
Propositionalisation of Multi-instance Data
using Random Forests

Eibe Frank and Bernhard Pfahringer

Department of Computer Science, University of Waikato
{eibe,bernhard}@cs.waikato.ac.nz

Abstract. Multi-instance learning is a generalisation of attribute-value
learning where examples for learning consist of labeled bags (i.e. multi-
sets) of instances. This learning setting is more computationally chal-
lenging than attribute-value learning and a natural fit for important ap-
plication areas of machine learning such as classification of molecules and
image classification. One approach to solve multi-instance learning prob-
lems is to apply propositionalisation, where bags of data are converted
into vectors of attribute-value pairs so that a standard propositional (i.e.
attribute-value) learning algorithm can be applied. This approach is at-
tractive because of the large number of propositional learning algorithms
that have been developed and can thus be applied to the proposition-
alised data. In this paper, we empirically investigate a variant of an
existing propositionalisation method called TLC. TLC uses a single de-
cision tree to obtain propositionalised data. Our variant applies a random
forest instead and is motivated by the potential increase in robustness
that this may yield. We present results on synthetic and real-world data
from the above two application domains showing that it indeed yields
increased classification accuracy when applying boosting and support
vector machines to classify the propositionalised data.

1 Introduction

Multi-instance learning is a generalisation of standard propositional learning–
also called attribute-value learning–first introduced in [6]. Whereas propositional
learning represents each example as one fixed-size vector of attribute-value pairs,
multi-instance learning uses a bag of such vectors to represent examples and class
labels are only associated with entire bags. The original learning assumption for
multi-instance learning presented in [6] is applicable to two-class classification
problems only and states that there is at least one vector in a positive bag that
causes that bag to be a positive one. Negative bags are assumed to not contain
any such “positive” vectors. Later work [18] has generalised this so-called multi-
instance assumption to allow for arbitrary minimum and maximum counts of
“positive” vectors as the necessary and sufficient condition for a positive bag.

Algorithms for multi-instance learning can be grouped into three classes. First
there are dedicated new algorithms, with the most prominent one being Diver-
sity Density [11]. Secondly, standard propositional learners like decision trees or

1: x0

2: x1

 = false

9: x1

 = true

3: x2

 = false

6: x2

 = true

4 : pos (94.76/43.53)

 = false

5 : pos (66.26/26.7)

 = true

7 : pos (72.01/25.69)

 = false

8 : pos (70.52/31.26)

 = true

10: x2

 = false

13 : pos (138.9/0)

 = true

11 : pos (58.18/11.46)

 = false

12 : pos (49.36/20.86)

 = true

Fig. 1. Unpruned decision tree used for propositionalisation. In (x/y), x gives the
total weight of all instances at the leaf node, and y gives the weight of all misclassified
instances. Each leaf node is labeled pos, which means that for each leaf the sum of
weights for positive instances is greater than the sum of weights for negative instances.

support vector machines, can be adapted–sometimes this is called upgraded–to
deal with multi-instance data. Typical examples are MITI [3] and MISVM [1].
Thirdly, instead of adapting the algorithm, the data can be adapted, or propo-
sitionalised, to turn it into a standard propositional representation. As multi-
instance learning is a special case of relational learning, any propositionalisation
method from relational learning [9] could be applied, but generic relational learn-
ing methods often do not scale well. Therefore specialised multi-instance propo-
sitionalisation methods, inspired by general relational algorithms, have attracted
some interest. One such method is PROPER [15], which is a specialisation of
RelAggs [10]. On the other hand, the TLC algorithm [18] introduced a gen-
uinely new way of propositionalisation, based on hierarchically partitioning the
full instance space into sub-regions. The algorithm presented and analysed in
this paper is a simple, yet effective extension of TLC.

The next section will describe this extension. Some implementation aspects
are discussed in Section 3. Section 4 provides insights into the algorithm’s be-
haviour by applying it to a synthetic multi-instance problem and Section 5 evalu-
ates the method using a number of standard multi-instance benchmark datasets.
Section 6 provides some pointers for future work and conclusions.

