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Abstract

Multiple instance (MI) learning is a relatively new topic machine learning. It
is concerned with supervised learning but differs from raraupervised learning
in two points: (1) it has multiple instances in an exampled(émere is only one
instance in an example in standard supervised learningl),(@nonly one class
label is observable for all the instances in an example (@dseeach instance has its
own class label in normal supervised learning). In Ml leagrihere is a common
assumption regarding the relationship between the cléss &£ an example and
the “unobservable” class labels of the instances insid&his assumption, which
is called the “MI assumption” in this thesis, states that @&ample is positive if at

least one of its instances is positive and negative othefwis

In this thesis, we first categorize current Ml methods intces framework. Ac-
cording to our analysis, there are two main categories of Mthods, instance-
based and metadata-based approaches. Then we propose ssnawpton for Ml
learning, called the “collective assumption”. Althoughstlassumption has been
used in some previous Ml methods, it has never been explatited: and this is
the first time that it is formally specified. Using this new @sption we develop
new algorithms — more specifically two instance-based arelroatadata-based
methods. All of these methods build probabilistic modeld #us implement sta-
tistical learning algorithms. The exact generative modalgerlying these methods

are explicitly stated and illustrated so that one may cjeamiderstand the situations

1As a matter of fact, for some of these methods, it is actuddliyneed that they use the standard
MI assumption stated above.



to which they can best be applied. The empirical resultsgotes! in this thesis
show that they are competitive on standard benchmark datdSaally, we explore

some practical applications of Ml learning, both existimgl @ew ones.

This thesis makes three contributions: a new framework fotedrning, new M
methods based on this framework and experimental resultssis applications of

Ml learning.
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CHAPTER 1. INTRODUCTION

Chapter 1

Introduction

Multiple instance (MI) learning has been a popular resetoplt in machine learn-
ing since seven years ago when it first appeared in the pimige&ork of Dietterich
et al. [Dietterich, Lathrop and Lozano-Pérez, 1997]. One of gmsons that it at-
tracts so many researches is perhaps the exotic concepttingghat it presents.
Most of machine learning follows the general rationale effining by examples”
and Ml learning is no exception. But unlike the single-imst& learning problem,
which describes an example using one instance, the MI prodiescribes an ex-
ample with multiple instances. However, there is still oohe class label for each
example. At this stage we try to avoid any special notatioteaminology and
simply give some rough ideas of the MI learning problem usesg-world exam-
ples. Whilst some practical applications of Ml learninglve# discussed in detail
in Chapter 6, we briefly describe them here to give some flaMoow MI problems

were identified.

1.1 Some Example Problems

The need for multiple-instance learning arises naturallgaveral practical learn-
ing problems, for instance, the drug activity prediction d@mnit disease prediction

problems.



1.1. SOME EXAMPLE PROBLEMS

The drug activity prediction problem was first describedDiefterich et al., 1997].
The potency of a drug is determined by the degree its molsdulel to the larger,
target molecule. It is believed that the binding strength dfug molecule is largely
determined by itshape(or conformation). Unfortunately one molecule can have
multiple shapes by rotating some of its internal bonds amigenerally unknown
which shape(s) determines the binding. However the potefegpecific molecule,
which is either active or inactive, can be observed dirdatlged on the past expe-
riences. One can recognize this as a good instance of Mlitearitach molecule
is an example, with each of its shapes as one instance irsidéus we have to
use multiple instances to present an example. Diettetieh believed that an addi-
tional assumption is intuitively reasonable in this prob)¢hat is, if one of thésam-
pled) shapes of a molecule is active, then the whole molecule igeaatherwise
it's inactive. We call this assumption the standakdl ‘assumptiofr Dietterich et
al. also provided two datasets associated with the drug acpvédiction problem,
namely, the Musk datasets. The two datasets describeatiffenusk molecules,
with some molecules overlapping between them. These twasdtd are the only
publicly available real-world MI datasets up to now and &eedtandard benchmark

datasets in the Ml domain. We use these datasets throudhstitésis.

The fruit disease prediction problem is another naturag éasMI learning. When
fruits are collected from different orchards, they are naliynstored in the ware-
house in batches, one batch for one orchard. After some 8mg 8 to 5 months,
which is the usual transportation duration), some disepsg®ms are found in
some batches. Since the disease may be epidemic, often tile bdich of fruits
are infected and exhibit similar symptoms. It would be gamgredict which batch
is disease-prone before shipment based on some non-destraeasures taken for
each fruit as soon as it is collected from the orchards. Téleitato predict, given
a new batch of fruits, whether it will be affected by a certdisease or not (some
months later). This is another obvious MI problem. Eachlb&a@n example with
every fruit inside it as an instance. In the training dataateh is labeled disease-
prone (or positive) if the symptoms are observable afterstiipment, otherwise

disease-free (or negative). Here one may also think thelstdrMI assumption can

2



CHAPTER 1. INTRODUCTION

fit because the disease may originate in only one or few fimigsbatch. However,
even if some fruits indeed exhibit some minor symptoms, tagnty of fruits in a

batch may be resistant to the disease, rendering the symgtorthe whole batch
negligible. Hence the batch can be negative even if somesfane affected to a

small degree.

There are also some real-world problems that are not apgareih problems.
However with some proper manipulation, one can model themigsoblems and
generate M| datasets for them. The content-based imagegsiog task is one of
the most popular ones [Maron, 1998; Maron and Lozano-P&8898; Zhang, Gold-
man, Yu and Fritts, 2002], while the stock market predictiask [Maron, 1998;
Maron and Lozano-Pérez, 1998] and computer intrusionigtied task [Ruffo,

2001] are also among them.

The key to modeling content-based image processing as andidlgm is that only
some parts of an image account for the key words that desitriénerefore one
can view each image as an example and small segments of #ge ias instances.
Some measures are taken to describes the pixels of an image. tBere are var-
lous ways of fragmenting an image and at least two ways to uneabke pixels
(using RGB values or using Luminance-Chrominance valdlesje could be many
configurations of the instances. The class label of an imgg#ether its content is
about a certain concept and the task is to predict the classdéven a new image.
When the title of an image is a single simple concept like sathor “waterfall”,
the Ml assumption is believed to be appropriate becauseaosityall part of a posi-
tive image really accounts for its title while no parts of gagve image can account
for the title. However, for more complicated concepts ofteots, it may be nec-
essary to drop this assumption [Weidmann, 2003]. In thisitheve consider this

application and the others in more detail in Chapter 6.



1.2. MOTIVATION AND OBJECTIVES

1.2 Motivation and Objectives

During these years, significant research efforts have beemip Ml learning and
many approaches have been proposed to tackle Ml problerttsolgjh some very
good results have been reported on the Musk datasets [fbttt al., 1997], the
data-generating mechanisms in Ml problems remain unceam for the well-
studied Musk datasets. Thus the MI problem itself may neeckmatbention. More-
over, the reason why some methods perform well and the assmmephey are
based on are usually not explicitly explainkeahich leads to some confusion. Due
to the scarcity of Ml data, convincing tests and comparisgmteeen Ml algorithms
are not possible. Hence itis not clear what kinds of Ml protde particular method
can deal with. Finally, the relationship between differeréthods has not been
studied enough. Recognizing the essence and the connéetimeen the various
methods can sometimes inspire new solutions with well-fiegrtheoretic justifica-
tions. Therefore we believe that the study of Ml learniny stguires stronger and
clearer theoretic interpretation, as well as more pralkctind artificial datasets for

the purpose of evaluation.
Therefore in order to capture the big picture of Ml learniwg,set up the following
three objectives:

1. To establish a general framework for Ml methods

2. To create some new MI methods within this framework thatsarongly jus-

tified and make their assumptions explicit
3. To perform experiments on a collection of real-world data.
We aimed to achieve these objectives to the extent we coulthodgh some ob-

jectives may be too big to fully accomplish, it is hoped ttas thesis improves the

interpretation and understanding of Ml problems.

lwe also noticed that some methods actually explicitly exped assumptions that they never
used.



CHAPTER 1. INTRODUCTION

1.3 Structure of this Thesis

The rest of the thesis is organized in seven chapters asvillo

Chapter 2 provides some detailed background on MI probléhesstandard M
assumption and published solutions. We also introduce ensipective on the prob-
lem and a general framework to analyze current Ml methodscasate new solu-

tions.

Chapter 3 presents a new MI assumption and a generative raocc&iding to the
framework introduced in Chapter 2. Then we propose a heumdt learning
method thatvrapsaround normal single-instance methods. We also show that it

is suitable for practical classification problems.

In Chapter 4, we put forward some more specific generativeatsodnder these
models we formally derive a way tapgradesingle-instance learners to deal with
MI data. The rationale for the upgraded algorithms is armalsgto that of the
corresponding single-instance learners but based on sdnasd3vmptions. As an
example, we upgrade two popular single-instance learniethouls, linear logistic

regression and AdaBoost [Freund and Schapire, 1996], ktetdtl problems.

In Chapter 5, we develop a two-level distribution approactatkle Ml problems.
Again we explicitly state the underlying generative modhet approach assumes.
It turns out that this method, in one of its simplest forms) b& regarded as an
approximate upgrade of the naive Bayes [John and Langlé&g]Ifiethod to the
MI setting.

The methods developed in Chapters 3, 4 and 5 are all incdgubina the solution

framework introduced in Chapter 2.

Chapter 6 elaborates on the three applications mentioreaeamnd the correspond-
ing datasets. It also presents experimental results of ¢éiae methods on these

datasets.



1.3. STRUCTURE OF THIS THESIS

Chapter 7 describes the implementation of all the algomtimthis thesis in more
detail, and also the process that was used for generatingrtifieial data used

throughout this thesis.

Chapter 8 gives a summary and briefly describes future wohks doncludes the

thesis.

There are some more implementation details in the Appeaditkese details are

referenced whenever necessary.



CHAPTER 2. BACKGROUND

Chapter 2

Background

2.1 Multiple Instance Problems

Multiple instance problems first arose in machine learning supervised learning
context [Dietterich et al., 1997]. Thus we briefly review snpsed learning first.

This extends naturally to multiple instance learning.

Supervised learning, more specifically classificationpives “a learning scheme
that takes a set of classified examples from which it is exgekt learn a way of
classifying unseen examples” [Witten and Frank, 1999].idslpy supervised learn-
ing has draining process that takes some examples described by a pre-dedined s
of attributes (or a feature vector), and class labels (@arses), one for each exam-
ple. Attributes can be nominal, ordinal, interval and rfitiétten and Frank, 1999].
The task for training is to infer a relationship, normallypresented as a function,
from the attributes to the class labels. If the class lab@l®iaminal values, the task
is called “classification”. It is called “regression” if tifelass” is numeric. Here
we are only concerned with the classification task. In thesigy we only consider
two-class classification problems. Nonetheless, it iggttborward to apply them
to multi-class problems, e.g. using error-correcting atipdes [Dietterich and

Bakiri, 1995].

Ml learning basically adopts the same setting as singlexnte supervised learning

7



2.1. MULTIPLE INSTANCE PROBLEMS
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Figure 2.1: Data generation for (a) single-instance |legyrand (b) multiple-
instance learning [Dietterich et al., 1997].

described above. It still has examples with attributes dasisdabels; one example
still has only one class label; and the task is still the iefee of the relationship
between attributes and class labels. The only differentbatevery one of the
examples is represented by more than one feature velftare regard one feature
vector as annstanceof an example, normal supervised learning only has one in-
stance per example while Ml learning has multiple instarpmrsexample, hence

named‘Multiple Instancelearning” problem.

The difference can best be depicted graphically as showigur& 2.1 [Dietterich
etal., 1997]. In this figure, the “Object” is an example déssx by some attributes,
the “Result” is the class label and the “Unknown Processhésrelationship. Fig-
ure 2.1(a) depicts the case in normal supervised learninig wh2.1(b) there are
multiple instances in an example. We interpret the “Unknd®¥vacess” in Fig-
ure 2.1(b) as different from that in Figure 2.1(a) becauseriput is different. Note

that the dashed and solid arrows representing the inpuegbribcess in (b) imply

8



CHAPTER 2. BACKGROUND

that only some of the input instances may be useful. Thezeftiile the “Unknown
Process” in (a) is simply a classification problem, the “Uolkn Process” in (b) is
commonly viewed as awo-stepprocess with a first step consisting of a classifica-
tion problem and a second step that is a selection procesd baghe first step and
some assumptiorisHowever, as we shall see, there are methods that do not even
consider the instance selection step and directly infeotiiput from the interac-
tions between the input instances. But the assumption déatsmn process played
such an influential role in the MI learning domain that vitty@very paper in this
area quoted it. We refer to this standard Ml assumption simplthe “MI assump-
tion” throughout this thesis for brevity. Let us briefly rew what this assumption

entails.

Within a two class context, with class labgisositive, negativg, the “MI assump-
tion” states that an example is positive if at least one oirnigance is positive
and negative if all of its instances are negative. Note thigtdassumption is based
on instance-level class labels, thus the “Unknown Proces&igure 2.1(b) has
to consist of two steps: the first step provides the instaratass labels and the
MI assumption is applied to the second step. However, wecedtthat several
MI methods danot actually follow the MI assumption (even though it is genlgral
mentioned), and do not explicitly state which assumptidrey tuse. As a matter
of fact, we believe that this assumption may not be so esddntimake accurate
predictions. What matters is tlttombinationof the model from the first step and
the assumption used in the second step. Given a certain typede! for classifica-
tion, it may be appropriate to explicitly drop the Ml assuiaptand establish other

assumptions in the second step. We will discuss this in @eeti.

The two-step paradigm itself is only one possibility to mictée MI problem. We
noticed that in general, when extending the number of itg®smf an example
from one to many, we may have a potentially very large numlbgrogsibilities

to model the relationship between the set of instances a#id ¢lass label. For

We may like to call the selection process a “parametric mstaselection” process because it is
based on the model built in the classification process.

9



2.2. CURRENT SOLUTIONS

the instances within an example, there mayb®iguity redundancyinteractions

and many more properties to exploit. The two-step model hadvtl assumption
may be suitable to exploit ambiguity [Maron, 1998] but if we &terested in other
properties of the examples, other models and assumptiopdenaore convenient
and appropriate. In practice, we may need strong backgrkooledge to choose
the right way to model the problem a priori. However in mostesawe actually
lack such knowledge. Consequently it is necessary thatyw variety of models

or assumptions in order to come up with an accurate reprs@mbf the data.

2.2 Current Solutions

As mentioned above, there are a variety of methods that hese developed to
tackle MI problems. Almost all of them are special-purpog@athms that are ei-
ther created for the Ml setting or upgraded from the nornmajlstinstance learners.
Unfortunately some of them do not provide sufficient exptenmeof the underlying
assumptions or generative models. Hence the working mesrharof the meth-
ods remain unclear. The algorithms are discussed in a clogical order in the
following section and comments are provided whenever ptesssWe discuss the
algorithms developed before 2000 and those after 2000 atepar We did so be-
cause we observed that the post-2000 methods are basedeyerdibissumptions

than the pre-2000 methods.

2.2.1 1997-2000

The first MI algorithm stems from the pioneering paper by @ethet al.[1997],
which also introduced the aforementioned Musk datasets ARR algorithms [Di-
etterich et al., 1997] modeled the MI problem as a two-steggss: a classifica-
tion process that is applied to every instance and then ats@lgrocess based on

the MI assumption. A single Axis-Parallel hyper-Rectan@@R) is used as the

10



CHAPTER 2. BACKGROUND

pattern to be found in the classification process. As a paramapproactt, the
objective of these methods is to find the parameters thattheg with the Ml as-
sumption, can best explain the class labels of all the exasriplthe training data.
In other words, they look for parameters involved in the fatgfp according to the
observed class label formed in the second step and the adsuewhanism be-
tween the two steps. There are standard algorithms thatwlhan APR (i.e. a
single if-then rule). Unfortunately they do not take the M$samption into account.
Thus a special-purpose algorithm is needed. Several bd&R #lgorithms were
proposed [Dietterich et al., 1997], but interestingly thestomethod for the Musk
data was not among them. The best APR algorithm for the Mutk @ansists of
an iterative process with two steps: the first step expandsPd from a positive
“seed” instance using a back-fitting algorithm, and the sdcstep selects useful
features greedily based on some specifically designed mesasiti turned out that
the APR that best explain the training data does not gezeraéry well. Hence
the objective was changed a little bit to produce the lowesegalization error, and
the kernel density estimation (KDE) was used to refine sonteeparameters —
the boundaries of the hyper-rectangle. These tuning sespdted in an algorithm

called “iterated-discrim APR”, that gave good results omMusk datasets.

It is interesting that Dietterickt al. based all the algorithms on the “APR pattern
and the MI assumption” combination and never considereddp dither of them
even when difficulties were encountered. This might be duthéa background
knowledge that made them believe an APR and the MI assumateappropriate
for the Musk data. However, using KDE may have already intoed a bias into
the parameter estimates, which indicates that it might beerappropriate to model

the Musk datasets in a different way.

