
 
 
 

http://waikato.researchgateway.ac.nz/ 
 
 

Research Commons at the University of Waikato 
 
Copyright Statement: 

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand). 

The thesis may be consulted by you, provided you comply with the provisions of the Act 

and the following conditions of use:  

 Any use you make of these documents or images must be for research or private 

study purposes only, and you may not make them available to any other person.  

 Authors control the copyright of their thesis. You will recognise the author’s right to 

be identified as the author of the thesis, and due acknowledgement will be made to 

the author where appropriate.  

 You will obtain the author’s permission before publishing any material from the 
thesis.  

 

http://waikato.researchgateway.ac.nz/


Bigraph Metaprogramming for

Distributed Computation

A thesis

submitted in partial fulfilment

of the requirements for the Degree

of

Master of Science

at the

University of Waikato

by

Gian David Perrone

University of Waikato

2010



Abstract

Ubiquitous computing is a paradigm that emphasises integration of comput-

ing activities into the fabric of everyday life. With the increasing avail-

ability of small, cheap computing devices, the ubiquitous computing model

seems more and more likely to supplant desktop computing as the dominant

paradigm. Similarly, the presence of high-speed network connectivity between

vast numbers of computers has already made distributed computing the pre-

ferred paradigm for many application domains. Unfortunately, traditional ap-

proaches to software development are not necessarily well-suited to developing

software in a post-desktop world. We present an extension to the bigraphical

reactive systems formalism that enables us to construct a programming lan-

guage based upon it. We believe that this programming language provides pro-

grammers with an environment better suited to the challenges that arise when

creating software within a distributed or ubiquitous computing paradigm. We

detail our modification to the theory of bigraphical reactive systems that en-

ables metaprogramming. Finally, we provide a description of our prototype

implementation of a programming language that enables metaprogramming of

bigraphical reactive systems.



Acknowledgements

I would like to gratefully acknowledge the support and advice offered by my

supervisor, Dr. David Streader during this project, and throughout my uni-

versity career.

To my partner Rocky Maeva, thank you for all of the love, support and

encouragement that has made this possible.

Finally, I would like to thank Anthony Blake, Alyona Medelyan, Perry Lor-

rier, my parents John and Vye Perrone, Professor Steve Reeves, and Associate

Professor Thomas Hildebrandt, all of whom have been willing to engage in

stimulating conversations and read drafts throughout this project.



Contents

1 Introduction 1

1.1 Distributed Computation . . . . . . . . . . . . . . . . . . . . . 2

1.2 Context-Aware Computing . . . . . . . . . . . . . . . . . . . . 3

1.3 Intelligent Agents . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.5 Parasitic Computation . . . . . . . . . . . . . . . . . . . . . . 5

1.5.1 Parasitic Javascript . . . . . . . . . . . . . . . . . . . . 6

1.6 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.6.1 Bigraphical Programming Languages . . . . . . . . . . 7

1.6.2 Mobile Processes . . . . . . . . . . . . . . . . . . . . . 8

1.6.3 Pict/Executable π-calculus . . . . . . . . . . . . . . . . 9

1.6.4 Evaluation by Graph Reduction . . . . . . . . . . . . . 9

2 Bigraphical Reactive Systems 10

2.1 Pure Bigraphs . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Bigraphical Reactive Systems . . . . . . . . . . . . . . . . . . 12

2.3 Process Calculi Embeddings . . . . . . . . . . . . . . . . . . . 13

2.4 Modelling with Bigraphs . . . . . . . . . . . . . . . . . . . . . 14

2.5 Embedding Computation . . . . . . . . . . . . . . . . . . . . . 14

2.5.1 Mini-ML . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.5.2 Pict . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.5.3 Clean . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.5.4 Java . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 A Metaprogrammable Bigraphical Programming Language 17

3.1 Program Structure . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1.1 Syntax and Graphical Representation . . . . . . . . . . 18

3.2 Named Ports . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.3 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3.1 Type and Kind Annotations . . . . . . . . . . . . . . . 21

3.3.2 Link Syntax . . . . . . . . . . . . . . . . . . . . . . . . 22

3.4 Types and Kinds . . . . . . . . . . . . . . . . . . . . . . . . . 24



v

3.4.1 Typing Rules . . . . . . . . . . . . . . . . . . . . . . . 25

3.4.1.1 Ground Terms . . . . . . . . . . . . . . . . . 25

3.4.1.2 Un-typed Nodes . . . . . . . . . . . . . . . . 26

3.4.1.3 Templates . . . . . . . . . . . . . . . . . . . . 26

3.4.2 Kinding Rules . . . . . . . . . . . . . . . . . . . . . . . 26

3.5 Reaction Rules . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.5.1 Variable Arity Matches . . . . . . . . . . . . . . . . . . 30

3.5.2 Scoping Rules . . . . . . . . . . . . . . . . . . . . . . . 32

3.6 Computational Sub-Language . . . . . . . . . . . . . . . . . . 33

3.6.1 Ground Terms . . . . . . . . . . . . . . . . . . . . . . . 34

3.6.2 Arithmetic . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.6.3 Functions . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.6.4 Conditionals . . . . . . . . . . . . . . . . . . . . . . . . 35

3.7 Metaprogramming . . . . . . . . . . . . . . . . . . . . . . . . 35

3.7.1 Exceptions . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.7.2 Recursion . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.8 Bigraphical Agents . . . . . . . . . . . . . . . . . . . . . . . . 42

4 Implementation 44

4.1 Compiler Implementation . . . . . . . . . . . . . . . . . . . . 45

4.1.1 Optimisation . . . . . . . . . . . . . . . . . . . . . . . 46

4.1.1.1 Constant Folding . . . . . . . . . . . . . . . . 46

4.2 Runtime Implementation . . . . . . . . . . . . . . . . . . . . . 47

4.3 Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.3.1 Runtime System Actions . . . . . . . . . . . . . . . . . 50

4.4 Graph Rewriting . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.4.1 Optimisation . . . . . . . . . . . . . . . . . . . . . . . 51

4.4.1.1 Arity Optimisation . . . . . . . . . . . . . . . 52

4.4.1.2 Type Optimisation . . . . . . . . . . . . . . . 52

4.4.1.3 Combining Optimisations . . . . . . . . . . . 53

4.5 Inter-host communication . . . . . . . . . . . . . . . . . . . . 53

4.6 Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.6.1 Virtualisation . . . . . . . . . . . . . . . . . . . . . . . 54

4.6.2 Sandbox Security . . . . . . . . . . . . . . . . . . . . . 55

4.6.3 Direct Verification . . . . . . . . . . . . . . . . . . . . 55

4.6.4 Voting . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.6.5 User-based Security . . . . . . . . . . . . . . . . . . . . 56

4.6.6 Continuous Authentication . . . . . . . . . . . . . . . . 56

4.6.7 Homomorphic Encryption . . . . . . . . . . . . . . . . 57

4.7 Voting Implementation . . . . . . . . . . . . . . . . . . . . . . 57



vi

5 Case Studies 59

5.1 Location-Aware Print Service . . . . . . . . . . . . . . . . . . 59

5.2 Train Signalling . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.3 Sensor Networks . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6 Conclusion 69

6.1 Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6.2 Role of the runtime system . . . . . . . . . . . . . . . . . . . . 70

6.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

A Lope Bytecode Format 77

B Location-Aware Print Service Source Code 79



List of Figures

2.1 A pure bigraph . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 The place graph for the bigraph in Fig. 2.1 with implied frame B 12

2.3 The link graph for the bigraph in Fig. 2.1 . . . . . . . . . . . 12

2.4 An example bigraphical reactive system . . . . . . . . . . . . . 13

3.1 A node with several named ports . . . . . . . . . . . . . . . . 19

3.2 A bigraph with one-level nesting . . . . . . . . . . . . . . . . . 20

3.3 The bigraph resulting from use of the link keyword . . . . . . 24

3.4 A reaction rule . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.5 Illustration of the building model . . . . . . . . . . . . . . . . 28

3.6 Lope code corresponding to the bigraph given in Fig. 3.5 . . . 29

3.7 The application of the rule move to the building bigraph . . . 30

3.8 Two reaction rules with their scopes made explicit . . . . . . . 36

3.9 A graph with nested reaction rules and the rule lattice . . . . 38

3.10 Rewriting of other reaction rules for exception handling . . . . 39

3.11 An example dataList bigraph . . . . . . . . . . . . . . . . . . 40

3.12 The listSum reaction rule . . . . . . . . . . . . . . . . . . . . 41

3.13 The terminateSum reaction rule . . . . . . . . . . . . . . . . 41

4.1 The system overview . . . . . . . . . . . . . . . . . . . . . . . 44

4.2 The general form for compile-time constant folding operations 46

4.3 The default runtime environment world . . . . . . . . . . . . . 47

4.4 A runtime system with multiple hosts and processes . . . . . . 48

4.5 An example of an invocation of the IO service . . . . . . . . . 50



viii

5.1 The building model for a location-aware print service . . . . . 60

5.2 The devicePrint reaction rule . . . . . . . . . . . . . . . . . . 60

5.3 The deviceNear reaction rule . . . . . . . . . . . . . . . . . . 61

5.4 The railway system . . . . . . . . . . . . . . . . . . . . . . . 63

5.5 The railway reaction rules . . . . . . . . . . . . . . . . . . . . 64

5.6 The emergencyStop reaction rules . . . . . . . . . . . . . . . . 65

5.7 The sensorNetwork system after initialisation . . . . . . . . . 66

5.8 The sensorNetwork system during data collection . . . . . . . 66

5.9 The doAverage reaction rule . . . . . . . . . . . . . . . . . . . 67

5.10 The transmitData reaction rule . . . . . . . . . . . . . . . . . 67

5.11 The powerSave reaction rule . . . . . . . . . . . . . . . . . . . 68



List of Tables

3.1 An encoding of agent features as bigraphs . . . . . . . . . . . 43

4.1 Implementation technologies within the Lope system . . . . . 45

4.2 Mappings of events to changes in the Lope bigraph . . . . . . 50

A.1 The format of the bytecode, with all offsets and sizes in bytes 78



Chapter 1

Introduction

Ubiquitous (or pervasive) computing, in which many small, connected devices

“disappear” into the fabric of everyday life, has been a dream of those working

within computing disciplines since the late 1980s [40]. By combining many

such devices, a user need not be aware that he or she is interacting with a

particular computer. Instead, the sum of the behaviours of many connected

elements provides the desired behaviour based upon the location of the user, or

some other measured quantity from the physical environment. Such ubiquitous

computing can mediate social interaction, provide context-aware services, and

dynamically “coalesce” appropriate computing resources required to perform

some task in response to a user action.

The increasing availability of commodity low-power computing devices and

high-speed network connectivity has given rise to a situation in which the de-

parture from the traditional “one user—one desktop” model appears viable.

Since the invention of mobile devices such as mobile phones and PDAs with

previously unimagined computing power it is now common for a single appli-

cation to be running tasks simultaneously in many locations—e.g. on another

machine connected via the internet, on a mobile device, or within a “cloud”

of computing resources—while still providing the appearance (to the user) of

a single, cohesive application. However, while the departure from the desktop

model of computing is feasible from a technical perspective, the software de-



2

velopment tools and techniques needed to manage this increased complexity

have not developed at the same rate as the hardware infrastructure that makes

it possible.

In attempting to provide a unifying approach to the various means of cre-

ating distributed and ubiquitous software systems, we present a programming

language based upon bigraphical reactive systems [26, 29]. The language we

present is one in which processes (or agents) that express some computation

may be exchanged between hosts and executed in a secure manner to achieve

computation that scales to exploit available distributed computing resources,

while reducing the quantity of dedicated computing resources that are required

to operate a service with rapidly changing usage.

We propose (as an extension to previous work on bigraphical programming

languages [7]) a single mechanism that allows the user to express both com-

putation and high-level system and agent behaviour by exposing a specialised

form of bigraphical reactive systems within a programming language. We be-

lieve that such a programming model is well-suited to both current challenges

within mobile and distributed computing, as well as being an appropriate foun-

dation for future development of ubiquitous computing solutions.

Bigraphs are a recent modeling formalism introduced by Milner in [28]. Bi-

graphical reactive systems include reaction rules [28, 27] that imbue them with

dynamic behaviour, permitting description of runtime changes in the locations

of processes and enabling processes in different locations to communicate with

each other, making bigraphical reactive systems an ideal formalism upon which

to build the kinds of mobile, distributed computation that we wish to achieve.

1.1 Distributed Computation

Distributed computation is a model in which multiple independent computing

resources communicate in order to achieve some computational goal. In real

terms, this usually means multiple interconnected computers running programs



3

that are either too large to run on a single computer, or those which achieve

performance increases when running some parts of the process in parallel.

