3

4
5
.8

4
±

8
.3

4
1
9
.0

7
±

5
.9

6
◦

m
u
sh

ro
o
m

1
.5

3
±

3
.4

0
0
.0

0
±

0
.0

0
7
.3

1
±

3
.8

7
◦

7
.3

4
±

4
.1

2
◦

0
.0

0
±

0
.0

0
0
.0

0
±

0
.0

0
1
0
.4

7
±

4
.0

3
◦

p
e
n
d
ig

it
s

0
.0

0
±

0
.0

0
0
.0

9
±

0
.9

0
6
.6

3
±

8
.7

3
◦

6
.6

3
±

8
.7

3
◦

6
.8

3
±

9
.1

9
◦

6
.8

3
±

9
.1

9
◦

2
3
.6

2
±

1
.2

5
◦

le
tt

e
r

0
.0

0
±

0
.0

0
0
.0

0
±

0
.0

0
0
.7

4
±

3
.6

5
0
.7

4
±

3
.6

5
0
.7

4
±

3
.6

5
0
.7

4
±

3
.6

5
2
3
.9

0
±

0
.4

4
◦

A
v
e
ra

g
e

4
.5

8
2
.9

5
1
0
.3

7
9
.8

0
7
.7

0
7
.7

3
1
7
.6

3

◦,
•

st
a
ti

st
ic

a
ll
y

si
g
n
ifi

c
a
n
t

im
p
ro

v
e
m

e
n
t

o
r

d
e
g
ra

d
a
ti

o
n

85

4.2.3 Classification Prediction Based on LogitBoost

In this section, we will optimize a logistic regression model. The Logit-

Boost algorithm derives from the earlier AdaBoost algorithm and converts the

exponential loss function of AdaBoost into minimizing the negative binomial

log-likelihood function. On the one hand, this modification makes the Boosting

algorithm less susceptible to noise. On the other hand, the AdaBoost algorithm

has no tuning parameters with the exception of the number of boosting rounds

while LogitBoost provides the important parameter “shrinkage”. The default

value of “shrinkage” is set to be 1.0 in WEKA, which means no shrinkage at all.

However, smaller “shrinkage” is often regarded as a good choice for classification

performance to prevent overfitting.

We will adopt trees as the base learner for LogitBoost. Lutz [31] states

that trees used as the base classifier in the LogitBoost algorithm can easily

“model different degrees of interaction” as well as “no variable transformations

are needed” [31]. The depth of the tree learner is another parameter to be

considered. Different depths will produce different predictive performance. As

the depth of the tree should be pre-fixed before the experiment, we will provide

the bounds on the tree depth in advance. The tree depth is initially set to

be 1, and increases with step size 1 to the max depth specified by the user.

In some cases, there exist different depths that have approximately the same

performance, such as accuracy or error rate. Under this kind of situation, we

will take the smaller tree to avoid a complex and big model.

We have talked about the two parameters for the boosted trees so far: the

shrinkage ν of the LogitBoost algorithm itself and the maximum depth dmax of

the tree in the base classifier. Given the range of each parameter respectively,

we thus form a grid with a number of points. Every point in the gird is a

pair of parameter settings, which we can apply in the experiment to build the

predictive model. The outcome of the model varies with the different pairs of

points. We should find the point with the “best” performance amongst these

points. This point corresponds to the optimal parameters, which is used for

building the model to classify the test data points.

Grid Search is a possible search method to find the optimum point in this

problem. It does a full search of the search area and evaluates all possible

86

points to decide the value of the optimum parameters. The main drawback

of this approach is that it may consume a large amount of time on useless

points. That would not have any effect on the final result even if we deleted

them. Consequently, the GPO algorithm becomes an alternative algorithm

to make up for the short comings in Grid Search, which not only provides

comparable performance, but also quickly jumps into promising areas if the

search space. This optimization approach helps to reduce the pressure when

running a large dataset from the viewpoint of computational cost. Random

Search, which randomly chooses points in the parameter space is another low-

cost alternative. The quality of this stochastic search method depends on the

number of points to be chosen. Hence, it is very important to specify the number

of the random grid locations appropriately in advance.

Before running the experiment to optimize the parameters of the Logit-

Boost algorithm, we should give the experimental set up. As stated, we will

optimize the pair of parameters (ν, dmax) that have a decisive role in determin-

ing the quality of the model. In terms of the shrinkage parameter ν , we specify

a wide range, from the minimum value 0.1 to the maximum value 1 with incre-

ment 0.1. It makes no sense to use values higher than 1 for this parameter. The

other parameter dmax refers to the maximum depth of the tree learner. Accord-

ing to practical experience, we set its value between 1 and 5. Hence, there are 10

× 5 grid locations in the parameter space. This is a relatively smaller grid than

the grids of the preceding algorithms. As a result, it is not a huge task to search

through all the locations of the grid using Grid Search. Hence, it appears that

the GPO algorithm does not have a clear advantage to outperform Grid Search

approach in this application. With regards to Random Search, the performance

and the training time varies with the number of grid locations specified by the

user. Generally, more points mean a higher probability of choosing a good point

as every point in the grid has the same opportunity to be chosen.

We will give comparative data on accuracy of the model, training time

and number of cross-validation runs amongst Grid Search, GPO and Random

Search, see Tables 4.24 to 4.27. In these tables, the GPO algorithm is always

regarded as the baseline algorithm. We will present the merits and drawbacks

of this optimization method from various points of view. Table 4.24 provides

87

T
ab

le
4.

24
:

P
er

ce
n
t

C
o
rr

ec
t

o
f

T
h

re
e

M
et

h
o
d

s
fo

r
L

o
g
it

B
o
o
st

D
a
ta

se
t

G
P

O
G

ri
d

S
e
a
rc

h
R

S
(2

5
)

R
S
(2

0
)

R
S
(1

5
)

R
S
(1

0
)

R
S
(5

)