In spite of the above observation, the “APR and the MI assionptombination
dominated the early stage of Ml learning. Researchers flmencomputational

learning theory played an active role in Ml learning befoB®@. Some PAC al-

2In this case, the parameters to be found are the useful &saand the bounds of the hyper-
rectangle along these features.
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gorithms were developed to look for the APR that Dietteettal. defined [Long
and Tan, 1998; Blum and Kalai, 1998]. They also proved thdirigsuch an APR
under the MI assumption is actually an NP-complete probl8ome more practi-
cal Ml algorithms were also developed in this domain, sucNBasTINST [Auer,
1997]. PAC learning theory tends to view classification agt@mninistic process.
Instances with the class labels that violate the assumezkpbare usually regarded
as “noisy”. Indeed, coming up with the idea of varying noiates for the exam-
ples and assuming a specific distribution of the number déies per example,
Auer [1997] ended up estimating the examples’ misclassibinarrors and looking
for an APR to minimize this estimated error. Note that sinddLMINST tries to
calculate the expected number of instances per bag thantalthe hypothesis for

the positive class (in this case an APR), it adheres closelye MI assumption.

Another way to view the classification problem is from a ptabstic point of view,
which is prevalently adopted by statisticians and the mebeas in the statistical
learning domain [Hastie, Tibshirani and Friedman, 200Jpng, 2000; McLach-
lan, 1992; Devroye, Gyorfi and Lugosi, 1996]. Normally ohimks of a joint dis-
tribution over the feature vector variableand the class variablé. By calculating
the marginal probability of” conditional onX, Pr (Y| X ), we can predict the prob-
ability of the class label of a test feature vector. Accogdia statistical decision
theory, one should make the prediction based on whethertapility is over 0.5

in a two-class case.

But this is in single-instance supervised learning. In tHedbmain, the first (and
so far the only published) probabilistic model is the DieeBensity (DD) model
proposed by Maron [Maron, 1998; Maron and Lozano-Pére28JLAs will be de-

scribed in more details in Chapter 4 and Chapter 7, DD wasthaawily influenced
by the “APR and the MI assumption” combination and the twepgtrocess. The
DD method actually used the maximum binomial log-likelidouethod, a statisti-
cal paradigm used by many normal single-instance learik@r$olgistic regression,
to search for the parameters in the first step. In particabamodel an APR in

the first step, it used a radial form or a “Gaussian-like” faormodel Pr (Y| .X).

12
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Because of the radial form, the pattern (or decision bow)dzrthe classification
step is an Axis-Parallel hyper-Ellipse (APE) instead of adiyrectanglé. In the
second step, where we assume that we have already obtartedstance’s class
probability, we still need ways to model the process thatd#ecthe class label of
an examplé. There were two ways in DD, namely the noisy-or model and thetmo

likely-cause model, that are both probabilistic ways to eldde MI assumption.

In the single-instance case, the process to decide thelelaslsof each example
(i.e. each instance) can be regarded as a one-stage Beprouokss. Now, since
we have multiple instances in an example, it seems natuextémd it to a multiple-
stage Bernoulli process, with each instance’s (latengsclabel determined by its
class probability in one stageAnd this is exactly the “noisy-or” generative model
in DD. As we shall see, according to [Maritz and Lwin, 1989%eay similar way of
modeling was adopted by some statisticians in as early & [\®4 Mises, 1943].
However we can also model the process as an one-stage Beproakss if we
assume some way to “squeeze” the multiple probabilitie® (oer instance) into
one probability. The most-likely-cause model in DD is ofsthkind. Either way,
we can form a binomial log-likelihood function, either mtdtage or one-stage.
The noisy-or model computes the probability of seeing aldtages negative and
the complement, the probability of seeing at least one spagéive. The most-
likely-cause model picks only one instance’s probabilityan example to form
the binomial log-likelihood. It selects the instance witlain example that has the
highest probability to be positive. Both processes to geres bag’s class label
are model-basédand are compatible with the Ml assumption. By maximizing the
log-likelihood function we can find the parameters involwedhe radial formula-
tion of Pr(Y'|X). This is how DD “recovers” the instance-level class probigbi
Pr(Y, X). With the virtues of the maximum likelihood (ML) method, nely its

consistency and efficiency, one can usually assure theatoess of the solution if

3Note that the function for a rectangle is not differentiableereas that of an ellipse is. But in
the sense of classification decision making, they are venilasi

4The process to decide an example’s class label was callegfgtve model” in DD.

°Note that the normal binomial distribution formul4 p” (1—p)™ " does not apply here because
in this Bernoulli process, the probabilitychanges from stage to stage.

5The processes are based on the radial formulatid¢i| X).
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the underlying assumptions and generative model (destcnib@laron, 1998]) are
true. In the testing phase, the estimated parameters asaie Bernoulli process
used in training provide a class probability for a test exiem@Pnce again we decide

its class label using the probability threshold of 0.5.

Within the most-likely-cause model, the log-likelihooahfition involves thenax(.)
functions and becomes non-differentiable, making it hardntaximize the log-
likelihood function. That is why the EM-DD was proposed [dAlgaand Gold-
man, 2002] some years later. EM-DD uses the EM algorithm [pster, Laird
and Rubin, 1977] to overcome the non-differentiability e toptimization of the
log-likelihood function. Thus in methodology, EM-DD is suty DD.” Nonethe-
less, it can be shown (see Appendix D) by some theoreticdysinand an illus-
trative counter-example that such an attempt is generaiiylare. The theoretic
proof of the convergence of EM-DD is also problematic. Assute EM-DD will
not generally find a maximum likelihood estimate (MLE) of frerameters. Since
DD is an ML method, EM-DD’s solution will not be a correct oriéticannot find
the MLE. EM-DD was found to produce a very good result on theskldata but
this was due to a flawed evaluation involving intensive pa@mtuning on the test
data. Not surprisingly, the EM-DD algorithm did not work tegtthan DD on the
content-based image retrieval task [Zhang, Goldman, Yuraitts, 2002].

2.2.2 2000-Now

The new millennium saw the breaking of the Ml assumption dmehdonment of
APR-like formulations. Virtually no new methods (apartrfra neural network-
based method) created since then use the MI assumptioougtihinterestingly
enough some of them were motivated based on this assumptemte it may not
be fair to compare these methods with the methods develggfeda2000 because
they were based on different assumptions. However, oneszaily compare them

in the sense of verifying which assumptions and models anes mppropriate for

"That is why we list it here and not among the new methods aft@® 2although it was published
in 2002.
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the real-world data.

The new methods created since 2000 were all aimed to updradengle-instance
learners to deal with Ml data. The methods upgraded so fateanision trees [Ruffo,
2001], nearest neighbour [Wang and Zucker, 2000], neutaforks [Ramon and
Raedt, 2000], decision rules [Chevaleyre and Zucker, 280d]support vector ma-
chines (SVM) [Gartner, Flach, Kowalczyk and Smola, 200R]evertheless the
techniques involved in some of these methods are significdifterent from those
used in their single-instance parents. We can categoréze thto “instance-based”
methods and “metadata-based” methods. The term “instaased” denotes that a
method is trying to select some (or all) representativeaimsts from an example and
model these representatives for the example. The seleaxdidd be based on the Ml
assumption or, more often after 2000, not. The term “metablased” means that
a method actually ignores the instances within an exampste#ad it extracts some
meta-data from an example that is no longer related to amngifspmstances. The
metadata-based approaclasnotpossibly adhere to the Ml assumption because
the MI assumption must be associated with instance seteatithin an example.
We briefly describe the post-2000 methods using this caitesgamn, which is also

the backbone of the framework we will discuss in the nextisect

The instance-based approaches are the nearest neightimigtes, the neural net-

work, the decision rule learner, and the SVM (based on a Aindtance kernel).

The MI nearest neighbour algorithms [Wang and Zucker, 2@@@dduces a mea-
sure that gives the distance between two example, namelidabedorff distance.
It basically regards the distance between two examplesediskance between the
representatives within each example (one representastaice per example). The
selection of the representative is based on the maximum winmaim of the dis-
tances between all the instances from the two examples eWlwsl not totally clear
from the paper [Wang and Zucker, 2000] what the so-calleg/&8amn-KNN” does
in the testing phase, the “Citation-KNN” method definitelglates the MI assump-

tion because it decides a test example’s class label by tfweitg&lass of its nearest
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examples. Thus in general it does not classify an examplkedoas whether at least

one of its instance is positive or all of the instances aratieg

On the other hand, MI neural networks [Ramon and Raedt, 2€108¢ly adhered
to the Ml assumption. They adopt the same two-step framewsekl in the APR
method [Dietterich et al., 1997] as described above. As daamaf fact, one may
recognize that searching for parameters in the aforemesdidwo-step process is
well suited for a two-level neural network architecture. uk# network is used
to learn a pattern in the classification step, and a modaebasstance selection
method is applied in the second step. In the first step thelfashpatterns is not
explicitly specified but implicitly defined according to cptaxity of the network
constructed. In the second step, like the most-likely-eausdel in DD [Maron,
1998], the neural network picks up the instance with the ésgloutput value in an
example® Backpropagation is used to search for the parameter valttesrefore
it can be said that this method is based on the MI assumptiaieeld, the reported
results obtained seemed to be very similar to those of thelB@ithm on the Musk

datasets.

NaiveRipperMI [Chevaleyre and Zucker, 2001] is a modificatof the rule learner
RIPPER [Cohen, 1995] with a different counting method. éastof counting how
many instances are covered by a hypothesis, it counts how examples are
covered. If at least one instance of an example is coveredwtiole example is
counted. Because positive and negative examples aredrdeesame way, this
violates the MI assumption. In fact this method could findhlgper-rectangle that
covers all negative examples but no positive ones. SinceeRgiperMI [Cheva-

leyre and Zucker, 2001] emphasized so much on the M| assamptie assunte

that it does what the MI assumption states in the testinggola@. However, this

would mean that it is not consistent with what happens inrieihg procedure.

The SVM with the Ml kernel [Gartner et al., 2002] also vi@athe Ml assumption.

The Ml kernel simply replaces the standard dot product bgtime over all pairwise

8Since the output value is [0, 1], we can regard it as the probability to be positive.
9There is no information on how a test example is classifie€melaleyre and Zucker, 2001].
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dot products between instances from two examples. This eatpmbined with
another non-linear kernel, e.g. RBF kernel. This effetyiassumes that the class
label of an example is the true class label of all the instaim=de it, and attempts to
search for the hyperplane that can separate all (or md$tbé training examples in
an extended feature space (because of the RBF kernel fapc8mce this is done
the same way for both positive and negative examples, thessliraption is not
used in this method at all. Indeed, we observe that some migtincluding SVMs,
that do not model the probabiliti’r (Y |X') directly, will find the Ml assumption
very hard to apply, if not impossible. It would be very coniam for those methods

to have other assumptions associated with the measuretteay to estimate.

The metadata-based approach is implemented in the Ml dadrgie learner RELIC
and the SVM based on a polynomial minimax kernel. This apgr@xtracts some
metadata from each example, and regards such metadata asatiaeteristics of
the examples. When a new example is seen, we can directlycpredclass la-
bel with regards to the metadata without knowing the classl$aof the instances.
Therefore each instance is not important in this approachat\whatters is the un-
derlying properties of the instances. Hence we cannot tattlvinstance is positive
or negative because an example’s class label is associdtethe properties that
are presented by the attribute values of all the instancescéithis approach cannot

possibly use the MI assumption.

The MI decision tree learner RELIC [Ruffo, 2001] is of this\éli In each node in
the tree, RELIC partitions the examples according to thedoehg method:

e For a nominal attribute witl® values, say, wherer = 1,2, ... R, it assigns
an example to the!” subset if there is at least one instance in the example

whose value of this attribute .

e For a numeric attribute, and given a threshé)dhere will be two subsets
to be chosen: the subset less tifaand that greater than it. It assigns an

example in either subset based on two types of tests. Theyfrstassigns

1%The regularization parameter C in SVM will tolerate somegegiin the training data.
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an example into the subset less tlahthe minimum of this attribute values
of all the instances within the example is less than or equéldnd other-
wise to the subset greater thénFor the second type, it assigns an example
into the subset less thahif the maximum of this attribute values of all the
instances within the example is less than or equdl &md otherwise to the

subset greater thah

e Then it seeks the best according the entropy measure, same way as the

single-instance tree learner C4.5 [Quinlan, 1993]. No& thr numeric at-
tributes, it looks for the best of the two types of tests stangously so that

only one type of tests and oewill be selected for each numeric attribute.

The way that RELIC assigns examples to subsets means thaquivalent to ex-
tracting some metadata, namely minimax values, from eaample and applying
the single-instance learner C4.5 to the transformed datace RELIC examines
the attribute values along each dimension individuallghsmetadata of an exam-
ple does not correspond to any specific instance insidethtoadih it is possible,
but very unlikely, to match the instances to the minimax galaf all the attributes
simultaneously. Moreover, in the testing phase, we carctliyréell an example’s
class label using the tree without getting the class lalfeiseoinstances. Thus the

MI assumption obviously does not apply.

The SVM with a polynomial minimax kernel explicitly transfo the original fea-
ture space to a new feature space where there are twice tHeenofattributes as in
the original one. For each attribute in the original feagpace, two new attributes
are created in the transformed space: “minimal value” analXimal value”. It then
maps each example in the original feature space into amicsta the new space
by finding the minimum and maximum value of each attributetli@ instances in
that example. Clearly some information is lost during tlesformation and this is
significantly different from the two-step paradigm usedDxeftterich et al., 1997].
The MI assumption cannot possibly apply. Note this is eifety the same as what
RELIC does.
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The assumption of the metadata approach is that the clagsificof the examples
is only related to the metadata (in this case the minimaxeglof the examples,
and that the transformation does not lose (or lose litti®rmation in terms of clas-
sification. The convenience of the approach is that it tamns$ the multi-instance
problem to the common mono-instance one. In general, thadatt approach en-
ables us to transform the original feature space to othéureapaces that facilitate
the single-instance learning. The other feature spacescanmecessarily the result
of simple metadata extracted from the examples. They coelddrs instance, a
model space where we build a model (either a classificatiotieinar a clustering
model) for examples and transform each example into onannstaccording to,
say, the count of its instances that can be explained by tlieemblethods similar
to this are actively being researched [Weidmann, 2003].vEtdity of such trans-
formations really depends on the background knowledgedflelieves that inter-
actions or relationships between instances account fesifieation of an example,
then this approach may outperform methods that do not hasle asophisticated
view of the problem. In this thesis, we refer to all the methduht transform the
original feature space to another feature space as the datetdbased approach”,

no matter how complicated the extracted metadata may be.

In summary, the methods developed in the earlier stage oédthing usually have
an APR-like formulation and hold the MI assumption wherdesrhethods devel-
oped later on often implicitly drop the Ml assumption andla@sed on other types

of models.

2.3 A New Framework

As mentioned in the previous section, we can categorizé@tirrent Ml solutions
into a simple framework. As for the methods before 2000, guge obvious that
they belong to the “instance-based approaches” becaugsttietly adhered to the
MI assumption, which implies that one implicitly assumeslass label for each

instance. We now present a hierarchical framework givinmgveaw of Ml learning.
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MI learning
Instancﬁata—based
Approaches Approaches
The M Other Model-oriented Data-oriented
Assumption Assumptions /\

Fixed Randon
Metadata Metadatz:

Figure 2.2: A framework for MI Learning.

This is shown in Figure 2.2.

Itis now almost a convention that the MI assumption is asgediwith Ml learning.

In this thesis, we generalize the definition of multiple argte learning and allow
the algorithm developers to plug in whatever assumptiop batieve reasonable.
Thus “MlI learning” in our framework is based on generalizthg Ml assumption.

As already discussed we categorize MI methods into two ocaiteg) instance-base
approaches and metadata-based approaches. We have alnehdied the current
solutions based on this distinction, and we will create nmethods in this thesis
that belong to either one of the two categories. We can simxthe two categories

further.

In the instance-based approach, one normally estimates parameters of a func-
tion mapping the feature variabl€ to the class variabl®. This function is then
used to form a prediction at the bag level. All current inst&based methods for
MI learning amount to estimating the parameters of the fondhat enable them
to predict the class label of unseen examples. Some of thedeods are based on
the MI assumption but some are not, which results in two satbgories. We will
also develop some more methods within the sub-categonatbatot based on the
MI assumptionWe will explicitly state our assumptions and present theegative

models that the methods are based on.

The metadata-based approach has already been discustedasttsection. The

metadata could either be directly extracted from the dataafied “data-oriented”
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in the framework shown in Figure 2.2, or from some modelslonlthe data, called

“model-oriented”.