2 Propositionalisation using Random Forests

The multi-instance learning method presented in this paper is a simple extension
of the Two-Level Classification (TLC) method as presented in [18]. TLC uses
a heuristic approach to partition the instance space into regions. Once this has
been done, a bag of instances (i.e. an example for learning in a multi-instance
dataset) is propositionalised by counting how many instances of the bag fall into
each region. These counts are attribute values in the propositionalised problem
(i.e. there is one attribute for each region in the partition). Once each bag of

Bag

x0 x1 x2

false true false
false true true
false true true
true false false
true false true
true false true
true false false
true true true
false false false

⇒
Instance

r1 r2 r9 r3 r6 r10 r13 r4 r5 r7 r8 r11 r12

9 4 5 1 3 4 1 1 0 1 2 2 2

Fig. 2. Bag of instances and propositionalised form.

data has been propositionalised in this form, and each bag’s classification has
been attached to its propositionalised form, a standard single-instance learning
algorithm for classification problems can be applied to the data.

The motivation for using this approach is that by dividing the instance space
into regions and measuring occupancy, it becomes possible to describe the dis-
tribution of a bag’s instances in instance space. This provides an alternative to
simpler propositionalisation approaches that compute summary statistics such
as the mean and standard deviation of the attribute values in a bag. In this
manner, it is possible to preserve more information when propositionalising.

The question is how to define the regions in the instance space. TLC uses a
standard single-instance decision tree to obtain a partition. To learn this tree,
all instances from all bags are joined into a single dataset, discarding bag mem-
bership information, and labeled by their bag’s class label. To make sure that
large bags receive as much weight as small bags, each instance in this dataset
is weighted by 1

|X| ×
N
b , where X is is the bag the instance comes from, N is

the number of instances in the joined data, and b is the number of bags in the
original dataset. In this manner, the sum of weights for the instances in the new
dataset is N .

Let us consider an illustrative example, where we generated synthetic multi-
instance data with three Boolean attributes x0, x1, and x2, for each bag. We
generated 100 bags of instances, where each bag had between one and 10 in-
stances, with equal probability for each bag size. When sampling instances, the
joint probability distribution over the attributes was the uniform distribution,
making all combinations of attribute values equally likely. The classification of
each bag was determined as follows. A bag received the class label “positive” if it
contained at least one instance for which both x0 and x1 had the value true. If it
did not contain any instance with this property, the bag was labeled “negative”.
This relationship is an example of the classic (or “standard”) assumption for
multi-instance learning given in [6].

We then applied the above process to generate a partitioning, using an un-
pruned decision tree grown using information gain (based on the REPTree clas-
sifier with option -P in WEKA [8]). The resulting tree is shown in Figure 1. The

leaf nodes in the tree show the majority class, which is “positive” in all cases,
determined by examining the sum of weights of the instances in each class. This
tree defines 13 regions, one for each node in the tree. Note that all nodes in the
tree are used to define regions, not just the leaf nodes. In this example prob-
lem, (leaf) node 13 is the key region, because a bag is positive if and only if
it has an instance in this region, but in general any node (or even combination
of nodes) in the tree may need to be considered to determine class membership
of a bag. Thus, occupancy counts for all regions are used as attribute values
in the propositionalised data, so that the single-instance learner applied to the
propositionalised data can identify the salient relationship.

Figure 2 shows an example bag and its propositionalised version, proposi-
tionalised using the tree in Figure 1. The class label has been omitted in this
case, but the bag (and the resulting instance) are both positive because of mem-
bership in region 13. Note that the tree is explored in a breadth-first manner to
generate the attribute values for the instance.

