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1. INTRODUCTION

A number of authors have considered mean values of powers of the mod-
ulus of the Hurwitz zeta function ζ(s, a), see [3, 4, 5, 6, 7]. In this paper,
the mean of the function itself is considered.

First a functional equation relating the Riemann zeta function to sums
of the values of the Hurwitz zeta function at rational values of a is de-
rived. This functional equation underlies the vanishing of the integral of
the Hurwitz zeta function.

Consider the values of the function at negative integers:

ζ(−n, a) = −Bn+1(a)
n + 1

, n ≥ 0

where Bn(a) is the n’th Bernoulli polynomial. The integral of the right
hand side expression between 0 and 1 is zero for every n. This appears
to be a side-effect of the properties of Bernoulli polynomials (namely for
n ≥ 2, Bn(0) = Bn(1) and B

′
n(x) = nBn−1(x)), and nothing particularly

intrinsic to the zeta function. However, as the theorem below will show,
the integral vanishes at every value of the complex variable s to the left of
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the line <(s) = 1. The integral does not exist (as a finite real number), on
or to the right of this line.

2. THE VANISHING THEOREM

The theorem is proved through developing a number of lemmas. The
first is a fundamental, yet easy to derive, functional equation. See also, for
example, [2].

Lemma 2.1. For all integers k ≥ 1 and all s ∈ C− {1}

ksζ(s) =
k∑

j=1

ζ(s,
j

k
).

Proof. Consider the functional equation for the Hurwitz zeta function
[1]:

ζ(1− s,
h

k
) =

2Γ(s)
(2πk)s

k∑

j=1

cos(
πs

2
− 2πjh

k
)ζ(s,

j

k
)

This formula holds for all s and all integers h, k with 1 ≤ h ≤ k. Set h = k
and obtain

ζ(1− s) = ζ(1− s, 1) =
2Γ(s)
(2πk)s

cos(
πs

2
)

k∑

j=1

ζ(s,
j

k
)

Using the functional equation for the zeta function to write the left hand
side in terms of ζ(s):

2(2π)−sΓ(s) cos(
πs

2
)ζ(s) =

2Γ(s)
(2πk)s

cos(
πs

2
)

k∑

j=1

ζ(s,
j

k
)

so the formula follows for all points except zeros of cos(πs/2) and poles of
Γ(s). But then it must hold at these points also since each side represents an
analytic function, except for s = 1.

Corollary 2.1. If ζ(s0) = 0 then for all integers k ≥ 1

∑

1≤j≤k,(j,k)=1

ζ(s0,
j

k
) = 0.
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Proof. Let ζ(s0) = 0. If k = 1 then ζ(s0, 1/1) = ζ(s0) = 0 so assume it
is true for all m < k. By the Lemma

k∑

j=1

ζ(s0,
j

k
) = 0.

Divide the sum on the left up into groups of terms corresponding to indices
(j, k) having the same gcd. By the inductive hypothesis, each of the groups
with a common gcd greater than 1 will sum to zero. Omitting these terms
we obtain the result of the corollary.

Observation: It follows easily from the corollary that the sums of the
values of the Hurwitz zeta function over the Farey fractions of a given order,
other than zero, at a zero of zeta function, are all zero.

Lemma 2.2. If <(s) < 1 then limn→∞
∑n

j=1 ζ(s, j
n ) 1

n = 0.

Proof. By Lemma 2.1

ns−1ζ(s) =
n∑

j=1

ζ(s,
j

n
)
1
n

.

Hence

nσ−1|ζ(s)| = |
n∑

j=1

ζ(s,
j

n
)
1
n
|.

So if σ < 1, limn→∞ nσ−1|ζ(s)| = 0, and the lemma follows directly.

Lemma 2.3. Let f : (0, 1] → R be a bounded C∞ function. Extend f to
a Riemann integrable function on [0, 1] with f(0) = 0. If

lim
n→∞

n∑

j=1

f(
j

n
)
1
n

= 0

then
∫ 1

0
f = 0, because, in this case, the integral is the limit of the given

Riemann sums.