The two-level classification method [Weidmann, Frank arehRhger, 2003; Wei-
dmann, 2003] is the only published approach that is “modielrted”. It builds a
first-level model using a single-instance (either supexd/igr unsupervised) learner
to describe the potential patterns in the whole instanceespa the metadata. It
then applies a second-level learner to determine the madadoon the extracted
patterns. A second-level learner is a single-instanceefsuged) learner. Thus it
effectively transforms the original instance space intewa (‘model-oriented”) in-

stance space that single-instance learners can be applied t

For example, we can apply a clustering algorithm — at the kgl — to the
original instances and build a clustering model from thég{oal) instance space.
Then we can construct a new single-instance dataset, wity attribute corre-
sponding to one cluster extracted, and each instance porrdsg to one example
in the original data. The new instances’ attribute valueglae number of instances
of the corresponding example that fall into one cluster.afynwe apply another
single-instance learner, say a decision tree, to the neavtddiuild a second-level
model. At testing time, the first-level model is applied te tast example to extract
the metadata (and generate a new instance), and the sexs@htehrner to classify
the test example according to the model built on the (trgihmetadata. Of course
there are many combinations of the first and second-leveldes, and they are not
further described in this thesis. Interested readers dhvetar to [Weidmann, 2003]

for more detail.

In the “data-oriented” sub-category, we can further speeanto “fixed metadata”
and “random metadata” sub-categories. All of the currertaneta-based methods
(i.,e. RELIC and SVM based on a minimax kernel) are data-teeknin addition,

the metadata extracted is thought to be fixed and directlg tsdind the func-
tion mapping the metadata . However we can regard the metadata as random

and governed by some distributions, which results in anathb-category. Here
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we assume the data within each example is random and follovestain distri-
bution. Thus we can extract some low-order sufficient dtasito summarize the
data and regard the statistics as the metadata. In thistbaseetadata (statistics)
have a sampling distribution parameterized by some pasamédf we further think
of these parameters as governed by some distribution, ttedate is necessarily
random, not only wandering around the parameters withingalod from bag to
bag as well. This is the thinking behind our new two-levelrtsition approach
discussed in Chapter 5. It turns out that when assuming erdignce between at-
tributes, it constitutes aapproximateway to upgrade the naive Bayes method to
deal with MI data, which has not been tried in the MI learnirgnéin. We also
discovered the relationship between this method and thériealBayes methods

in Statistics [Maritz and Lwin, 1989].

2.4 Methodology

When we generalize the assumptions and approaches of Mirgawe find much
flexibility within our framework described above. Nonettsd, we still like to re-
strict our methods to some scope so that we may easily finddheal justifications
for them. We propose that it would be desirable for an Ml athan to have the fol-

lowing three properties:

1. The assumptions and generative models that the methadasllon are clearly
explained. Because of the richness of the MI setting, thetddcbe many
(essentially infinitely many) mechanisms that generate &Madit is very un-
likely that one method can deal with all of them. A method felse based on
some assumptions. Thus it is important to state the assangpithe method

is based on and their feasibility.

2. The method should be consistent in training and testirgge Rconsistency”

here means that a method should make a prediction for a nempdan
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the same way as it builds a model on the training datkor example, if a
method tries to build a model at the instance level and isbasea certain
assumption other than the MI assumption, then it should@isdict the class

label of a test example using that assumption.

3. When the number of instances within each example redacesd, the Ml
method degenerates into one of the popular single-insteraraing algo-
rithms. Although this is not such an important property cangg to the
former two, it is useful when we upgrade a single-instanegnler, which

is theoretically well founded, to deal with MI data.

Even though not all current Ml methods hold the above threpgties, we aim to
achieve them in this project. In order to do so we develop dleving methodol-

ogy for this thesis.

1. We explicitly drop the MI assumption but state the corogsjng new as-
sumptions whenever new methods are created. The undexigngrative
model of each new method will be explicitly provided so thia¢ onay clearly

understand what kind of problem the methods can solve.

2. We adopt a statistical decision theoretic point of vidwatts, we always as-
sume a joint probability distribution over the feature ahie X (or other new
variables introduced for Ml learning) and the class vaegab| Pr(X,Y),
as assumed by most of single-instance learning algoritMifgsbase all our
modeling purely on this distribution. Although we can endwifh different
methods by factorizing the joint distribution differentiyne root of them is

the same.

3. As the standard single-instance learners are mostlyjusgified and empir-
ically verified, we are interested in creating new methodsted to them.
Even if we develop a new method that is in totally differemtext, we try to
show the relationship between this method and some singtasice learning

algorithms whenever possible.

UThis is different from the notation of consistency in a stiatal context.
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2.5 Some Notation and Terminology

To avoid confusion, this section explicitly lists the conmmmotation that will be
used in this thesis, and some terminology. Special notatmaiterminology will be

used together with proper explanations.

An “example” in the Ml domain is also called a “bag” or an “exglar” and we
will use all three terms in this thesis. Likewise an “instahis sometimes called

a “feature vector” or a "point” in the feature space. Evergtance is regarded as
a value of the “feature variableX whereas its class label is a value of the class
variableY. Y is also called the “response variable” and “group variabl&h
“attribute” will also be called a “feature” or a “dimensionThere are many names
for the algorithms in normal single-instance (or mono-anse) supervised learning
like “propositional learner”, or “Attribute-Value (AV) rner”. We will sometimes

use them without distinction.

There is also some notation related to the joint probabdisgribution Pr(X,Y).

In classification problems we are more concerned with thditiomal (or marginal)
probability of Y, Pr(Y|X). We also call it the “posterior probability” and/or the
point-conditional probability because it is conditional @ certain point. But we
also have the marginal probability &f, Pr(X|Y") which we also call the group-
conditional probability. Of course we caltr(X) and Pr(Y") the “prior probabil-
ities” of X andY respectively. Note wheX is numeric, we abuse the symbol
“Pr(.)” because it is a density function that we refer to. Howevemilenot dis-

tinguish this difference in the notation.

24



CHAPTER 3. AHEURISTIC SOLUTION FOR MULTIPLE INSTANCE
PROBLEMS

Chapter 3
A Heuristic Solution for Multiple

Instance Problems

This chapter introduces new assumptions for Ml learning,\ae discard the stan-
dard MI assumption. We regard the class label of a bag as &pydpat is related
to all the instances within that bag. We call this new assionpthe collective
assumption” because the class label of a bag is now a coltgatoperty of all the
corresponding instances. Why can the collective assumpggeasonable for some
practical problems like drug activity prediction? Becatlse features variables (in
this case measuring the conformations, or shapes, of a me)easually cannot
absolutely explain the response variables (a moleculgigit®g, it is appropriate
to model a probabilistic mechanism to decide the class labaldata point in the
instance space. The collective assumption means thatobalpitistic mechanisms
of the instances within a bag are intrinsically relatedh@ligh the relationship is
unknown to us. Consider the drug activity prediction prafil@ molecule’s confor-
mations are not arbitrary in the instance space but confimadre certain areas.
Thus if we assume that the mechanism determining the clas$ ¢ a molecule
Is similar to the mechanism determining the (latent) clabgls of all (or most) of
the molecule’s conformations, we may better explain theamdk’s activity. Even
if the activity of a molecule were truly determined by onlyeospecific shape (or

a very limited number of shapes) in the instance space, itdMoave a very small
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probability of being sampled. Together with some measuneeors, the samples
of a molecule are very likely to wander around the “true” sé(@p Therefore it is
more robust to model the collective class properties of tiséances within a bag
rather than that of some specific instance. We believe thisésfor many practical

MI datasets, including the musk drug activity datasets.

The “collective assumption” is a broad concept and thereaatflexibility under
this assumption. In Section 3.1 we present several posgitiens to model exact
generative models based on this assumption. We furthatriite it with an artifi-
cial dataset generated by one exact generative model in8&cR. This generative
model is strongly related to those used in Chapters 4 and factnall the meth-
ods developed in this thesis are based on some form of thectio# assumption.
Section 3.3 presents a heuristic wrapper method for Ml legrhat is based on the
collective assumption [Frank and Xu, 2003]. It will be shotlat in some cases it
can perform classification pretty well even though it introés some bias into the
probability estimation. We interpret and analyze some ertigs of the heuristic in
Section 3.4. Note that some of the material in this chapteride®n published in
[Frank and Xu, 2003].

3.1 Assumptions

Under the collective assumption, we have several optiobsild an exact genera-
tive model. We have to decide which options to take in ordeyeioerate a specific
model. We found that answering the following question iphdlin making the

decision:

1. How to define the class label property of an instance and of a logg?
Suppose we use a function of the class variahl€'(Y|.) to denote the class
label property, then what is the exact form @fY'|.)? In single-instance
statistical learning, we usually modél(Y'|X') to be related to the poste-

rior probability functionPr(Y'|X): we either usePr (Y| X) itself or its logit
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Pr(Y=1|X)
Pr(Y=0|X)

model it at the bag level, i.e. we can build a functiorC§fy"| B) whereB are

the bags. Thus we can also hake(Y'|B) = Pr(Y|X;, X,,---, X,,) and

log PrO7=UB) o PriY=11X1,Xa, X,
& Priv=0{B) — 'O8 Pr(v=0[X1,X2,,Xn

transform, the log-odds functidog . In Ml learning, we can also

; where a bag3 = b hasn instances
x1, X9, -, T,. NoOte that in this thesis we restrict ourselves to the samm fo
of the property for instances and bags. For example, if weahBd(Y| X)
for the instances, we also modet (Y| B) for bags instead of the log-odds.

We will show the reason for doing so in the answer to the negstjon.

2. How to view the members of a bag and what is the relationship deveen
their class label properties and that of the bag?
Almost all the current Ml methods regard the members (irctapof a bag as
a finite number of fixed and unrelated elements. However we halifferent
point of view. We think of each bag as a population, which iatowous
and generate instances in the instance space in a densermavinat we
have in the data for each bag are some samples randomly shfnmie its
population. This point of view actually relates all the srstes to each other
given a bagthat is, they are all dominated by the specific distributbthe
population of that bag. Every bag is unbounded, i.e., itegrayer the whole
instance space. However its distribution may be boundedits instances
may only be possibly located in a small region of the instasgace: If
one really thinks of the bags’ elements as random selected the whole
instance space, we can still fit this into our thinking by modgeach bag
as with a uniform distribution. Note that the distributioofsdifferent bags
are different from each other and bags may overlap. Thus gaich in the
instance space (that is, an instance) will have different density giverfeti
ent bags. Therefore, unlike in normal single-instanceniegrthat assumes
Pr(X), we havePr(X |B) instead. We still regard each point in the instance
space as having its own class label (that could be deterrbyedher a deter-
ministic or a probabilistic process) but thisusobservablén the data. What

is observable is the class label of a bag that is determined tise instances’

lIn fact if the bags are bounded, we can always think of thetrithutions as bounded ones.
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(latent) class label properties.

Now how to decide the class label of a bag given those of itaimtes? There
are two options here: the population version and the samgton. Since
we take the above perspective for a bag and we have alreadyddfiie class

label propertyC'(Y

.), one application of the collective assumption is to take
the expectedoroperty of the population of each bag as the class propérty o

that bag. Given a balg we calculate
CVE) = Explc VX)) = [ COipriapyds GD)
X

We simply regard the bags’ class label property ascthaditional expecta-
tion of the class property of all the instances giverThis is the population
version for determining the class label of a B@g|b). It is not related to
any individual instance, but we must knd#r(z|b) exactly to calculate the
integral. However, there is also a sample versio@'@f |b). If givenb we can
samplen, instances from the instance space (in other words, there,ane
stances i), thenC'(Y'|b) = n%, Yo, C(Y|z;). Since instances are drawn via
random sampling, we can give each instance an equal weightaloulate
the weighted average no matter what the distribuftoriz|b) is. The pop-
ulation and the sample version are approximately the sanes wie in-bag
sample size is large, but there may be large difference it#mple size is
small. For example, if only one instance is sampled per baghis case the
sample version reduces to the single-instance case beaausstance’s (in
this case also a bag’s) class label is determined by its caas ¢hbel property.
However, the population version will still determine thstance’s class label
by the overall class property of its bag. Consequently it imaless desirable
because it does not degenerate naturally to the singlanosicase.

Itis now clear why we choose consistent formulation§'¢Y|.) for both bags
and instances — because we regafd”| B) simply as the expected value of
C(Y|X) conditional on the existence of a béy= b. While there may be

other applications of the collective assumption, in thessth we take this per-
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spective only. There are still two options, as discussede@ldor generating
MI data under the collective assumption: the sample veramahthe popula-
tion version. In this thesis we use the sample version becaligs elegant

degradation into single-instance supervised learning.

3. How to model Pr(X|B) ?
Whether using the population or the sample version, we nedahow the
conditional density of the instanceBy (X |B) because we need to generate
the instances of each bag from this distribution. There @ tavo possibil-
ities to modelPr(X|B): one is to model it indirectly using’r(X) and the
other is to modePr (X |B) directly.
The first option still assumes the existencdf X ), thus we are now in the
same framework as normal single-instance learning wherassame both
Pr(X)andPr(Y|X). What is new is that we introduce a new variabléo
denote the bags and defif& (X |B) in terms of Pr(X). In particular, we
assume the distribution of each bBg(X|B) is bounded and only occupies
a limited area in the instance space. As a result we modetdhditional

densityof the feature variabl& given a bagB = b as

__Pr(@) it e b,
Pr(z|p) = { feer"r@ 0 (3.2)

0 otherwise

Note that we abuse the notatidfr(.) here because we really have a den-
sity function of X' instead of probability ifX is numeric. To put it another
way, the distribution of each bag is simply the normalizestance distribu-

tion Pr(X), restricted to the corresponding range. In both the pojomand

the sample version of the generative model, we need Equaiiiio generate
instances for one bag. In the population version we also it¢edreate the
class label of a baly whereas in the sample version we do not need it because
the class label of a bag is not related to a specific form of émesitly function

of its instances.

The second option for modelinBr (X |B) does not assume the existence of
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Pr(X). Indeed if all we need i$r(X|B), why should we still rely on the
single-instance statistical learning paradigm? Givengabbave can directly
model Pr(z|b) as some distribution, say a Gaussian, parameterized by some
parameters. Now a bag is basically described by its parasie¢éeause once
the parameters of a bag are decided, that bag has been forimecs. we
need some mechanism to generate the parameters of the bagscanwon-
veniently regard the parameters themselves as distrilaisalding to some
“hyper-distribution”. The data generation process is dyadbe same as in
the first option, for both the population version and the damprsion. Note
that if we modelPr (X |B) directly, Pr(X) may or may not exist, depending
on the specific distribution involved.

The above two options may coincide sometimes, as will be showsec-
tion 3.2, but in general they generate different data. Nio&t although the
conditional density functio®r (X' |B) must be specified in order to generate
instances for each bag, it is not important for the instdmesed learning al-
gorithms that will be discussed (particularly in Chapteibérause they are
based on the sample version of the generative model, in whidlX | B) is
not relevant to the class probability of the bd@g Y| B). However, in Chap-
ter 5, we pay much attention #r (X | B) as we develop a method that models

it in a group-conditional manner (i.e. conditional Bi).

Now that we have answered the above questions, we are algedifyshow to gen-
erate a bag of instances and how to generate the class lahat bfg. Thus it is the
time to generate an Ml dataset based on an exact generatiel ,nomder the col-
lective assumption. In the following section, we illusedihe above specifications
via an artificial dataset, specifying the answers of the almyestion as follows.
First, the class label property(Y) is the posterior probability at both the instance
and the bag level. In other words, we model(Y|B) and Pr(Y'|X). Second, we
think of each bag as a hyper-rectangle in the instance spacassume the center
(i.e., the middle-point of the hyper-rectangle) of each isagniformly distributed.

Thus the bags are bounded and the instances for each bagaane flom within
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Figure 3.1: An artificial dataset with 20 bags.

the corresponding hyper-rectangle. We maoBle{Y | X) as a linear logistic model,
ie. Pr(Y =11X) = m, and based on the sample version of the generative
model,Pr(Y|B) = 37" | Pr(Y|X;), wheren is the number of instances in a bag.
Finally we take the first option for the last question and assithe existence of
Pr(X), which we model as a uniform distribution. Thus the condisicdensity in

Equation 3.2 is simply a uniform distribution within the reqg that a bag occupies.

3.2 An Artificial Example Domain

In this section, we consider an artificial domain with twaibtites. More specif-
ically, we created bags of instances by defining rectangelgions and sampling
instances from within each region. First, we generateddinates for the centroids
of the rectangles according to a uniform distribution witiaage of —5, 5] for each

of the two dimensions. The size of a rectangle in each dimensas chosen from
2 to 6 with equal probability (i.e. following a uniform digtution). Each rectangle
was used to create a bag of instances. To this end we sampieddances from

within a rectangle according to a uniform distribution. Maue ofn was chosen
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from 1 to 20 with equal probability. Note that although we pidihe first option to
model Pr(X|B) from the previous section, it is identical to the secondaptf we
assume a different uniform distribution for each bag, arad tihe parameters of the

uniform distributions are dominated by another (hyperijarm distribution.