The hypothesis we investigate in this paper is that for large and messy real-
world data a single tree may not be sufficient to obtain a robust learning method
for multi-instance data. When considering standard classification problems, it is
well-known that ensembles of trees such as random forests [5] outperform a single
tree in terms of predictive performance. Here, we want to use an ensemble of
trees for propositionalisation. The basic process is the same: the multi-instance
dataset is converted into a single-instance dataset by attaching each instance’s
bag label to the instance and reweighting the instance, just as in TLC described
above. Then, rather than learning a single tree, we learn an ensemble of trees
using the random forest method, for example, using the RandomForest class in
WEKA. If tree i in the ensemble of trees has li nodes (internal nodes + leaf
nodes), then the ensemble defines

∑
i li regions. To propositionalise a bag of

instances, we then simply calculate the occupancy counts for all of these regions
and create a feature vector of size

∑
i li. This vector is then labeled with the

bag’s label and can be processed using a single-instance learner.
It is clear that the resulting propositionalised instances have many more

attributes than in the single-tree-based TLC method. The size of the feature
vector is determined by the size of the ensemble. Our hypothesis is that larger
ensembles, and thus feature vectors, will generally lead to improved classification
accuracy when applying a learning algorithm to the propositionalised data.

3 Implementation in the WEKA Workbench

The WEKA machine learning workbench has support for multi-instance data in
recent versions of the software, facilitated by the availability of relation-valued
attributes: each bag of instances is stored as the value of a relation-valued at-
tribute. For the experiments reported in this paper, a new PartitionGenerator

interface has been added to WEKA that is implemented by several tree learn-
ers. It has a method that returns an array with counts that indicates, for a
given instance, in which regions of the partition this instance is present. A tree

learner may fill in this array by traversing a tree in a breadth-first fashion.
In the case of a tree ensemble, the vectors for the individual trees are simply
concatenated. WEKA now also has a PartitionMembershipFilter that can
apply any PartitionGenerator to a given dataset to obtain these vectors for
all instances. In conjunction with a new MultiInstanceWrapper filter in the
MultiInstanceFilters package for WEKA 3.7, this filter can be applied to
multi-instance data. When this is done, the vectors for all instances in a bag are
simply added together by this filter to yield a vector of membership counts for
a bag.

For added convenience, the MultiInstanceLearning package contains a new
classifier implementation called TLC (for Two-Level Classification [18]) that ap-
plies the filtering process, using the above two filters, based on a particular
PartitionGenerator specified as a parameter, and then runs a standard single-
instance classifier on the propositionalised data. This single-instance classifier
can also be specified as a parameter. It is thus straightforward to run systematic
experiments with different partition generators and single-instance classifiers.
For the experiments in this paper, WEKA’s RandomForest class and REPTree

decision tree learner were modified to implement the PartitionGenerator in-
terface and the modified code is now part of the official WEKA code repository.

4 A Synthetic Problem

Our hypothesis is that propositionalisation using a random forest yields a more
robust classifier than propositionalisation based on a single decision tree. In this
section, we test this hypothesis empirically by introducing different levels of
noise and data redundancy in a very simple synthetic learning problem. In this
learning problem, there is a single numeric attribute that completely determines
the classification of a bag: if this attribute has at least one positive value in
the bag concerned, the bag is classified “positive”; otherwise, its class label is
“negative”. As we want to test the robustness of learning algorithms, we modify
this deterministic relationship by first duplicating the attribute and its values
for a particular bag to yield n copies and then taking a certain percentage of
these copies for the particular bag concerned and replacing all their positive
attribute values by their additive inverses (i.e. attribute value x becomes −x if
x > 0), without changing the class label of the bag. Hence, the modified data
has n attributes per bag instead of one, where some of the attributes of positive
bags may be corrupted and do not correctly indicate that the bag is positive.
A learning algorithm must thus exploit the redundancy in these attributes to
achieve maximum accuracy and cannot rely on a single attribute alone.

The exact set-up of the experiment is as follows. Based on a particular seed for
the pseudo random number generator, we generate 100 bags containing between
one and five instances each, where each bag size is given equal probability. For
each bag, we first generate uncorrupted attribute values by sampling from the
uniform distribution over the range [−0.5, 0.5). If one of these attribute values is
positive, the bag’s class label is set to “positive”, otherwise it is set to “negative”.