Communication generally takes place as some kind of message passing, and

memory is not shared between nodes (such a system is therefore often called a

distributed memory system, in contrast to a shared memory system). This kind

of distributed computing is already a popular computing model that appears

to share many of the qualities of the kinds of ubiquitous systems that will be

enabled by the ever-increasing quantities of small, network-attached devices.

1.2 Context-Aware Computing

Context-aware computing may be viewed as one of the most immediately us-

able applications of the ubiquitous computing model. Context-aware comput-

ing is concerned with the creation and analysis of software that uses informa-

tion from a user’s surroundings to perform some context-sensitive behaviour

[30]. This “user context” may be a simple abstraction of some physical loca-

tion, or it may be a sophisticated representation based upon real-time sensor

information enabled by the presence of many small, network-attached devices.

Traditional programming methodologies provide a poor model for this kind of

interaction [43]. A program needs to have both the ability to express state-

ments about the user’s context (e.g. location, time of day) as well as the “IT

context” in which it exists (e.g. network connectivity, presence of other hosts,

services available) [13]. While previous attempts at directly modeling both

contexts as bigraphical reactive systems have been dismissed as “awkward”

[7], we show that with a modification to the encoding of such systems pre-

sented in Section 3.5.2, this awkwardness can be alleviated and systems can

be modeled in a way that more closely matches the programmer’s intuitions.



4

1.3 Intelligent Agents

While the traditional view of distributed computing is that of its role in high-

performance or scientific computing, the rise of ubiquitous mobile devices and

persistent high-speed internet connections has led to a new range of applica-

tions that are a natural fit for both the existing distributed computing idiom

and the emerging ubiquitous computing idiom. With the ability to exchange

large volumes of data at high speed, it is no longer important that the user and

his or her computation be geographically (or topologically, in network terms)

close. Processes can be started wherever the data or resources required to

run a program are available. With flexible provisioning services (such as cloud

computing), it may make sense to reconfigure the way in which a computation

is distributed in order to minimise the cost, or the make use of additional

resources that become available.

This connected, dynamic environment leads to a class of systems known

as intelligent agents. An agent is a network-aware process that may move

between systems in order to act on behalf of a user [37]. A software agent may

have partial or total knowledge of the network environment within which it

exists. While there exist many definitions in the literature (e.g.[37, 14, 36]),

there appears to be little consensus on exactly which qualities define an agent.

Consequently, we suggest four properties that define an agent:

• Some computation to be performed in the presence of suitable input.

• A current state, corresponding to the computation that has been per-

formed previously by the agent (in AI terms, this may be known as the

“mental state” of the agent [37]).

• Some model of the network environment (partial or complete), including

the current location of the agent within the network topology.

• An ability to communicate with other agents or services in the same

location, possibly including an ability to request that the current location



5

relocate the agent to another location.

We show in Section 3.8 that there exists a natural encoding of all of these

properties as bigraphical reactive systems.

1.4 Services

Included in our definition of an agent is some notion of a service. Whereas

an agent is network-aware and inherently mobile, a service is location-specific

and does not need to be network-aware. It needs only perform some function

when requested to do so by an agent. For example, one might construct an

agent designed to collect files of a certain type stored on some network. The

agent might arrive at a location, request from the File service a list of all files

at that location, and then request all of the files matching its internal criteria.

The agent would then request from the Network service that it be moved to

some other location with a different File service. We provide a more formal

treatment of services in Section 4.3.

1.5 Parasitic Computation

Parasitic computation is a technique first described in [4] that uses the legit-

imate function of communicating hosts to perform some other (user-defined)

computation. In [4], the behaviour of the TCP/IP (Transport Control Proto-

col/Internet Protocol) sub-system of a remote computer is exploited in order to

perform computations (in this case the factoring of keys used for encryption).

When a packet of information is sent across the internet, the host receiving

that packet performs a TCP checksum on the data to ensure that it has arrived

intact. If the packet checksum fails, then a message is sent back to the host

to indicate that the packet needs to be re-transmitted. By crafting packets in

a particular way, it is possible to make the success or failure of the checksum

equivalent to the result of a particular computation. By encoding a computa-



6

tion into many packets and sending these to any available hosts, it is possible

to distribute a computation in a way that makes it very difficult for a user to

even detect that their computer is being used to run someone else’s computa-

tion. While there are ethical and legal implications to this, assuming that the

user does consent, the ability to distribute very small units of work to many

different computers without needing to authenticate or be concerned with the

topology of the network is very appealing in some distributed applications.

It is this ability (of parasitic computing) to enable small computations to be

performed in untrusted distributed environments without manual intervention

that we aim to replicate with our system. However, we provide a more expres-

sive normative means for describing any computation, rather than crafting a

parasitic solution to a particular computational problem.

1.5.1 Parasitic Javascript

Parasitic Javascript, introduced in [18] follows the model provided by the work

in [4], however instead of embedding computation inside TCP/IP packets, it

embeds it into web pages.

Many modern websites employ the Javascript language in order to provide

some dynamic functionality within a page. Javascript is supported by almost

all modern web browsers, and is executed in a “sandbox” environment on the

client-side, i.e. the code is downloaded from the remote server and then ex-

ecuted locally. One feature of Javascript is its ability to construct “AJAX”

requests that allow data to be passed back and forth between the server from

which the code was downloaded and the client computer on which it is being

executed. By embedding a piece of Javascript code inside a web page that

communicates the results of that computation back to the server it was down-

loaded from, one can perform computation that is distributed across all of the

computers being used to view that web page.

While Javascript provides a general-purpose scripting language in which

to perform computations, the browser environment is not necessarily ideal



7

for distributed computation. The browser security model for Javascript is

designed to be particularly restrictive, and Javascript programs that are using

a large number of resources may be terminated by the browser to prevent

them from adversely affect the operation of the rest of the browser (as most

browsers are single-threaded, and therefore the scripts they run are not subject

to the normal operating system-level scheduling). Similarly, Javascript is not

“network-aware” by default, and so any parasitic Javascript program must

be manually constructed by the programmer in a way that is tailored to the

parasitic execution model.

We suggest a means (in Section 6.2) of integrating our proposed computa-

tional model with existing approaches to parasitic Javascript.

1.6 Related Work

1.6.1 Bigraphical Programming Languages

The BPL (Bigraphical Programming Language) project at the IT University

of Copenhagen has focused on the use of bigraphical reactive systems for mod-

eling and construction of so-called context-aware systems, in which informa-

tion about the environment (from sensors) is available to guide the execution

of location-aware software [7]. In exploring approaches to modeling context-

aware systems as bigraphical reactive systems, the authors found that the naive

approach to modeling was “somewhat awkward” [7], and instead propose an

alternative modeling technique that they call Plato-graphical models.

Plato-graphical models provide separate encodings of the actual context in

which an agent exists, and the agent’s representation of that context. Similarly,

within this technique reaction rules are no longer used to directly describe

computation or mutation of state in the system, but rather are used to encode

operational semantics of programming languages, which one can then use to

construct programs that operate over representations of the context in which

the programs operate, and to encode transitions occurring in the real world



8

[7].

The authors cite three reasons for the awkwardness of the direct-modeling

“naive” approach, which leads them to reject it as a means of encoding context-

aware systems as bigraphical reactive systems:

1. Bigraphical reaction rules do not support recursion directly, requiring

implementation (in bigraphs) of some sort of runtime call stack using

controls on nodes.

2. Bigraphical reaction rules that model queries over contexts (a funda-

mental operation in context-aware computing [40, 37]) will apply over

any context, due to the interpretation of reaction rules within the the-

ory of bigraphical reactive systems. This can only be avoided through

the secondary implementation of some kind of program counter.

3. Reaction rules cannot easily encode the case in which a rule should only

apply in the absence of something.

Birkedal et al. assert (in [7]) that the naive approach to modeling context-

aware systems within bigraphical reactive systems is unsuitable without mod-

ification. We believe that the direct modeling approach remains valuable for

many kinds of modeling tasks, and consequently we provide a modification to

the structure of bigraphical reactive systems in Section 3.5.2 that we believe

addresses the problems discovered within this approach by the BPL project.

1.6.2 Mobile Processes

While modeling formalisms such as CSP [16], CCS [22] and Petri Nets [32]

have been employed in academia and industry extensively, a relatively recent

extension has been the introduction of process mobility, most notably within

the π-calculus [23]. The π-calculus enriches normal process calculus-style con-

structs with the ability for processes to change location and replicate. Com-

munications channels are first-class values, and so may themselves be commu-



9

nicated (via channels) between processes. This increased expressivity is ideal

for modeling mobile processes.

1.6.3 Pict/Executable π-calculus

The development of the π-calculus has led to the development of languages

such as Pict, that is essentially an executable form of the π-calculus. Pict has

been designed as a concurrent programming language for expressing the be-

haviour of groups of processes that communicate and interact to perform some

computation [33]. It has been suggested that it might be an ideal language to

embed within bigraphical reactive systems in order to provide a language with

which to express low-level computation [7].

1.6.4 Evaluation by Graph Reduction

Several functional programming languages have used graph rewriting to pro-

vide evaluation semantics for programs, including SASL [39], Clean [8], Lazy

ML [2] and Haskell [17].

We draw some inspiration from these works, as well as the early work by

Barandregt [5] on term graph rewriting in designing our computational sub-

language for expressing computations within bigraphs.



Chapter 2

Bigraphical Reactive Systems

Bigraphical reactive systems are a class of formalisms in which bigraphs are

enriched with dynamic behaviour through the introduction of reaction rules

[28].

2.1 Pure Bigraphs

At the core of any bigraphical formalism is the class of bigraphs known as pure

bigraphs [29]. These pure bigraphs contain no notion of name-binding or of

reactions, i.e., they exhibit no dynamic behaviour. A pure bigraph may be

characterised formally by the definition (from [29]):

G = (V,E, ctrl, GP , GL)

GP = (V, ctrl, prnt)

GL = (V,E, ctrl, link)

Where V is the set of nodes and E is the set of edges. cntrl is the control

map, V → K, that associates a control (from the set of controls K) with every

node in the bigraph. GP is the place graph, while GL is the link graph.

A control is a kind of “signature” for a node, defining its arity (i.e. the

number of connection points, or open links it has to connect it to other nodes)



11

a

c
g

b
d

e

f

Figure 2.1: A pure bigraph

and within pure bigraphs, defining a node to be active or passive. As we extend

our definition of bigraphs, more information will be added to the controls that

we associate with nodes, such as type information.

A place graph (GP ) is a set of possibly-nested nodes. The parent map

prnt captures this notion of nesting, by mapping each node to a parent (every

node is contained within exactly zero or one parent node). The place graph

is designed to capture notions of location within a system. A node might

correspond to some built location (e.g. a building or a room), or it might

represent some abstract notion of location (e.g. a host or a set of nested

parentheses in an expression).

A link graph (GL) is an undirected hypergraph that shares a set of nodes

V with the place graph. The link graph ignores the nesting structure of the

place graph and may connect any nodes together (as defined by the link func-

tion). The link graph is designed to capture notions of communication and

connectivity - e.g. a network link, a physical wire, a shared name, or having

some other ability to communicate or be considered as a group.

We have omitted the notion of inner and outer faces usually given in a

treatment of bigraphs, as they are not used within our eventual application

of bigraphs. Instead we employ named ports that are less expressive than the

definition of interfaces given in the literature. Indeed, our named ports (dis-

cussed in Section 3.2) could be implemented within the usual bigraph interfaces

presented in [29].



12

B

a g

b c

d

e f

Figure 2.2: The place graph for the bigraph in Fig. 2.1 with implied frame B

a

f

b c d

e

g

Figure 2.3: The link graph for the bigraph in Fig. 2.1

Fig. 2.1 demonstrates a pure bigraph, while Fig. 2.2 and Fig. 2.3 show

its decomposition into separate representations of the place and link graphs.

Fig. 2.1 also includes a site (also known as a hole in some presentations of

bigraphs) that is represented with grey shading. This is a hole into which

another bigraph may be substituted, or to express the notion of matching any

node as the formalism is extended to include notions of pattern-matching and

rewriting.

2.2 Bigraphical Reactive Systems

While a pure bigraph captures useful notions of static models, to imbue our

models with dynamic behaviour we use an extension of pure bigraphs called bi-

graphical reactive systems (BRS). These BRSes extend bigraphs with a notion

of reaction, which is essentially graph rewriting on bigraphs.