It remains the question how to generate the class label fagaAs mentioned be-
fore, our generative model assumes that the class pratyatfik bag is the average
class probability of the instances within it, and this is twva used to generate the
class labels for the bags. The instance-level class priiyalvas defined by the

following linear logistic model:

1

Pr(y = 1|z, z9) = 1 + e—321-325

Figure 3.1 shows a dataset with 20 bags that was generatedlaggto this model.
The black line in the middle is the instance-level decisiourxdary (i.e. where
Pr(y = 1|x1,22) = 0.5) and the sub-space on the right side has instances with
higher probability to be positive. A rectangle indicates thgion used to sample
points for the corresponding bag (and a dot indicates it¢rael). The top-left
corner of each rectangle shows the bag index, followed bytimeber of instances
in the bag. Bags in gray belong to class “negative” and badddok to class
“positive”. In this plot we mask the class labels of the imstas with the class of
the corresponding bag because only the bags’ class laleetdbaervable. Note that
bags can be on the “wrong” side of the instance-level detibmundary because
each bag was labeled by flipping a coin based on the average miabability of

the instances in it.

Note that the bag-level decision boundary is not explicgyined but the instance-
level one is. However, if the number of instances in each lo&g tp infinity (i.e. ba-
sically working with the population version), then the Hagel decision boundary

is defined. Since the instance-level decision boundary nsnsgtric w.r.t. every
rectangle and so i®r(X|B), the bag-level decision boundary is defined in terms

of the centroid of each bag and is the same as the instaneksies. Thus the best
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choice to classify a bag when given its entire populationng$y to predict based
on which side of the lin&z; + 3z, = 0 the bag’s centroid is on. There is also
another interesting property in this asymptotic situatiSmce we defin€' (Y| X)
asPr(Y|X), we can plug this into the right-hand side of Equation 3.1acwdate

the conditional expectation d@fr(Y | X) given a bag,
ExpPr(Y]X)] = / Pr(Y|z) Pr(z|b) dz
X
Assuming conditional independence betwéeandb given ax,

- /XPT(Y|x, b)Pr(z[b) dz

:/Pr(x,Y|b) dz
b

= Pr(Y|h)

Thus we marginalizeX in the joint distributionPr(X,Y’) conditional on the ex-
istence ofb and get the (conditional) prior probability: the class @bitity of b,
Pr(Y1b).

Chapter 4 presents an exact instance-based learningthlgdor this problem. It
is quite obvious that the exact solution is instance-baseduse only the instance-
level probabilities are defined. However, this artificiablplem can also be tackled
with other methods. We may regaftl(X |B) for each bag as a uniform distri-
bution whose parameters are dominated by some hyperbdistn, for example,
two Gaussian distributions with different mean but the saar@nce, one for each
class. Since, as mentioned before, asymptotically theldasd-decision boundary
is linear, one can imagine that this type of model is not bathis generative model
in terms of classification performance. In particular, ifivedel one Gaussian cen-
tered in the right-top corner in Figure 3.1 and another Gaunsgs the left-bottom
corner, it would be quite a good approximation of the trueegative model. This

thinking underlies the approach presented in Chapter 5.
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Musk 1 Musk 2
Bagging with Discretized PART 90.22.11 87.16-1.42
RBF Support Vector Machine 89.43.15 87.162.14
Bagging with Discretized C4.5 90.92.51 85.0a-2.74
AdaBoost.M1 with Discretized C4.5 89.24.66 85.4%2.73
AdaBoost.M1 with Discretized PART 89.#2.30 83.7&1.81
Discretized PART 84.782.51 87.06-2.16
Discretized C4.5 85.482.95 85.69-1.86

Table 3.1: The best accuracies (and standard deviatiohgvad by the wrapper
method on the Musk datasets (10 runs of stratified 10-foldzk@lidation).

In the remainder of this chapter, we analyze a heuristic atktlased on the above
generative model. Although it does not find an exact soluyitgrerforms very well
on the classification task based on this generative mode.nméthod is very sim-
ple but the empirical performance on the Musk benchmarkseé#tas surprisingly
good, which may be due to the similarity between these dstasel our generative

model.

3.3 The Wrapper Heuristic

In this section, we briefly summarize results for a simpleppex that, in conjunc-
tion with appropriate single-instance learning algorithrachieves high accuracy
on the Musk benchmark datasets [Frank and Xu, 2003]. Cemsigiith the collec-
tive assumption, this method assigns every instance tlss tdhel of the bag that it
pertains to, so that a single-instance learner can leam iftoMoreover, it has two
special properties: (1) at training time, instances argyasd a weight inversely
proportional to the size of the bag that they belong to so ¢éaah bag receives
equal weights, and (2) at prediction time, the class prdibabor a bag is estimated
by averaging the class probabilities assigned to the iddaliinstances in the bag.
This method does not require any modification of the undegisingle-instance
learner as long as it generates class probability estinaasan deal with instance

weights.
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Table 3.1 shows the results of the wrapper method on the mutskty predic-
tion problem for some popular single-instance learnerdempnted in the WEKA
workbench [Witten and Frank, 1999]All estimates were obtained using stratified
10-fold cross-validation (CV) repeated 10 times. The cnadglation runs were

performed at the bag level.

Bagging [Breiman, 1996] and AdaBoost.M1 [Freund and SaleafB96] are stan-
dard single-instance ensemble methods. PART [Frank an@Wit998] and C4.5
[Quinlan, 1993] learn decision lists and decision treepaesvely. The “RBF Sup-
port Vector Machine” is a support vector machine with a Geuskernel using the
sequential minimal optimization algorithm [Platt, 1998[he “discretized” ver-
sions are the same algorithms run on discretized training dsing equal-width
discretization [Frank and Witten, 1999]. For more detaiistese algorithms and
how they can deal with weights and generate probabilityreges, please check
[Frank and Xu, 2003]. It is suffice to say that all these ressaie competitive with

the best results achieved by other MI methods, as shown ipt€hé.

3.4 Interpretation

Recall the wrapper method has two key features: (1) the wagsigns instance
weights and class labels at training time, and (2) the pntibaveraging of a bag
at prediction time. We provide some explanation for why thekes sense in the

following.

The wrapper method is an instance-based method and like wibinods in this
category, it also tries to recover the instance-level podity It is well known that
many popular propositional learners aim to the minimizegeeted loss function
overX andY, thatis, Ex Ey|x(Loss(3,Y)) wheref is the parameter to be esti-
mated and usually involved in the probability functiBn (Y| X'). As matter of fact,

all the single-instance learning schemes in Table 3.1 atémthis category. Now,

2Some of the properties of the Musk datasets are summariZiabie 4.2 in Chapter 4.
3PART and C4.5 use an entropy-based criterion to select th@alsplit point in a certain region.
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Figure 3.2: Parameter estimation of Figure 3.3: Test errors on the ar-

the wrapper method. tificial data of the wrapper method
trained on masked and unmasked
data.

given a concrete bab of sizen, as defined by Equation 3.2, the sample version
of Pr(x|b) is 1/n for each instance in the bag and zero otherwise. Therefere th
conditional expectation of the loss function given the pree of a bag is simply
ExpEy xp(Loss(3,Y)) = ExppEy x(Loss(3,Y)) assuming conditional indepen-
dence ofY” onb given X. Plug in givenPr(z|b), the conditional expected loss is
simply >, LBy, 2, (Loss(B,y;)) wherez; andy; is the attribute vector and class
label of thej*" instances irb respectively. We want to minimize this expected loss

over all the bags, thus the final expected loss to be minimged
Eg|Ex|s[Ey|x,5(Loss(8,Y)) Z Z Ey”w” (Loss(B,yi))  (3.3)

whereN is the number of bags and the number of instances in bagThus the
weight 1/n of each instance serves as’r(z|b) and the bags’ weight/N is a
constant outside the sum over all the bags and does not #féentinimization pro-
cess of the expected loss. Nonetheless, Equation 3.3 cen Inevealized because
yi;, 1.e. the class label of each instancenet observable. If it were observable,
this formulation could be used to find the tr@e However, under the collective
assumption, if we assign the bag’s class lajpe¢b each of its instances, it may not
be a bad approximation ggsis related to all they;;. This is exactly what the wrap-
per method does at training time. The approximation makesvtiapper method a

heuristic because it necessarily introduces bias into ithlegbility estimates.

This is to minimize the cross-entropy or deviance loss irea@iwise fashion.
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This can be illustrated by running (weighted) linear logisegression on the ar-
tificial data described in Section 3.2. As shown in Figure agymptotically the
estimates differ from the true parameters with a multipiieaconstant. It seems
that the objective to recover the instance-level probhilinction exactly cannot
be achieved with this method. Nevertheless what we reallyt vgaclassification
performance and it is well-known that unbiased class pritibabstimates are not
necessary to obtain accurate classifications. In this caseg the bias is a multi-
plicative constant for all the parameters, the corggstision boundaryn the in-
stance level can be recovered. As discussed in Sectionsy@yaotically the bag-
level decision boundary is the same as the instance-lewel ©hus given enough
instances (normally 10 to 20) within a bag, the classificatan be very accurate
because the classification decision is always correctlyemadis is shown in Fig-
ure 3.3. We generate a hold-out dataset of 10000 indepetetdritags using the
same generative model described in Section 3.2. Then wéhaserapper method
trained on both the “masked” data, i.g; is not given andy; is assigned to every
instance instead, and the “unmasked” data, §,¢is given for every instance. In
the latter case linear logistic regression converges tertiesfunction (convergence
not shown in this thesis). At prediction time, we use the piolity average of each
bag, which is reasonable in this case because it is assuntieel generative model.
Figure 3.3 shows that assigning a bag’s class labels tostances does not harm
classification performance. In fact, the wrapper methadéchon the masked data
predicts equally well as the one trained on the unmaskedidatg 60 training bags.
It achieves the best possible accuracy (shown as the boit@)when trained on

more than 120 training bags.

The above observations are obtained in a specific artifieising, which is much

simpler than real-world problems. In general, the bias n@tybe a constant for all
the parameters so even the true decision boundary cannetbeered. However,
practical generative models may have factors that restacdome extent, the bias

or the harmful effect of the bias on the classification. Faregle, we observed

4The reason the intercept estimate seems unbiased is thmtithealue is 0 and with a multi-
plicative bias, the estimate is still 0.
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from the artificial data that the less area each bag occupibgiinstance space, the
less bias the wrapper method has. When the ranges of bagséaoaall, the bias
is literally negligible. Hence if there are some restrinBmn the range of a bag in
the instance space, the wrapper method can work well. Inde=dbserved that on
the Musk datasets, the in-bag variances are very small fat ofdhe bags, which
may explain the feasibility of the wrapper method. Intwetiy this heuristic will
work well if the true class probabilitieBr (Y| X') are “similar” for all the instances
in a bag (under the above generative model) because we ubadbeclass labels
to approximate those of the corresponding instances. Tdreren general, as long
as this condition is approximately correct, no matter by wwhaans, the wrapper

method can work.

Finally what the wrapper method does at prediction timeasoaable assuming the
above generative model. Nevertheless, it seems that thgperanethod does not
use the assumption of a bag’s class probability being theageed instances’ class
probabilities at training time. In fact, by assigning theg¥aclass labels to their
instances, it only assumes the general collective assamptit not any specific
assumption regarding how the bags’ class labels are crefedefore we can use
other methods at prediction time such as taking the noredtizometric average of
the instances’ class probabilities within a bag as the hagability, as long as the
method is consistent with the general collective assumptimwever, according to
our experience, taking the arithmetic average of the irgsirprobability for a bag
is more robust on practical datasets like the Musk datagétas we recommend

this method for the wrapper method in general.

As explained, the wrapper method is only a heuristic methatd¢an work well in

practice under some conditions. At least for the specifiegaive model proposed
in Section 3.2 of this chapter, it produces accurate classifins, although it is not
good for probability estimation. In Chapter 4, we will presan exact algorithm
that can give accurate probability estimates for the samergéive model. They are
also based on the normal single-instance learning schemdesim to upgrade them

to deal with MI data. The disadvantage of such an approadtaisttheavily relies
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on exact assumptions at the training time. Thus the significendifications of the
underlying propositional learning algorithms are inebiéa The wrapper method,

on the other hand, is much simpler and more convenient.

3.5 Conclusions

In this chapter we first introduced a new assumption other tha Ml assumption
for Ml learning — the collective assumption. This assumptiegards the class
label of a bag related to all the instances within a bag. We stewed some
concrete applications of the collective assumption to gxgenerate M| data. One
of the applications is to take the averaged probability lth&l instances in the same

bag as the class probability of that bag.

Under the above exact generative model, we further assuhadhe instances
within the same bag have similar class probabilities. Cgueptly the probability
of a bag is also similar to those of its instances. These gssoms allow us to
develop a heuristic wrapper method for MI problems. Thishodtwraps around
normal single-instance learning algorithms by (1) assignihe class label of a bag
and instance weights to the instances at training time, 2naveraging instances’

class probabilities of a bag at testing time.

Assigning bags’ class labels to their corresponding ircgarand averaging the in-
stances’ class probabilities are the application of thevallvo assumptions (the
collective assumption and the “similar probability” assution). The instances’
weights and the wrapping scheme were motivated based ongtence-level loss
function (encoded in the single-instance learners) ovéh@bags. We also showed
an artificial example where this wrapper method can perfoathfar classification
although its probability estimates are biased. Empingcaille found out that this

method works very well with the Musk benchmark datasetspiteof its simplic-

ity.
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Chapter 4

Upgrading Single-instance Learners

Among many solutions to tackle multiple instance (Ml) leaghproblems, one ap-
proach has become increasingly popular, that is, to upgpadedigms from the
normal single-instance learning to deal with MI data. THeré$ described in this
chapter also fall into this category. However, unlike mdghe current algorithms
within this category, we adopt an assumption-based apbribeat is based on the
statistical decision theory. Starting with analyzing tlsswamptions and the under-
lying generative models of Ml problems, we provide a fairgngral and justified
framework for upgrading single-instance learners to datt Wi data. The key
feature of this framework is the minimization of the expeécdbag-level loss func-
tion based on some assumptions. As an example we upgradeofwutap single-
instance learners, linear logistic regression and AdaBawog test their empirical
performance. The assumptions and underlying generativieinof these methods

are explicitly stated.

4.1 Introduction

The motivating application for Ml learning was the drug ityi problem consid-
ered by Dietterictet al.[1997]. The generative model for this problem was basically

regarded as a two-step process. Diettedthl. assumed there is an Axis-Parallel
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Rectangle (APR) in the instance space that accounts forl#®s tabel of each
instance (or each point in the instance space). Each irestaiticin the APR is pos-
itive and all others negative. In the second step, a bag tdness is formed by
sampling (not necessarily randomly) from the instancespahbe bag’s class label
is determined by the MI assumption, i.e., a bag will be pesii at least one of its
instances is positive (within the assumed APR) and otherwegative. With this
perspective, Diettericht al. proposed APR algorithms that attempts to find the best
APR under the Ml assumption. They showed empirical restltiseo)APR methods

on the Musk datasets, which represent a musk activity piiediproblem.

In this chapter, we follow the same perspective as that ietfBrich et al., 1997]
but with different assumptions. We adopt an approach basekeostatistical deci-
sion theory and select assumptions that are well-suitedggrading each single-

instance learner.

The rest of the chapter is organized as follows. In Secti@we explain the un-
derlying generative model we assume and show artificial Nk d@nerated using
this model. In Section 4.3 we describe a general framewarkpgrading normal
single-instance learners according to the generative mddealso provide two ex-
amples of how to upgrade the linear logistic regression ataBdost [Freund and
Schapire, 1996] within this framework. These methods hatdeen studied in the
MI domain before. Section 4.4 shows some properties of odhaaks on both the
artificial data and practical data. Some regularizatiohneques, as used in normal
single-instance learning, will also be introduced in an Eh@xt. In Section 4.5 we
show that the methods presented in this chapter perform aatipely well on the
benchmark datasets, i.e. the Musk datasets. Section 4.@aupes related work

and Section 4.7 concludes this chapter.
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CHAPTER 4. UPGRADING SINGLE-INSTANCE LEARNERS

4.2 The Underlying Generative Model

The basis for the work presented in this chapter was an asalyshe generative
model (implicitly) assumed by Diettericét al. The result of this analysis was
that the generative model is actually modeled as a two-stegeps. The first step
Is an instance-level classification process and the sedepdietermines the class
labels of a bag based on the first step and the MI assumptiola. Matter of fact,
the only probabilistic algorithm in Ml learning, the Diver®ensity (DD) [Maron,
1998] algorithm, followed the same line of thinking. In thesfistep, DD assumes
a radial (or “Gaussian-like”) formulation for the true pesor probability function
Pr(Y|X). In the second step, based on the valueBxft’| X) of all the instances
within a bag, it assumes either a multi-stage (as in the paiggodel) or a one-stage
(as in the most-likely-cause model) Bernoulli process teeine the class label of
a bag. Therefore DD amounts to finding one (or more) Axis{iatayper-Ellipse

(APE)! under the MI assumption.