la
b

o
r

8
6
.8

7
±

1
2
.6

1
8
7
.1

3
±

1
5
.3

6
8
5
.8

7
±

1
4
.3

1
8
6
.1

3
±

1
4
.2

4
8
6
.8

0
±

1
2
.6

3
8
6
.4

7
±

1
4
.5

9
8
6
.4

7
±

1
4
.2

0

z
o
o

7
4
.1

1
±

8
.9

1
7
4
.1

1
±

8
.9

1
7
4
.1

1
±

8
.9

1
7
4
.1

1
±

8
.9

1
7
4
.1

1
±

8
.9

1
7
4
.9

1
±

6
.2

7
7
2
.5

1
±

1
2
.4

7

ly
m

p
h
o
g
ra

p
h
y

8
2
.9

9
±

9
.1

0
8
2
.7

0
±

8
.7

2
8
2
.7

1
±

8
.8

6
8
2
.0

2
±

8
.8

7
8
1
.7

6
±

9
.6

9
8
1
.8

7
±

1
0
.2

3
8
2
.1

4
±

9
.4

2

ir
is

9
4
.1

3
±

5
.8

1
9
3
.8

7
±

6
.0

0
9
4
.5

3
±

5
.8

2
9
4
.0

0
±

5
.5

9
9
4
.8

0
±

5
.4

4
9
4
.4

0
±

5
.6

1
9
4
.1

3
±

5
.3

3

h
e
p
a
ti

ti
s

8
4
.3

9
±

9
.1

0
8
3
.5

0
±

8
.4

2
8
4
.8

2
±

8
.8

7
8
3
.8

9
±

8
.5

2
8
4
.5

4
±

8
.4

9
8
4
.2

9
±

8
.3

0
8
5
.0

7
±

8
.0

1

G
la

ss
7
9
.4

7
±

6
.8

6
7
9
.4

7
±

6
.5

5
7
9
.2

6
±

6
.4

1
7
9
.4

5
±

6
.3

5
7
9
.7

3
±

6
.4

7
7
9
.6

1
±

6
.2

5
7
9
.4

5
±

6
.5

1

a
u
d
io

lo
g
y

8
4
.5

6
±

7
.7

4
8
3
.4

7
±

7
.7

3
8
3
.7

5
±

7
.9

2
8
3
.6

6
±

7
.1

5
8
2
.4

4
±

7
.6

4
8
2
.3

4
±

7
.6

2
8
3
.4

0
±

8
.0

6

h
e
a
rt

-s
ta

tl
o
g

8
2
.8

1
±

6
.1

1
8
2
.7

4
±

6
.1

1
8
0
.2

2
±

6
.7

2
8
0
.0

0
±

6
.6

5
7
9
.5

6
±

6
.9

5
7
9
.2

6
±

7
.2

2
7
9
.5

6
±

5
.9

0

b
re

a
st

-c
a
n
c
e
r

6
9
.3

8
±

7
.2

2
6
8
.7

6
±

7
.9

8
6
8
.6

2
±

7
.7

2
6
8
.6

8
±

7
.7

2
6
7
.2

2
±

7
.1

1
6
8
.0

7
±

7
.5

4
6
8
.2

7
±

7
.4

1

h
u
n
g
a
ri

a
n

8
2
.0

5
±

6
.9

6
8
2
.0

4
±

6
.9

8
8
1
.2

9
±

7
.1

8
8
1
.0

1
±

6
.8

6
7
9
.3

7
±

7
.0

4
7
8
.8

3
±

6
.8

8
8
0
.2

0
±

6
.8

0

c
le

v
e
la

n
d

8
2
.3

8
±

7
.0

5
8
1
.7

2
±

7
.2

4
8
1
.1

2
±

7
.2

2
8
0
.6

0
±

7
.2

6
7
8
.8

7
±

7
.8

2
7
9
.3

3
±

7
.3

7
7
9
.9

8
±

6
.9

8

e
c
o
li

8
3
.3

4
±

5
.4

9
8
2
.9

8
±

5
.2

6
8
3
.2

9
±

5
.6

9
8
3
.4

1
±

5
.9

1
8
3
.7

1
±

5
.8

2
8
3
.6

4
±

5
.5

1
8
3
.9

4
±

5
.7

6

p
ri

m
a
ry

-t
u
m

o
r

4
8
.3

3
±

5
.5

7
4
8
.3

3
±

5
.5

7
4
6
.7

2
±

6
.0

6
4
6
.8

4
±

6
.0

7
4
3
.6

0
±

6
.4

7
•

4
3
.9

5
±

7
.0

2
4
1
.9

5
±

6
.9

4
•

io
n
o
sp

h
e
re

9
3
.2

8
±

3
.9

7
9
3
.0

5
±

4
.3

1
9
3
.5

1
±

3
.8

5
9
3
.4

0
±

4
.0

3
9
3
.1

7
±

4
.1

1
9
3
.1

7
±

4
.1

1
9
3
.2

3
±

4
.2

6

h
o
rs

e
-c

o
li
c
.O

R
IG

6
7
.3

3
±

4
.1

7
6
7
.0

1
±

4
.5

5
6
7
.9

8
±

3
.4

7
6
7
.9

8
±

3
.4

7
6
8
.1

5
±

3
.3

0
6
8
.1

5
±

3
.3

0
6
8
.1

5
±

3
.3

0

h
o
rs

e
-c

o
li
c

8
2
.8

2
±

6
.2

2
8
2
.7

7
±

6
.0

3
8
2
.8

3
±

5
.9

6
8
2
.9

4
±

5
.9

2
8
4
.0

2
±

5
.7

9
8
2
.9

8
±

6
.0

9
8
2
.7

2
±

5
.7

4

v
o
te

9
6
.0

4
±

3
.2

1
9
5
.8

2
±

3
.2

2
9
5
.8

6
±

3
.1

0
9
6
.0

0
±

3
.0

9
9
5
.0

8
±

3
.6

8
9
5
.1

3
±

3
.6

4
9
4
.9

9
±

3
.4

0

a
rr

h
y
th

m
ia

7
3
.5

5
±

6
.1

7
7
3
.2

4
±

5
.4

0
7
2
.8

4
±

5
.4

0
7
2
.9

7
±

5
.0

7
7
3
.0

2
±

5
.4

4
7
3
.2

4
±

5
.1

8
7
2
.7

1
±

5
.2

7

b
a
la

n
c
e
-s

c
a
le

9
4
.3

4
±

1
.6

2
9
4
.5

3
±

1
.5

9
9
4
.5

9
±

1
.7

4
9
4
.7

2
±

1
.6

9
9
2
.7

7
±

0
.9

3
•

9
2
.6

7
±

0
.8

6
•

9
2
.6

7
±

0
.8

6
•

so
y
b

e
a
n

9
3
.7

0
±

2
.6

2
9
3
.7

0
±

2
.6

2
9
3
.6

1
±

2
.8

7
9
3
.6

4
±

2
.9

0
9
2
.2

7
±

2
.9

7
9
2
.3

8
±

2
.8

0
9
2
.3

8
±

2
.9

4

c
re

d
it

-r
a
ti

n
g

8
6
.4

6
±

3
.8

2
8
6
.4

6
±

3
.7

6
8
4
.9

9
±

3
.8

9
8
5
.3

9
±

3
.9

3
8
4
.6

4
±

3
.9

9
8
4
.7

2
±

3
.9

6
8
4
.8

4
±

4
.1

4

w
is

c
o
n
si

n
9
5
.9

9
±

2
.0

4
9
5
.9

1
±

2
.2

0
9
6
.2

0
±

1
.8

8
9
6
.1

7
±

1
.8

4
9
6
.3

4
±

1
.9

2
9
6
.3

1
±

2
.0

8
9
6
.2

8
±

2
.0

6

p
im

a
-d

ia
b

e
te

s
7
5
.8

0
±

4
.6

2
7
5
.8

3
±

4
.4

5
7
5
.6

8
±

4
.6

1
7
5
.6

8
±

4
.5

8
7
4
.9

5
±

4
.7

6
7
4
.9

2
±

4
.7

8
7
4
.6

6
±

4
.6

8

v
e
h
ic

le
7
7
.7

5
±

4
.4

8
7
7
.9

0
±

3
.9

6
7
7
.8

3
±

4
.2

7
7
8
.1

9
±

4
.1

3
7
8
.0

9
±

4
.2

5
7
8
.2

1
±

4
.4

8
7
8
.1

3
±

4
.6

4

a
n
n
e
a
l

9
9
.5

1
±

1
.0

1
9
9
.4

9
±

1
.0

1
9
9
.6

0
±

0
.8

3
9
9
.6

7
±

0
.6

8
9
9
.6

4
±

0
.7

9
9
9
.5

6
±

0
.8

1
9
9
.6

0
±

0
.8

0

a
n
n
e
a
l.
O

R
IG

9
6
.4

6
±

2
.1

3
9
6
.5

9
±

1
.9

0
9
6
.5

0
±

2
.1

6
9
6
.6

6
±

2
.0

9
9
6
.3

3
±

2
.0

6
9
6
.1

0
±

2
.2

8
9
6
.2

1
±

2
.1

7

g
e
rm

a
n
-c

re
d
it

7
5
.8

0
±

4
.1

9
7
5
.7

4
±

3
.8

2
7
5
.2

0
±

3
.8

1
7
5
.3

0
±

4
.0

4
7
4
.3

8
±

4
.1

6
7
4
.3

4
±

3
.9

2
7
4
.3

0
±

3
.7

9

se
g
m

e
n
t

9
8
.7

6
±

0
.5

9
9
8
.7

9
±

0
.5

5
9
8
.6

6
±

0
.6

4
9
8
.6

9
±

0
.6

0
9
8
.6

7
±

0
.6

5
9
8
.6

8
±

0
.6

4
9
8
.6

8
±

0
.6

6

sp
li
c
e

5
2
.5

8
±

0
.4

6
5
2
.5

8
±

0
.4

6
5
2
.5

8
±

0
.4

6
5
2
.5

8
±

0
.4

6
5
2
.5

8
±

0
.4

6
5
2
.5

8
±

0
.4

6
5
2
.5

8
±

0
.4

6

k
r-

v
s-

k
p

9
9
.7

0
±

0
.3

4
9
9
.7

1
±

0
.3

2
9
9
.7

1
±

0
.3

2
9
9
.7

2
±

0
.3

2
9
9
.7

2
±

0
.3

2
9
9
.7

2
±

0
.3

0
9
9
.7

5
±

0
.2

8

si
ck

9
9
.0

5
±

0
.4

9
9
9
.0

6
±

0
.5

1
9
9
.0

8
±

0
.5

0
9
9
.0

9
±

0
.5

1
9
9
.0

9
±

0
.5

1
9
9
.1

0
±

0
.5

0
9
9
.0

5
±

0
.5

0

h
y
p

o
th

y
ro

id
9
9
.6

1
±

0
.3

5
9
9
.6

0
±

0
.3

6
9
9
.6

3
±

0
.3

4
9
9
.6

3
±

0
.3

3
9
9
.6

0
±

0
.3

4
9
9
.6

0
±

0
.3

3
9
9
.5

9
±

0
.3

3

w
a
v
e
fo

rm
8
5
.3

7
±

1
.4

7
8
5
.3

4
±

1
.4

6
8
5
.2

6
±

1
.3

7
8
5
.2

8
±

1
.3

0
8
4
.9

2
±

1
.8

4
8
4
.9

3
±

1
.7

9
8
5
.1

7
±

1
.7

6

m
u
sh

ro
o
m

1
0
0
.0

0
±

0
.0

0
1
0
0
.0

0
±

0
.0

0
1
0
0
.0

0
±

0
.0

0
1
0
0
.0

0
±

0
.0

0
1
0
0
.0

0
±

0
.0

0
1
0
0
.0

0
±

0
.0

0
1
0
0
.0

0
±

0
.0

0

◦,
•

st
a
ti

st
ic

a
ll
y

si
g
n
ifi

c
a
n
t

im
p
ro

v
e
m

e
n
t

o
r

d
e
g
ra

d
a
ti

o
n

88

the accuracy using these three methods for a number of datasets from the UCI

repository. The accuracy of the GPO algorithm and the Grid Search algorithm

are shown in the first and the second column of this table respectively. We find

that the GPO algorithm is not inferior to Grid Search in terms of accuracy. In

many cases, the GPO algorithm presents slightly better performance. The rest

of the table records the accuracy when employing the Random Search algorithm

with non-identical random grid locations. Despite Random Search being a very

simple search method without a regular pattern, it again shows surprisingly

good performance. A possible reason is that Random Search just pays attention

to the “best” point amongst the chosen points and never consider the others.

However, it is possible that it acquires inappropriate parameter values because

the system misses a good point, such as on the “primary-tumor” dataset. The

accuracy on this dataset is significantly lower than for other approaches when we

specify the number of random grid locations as 10. This phenomenon will occur

when the process falls into a poor area. Although Random Search performs very

well in some cases, it does not guarantee that it succeeds in finding the “best”

parameter combinations.

The training time is not only an important standard to measure the qual-

ity of an algorithm, but also plays a crucial role in the cost of computation.

Researchers always try to reduce the time cost without affecting performance.

From this standard point of view, GPO is a good method in comparison with

Grid Search. Grid Search is a time-consuming process which cross-validates and

evaluates every point along its search path. In contrast, GPO only picks the

valuable points and jumps over useless points, which achieves the goal of saving

time. Table 4.25 gives good evidence to show that GPO performs better than

Grid Search in terms of training time for most of the datasets.

The table also provides the training time with respect to Random Search

for different numbers of grid locations. The training time always shows obvious

differences for different numbers of grid locations. Fewer grid locations require

a larger amount of time in Random Search, which implies that Random Search

with fewer grid locations puts more effort on advanced search based on 10-fold

cross-validation. It also implies that the initial search does not take up a great

deal of time. Note that, in order to reduce time spent on the advanced search,

89

T
ab

le
4.

25
:

T
ra

in
in

g
T

im
e

o
f

T
h

re
e

M
et

h
o
d

s
fo

r
L

o
g
it

B
o
o
st

D
a
ta

se
t

G
P

O
G

ri
d

S
e
a
rc

h
R

S
(2

5
)

R
S
(2

0
)

R
S
(1

5
)

R
S
(1

0
)

R
S
(5

)