Reactions are expressed in the form r → r′, where r is known as the redex



13

a

b
c

(a) A pure bigraph G

Redex Reactum

x y y

(b) A reaction rule r → r′

a

c

(c) G′

Figure 2.4: An example bigraphical reactive system

and r′ the reactum. The redex defines a pattern to match against some bigraph,

and (in the presence of such a match), the reactum defines the rewriting to

perform upon the matching sub-graph [28].

Fig. 2.4 demonstrates a pure bigraph (Fig. 2.4a) being enriched with a

reaction rule (Fig. 2.4b), and finally the modified graph after the reaction rule

has been applied to G (Fig. 2.4c). It is worth noting from the figure that reac-

tion rules are themselves bigraphs, which gives rise to a natural homoiconicity

property, in which bigraphs may be used to manipulate bigraphs (including

themselves). We exploit this property in order to permit recursion (Section

3.7.2) and to develop an exceptions mechanism for our Lope bigraphical agent

programming language (Section 3.7.1).

2.3 Process Calculi Embeddings

The bigraphs formalism was developed to be a unifying formalism for the

myriad of process calculi that are used currently in modeling tasks, as well

as to provide a more powerful mechanism for specifying the types of complex

ubiquitous computing systems that are increasingly common [28].

Encodings have been demonstrated for Petri Nets [24], π-calculus [9], λ-

calculus [25] and others. The range and diversity of the formalisms that have

been shown to be representable within bigraphs provide some evidence for the

expressive power of bigraphs for modeling systems.



14

2.4 Modelling with Bigraphs

While the traditional approach to bigraphs has been to use them as a meta-

formalism for reasoning about process calculi and other modeling formalisms,

there seems a natural mechanism for modeling directly within bigraphs. By

providing appropriate syntax and a default set of reaction rules within a pro-

gramming language, it is possible to expose to a programmer a language that

has many of the desirable properties of a “modelling” formalism, while still

being able to directly express efficient computation in the manner of a program-

ming language. We describe our approach to the design and implementation

of such a language in Chapter 3.

We also demonstrate a means of encoding reaction rules within bigraphs

themselves in order to reduce the awkwardness associated with modelling di-

rectly within bigraphs, as observed by Birkedal et al. [7] and described in

Section 1.6.1. We show (in Section 3.5.2) that a simple modification to the

encoding of reaction rules within bigraphical reactive systems enables queries

over limited contexts and a form of metaprogramming (discussed in Section

3.7) over bigraphs that permits general recursion.

2.5 Embedding Computation

As a very general formalism, bigraphs provide no fixed mechanism by which

actual computation should be encoded. Consequently, there are a number of

strategies that may be employed to permit the description (and execution)

of computations within bigraphs. We therefore present in the remainder of

this section a brief survey of several approaches to embedding computation

within bigraphs that would permit convenient direct encodings of low-level

computation.



15

2.5.1 Mini-ML

Mini-ML [11] was embedded within bigraphs in order to facilitate context-

aware modelling using the Plato-graphical models described in [7]. This Mini-

ML is essentially a typed λ-calculus with references and side-effects. The

natural numbers were defined using an encoding similar to Peano arithmetic

(i.e. a zero symbol and a successor function).

The ability to encode a general-purpose programming language such as

ML [21] into bigraphs demonstrates that there should be no significant barrier

to encoding many other kinds of programming languages within the bigraphs

formalism.

2.5.2 Pict

With pre-existing encodings of the π-calculus within bigraphs [9], it seems

likely that Pict [33] (which is based upon the π-calculus) could be encoded

within bigraphs either by translation to bigraphical π-calculus primitives, or

through implementation of the Pict Abstract Machine [41] within bigraphs

(either directly or implemented within some other encoding of computation).

2.5.3 Clean

Clean [8] is a general-purpose functional programming language that is exe-

cuted by graph rewriting (i.e. functions are rewrites on some graph). It is

conceivable that these graph rewriting rules could be implemented using the

same mechanism used to perform graph rewriting within bigraphical reactive

systems. Similarly, an implementation of the ABC machine [34] (an abstract

machine designed to execute Clean programs) within bigraphs could provide

another means of directly executing Clean within bigraphs.



16

2.5.4 Java

From a purely pragmatic view, it may be desirable to allow execution of arbi-

trary programs written in other languages without reference to the bigraphical

idiom. It might therefore be possible to generate adapter code that would allow

Java code to be loaded as a first-class value inside a bigraph node, and then

in the presence of suitable input to that Java program, a step of “reduction”

takes place that rewrites the code and input to the output of that program.

This approach might allow the kinds of context-awareness and process mo-

bility that the bigraphical programming languages model enables to be ex-

tended to existing programs, running without modification inside a mobile,

context-aware system.



Chapter 3

A Metaprogrammable

Bigraphical Programming

Language

In this chapter we present a design for a bigraphical programming language

for ubiquitous and mobile computing, called Lope, based upon bigraphical re-

active systems, as described in Section 2.2. However, whereas bigraphs are

primarily a modeling formalism (most often applied to the embedding of other

process calculi) the language we present is distinctly a programming language.

Consequently, where theoretical considerations from the theory of bigraphs

and practical considerations come into conflict, the pragmatic route has been

taken. Similarly, we provide features for both programming-in-the-large (i.e.

for describing the structure of the system and organising program elements)

as well as a computational sub-language for actually expressing computation

in a way that would be familiar to users of many modern functional program-

ming languages (such as Haskell or ML). Existing approaches to bigraphical

programming languages have traditionally been more concerned with system-

level modeling and encoding programming language semantics, rather than

with describing computation and modeling directly within bigraphs [6, 7].



18

3.1 Program Structure

A Lope program consists of the following elements:

• A place graph, consisting of one or more (possibly-nested) nodes

• A link hypergraph, consisting of zero or more links (each of which may

link two or more nodes, shared with the place graph)

• A set of reaction rules that describe valid bigraph rewritings

This definition is consistent with the definition of bigraphical reactive sys-

tems given in [25].

3.1.1 Syntax and Graphical Representation

We define a syntax for describing Lope-style bigraphs, however our approach

follows that taken in [24], in which it is stipulated that the graphical repre-

sentation of bigraphs should be considered primary. The Lope syntax simply

provides a convenient means of describing Lope-style bigraphs, however we

will continue to use graphical representations of systems and reaction rules

in addition to the programming language syntax. We hope that some future

extension of this work would permit the direct construction of Lope programs

within some visual environment.

3.2 Named Ports

The link graph within our Lope-style bigraphs is meant to encode information

about connectivity or ability to communicate, however these links are not

used for actual communication (i.e. they are not necessarily channels in the

traditional distributed systems sense). While reaction rules could be designed

that only move child nodes between parents connected by a certain type of

link in order to represent the transfer of data over network links (and indeed,

in a distributing computing situation this would be highly desirable), this is



19

door

window

vent

room

Figure 3.1: A node with several named ports

not enforced by the language or the environment, but rather is a convention

that a user could define for a given program.

In contrast to the usual notion of interfaces in bigraphs [24, 25, 26], we opt

for a much simpler mechanism that is more appropriate to the programming

language motivation behind our language design. A port is a named connection

point for links. Only one link may connect to each port, though these links are

hypergraph edges, and so they may link multiple nodes together. Self-loops

that link two ports of the same node together are permitted (however the same

restriction applies such that a link may not connect the same port to itself).

Fig. 3.1 provides an example of a node with several named ports. The

names are not semantically significant and have no special meaning, however

they can be matched against in reaction rules (e.g. match any node connected

to any other with a port named “door”). Similarly, ports may have types

(which must agree between the connecting ends so as to establish a single

type for the link) that may also be used to distinguish nodes and links while

matching (e.g. match any two nodes connected by a link of type “network”).

3.3 Syntax

The design of the Lope syntax follows the principle that a Lope program is

simply a description of a bigraph. Only in the computational sub-language is

there deviation that introduces syntax specifically used to describe groups of



20

nodes and links.
The creation of a node uses the syntax:

node ::= identifier[(sites)][< ports >][: type][:: Kind]{[nodelist]}

Square brackets indicate that the inclusion of a piece of syntax is optional.

The simplest node we could therefore construct would be:

a {}

This constructs an empty node called a. We can construct nested nodes in

the same way, by including additional node definitions inside the body of the

parent.

a

bc

a {
b {}
c {}

}

Figure 3.2: A bigraph with one-level nesting

Fig. 3.2 demonstrates a node a with two empty children, b and c. These

nodes have no sites or ports, and there are no reaction rules defined within

the scope of our system. To create a more complex model, we can start to

introduce these elements:

room1($x) {
$x

}

This example defines some node room1 that has a single site $x. However,

because room1 has a site, we need to introduce a notion of substitution and

assignment :

room1

chair

val c = chair {}

room1($x) { $x }

room1(c)



21

The val syntax introduces a node, but does not add it as a child of the

current parent node (in this case, the implied world node). Instead, it intro-

duces a name within the current scope that can be used to refer to that node.

Consequently, the example above first creates (within the current scope) a

room node with a site called $x, and then inserts into it a chair node. There

is no chair node created within the parent scope, and actual instantiation of

the chair node only occurs at the application room(c). This corresponds to a

kind of lazy evaluation of the right hand side of the val binding, such that all

references to c are replaced with the body of the val binding.

We wish to generalise this notion of parametrisation, and therefore intro-

duce a template keyword:

room1 room2 room3

chair table $x

template room($x) {
$x

}

room1 = room(chair {})
room2 = room(table {})
room3 = room(_)

This example introduces three room nodes to the current scope named

room1, room2 and room3. The room1 node contains a node chair, while

room2 contains a table node. A new piece of syntax is introduced — , the

wildcard operator. This indicates that the site should not be substituted with

anything, and should instead remain unbound. Consequently, room3 remains

empty, however we could still place an element into it at some later time.

3.3.1 Type and Kind Annotations

Implicit in our example using the template keyword is the assumption that the

three room nodes we instantiate have the same structure, and indeed the same

type. This is indeed the case, as the template keyword silently introduces a

new unique type that represents the type of all instantiations of that template.



22

We can make this explicit:

kind Furniture
kind Chair

type room
type chair :: Furniture, Chair
type table :: Furniture

template room($x :: Furniture) : room {
$x

}

room1 = room(armchair : chair {})
room2 = room(table : table {})

The kind keyword introduces a new kind (type of type) named Furniture

to the current environment. Similarly, the subsequent type declarations in-

troduce new types. The single colon (:) is used to denote that a node has a

certain type, while the double colon operator (::) indicates that a type belongs

to a kind. The result of these declarations is that the room template will now

only accept substitution of nodes into the site $x that are of kind Furniture,

and will return a node of type room. Because we have not defined a kind for

the room type, it implicitly inhabits only one kind, the built-in Node kind.

This kind of judgement starts to make strong statements about the struc-

ture of nodes, and we may begin (through type checking) to reject certain

invalid programs. For example, we could statically detect the case in which

one tried to substitute a node of type room into another of type room, because

room is not of kind Furniture.

Nodes that have no type annotation will be assigned an automatically

generated type that is unique to that node, and which is only of kind Node.

3.3.2 Link Syntax

The primary means of introducing links is through the link keyword and the

linking operator < − >. The exact use of this is slightly complicated by the

fact that the link graph within Lope (as within all bigraphs) is a hypergraph,



23

in which a single edge may connect two or more nodes:

a <p,q> { }

b <r> {}

c <s,t> {}

d <u> {}

link a.p <-> b.r <-> d.u

link c.s <-> a.q <-> c.t

There are two distinct link statements made in this example. The first

link keyword introduces a hypergraph edge linking the ports a.p, b.r and d.u.

The second introduces a second edge linking c.s, a.q and c.t. This self loop is

permitted. Order is not important, as link graph edges are undirected. The

effect of defining two links involving the same port is to merge those two edges

into a single hypergraph edge.

In the absence of types, a unique kind is inferred for all of the ports con-

nected to a given edge. For example, the first link made in the example above

might result in a.p, b.r and d.u all being given the kind Uniq001 and the second

set being given the Kind Uniq002. In the presence of explicit type informa-

tion, checking will be performed to ensure that there is agreement between the

types and kinds of the ports connected by a single link, and a type error will

result if this agreement does not exist.

Where port names are the same, it is possible to use the link keyword

without port names specified:

building <staffDoor,publicDoor> {}

fireEscape <publicDoor> {}

link building <-> fireEscape

In this case, the link keyword will have the effect of linking ports with

the same name, resulting in the bigraph in Fig. 3.3. This is simply syntac-



24

building

fireEscape

publicDoor staffDoor

Figure 3.3: The bigraph resulting from use of the link keyword

tic sugar for link building.publicDoor <-> fireEscape.publicDoor, and

the staffDoor port on the building node will remain unlinked.