It is natural to extend the above process of generating Md ttaa more general
framework. Specifically, as in single-instance learning,agsume a joint distribu-
tion over the feature variabl& and the class (response) variable Pr(X,Y) =
Pr(Y|X)Pr(X). The posterior probability functio®r (Y| X') determines the inst-
ance-level decision boundary that we are looking for. Hawein MI learning
we introduce another variablB, denoting the bags, and what we really want is
Pr(Y|B). Let us assume that given a bagnd all its instances;,, Pr(Y'|b) is
a function of Pr(Y|xy), i.e., Pr(Y|b) = g(Pr(Y|x,)). The form ofg(.) is deter-
mined based on some assumptions. In the APR algorithmst@dieh et al., 1997],
the instance-level decision boundary pattern is modeleahasPR andy(.) is an
instance-selection function based on the Ml assumptioBDriMaron, 1998], the
instance-level decision boundary pattern is an APE@NdSs either the noisy-or or
the most-likely-cause model, which are both due to the Muaggion. Therefore

the "“APR-like pattern and MI assumption” combination is plyna special case of

'Note that an APE is very similar to an APR but that it is diffetiable.
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4.2. THE UNDERLYING GENERATIVE MODEL

our framework.

In this chapter we are creating new combinations within ffasnework but with
different assumptions. We change the decision boundarth&r patterns and sub-
stitute the MI assumption with the collective assumptiamaduced in Chapter 3.

We model the instance-level class label based®ofl’| X) or its logit transforma-

Pr(Y=1|X)
Pr(Y=0/X)’

learners aim to estimate them and we are aiming to upgrade #igorithms. We

tion, i.e. the log-odds functiolog because many normal single-instance

can think of a bag as a certain area in the instance space. Then diweith n

instances, we have

Pr(Y|b) = ZPr ylz;) (4.1)
or
PriY =1Jp) 1 Pr(Y = 1|z;)
1 ==-3"1
BPrY =0 n ;‘ B PrY = 0/zy)
1l — (M7, Priy=1]z:))/"
- Pr(y =1]p) = T7=; Pry=tlz:)]Y/"+[Ti=, Pr(y=0]z;)]*/" (4.2)
Pr(Y = 0fp) = [T Priy=0r:))'/"

[Tz Pry=1]z)]"/ " +[ITiZ, Pr(y=0lz:)]'/"

wherez; € b. Even though the assumptions are quite intuitive, we pesgitbrmal

derivation in the following.

As discussed in Section 3.1 of Chapter 3, we define two vessidrgenerative
models — the population version and the sample version.dpdpulation version,

the conditional densityf the feature variabl& given a bagB = b is

P e
PT(x|b)2 = mebPr(z) dz (43)

0 otherwise

2Note that we abuse the terRr(.) here because for a numeric feature, what we have is a density
function of X instead of the probability.

44



CHAPTER 4. UPGRADING SINGLE-INSTANCE LEARNERS

p:7
B:S
po:ls -, il G i
2 PR il A SR
H
N <, M = [®
= w % 5 s Bl
+. ;%x w
X fmbe % B =
\\_ I %
] &
\ if %) = 13:12 ™
0. 15 A % =
\ Hoak =
X
Ponc
\'\_‘x\x"‘
.
X
-4.56 1

-4k D16 4.9

Figure 4.1: An artificial dataset with 20 bags.

And in the sample version,

S|~

if v €0,
Pr(z|b) = (4.4)

0 otherwise

wheren is the number of instances insiéleThis is true no matter what distribution
Pr(X)is, as long as the instances are randomly sampled. Themydoamulation
of the class label property of a b&Y|b), according to our collective assumption
we associate it with the instances by calculating ¢beditional expectatiomver
X, which results in Equation 3.1 discussed in the second iquast Section 3.1 of

Chapter 3.

In the sample version, we substituie(x|b) in Equation 3.1 with that in Equa-
tion 4.4 and use the sum instead of the integralC(Y|.) is Pr(Y|.), then we

get Equation 4.1, which is the arithmetic average of theesponding instance

probabilities. IfC'(Y'|.) is log i:gj; then we obtain Equation 4.2, which is the
normalized geometric average of the instance probalsilitiote that in this model
introducing the bag#3 doesnot change the joint distributio®r(X,Y"). It only
casts a new condition so that the class labels of the insdaaree"masked” by the

“collective” class label.

45



4.2. THE UNDERLYING GENERATIVE MODEL

The above generative models are better illustrated by ditiattdataset, which will
also be used in later sections. We consider an artificial domigh two independent
attributes. More specifically, we used the same mechanisigeioerating artificial
data as that in Section 3.2 of Chapter 3 except that we chathgedensity ofX,

Pr(X) and use a different linear logistic model. Now the densityction, along

each dimension, is a triangle distribution instead of aamifdistribution:

f(z) =0.2—0.04|z]

And the instance-level class probability was defined by itheak logistic model of

1

Pr(y = 1|:E1,$2) = m

Thus the instance-level decision boundary pattern issshiffperplane, but different
from the one modeled in the artificial data in Section 3.2. Wanged these in order
to demonstrate that our framework can deal with any forlRefX ) andPr (Y| .X),

as long as the correct family d?r(Y|X) (in this case the linear logistic family)
and the correct underlying assumption (in this case thectle assumption) are
chosen. Finally we took Equation 4.2 to calcul&e(y|b). Again we labeled each
bag according to its class probability. The class labelshefihstances are not

observable.

Now we have constructed a dataset based on the “Hyperplatiagar boundary)
and the collective Assumption” combination instead of tAER-like (or quadratic
boundary) and MI Assumption” combination used in the APRoatgms [Diet-

terich et al., 1997] and DD [Maron, 1998].

Figure 4.1 shows a dataset with 20 bags that was generatedlaggto this gener-
ative model. Same as in Chapter 3, the black line in the middlee instance-level
decision boundary (i.e. whe®r(y = 1|z1,z2) = 0.5) and the sub-space on the
right side has instances with higher probability to be pasitA rectangle indicates
the region used to sample points for the corresponding badydadot indicates its

centroid). The top-left corner of each rectangle shows tgeibdex, followed by
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CHAPTER 4. UPGRADING SINGLE-INSTANCE LEARNERS

the number of instances in the bag. Bags in gray belong ts ¢legative” and
bags in black to class “positive”. Note that bags can be oriwineng” side of the
instance-level decision boundary because each bag wdsdae flipping a coin

based on the normalized geometric average class prolyaifitihe instances in it.

4.3 An Assumption-based Upgrade

In this section we first show how to solve the above problemhendrtificial do-
main. Since the generative model is a linear logistic mogtelcan upgrade linear
logistic regression to solve this problem exactly. Then weagalize the underly-
ing ideas to a general framework to upgrade single-instiaraers based on some
assumptions, which also includes the APR algorithms [Brath et al., 1997] and
the DD algorithm [Maron, 1998]. Finally within this framewowe also show how
to upgrade AdaBoost algorithm [Freund and Schapire, 1996¢al with MI data.

First we upgrade linear logistic regression together wité ¢ollective assump-
tion so that it can deal with Ml data. Note that normal lineagistic regres-
sion can no longer apply here because the class labels ahoest are masked by
the “collective” class label of a bag. Suppose we knew what#x the collec-
tive assumption is, say, Equation 4.2, then we could firsstant the probability
Pr(Y|b) using Equation 4.2, and estimate the parameters (the deatficof at-
tributes in this case) using the standard maximum binonkealihood method. In
this way we fully “recover” the instance-level probabiliynction in spite of the
fact that the class labels are masked. When a test bag is \weeran calculate
the class probability?r(Y|b;.s;) according to the “recovered” probability estimate
and the same assumption we used at training time. The ctagiifi is based on
Pr(Y|bss:). Mathematically, in the logistic modeRr(Y = 1|z) = —L1—— and

1+exp(—px)
Pr(Y =0|z) = ; Wherej3 is the parameters to be estimated. According to

1
1+exp(Bx
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Equation 4.2, we construct:

=1[b) = [T} Pr(y=]z:)!/ __exp(28Yx)
Pr(Y =1b) = [T} Pr{y=1]z)]"/"+[I1} Pry=0[z)]"/" ~ Trexp(1BY, xi)
Pr(Y =0[p) = [[1}" Pr(y=0lz:)]"/" _ j

— T Pr(y=1az)]"+IT; Pr(y=0lz:)I"/™ ~ L+exp(; 8, xi)

Then we model the class label determination process of eaghab a one stage
Bernoulli process. Thus the binomial log-likelihood functis:

N

LL =Y [Yilog Pr(Y =1|b) + (1 - Y;) log Pr(Y = 0[b)] (4.5)

=1
where N is the number of bags. By maximizing the likelihood functiorEqua-
tion 4.5 can we estimate the parametérdMlaximum likelihood estimates (MLE)
are known to be asymptotically unbiased, as illustratedactisn 4.4. This for-
mulation is based on the assumption of Equation 4.2. In w&at is impossible
to know the underlying assumptions so other assumptionsatsayapply, for in-
stance, the assumption of Equation 4.1. In that case, thékielthood function
of Equation 4.5 remains unchanged but the formulatio®ofY'|b) is changed to
Equation 4.1. We call the former method “MILogisticRegiea&SEOM” and the
latter “MILogisticRegressionARITH” in this chapter.

As usual, the maximization of the log-likelihood functios ¢arried out via nu-
meric optimization because there is no analytical form efgblution in our model.
Based on the “Rule of Parsimony”, we want as few parametepossible. In the
case of linear logistic regression, we only search for patanvalues around zero.
Thus the linear pattern means that only local optimizatgonaeded, which saves
us great computational costs. The radial formulation in M2don, 1998], on the

other hand, implies a complicated global optimization peob

In general, since many single-instance learners amounirtomzing the expected
loss functionZx E'y|x [Loss(X, §)] in order to estimate the parametein Pr(Y|X),
we can upgrade any normal single-instance learner thatrfaes Pr(X,Y") into

Pr(Y|X)Pr(X) and estimate$’r(Y'|.X) directly. This category covers a wide

3The choice of numeric optimization methods used in thisighissliscussed in Chapter 7.
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range of single-instance learners, thus the method is gatteral. It involves four

steps:

1. Based on whatever assumptions believed appropriatd,dtelationship be-
tween the class probability of a bagPr(Y'|b), and that of its instances,,
Pr(Y|xzy), i.e. Pr(Y|b) = g(Pr(Y|xz)). SincePr(Y|X) is usually defined
by the single-instance learner under consideration, thetbimg to decide is

g(.)-

2. Construct a loss function at the bag level and take theatapen over all
the bags instead of over instances, i.e. the expected logsida is now
EpEy g[Loss(B, 5)]. Note that the parameter vectgiis the instance-level

parameter vector because it determiffe$}’| X) (or its transformations).
3. Minimize the bag-level loss function to estimate

4. When given a new baby,,;, first caIcuIatePr(Y|xtest,B) and then calcu-

late Pr(Y |biest) = g(Pr(Y|zs:, 8)) based on the same assumption used in

Step 1. Then classifl,.,; according to whethePr (Y |b;.s;) is above 0.5.

The negative binomial log-likelihood is a loss functionsg@lcalled deviance or
cross-entropy loss). Thus the above two MI linear logistigression methods fit
into this framework. They use the linear logistic formutatifor Pr(Y|X') and the
collective assumption. The Diverse Density (DD) algoritfiviaron, 1998] also
uses the maximum binomial likelihood method thus it can slyaecognized as
a member of this framework. It uses a radial formulation for(Y|X') and the
MI assumption. The APR algorithms [Dietterich et al., 199 the other hand,
directly minimize the misclassification error loss at thg bevel and the bounds of
the APR are the parameters to be estimatedidi”| X'). Since the APR algorithms
regard the instance-level classification as a determirpsticesspPr(Y = 1|x) can
be regarded as 1 for any instancevithin the APR. Otherwisé’r(Y = 1|z) = 0.
Note that in this framework, significant changes to the ulydeg single-instance
algorithms seems inevitable. This is in contrast to the isgarwrapper method

presented in Chapter 3.
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1. Initialize weights of each bald’; = 1/N,i=1,2,..., N.

2. Repeatformn =1,2,..., M:
(a) SetW;; <+ W;/n;, assign the bag’s class label to each
of its instances, and build an instance-level mddg{z;;) € {—1,1}.

(b) Within thei®" bag (withn; instances), compute the error ratec [0, 1]
by counting the number of misclassified instances withim blag,

ie. e = Zj 1(hm(xij);ﬁyi)/ni'
(c) If e; < 0.5 for all i’'s, STOP iterations, Go to step 3.
(d) Computer,, = argmin)_. W;exp[(2e; — 1)cy,).
(e) If(c,, < 0) STOP iterations, Go to step 3.
() SetW; <— W; exp[(2e; — 1)¢,,] and renormalize so that, W; = 1.

3. returnsign[d ;> cmhum (Tiest)]-

Table 4.1: The upgraded Ml AdaBoost algorithm.

Linear logistic regression and the quadratic formulatesig DD) assume a limited
family of underlying patterns. There are more flexible stagistance learners like
boosting and the support vector machine (SVM) algorithnas ¢an model larger
families of patterns. However, the general upgrading fraark presented above
means that, under certain assumptions, one can model a ange 1of decision
boundary patterns. Here we provide an example of how to degitee AdaBoost
algorithm into an Ml learner based on the collective assionptintuitively Ad-
aBoost can easily be wrapped around an Ml algorithm (witlsbanhges to the Ad-
aBoost algorithm), but since there are not many “weak” Mteas available we
are more interested in taking the single-instance lea@aeetise base classifier of the

upgraded method.

AdaBoost originated in the Computational Learning Theaoyndin [Freund and
Schapire, 1996], but received a statistical explanatiter lan [Friedman, Hastie

and Tibshirani, 2000]. It can be shown that it aims to minigran exponential loss

function in a forward stagewise manner and ultimately estés. log %

(based on an additive model) [Friedman et al., 2000Jow, under the collective

assumption, we use the Equation 4.2 because the underlgglg-$nstance learner

“Note that in AdaBoost, class labels are coded {rtd, 1} instead of{0, 1}.
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(i.e. normal AdaBoost) estimates the log-odds function {ddd also use the stan-
dard MI assumption here, but this would necessarily intoedihernax function,
which makes the optimization much harder). We first desdtieeupgraded Ad-
aBoost algorithm in Table 4.1 and then briefly explain thevdg¢ion. The notation
used in Table 4.1 is as followsY is the number of bags and we use the subscript
i to denote the' bag, wherei = 1,2,...,N. Suppose there are; instances
within thei* bag. Then we use the subscrjpto refer to thej*” instance, where

j=1,2,...,n;. Thereforer;; denotes thg’" instance in theé'" bag.

The derivation follows exactly the same line of thinking lattin [Friedman et al.,
2000]. In the derivation below we regard the expectatiom digas the sample
average instead of the population expectation. We are nolirlg for a function
over all the bagd”(B) that minimizesEig Ey zlexp(—y F (B))] where given a bag
b,

= Z F(xzp)/n. (4.6)

We want to expand’(B) to F(B) + cf(B) in each iteration with the restriction
c > 0. First, givenc > 0 and the current bag-level weightsy = exp(—yF'(B)),
we are searching for the betB). After second order expansion®fp(—ycf(B))
aboutf(B) = 0, we are seeking the maximum &y [y f(B)]. If we had an Ml
base learner in hand, we could estim#té) directly. However we are interested
in wrapping around a single-instance learner, thus we ekpéB) for each bag
according to Equation 4.6f(b) = > h(x;)/n whereh(x,) € {—1,1}. Now we

are seeking:(.) to maximize

Ewlyh(zp)/n] = ZZ WPr (y = 1|bi)h(z45) — %VVz’PT(y = —1[b;)h(245)]

The solution is

M) 1 if Lpriy=1)b) — LPr(y = —1]b;) >0
xz — 3 3
’ —1 otherwise

This formula simply means that we are looking for the funefi¢.) at the instance
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level such that given a weight dgﬁ for each instance, its value is determined by
the probabilityPr(y|b;). Note that this probability is the same for all the instances
in the bag. Since the class label of each bag reflects its pildipawe can as-
sign the class label of a bag to its instances. Then, with tdelght/snm we use

a single-instance learner to provide the valué:.@f. This constitutes Step 2a in
the algorithm in Table 4.1. Note that in Chapter 3, we prodaserrapper method
to apply normal single-instance learners to Ml problemser€&hit is a heuristic
to assign the class label of each bag to the instances pegdm it because we
minimize the loss function within the underlying (instarleeel) learner. Since the
underlying learners are at the instance level, they regbeeclass label for each
instance instead of each bag. That is why it is a heuristiae k& only use the
underlying instance-level learners to estim@ate, and ourobjectiveis to estimate
h(.) such thatyh(x,)/n is maximized over all the (weighted) instances, where
thebag’'sclass label. Therefore assigning the class label of a bag tostances is
actually ouraim here because we are trying to minimize a bag-level loss ilmmct

Hence it isnota heuristic or approximation in this method.