la
b

o
r

2
.8

5
±

3
.4

8
3
.6

4
±

2
.4

3
3
.1

8
±

3
.1

4
3
.0

2
±

3
.0

9
4
.4

9
±

2
.6

4
4
.1

5
±

3
.4

4
4
.6

3
±

2
.7

5

z
o
o

1
6
.6

9
±

1
0
.9

7
1
4
.9

6
±

0
.5

4
1
7
.7

3
±

1
0
.1

3
8
.4

1
±

6
.1

6
1
9
.5

7
±

8
.0

8
8
.8

6
±

1
1
.7

5
1
9
.7

5
±

9
.8

0

ly
m

p
h
o
g
ra

p
h
y

4
.2

0
±

4
.6

7
8
.2

3
±

4
.5

1
◦

5
.9

9
±

4
.9

6
5
.5

7
±

5
.4

7
1
1
.0

7
±

6
.9

5
◦

9
.1

9
±

7
.2

9
1
0
.1

0
±

6
.2

3
◦

ir
is

2
.8

4
±

2
.6

8
2
.2

7
±

1
.7

2
1
.8

9
±

2
.0

6
1
.5

2
±

1
.8

6
2
.9

0
±

1
.7

5
2
.5

3
±

2
.8

0
2
.8

8
±

1
.9

1

h
e
p
a
ti

ti
s

4
.0

8
±

4
.8

1
8
.9

3
±

6
.0

1
5
.7

7
±

5
.9

9
6
.2

3
±

6
.3

0
1
1
.0

4
±

5
.3

3
◦

8
.5

9
±

5
.8

1
9
.8

2
±

4
.6

8
◦

G
la

ss
1
2
.9

1
±

1
3
.5

7
2
1
.6

1
±

1
3
.1

2
1
5
.8

5
±

1
2
.9

2
1
5
.7

7
±

1
2
.6

8
1
4
.5

1
±

1
1
.7

2
1
3
.8

8
±

1
3
.2

2
2
0
.9

3
±

1
0
.8

5

a
u
d
io

lo
g
y

5
3
.3

0
±

6
0
.1

1
1
5
5
.5

6
±

9
5
.2

7
◦

8
2
.1

6
±

7
5
.6

9
1
3
3
.9

7
±

1
3
8
.0

5
1
5
8
.1

2
±

1
2
5
.9

3
◦

1
2
3
.2

6
±

1
2
6
.4

3
1
2
6
.0

7
±

1
0
8
.2

6

h
e
a
rt

-s
ta

tl
o
g

3
.2

1
±

4
.5

7
8
.3

9
±

4
.3

9
◦

7
.0

5
±

6
.7

4
6
.6

4
±

7
.3

8
9
.4

8
±

7
.7

4
◦

7
.8

1
±

7
.2

1
1
2
.1

2
±

8
.1

7
◦

b
re

a
st

-c
a
n
c
e
r

1
.8

6
±

2
.1

8
5
.8

2
±

2
.9

5
◦

3
.3

2
±

3
.0

0
3
.1

8
±

3
.0

6
5
.8

3
±

4
.7

2
◦

5
.8

9
±

4
.1

8
◦

6
.4

8
±

3
.6

5
◦

h
u
n
g
a
ri

a
n

5
.6

4
±

6
.8

4
1
6
.9

9
±

1
0
.0

6
◦

1
0
.2

6
±

1
0
.4

2
9
.8

4
±

1
1
.1

1
2
0
.1

8
±

1
3
.3

9
◦

1
7
.2

8
±

1
3
.6

2
◦

2
0
.0

2
±

1
0
.6

6
◦

c
le

v
e
la

n
d

5
.6

9
±

9
.5

6
1
4
.9

6
±

1
1
.5

3
◦

1
0
.2

8
±

9
.7

0
9
.8

5
±

1
0
.7

9
1
4
.2

4
±

1
2
.5

3
1
2
.1

5
±

1
1
.3

6
1
7
.7

3
±

1
0
.1

8
◦

e
c
o
li

8
.5

8
±

1
3
.9

1
2
5
.0

9
±

2
0
.6

9
◦

2
4
.7

8
±

2
1
.6

9
2
1
.8

4
±

1
9
.3

8
2
4
.7

1
±

1
6
.6

6
◦

1
9
.2

3
±

1
8
.6

1
2
9
.9

0
±

1
5
.3

0
◦

p
ri

m
a
ry

-t
u
m

o
r

1
3
.5

3
±

3
.6

5
4
0
.6

2
±

9
.7

2
◦

3
4
.8

8
±

3
1
.4

7
2
3
.0

3
±

2
0
.8

8
7
2
.2

0
±

6
0
.4

4
◦

7
6
.4

2
±

5
7
.6

9
◦

7
6
.2

5
±

4
9
.0

6
◦

io
n
o
sp

h
e
re

3
1
.1

5
±

2
4
.5

2
4
7
.0

2
±

3
2
.4

6
4
3
.9

1
±

3
2
.1

0
4
1
.8

9
±

3
0
.6

4
4
5
.3

9
±

2
2
.1

1
3
9
.8

8
±

2
6
.3

0
5
0
.0

3
±

2
3
.2

3

h
o
rs

e
-c

o
li
c
.O

R
IG

6
9
.3

1
±

4
8
.3

0
4
6
.0

4
±

1
0
.1

5
2
8
.3

0
±

1
3
.1

3
•

1
8
.5

2
±

3
.8

7
•

6
0
.4

4
±

1
3
.5

4
9
.3

3
±

1
.9

2
•

4
9
.3

6
±

1
.8

9

h
o
rs

e
-c

o
li
c

6
.6

5
±

7
.5

1
2
4
.4

1
±

1
5
.7

0
◦

1
4
.1

0
±

1
1
.8

5
1
2
.5

6
±

1
2
.8

1
1
7
.3

2
±

1
8
.0

0
2
3
.9

4
±

2
0
.5

9
◦

2
7
.4

8
±

1
8
.5

1
◦

v
o
te

3
.9

3
±

5
.1

5
9
.0

5
±

5
.9

1
◦

6
.1

2
±

5
.0

8
4
.4

1
±

3
.8

0
1
6
.7

7
±

1
3
.1

1
◦

1
3
.1

7
±

1
2
.3

9
1
8
.0

7
±

1
3
.0

8
◦

a
rr

h
y
th

m
ia

7
6
1
.8

3
±

8
6
0
.8

2
1
4
9
0
.7

2
±

9
0
5
.5

4
1
2
3
9
.5

7
±

1
0
7
4
.3

3
1
1
2
3
.7

0
±

9
6
8
.3

4
1
5
0
9
.2

6
±

9
2
8
.3

0
1
4
6
4
.1

6
±

1
0
5
4
.0

9
1
7
7
6
.0

3
±

7
3
6
.0

7
◦

b
a
la

n
c
e
-s

c
a
le

2
.0

9
±

0
.2

0
8
.8

5
±

1
.4

1
◦

5
.3

5
±

0
.9

0
◦

4
.1

6
±

0
.6

1
◦

1
2
.8

8
±

2
.0

8
◦

1
2
.2

1
±

1
.8

4
◦

1
1
.1

4
±

1
.8

0
◦

so
y
b

e
a
n

3
6
.4

2
±

1
.7

0
1
4
6
.5

1
±

3
6
.4

1
◦

1
2
0
.1

4
±

8
8
.4

9
◦

8
4
.8

2
±

9
1
.0

0
3
4
4
.7

8
±

2
3
0
.9

3
◦

2
8
5
.0

4
±

2
0
2
.7

0
◦

4
0
4
.8

4
±

1
8
4
.2

9
◦

c
re

d
it

-r
a
ti

n
g

5
.5

2
±

4
.8

1
2
1
.5

0
±

1
0
.6

2
◦

1
6
.0

3
±

1
3
.9

9
◦

1
5
.9

5
±

1
5
.4

4
2
0
.6

4
±

2
0
.0

0
◦

1
9
.2

3
±

2
0
.2

8
2
6
.5

4
±

2
1
.7

6
◦

w
is

c
o
n
si

n
1
3
.1

3
±

1
1
.7

6
1
8
.9

1
±

1
2
.1

3
1
9
.0

2
±

1
5
.5

0
1
6
.9

8
±

1
4
.3

4
1
9
.0

9
±

1
2
.8

2
1
8
.3

2
±

1
6
.5

5
2
4
.8

1
±

1
0
.4

9
◦

p
im

a
-d

ia
b

e
te

s
6
.5

9
±

6
.2

6
1
5
.9

7
±

9
.6

6
◦

9
.7

6
±

7
.1

6
9
.2

4
±

1
0
.0

7
1
7
.6

6
±

1
1
.9

9
◦

2
2
.5

4
±

1
4
.3

0
◦

2
3
.0

9
±

1
3
.4

5
◦

v
e
h
ic

le
8
6
.2

9
±

7
4
.0

7
1
5
5
.9

3
±

8
7
.6

9
◦

1
2
5
.4

3
±

8
0
.4

6
1
1
2
.2

0
±

6
4
.8

8
1
3
3
.1

5
±

7
4
.9

0
1
0
2
.2

0
±

8
7
.5

3
1
1
6
.0

3
±

5
0
.6

1

a
n
n
e
a
l

9
2
.3

2
±

8
1
.2

4
1
0
3
.1

8
±

7
8
.4

7
7
8
.3

6
±

7
8
.9

2
9
2
.2

5
±

1
1
6
.9

0
1
4
1
.5

4
±

9
4
.0

2
1
2
1
.9

5
±

1
2
6
.8

6
1
3
2
.5

4
±

9
4
.0

4

a
n
n
e
a
l.
O

R
IG

6
0
.0

9
±

6
4
.4

7
1
3
1
.1

8
±

7
4
.9

8
◦

7
2
.5

9
±

5
5
.0

5
8
2
.6

5
±

8
7
.8

8
1
4
7
.7

5
±

1
2
9
.7

4
2
2
5
.8

0
±

1
4
4
.6

8
◦

1
8
2
.0

7
±

1
0
5
.4

8
◦

g
e
rm

a
n
-c

re
d
it

1
8
.2

7
±

1
7
.8

8
4
8
.2

9
±

2
3
.2

9
◦

2
6
.2

3
±

2
0
.2

9
2
4
.9

8
±

2
4
.0

2
6
2
.5

8
±

3
8
.8

2
◦

5
7
.1

1
±

4
0
.1

5
◦

6
2
.3

4
±

3
9
.3

1
◦

se
g
m

e
n
t

2
5
8
.9

6
±

2
5
5
.3

5
4
2
6
.1

0
±

3
0
3
.6

6
◦

4
4
1
.4

7
±

3
2
8
.5

6
3
8
4
.1

9
±

2
7
8
.9

0
3
9
8
.7

1
±

2
7
7
.4

3
3
4
2
.7

4
±

3
1
1
.3

8
4
1
3
.7

0
±

2
5
7
.6

8

sp
li
c
e

2
8
9
4
.8

6
±

2
2
8
7
.8

3
2
0
2
0
.7

9
±

9
1
8
.5

7
4
4
5
5
.1

1
±

2
6
9
3
.3

4
2
5
7
4
.5

3
±

2
5
5
0
.9

5
5
1
9
7
.8

6
±

1
7
6
1
.9

0
◦

4
4
9
.9

6
±

1
7
7
.4

3
•

4
0
4
2
.4

0
±

4
5
6
.4

7

k
r-

v
s-

k
p

1
8
2
.5

2
±

1
6
0
.8

7
3
5
7
.8

0
±

1
9
4
.3

7
◦

2
5
1
.6

8
±

1
9
7
.9

2
3
0
8
.8

8
±

2
5
7
.3

5
2
4
6
.5

1
±

1
9
4
.3

6
2
0
9
.9

3
±

2
3
0
.5

2
3
1
4
.5

9
±

2
3
4
.2

3

si
ck

2
3
2
.2

4
±

2
1
4
.9

8
3
2
7
.0

2
±

2
3
1
.2

6
2
4
3
.1

5
±

2
4
5
.8

8
2
0
0
.7

7
±

2
1
1
.9

9
2
0
1
.8

9
±

2
2
0
.9

5
1
8
0
.7

4
±

2
2
2
.6

4
3
7
8
.3

6
±

2
8
2
.9

2

h
y
p

o
th

y
ro

id
1
8
7
.2

5
±

1
6
3
.2

7
3
3
1
.1

5
±

1
9
9
.3

1
◦

2
1
5
.2

8
±

2
2
1
.3

6
2
3
2
.3

6
±

2
6
5
.7

5
4
5
7
.4

3
±

3
3
4
.4

1
◦

5
0
3
.1

6
±

3
3
4
.2

8
◦

5
3
0
.5

5
±

2
7
2
.5

2
◦

w
a
v
e
fo

rm
5
2
0
.7

6
±

4
5
0
.6

3
9
0
9
.3

5
±

4
8
2
.8

0
◦

5
1
8
.4

9
±

4
3
7
.0

9
4
1
8
.0

0
±

4
2
6
.5

9
8
7
5
.8

9
±

9
8
4
.9

4
7
2
2
.3

9
±

7
7
3
.9

8
1
2
6
3
.7

4
±

7
4
8
.5

1
◦

m
u
sh

ro
o
m

2
6
4
.9

2
±

1
3
6
.2

0
1
4
7
.8

3
±

3
7
.1

1
•

7
2
.5

1
±

1
7
.8

1
•

1
0
1
.5

0
±

1
0
0
.6

7
•

2
7
9
.8

4
±

6
7
.7

9
1
4
3
.7

2
±

1
6
3
.9

0
•

2
6
7
.5

7
±

8
7
.9

5

◦,
•

st
a
ti

st
ic

a
ll
y

si
g
n
ifi

c
a
n
t

im
p
ro

v
e
m

e
n
t

o
r

d
e
g
ra

d
a
ti

o
n

90

Table 4.26: Number of 2-Fold Cross-validation Runs for LogitBoost

Dataset GPO GS RS(25) RS(20) RS(15) RS(10) RS(5)