3.4 Types and Kinds

All nodes within our Lope-style bigraphs have some type associated with them.

This corresponds to the usual notion within programming languages of values

having types. However, we also assign kinds to our types (i.e. types of types).

We use lower-case names for types (e.g. string) and capitalised names for

kinds (e.g. Process). For example, a node representing the integer value 32

would have the type int, and the kind V alue, which distinguishes it from some

computation that may eventually yield an int after some number of reaction

rules have been applied. A single type may inhabit multiple kinds, so while a

node has exactly one type, it may have multiple kinds.

The inclusion of kinds within Lope was necessary to control the order in

which low-level computation is evaluated with respect to the rest of the system.

Without being able to readily distinguish computation from reaction rules

operating on other kinds of nodes it is difficult to implement a predictable

evaluation order consistent with the normal interpretation of mathematical

operators, because of the fairness property discussed in Section 3.7. Similarly,

kinds provide a convenient means for users to construct reaction rules that

operate in limited contexts without needing to duplicate rules for every type

of node that is of interest within that context.



25

It is important to distinguish our Lope programming language notion of

“kinds” from the use of the same term in the literature (e.g. [31]). We use the

term “bigraphical kind” to refer to the definition of kinds within kind bigraphs

[31], where kinds are used to restrict valid nestings of place graph nodes, and

“Lope kind” to distinguish our use of types-of-types within our programming

language. The latter use corresponds more closely to the definitions used in

programming languages such as Haskell, in which their type classes mechanism

is essentially a means of making kind-judgements. Where no ambiguity exists,

we will always use “kind” alone to refer to the Lope- and Haskell-style kinds.

Similarly, we will often refer to a node being of kind K. This is informal usage,

meaning that the node is of a type that is of kind K.

Lope kinds may be parameterised by types, type variables or other kinds

that indicate the presence of “sites” within nodes of that kind, and the types

(or kinds) of the bigraphs that may be substituted into those sites. A kind

with uninstantiated parameters is called a kind signature.

Similarly, types may be parameterised by other types or type variables, but

not by kinds. This corresponds to a much more traditional notion of types in

a strongly-typed programming language such as ML or Haskell.

3.4.1 Typing Rules

The type judgements used to establish whether a given term is well-typed

are given below, starting with ground terms. We make reference to the type

environment Γ, and the kind environment ΓK .

3.4.1.1 Ground Terms

Some primitive objects within the language (such as literal values) may be

assigned a type without the need for further inference. These correspond to

the axioms in our type system:

t ∈ Z
$ t : int



26

For strings, we use regular expression notation to indicate the matching of

all strings enclosed by quotation marks:

t = “Σ ∗ ′′

$ t : string

t ∈ {true, false}
$ t : bool

3.4.1.2 Un-typed Nodes

Because the Lope syntax provides the capability to construct nodes that have

no explicit type information, there exists a judgement for un-typed nodes that

assigns it a unique type:

t = n : , u :: Type, u /∈ Γ
Γ $ t : u

3.4.1.3 Templates

Template declarations are instantiated with explicit or implicit type informa-

tion, and are typed as functions over nodes:

s = template(x0 : t0, x1 : t1, ..., xn : tn) : r
Γ $ s : t0 → t1 → ... → tn → r

Similarly, template instantiation enforces type equality (or kind-inhabitation)

on parameters and arguments:

e = identifier(v0 : t0, v1 : t1, ..., vn : tn) : t′0 → t′1 → ... → t′n → r

Γ $ e : r, t0 = t′0, t1 = t′1, ..., tn = t′n

3.4.2 Kinding Rules

The presence of kind declarations within a program assigns types to kinds. A

type may be of more than one kind, and will be a member of at least one kind



27

reaction

reactumredex

BA

Figure 3.4: A reaction rule

(the base Node kind). We define the kind environment ΓK , and a predicate

kind(type, kind) that provides a kind judgement that some type is of a kind.

Kind inclusion is therefore determined by instantiation of kinds within the

kind environment through the use of the kind keyword, by inhabitation of

kinds through the use of annotations on the type keyword, and by implied

inhabitation of the Node kind by all types:

kind k
k ∈ ΓK

type t :: k
t :: k ∈ ΓK ∧ kind(t, k)

∀t ∈ Γ.t :: Node ∈ ΓK ∧ kind(t, Node)

3.5 Reaction Rules

One of the main extensions of bigraphs is bigraphical reactive systems [28],

in which pure bigraphs are enriched with a set of reaction rules. These rules

always follow the form:

reaction = redex → reactum

This reaction definition describes a rule in which a portion of the data

graph matched by the redex is substituted with the reactum. The result is an

ability to express arbitrary computations, including β-reduction [25]. Conse-

quently, bigraphical reactive systems are a powerful tool for describing both

behaviour at a system level, and for expressing computation.



28

Fig. 3.4 provides an example of a reaction rule that might be included in

a bigraphical reactive system. The rule expresses the notion that a matched

A node may be replaced by a B node.

As was observed in Section 2.2, it is important to note that all reaction rules

are themselves bigraphs. It is therefore conceivable that one could construct

a reaction rule that operated upon other reaction rules (or indeed one that

matched itself!) and modified it. This means that the Lope programming

language has a homoiconicity property [19], i.e. a program in the language is

represented using first-class values from the language itself. This gives rise to a

natural kind of metaprogramming [15], in which programs can be constructed

that operate on the structure of programs. We use this property to create an

exception mechanism for error handling and recovery in Section 3.7.1.

The syntax for creating a reaction rule follows that of the syntax presented

previously for creating nodes. We use kinds to distinguish reaction rules from

other types of bigraphs:

building

room1 : room room2 : room

move :: Reaction

redex : redex

r :: Room s :: Room

reactum : reactum

r :: Room s :: Room

person1 : person

door

$person

p : person

l

$x

$y

l

p

Figure 3.5: Illustration of the building model

The example in Fig. 3.5 and 3.6 demonstrates several properties of reaction

rules in Lope. The reaction rule move is within the scope of the building node.



29

kind Room
type person
type room :: Room

building {
template room($person : person) : room <door> { $person }

val person1 = person : person{}
room1 = room(person1)
room2 = room(_)

link room1 <-> room2

reaction move {
redex {

r <l> :: Room { p : person }

s ($x) <l> :: Room { $x }

link r <-> s
}

reactum {
r ($y) <l> { $y }

s <l> { p }

link r <-> s
}

}
}

Figure 3.6: Lope code corresponding to the bigraph given in Fig. 3.5



30

room1 : room room2 : room

person1 : person

door

$person : person

(a) Before rewriting

room1 : room room2 : room

$person : person

door

person1 : person

(b) After rewriting

Figure 3.7: The application of the rule move to the building bigraph

It will not be matched outside this node. The rule itself expresses the behaviour

specified in Fig. 3.7, in which a node of type person may move from the room

it is in into any other empty node of kind Room that is connected to the

current room node. Everything matched in the redex appears in the reactum,

ensuring that nothing will be deleted by the application of this rule.

3.5.1 Variable Arity Matches

Up to this point we have been explicit about the arity (i.e. number of place

graph children) of the nodes we wish to match. To provide greater flexibility,

we introduce a variable arity matching mechanism (the ∗ operator) and oper-

ations for adding and removing children in reactums (the + and − operators),

and demonstrate the construction of nodes without explicit sites, permitting

any number of child nodes to be contained within it. Consequently, we can

create a new version of our building example that allows for any number of

people to be contained within the rooms, using changes in the type of nodes

of kind Person to indicate a need to move that node between rooms:

kind Room
kind Person

type walking_person :: Person
type sitting_person :: Person
type room :: Room



31

building {
template room : room <door> {}

room1 = room()
room2 = room()

room1 + { person1 : sitting_person {} }
room2 + { person2 : walking_person {} }

link room1 <-> room2

reaction moveAndSit {
redex {

r <l> :: Room {
p : walking_person
r_others* :: Person

}

s <l> :: Room {
s_others* :: Person

}

link r <-> s
}

reactum {
r - { p }
s + { q : sitting_person {} }

link r <-> s
}

}
}

This example demonstrates the use of the node addition and subtraction

operators. In contrast to the previous example, this example uses the free

variable q in the reactum to introduce a new node of a different type, and

the same reaction rules could be used to accommodate any number of Person

nodes within the system. The rule dictates that any walking person should

move to the adjacent room and become a sitting person. We can see that

this syntax provides a considerably more compact representation of complex

match conditions. Because there is no node body for the r and s nodes in the

reactum, it is not necessary to specify the contents of these nodes. They will



32

be precisely the same nodes as were originally matched, with the addition and

subtraction of child nodes performed.

3.5.2 Scoping Rules

As was discussed in Section 1.6.1, previous attempts at direct modeling within

bigraphical reactive systems has been dismissed as awkward because of the lack

of simple recursion or ability to perform a query (which is just a reaction rule

that matches some set of items) only within a specific context. To overcome

this limitation, we propose a departure from the usual encoding of bigraphical

reactive systems that places all reaction rules within the same (global) scope

where they apply to all matching nodes within the system. Instead, we place

reaction rules within the system itself, and confine the scope of a reaction

rule to some sub-graph that is determined by its place within the place graph

hierarchy. Therefore a reaction rule will only match nodes (and links) that exist

within the sub-tree below its parent node in the place graph. For example:

type t
type u

a : t {
b : t {

c : t {
d : t {}

}

reaction r2 {
redex { _ : t}
reactum {}

}
}

reaction r1 {
redex { _ : t}
reactum {}

}
}

In this example, r1 will match nodes b, c and d, while r2 will match only c

and d. The parent a node will not be matched by any rule. This scoping rule



33

has been chosen in order to permit a restricted form of metaprogramming, as

a reaction rule is always in the correct scope to match itself. Similarly, this

enforces a kind of security model that permits untrusted Lope bigraphs to be

inserted as a child of some trusted program, with the guarantee that it cannot

affect the environment outside its root node.

One exception to this scope control mechanism is provided by the presence

of links, as links are permitted to cross node boundaries. We allow a reaction

rule to match any node within its scope, or any node linked to one within its

scope. This relaxes the scope restriction somewhat, and allows for models to

be constructed that permit granular access control, based on the presence of

links that leave the scope of the current rule, without needing to place the rule

higher up the place graph hierarchy.

We believe that this modification provides several benefits and addresses

the concerns presented in [7]:

• Queries over limited contexts are achieved by selecting the appropriate

location for the reaction rule within the place graph.

• A generalised form of metaprogramming becomes available that permits

the implementation of other language features in an elegant manner,

including exceptions (Section 3.7.1) and recursion (Section 3.7.2).

• From a software engineering perspective, we believe that limiting the

scope of reaction rules makes it easier for programmers to predict the ef-

fect of adding, modifying or removing rules within the system by placing

the rules closer to the data to which they are intended to apply.

3.6 Computational Sub-Language

Computation within our language is represented using an embedding of a graph

rewriting system (GRS), based upon the systems defined in [5] and [34]. This

graph rewriting system has the advantages of being equivalent to the λ-calculus



34

in expressiveness (and indeed, permits direct encoding and execution of terms

in the λ-calculus) as well as fitting nicely with the bigraphical conventions

introduced thus far. The graph rewrite rules used in [5] and [34] to encode

familiar computational artifacts such as arithmetic, literal values, lists, recur-

sion and conditionals can be expressed using the same mechanism introduced

in Section 3.5 to express reaction rules in our agent language.

3.6.1 Ground Terms

0 : int :: Value, Computation {}
1 : int :: Value, Computation {}
...

nil : list :: List, Value, Computation {}

true : bool :: Value, Computation {}
false : bool :: Value, Computation {}

3.6.2 Arithmetic

Binary arithmetic operators are defined as nodes with two sites, relying on

the fixed ordering of children to preserve the meaning of non-commutative

operators:

+ ($a : int, $b: int) : int :: Computation {
$a
$b

}

- ($a : int, $b: int) : int :: Computation {
$a
$b

}

* ($a : int, $b: int) : int :: Computation {
$a
$b

}



35

/ ($a : int, $b: int) : int :: Computation {
$a
$b

}

3.6.3 Functions

apply ($body : ’a -> ’b :: Computation,
$x : ’a :: Computation) : ’b :: Computation

{
$body
$x

}

3.6.4 Conditionals

if ($cond : bool :: Computation,
$true : ’a :: Computation,
$false : ’a :: Computation) : ’a :: Computation

{
$cond
$true
$false

}

3.7 Metaprogramming

The introduction of metaprogramming (i.e. writing Lope programs that oper-

ate over Lope programs, including themselves) requires two basic modifications

to the usual encoding of reaction rules within bigraphical reactive systems:

• The modification of scope rules described in Section 3.5.2 such that re-

action rules exist as ordinary nodes within the place graph, and apply

to all the children of its parent node (i.e. the rule itself and its siblings).