Once the class label has been determined, n copies of the uncorrupted attribute
values for a bag are generated to yield n attributes. Then, a biased coin is flipped
n times, where this coin has probability p of coming up heads. If heads is the
result of the coin flip, all positive attribute values in the corresponding copy of
the attribute for the bag concerned (if any) are replaced by their additive inverse
to introduce non-determinism in the relationship between this attribute’s values
and the bag’s classification. In this way, all negative bags in the data have n
identical attributes, but the n attributes of a positive may bag differ, depending
on the value of the chosen probability p.

To measure accuracy of a learning algorithm on this data, we apply stratified
10-fold cross-validation to estimate the value of the kappa statistic, which can
be viewed as a normalised version of classification accuracy that is particularly
useful when the classes are unbalanced. Kappa is computed as follows:

κ =
a− ar
1 − ar

,

where a is the estimated classification accuracy of the learning algorithm we
want to evaluate, and ar is the expected accuracy of a random classifier that
assigns instances randomly to classes in such a manner that it assigns the same
number of instances to each class as the learning algorithm we are evaluating.
If kappa is greater than zero, the learning algorithm exhibits accuracy greater
than what would be expected by assigning classifications randomly to the bags
occuring in the test folds of the cross-validation. A value of one is the maximum
that can be achieved.

We compare propositionalisation using unpruned decision trees grown using
the information gain (based on REPTree with option -P in WEKA) to propo-
sitionalisation using a random forest of size 10 (based on RandomForest with
option -K 1 in WEKA). LogitBoost with decision stumps and 100 boosting
iterations was used as the learning algorithm for the propositionalised data
(LogitBoost with option -I 100 in WEKA). Figures 3 and 4 show the results
obtained for different numbers of attributes (i.e. values of n) and two different
noise levels (i.e. values of p). Figure 3 shows results for the case where p = 0.1
and Figure 4 shows results for the case where p = 0.3. Each point in the plot cor-
responds to an average over 10 different runs of the experiments, where data was
generated from scratch for each run using a different seed for the pseudo random
number generator, followed by 10-fold cross-validation on this fresh data. The
error bars correspond to 95%-level confidence intervals.

The graphs show that both propositionalisation methods benefit from redun-
dancy in the data: accuracy increases as the number of attributes increases. How-
ever, at the higher noise level we consider (p = 0.3), accuracy levels out earlier
when using a single, deterministically-grown decision tree. In contrast, proposi-
tionalisation using random forests benefits more from adding redundancy in the
input by including more attributes: we can see that for p = 0.3, and more than
four attributes (n > 4), the random-forest-based method achieves a level of ac-
curacy that is statistically significantly higher than that obtained using a single
tree—the 95%-level confidence intervals for the two methods do not overlap.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10

Ka
pp

a

Number of attributes

REPTree -P
RandomForest -K 1

Fig. 3. Average kappa for p = 0.1.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10

Ka
pp

a

Number of attributes

REPTree -P
RandomForest -K 1

Fig. 4. Average kappa for p = 0.3.

Table 1. 10-times 10-fold cross-validated classification accuracy obtained using linear
support vector machines.

Dataset Decision Forest Forest Forest
Tree (10 trees) (50 trees) (100 trees)

musk1 84.4±13.2 87.7±10.7 89.1±10.6 89.4± 10.3
musk2 76.0±12.9 80.7±11.6 80.4±11.1 80.5± 10.9
mutagenesis3-atoms 86.5± 8.5 86.6± 8.1 86.7± 8.0 86.7± 8.1
mutagenesis3-bonds 86.1± 7.3 86.7± 7.5 86.7± 7.6 87.1± 7.5
mutagenesis3-chains 83.4± 8.9 84.5± 9.0 84.8± 9.6 85.3± 9.3
thioredoxin 88.4± 4.2 88.7± 4.6 89.3± 4.2 89.6± 4.2
suramin 65.0±45.2 61.0±46.9 57.0±47.7 55.0± 47.9
elephant 80.9± 9.8 86.0± 8.0 88.8± 7.4 ◦ 88.9± 7.0 ◦
fox 63.0± 9.2 62.7± 9.1 65.0±10.0 66.2± 8.1
tiger 80.1± 9.1 81.1± 9.6 83.6± 8.2 84.3± 7.9
bikes 79.6± 4.6 81.6± 4.2 83.8± 4.3 ◦ 84.3± 3.8 ◦
cars 67.8± 4.7 72.4± 4.4 ◦ 75.4± 4.8 ◦ 76.1± 4.4 ◦
people 78.4± 4.6 80.7± 4.5 82.5± 3.9 ◦ 83.4± 3.9 ◦