labor 11.86±2.94 50±0 ◦ 25±0 ◦ 20±0 ◦ 15±0 ◦ 10±0 5±0 •
zoo 11.46±3.25 50±0 ◦ 25±0 ◦ 20±0 ◦ 15±0 ◦ 10±0 5±0 •
lymphography 12.78±3.54 50±0 ◦ 25±0 ◦ 20±0 ◦ 15±0 10±0 • 5±0 •
iris 198±6.81 50±0 ◦ 25±0 ◦ 20±0 15±0 10±0 • 5±0 •
hepatitis 12.70±4.23 50±0 ◦ 25±0 ◦ 20±0 ◦ 15±0 10±0 5±0 •
Glass 12.82±4.23 50±0 ◦ 25±0 ◦ 20±0 ◦ 15±0 10±0 5±0 •
audiology 12.70±3.73 50±0 ◦ 25±0 ◦ 20±0 ◦ 15±0 10±0 5±0 •
heart-statlog 10.96±2.53 50±0 ◦ 25±0 ◦ 20±0 ◦ 15±0 ◦ 10±0 5±0 •
breast-cancer 11.50± 37 50±0 ◦ 25±0 ◦ 20±0 ◦ 15±0 ◦ 10±0 5±0 •
hungarian 11.22±2.55 50±0 ◦ 25±0 ◦ 20±0 ◦ 15±0 ◦ 10±0 5±0 •
cleveland 10.84±2.38 50±0 ◦ 25±0 ◦ 20±0 ◦ 15±0 ◦ 10±0 5±0 •
ecoli 12.50±4.46 50±0 ◦ 25±0 ◦ 20±0 ◦ 15±0 10±0 5±0 •
primary-tumor 102±0.14 50±0 ◦ 25±0 ◦ 20±0 ◦ 15±0 ◦ 10±0 5±0 •
ionosphere 14.90±4.60 50±0 ◦ 25±0 ◦ 20±0 ◦ 15±0 10±0 • 5±0 •
horse-colic.ORIG 21.58±5.27 50±0 ◦ 25±0 20±0 15±0 • 10±0 • 5±0 •
horse-colic 11.78±3.38 50±0 ◦ 25±0 ◦ 20±0 ◦ 15±0 ◦ 10±0 5±0 •
vote 13.10±4.80 50±0 ◦ 25±0 ◦ 20±0 ◦ 15±0 10±0 5±0 •
arrhythmia 12.72±3.67 50±0 ◦ 25±0 ◦ 20±0 ◦ 15±0 10±0 • 5±0 •
balance-scale 10.46±1.22 50±0 ◦ 25±0 ◦ 20±0 ◦ 15±0 ◦ 10±0 5±0 •
soybean 102±0.14 50±0 ◦ 25±0 ◦ 20±0 ◦ 15±0 ◦ 10±0 5±0 •
credit-rating 10.70±1.88 50±0 ◦ 25±0 ◦ 20±0 ◦ 15±0 ◦ 10±0 5±0 •
wisconsin 18.60±6.58 50±0 ◦ 25±0 ◦ 20±0 15±0 10±0 • 5±0 •
pima-diabetes 13.58±4.40 50±0 ◦ 25±0 ◦ 20±0 ◦ 15±0 10±0 • 5±0 •
vehicle 14.40±3.92 50±0 ◦ 25±0 ◦ 20±0 ◦ 15±0 10±0 • 5±0 •
anneal 23.16±3.97 50±0 ◦ 25±0 20±0 • 15±0 • 10±0 • 5±0 •
anneal.ORIG 156±5.54 50±0 ◦ 25±0 ◦ 20±0 ◦ 15±0 10±0 • 5±0 •
german-credit 13.84±3.67 50±0 ◦ 25±0 ◦ 20±0 ◦ 15±0 10±0 • 5±0 •
segment 21.18±3.40 50±0 ◦ 25±0 ◦ 20±0 15±0 • 10±0 • 5±0 •
splice 24.28±1.92 50±0 ◦ 25±0 20±0 • 15±0 • 10±0 • 5±0 •
kr-vs-kp 19.18±4.46 50±0 ◦ 25±0 ◦ 20±0 15±0 • 10±0 • 5±0 •
sick 23.26±4.46 50±0 ◦ 25±0 20±0 • 15±0 • 10±0 • 5±0 •
hypothyroid 24.94±2.91 50±0 ◦ 25±0 20±0 • 15±0 • 10±0 • 5±0 •
waveform 19.90±6.98 50±0 ◦ 25±0 ◦ 20±0 15±0 10±0 • 5±0 •
mushroom 24.50±1.42 50±0 ◦ 25±0 20±0 • 15±0 • 10±0 • 5±0 •

◦, • statistically significant improvement or degradation

the GPO algorithm tries to acquire the near optimal point in the initial search

rather than finding it in the advanced search, and it generally appears to do so

successfully.

Tables 4.26 and 4.27 show the 2-fold cross-validation runs and 10-fold cross-

validation runs respectively. In Table 4.26, the amount of 2-fold cross-validation

runs in Grid Search and Random Search is specified in the experimental set

ups. By contrast, we have no idea how many 2-fold cross-validation runs will be

performed by GPO before obtaining the results. We find the GPO algorithm

only explores a small part of the parameter space. The results shown in Table

91

T
ab

le
4.

27
:

N
u

m
b

er
o
f

1
0
-F

o
ld

C
ro

ss
-v

a
li

d
a
ti

o
n

R
u

n
s

fo
r

L
o
g
it

B
o
o
st

D
a
ta

se
t

G
P

O
G

ri
d

S
e
a
rc

h
R

S
(2

5
)

R
S
(2

0
)

R
S
(1

5
)

R
S
(1

0
)

R
S
(5

)