• Careful control of the order in which reactions are attempted to ensure

a deterministic evaluation order.

The first point is demonstrated in Fig. 3.8, in which the scope of a reaction

rule is always restricted to its siblings and children. The nodes at which the



36

a

b c

d r1

e r2

Figure 3.8: Two reaction rules with their scopes made explicit

rule could potentially be matched are shown in grey, whereas the nodes which

will never be subject to matching against that rule are shown in white.

Determining the correct evaluation order proceeds similarly. The situation

we wish to avoid is one where a reaction rule r2 is within the scope of some

other reaction rule r1, where r1 could potentially rewrite r2 out of existence

before r2 is applied to its scope. Consequently, we define a partial order ≤

over reaction rules, based upon their location in the place graph. To define

this relation, we first define the set Sn, that is the set of all nodes within the

scope of some reaction rule n, using the prnt predicate from the place graph:

prnt(r, n) ∧ prnt(r, k) → k ∈ Sn

prnt(v, x) ∧ v ∈ Sn → x ∈ Sn

Having constructed the set Sn, we can then define the partial order relation

over the set of reaction rules R:

x, y ∈ R ∧ x )= y ∧ x ∈ Sy → x < y

Execution then proceeds in a manner controlled by the eval(r) predicate,

that determines that a match of rule r has been attempted:



37

∀x ∈ R.∀y ∈ R.x < y → eval(x); eval(y)

That is, for any two rules that have a strict ordering (x < y), x must be at-

tempted before y. For rules without an ordering relation between them, evalu-

ation may proceed in any order. A small exception is enforced for the computa-

tional sub-language, based upon the idea that evaluation of Computation-kind

nodes should proceed as soon as the redex is matched. Consequently, despite

them existing outside the place graph, we consider the computation rules to

be strictly smaller than all other rules, such that ∀x ∈ R.computation < x.

This means that standard arithmetic reductions (e.g. add, subtract, multiply,

divide etc) are tested against the bigraph before the matching of any other

reaction rules is attempted.

Fig. 3.9 demonstrates a system with many nested reaction rules, and the

lattice that the partial order forms over the set of reaction rules (with the

implied start rule that instantiates the global world node as the least upper

bound and the set of computation rules, computation to be the greatest lower

bound).

Instances where multiple reaction rules are siblings (and therefore have no

order between them) are treated non-deterministically, although there exists

a notion of fairness, such that each rule will be invoked eventually (provided

the first rule applied does not rewrite the other one out of existence).

There is some complication with respect to the handling of scope control

for links that leave the scope of the rule under consideration. We defer to the

place graph in this case, even though a link could potentially connect to a node

within the scope of some other reaction rule, or indeed to some node within

a higher enclosing scope. Pragmatically, this appears to be uncommon, and

avoiding these situations seems possible with some additional care from the

programmer. We believe that a useful future extension may be to extend the

ability of tools to statically detect conflicts between reaction rules and report

them as errors or warnings to the programmer.



38

start

world

b c

d e r1 r2 r3

g r5 f

r6

h r7 r4

(a) The place graph

start

r1r2 r3

r4

r5

r6 r7

computation

(b) The lattice over the set of reaction rules

Figure 3.9: A graph with nested reaction rules and the rule lattice



39

someScope :: Node

errorCausingRule :: Reaction

r :: Redex r’ :: Reactum

exceptionHandler :: Reaction

r :: Redex r’ :: Reactum

... ... cannotPerform : access_error

errorCausingRule :: Reaction cannotPerform :: Error stop

Figure 3.10: Rewriting of other reaction rules for exception handling

3.7.1 Exceptions

It is a common feature of many programs that some exceptional circumstance

may occur outside the programmer’s control that he or she wishes the program

to handle (we provide an example of this in Section 5.2). In the distributed

computing world it is important to be able to concisely describe actions such

as disconnection from a network, or a service becoming unavailable (and pos-

sibly returning at some later time). We use a kind of metaprogramming over

reaction rules to permit the encoding of these situations, and modification of

the program to reflect these exceptional circumstances.

Fig. 3.10 provides an example of a reaction rule that will rewrite another

reaction rule in the event that an Error-kind node is present in the current

scope. In this case, the exception-handling reaction rule will stop any further

reactions of the rule that caused the error by rewriting it to the special stop

node. Another rule could re-establish the original rule at a later time if the

underlying cause of the error changed to some other acceptable state. Error

nodes such as cannotPerform manifest within a Lope program when some

exceptional circumstance occurs outside of the program — for example, after

attempting to read a file, an accessDenied node might be returned instead of

the contents of the file.



40

dataList

_ : list

_ : list

_ : list

_ : list

14 : int 6 : int 2 : int 8 : int

Figure 3.11: An example dataList bigraph

3.7.2 Recursion

One of the difficulties with direct modeling within bigraphs observed in [7] is

the lack of any elegant encoding of recursion, without requiring the construc-

tion of secondary control structures (such as a call stack). We believe that

the change in the encoding of reaction rules presented in Section 3.5.2 that

enables metaprogramming over reaction rules provides a considerably more

elegant solution to this, while still retaining a direct modeling approach.

The general encoding of recursion involves rewriting reaction rules of the

form:

r → r′

to the form:

r′ → f(r′)

where f is some step of computation of interest. Termination is handled us-

ing the fairness property, such that a second reaction rule may be constructed

to handle the base case of the recursion, and it is guaranteed that this rule

will be attempted at least as often as the recursive case.

Fig. 3.11 demonstrates an encoding of a list data structure through the use

of nested place graph nodes. Fig. 3.12 provides an example of recursion by



41

_ : redex

listSum : reaction

r’ : reactumr : redex

l : list

d : int $tail

sum : int $rdbody*$rbody*

(a) Redex

_ : reactum

l : list

listSum

r’

sum

r

d $tail

d + sum

$rdbody*$rbody*

(b) Reactum

Figure 3.12: The listSum reaction rule

_ : redex

l : list

listSum : reaction

r’ : reactumr : redex

d : int

sum : int $rdbody*$rbody*

(a) Redex

_ : reactum

l

sum

d + sum

(b) Reactum

Figure 3.13: The terminateSum reaction rule



42

metaprogramming of reaction rules that recursively sums the elements of the

list in Fig. 3.11, while leaving the original list itself unmodified. The rule moves

itself lower down the place graph hierarchy with each successive application.

The termination case is provided by the terminateSum rule (Fig. 3.13) that

remains at the root, with a scope that extends to the end of the list. The only

effect of this rule is to rewrite the listSum rule to nothing once it reaches the

end of the list (i.e. a place graph node with no children), leaving the result of

the summation at the end of the list.

The operation of the listSum is slightly counter-intuitive because the ac-

cumulation of the sum is performed within the reactum of the rule itself (by

modifying the reactum of the rule as it is moved further down inside the nested

list). The sum node in the original reactum is replaced by sum+ d, meaning

that the next application of the rule will output this modified value for sum,

and so on until the end of the list is reached.

We believe this means of encoding recursion could be generalised to create

basic traversal strategies for subgraphs to create operations such as map and

fold that operate over Lope bigraphs.

3.8 Bigraphical Agents

The basic strategy when encoding agent-style computation within bigraphs is

to use the structure of the bigraph to represent the state of the agent and net-

work environment, and to use links to express connectivity between locations.

Reaction rules should be used to encode the actual computation that the agent

is to perform, as well as the dynamic, network-aware behaviours.

By using this means of encoding agents serialisation of both the agent

computation and accompanying data for transmission over the network is as

simple as beginning serialisation from the Process node and recursing down-

wards through the place graph. The “data” that the agent carries is stored

within the agent “program” (i.e. reaction rules and program structure), or is



43

Agent Construct Bigraphical representation
Agent computation Expressed using appropriate low-level

reaction rules and constructs from the
computational sub-language.

Network environment Encoded with Host-kind nodes and
links between those that mirror the real
network topology.

Agent state Stored as nodes and links inside the
agent itself.

Inter-agent communication Agents that are permitted to commu-
nicate will have links between them,
permitting reaction rules that exchange
sub-graphs between agents and ser-
vices.

Table 3.1: An encoding of agent features as bigraphs

implied by the configuration of the agent bigraph.

Table 3.1 provides a summary of such a mapping from the constituent

features of an agent to constructs within bigraphs. While other mappings may

be possible, we have chosen this one as it represents a direct encoding of agent

properties into bigraphs.



Chapter 4

Implementation

The prototype Lope system is implemented in two distinct parts: a compiler

that translates from a high-level syntactic representation of Lope-style bi-

graphs into a low-level binary bytecode format, and a runtime environment

that executes this bytecode representation of the program. This runtime sys-

tem (akin to a virtual machine) provides the distributed computing features

that enable computation involving multiple hosts.

Fig. 4.1 provides an overview of the phases of compilation and execution.

Program text is passed through the lexing and parsing stages and a symbolic

representation of the Lope bigraph is constructed internally. This representa-

tion is then used to perform code generation to the Lope bytecode format. This

bytecode may then be executed by the runtime system, which interprets the

bytecode to build up the graph representation in memory and begins applying

reaction rules.

Table 4.1 gives the implementation technologies used for the compiler and

runtime system. Standard ML was chosen as the compiler implementation

Runtime System

Host1

Input Compiler Front EndSource Code GeneratorBigraph ProgramBytecode

Figure 4.1: The system overview



45

System Component Language Component Output
Lexer ML-Lex [1] Tokens
Parser ML-Yacc [38] Untyped abstract syntax trees
Type Checker Standard ML Typed Lope Bigraph
Optimiser Standard ML Typed Lope Bigraph
Code Generator Standard ML Lope Bytecode (Appendix A)
Runtime C Side-effects
Services C and others Lope Bigraphs

Table 4.1: Implementation technologies within the Lope system

language because of the presence of a strong, static type system that prevents

many of the errors commonly encountered in compiler development. The C

programming language was chosen for the runtime system for ease of integra-

tion with existing third party libraries for various implementation platforms

of interest (e.g. commodity PC hardware as well as specialised sensor network

hardware).

4.1 Compiler Implementation

The compiler for the Lope language is fairly simple compared to most tra-

ditional compilers. Because the syntax for Lope programs (given in Section

3.3) is essentially just a means for describing the bigraphs that the Lope com-

piler will output, its primary function is to provide basic compile-time error

checking, including enforcing the type judgements described in Section 3.4.1.

The compiler provides a few basic static optimisations of the user’s program,

and then outputs the bigraph in a compact binary byte-code representation

(described in Appendix A) suitable for execution or for transmission over net-

work links to be executed on some remote host. Lope program text is mostly

recoverable from the binary representation through mechanical reconstruction

of the bigraph.



46

Redex

$op : operator :: Computation Reactum

x :: Value y :: Value x $op y :: Value

Figure 4.2: The general form for compile-time constant folding operations

4.1.1 Optimisation

A convenient side-effect of the homoiconic nature of our Lope programs is that

optimisations (and indeed compilation itself) has a natural encoding as Lope

reaction rules. These optimisations can therefore be implemented using the

same environment used to enable runtime evaluation of reaction rules with

appropriate measures taken to avoid divergent compiler behaviour. Such mea-

sures can include basic (static) checking of optimiser reaction rules to ensure

that the reactum is smaller than the redex, or (in the case of our prototype

implementation) an upper bound on the number of reactions that may be per-

formed. Optimisation is “finished” when none of the optimiser reaction rules

can be applied to the program bigraph.

4.1.1.1 Constant Folding

Constant folding is a compile-time optimisation performed to simplify expres-

sions that operate on constants at compile time. For example, the value of an

expression such as 1 + 2 can be known at compile time, as the computation

may be performed and replaced by a node containing the value of the result.

All constant folding optimiser reaction rules within our compiler follow the

general form given in Fig. 4.2, with appropriate operators substituted in place

of the variable $op.



47

world :: World

host1 :: Host

process1 :: Process

$user_program :: Node

Figure 4.3: The default runtime environment world

4.2 Runtime Implementation

The runtime for Lope programs is responsible for interpreting the byte-code

format generated by the compiler, and for exposing real-world systems as bi-

graphs inside the program. The default layout for the runtime environment is

given in Fig. 4.3. At an application level, the Lope runtime system is similar

in form and function to other virtual machines, such as the Java Virtual Ma-

chine [20]. However, from a programmer’s perspective, it simply appears as a

node container into which Lope programs may be placed.