◦ statistically significant improvement

5 Experiments on Real-world Data

To evaluate the performance of the random-forest-based propositionalisation ap-
proach, we performed experiments on benchmark multi-instance datasets that
have previously been used in the literature. For propositionalisation, we used un-
pruned decision trees grown deterministically using information gain (REPTree
with option -P in WEKA), and random forests with 10, 50, and 100 trees
(RandomForest with options -I 10, -I 50, and -I 100 in WEKA). Classifi-
cation accuracy was estimated using 10-times 10-fold stratified cross-validation.
Propositionalisation was performed separately based on each of the 100 training
sets of the repeated cross-validation, so that the test data was never used in
the propositionalisation process. We evaluated two learning algorithms in con-
junction with the propositionalisation methods: linear support vector machines
with C = 1 (SMO with option -no-checks -N 2 in WEKA), using WEKA’s
NonSparseToSparse filter to create input data in sparse format, and boosted
decision stumps, using 100 boosting iterations (LogitBoost in WEKA with op-
tion -I 100). The corrected resampled paired t-test [13] was used to establish
statistical significance when considering observed differences in estimated accu-
racy, with a significance level of 0.05. All experiments were performed using the
WEKA Experimenter interface [8].

The experimental results are shown in Tables 1 and 2. They include results
for the two well-known musk datasets [6], where the task is to determine whether
a molecule is active based on its geometric properties. Another task included is
mutagenicity prediction [16], which was considered for multi-instance tree and
rule learning in [19], based on three different representations of molecules as
bags of instances muta-atoms, muta-bonds and muta-chains. We also include the
thioredoxin protein identification task [17] and the suramin data, which is another
drug activity prediction problem: identifying suramin [4] analogues that can act
as anti-cancer agents. Image classification is another important application area
of multi-instance learning methods. We include two sets of content-based im-

Table 2. 10-times 10-fold cross-validated classification accuracy obtained using Logit-
Boost with 100 boosting iterations.

Dataset Decision Forest Forest Forest
Tree (10 trees) (50 trees) (100 trees)

musk1 84.6±12.9 86.2±12.0 88.4±10.4 88.4± 11.4
musk2 76.5±12.6 80.9±10.8 82.5±11.7 82.7± 12.2
mutagenesis3-atoms 85.5± 9.3 86.4± 8.7 86.0± 8.7 85.5± 8.3
mutagenesis3-bonds 86.7± 7.3 87.7± 7.1 87.6± 7.5 87.2± 7.0
mutagenesis3-chains 87.7± 8.1 86.5± 8.6 87.4± 7.6 87.8± 8.3
thioredoxin 90.2± 5.0 90.6± 4.7 91.2± 4.8 91.9± 4.2
suramin 49.5±47.9 56.5±48.0 51.5±48.4 56.0± 48.3
elephant 79.8± 9.4 83.7± 8.5 86.3± 7.5 86.4± 7.0
fox 63.0±10.0 62.4±11.2 65.9±10.9 64.4± 10.3
tiger 78.2± 8.8 81.4± 9.0 83.2± 8.5 83.5± 9.2
bikes 79.7± 4.5 81.2± 4.0 82.3± 4.7 83.2± 4.6 ◦
cars 70.1± 5.1 72.9± 3.9 74.8± 5.0 ◦ 75.1± 4.5 ◦
people 77.3± 4.6 79.6± 4.1 80.4± 4.1 81.0± 3.8 ◦

◦ statistically significant improvement

age classification datasets. The first set consists of the elephant, fox and tiger [1]
datasets and the second one contains the bikes, cars and people datasets. The lat-
ter set is based on Ohta-based features as in [12], and derived from the GRAZ02
dataset [14].