la
b

o
r

6
.5

0
±

1
0
.3

7
4
.6

8
±

7
.0

8
5
.3

8
±

8
.3

1
5
.6

8
±

8
.3

8
1
1
.5

4
±

7
.6

7
1
0
.0

4
±

9
.2

5
1
1
.8

0
±

7
.0

9

z
o
o

7
.1

6
±

5
.7

3
0
.0

0
±

0
.0

0
•

5
.9

0
±

6
.1

3
1
.5

4
±

4
.0

4
•

8
.9

8
±

4
.7

1
3
.1

2
±

5
.9

1
1
0
.2

8
±

3
.5

6

ly
m

p
h
o
g
ra

p
h
y

3
.1

0
±

5
.3

4
3
.0

0
±

4
.9

6
3
.7

2
±

6
.0

1
3
.2

6
±

5
.7

9
1
0
.6

2
±

6
.8

3
◦

8
.0

2
±

7
.0

1
1
0
.1

0
±

5
.9

5
◦

ir
is

8
.1

4
±

1
0
.5

9
2
.6

4
±

7
.3

4
3
.9

0
±

7
.9

8
3
.5

0
±

7
.5

2
1
0
.6

6
±

7
.5

7
8
.6

0
±

1
1
.2

7
1
1
.5

6
±

8
.2

0

h
e
p
a
ti

ti
s

3
.7

2
±

6
.4

4
4
.4

4
±

6
.4

7
3
.0

4
±

6
.0

5
3
.7

8
±

6
.1

4
1
0
.9

2
±

5
.6

7
◦

8
.2

4
±

6
.3

3
1
0
.1

0
±

4
.7

7
◦

G
la

ss
4
.6

8
±

6
.6

2
5
.6

0
±

6
.5

6
5
.0

8
±

6
.5

1
5
.9

8
±

6
.5

6
6
.4

8
±

6
.6

0
5
.8

0
±

6
.6

4
9
.7

4
±

4
.8

4

a
u
d
io

lo
g
y

1
.8

2
±

4
.0

4
3
.6

8
±

5
.6

7
3
.0

4
±

5
.3

7
3
.6

0
±

5
.7

6
6
.8

0
±

6
.2

2
◦

5
.5

6
±

6
.3

9
6
.9

4
±

5
.6

1
◦

h
e
a
rt

-s
ta

tl
o
g

1
.1

8
±

3
.7

6
1
.3

6
±

3
.9

2
2
.0

4
±

4
.9

4
2
.4

6
±

5
.2

0
6
.2

8
±

6
.6

5
5
.1

6
±

5
.7

4
8
.1

6
±

4
.3

8
◦

b
re

a
st

-c
a
n
c
e
r

0
.9

0
±

2
.7

3
1
.2

6
±

3
.1

5
1
.1

6
±

4
.2

1
1
.3

4
±

4
.3

5
6
.2

0
±

6
.8

4
7
.2

8
±

6
.2

2
◦

9
.1

6
±

5
.6

5
◦

h
u
n
g
a
ri

a
n

1
.2

0
±

3
.3

7
2
.4

6
±

4
.9

3
1
.4

8
±

4
.6

6
1
.9

4
±

5
.0

7
8
.7

0
±

6
.9

8
◦

7
.4

6
±

6
.9

0
◦

9
.6

6
±

5
.2

5
◦

c
le

v
e
la

n
d

1
.4

6
±

5
.1

9
1
.6

4
±

5
.2

9
1
.9

4
±

4
.7

0
2
.2

6
±

5
.0

9
5
.8

2
±

6
.7

9
4
.9

8
±

5
.7

7
8
.2

4
±

4
.6

8
◦

e
c
o
li

1
.5

8
±

5
.1

2
4
.1

2
±

7
.2

6
6
.1

2
±

7
.1

4
6
.3

0
±

7
.1

0
8
.7

2
±

6
.9

6
◦

5
.8

8
±

6
.3

1
1
0
.6

0
±

5
.4

7
◦

p
ri

m
a
ry

-t
u
m

o
r

0
.0

0
±

0
.0

0
0
.0

0
±

0
.0

0
0
.5

6
±

2
.9

5
0
.5

6
±

2
.9

5
6
.9

6
±

6
.7

6
◦

7
.4

8
±

5
.6

0
◦

7
.9

4
±

4
.8

3
◦

io
n
o
sp

h
e
re

6
.0

8
±

6
.2

4
5
.8

8
±

6
.3

7
7
.2

8
±

7
.4

1
8
.0

8
±

7
.3

4
1
0
.8

4
±

6
.1

7
8
.8

6
±

6
.6

5
1
1
.5

8
±

5
.8

3

h
o
rs

e
-c

o
li
c
.O

R
IG

5
.0

4
±

5
.3

3
0
.0

0
±

0
.0

0
•

0
.9

0
±

2
.7

3
•

0
.0

0
±

0
.0

0
•

8
.4

6
±

2
.1

6
0
.0

0
±

0
.0

0
•

9
.0

0
±

0
.0

0
◦

h
o
rs

e
-c

o
li
c

0
.4

8
±

2
.4

5
2
.0

4
±

5
.0

9
1
.0

6
±

3
.2

8
1
.0

6
±

3
.2

8
4
.1

2
±

6
.6

0
6
.8

8
±

7
.0

7
◦

9
.3

0
±

6
.7

5
◦

v
o
te

1
.5

8
±

4
.0

6
2
.3

8
±

4
.7

9
0
.5

6
±

2
.8

0
0
.7

4
±

3
.0

4
8
.2

2
±

7
.2

5
◦

7
.2

4
±

7
.1

3
9
.2

2
±

6
.2

4
◦

a
rr

h
y
th

m
ia

3
.5

8
±

5
.8

5
3
.8

4
±

5
.7

9
4
.9

4
±

6
.5

6
5
.0

0
±

6
.3

6
8
.9

0
±

6
.4

1
8
.1

8
±

6
.3

9
1
0
.9

8
±

4
.6

1
◦

b
a
la

n
c
e
-s

c
a
le

0
.0

0
±

0
.0

0
0
.0

0
±

0
.0

0
0
.0

0
±

0
.0

0
0
.0

0
±

0
.0

0
9
.3

4
±

1
.4

4
◦

9
.0

0
±

0
.0

0
◦

9
.0

0
±

0
.0

0
◦

so
y
b

e
a
n

0
.0

0
±

0
.0

0
0
.0

0
±

0
.0

0
0
.5

2
±

2
.5

8
0
.5

2
±

2
.5

8
9
.0

6
±

6
.5

0
◦

8
.5

0
±

6
.3

8
◦

1
1
.2

8
±

5
.6

3
◦

c
re

d
it

-r
a
ti

n
g

0
.1

8
±

1
.2

7
0
.5

0
±

2
.5

7
1
.2

2
±

3
.8

1
1
.5

2
±

3
.9

2
3
.7

4
±

5
.4

5
3
.6

6
±

5
.3

3
6
.2

0
±

5
.4

7
◦

w
is

c
o
n
si

n
4
.2

2
±

5
.6

9
4
.1

0
±

6
.1

3
5
.6

4
±

7
.0

0
5
.8

8
±

7
.0

1
8
.3

0
±

6
.9

7
6
.4

2
±

6
.8

2
9
.8

8
±

3
.8

2
◦

p
im

a
-d

ia
b

e
te

s
1
.5

0
±

3
.4

9
1
.4

4
±

3
.8

0
0
.7

8
±

2
.7

0
1
.2

4
±

3
.4

6
7
.0

2
±

5
.9

1
◦

8
.6

0
±

5
.4

2
◦

9
.6

8
±

4
.8

1
◦

v
e
h
ic

le
5
.6

2
±

6
.6

1
8
.1

6
±

7
.1

0
8
.8

2
±

7
.3

7
9
.3

2
±

7
.2

0
1
0
.7

2
±

6
.7

1
7
.7

6
±

6
.9

2
1
0
.8

8
±

5
.2

1

a
n
n
e
a
l

7
.2

6
±

8
.9

6
4
.1

0
±

7
.4

8
5
.6

4
±

8
.7

2
4
.7

4
±

8
.6

1
1
1
.9

8
±

9
.0

3
8
.7

8
±

1
0
.4

5
1
1
.7

8
±

7
.8

6

a
n
n
e
a
l.
O

R
IG

0
.9

6
±

3
.4

0
1
.3

2
±

3
.7

4
0
.8

2
±

3
.2

9
1
.2

8
±

3
.9

4
5
.9

2
±

6
.3

9
◦

8
.5

4
±

5
.9

6
◦

8
.8

6
±

5
.4

4
◦

g
e
rm

a
n
-c

re
d
it

2
.6

8
±

4
.8

2
3
.3

6
±

4
.8

4
1
.1

2
±

3
.5

0
1
.1

2
±

3
.5

0
9
.2

0
±

6
.5

2
◦

8
.2

2
±

6
.3

1
9
.5

4
±

5
.8

8
◦

se
g
m

e
n
t

3
.2

2
±

5
.8

0
3
.8

4
±

5
.7

7
6
.9

2
±

6
.7

6
7
.1

0
±

6
.6

9
7
.8

8
±

6
.6

1
6
.3

4
±

6
.5

5
9
.2

2
±

6
.0

1
◦

sp
li
c
e

3
.9

0
±

4
.7

0
0
.0

0
±

0
.0

0
•

7
.5

6
±

5
.6

3
3
.9

8
±

5
.4

3
1
0
.1

8
±

3
.5

9
◦

0
.0

0
±

0
.0

0
•

9
.0

0
±

0
.0

0
◦

k
r-

v
s-

k
p

4
.4

4
±

5
.7

0
8
.0

2
±

6
.7

4
5
.7

4
±

6
.3

4
5
.7

4
±

6
.3

4
6
.2

8
±

6
.2

1
4
.1

6
±

5
.6

3
7
.3

2
±

5
.5

2

si
ck

3
.7

8
±

6
.0

3
4
.6

2
±

6
.4

7
3
.2

8
±

6
.1

6
3
.6

0
±

6
.4

0
3
.8

4
±

6
.4

9
3
.5

4
±

6
.0

5
8
.7

2
±

7
.4

5

h
y
p

o
th

y
ro

id
2
.0

0
±

4
.4

6
1
.9

4
±

4
.6

3
1
.8

4
±

4
.7

4
2
.4

0
±

5
.3

1
8
.8

8
±

7
.2

5
◦

9
.7

8
±

7
.0

6
◦

1
1
.3

4
±

5
.8

3
◦

w
a
v
e
fo

rm
1
.0

2
±

3
.1

3
1
.0

8
±

3
.3

1
1
.0

0
±

3
.4

9
1
.0

0
±

3
.4

9
4
.3

8
±

6
.5

5
4
.5

2
±

6
.4

9
8
.7

4
±

5
.6

3
◦

m
u
sh

ro
o
m

7
.6

4
±

4
.4

3
0
.0

0
±

0
.0

0
•

0
.0

0
±

0
.0

0
•

1
.2

6
±

3
.1

5
•

9
.0

0
±

0
.0

0
3
.0

6
±

4
.3

1
•

9
.2

8
±

1
.3

9

◦,
•

st
a
ti

st
ic

a
ll
y

si
g
n
ifi

c
a
n
t

im
p
ro

v
e
m

e
n
t

o
r

d
e
g
ra

d
a
ti

o
n

92

4.24 tell us its accuracy performance is comparable to Grid Search. Hence, the

GPO algorithm is a promising optimization method, which applies a limited

amount of time to obtain good performance. From Table 4.27, it is clear to

see that GPO and Grid Search do not take many 10-fold cross-validation runs

for most of datasets (except for a few special cases). This means the “centred”

point found by the initial search is close to the optimal point. However, Random

Search always runs many 10-fold cross-validations around the so-called “best”

point collected so far. The reason is that the “best” point found in the initial

search is not good enough so that the search process has to seek a better one

in the parameter space. This situation becomes more serious when only a few

points are chosen randomly.

4.3 Summary

Through the experiments above, we can see that the GPO algorithm achieves

a comparably high performance, in conjunction with a significantly smaller num-

ber of cross-validation runs and much reduced training time compared to the

Grid Search algorithm, both in regression problems and in classification prob-

lems. In some cases, Random Search provides a low-cost alternative, but it

requires us to specify the number of random grid locations in advance.

93

Chapter 5

Conclusions and Future

Work

In the following, we will draw some conclusions from the results presented in

this thesis and also consider opportunities for future work that could potentially

extend these findings.

5.1 Conclusions

In this thesis, we thoroughly investigated the use of Gaussian process learn-

ing to optimize the values of parameters in the machine learning domain, where

these parameters pertain to a particular base classifier. These tuning param-

eters are important factors when building a predictive model and thus have

substantial impact when predicting target values of new samples with unknown

values.

Optimization in the machine learning field is an essential procedure, and

every step of the whole data mining process can involve optimization of some

form. In order to pursue high performance in terms of different measures, re-

searchers usually attempt many kinds of machine learning algorithms, even en-

semble learning to acquire a good model. This can be viewed as optimization.

Apart from that, choosing appropriate parameters of any one individual learn-

ing algorithm is more likely to generate a good model for a particular dataset,

94

while unsuitable parameter values easily destroy a model. There are generally

some parameters to tune for any particular learning algorithm, a few of which

influence very important functions of the model, while the remainder provides

little contribution to the predictive results. Hence, we should decide which pa-

rameters to optimize before using Gaussian process learning to implement the

optimization.

The nature of Gaussian Process Optimization is to combine the charac-

teristics of the Gaussian process algorithm with the rigorous search approach

applied in Grid Search. The adaptive optimization methodology that it en-

ables samples new points by maximizing the expected improvement, balancing

exploitation and exploration.

This thesis briefly presented an introduction to the optimization context,

and described approaches to parameter optimization problems in machine learn-

ing. In Chapter 2, we considered various machine learning algorithms with their

corresponding parameters to be tuned in Chapter 4. We also considered Gaus-

sian process theory and its mathematical background, and gave the comput-

ing process and equations in detail so that the algorithm could be understood

clearly. At the end of Chapter 2, we explained the idea of cross-validation, which

is applied to evaluate predictive performance.

We focused on Gaussian Process Optimization in this thesis, which was

discussed in detail in Chapter 3. Gaussian Process Optimization is able to

exploit a Gaussian process predictive model that employs the basic theory of

Gaussian process regression to obtain characteristics from collected samples,

and thus to predict the target value of a new sample in a user-specified domain.

The optimization algorithm searches the surface for likely candidate points, and

evaluate them with the expected improvement criterion. We also considered the

effects of Gaussian process model parameters on the optimization process, and

then considered the stopping criterion that is used to determine when the GPO

process stops. Suitable GP parameters for the predictive model used in GPO

were decided by experiments based on the “CPU” dataset and the “concrete”

dataset.

In Chapter 4, we presented the result of parameter optimization both for re-

gression and classification datasets using the stopping criterion and GP model

95

parameters that were determined previously. The performance of GPO com-

pared with Grid Search was shown, and we saw that the GPO algorithm achieves

a comparably high performance, in conjunction with a smaller number of cross-

validation runs and reduced training time in both regression and classification

problems.

Another alternative is Random Search, which is a simple but powerful

search tool to explore new samples. In this case, the random number generator

is used to choose new samples; in other words, there is no relationship between

the next chosen point and existing points. Hence, not much time is wasted in this

process. Although Random Search does not guarantee that all generated points

are points with good performance, the main advantage of Random Search is its

low run time. For these reasons, we compared the results of GPO with those

of Random Search both in classification and regression tasks. The experiments

showed that GPO and Random Search are comparable in most cases in terms

of accuracy and correlation coefficient, but in some individual cases, these two

algorithms present their own respective advantages. Take decision tree learning

(J48) for example: GPO shows statistically significant improvements in accuracy

in some cases, such as for the “auto” and “audiology” datasets, no matter

how many points are evaluated in Random Search. From the point of view

of training time, a dataset with few records or few attributes in each instance

consumes less time in Random Search than in GPO when the number of points

picked by these two algorithms is approximately same. However, the opposite

situation happens for a dataset with larger size. Overall, the GPO algorithm

is a promising parameter optimization method in the young area of machine

learning.

5.2 Future Work

During the research performed for this thesis, we found that there are many

opportunities for future work. We give the following three aspects to improve.

The first question is how to break the limitation in the number of pa-

rameters. We only optimized two parameters in this thesis, which potentially

prevented some algorithms with multiple parameters from performing ideally.

96

Hopefully in the future, the number of parameters can be determined by the

user, and is not fixed in advance. When this is the case, the search space will

turn multi-dimension rather than being a grid in two-dimensional space.

The second aspect is that this kind of parameter optimization is used to

optimize a known base algorithm. However, in real-world problems, it is often

hard to choose an appropriate base algorithm. Practitioners choose algorithms

according to the characteristics of the problem and their own experience, or

try them one by one. It seems that the optimization process can be viewed as

similar to a black-box, which acquires the “best” predictive performance for the

given input dataset. Consequently, we can hopefully provide a generalization of

the method investigated in this thesis that not only optimizes the parameters

of a specific algorithm, but also optimizes the choice of base learning algorithm.