User programs inside the runtime environment are contained within nodes

of kind Process. The current local computer is modelled by a node of kind

Host. As the runtime system discovers additional hosts, or loads additional

processes, the bigraph that contains the user program will evolve.

In order to provide a flexible and conceptually simple language security

model, the scope control mechanism for Lope reaction rules (discussed in Sec-

tion 3.5.2 does not allow a user program to modify (or indeed even access) any

node that exists above the level of its parent Process node. For well-behaved

user programs this is mostly transparent, and is particularly desirable in a

multi-user situation. However for certain global tasks, programs need to be

able to apply outside of a limited scope. For this reason, a privileged user

(i.e. an administrator) is permitted to introduce programs that operate at the



48

world :: World

host1 :: Host

host2 :: Host

host3 :: Host

service1 : geo_service :: Service

service2 : file_service :: Service

agent1 : agent :: Process

agent2 : agent :: Process

agent3 : agent :: Process

service : http_service :: Service

Figure 4.4: A runtime system with multiple hosts and processes

level of hosts, and indeed at the level of the world node. These programs can

then be used to perform tasks such as software load-balancing between hosts,

or automatic shutdowns (by introducing a special node of type shutdown into

a host node. The same reaction rule mechanism used at the level of user

programs (for modelling and computation) may be used to express high-level

system behaviours, responding to the addition or removal of nodes by the run-

time environment. The act of migrating a node between one host and another

(through a rewrite) has the effect of physically moving that node from one

computer to another. This is the basis of our implementation of mobile and

agent-style processes within Lope.

Fig. 4.4 demonstrates a runtime environment consisting of many processes

and hosts. The presence of multiple Service-kind nodes will become significant

as we introduce agent-style reaction rules to this system.



49

4.3 Services

Services may be defined inside or outside Lope itself; forming a part of the

runtime system. A node within a particular host (of kind Service) may be

used to permit reaction rules to be constructed that test for the presence of a

certain service, however this is not a requirement in order for a service to be

operating within a given runtime.

A service in the Lope sense is simply some piece of the runtime system

that provides some mapping between actions and context in the real world

and nodes and links within the system. For example, a network service might

work to keep some physical network synchronised with the Lope model of that

network, adding and removing hosts and links between them as they change in

the real network environment. Similarly, an information service might react in

the presence of a specially-crafted query node to perform an HTTP request to

some pre-defined service, replacing the query with the result inside the runtime

system.

This model extends services to a means of exposing everything that is im-

plemented outside Lope as constructs within the Lope language. For example,

a filesystem service can operate to keep a particular bigraph synchronised with

an actual underlying filesystem, adding nodes as files are added to the direc-

tory, and removing files from the directory once they are deleted from the

bigraph.

In implementation terms, a service operates in two ways. First, it may

register a number of redexes to be matched along with all the other reaction

rules within the system. In the presence of a match, the service code (imple-

mented outside Lope) is notified with the relevant matched sub-graph as its

parameter, and the matched sub-graph will be replaced by the output of the

service. Second, a service running as a separate thread may send instructions

to the runtime system to add or remove nodes and links from the graph. This

allows a single service to both alter the bigraph in response to some external

event, and to react to changes within the bigraph in order to propagate these



50

inputter

input : io_read :: IO

(a) Before service invocation

inputter

i0 : io_userinput :: IO

"hello, world" : string

(b) After service invocation

Figure 4.5: An example of an invocation of the IO service

Measured Event Change in bigraph
A new host joins the network A new Host node is instantiated, with

a link to the node that it connected to.
A host leaves the network All links attaching other hosts to the

disconnected host are removed. Any
sub-nodes of that host are removed.

A shutdown command is issued
on a host

A new node of type host shutdown
(of kind Control) is instantiated within
that host.

An out-of-memory event occurs The Process node responsible is rewrit-
ten to the stop node.

Table 4.2: Mappings of events to changes in the Lope bigraph

changes to the outside world.

Fig. 4.5 demonstrates the IO (input/output) service within our prototype

Lope implementation. This service registers a redex that ensures the service

will be invoked in the presence of a node of kind IO. The matching node

is then passed to the IO service (implemented in the C language in the Lope

runtime), at which point it is translated into either a read operation (accepting

input from the user) or as a write operation (printing the contained value to

the user’s screen). In the former case, the IO node is consumed and removed

from the environment. In the latter case, the node is replaced by a node of

type io userinput, which is of kind V alue.

4.3.1 Runtime System Actions

While most functionality that involves interaction with the physical world

may be achieved using services, a limited set of core functionality is built into



51

the runtime system itself; specifically features concerned with maintaining the

mapping between the physical network topology and the model of the topology

represented within the Lope bigraph. Similarly, the runtime system provides

bigraphical mappings of network-related tasks such as host shutdown, so as to

allow the programmer to construct reaction rules to deal with these kinds of

events. Table 4.2 provides the mappings between events in the physical world

and their manifestation within the Lope bigraph.

4.4 Graph Rewriting

Graph rewriting involves two distinct phases. The first, matching involves

calculating a mapping between a redex and nodes in the graph being matched.

The second phase uses this mapping to instantiate the reactum and replace

the matched sub-graph with the newly instantiated reactum. Nodes and links

that are referenced in the redex, but not in the reactum, will be deleted by

this operation. Similarly, new nodes and links may be created by referencing

them only in the reactum. Updates occur when a node or link referenced in

the redex occurs in the reactum with some update applied.

4.4.1 Optimisation

While the graph rewriting algorithm used within our prototype interpreter

exhibits the correct behaviour, it is not particularly fast. For large graphs with

many widely-scoped reaction rules, it quickly becomes inefficient. We alleviate

this through the scoping mechanism for reaction rules (introduced in Section

3.5.2), as this limits the set of potential match sites that must be considered.

Further to this, there are other optimisations that may be performed in order

to improve the efficiency of the rewriting algorithm.



52

4.4.1.1 Arity Optimisation

By maintaining an ordered list of pairs A : arity → node, we can exclude a

number of potential rewriting locations. Whenever a new node is introduced

as a sub-node of the World node (i.e. whenever any new node is introduced

to the system), its arity is recorded and the mapping (arity(n), n) is added

to A, sorted by arity. When considering any reaction rule that includes link

graph edges within the redex, we can build a set of nodesN that need to be

considered:

Narity = {n|(a, n) ∈ A, a > |Eredex|}

where |Eredex| is the number of edges present in the redex of the reaction

rule presently under consideration. This property allows us to exclude any

nodes arity smaller than the number of edges we need for a successful match.

We still need to consider all nodes with arity greater than |Eredex| though, as

we still allow sub-matching.

4.4.1.2 Type Optimisation

As with arity, it is possible to use the type information present on nodes to

restrict the set of possible matches that must be considered. We maintain

an ordered list of pairs T : type → node that records the types of any nodes

present in the system. We define a total order over types, such that t1 * t2 →

t1 ≤ t2. This guarantees that any sub-type of some type t will occur later in

the list of ordered pairs. Consequently, if a node in the redex of a reaction

rule under consideration is annotated with a concrete type (rather than a type

variable), only nodes in T greater than that type need to be considered (as

this will ensure that any sub-type is also considered).

Ntype = {n|(t, n) ∈ T, t > redexroot}

Kind optimisation follows from type optimisation, and can be used to re-



53

strict the set of potential match sites further. Where a redex specifies a kind,

all nodes that have types not of that kind may be excluded from the set type.

4.4.1.3 Combining Optimisations

With both Ntype and Narity computed, we need only to consider matching the

root of the redex against nodes that appear in the set Ntype ∩Narity. The lists

of ordered pairs need to be updated only when a reaction rule is triggered and

its reactum applied, in terms of adding, modifying and removing pairs that no

longer reflect the state of the system.

4.5 Inter-host communication

In implementing a runtime system that permits multiple hosts to co-exist

within the same world node, we need some mechanism to exchange data and

to provide updates across the system. Inter-host communication takes place

using standard TCP sockets, with a globally-unique identifier being derived

from the originating IP address (within our prototype system). This socket is

then sufficient to carry a simple binary protocol, with only three operations:

• NEWWORLD - discard the existing host-level representation of the

world and replace it with the serialised system state that will be sent.

• RELOCATE process host - serialise the process identified by process

and send it to the host identified by host.

• NOTIFY root - accept notification that the subgraph identified by root

is no longer valid, and should be replaced by the serialised sub-graph

that follows.

So any reaction rule that moves a node, crossing host node boundaries

in the process, will be converted into a series of commands in the runtime

command language. If process1 exists on host2 and a reaction rule on host1

dictates that the process must be relocated to host3, all reactions on that



54

process are suspended, and a RELOCATE command is sent to host3 by

host1. This has the effect of causing host2 to send a NOTIFY command to

host3, submitting the serialised process along with the command.

4.6 Security

Security is one of the fundamental challenges in any distributed system where

computation may take place on computer systems not directly controlled by

the user executing the program [42]. A user permitting others to execute

programs on his or her computer must have confidence that a malicious or

malfunctioning program cannot interfere with the operation of other programs

and data present on that computer (indeed, the damage caused by computer

viruses demonstrates the dangers of untrusted code being allowed to run on

a computer system). Similarly, users wishing to execute programs on hosts

outside their control run the risk of a malicious execution environment “spying”

on their processes (perhaps capturing sensitive information or discovering the

nature of the computation), or of a computation being sabotaged in such a

way that it produces false or incorrect results.

While our prototype runtime system provides only a very basic model (vot-

ing) for untrusted computing, we dedicate the remainder of this section to a

summary of various approaches to ensuring security within distributed sys-

tems, any of which would be applicable to our bigraphical programming lan-

guage runtime system.

4.6.1 Virtualisation

The potential for untrusted code to damage the system it is running on has led

to the approach generally used within cloud computing environments, in which

each user is assigned a “virtual computer” that isolates the host computer

from any potentially damaging untrusted software that is executed within the

“virtual” environment. This approach does not address the issue of the user



55

trusting the computing resource provider (i.e. a malicious host could still spy

on or interfere with programs inside the virtual environment), however more

traditional notions of trust (such as business relationships and contracts) are

used to limit exposure to these kinds of vulnerabilities.

4.6.2 Sandbox Security

In parasitic Javascript, the security model of the Javascript programming lan-

guage is used to ensure that the potential for damage is minimised [18]. As

with all Javascript code, Parasitic Javascript runs inside a kind of “sandbox”

environment, in which the host executing the code can control (and easily

verify) the resources and operations that a process is using. Programs are

run inside the user’s web browser, which actively prevents access to other pro-

cesses or interference with the legitimate operation of the host computer by

using a language-based security model, in which the language (Javascript) does

not provide any features that would permit violation of some set of security

constraints (e.g. no access to the filesystem, or the network). Similarly, the

execution environment (the web browser, in this case) may choose to terminate

a process if it exceeds some pre-determined level of CPU or memory utilisation

in a way that might interfere with other processes or users on the host.

4.6.3 Direct Verification

For some computations, a result may be directly verified as a solution to a

problem for some given input in a way that is computationally inexpensive

(for example, the n-queens problem) [18]. These problems are well suited to

untrusted computing environments, as the central controller of the compu-

tation (i.e. the host that holds the original program and input data to be

distributed) may distribute a program and a problem to another host, and

then verify the result against that input once it is returned, without requiring

any further trust or verification that the computation was not sabotaged.



56

4.6.4 Voting

To prevent a malicious (or malfunctioning) host in the distributed system from

sabotaging the distributed computation (by submitting false or erroneous re-

sults to their assigned computations), many volunteer-based distributing com-

puting projects use a system of voting, where each computation is submitted

to three or more hosts, and then majority agreement between these results

is used to establish the validity of the computation. This strategy is most

often used in problems where direct verification of the result is too expensive

(or is computationally equivalent to simply repeating the entire computation).

Unfortunately duplication of computations across nodes increases the number

of hosts required to perform a single computation. In Section 4.7, we present

a method by which the graph structure of our bigraphical agents may be ex-

ploited to reduce the amount of replicated computation required to implement

voting.

4.6.5 User-based Security

In many distributed computing projects where users voluntarily run programs

that will contribute to some global computation, a system of user authentica-

tion is often used to prevent needless verification of results returned by that

user. By verifying the results submitted by newer users, a “trust score” may

be calculated. Results from users that are deemed to be very trustworthy

can then be accepted without necessarily requiring verification of every single

result submitted. This approach is known as “spot-checking” [18].