Table 1 shows that, when applied in conjunction with a linear support vector
machine, using random forests for propositionalisation is preferable to using a
single deterministic decision tree. This is particularly apparent in the case of the
image classification datasets. Noteworthy improvements in predictive accuracy
are obtained for all six image classification problems when using 100 trees in the
random forests, and in four cases the improvement is statistically significant. The
results also show that accuracy generally improves as more trees are included
in the random forests. Again, bigger improvements are obtained in the image
classification datasets. This is consistent with our hypothesis that random-forest-
based classification can better exploit redundancy in the input data because the
features in the image classification datasets are likely to be highly redundant.

Table 2 shows a similar picture when using 100 boosted decision stumps
instead of linear support vector machines. Using random forests with 100 trees
instead of a single unpruned decision tree yields higher estimated accuracy for
12 out of the 13 datasets. In the case of the three image classification datasets
bikes, cars, and people, the improvement in accuracy is statistically significant.

Comparing the performance of boosted stumps and support vector machines
when using propositionalisation based on random forests with 100 trees, we
can see that support vector machines produce better accuracy on the image
classification datasets, whereas there is no clear difference on the other datasets.
Given that 100 boosted decision stumps can only test a maximum of 100 regions
in the partitioned instance space, this indicates that high accuracy on the image
classification datasets requires consultation of more than 100 regions to yield
accurate classifications.

It is instructive to compare the accuracy obtained in the experiments pre-
sented here to that obtained in [2] (Table 4, semi-random ensemble), which

Table 3. Average training time in seconds in 10-times 10-fold cross-validated classifi-
cation, obtained using linear support vector machines.

Dataset Decision Forest Forest Forest
Tree (10 trees) (50 trees) (100 trees)

musk1 0.1±0.1 0.1± 0.1 0.4± 0.0 ◦ 1.0± 0.1 ◦
musk2 0.9±0.1 2.2± 0.3 ◦ 13.7± 2.0 ◦ 36.3± 6.1 ◦
mutagenesis3-atoms 0.1±0.0 0.8± 0.1 ◦ 9.5± 0.7 ◦ 62.9± 18.4 ◦
mutagenesis3-bonds 0.1±0.0 2.2± 0.1 ◦ 23.3± 2.2 ◦ 127.7± 27.7 ◦
mutagenesis3-chains 0.3±0.0 4.2± 0.2 ◦ 59.0±13.1 ◦ 263.3± 47.7 ◦
thioredoxin 3.1±0.1 55.9± 2.9 ◦ 665.2±93.5 ◦ 1919.3±145.9 ◦
suramin 0.0±0.0 0.2± 0.0 ◦ 0.8± 0.1 ◦ 1.8± 0.1 ◦
elephant 0.3±0.0 0.8± 0.0 ◦ 7.5± 0.4 ◦ 41.4± 18.3 ◦
fox 0.3±0.0 0.9± 0.1 ◦ 10.4± 0.6 ◦ 73.2± 27.3 ◦
tiger 0.2±0.0 0.6± 0.0 ◦ 5.8± 0.3 ◦ 21.3± 2.8 ◦
bikes 1.0±0.1 5.9± 0.2 ◦ 105.8±17.5 ◦ 400.0± 75.4 ◦
cars 1.4±0.1 9.5± 0.4 ◦ 213.8±34.6 ◦ 729.8±133.4 ◦
people 0.9±0.1 5.0± 0.2 ◦ 76.6±13.6 ◦ 317.9± 61.3 ◦

◦ statistically significant degradation

evaluated random forests of size 100 grown using a modified version of the MITI
algorithm [3], a tree inducer designed for multi-instance learning. Exactly the
same experimental protocol, based on the same 10-times 10-fold cross-validation
runs, was applied in [2]. Propositionalisation using 100 trees, applied in conjunc-
tion with linear support vector machines (Table 1), produces higher estimated
accuracy for eight of the twelve datasets considered both here and in [2], and
lower accuracy for four datasets. Overall, accuracy obtained using proposition-
alisation appears very competitive.