The last limitation of the optimization method considered here is the re-

maining computational complexity. The optimization algorithm will suffer from

this difficulty with increasing size of the datasets involved. A possible way to

deal with this problem is to reduce the pressure on one machine and to spread

the task to many high-speed computing machines instead, by parallelizing the

process.

97

Appendix A

Behaviour on the CPU data

with γ = 0.1 and δ = 0.01 in

the first 10 iterations

98

 Iteration One of CPU(gamma=0.1,noise=0.01)

Predicted Values

-3 -2 -1 0 1 2 3x -3
-2

-1
 0

 1
 2

 3

y

-0.1
 0

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8

-0.1
 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8

 Iteration One of CPU(gamma=0.1,noise=0.01)

Standard Deviation

-3 -2 -1 0 1 2 3x -3
-2

-1
 0

 1
 2

 3

y

 0.02
 0.025

 0.03
 0.035

 0.04
 0.045

 0.05
 0.055

 0.02
 0.025
 0.03
 0.035
 0.04
 0.045
 0.05
 0.055

 Iteration One of CPU(gamma=0.1,noise=0.01)

Expected Improvement

-3 -2 -1 0 1 2 3x -3
-2

-1
 0

 1
 2

 3

y

 0

 5e-08

 1e-07

 1.5e-07

 2e-07

 2.5e-07

 0

 5e-08

 1e-07

 1.5e-07

 2e-07

 2.5e-07

-3
-2 -1 0 1

 2 3 -3
-2

-1
 0

 1
 2

 3

-0.1
 0

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 Iteration One of CPU(gamma=0.1,noise=0.01)

Actual Values

x

y

(a) Iteration i

 Iteration Two of CPU(gamma=0.1,noise=0.01)

Predicted Values

-3 -2 -1 0 1 2 3x -3
-2

-1
 0

 1
 2

 3

y

-0.1
 0

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8

-0.1
 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8

 Iteration Two of CPU(gamma=0.1,noise=0.01)

Standard Deviation

-3 -2 -1 0 1 2 3x -3
-2

-1
 0

 1
 2

 3

y

 0.015
 0.02

 0.025
 0.03

 0.035
 0.04

 0.045

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 Iteration Two of CPU(gamma=0.1,noise=0.01)

Expected Improvement

-3 -2 -1 0 1 2 3x -3
-2

-1
 0

 1
 2

 3

y

 0

 5e-14

 1e-13

 1.5e-13

 2e-13

 2.5e-13

 0

 5e-14

 1e-13

 1.5e-13

 2e-13

 2.5e-13

-3
-2 -1 0 1

 2 3 -3
-2

-1
 0

 1
 2

 3

-0.1
 0

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 Iteration Two of CPU(gamma=0.1,noise=0.01)

Actual Values

x

y

(b) Iteration ii

99

 Iteration Three of CPU(gamma=0.1,noise=0.01)

Predicted Values

-3 -2 -1 0 1 2 3x -3
-2

-1
 0

 1
 2

 3

y

-0.1
 0

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8

-0.1
 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8

 Iteration Three of CPU(gamma=0.1,noise=0.01)

Standard Deviation

-3 -2 -1 0 1 2 3x -3
-2

-1
 0

 1
 2

 3

y

 0.016
 0.018

 0.02
 0.022
 0.024
 0.026
 0.028

 0.03
 0.032
 0.034

 0.016
 0.018
 0.02
 0.022
 0.024
 0.026
 0.028
 0.03
 0.032
 0.034

 Iteration Three of CPU(gamma=0.1,noise=0.01)

Expected Improvement

-3 -2 -1 0 1 2 3x -3
-2

-1
 0

 1
 2

 3

y

 0
 2e-26
 4e-26
 6e-26
 8e-26
 1e-25

 1.2e-25

 0

 2e-26

 4e-26

 6e-26

 8e-26

 1e-25

 1.2e-25

-3
-2 -1 0 1

 2 3 -3
-2

-1
 0

 1
 2

 3

-0.1
 0

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 Iteration Three of CPU(gamma=0.1,noise=0.01)

Actual Values

x

y

(c) Iteration iii

 Iteration Four of CPU(gamma=0.1,noise=0.01)

Predicted Values

-3 -2 -1 0 1 2 3x -3
-2

-1
 0

 1
 2

 3

y

-0.1
 0

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8

-0.1
 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8

 Iteration Four of CPU(gamma=0.1,noise=0.01)

Standard Deviation

-3 -2 -1 0 1 2 3x -3
-2

-1
 0

 1
 2

 3

y

 0.012
 0.014
 0.016
 0.018

 0.02
 0.022
 0.024
 0.026
 0.028

 0.03

 0.012
 0.014
 0.016
 0.018
 0.02
 0.022
 0.024
 0.026
 0.028
 0.03

 Iteration Four of CPU(gamma=0.1,noise=0.01)

Expected Improvement

-3 -2 -1 0 1 2 3x -3
-2

-1
 0

 1
 2

 3

y

 0
 2e-15
 4e-15
 6e-15
 8e-15
 1e-14

 1.2e-14

 0

 2e-15

 4e-15

 6e-15

 8e-15

 1e-14

 1.2e-14

-3
-2 -1 0 1

 2 3 -3
-2

-1
 0

 1
 2

 3

-0.1
 0

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 Iteration Four of CPU(gamma=0.1,noise=0.01)

Actual Values

x

y

(d) Iteration iv

100

 Iteration Five of CPU(gamma=0.1,noise=0.01)

Predicted Values

-3 -2 -1 0 1 2 3x -3
-2

-1
 0

 1
 2

 3

y

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 Iteration Five of CPU(gamma=0.1,noise=0.01)

Standard Deviation

-3 -2 -1 0 1 2 3x -3
-2

-1
 0

 1
 2

 3

y

 0.013
 0.014
 0.015
 0.016
 0.017
 0.018
 0.019

 0.02
 0.021
 0.022
 0.023
 0.024

 0.013
 0.014
 0.015
 0.016
 0.017
 0.018
 0.019
 0.02
 0.021
 0.022
 0.023
 0.024

 Iteration Five of CPU(gamma=0.1,noise=0.01)

Expected Improvement

-3 -2 -1 0 1 2 3x -3
-2

-1
 0

 1
 2

 3

y

 0
 2e-11
 4e-11
 6e-11
 8e-11
 1e-10

 1.2e-10
 1.4e-10
 1.6e-10
 1.8e-10

 2e-10

 0
 2e-11
 4e-11
 6e-11
 8e-11
 1e-10
 1.2e-10
 1.4e-10
 1.6e-10
 1.8e-10
 2e-10

-3
-2 -1 0 1

 2 3 -3
-2

-1
 0

 1
 2

 3

-0.1
 0

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 Iteration Five of CPU(gamma=0.1,noise=0.01)

Actual Values

x

y

(e) Iteration v

 Iteration Six of CPU(gamma=0.1,noise=0.01)

Predicted Values

-3 -2 -1 0 1 2 3x -3
-2

-1
 0

 1
 2

 3

y

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8

 Iteration Six of CPU(gamma=0.1,noise=0.01)

Standard Deviation

-3 -2 -1 0 1 2 3x -3
-2

-1
 0

 1
 2

 3

y

 0.013
 0.014
 0.015
 0.016
 0.017
 0.018
 0.019

 0.02
 0.021
 0.022

 0.013
 0.014
 0.015
 0.016
 0.017
 0.018
 0.019
 0.02
 0.021
 0.022

 Iteration Six of CPU(gamma=0.1,noise=0.01)

Expected Improvement

-3 -2 -1 0 1 2 3x -3
-2

-1
 0

 1
 2

 3

y

 0
 5e-14
 1e-13

 1.5e-13
 2e-13

 2.5e-13
 3e-13

 3.5e-13
 4e-13

 4.5e-13
 5e-13

 0
 5e-14
 1e-13
 1.5e-13
 2e-13
 2.5e-13
 3e-13
 3.5e-13
 4e-13
 4.5e-13
 5e-13

-3
-2 -1 0 1

 2 3 -3
-2

-1
 0

 1
 2

 3

-0.1
 0

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 Iteration Six of CPU(gamma=0.1,noise=0.01)

Actual Values

x

y

(f) Iteration vi

101

 Iteration Seven of CPU(gamma=0.1,noise=0.01)

Predicted Values

-3 -2 -1 0 1 2 3x -3
-2

-1
 0

 1
 2

 3

y

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8

 Iteration Seven of CPU(gamma=0.1,noise=0.01)

Standard Deviation

-3 -2 -1 0 1 2 3x -3
-2

-1
 0

 1
 2

 3

y

 0.012
 0.013
 0.014
 0.015
 0.016
 0.017
 0.018
 0.019

 0.02
 0.021

 0.012
 0.013
 0.014
 0.015
 0.016
 0.017
 0.018
 0.019
 0.02
 0.021

 Iteration Seven of CPU(gamma=0.1,noise=0.01)

Expected Improvement

-3 -2 -1 0 1 2 3x -3
-2

-1
 0

 1
 2

 3

y

 0
 1e-22
 2e-22
 3e-22
 4e-22
 5e-22
 6e-22
 7e-22
 8e-22
 9e-22

 0
 1e-22
 2e-22
 3e-22
 4e-22
 5e-22
 6e-22
 7e-22
 8e-22
 9e-22

-3
-2 -1 0 1

 2 3 -3
-2

-1
 0

 1
 2

 3

-0.1
 0

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 Iteration Seven of CPU(gamma=0.1,noise=0.01)

Actual Values

x

y

(g) Iteration vii

 Iteration Eight of CPU(gamma=0.1,noise=0.01)

Predicted Values

-3 -2 -1 0 1 2 3x -3
-2

-1
 0

 1
 2

 3

y

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8

 Iteration Eight of CPU(gamma=0.1,noise=0.01)

Standard Deviation

-3 -2 -1 0 1 2 3x -3
-2

-1
 0

 1
 2

 3

y

 0.012
 0.013
 0.014
 0.015
 0.016
 0.017
 0.018
 0.019

 0.02
 0.021

 0.012
 0.013
 0.014
 0.015
 0.016
 0.017
 0.018
 0.019
 0.02
 0.021

 Iteration Eight of CPU(gamma=0.1,noise=0.01)

Expected Improvement

-3 -2 -1 0 1 2 3x -3
-2

-1
 0

 1
 2

 3

y

 0
 5e-25
 1e-24

 1.5e-24
 2e-24

 2.5e-24
 3e-24

 3.5e-24
 4e-24

 0
 5e-25
 1e-24
 1.5e-24
 2e-24
 2.5e-24
 3e-24
 3.5e-24
 4e-24

-3
-2 -1 0 1

 2 3 -3
-2

-1
 0

 1
 2

 3

-0.1
 0

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 Iteration Eight of CPU(gamma=0.1,noise=0.01)

Actual Values

x

y

(h) Iteration viii

102

 Iteration Nine of CPU(gamma=0.1,noise=0.01)

Predicted Values

-3 -2 -1 0 1 2 3x -3
-2

-1
 0

 1
 2

 3

y

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8

 Iteration Nine of CPU(gamma=0.1,noise=0.01)