Next, if we average-y;h(x;;) for each bag, we gety; f(b;) = 2¢; — 1, where
€i = Y Lhu(ai)2y:)/Mi @nd this is Step 2b in the algorithm. Then givenf(B) €
[—1,1] (more precisely-yf(B) € {-1,-1+1/n,—1+2/n,---,1 —2/n,1 —
1/n,1}) we are looking for the begt > 0. To do this we can directly optimize the

objective function

LI

n;

EpEyiplexp(F(B) + ¢ x (=yf(B)))] = Z Wi explem  ( )]

= 3 Waexpl(2e: — T)eal

This constitutes Step 2d.

This objective function will not have a global minimum if all < 0.5. The inter-
pretation is analogous to that in the mono-instance AdaB&msormal AdaBoost,
the objective function has no global minimum if every instams correctly classi-

fied based on the sign g¢f(x) (i.e. zero misclassification error is achieved). Here
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we can classify dagb according tof (b) = >, h(xz)/n. Then—y, f(b;) = 2e; — 1
simply means that if the error rates within all the bagare less than 0.5, all the
bags will be correctly classified because all #{é;) will have the same sign as.
Thus we have reached zero error and no more boosting can ke-d@s in normal

AdaBoost. Therefore we check this in Step 2c.

The solution of this optimization problem may not have arnyeasalytical form.
However, it is a one-dimensional optimization problem. ekethe Newton family
of optimization techniques can find a solution in superdmgme [Gill, Murray
and Wright, 1981] and the computational cost is negligilolepared to the time to
build the “weak” classifier. Therefore we simply searchdoising a Quasi-Newton

method in Step 2d.

Note thatc is not necessarily positive. If it is negative, we can simgyerse the
prediction of the weak classifier and get a positi{ehis can be done automatically
in Step 2f). However, we bow to the AdaBoost convention arsfrict ¢ to be

positive. Thus we check that in Step 2e.

Finally we update the bag-level weights in Step 2f accordinthe additive struc-
ture of F'(B), in the same way as in normal AdaBoost. Note that if a bag has mo
misclassified instances in it, it gets a higher weight in thetnteration, which is
intuitively appealing. Another appealing property of thigorithm is that if there
is only one instance per bag, i.e. the data is actually simg&nce data, this algo-
rithm naturally degrades to normal AdaBoost. To see whye tiwdt the solution for
cin Step 2d will be exactly; log *=%"= whereerr, is the weighted error. Hence

the weight update will also be the same as in AdaBoost.

It is easy to see that to classify a test bag, we can simplydegaB) as the bag-

level log-odds function and take Equation 4.2 to make a ptxh.
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Figure 4.2: Parameter estima- Figure 4.3: Test error of MILogisti-

tion of the MILogisticRegression- cRegressionGEOM and the MI Ad-

GEOM on the atrtificial data. aBoost algorithm on the artificial
data.

4.4 Property Analysis and Regularization Techniques

In this section we first show some properties of the upgradebtbdtners. We use
the artificial data generated according to the scheme inde4t2 to show some
asymptotic properties of the probability estimates usingvl logistic regression
algorithm. Next we show the test error of the Ml AdaBoost aliipon on the arti-
ficial data to see whether it can perform well on classifyingddta. Finally, since
the “number of iterations” property of the boosting algomis is usually of inter-
est, we show this property for our Ml AdaBoost algorithm agathe training and
test errors on the Muskl dataset. We observe that its behiaviery similar to
its single-instance predecessor. After analyzing the gn@s we introduce some
regularization methods for the above algorithms in ordentoease generalization

power on practical datasets.

Because we know the artificial data described in Sectionsidenerated using a
linear logistic model based on the normalized geometricaageeformulation from

Equation 4.2, “MILogisticRegressionGEOM” is the naturahdidate to deal with
this specific M| dataset. Figure 4.2 shows the parametersa&std by this method
when the number of bags increases. It can be seen that theagsti converge to
the true parameters asymptotically. The more training begs more stable the
estimates. This is a consequence of the fact that the clabalpitity estimates of

this algorithm are consistent (or asymptotically unbiadsdvirtue of the maxi-
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Figure 4.4: Error of the MI AdaBoost algorithm on the Muskiala

mum likelihood method. The consistency of the MLE can be enounder fairly
general conditions [Stuart, Ord and Arnold, 1999]. In tipedfic artificial data,
we used a triangle distribution for the density ®f as explained in Section 4.2.
However, we observed that the exact form of this density da¢snatter. This is
reasonable because our model only assumes random samphmghie distribution

corresponding to a bag. The exact form/af(.X') does not matter.

MILogisticRegressionGEOM successfully “recovers” thetance-level class prob-
ability function (and the underlying assumption also hdtutsthe test data). Con-
sequently we expect it to achieve the optimal error rate endata. As explained
before, the MI AdaBoost algorithm is also based on Equati@n #hus it is also
expected to perform well in this case. To test this, we firstegate an independent
test dataset of 10000 bags, then generate training datadifférent random seeds)
for different numbers of training bags. The decision stugsused as the weak
learner and the maximal number of boosting iterations wagsg0. The test er-
ror of both methods on the test data against different nusnbielbags is plotted in
Figure 4.3. When the number of training bags increases,rtbe mte goes closer
to the best error rate and eventually both methods accomgitise to the “perfect”
performance. However, unlike MILogisticRegressionGEQM AdaBoost cannot
achieve the exact best error rate, mainly because in théswasire approximating
a line (the decision boundary) using axis-parallel redesygpnly based on a finite

amount of data.
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Finally, people are often interested in how many iteratiaresneeded in the boost-
ing algorithms and it is also an issue in our Ml AdaBoost altpon. Cross Valida-
tion (CV) is a common way to find the best number of iteratidbss known that
even after the training error ceases to decrease, it istithwhile boosting in or-
der to increase the confidence (oargin) of the classifier [Witten and Frank, 1999].
In the two-class case (as in the Musk datasets), incredsenmargin is equivalent
to reducing the estimated root relative squared errors EgRSthe probability es-
timates. It turns out that this statement also holds wellMdérAdaBoost. As an
example, we show the results of Ml AdaBoost on the Muskl @aias-igure 4.4.
The training error is reduced to zero after about 100 iterstbut the RRSE keeps
decreasing until around 800 iterations. The test errorra@exl over 10 runs of
10-fold CV, also reaches a minimum at around 800 iteratiovisch is 10.44%
(standard deviation: 2.62%). After 800 iterations, the ERI®es not seem to im-
prove any further and the test error rises due to overfittifige error rate is quite
low for the Musk1 dataset, as will be shown in Section 4.5. Elsv, boosting on
decision stumps is too slow for the Musk?2 dataset. We obdehat the RRSE does
not settle down even after 8000 iterations. Therefore ibimputationally too ex-
pensive to be used in practice and we present results basegwarized decision

trees as the “weak” classifier.

Regularization is commonly used in single-instance legynit introduces a bias in
the probability estimates in order to increase the gergatatin performance by re-
ducing the chance of overfitting. It works because the ugtgeylassumptions of a
learner rarely perfectly hold in practice. In Ml learninggularization can be natu-
rally inherited from the corresponding single-instan@emers if we upgrade one of
them. For example, in the Ml support vector machine (SVMaifi@Gér et al., 2002],
there is a model complexity parameter that controls theesziaithe regularization.
For non-standard methods like the APR algorithms, othersvig kernel density
estimation (KDE) [Dietterich et al., 1997] are adopted tbiage the function of

regularization. We can also impose regularization in outhoas as follows.

For single-instance linear logistic regression, a shigekeethod is proposed in
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CHAPTER 4. UPGRADING SINGLE-INSTANCE LEARNERS

[le Cessie and van Houwelingen, 1992]. We adopt this “ridggession” method
here. Thus we simply add af, penalty term\||3||? to the likelihood function in
Equation 4.5 whera is the ridge parameter. Note that in ridged logistic regogss
— since it is not invariant along each dimension — we needandardize the data
to zero-mean/unit-standard-deviation before fitting theded, and transform the
model back after fitting [Hastie et al., 2001]. The mean aandd#rd deviation used
in the standardization in our Ml logistic regression methatk estimated using the
weighted instance data, with each instance weighted byntrexse of the number
of instances in the corresponding bag. This is done becausévely we would
like to have equal weight for every bag. Note that unlike saomeent Ml methods
that change the data, we do not pre-process the data — tiiastaation is simply
part of the algorithm.

In boosting with decision trees, both the tree size and timebau of iterations de-
termine the degrees of freedom, and there are several waggutarize it in single-
instance learning [Hastie et al., 2001]. We use C4.5 [Qui&93] which does not
have an explicit option to specify how many nodes will be imesef we use an al-
ternative way to shrink the tree size, that is, we specifygelaminimal number of
(weighted) instances for the leaf nodes (the default gettil©4.5 is two). Together
with the restriction of the number of iterations we can achia very coarse form
of regularization in our MI AdaBoost algorithm. By enlargithe minimal number
of leaf-node instances and in turn shrinking the tree sizegeffectively make the
tree learner “weaker”. We will only show experimental rés@ibr the Ml AdaBoost

algorithm based on these regularized trees.

4.5 Experimental Results

This section we present experimental results of our Ml algors on the Musk
benchmark datasets [Dietterich et al., 1997]. As alreadgudised in Chapter 1,
there are two overlapping datasets describing the muskitsgtrediction problem,

namely the Muskl and Musk2 data. Some of the properties otitttasets are
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Musk 1 Musk 2

Number of bags 92 102
Number of attributes 166 166
Number of instances 476 6598
Number of positive bags 47 39
Number of negative bags 45 63
Average bag size 5.17 64.69
Median bag size 4 12
Minimum bag size 2 1
Maximum bag size 40 1044

Table 4.2: Properties of the Musk 1 and Musk 2 datasets.

summarized in Table 4.2.

Table 4.3 shows the performance of related MI methods on thekMatasets, as
well as that of our methods developed in this chapter. Thiuatian is either by
leave-one-out (LOO) or by 10-fold Cross Validation (Cat)the bag level In the
first part we include some of the current solutions to Ml l@agrproblems. All the
methods that depend on the “APR-like pattern and Ml assumptombination
are shown. They are: the best of the APR algorithms, iterdigctim APR with
KDE [Dietterich et al., 1997], the Diverse Density algontifMaron, 1998} and
the MULTINST algorithm [Auer, 1997]. Although MI Neural Ngbrks [Ramon
and Raedt, 2000] do not model the APR-like pattern exadisy depend heavily
on the MI assumption and followed a thinking very similar be above methods.
The pattern that they model really depends on the complexitige networks that
are built. Thus we also include it. It can be seen that the tsda@sed on the
“linear pattern and the collective assumption” combinatan also achieve com-
parably good results on the Musk datasets. Therefore weveethat in practice

what really matters is the right combination of the decidimundary pattern and

SNote that we do not include the EM-DD algorithm [Zhang and dBwhn, 2002] here even
though it was reported to have the best performance on th& Natasets. We do so for two reasons:
1. There were some errors in the evaluation process of EMZ2DIIt;can be shown via some theo-
retical analysis and an artificial counter-example (ApfpeBq) that EM-DD cannot find a maximum
likelihood estimate (MLE) in general due to the (tricky)diikhood function it aims to optimize.
Since the DD algorithm is a maximum likelihood method, thieison that EM-DD finds cannot be
trusted if it fails to find the MLE.
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Methods Musk 1 Musk 2
LOO 10CvV LOO 10CvV
iterated-discrim APR with KDE - 7.6 — 10.8
maxDD - 111 - 17.5
MULTINST - 23.3 - 16.0
MI Neural Network$ - 12.0 - 18.0
SVM with the MI kernel 13.0 13.461.1 7.8 12.6¢1.0
Citation-kNN 7.6 - 13.7 -

MILogisticRegressionGEOM 13.04 144223 17.65 17.741.17
MILogisticRegressionARITH 10.87 13.28.83 16.67 15.881.29
MI AdaBoost with 50 iterations 10.87 12.624.95 15.69 15.981.31

alt was not clear which evaluation method the MI Neural Netawosed. We put it into 10CV
column just for convenience.

Table 4.3: Error rate estimates from either 10 runs of $iedti10-fold cross-
validation or leave-one-out evaluation. The standardat®n of the estimates (if
available) is also shown.

the assumption. Simple patterns and assumptions togethebensufficient.

There are many methods that aim to upgrade single-instaacedrs to deal with
MI data, as described in Chapter 2. Although they are delynitet in the same
category as the methods in the first part, and their assungaind generative mod-
els are not totally clear, we include some of them in the seé@amt. Because there
are too many to list here, we simply chose the ones with thegesformance on
the Musk datasets: the SVM with the MI kernel [Gartner et 2002] and an Ml
K-Nearest-Neighbour algorithm, Citation-kNN [Wang andcKer, 2000]. For the
SVM with the Ml kernel, the evaluation is via leave-10(bagsj, which is similar
to that of 10-fold CV because the total number of bags in eidaaset is close to

100. Thus we put its results into the “10CV” columns.

Finally in the third part we present results for the methadsifthis chapter. Since
we introduced regularization, as also used by some othdradstike SVM, there

is possibility to tune the regularization parameters. Hmveve avoided extensive
parameter tunings. In both Ml logistic regression methedsused a small, fixed
regularization parameter = 2. In our Ml AdaBoost algorithm, we restricted our-

selves to 50 iterations to control the degrees of freedone Bdse classifier used
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is an unpruned C4.5 decision tree, bot fully expanded (as explained above). In-
stead of using the default setting of minimal 2 instancedqudt we set it to be 2
bagsper leaf. More specifically, we used the average number tdmees per bag
shown in Table 4.2 as the size of one bag, and thus used l18r(oest) for Musk1l
and 120 (instances) for Musk2.

As can be shown, the performance of our methods is compatalseme of the
best methods in MI learning, and compares favorably to mb#ie“APR-like +
MI assumption” family. More importantly, since the gen@ratmodels and the as-
sumptions of our methods are totally clear, it is easy tossssweeir applicability
when new MI data becomes available. In the Musk datasetserns that logistic
regression based on the arithmetic average of the instatiass probabilities per-
forms better than based on the normalized geometric avettagethe assumptions
of this method could be more realistic in this case. Findfig,overall performance
of our methods is also comparable to that of the wrapper ndedaecribed in Chap-
ter 3, slightly worse in Musk?2 data though. Although the noethin this chapter are
the exact solutions to the underlying generative modey, tleenot seem superior to
the heuristic methods with the biased probability estimalenis is especially true
when the assumptions of the heuristic reasonably hold iityeahich seems to be

the case in the Musk datasets.

4.6 Related Work

The Diverse Density (DD) algorithm [Maron, 1998] is the oplypbabilistic model
for Ml learning in the literature, and hence it is the work massely related. DD
also modelsPr(Y|B) and Pr(Y|X), and [Maron, 1998] proposed two ways to
model the relationship between them, namely the noisy-adehand the most-
likely-cause model. Both ways were aimed to fit the MI assuomptThe noisy-or
model regards the process of determining a bag’s class Ipifitpdi.e. Pr(Y =
0,1|B)) as a Bernoulli process with independent stages wherés the number of

instances in the bag. In each stage, one decides the clatsi$aig the probability
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Pr(y|z) of an (unused) instance in the bag. Roughly speaking, a HblgeNabeled
positive if one sees at least one positive class label inglosess and negative
otherwise. The most-likely-cause model regards the aboyeeps as one-stage. It
thus only picks one instance per bag. The selection of thans is parametric
or model-based, that is, according to the radial formutetibPr (Y| X) it uses the
instance with thenaximalprobabilitymaz,c,{ Pr(y = 1|z)} in apositiveexample
and the instance with th@inimal probability min,c,{ Pr(y = 0|z)} in anegative

example as the representative of the corresponding bag.

Indeed, one can recognize the similarity of our methods @idh especially the lin-
ear logistic regression method — we simply take out the tddienulation and the
noisy-or/most-likely-cause model, and plug in the lineagistic formulation and
the geometric/arithmetic average model. It is natural $o &ty the “Gaussian-like”
formulation together with the collective assumption (itke geometric/arithmetic
average model), or the “linear + Ml assumption (i.e. noigy-combinations. How-
ever these combinations do not work well on the Musk datassetsrding to our ex-
periments. When experimented on the Musk1 dataset, for pheatme “Gaussian-
like + collective assumption (arithmetic average of prali@ds)” combination has
the 10x10-fold CV error rate of 19.02%3.41%, and the “linear + MI assump-
tion (noisy-or)” combination has 20.00%¢4.47% with the ridge parameter set to
A = 12 (the high value of ridge parameter may already indicate tisaigability of

the linear model).