Note that, computationally, support vector machines are well suited for the
propositionalised data: the propositionalised bags yield very sparse feature vec-
tors because most regions defined by a decision tree will not contain any instances
of any particular bag. Hence, most attribute values in the propositionalised data
will be zero, yielding sparse attribute vectors. Sparse vectors can be dealt with
very efficiently in support vector machines because dot products of sparse vec-
tors can be computed by iterating over the non-zero elements in the vectors
only. WEKA supports data in sparse format, where only non-zero values in the
instances are explicitly represented, and the NonSparseToSparse filter can be
used to create this data.

Tables 3 and 4 show training times, including the propositionalisation pro-
cess, averaged over the 10 runs of 10-fold cross-validation. It can be seen that
using random forests to propositionalise the data significantly increases training
time in all cases. One reason is that a tree ensemble needs to be grown, rather
than a single tree. (Note that this process can be parallelised.) Another reason
is that the instances in the propositionalised data have many more attributes
when using random forests than when using a single deterministic tree because
an ensemble of trees is used instead of a single tree and a single tree in a ran-
dom forest is generally larger than a single deterministically grown tree, where
attribute selection using information gain aims to minimise tree size. The results
also show that applying a linear support vector machine is faster than applying
boosting due to the fact that sparse data can be processed efficiently.

Table 4. Average training time in seconds in 10-times 10-fold cross-validated classifi-
cation, obtained using LogitBoost with 100 boosting iterations.

Dataset Decision Forest Forest Forest
Tree (10 trees) (50 trees) (100 trees)

musk1 0.2±0.1 0.7±0.1 ◦ 3.5± 0.2 ◦ 7.6± 0.5 ◦
musk2 1.1±0.2 5.5±0.6 ◦ 30.9± 3.5 ◦ 70.6± 8.7 ◦
mutagenesis3-atoms 0.6±0.0 9.7±0.4 ◦ 53.7± 1.9 ◦ 129.3± 11.1 ◦
mutagenesis3-bonds 0.9±0.1 14.4±0.5 ◦ 82.9± 3.2 ◦ 215.2± 23.6 ◦
mutagenesis3-chains 1.2±0.1 21.6±0.8 ◦ 134.7± 8.5 ◦ 427.2± 37.2 ◦
thioredoxin 7.0±0.3 106.2±3.6 ◦ 946.0±59.2 ◦ 2641.3±126.3 ◦
suramin 0.0±0.0 0.2±0.0 ◦ 1.1± 0.1 ◦ 2.5± 0.2 ◦
elephant 0.6±0.1 9.2±0.3 ◦ 49.6± 1.3 ◦ 116.6± 9.4 ◦
fox 0.7±0.1 11.0±0.4 ◦ 60.5± 1.3 ◦ 147.2± 11.3 ◦
tiger 0.5±0.1 8.0±0.4 ◦ 42.6± 1.3 ◦ 95.7± 7.0 ◦
bikes 7.1±0.2 90.5±1.4 ◦ 598.0±12.0 ◦ 1545.8± 38.2 ◦
cars 10.7±0.3 136.8±1.7 ◦ 952.5±23.0 ◦ 2381.3±131.4 ◦
people 6.0±0.2 76.2±1.1 ◦ 496.3± 7.7 ◦ 1208.0± 49.9 ◦

◦ statistically significant degradation

6 Conclusions

Multi-instance learning is an interesting and useful generalisation of proposi-
tional learning. This paper has presented a simple, yet effective extension of the
TLC propositionalisation method that grows random forests for propositional-
ising multi-instance data. The new method’s increased robustness with regard
to noise in the input was demonstrated with a synthetic example, and a com-
prehensive evaluation on benchmark datasets representing image and molecule
classification problems also shows improved accuracy for the new method, albeit
at the cost of a considerable increase in runtime.

The standard random forest method applied in this paper chooses split points
on numeric attributes deterministically when considering these attributes for
splitting. However, as the instances’ class labels used in this process are sim-
ply taken to be their bags’ labels, they may be incorrect. Hence, it would be
interesting to apply a method that chooses split points randomly. This is what
the Extra-Trees algorithm [7] for growing a tree ensemble does. Applying it
to propositionalisation of multi-instance data is a promising avenue for future
research.