Standard Deviation

-3 -2 -1 0 1 2 3x -3
-2

-1
 0

 1
 2

 3

y

 0.011
 0.012
 0.013
 0.014
 0.015
 0.016
 0.017
 0.018
 0.019

 0.02

 0.011
 0.012
 0.013
 0.014
 0.015
 0.016
 0.017
 0.018
 0.019
 0.02

 Iteration Nine of CPU(gamma=0.1,noise=0.01)

Expected Improvement

-3 -2 -1 0 1 2 3x -3
-2

-1
 0

 1
 2

 3

y

 0
 5e-28
 1e-27

 1.5e-27
 2e-27

 2.5e-27
 3e-27

 0

 5e-28

 1e-27

 1.5e-27

 2e-27

 2.5e-27

 3e-27

-3
-2 -1 0 1

 2 3 -3
-2

-1
 0

 1
 2

 3

-0.1
 0

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 Iteration Nine of CPU(gamma=0.1,noise=0.01)

Actual Values

x

y

(i) Iteration ix

 Iteration Ten of CPU(gamma=0.1,noise=0.01)

Predicted Values

-3 -2 -1 0 1 2 3x -3
-2

-1
 0

 1
 2

 3

y

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8

 Iteration Ten of CPU(gamma=0.1,noise=0.01)

Standard Deviation

-3 -2 -1 0 1 2 3x -3
-2

-1
 0

 1
 2

 3

y

 0.011
 0.012
 0.013
 0.014
 0.015
 0.016
 0.017
 0.018
 0.019

 0.02

 0.011
 0.012
 0.013
 0.014
 0.015
 0.016
 0.017
 0.018
 0.019
 0.02

 Iteration Ten of CPU(gamma=0.1,noise=0.01)

Expected Improvement

-3 -2 -1 0 1 2 3x -3
-2

-1
 0

 1
 2

 3

y

 0
 5e-26
 1e-25

 1.5e-25
 2e-25

 2.5e-25
 3e-25

 0

 5e-26

 1e-25

 1.5e-25

 2e-25

 2.5e-25

 3e-25

-3
-2 -1 0 1

 2 3 -3
-2

-1
 0

 1
 2

 3

-0.1
 0

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 Iteration Ten of CPU(gamma=0.1,noise=0.01)

Actual Values

x

y

(j) Iteration x

103

Appendix B

Behaviour on the CPU data

with γ = 1 and δ = 0.01 in

the first 10 iterations

104

 Iteration One of CPU(gamma=1,noise=0.01)

Predicted Values

-3 -2 -1 0 1 2 3x -3
-2

-1
 0

 1
 2

 3

y

-0.1
 0

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

-0.1
 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 Iteration One of CPU(gamma=1,noise=0.01)

Standard Deviation

-3 -2 -1 0 1 2 3x -3
-2

-1
 0

 1
 2

 3

y

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

 0.45
 0.5

 0.15
 0.2
 0.25
 0.3
 0.35
 0.4
 0.45
 0.5

 Iteration One of CPU(gamma=1,noise=0.01)

Expected Improvement

-3 -2 -1 0 1 2 3x -3
-2

-1
 0

 1
 2

 3

y

 0
 0.01
 0.02
 0.03
 0.04
 0.05
 0.06
 0.07

 0
 0.01
 0.02
 0.03
 0.04
 0.05
 0.06
 0.07

-3
-2 -1 0 1

 2 3 -3
-2

-1
 0

 1
 2

 3

-0.1
 0

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 Iteration One of CPU(gamma=1,noise=0.01)

Actual Values

x

y

(k) Iteration i

 Iteration Two of CPU(gamma=1,noise=0.01)

Predicted Values

-3 -2 -1 0 1 2 3x -3
-2

-1
 0

 1
 2

 3

y

-0.1
 0

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8

-0.1
 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8

 Iteration Two of CPU(gamma=1,noise=0.01)

Standard Deviation

-3 -2 -1 0 1 2 3x -3
-2

-1
 0

 1
 2

 3

y

 0
 0.05

 0.1
 0.15

 0.2
 0.25

 0.3
 0.35

 0.4

 0
 0.05
 0.1
 0.15
 0.2
 0.25
 0.3
 0.35
 0.4

 Iteration Two of CPU(gamma=1,noise=0.01)

Expected Improvement

-3 -2 -1 0 1 2 3x -3
-2

-1
 0

 1
 2

 3

y

 0
 0.005

 0.01
 0.015

 0.02
 0.025

 0.03
 0.035

 0
 0.005
 0.01
 0.015
 0.02
 0.025
 0.03
 0.035

-3
-2 -1 0 1

 2 3 -3
-2

-1
 0

 1
 2

 3

-0.1
 0

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 Iteration Two of CPU(gamma=1,noise=0.01)

Actual Values

x

y

(l) Iteration ii

105

 Iteration Three of CPU(gamma=1,noise=0.01)

Predicted Values

-3 -2 -1 0 1 2 3x -3
-2

-1
 0

 1
 2

 3

y

-0.2
 0

 0.2
 0.4
 0.6
 0.8

 1

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 Iteration Three of CPU(gamma=1,noise=0.01)

Standard Deviation

-3 -2 -1 0 1 2 3x -3
-2

-1
 0

 1
 2

 3

y

 0
 0.05

 0.1
 0.15

 0.2
 0.25

 0.3
 0.35

 0
 0.05
 0.1
 0.15
 0.2
 0.25
 0.3
 0.35

 Iteration Three of CPU(gamma=1,noise=0.01)

Expected Improvement

-3 -2 -1 0 1 2 3x -3
-2

-1
 0

 1
 2

 3

y

 0
 0.005

 0.01
 0.015

 0.02
 0.025

 0.03
 0.035

 0.04
 0.045

 0
 0.005
 0.01
 0.015
 0.02
 0.025
 0.03
 0.035
 0.04
 0.045

-3
-2 -1 0 1

 2 3 -3
-2

-1
 0

 1
 2

 3

-0.1
 0

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 Iteration Three of CPU(gamma=1,noise=0.01)

Actual Values

x

y

(m) Iteration iii

 Iteration Four of CPU(gamma=1,noise=0.01)

Predicted Values

-3 -2 -1 0 1 2 3x -3
-2

-1
 0

 1
 2

 3

y

-0.2
-0.1

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

-0.2
-0.1
 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 Iteration Four of CPU(gamma=1,noise=0.01)

Standard Deviation

-3 -2 -1 0 1 2 3x -3
-2

-1
 0

 1
 2

 3

y

 0
 0.05

 0.1
 0.15

 0.2
 0.25

 0.3
 0.35

 0
 0.05
 0.1
 0.15
 0.2
 0.25
 0.3
 0.35

 Iteration Four of CPU(gamma=1,noise=0.01)

Expected Improvement

-3 -2 -1 0 1 2 3x -3
-2

-1
 0

 1
 2

 3

y

 0
 0.002
 0.004
 0.006
 0.008

 0.01
 0.012
 0.014
 0.016

 0
 0.002
 0.004
 0.006
 0.008
 0.01
 0.012
 0.014
 0.016

-3
-2 -1 0 1

 2 3 -3
-2

-1
 0

 1
 2

 3

-0.1
 0

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 Iteration Four of CPU(gamma=1,noise=0.01)

Actual Values

x

y

(n) Iteration iv

106

 Iteration Five of CPU(gamma=1,noise=0.01)

Predicted Values

-3 -2 -1 0 1 2 3x -3
-2

-1
 0

 1
 2

 3

y

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 Iteration Five of CPU(gamma=1,noise=0.01)

Standard Deviation

-3 -2 -1 0 1 2 3x -3
-2

-1
 0

 1
 2

 3

y

 0
 0.05

 0.1
 0.15

 0.2
 0.25

 0.3

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 Iteration Five of CPU(gamma=1,noise=0.01)

Expected Improvement

-3 -2 -1 0 1 2 3x -3
-2

-1
 0

 1
 2

 3

y

 0
 0.002
 0.004
 0.006
 0.008

 0.01
 0.012

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

-3
-2 -1 0 1

 2 3 -3
-2

-1
 0

 1
 2

 3

-0.1
 0

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 Iteration Five of CPU(gamma=1,noise=0.01)

Actual Values

x

y

(o) Iteration v

 Iteration Six of CPU(gamma=1,noise=0.01)

Predicted Values

-3 -2 -1 0 1 2 3x -3
-2

-1
 0

 1
 2

 3

y

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 Iteration Six of CPU(gamma=1,noise=0.01)

Standard Deviation

-3 -2 -1 0 1 2 3x -3
-2

-1
 0

 1
 2

 3

y

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 Iteration Six of CPU(gamma=1,noise=0.01)

Expected Improvement

-3 -2 -1 0 1 2 3x -3
-2

-1
 0

 1
 2

 3

y

 0
 0.0005

 0.001
 0.0015

 0.002
 0.0025

 0.003
 0.0035

 0.004
 0.0045

 0.005

 0
 0.0005
 0.001
 0.0015
 0.002
 0.0025
 0.003
 0.0035
 0.004
 0.0045
 0.005

-3
-2 -1 0 1

 2 3 -3
-2

-1
 0

 1
 2

 3

-0.1
 0

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 Iteration Six of CPU(gamma=1,noise=0.01)

Actual Values

x

y

(p) Iteration vi

107

 Iteration Seven of CPU(gamma=1,noise=0.01)

Predicted Values

-3 -2 -1 0 1 2 3x -3
-2

-1
 0

 1
 2

 3

y

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 Iteration Seven of CPU(gamma=1,noise=0.01)

Standard Deviation

-3 -2 -1 0 1 2 3x -3
-2

-1
 0

 1
 2

 3

y

 0.02
 0.04
 0.06
 0.08

 0.1
 0.12
 0.14
 0.16
 0.18

 0.02
 0.04
 0.06
 0.08
 0.1
 0.12
 0.14
 0.16
 0.18

 Iteration Seven of CPU(gamma=1,noise=0.01)

Expected Improvement

-3 -2 -1 0 1 2 3x -3
-2

-1
 0

 1
 2

 3

y

 0
 0.0001
 0.0002
 0.0003
 0.0004
 0.0005
 0.0006
 0.0007
 0.0008
 0.0009

 0
 0.0001
 0.0002
 0.0003
 0.0004
 0.0005
 0.0006
 0.0007
 0.0008
 0.0009

-3
-2 -1 0 1

 2 3 -3
-2

-1
 0

 1
 2

 3

-0.1
 0

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 Iteration Seven of CPU(gamma=1,noise=0.01)

Actual Values

x

y

(q) Iteration vii

 Iteration Eight of CPU(gamma=1,noise=0.01)

Predicted Values

-3 -2 -1 0 1 2 3x -3
-2

-1
 0

 1
 2

 3

y

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 Iteration Eight of CPU(gamma=1,noise=0.01)

Standard Deviation

-3 -2 -1 0 1 2 3x -3
-2

-1
 0

 1
 2

 3

y

 0
 0.02
 0.04
 0.06
 0.08

 0.1
 0.12
 0.14
 0.16

 0
 0.02
 0.04
 0.06
 0.08
 0.1
 0.12
 0.14
 0.16

 Iteration Eight of CPU(gamma=1,noise=0.01)