Lemma 2.4. If σ = <(s) < 0 there exists a positive real number B =
B(s) such that for all a ∈ (0, 1], |ζ(s, a)| ≤ B(s).
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Proof. Consider Hurwitz’ formula for the zeta function in terms of the
periodic zeta function [1], namely:

ζ(1− s, a) =
Γ(s)
(2π)s

{e−πis/2F (a, s) + eπis/2F (−a, s)}

where 0 < a ≤ 1, 1 < σ and where

F (a, s) =
∞∑

n=1

e2πina

ns
.

then

ζ(s, a) =
Γ(1− s)
(2π)1−s

{e−πi(1−s)/2F (a, 1− s) + eπi(1−s)/2F (−a, 1− s)}

for σ < 0. Hence

|ζ(s, a)| ≤ |Γ(1− s)|
(2π)1−σ

{e−πt/2|F (a, 1− s)|+ eπt/2|F (−a, 1− s)|}

≤ |Γ(1− s)|
(2π)1−σ

{e−πt/2
∞∑

n=1

1
n1−σ

+ eπt/2
∞∑

n=1

1
n1−σ

}

=
|Γ(1− s)|
(2π)1−σ

2 cosh(
πt

2
)ζ(1− σ) = B(s)

Lemma 2.5. If 0 < σ < 1, there exists a positive real number B = B(s)
such that for all a ∈ (0, 1],

|ζ(s, a)| ≤ 1
aσ

+ B(s).

Proof. Consider the following expression for the zeta function [1], valid
for 0 < σ < 1 and all integers N ≥ 1, namely

ζ(s, a) =
N∑

n=0

1
(n + a)s

+
(N + a)1−s

s− 1
− s

∫ ∞

N

x− [x]
(x + a)s+1

dx.

Then

|ζ(s, a)| ≤
N∑

n=0

1
(n + a)σ

+
(N + a)1−σ

|s− 1| + |s|
∫ ∞

N

1
(x + a)1+σ

dx.
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Let N = 1 to derive the upper bound

|ζ(s, a)| ≤ 1
aσ

+
1

(1 + a)σ
+

(1 + a)1−σ

|s− 1| +
|s|
σ

=
1
aσ

+ B(s)

where we may take

B(s) = 1 +
2

|s− 1| +
|s|
σ

.

Lemma 2.6. Let f : (0, 1] → R be a C∞ function. Let a positive real
number M be such that, for some σ ∈ (0, 1)

|f(x)| ≤ M

xσ

for all x. Then f is Riemann integrable (proper if f is bounded). If
limn→∞

∑n
j=1 f( j

n ) 1
n = 0, then

∫ 1

0+
f = 0.

Proof. Let σ1 be such that σ < σ1 < 1. Then

|f(x)|
1/xσ1

≤ xσ1−σM

so

lim
x→0+

|f(x)|
1/xσ1

= 0.

It follows that f is integrable on [0, 1].
Let

∫ 1

0+
f = α and suppose α is not zero. By replacing f with −f if

necessary we can assume α > 0.
Since f is integrable there is an N1 in N such that, for all n ≥ N1,

∫ 1

1/n

f >
α

2

There exists an N2 such that for all l ≥ N2

∣∣
nl∑

j=l

f(
j

nl
)

1
nl
−

∫ 1

1/n

f
∣∣ <

α

4
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so

−α

4
<

nl∑

j=l

f(
j

nl
)

1
nl
−

∫ 1

1/n

f

Therefore

α

2
<

∫ 1

1/n

f <
α

4
+

nl∑

j=l

f(
j

nl
)

1
nl

so

α

4
<

nl∑

j=l

f(
j

nl
)

1
nl

.

By the given hypothesis

lim
n→∞

n∑

j=1

f(
j

n
)
1
n

= 0

so there is an N3 such that for all l ≥ N3

−α

8
<

ln∑

j=1

f(
j

ln
)

1
ln

<
α

8

Therefore

−α

8
<

l−1∑

j=1

f(
j

ln
)

1
ln

+
ln∑

j=l

f(
j

ln
)

1
ln

<
α

8

and so

α

4
<

α

8
−

l−1∑

j=1

f(
j

ln
)

1
ln

which implies

α

8
<

l−1∑

j=1

|f(
j

ln
)| 1

ln

< M

l∑

j=1

(
ln

j
)σ 1

ln

= M
lσnσ

ln

l∑

j=1

(
1
jσ

)

< 2M
lσnσl1−σ

ln
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which can be made arbitarily small for n sufficiently large. This contra-
diction shows we must have α = 0, so completes the proof of the Lemma.