References

1. Andrews, S., Tsochantaridis, I., Hofmann, T.: Support vector machines for
multiple-instance learning. In: Proc Conf on Neural Information Processing Sys-
tems. pp. 561–568. MIT Press (2003)

2. Bjerring, L., Frank, E.: Beyond trees: Adopting miti to learn rules and ensemble
classifiers for multi-instance data. In: Proc 14th Australasian Conf on Artificial
Intelligence. pp. 41–50. Springer (2011)

3. Blockeel, H., Page, D., Srinivasan, A.: Multi-instance tree learning. In: Proc 22nd
Int Conf on Machine Learning. pp. 57–64. ACM (2005)

4. Braddock, P.S., Hu, D.E., Fan, T.P., Stratford, I., Harris, A.L., Bicknell, R.: A
structure-activity analysis of antagonism of the growth factor and angiogenic ac-
tivity of basic fibroblast growth factor by suramin and related polyanions. Br. J.
Cancer 69(5), 890–898 (1994)

5. Breiman, L.: Random forests. Machine Learning 45(1), 5–32 (2001)
6. Dietterich, T.G., Lathrop, R.H., Lozano-Perez, T.: Solving the multiple instance

problem with axis-parallel rectangles. Artificial Intelligence 89(1–2), 31–71 (1997)
7. Geurts, P., Ernst, D., Wehenkel, L.: Extremely randomized trees. Mach. Learn.

63(1), 3–42 (2006)
8. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The

WEKA data mining software: an update. SIGKDD Explor. 11(1), 10–18 (2009)
9. Kramer, S., Lavrač, N., Flach, P.: Propositionalization approaches to relational

data mining. In: Relational Data Mining, pp. 262–286. Springer (2000)
10. Krogel, M.A., Rawles, S., Zelezný, F., Flach, P.A., Lavrac, N., Wrobel, S.: Com-

parative evaluation of approaches to propositionalization. In: Proc 13th Int Conf
on Inductive Logic Programming. pp. 197–214. Springer (2003)

11. Maron, O., Lozano-Pérez, T.: A framework for multiple-instance learning. In: Proc
Conf on Neural Information Processing Systems. pp. 570–576. MIT Press (1998)

12. Mayo, M.: Effective classifiers for detecting objects. In: Proc 4th Int Conf on Com-
putational Intelligence, Robotics, and Autonomous Systems (2007)

13. Nadeau, C., Bengio, Y.: Inference for the Generalization Error. Machine Learning
52(3), 239–281 (2003)

14. Opelt, A., Pinz, A., Fussenegger, M., Auer, P.: Generic object recognition with
boosting. IEEE Transaction on Pattern Analysis and Machine Intelligence 28(3),
416–431 (2006)

15. Reutemann, P., Pfahringer, B., Frank, E.: A toolbox for learning from relational
data with propositional and multi-instance learners. In: Proc 17th Australian Conf
on Artificial Intelligence. pp. 1017–1023. Springer (2004)

16. Srinivasan, A., Muggleton, S., King, R., Sternberg, M.: Mutagenesis: ILP exper-
iments in a non-determinate biological domain. In: Proc 4th Int Workshop on
Inductive Logic Programming. pp. 217–232. GMD (1994)

17. Wang, C., Scott, S., Zhang, J., Tao, Q., Fomenko, D., Gladyshev, V.: A study in
modeling low-conservation protein superfamilies. Tech. rep., Department of Comp.
Sci., University of Nebraska-Lincoln (2004)

18. Weidmann, N., Frank, E., Pfahringer, B.: A two-level learning method for general-
ized multi-instance problems. In: Proc 14th European Conf on Machine Learning.
pp. 468–479. Springer (2003)

19. Zucker, J., Chevaleyre, Y.: Solving multiple-instance and multiple-part learning
problems with decision trees and decision rules. Application to the mutagenesis
problem. In: Proc Conf of the Canadian Society for Computational Studies of
Intelligence. pp. 204–214 (2001)