4.6.6 Continuous Authentication

Another proposed technique that purports to prevent modification of programs

on malicious hosts is a continuous authentication scheme based on idiosyncratic

signatures [3, 12]. A piece of code that generates unique codes is hidden in-

side any computation that you wish to protect from modification, using code



57

obfuscation techniques. This code transmits these unique codes (that vary

according to some cryptographic function) back to the controlling host. The

controller may then verify that this stream of codes is correct with respect

to the program that was submitted to the remote host. Modification of the

computation should then result in the cryptographic function controlling the

stream of codes changing too, which can then be detected. This does not

prevent several “man-in-the-middle” attacks, however, in which a malicious

program could intercept and store the stream of codes from a legitimate com-

putation and then replay that stream of codes while performing some invalid

or malicious computation.

4.6.7 Homomorphic Encryption

One of the most promising techniques that may yield a solution to both data

capture and malicious modification is multiparty unconditionally secure proto-

cols, based upon homomorphic encryption [10], which is a means of providing

the ability to perform computations on encrypted data. This means that both

the input and output from a given process may remain encrypted at all stages

of computation, before being finally decrypted once the result is received by

the controller that originally encrypted the data. As a technique, homomor-

phic encryption is still in its infancy and only operations such as addition,

multiplication and exclusive-or can be applied to the encrypted data. While

these limitations make it impractical as a complete solution to distributed

computation security, it may yield useful results in the near future.

4.7 Voting Implementation

For the purposes of our prototype implementation, we assume that all hosts

are trusted, however it is possible to use a special “untrusted host” type to

indicate that a process distributed to this host by any reaction rule must also be

distributed to n other untrusted hosts. The n untrusted copies of the process



58

may then be migrated back to any trusted host (of type host) and merged

in order to verify that the processes have returned the same result. A more

complete implementation might use any of the more sophisticated techniques

discussed in Section 4.6 in order to perform more efficient trusted computing

on untrusted hosts.



Chapter 5

Case Studies

In this chapter, we present three case studies to demonstrate the utility of our

prototype Lope system, and the ability for the modified encoding of reaction

rules (described in Section 3.5.2) to provide a more natural encoding of context-

aware systems within bigraphical reactive systems.

5.1 Location-Aware Print Service

Following the example used in [7], we implement a model of a location-aware

print service within our prototype Lope system. We assume that a user with

a mobile device submits a print job to a central printer server where the job

is stored. The user then travels (physically) to the nearest printer. Hypothet-

ically, sensors are used to determine the physical location of the device that

submitted the job. Once a device is in the same room as an idle printer, the

job is sent to that printer and printing proceeds.

For our case study, we assume we have a single print server that can handle

exactly one waiting job at any time, and three printers in three separate rooms.

This initial system model is given in Fig. 5.1.

We then begin to enrich our system with agents and dynamic behaviour.

We add a reaction rule devicePrint (Fig. 5.2) to the building node that moves

a waiting job from a device in the building to the (empty) print spool and adds

a link between the device and the job.



60

building : building

spool1 : spool

room1 : room

printer1 : printer

room2 : room

printer2 : printer

room3 : room

printer3 : printer

$job :: Job

$job :: Job

$job :: Job

$job :: Job

Figure 5.1: The building model for a location-aware print service

devicePrint : reaction

_ : reactum

spool : spool
device :: Device

_ : redex

spool : spool device :: Device

job :: Job
$job :: Job

$job :: Job job :: Job

Figure 5.2: The devicePrint reaction rule



61

deviceNear : reaction

_ : redex

spool : spool

room :: Room

printer :: Printer

_ : reactum

spool : spool

room :: Room

printer :: Printer

job :: Job device :: Device

$job :: Job

$job :: Job

device :: Devicejob :: Job

Figure 5.3: The deviceNear reaction rule

With the ability to send jobs to the print spool, we then enrich the system

further with the rule deviceNear (Fig. 5.3), which moves a job from the spool

to a printer once the device that submitted the job is in the same room as a

printer.

Assuming that the runtime environment interface to the printer reacted

whenever a job was present inside a printer node and actually performed the

print job (removing the job node in the process), then this is all that is needed

for our system to function. Lope source code and a diagram of the entire

system is given in Appendix B.



62

5.2 Train Signalling

We demonstrate a system of trains that uses metaprogramming over reaction

rules to enable exception-handling — in this case the act of some emergency

alarm activating on a train.

We model our train system by a series of stations and tunnels. Exactly one

train can occupy each of the two platforms in each station, and only one train

may be going in each direction in a tunnel at any one time. The initial system

model is illustrated in Fig. 5.4. The model makes use of the in-built timer

node, instantiated with an int value and a sentinel node, that counts down

until it reaches 0, at which point it resets the counter and emits the sentinel

node to the current context. This allows the programmer to construct reaction

rules that react to the presence of that sentinel node, which will consequently

fire every count seconds.

We add to the system the rules presented in Fig. 5.5 that permit trains

to move from station to station based on the presence of a go signal and a

free tunnel or station platform being available in the direction of travel. The

terminatorW and terminatorE symbols provide a turn-around for the trains

(i.e. easttrain trains become westtrain trains and vice-versa).

Finally, we extend the system with a notion of an emergency alarm, that

may be activated at any time. This user input is modeled by the appearance

of an emergency node within a train. The effect of the emergency is to prevent

any trains travelling in the same direction as the train with the emergency from

leaving stations until the emergency is resolved. This is an ideal application of

our exceptions mechanism described in Section 3.7.1, as we can simply rewrite

the appropriate reaction rules based on the presence of the emergency signal

in a train. Once the emergency symbol is replaced by the allClear symbol

(through user intervention), the original rules may be restored and trains may

continue moving. This exception handling is illustrated in Fig. 5.6.



63

railway

tunnel0 : tunnel

holborn : station

timerW : timertimerE : timer

tunnel1 : tunnel

russellSquare : station

timerW : timertimerE : timer

tunnel2 : tunnel

kingsCross : station

timerW : timertimerE : timer

tunnel3 : tunnel

terminatorW

$tunnelW :: Train$tunnelE :: Train

$platformW :: Train$platformE :: Train

$tunnelW :: Train$tunnelE :: Train

60 : intgo45 : intgo

$platformW :: Train$platformE :: Train

$tunnelE :: Train $tunnelW :: Train

30 : intgo40 : intgo

$platformW :: Train$platformE :: Train

$tunnelE :: Train $tunnelW :: Train

40 : intgo40 : intgo

terminatorE

Figure 5.4: The railway system



64

westTrain : reaction

_ : reactum

s

tunnel : tunnel

_ : redex

s : station

tunnel : tunnel

$tunnelW :: Train$strest

t$tunrest

got : westtrain$strest*

$tunnelW :: Train$tunrest*

westTrainTunnel : reaction

_ : reactum

s

tunnel : tunnel

_ : redex

s : station

tunnel : tunnel

t

$tunnelW :: Train

$strest

$tunrest

$tunnelW :: Train

t : westtrain

$strest*

$tunrest*

eastTrain : reaction

_ : reactum

s

tunnel : tunnel

_ : redex

s : station

tunnel : tunnel

$tunnelE :: Train$strest

t$tunrest

got : easttrain$strest*

$tunnelE :: Train$tunrest*

eastTrainTunnel : reaction

_ : reactum

s

tunnel : tunnel

_ : redex

s : station

tunnel : tunnel

t

$tunnelE :: Train

$strest

$tunrest

$tunnelE :: Train

t : easttrain

$strest*

$tunrest*

turnAroundW : reaction

_ : reactum

tunnel : tunnel

_ : redex

tunnel : tunnel

terminatorW

train : easttrain$tunnelW :: Train

terminatorW

$tunnelE :: Traintrain : westtrain

turnAroundE : reaction

_ : reactum

tunnel : tunnel

_ : redex

tunnel : tunnel

terminatorE

train : westtrain$tunnelE :: Train

terminatorE

$tunnelW :: Traintrain : easttrain

Figure 5.5: The railway reaction rules



65

emergencyStopE : reaction

_ : reactum

s

train

_ : redex

s : station

train : eastTrain

emergency$strestemergency$strest*eastTrainTunnel :: Reaction

emergencyStopW : reaction

_ : reactum

s

train

_ : redex

s : station

train : westTrain

emergency$strestemergency$strest*westTrainTunnel :: Reaction

Figure 5.6: The emergencyStop reaction rules

5.3 Sensor Networks

There has been much recent attention upon the use of large numbers of cheap,

low-power sensors to collect and collate data, possibly transmitting aggregate

data over a wireless network to other nodes or to some central data collection

point [35]. We believe characterising this interaction as Lope agents provides

a good programming model for the reactive, asynchronous nature of this com-

putation. Because the set of reaction rules need only to be applied when

something changes in the system, the program can remain idle until a new

data value is added to the Lope system bigraph, at which point rules can be

tested against the new system configuration. We demonstrate a system in Fig.

5.7 that corresponds to a network of sensor nodes. The runtime system waits

for an interrupt from the physical sensors, and upon a value becoming avail-

able, adds that as a node (of type real) to the current environment. When

three such nodes are available an average is computed and transmitted back

to the nearest data collection node. Fig. 5.8 shows one possible state of the

system during data collection.

The doAverage reaction rule in Fig. 5.9 matches any three nodes of type



66

sensorNetwork

sensor1 : sensor

doAverage : reaction

lowPower : reaction

sensor2 : sensor

doAverage : reaction

lowPower : reaction

dataCollector : collector

transmitData : reaction

Figure 5.7: The sensorNetwork system after initialisation

sensorNetwork

sensor1 : sensor

doAverage : reaction

lowPower : reaction

sensor2 : sensor

doAverage : reaction

lowPower : reaction

_ : result
dataCollector : collector

transmitData : reaction

41.6 : real

42.8 : real

81.2 : real

Figure 5.8: The sensorNetwork system during data collection



67

doAverage : reaction

_ : reactum

_ : result

/ : operator

+ : operator

+ : operator_ : redex

d1d2d3d1 : reald2 : reald3 : real

Figure 5.9: The doAverage reaction rule

real inside a sensor node (which are guaranteed to be unique by the definition

of the matching process) and combines them in the reactum into a result node

as a computation. The computation (in this case (d1+ d2+ d3)/3) is encoded

within the computational sub-language and will be reduced to a single real

node.

transmitData : reaction

_ : reactum

collector

res

sensor

_ : redex

collector :: Collector

sensor :: Sensor

res : result

datadata : real

Figure 5.10: The transmitData reaction rule

Once the computation inside the result node is fully reduced the transmitData

rule (Fig. 5.10) will match the presence of a result node inside a sensor node

that is connected to a collector, and the result node will be copied to the

collector (which then consumes it according to rules not shown within this ex-

ample). The transmitData rule also enables a kind of disconnected operation,

as it will only match in the presence of a link to a collector. Should this link

become temporarily unavailable result nodes will continue to accumulate on

the sensor. Once the link is restored, the rule will fire multiple times until all

of the results have been copied to the collector.



68

powerSave : reaction

_ : reactum

_ : redex

doAverage : reaction

$others$ch*lowPower$others*

Figure 5.11: The powerSave reaction rule

A lowPower node is instantiated within the current environment by the

runtime system if the node is running low on power. The desired behaviour in

this case (expressed in Fig. 5.11) is to disable the computation performed on

collected data so as to save power until the battery can be replaced. This is

achieved using the metaprogramming techniques introduced in 3.7 to rewrite

the rules involved with performing the computation. A step of manual in-

tervention would be required to restore the reaction rule once the low power

problem was remedied.



Chapter 6

Conclusion

In this thesis we have examined an approach to programming and modeling

based upon metaprogramming and bigraphical reactive systems. We have de-

tailed a prototype implementation of tools to enable the application of this

approach to programming distributed agent-based systems and to ubiquitous

computing. Three case studies in Chapter 5 demonstrate how this approach

can be applied to encode the kinds of modeling and programming tasks that

often exist in the real world — tasks that will become more common as ubiq-

uitous computing becomes a dominant computing paradigm.

6.1 Modeling

While the Lope system described in Chapter 3 is fundamentally a programming

language, the high-level bigraph-style constructs available to the programmer

shift the primary activity from manipulation of (implicit or explicit) state

through the application of functions or imperative statements to the mutation

of a high-level model of the system. The case studies presented show how

reaction rules can elegantly encode the dynamic behaviour of a system, either

by correspondence to interactions in the real world (e.g. a train moving from

one station to the next) or by the direct encoding of some rules that change

some abstract system (for example, the encoding of computation). The ability

to mix computation with direct, high-level modeling is one feature we believe



70

to be most promising about any direct modeling approach within bigraphs.