Expected Improvement

-3 -2 -1 0 1 2 3x -3
-2

-1
 0

 1
 2

 3

y

 0
 5e-05

 0.0001
 0.00015

 0.0002
 0.00025

 0.0003

 0

 5e-05

 0.0001

 0.00015

 0.0002

 0.00025

 0.0003

-3
-2 -1 0 1

 2 3 -3
-2

-1
 0

 1
 2

 3

-0.1
 0

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 Iteration Eight of CPU(gamma=1,noise=0.01)

Actual Values

x

y

(r) Iteration viii

108

 Iteration Nine of CPU(gamma=1,noise=0.01)

Predicted Values

-3 -2 -1 0 1 2 3x -3
-2

-1
 0

 1
 2

 3

y

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 Iteration Nine of CPU(gamma=1,noise=0.01)

Standard Deviation

-3 -2 -1 0 1 2 3x -3
-2

-1
 0

 1
 2

 3

y

 0
 0.02
 0.04
 0.06
 0.08

 0.1
 0.12
 0.14
 0.16

 0
 0.02
 0.04
 0.06
 0.08
 0.1
 0.12
 0.14
 0.16

 Iteration Nine of CPU(gamma=1,noise=0.01)

Expected Improvement

-3 -2 -1 0 1 2 3x -3
-2

-1
 0

 1
 2

 3

y

 0
 0.001
 0.002
 0.003
 0.004
 0.005
 0.006
 0.007
 0.008

 0
 0.001
 0.002
 0.003
 0.004
 0.005
 0.006
 0.007
 0.008

-3
-2 -1 0 1

 2 3 -3
-2

-1
 0

 1
 2

 3

-0.1
 0

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 Iteration Nine of CPU(gamma=1,noise=0.01)

Actual Values

x

y

(s) Iteration ix

 Iteration Ten of CPU(gamma=1,noise=0.01)

Predicted Values

-3 -2 -1 0 1 2 3x -3
-2

-1
 0

 1
 2

 3

y

-0.2
-0.1

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

-0.2
-0.1
 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 Iteration Ten of CPU(gamma=1,noise=0.01)

Standard Deviation

-3 -2 -1 0 1 2 3x -3
-2

-1
 0

 1
 2

 3

y

 0.01
 0.02
 0.03
 0.04
 0.05
 0.06
 0.07

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 Iteration Ten of CPU(gamma=1,noise=0.01)

Expected Improvement

-3 -2 -1 0 1 2 3x -3
-2

-1
 0

 1
 2

 3

y

 0
 0.0002
 0.0004
 0.0006
 0.0008

 0.001
 0.0012
 0.0014

 0
 0.0002
 0.0004
 0.0006
 0.0008
 0.001
 0.0012
 0.0014

-3
-2 -1 0 1

 2 3 -3
-2

-1
 0

 1
 2

 3

-0.1
 0

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 Iteration Ten of CPU(gamma=1,noise=0.01)

Actual Values

x

y

(t) Iteration x

109

Bibliography

[1] Y. Bengio and Y. Grandvalet. No unbiased estimator of the variance of k

fold cross-validation. Machine Learning Research, 5:1089–1105, 2004.

[2] R. Bouckaert, B. Pfahringer G. Holmes, and D. Fletcher. Gaussian pro-

cesses on graphics cards for NIRS. In The Fourteenth International Confer-

ence on Near Infrared Spectroscopy (NIR2009): Breaking the Dawn, page

279, 2009.

[3] L. Breiman. Bagging predictors. Machine Learning, 24:123–140, 1996.

[4] C.E.Rasmussen and C.K.I. Williams. Gaussian Processes for Machine

Learning. MIT Press, 2006.

[5] C. Cortes and V. Vapnik. Support-vector networks. Machine Learning.,

20(3):273–297, September 1995.

[6] N. Cristianini and J. Shawe-Taylor. An introduction to support vector

machines and other kernel-based learning methods. Cambridge University

Press, 2000.

[7] H. Drucker, R.E. Schapire, and P. Simard. Boosting performance in neural

networks. IJPRAI, 7:705–719, 1993.

[8] T. Fawcett. Roc graphs: Notes and practical considerations for researchers.

Technical report, HP Laboratories, 2004.

[9] M. R. Frean and P. Boyle. Using Gaussian processes to optimize expensive

functions. In Australian Joint Conference on Artificial Intelligence, AI ’08,

pages 258–267. Springer Verlag, 2008.

110

[10] Y. Freund. Boosting a weak learning algorithm by majority. Information

and Computation, 121:256–285, 1995.

[11] Y. Freund and R. E. Schapire. Experiments with a new boosting algorithm.

In Proceedings Of The Thirteenth International Conference On Machine

Learning, pages 148–156. Morgan Kaufmann, 1996.

[12] J. Friedman, T. Hastie, and R. Tibshirani. Additive logistic regression: a

statistical view of boosting. Annals of Statistics, 28(2):337–407, 2000.

[13] H. Frohlich and A.Zell. Efficient parameter selection for support vector

machines in classification and regression via model-based global optimiza-

tion. In Proceedings of the IEEE International Joint Conference Neural

Networks, 2005.

[14] T. Onoda G. Rätsch and K.R. Müller. Soft margins for adaboost. Machine

Learning, 42(3):287–320, March 2001.

[15] J. Han, M. Kamber, and J. Pei. Data Mining: Concepts and Techniques.

Morgan Kaufmann, 2 edition, January 2006.

[16] T. Hofmann, S. Bernhard, and J. S. Alexander. Kernel methods in machine

learning. The Annals of Statistics, 36(3):1171–1220, 2008.

[17] G. Holmes, D. Fletcher, and P. Reutemann. Predicting polycyclic aro-

matic hydrocarbon concentrations in soil and water samples. In Proceedings

of the International Congress on Environmental Modelling and Software

(IEMSS), Ottawa, Canada,, July 2010.

[18] G. Holmes, D. Fletcher, P. Reutemann, and E. Frank. Analysing chromato-

graphic data using data mining to monitor petroleum content in water. In

Information Technologies In Environmental Engineering, pages 278–290.

Springer, May 28-29, 2009.

[19] G.H. John. Cross-validated C4.5: Using error estimation for automatic pa-

rameter selection. Technical report, Computer Science Department, 1994.

[20] D.R. Jones, M.Schonlau, and W.J. Welch. Efficient global optimization

of expensive black-box functions. J. of Global Optimization, 13:455–492,

1998.

111

[21] J.R.Quinlan. Induction of decision trees. Machine Learning, 1:81–106,

March 1986.

[22] M. Kearns and L.G.Valiant. Learning boolean formulae or finite automata

is as hard as factoring. Technical report, Technical Report TR-14-88, Har-

vard University Aiken Computation laboratory, August 1988.

[23] M. Kearns and L. G. Valiant. Cryptographic limitations on learning boolean

formulate and finite aitomata. Journal of the Association for Computing

Machinery, 41(1):67–95, January 1994.

[24] M. Kearns and U. Vazirani. An introduction to Computational Learning

Theory. MIT Press, 1994.

[25] R. Kohavi. A Study of Cross-Validation and Bootstrap for Accuracy Esti-

mation and Model Selection, volume 14, pages 1137–1145. Citeseer, 1995.

[26] I. Kononenko. Inductive and Bayesian learning in medical diagnosis. Ap-

plied Artificial Intelligence, 7(4):317–337, 1993.

[27] S. B. Kotsiantis. Supervised machine learning: A review of classification

techniques. Informatica, 31:249–268, 2007.

[28] D.N. Kumar. Advanced topics in optimization: Direct and indirect. search

methods. Technical report, Indian Institution of Science.

[29] L. Licamele and L. Getoor. Predicting protein-protein interactions using

relational features. Technical report, UM Computer Science Department,

2007.

[30] S. Lin and S. Chen. Parameter determination and feature selection for

C4.5 algorithm using scatter search approach. Soft Computing - A Fusion

of Foundations, Methodologies and Applications, 16(1):1–13, 2011.

[31] R.W. Lutz. Logitboost with trees applied to the wcci 2006 performance

prediction challenge datasets. In Proceedings of the International Joint

Conference on Neural Networks (IJCNN), 2006.

[32] D.J.C. MacKay. Introduction to Gaussian processes. Neural Networks and

Machine Learning, 168:133–165, 1998.

112

[33] C.D. Manning and H. Schütze. Foundations of statistical natural language

processing. MIT Press, Cambridge, Mass., 1999.

[34] T. Masaaki and T. Yusuke. Cross-validation, bootstrap, and support vector

machines. Advances in Artificial Neural Systems, 2011:6, 2011.

[35] A.W. Moore. Entropy and information gain. School

of Computer Science, Carnegie Mellon University.

http://www.autonlab.org/tutorials/infogain.html.

[36] B. Pant, K. Pant, and K. R. Pardasani. Decision tree classifier for classifi-

cation of plant and animal micro RNA. Communications in Computer and

Information Science, 51:443–451, 2009.

[37] J.C. Platt. Sequential minimal optimization: A fast algorithm for training

support vector machines. Advances in Kernel Methods - Support Vector

Learning, 208:1–21, 1998.

[38] J. R. Quinlan. C4.5: programs for machine learning. Morgan Kaufmann,

1993.

[39] R.E. Schapire. The strength of weak learnability. Machine Learning,

5(2):197–227, 1990.

[40] R.E. Schapire. A brief introduction to boosting. In Proceedings Of The 16th

International Joint Conference On Artificial Intelligence, pages 1401–1406.

Morgan Kaufmann., 1999.

[41] R.E. Schapire and Y. Singer. Improved boosting algorithms using

confidence-rated predictions. Machine Learning, 37:297–336, December

1999.

[42] M.J. Shaw and J.A. Gentry. Inductive learning for risk classification.

IEEE Expert: Intelligent Systems and Their Applications, 5:47–53, Febru-

ary 1990.

[43] C. Staelin. Parameter selection for support vector machines. Technical

report, Hewlett-Packard Company, 2003.

113

[44] A. Sureka and K.V. Indukuri. Using genetic algorithms for parameter op-

timization in building predictive data mining models. In Proceedings of the

4th international conference on Advanced Data Mining and Applications,

ADMA ’08, pages 260–271. Springer-Verlag, 2008.

[45] M. Umanol, H. Okamoto, I. Hatono, H. Tamura, F. Kawachi, S. Umedzu,

and J. Kinoshita. Fuzzy decision trees by fuzzy id3 algorithm and its ap-

plication to diagnosis systems. In IEEE World Congress on Computational

Intelligence, 1994.

[46] P. E. Utgoff and C. E.Brodley. An incremental method for finding multi-

variate splits for decision trees. In Machine Learning: Proceedings of the

Seventh International Conference. Morgan Kaufmann, 1990.

[47] V.B. Vaghela, A. Ganatra, and A. Thakkar. Boost a weak learner to a

strong learner using ensemble system approach. IEEE International Ad-

vance Computing Conference, 3:1432–1436, 2009.

[48] L. G. Valiant. A theory of the learnable. Communications of the ACM,

27:1134–1142, 1984.

[49] I. H. Witten, E. Frank, and M. A. Hall. Data Mining: Practical Machine

Learning Tools and Techniques. Morgan Kaufmann, 2011.

[50] X. Wu, V. Kumar, J. R. Quinlan, J. Ghosh, Y Qiang, M. Hiroshi, G.J.

McLachlan, A. Ng, B. Liu, P.S. Yu, Z. Zhou, M. Steinbach, D.J. Hand,

and D. Steinberg. Top 10 algorithms in data mining. Knowledge and

Information Systems, 14:1–37, December 2007.

114