Lemma 2.7. If σ = 0 and |t| ≥ 1 then

|ζ(it, a)| ≤ B(t)

for some bound B(t).

Proof. This follows directly from the inequality [1] valid for −δ ≤ σ ≤ δ
for δ < 1 and |t| ≥ 1

|ζ(s, a)− a−s| ≤ A(δ)|t|1+δ.

Lemma 2.8. If σ = 0 and 0 ≤ t ≤ 1 then

|ζ(it, a)| ≤ B(t).

Proof. If t = 0, ζ(0, a) = 1/2− a so we may assume t is not zero.
To establish a bound we use two expressions for the Hurwitz zeta function

derived with Euler summation and integration by parts [1]: For σ > −1
and N ≥ 0

ζ(s, a) =
N∑

n=0

1
(n + a)s

+
(N + a)1−s

s− 1

− s

2!
{ζ(s + 1, a)−

N∑
n=0

1
(n + a)s+1

}

− s(s + 1)
2!

∞∑

n=N

∫ 1

0

u2

(n + a + u)s+2
du

and if σ > 0

ζ(s, a) =
N∑

n=0

1
(n + a)s

+
(N + a)1−s

s− 1

−
∫ ∞

N

x− [x]
(x + a)s+1

dx.
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Substitute σ = 0 and N = 0 in the first formula to obtain the equation

ζ(it, a) =
1
ait

+
a1−it

it− 1

− it

2!
{ζ(it + 1, a)− 1

a1+it
}

− it(it + 1)
2!

∞∑
n=1

∫ 1

0

u2

(n + a + u)it+2
du

so

|ζ(it, a)| ≤ 1 +
1

|it− 1| +
|t|
2!
|ζ(it + 1, a)− 1

a1+it
|

+
|t|(|t|+ 1)

2!

∞∑
n=1

∫ 1

0

u2

(n + u)2
du

≤ 1 +
1

|it− 1| +
|t|(|t|+ 1)

2!
(ζ(2) + 1) +

|t|
2!
|C(t, a)|

where

C(t, a) = ζ(it + 1, a)− 1
a1+it

.

In the second formula let N = 1 and s = 1 + it so σ = 1 > 0 giving

C(t, a) =
1

(1 + a)1+it
+

(1 + a)1−(1+it)

1− (1 + it)
− (1 + it)

∫ ∞

1

x− [x]
(x + a)2+it

dx

so

|C(t, a)| ≤ 1 +
1
|t| +

√
1 + t2.

Theorem 2.1. For all s ∈ C with <(s) < 1 the (improper) Riemann
integral of ζ(s, a) with respect to a ∈ (0, 1] exists and

∫ 1

0+
ζ(s, a)da = 0.

Proof. The work has now been done. Simply apply the lemmas, valid
in different subsets of σ < 1, to the real and imaginary parts of the integral
of ζ(s, a):

If σ < 0 use Lemmas 2.2 and 2.4.
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If 0 < σ < 1 use 2.2, 2.5 and 2.6.
If σ = 0 and |t| ≥ 1 use 2.2 and 2.7.
If σ = 0 and 0 ≤ t ≤ 1 use 2.2 and 2.8.

Theorem 2.2. For all s ∈ C with <(s) ≥ 1 the (improper) Riemann
integral of ζ(s, a) with respect to a ∈ (0, 1] does not exist.

Proof. For every a, ζ(s, a) has a pole at s = 1, so the integral makes
no sense at that value of s. The rest of the proof is straight forward,
based on the non existence of the improper integral of a−s on (0, 1] for
σ = <s ≥ 1 and t = =s 6= 0 decomposing this domain into subsets cor-
responding to σ > 1, σ = 1 and |t| ≥ 1 and σ = 1 and 0 < t < 1.
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