Similarly, the ability to derive visual illustrations from a program by me-

chanical translation further demonstrates the utility of the direct modeling

approach we have proposed. Because objects within the program have a direct

visual correspondence to some diagrammatic view of the real world, intuitions

about dynamics and structure of a system can be reified while still retaining

a “computational” flavour within the programming language.

6.2 Role of the runtime system

From the case studies presented in Chapter 5, it becomes apparent that the

runtime system provides much of the low-level functionality used to provide

the high-level system models with the ability to interact with the real world.

Indeed, the runtime system is used to moderate the mismatch observed in [7]

between the physical measured environment and the program-level model of

that environment.

The runtime system (and associated services) imbues certain nodes (and

types of nodes) with special meanings, and mutates the system based upon

measured changes in the physical or host environment (as was presented in

Section 4.2). While we have left the exact behaviour of a runtime system

for a particular application and its associated services as a largely informal

implementation detail, we believe there could be value in further investigation

of formalising interactions between events in the real world and manifestations

of these changes within the system model (and vice-versa).

As an extension of the implementation, there may be value in implement-

ing a Lope runtime system in Javascript, so as to enable the kinds of parasitic

computation described in Section 1.5 to be applied to systems expressed as

Lope programs. Such an implementation would avoid the need to construct

parasitic programs on a case-by-case basis—rather, an unmodified Lope pro-

gram could be run in a parasitic way across a set of computers being used to



71

view a particular webpage that embeds the Javascript Lope runtime system.

6.3 Contributions

In pursuing a direct modeling approach to agent programming within a bigraph-

style system, we were forced to confront the same issues identified in [7], as

discussed in Section 1.6.1. These include the awkwardness of defining queries

over limited contexts and of implementing recursion.

The solution we proposed to overcome this awkwardness was to depart from

the usual encoding of a bigraphical reactive system as a bigraph and a set of

globally-applicable reaction rules, and instead introduce a method of scope

control, based on the inclusion of reaction rules themselves inside the place

graph. The effect of this (presented in Section 3.5.2) was to enable the direct

representation of queries over limited contexts (by placing the rule within the

context of interest), and recursion (discussed in Section 3.7.2).

This in-place representation of reaction rules also has the effect of enabling

metaprogramming over reaction rules. This ability to construct self-modifying

rules provided the basis for our ability to implement recursion without the

need to maintain any notion of a call-stack, as well as raising many interesting

possibilities for future work to extend the power of bigraphical reactive systems

as a practical modeling formalism.

The final contribution of this thesis is an exceptions mechanism for bi-

graphical models based upon the same metaprogramming ability we introduced

within Lope. By providing the ability to rewrite reaction rules in the presence

of some error state, we are afforded the ability to radically alter the behaviour

of the system if we should encounter some exceptional circumstance. It seems

that there is some promise in applying this exceptions mechanism to the de-

sign and construction of highly fault-tolerant distributed systems in which the

behaviour of the system can degrade gracefully in the presence of hardware,

software or network failures.



72

We hope that the application of Lope-style direct-modeling can significantly

simplify the process of specifying and creating complex programs in a post-

desktop model of computing. By providing an approach that is more intuitive

and which successfully manages the complexity of distributed and ubiquitous

systems, we believe that the software development techniques available to pro-

grammers can be bought back into alignment with the wealth of hardware and

network resources that they have available to them.



References

[1] A W Appel, J S Mattson, and D Tarditi. A lexical analyzer generator for

Standard ML, 1989.

[2] L Augustsson. A compiler for lazy ML. In Proceedings of the 1984 ACM

Symposium on LISP and functional programming, page 227. ACM, 1984.

[3] Mario Baldi, Yoram Ofek, Moti Yung, Torino Polytechnic, and Synchro-

dyne Networks. Idiosyncratic Signatures for Authenticated Execution of

Management Code. Ifip International Federation For Information Pro-

cessing, pages 204–206, 2003.

[4] A L Barabási, V W Freeh, H Jeong, and J B Brockman. Parasitic com-

puting. Nature, 412(6850):894–7, August 2001.

[5] H P Barendregt, J R Kennaway, and M J Plasmeijer. Term Graph Rewrit-

ing. East, (87):1–37, 1986.

[6] Lars Birkedal, T C Damgaard, A J Glenstrup, and Robin (University

Of Cambridge) Milner. Matching of Bigraphs. In Arend Rensink, Reiko

Heckel, and Barbara König, editors, Graph Transformation for Verifica-

tion and Concurrency, number August, pages 1—-18, 2006.

[7] Lars Birkedal, Ebbe Elsborg, Thomas Hildebrandt, and Henning Niss.

Bigraphical Models of Context-aware Systems. 2005.

[8] T Brus, M van Eekelen, M O van Leer, M J Plasmeijer, and H P Baren-

dregt. Clean-a language for functional graph rewriting. In Proc. of a

conference on Functional programming languages and computer architec-

ture, pages 364–384. Springer-Verlag, 1987.

[9] Mikkel Bundgaard and Vladimiro Sassone. Typed polyadic pi-calculus in

bigraphs. Proceedings of the 8th ACM SIGPLAN symposium on Principles

and practice of declarative programming - PPDP ’06, pages 1–12, 2006.

[10] David Chaum, Claude Crépeau, and Ivan Damgard. Multiparty Uncon-

ditionally Secure Protocols. In Proceedings of the twentieth annual ACM

symposium on Theory of computing. ACM, 1988.



74

[11] Ebbe Elsborg. Bigraphical Location Models, 2006.

[12] Paolo Falcarin, Riccardo Scandariato, Mario Baldi, and Yoram Ofek. In-

tegrity checking in remote computation.

[13] A J Glenstrup. personal communication, October 21, 2009.

[14] Michael S Greenberg, Jennifer C Byington, Theophany Holding, and

David G Harper. Mobile Agents and Security. IEEE Communications

Magazine, (July):76–85, 1998.

[15] P M Hill and J Gallagher. Meta-programming in logic programming.

Handbook of Logic in Artificial Intelligence and Logic Programming: Logic

programming, page 421, 1998.

[16] C. A. R. Hoare. Communicating sequential processes. Communications

of the ACM, 26(1):100–106, January 1983.

[17] P Hudak, S P Jones, P Wadler, B Boutel, J Fairbairn, J Fasel, M M

Guzman, K Hammond, J Hughes, T Johnsson, and Others. Report on

the programming language Haskell. ACM SigPlan notices, 27(5):1–164,

1992.

[18] Nick Jenkin. Parasitic JavaScript (COMP520-08 Report), 2008.

[19] A Leitão. From Lisp S-expressions to Java source code. Computer Science

and Information Systems/ComSIS, 5(2):19–38, 2008.

[20] T Lindholm and F Yellin. Java Virtual Machine Specification. Addison-

Wesley Professional, 1999.

[21] R Milner, M Tofte, D Macqueen, and R Harper. The definition of standard

ML: revised. The MIT Press, 1997.

[22] Robin Milner. A calculus of communicating systems. Springer-Verlag,

New York, New York, USA, 1982.

[23] Robin Milner. Communicating and mobile systems: the pi-calculus. Cam-

bridge University Press, 1999.

[24] Robin Milner. Bigraphs for Petri nets. Computer, pages 1–16, 2004.

[25] Robin Milner. Local bigraphs and confluence: two conjectures. In Roberto

Amiado and Iain Phillips, editors, 13th International Workshop on Ex-

pressiveness in Concurrency, number August, Bonn, 2006.



75

[26] Robin Milner. The Space and Motion of Communicating Agents. Cam-

bridge University Press, 2009.

[27] Robin Milner and Ole Hø gh Jensen. Bigraphs and mobile processes, 2004.

[28] Robin (University Of Cambridge) Milner. Bigraphical Reactive Systems.

In Proceedings of the 12th International Conference on Concurrency The-

ory, page 35. Springer-Verlag, 2001.

[29] Robin (University Of Cambridge) Milner. Pure bigraphs: Structure and

dynamics. Information and Computation, 204(1):60–122, January 2006.

[30] David R. Morse, Stephen Armstrong, and Anind K. Dey. The What,

Who, Where, When, and How of Context-Awareness. In Conference on

Human Factors in Computing Systems, 2000.

[31] S. OConchuir. Kind bigraphs-static theory, 2005.

[32] C. A. Petri. Concurrency. Lecture Notes in Computer Science, 84:251—-

260, 1980.

[33] Benjamin C Pierce and David N Turner. Pict: A Programming Language

Based on the Pi-Calculus, 1997.

[34] Rinus Plasmeijer and Marko van Eekelen. Functional programming and

parallel graph rewriting. Addison-Wesley, 1993.

[35] G J Pottie. Wireless sensor networks. In Information Theory Workshop,

1998, pages 139–140, 1998.

[36] Alexander Serenko and Brian Detlor. Intelligent agents as innovations.

Ai & Society, 18(4):364–381, 2004.

[37] Yoav Shoham. An Overview of Agent-Oriented Programming, pages 271—

-290. MIT Press, Cambridge, MA, USA, 1997.

[38] D Tarditi and A W Appel. ML-Yacc, 1990.

[39] D.A. Turner. SASL language manual. Department of Computer Science,

University of Birmingham/University of Warwick, 1976.

[40] Mark Weiser. Some computer science issues in ubiquitous computing.

Communications of the ACM, 36(7):75–84, July 1993.

[41] Lucian Wischik. New directions in implementing the pi calculus. In

CaberNet Radicals Workshop, number August, pages 1–6, 2002.



76

[42] Konrad Wrona. Distributed Security: Ad Hoc Networks & Beyond. Net-

work Magazine, (9):16–17, 2002.

[43] S.S. Yau, F. Karim, and S.K.S. Gupta. Reconfigurable context-

sensitive middleware for pervasive computing. IEEE Pervasive Comput-

ing, 1(3):33–40, July 2002.



Appendix A

Lope Bytecode Format



78

Offset Size Field Name Description
0 4 Magic A “magic” number (44442266) that al-

lows for identification of Lope bytecode
files

4 8 Node ID A symbol identifier for the root node
12 8 Num Children The number of (place graph) children

of the root
20 8 Match ID A possibly-zero reference to the ID of a

match for this node
28 4 Symbol Data A possibly-zero field for data carried by

the node symbol.
32 8 Type A numerical representation of the type

of the node
40 8 Kind A kind field used in redexes where a

kind is specified.
44 ∗ n+ 4 8 Node ID The Node ID for the n+1th node in an

in-order traversal
44 ∗ n+ 12 8 Num Children The number of children for the n+1th

node.
44 ∗ n+ 20 8 Match ID The Match ID for the n+ 1th node.
44 ∗ n+ 28 4 Symbol Data The Symbol Data field for the n + 1th

node.
44 ∗ n+ 32 8 Type The type field for the n+ 1th node.
44 ∗ n+ 40 8 Kind The kind field for the n+ 1th node.

Links
m ∗ 28 8 Link ID An identifier for the mth link entry

m ∗ 28 + 8 8 Link Node The ID of a node to connect with this
link

m ∗ 28 + 16 4 Link Port The ID of the port to connect
m ∗ 28 + 20 8 Link Type The type of the link

Table A.1: The format of the bytecode, with all offsets and sizes in bytes

The bytecode format for Lope encodes bigraphs directly in a lightweight

format suitable for transmission across network links and serialisation to files.

Table A.1 provides a list of offsets and field sizes (given in bytes) within a

serialised Lope program, based upon the number of nodes (ranged over by

n) and the number of link connection points (ranged over by m). Values are

expected to be represented using little endian word order.



Appendix B

Location-Aware Print Service

Source Code



80

kind Job
kind Room
kind Printer
kind Device

type building
type room :: Room
type printer :: Printer
type spool
type mobilephone :: Device

building : building {
spool1 <pr> : spool {

$job :: Job
}

template room($printer :: Printer) <door> : room {
$printer
link printer <-> spool1

}

room1 = room(printer <pr> : printer { $job :: Job })
room2 = room(printer <pr> : printer { $job :: Job })
room3 = room(printer <pr> : printer { $job :: Job })

link room1 <-> room2 <-> room3

reaction devicePrint {
redex {

spool : spool {
$job :: Job

}

device :: Device {
job :: Job

}
}

reactum {
spool {

job
}

device <owner> {
$job :: Job

}

link job <-> device



81

}
}

reaction deviceNear {
redex {

spool <pr> : spool {
job <owner> :: Job

}

room :: Room {
printer <pr> :: Printer {

$job :: Job
}

device <owner> :: Device

link printer <-> spool
link device <-> job

}
}

reactum {
spool <pr> {

$job :: Job
}

room {
printer <pr> {

job <owner>
}

device <owner>

link printer <-> spool
link device <-> job

}
}

}
}