As a matter of fact, the whole family of “APR-like + MI Assum@t”-based meth-
ods are related to this chapter because their rationaleeisame as that of DD.
The current methods that upgrade the single-instancedesafe.g. MI decision
tree learner RELIC [Ruffo, 2001], MI nearest neighbour aifpons [Wang and
Zucker, 2000], MI decision rule learner NaiveRipperMI [@akeyre and Zucker,
2001] and the SVM with an MI kernel and a polynomial minimaxried [Gartner
et al., 2002]), on the other hand, are not so closely relaigtid framework pre-
sented here because the line of thinking is quite differ@hie SVM with the Ml

kernel [Gartner et al., 2002] may also depend on the colleeissumption because
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the MI kernel essentially uses every instance within a bagh(equal weights).
Other methods’ assumptions are not very clear because thett®ds are purely

heuristic and therefore hard to analyze.

Finally we propose an improvement on DD. The radial (or Gamskke) formu-
lation is not convenient for optimization because it hasrt@my local maxima in
the log-likelihood function. If one really believes the guatic formulation is rea-
sonable, we suggest a linear logistic model with polynoriniahg to order 2 (i.e.
adding quadratic terms). Together with the noisy-or mooleii{e most-likely-cause
model), this would enable us to search for local maxima ofalydikelihood only.
If we were to use every possible term in a polynomial expansie would have
too many parameters to estimate, especially for the Muskset in which we al-
ready have too many attributes in the original instanceesplacorder to overcome
this difficulty, we can assume no interactions between amyatiributes, which is
effectively the same as DD did. By deleting any interactiems in the quadratic
expansion, we only have twice the number of attributes aeiffis (a quadratic
term and a linear term for each attribute) plus an interaepstimate. The number
of parameters is roughly the same as in DD. However this medehave three

major improvements over DD:

1. The optimization is now a local optimization problem asntiened before,
which is much easier. Consequently the computational cogreatly re-
duced. The time of running this model will be very similar b tMI logistic
regression methods, which according to our observatioerig short. We be-
lieve it is even faster than EM-DD regardless of EM-DD'’s ddlf (because
EM-DD still needs many optimization trials with multipleasts) whereas we

can ensure the correctness of the MLE solutions in this model

2. The sigmoid function in the logistic model tends to make lthg-likelihood
function more gentle and smooth than the exponential fanatised in the
radial model proposed by DD. As a matter of fact, the logHi@od function

in DD is discontinuous (the discontinuity occurs whenetiergoint variable’s

62



CHAPTER 4. UPGRADING SINGLE-INSTANCE LEARNERS

value equals the attribute value of an instance in a neghtig¢ due to the
radial form of the probability formulation. Besides, thgerential function
in the probability formulation only allows DD to deal witht@avalues around
one, which means that we need to pre-process the data on cuzsians.
We can avoid this inconvenience in the logistic model. Dieshie functional
differences, the effects of the two models are virtuallyghme. To see why,
in our model the log-odds function can always be arrangemanfiorm that
describes an Axis-Parallel hyper-Ellipse (APE) plus aericept (bias) term,
hence the instance-level decision boundaries of both reatel exactly the
same. But the gentleness of the sigmoid function in the tmgmsodel (and

the intercept term) may improve the prediction;

3. Since there are a lot of mature techniques that can betlgliggaplied to the
linear logistic model, like regularization or deviancesed feature selection,
we can apply them directly to the new model. For example,erichggthods
may further improve the performance if the instance-leesision boundary

cannot be modeled well by an APE.

4.7 Conclusions

This chapter described a general framework for upgradinglsiinstance learners
to deal with MI problems. Typically we require that the sighstance learners
model the posterior probabilit®r (Y| X) or its transformation. Then we can con-
struct a bag-level loss function with some assumptions. Bymizing the expected
loss function at the bag level we can “recover” the instaeeel probability func-
tion Pr(Y'|.X). The prediction is based on the recovered funcffey”|.X') and the
assumption used. This framework is quite general and jedtifianks to the strong
theoretical basis of most single-instance learners. & msorporates background
knowledge (based on the assumptions) involved and coule ssrgeneral-purpose

guidance for solving Ml problems.
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Within this framework, we upgraded linear logistic regiessand AdaBoost based
the collective assumption. We have also shown that theskaagt together with

mild regularizations, perform quite well on the Musk beneinkndatasets.

For “group-conditional” single-instance learners thaireate the densityr (X |Y)
and then transform t&r (Y| X') via Bayes’ rule (like naive Bayes or discriminant
analysis), there appears to be no easy way to directly upgream. However we
explore some methods in the next chapter that follow the damaef thinking and

are very similar to the group-conditional methods.
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Chapter 5
Learning with Two-Level

Distributions

Multiple instance learning problems are commonly tacklea ipoint-conditional
manner, i.e. the algorithms aim to directly model a functibat, given a bag of
n instancesg, - - - , z,,, outputs a group (or class) labgl No methods developed
so far build a model in a group-conditional manner. In thiaater we developed
a group-conditional method, the “two-level distributioppaoach” to handle M
data. As the other approaches presented in this thesissahgally discards the
standard MI assumption. However, in contrast to the othpragehes, it derives a
distributional property for each bag of instances. We dbedts generative model
and demonstrate that it is an asymptotically unbiased iflexsbased on artificial
data. In spite of its simplicity, the empirical results oistlapproach on the Musk
benchmark datasets are surprisingly good. Finally, we ghewelationship of this
approach with some single-instance group-conditionahkrs. We also discover
its relationship with the empirical Bayes, an old statatimethod, within a classi-

fication context, and the relationship of MI learning withtar@nalysis.
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5.1 Introduction

Many special-purpose MI algorithms can be found in the ditigre. However we
observed that all these methods aim to directly model a fomet f(y|x1, - -, z,)
wherey is the group (class) label of a bag ofinstances, and,, - -- , z, are the
instances. From a statistical point of vigi{.) is necessarily a probability function
Pr(.), although there can be other interpretations. We referitoapproach as a
point-conditional approach. In normal single-instan@éng, we have a category
of popular methods that model group-conditional probgbdistributions and then
transform to class probabilities using Bayes’ rule. Thiggary includes discrimi-
nant analysis [McLachlan, 1992], naive Bayes [John and lean$995] and kernel
density estimation [Hastie et al., 2001]. It is thus nattoask whether itis possible

to develop a group-conditional approach for Ml algorithms.

In this chapter we present a group-conditional approadeaétwo-level distribu-

tion (TLD) approach”. The underlying idea of this approasisimple: we extract
distributional properties from each bag of instances faheagass and try to dis-
criminate classes (or groups) according to their distiimal properties. Note that
this approach essentially discards the standard M| assomipecause there is no
instance selection within each bag. Instead, by deriviegltbtributional properties

of a bag we imply the collective assumption that was propeselier in this thesis.

This chapter is organized as follows. Section 5.2 desctibesTLD approach in
detail. It turns out that this approach is equivalent toaoting low-order sufficient
statistics from each bag, which puts this approach into adeoframework. The
underlying generative model of this approach is presemnte8eiction 5.3, where
we also show this approach is asymptotically unbiased ifgéerative model is
true. In Section 5.4 we show the relationship of the TLD applowith the normal
group-conditional single-instance learners. When assgindependence between
attributes, one of our methods looks very similar to naivgd®a thus we present
an (approximate) upgrade of naive Bayes to Ml learning. IctiSe 5.5 we show

experimental results for the TLD approach on the Musk berachrdatasets. Sec-
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tion 5.6 draws the connection to the empirical Bayes (EB)hoe@s in a classifi-
cation context. It turns out that the TLD methods follow dkathe EB line of

thinking. As an old statistical method, EB has many fieldegliaptions in prac-
tice, especially the “meta-analysis” field in medical resha Such applications

may draw interests to the Ml domain. Finally Section 5.7 ¢odes this chapter.

5.2 The TLD Approach

First let us consider normal single-instance learning. &sgence of the group-
conditional methods is to derive distributional propestigthin each group (and the
group priors) so that we can decide the frequency of a pothigmnstance space for
each group. We classify a point according to the most fretiypappearing group
(class) label. We follow the same line of thinking in the niuistance (Ml) case.
Dependent on different groups, we first derive distribugioproperties for each
bag, that is, on the instance level. Because even within lass,dhe distributional
properties are different from bag to bag, we need a secomdl-tBstribution to
relate the instance-level distribution to one another. ¥ferrto the second level
as the “bag level” distribution. That is why we call this apach the “two-level

distribution” (TLD) approach.

The obvious question is how to derive distributions ovetritigtions? Since com-
monly used distributions are usually parameterized by spatameters, we can
think of these parameters as random and governed by somedhiggébution. This

is essentially a Bayesian perspective [O’Hagan, 1994].s&He/per-distributions
themselves are parameterized by some hyper-parameteis fulhnBayesian ap-

proach, we would cast further distributions on the hypeapeeters. In this chapter,
we simply regard the hyper-parameters as fixed and assurmthéyacan be esti-
mated from the data. Therefore our task is to simply estirtegtdyper-parameters
for each group (class). We show the formal derivation of howdtimate them in

the following.
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First, we introduce some notation. We denote tifebags a$; for brevity. For-
mally, if b; hasn; instances, theh; = {x;, -, 2, -, 2, }. Y denotes the
class variable. Then, given a class label= y (in two-class casg = 0,1) and

a bagb;, we have the distributio®r(b;|Y") for each class, which is parameter-
ized with a fixed bag-level parameigr (hence we simply write dow#®r(b,|Y) as

Pr(b;]6Y)). We estimate using the maximum likelihood method:

841 p = argmaxL = argmazx H Pr(b;]6Y).
J

HereL is the likelihood function] [, Pr(b;[6%). Now, the instances in bag are not
directly related t@, as we discussed before. Instead, the instangesre governed
by an instance-level distribution parameterized by a patanvecto#, that in turn
is governed by a distribution parameterizeddbysincef is a random variable, we

integrate it out inl.. Mathematically,
L =] Pr(vle")

= H/Pr(bj,9|6y) de
=11 /Pr(bj|9, §Y)P(0]6Y) df

and assuming conditional independencé;aindd? givend,

= H/Pr(bj|9)PT(9|5y) de. (5.1)

In Equation 5.1, we effectively marginaliZzein order to relate the observations
(i.e. instances) to the bag-level parametemMNow assuming the instances within
a bag are independent and identically distributed (i.iatpading to a distribution
parameterized by, Pr(b;|0) = [].” P(z;:|0) wherez;; denotes thé’" instance in

the ;' bag.

The complexity of the calculus would have stopped us herewsadot assumed
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independence between attributes. Thus, like naive Bayesssume independent
attributes, and reduce the integral in Equation 5.1 intessd\wone-dimensional in-
tegrals (one for each attribute), which are much easierlt@s®Now, assumingn

dimensions and bags (for one class), the likelihood functiarbecomes

L= H// //{ HPr 20:l0k) ]Pr(0k|5y)} 6, - -- do,,
_ H1 (H { /[HPT 2j1il06) | Pr(04167) dek})
- H (HBﬂc) 5.2)

wherez;;; denotes the value of the dimension of thei’" instance in thej®"
exemplarf,, andd,, are the parameters for thé&" dimension, and

nj

Biy = /[Hpr(:cjm|9k)]13r(9k|5,z) a0

There are many options for modelidy (x;|0)) and Pr(6|5}). Here we model

Pr(z;i|0r) as a Gaussian with parametggsando?:

nj nj
11 Pr@uil6) = [ ] Pr(zimil . op)
= = (5.3)
S3 + 1 (T — )’
202

= (2mo2) /% exp

whereT;, = Y07, xjri/n; and S = Y17 (2 — T;)?. As is usually done
in Bayesian statistics [O’'Hagan, 1994], we convenientlydeld®r(6,|d;) as the
correspondingratural conjugateform of the Gaussian distribution. The natural
conjugate has four parametetig, b, wi, andm,, and is given by:

_ 2
bt3 ak+ (pg—mp)

PrOul3Y) = gla,besw) (0) 5 exp (- ——5%—)  (5.4)
k
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where .
(o) =
glag, O, Wg) = .
(mwi)T(br/2)

Taking a closer look at the natural conjugate prior in Equab.4, it is straightfor-
ward to see that,, follows a normal distribution with meam,, and variancev, o7,
and C—%) follows a Chi-squared distribution with. degrees of freedom (d.f. ). Itis
Chi-squared becausg is positive, and so isgg) given thatz; > 0. In the Bayesian
literature [O’Hagan, 1994%? is said to follow arinverse-Gammadlistribution. The
natural conjugate prior is quite reasonable, but the faatttie variance ofi,, is a
multiple (wy,) of o7 is unrealistic and uninterpretable, although it brings asider-
able convenience to the calculus (In fact we could not findrepk2 analytical form
of the likelihood function without this dependency). Welwiitop this dependency
later on when we simplify the model. Plugging Equation 5.8 Bquation 5.4 into

the middle part of the likelihood function in Equation 5.2 get B,

By — / [ﬁPT(xjkiwk)]Pr(QkMZ) a6,

=1
+o0 p+oo 2 (7., 2
_ (271-0-2)*7%’/2 ox B S]k + n; (Z']k Mk:) (5 5)
0 —00 g b 202 .

(g —mmy)*

b, +3 ap + o
9lars b, we) ()7 exp | - —— | } dju do
k

The integration is easy to do due to the form of the naturajugate prior, resulting

in (the details of the calculation are given in Appendix C):

azk/Z(l + njwk)(bkjLnj—l)/QF(bk;nj)

= R (5.6)
(1 + njwk)(ak + SJZk) + nj(Tjk — mk)Q] ’ W%F(%)
Thus, the log-likelihood is:
LL=1og[[ [(JT Bix)l = D> _ > (~log B) (5.7)
j=1 k=1 k=1 j=1

where B is given in Equation 5.6 above. We maximize the log-liketiid. L
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in Equation 5.7 using a constrained optimization procediargetdy,; , four pa-
rameters per attribute. Note thAL actually only involves the sample mean,
and sum of square errofs;, thus it turns out that this method extracts low-order
sufficient statistics, which is a kind of metadata, from eaely to estimate the

group-conditional hyper-parameters.

When a new bag is encountered, we simply extract thesetgtsfi®om the bag. We

then compute the log-odds:

Pr(Y = 1|best) — log Pr(biest|03r1.5) Pr(Y

)
5.8
PT(Y - O|btest) Pr(bt85t|5?\4LE)Pr(Y ( )

1
0)

log

We estimate the priaPr(Y") from the number of bags for each class in the training

data and classify,.,; according to whether the log-odds value is greater than zero

In spite of its sound theoretic basis, the above method doeperform well on
the Musk datasets, mainly due to the unrealistic dependehthe variance of
ono? in the natural conjugate, as well as the restrictive assiompbf an Inverse-
Gamma fors? and a Gaussian for the instances within a bag. However riegard
this as a metadata-based approach allows us to simplifyatder to drop some

assumptions. Here we make two simplifications.

The first simplification stems from the Equation 5.3. It isatelely straightforward
to see that the likelihood within each bag is equivalent égtoduct of the sampling
distributions of the two statisticg;, and S;;..*. If we think z;,. is enough for the
classification task, we can simply drop the second-ordeissts S, here. By
droppingS;; we can generalize this method to virtually any distributiaithin a
bag because according to the central limit theorgme~ N (1, Z—f) no matter how
thez;;,;’s are distributed. The second simplification is that we mgker modeb?; as
drawn from an Inverse-Gamma distribution in Equation 5tdéad we regard it as

fixed and directly estimatézk from the data. Accordingly we do not need to estimate

For a Gaussian distribution, the sampling distributioesrag ~ N (u, Z—i_) and3it ~ X2 (n;—
J O
1) If we multiply these two sampling distributions, we will giite same form as in Equation 5.3,
differing only by a constant.
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5.3. THE UNDERLYING GENERATIVE MODEL

ar, andb, any more. To estimate?, we give a weight o% to each instance where
is the number of instances in the corresponding bag (becatustvely we regard
a bag as an object and thus should assign each bag the sanm)wBagsed on the
weighted data, an unbiased estimaterpfis 02 = Zi[nij M@k — Tin)?]/ (e —

> ni]_), wheree is the number of bags.

With these two simplifications, the dependency in the natumajugate prior disap-
pears. We only have a Gaussian-Gaussian model within thgradtin Equation 5.1,
which makes the calculus extremely simple. The resultingnida is again a Gaus-

sian, which is

2\ — = 2
wknj+0k) 1/2 < [—nj(xjk—mk)

By = (2
7k T 2(wgnj + o)

" (5.9)
Note thatw, in the first TLD method denotes the ratio of the varianceupfto
o2. Here, since we have dropped this dependengys simply the variance of.
Equation 5.9 means thaf, ~ N(my, w; + Z—’;) Thus it basically tells us that the
means of the bags of the two classes are wandering aroundawss{an centroids
respectively, although with different variances, as showigure 5.1. We simply
substitute Equation 5.6 in the log-likelihood function bguation 5.9. The MLE
of my, is in a simple analytical form buby is not. Thus we still need a numeric
optimization procedure to search for a solution. Howevartesthe search space is
two-dimensional (for convenience, we also searchnigreven though its solution
can be obtained directly) and has no local maxima, the saarchry fast. This
constitutes our simplified TLD method and we call it “TLDSitef while we call

the former TLD method simply “TLD".

5.3 The Underlying Generative Model

The underlying generative model of the TLD approach is ghiéorward — we
simply have distributions on two levels, and it is also sjndgfiorward to gener-

ate data from it. First, we generate some random data frondigtabution pa-
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CHAPTER 5. LEARNING WITH TWO-LEVEL DISTRIBUTIONS

rameterized by the fixed bag-level hyper-parameters. Thenegard this data as
the instance-level parameters and generate instandadea®m data according to

some distribution parameterized by these instance-laralpeters.

We can generate artificial data based on this generative Inffmdieoth TLD and
TLDSimple. The artificial data generated using the generatiodel assumed by
the simplified TLD method is easy to visualize. An examplaifigure 5.1. More
specifically, we generated data from two levels of Gauss&msg two indepen-
dent dimensions for two classes (black and grey in the gragingt, we identified
two (bag-level) Gaussians, one for each class, with the same@nce but different
means. We then generated 10 data points from each Gaussiaegard each of
the points as the mean of an instance-level Gaussian. ¥ivallspecified a fixed
variance (same for both classes) for the instance-leves&ais and generated 1
to 20 data points from each instance-level Gaussian to fopaga The number of

instances per bag is uniformly distributed.

In Figure 5.1 we plot the contour of both levels of Gaussiaitls &standard devia-
tions. The dot inside each Gaussian is the mean and we carvebtevariance
from the dispersion along each dimension. The straight bietveen two bag-
level Gaussians is thieag-leveldecision boundary. Note that unlike the methods
that intend to “recover” the instance-based decision patach as the APR algo-
rithms [Dietterich et al., 1997], Diverse Density [Maror§9B] or other methods
developed in this thesis, the instance-level decision Bapnis not defined here.
Instead only the decision boundary of the true means [i)eof the bags is well-
defined — it is a hyperplane because we used the same varianioeth classes
Also note that the decision boundary is only defined in terhtB@®true parameters
1, butnot even in terms of the statistics (or metadata)This is due to the extra
term (;—j) in the variance of. This term is distinct for each bag even if we have the

sameo? but different number of instances per bag.

We generated the artificial data mainly to analyze the ptaseof our methods.

2If the Gaussian of either class had different variance, thendecision boundary would be
quadratic instead of linear.
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Figure 5.1: An artificial sim- Figure 5.2: Estimated parameters using the
plified TLD dataset with 20  TLDSimple method.
bags.

In order to verify the (at least asymptotic) unbiasednesbath TLD methods,
we generated a one-dimensional dataset with 20 instancdsageausing the exact
generative model assumed by them (the data generation tiigrexact generative
model assumed by TLD is described in Chapter 7 and AppendiXA¢ estimated
parameters (of one class) are shown in Figure 5.2 for TLD&rapd Figure 5.3

for TLD. In both figures, the solid lines denote the true pastenvalues. Note

Zi[n%, > (ki —Tjk)?]
(=25 5;)

(MLE), but obviously itis an unbiased estimate as mentian&gction 5.2 because

E( Z[n% > (@i — fﬂc)Q]) = (e— E nij)a;f-

J i J

that in TLDSimpIe,cf,z = is not a maximum likelihood estimate

All other estimates are MLEs. As can be seen, the estimateaneders converge

to the true parameters as the number of bags increaseshtbumsdthod is at least

asymptotically unbiased. We observe that the number cdimtsts per bag does not
affect the convergence but only the rate of convergence. M instances per

bag, the faster the convergence. Varying number of inssandéslow down the

convergence but result in similar behaviors.
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Figure 5.3: Estimated parameters using the TLD method.

In TLDSimple, the MLE of the variance ¢f (i.e.w) is a biased one, but still asymp-
totically unbiased. The reason why we use the MLE insteachofieer estimate is
due to its robustness. We have observed that when the nurhbags is small,
which is the case in the Musk datasets, other estimates ofahance are very
likely to be wildly wrong, even negative. The MLE, on the athand, is relatively

stable even for a small sample size.

5.4 Relationship to Single-instance Learners

The relationship between the TLD approach and singlemestéearners can best be
explained based on the TLDSimple method. Note that whenuh®er of instances
per bag is reduced to 1, Equation 5.9 degrades into the samesi@a for all bags
(or instances in this case) from one class, with mearand varianceu,,, because
o7 cannot be estimated and can only be regarded as 0. Hencesthiedrdegrades
into naive Bayes in the single-instance case. If we had drdppe independence
assumption between attributes, we would have obtainedisitceidinant analysis
method. Even in the multi-instance casegif ~ 0 and/orn; > 0, the termfl—f
can be neglected in Equation 5.9. In that case for all the ivegise class, the;,;’s

can be regarded as coming from the same Gaussian. Then weseatamdard
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naive Bayes to simulate the TLDSimple method — we simplywale the sample
average over every bag along all dimensions and constrigingtance per bag
using the sample average. Then we use naive Bayes to learsitigle-instance
data. This gives an approximate upgrade of naive Bayes iMthease. Such an
approximation may be appropriate in the Musk datasets Isecae observed that

the in-bag variance is indeed very small for many bags.

The above view of the TLD approach leads us to consider inggm@ant techniques
from naive Bayes in the TLDSimple method. In TLDSimple, iassumed that the
w's are normally distributed (i.ev N (my, wy)). Butif the normality does not hold
very well, we need some adjustment techniques. We presergiople technique
here. When a new bdg,,; is met, we calculate the log-odds function according to
Equation 5.8 and usually decide its class label based orhehtte log-odds- 0 or
not. Now, we determine the class labelbgf; based on whether the log-oddsw

or not, wherev is a real number. We chooseso as to minimize the classification
errors in the training data. We callthe “cut-point”. Thus we select an empirically
optimal cut-point value instead of 0. This technique was tiveed in the context
of discriminant analysis [Hastie et al., 2001] but it is asly applicable in our

TLD approach and in naive Bayes.

The rationale of this technique is easy to see, and illiesdrat Figure 5.4 in one
dimension. Here we have one Gaussian and one standard Gaistnitaution for

each class (solid lines). The dotted line plots the Gaussstimated using the
mean and variance of the Gamma. Now the estimated decisiomlboy becomes
C’ whereas it should be C. Since in classification we are oafycerned about the
decision boundary, we do not need to adjust the density. 8kithg for the empir-

ically optimal cut-point, we can move it from C’ back to C amadgrove prediction

performance.

More specifically, we look for the cut-point as follows. Ejr&e calculate the log-
odds ratio for each of the training bags and sort them in abogrorder. The

log-odds ratios of bags with class 1 should be greater thasetbf bags with class
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Figure 5.4: An illustration of the rationale for the empaicut-point technique.

0. Second, we look for a split. L&t denotes the total number of training bags,
andS a split point. There will beé bags with log-odds< S and(7T" — t) ones with
log-odds> S. We count the number of bags in the first class among the trags.

This number i®,. The number of bags in the second class among the second set of
(T —t) bags isp,. Finally, we go through the log-odds of all bags from the desal

to the largest and find the log-odds value with the largestevaf (p; + p») and use

that value as the cut-point. If there is a tie, we choose theev@osest to 0.

This technique is not commonly used to reduce the potenéightive impact of
the normality assumption. Instead kernel density estwnadr discretization of nu-
meric attributes are more often used. Nonetheless, we fthatdhis technique
can also work pretty well in the normal single-instanceneay. We have tested
it in association with naive Bayes on some two-class datdesin the UCI repos-
itory [Blake and Merz, 1998] within the experimental envinoent of the WEKA

workbench [Witten and Frank, 1999]. The results are showirale 5.1.

In Table 5.1 we use “NB” to denote naive Bayes. The first colusnNB with

empirical cut-point (EC) selection and this is the base forecomparison. The
second, third and fourth columns are NB without any adjustyn¥B with kernel
density estimation (KDE) and NB with disretization of numseattributes (DISC)

respectively. The results were obtained using 100 runs gbltdcross validation
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Dataset NB+EC NB NB+KDE NB+DISC
breast-cancer 72.53(0.96) 72.76(0.68) 72.76(0.68) T[2.B®)
breast-cancer-W 95.87(0.23) 96.07(0.1) 97.51(0.11)v1HO.13) v
german-credit 74.75(0.51) 75.07(0.43) 74.5(0.46) 740382)
heart-disease-C  82.58(0.75) 83.4(0.41) 84.02(0.58) v2 83.64)
heart-disease-H 83.52(0.71) 84.23(0.52) 84.95(0.39) v1244.36)
heart-statlog 83.78(0.74) 83.73(0.61) 84.4(0.59) 820047)

hepatitis 83.33(1) 83.71(0.82) 84.76(0.62)v 83.67(1.14)
ionosphere 89.68(0.54) 82.51(0.45)* 91.83(0.32)v 891%%)
kr-vs-kp 87.85(0.16) 87.8(0.15) 87.8(0.15) 87.8(0.15)
labor 93.29(2.16) 94 (1.92) 93.18(1.36) 88.44(1.85)*
mushroom 98.18(0.03) 95.76(0.04)* 95.76(0.04) * 95.764D*

sick 95.99(0.09) 92.76(0.12)* 95.78(0.08)* 97.14(0.08)v
sonar 72.08(1.39) 67.88(1.06)* 72.68(1.13) 76.43(1.51)v
vote 89.55(0.63) 90.09(0.15) 90.09(0.15) 90.09(0.15)
pima-diabetes 75.43(0.46) 75.65(0.37) 75.15(0.37) TRH4)
Summary (v/ 1*) (0/11/4) (5/8/2) (3/10/2)

Table 5.1: Performance of different versions of naive Bayesome two-class
datasets.

(CV), with standard deviations specified in brackets. The&idence level used for
the comparison was 99.5%. We use a “*” sign to indicate “digantly worse than”
where as “v” means “significantly better than”. We regard tesults of a dataset
as “significant different” if the difference is statistibakignificant at the 99.5%
confidence level according to the corrected resampledt [Nadeau and Bengio,
1999]. It can be seen that the EC technique is comparablestwatization and
worse than KDE in general. However, it can indeed improvepréormance of the
original naive Bayes. Moreover, in cases where KDE cannaidasl, like in our

TLD approach, EC can be a convenient option.

It turns out that in the Musk datasets the normality assusngor 1 is a problem

and the EC technique can apply. For instance, for the naiye8Bapproximation
of TLDSimple without EC, the leave-one-out (LOO) error aate the Muskl and
Musk2 datasets are 13.04% and 17.65% respectively. WithttieCerror rates are
10.87% and 14.71%, which is an improvement of about 3% in eathkset. Note

that in the naive Bayes approximation of TLDSimple we do rsd KDE because
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Methods Musk 1 Musk 2

LOO 10CV LOO 10CV
SVM with Minimax Kernel 7.6 8.40.7 13.7 13.#1.2
RELIC - 16.3 - 12.7
TLDSimple+EC 14.13 16.961.86 9.80 15.882.56

naive Bayes Approximation+EC 10.87 1544.32 14.71 17.3%51.85

Table 5.2: Error rate estimates from 10 runs of stratifieddl@®-CV and LOO
evaluation. The standard deviation of the estimates (ifavie) is also shown.

we do not want to accurately estimate the density gfbut that of;. In this
approximation, we ignored the teriﬁ}j} in the variance oft;,. Hencez,; is only
an approximation ofi,. The EC technique is only concerned about the cut-point

instead of the whole density, and thus does not suffer frasegbproximation.

5.5 Experimental Results

There are no other directly related MI methods in the litem@at The closest cousins
may be other methods that also extract metadata from bagsh ate the Ml de-
cision tree learner RELIC [Ruffo, 2001] and the support sechachine (SVM)
with the minimax kernel [Gartner et al., 2002]. Both metharhn be viewed as
extracting minimax metadata from each bag and applyingralatd learner to the
resulting single-instance data. Although it has been roaeti that some statistics
can be extracted from bags for the purpose of modeling f@aet al., 2002], no

specific methods have been put forward in the Ml learning doma

We present experimental results for TLDSimple and its nBages approximation
(both used with the EC technique) on the Musk benchmark etstas Table 5.2.
We also present published results for RELIC and the SVM ntethahe table.

Since these two metadata-based methods are among the llestmen the Musk
datasets, we can see that the new methods are competitlvéheistate-of-the-art

MI methods.
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In spite of its simplicity, TLDSimple performs surprisirygivell on the Musk2
dataset, with reasonably good result on Musk1. Since it istailslitional method,
itis expected that more data can improve its estimation laatstwhy its LOO per-
formance is better than that of 10-fold CV. Its naive Baygsrapimation is equally
simple and also quite good on the datasets. Hence the soaarkttital basis of

these methods appears to bear fruits in practical datasets.

5.6 Related Work

As mentioned before, RELIC and the SVM with a minimax keraetsrelated to the
TLD approach in the sense that they both extract metadatatfie bags and model
directly on the bag-level. But there are no other multi-anse methods that model
the Ml problem in a group-conditional manner, neither asrdétany methods trying
to extract low-order sufficient statistics. Therefore oppr@ach is quite unique in

the Ml learning domain.

However, when developing the TLD methods, we discoveredrcapBayes (EB)

[Maritz and Lwin, 1989], an old statistical method that Haes éxactly same line of
thinking as our approach. As a matter of fact, it is well saifte multi-instance data
and our approach is one of its applications to classificatinrthe EB literature a
more general EM-based solution procedure is also propbs¢dan model arbitrary
distributions on the two levels. In such a case, the intege} not be solvable but
— via the EM algorithm — it is possible to apply numeric intaggon techniques
to make the maximum likelihood method feasible. This is altyuone of the early

applications of the EM algorithm [Dempster et al., 1977].

According to the EB literature [Maritz and Lwin, 1989], arrlgaexample of an EB
application was an experiment with contaminated water Mises, 1943]. In this
experiment, 3420 batches of water were collected with fivepdas in each batch.
Each sample was either classified as positive (contamipatedegative (uncon-

taminated). The task was to estimate the probability of goéato be positive. One
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may recognize this dataset as very similar to M| data. If vessified each batch
as positive or negative (according to some assumptiond)pad some attributes to

describe the samples, we would end up with an Ml dataset.

Today EB is an important method to solve the “meta-analysieblem in medical
(or other scientific) research, which has a similar ratiered Ml learning. In sci-
entific research, different scientists carry out experits@ssociated with the same
topic but usually get different results. If we can constrseine instances (with
the same attributes) for each one of the experiments, antb tigentify the ho-
mogeneity and heterogeneity of these experiments, thistimby an M| dataset.
Each experiment is a bag of instances but there is only orss ¢ddoel per bag.
MI learning solutions will be very useful here because thentdication of homo-
geneity/heterogeneity of scientific experiments is an irtgyd objective in meta-

analysis.

We are presenting the relationship of the EB method and eeiéysis with M
learning in the hope that they may attract some interestarigid of MI research.
We believe that this may help spawn fielded applications aacerpublicly avail-

able datasets — the perhaps most severe obstacles in tesadvit learning today.

5.7 Conclusions

In this chapter we have proposed a two-level distributidnXapproach for solv-
ing multiple instance (MI) problems. We built a model in agpdclass)-conditional
manner, and think of the data as being generated by two le¥elstributions —

the instance-level distribution and the bag-level distiiitm — within each group.
It turns out that the modeling process can be based on loerstdficient statistics,
thus we can regard it as one of the methods that are based ardatet extracted

from each bag.

Despite its simplicity, we have shown that a simple versibifldD learning and
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its naive Bayes approximation perform quite well on the Mioskchmark datasets.
We have also showed the relationship of our approach witmabgroup-conditional
single-instance learners, other metadata-based Ml mgthad the empirical Bayes
method. Finally, we pointed out the similarity between Mireing problems and

the meta-analysis problems from scientific research.
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Chapter 6

Applications and Experiments

As mentioned in Chapter 1, we focus on three practical agiptins of Ml learning:
drug activity prediction, fruit disease prediction, andtamt-based image catego-
rization. Throughout this chapter, the term “number ofilatites” does not include
the “Bag-ID” attribute and the class attribute in the datss&Vhen we refer to a
“positive” bag in this chapter, we simply mean that its cledl is “1”. Likewise

“negative” for “0” in the data.

6.1 Drug Activity Prediction

The most famous application for Ml learning is the drug attigrediction problem,
first described in [Dietterich et al., 1997], which resultethe first Ml datasets, the
Musk datasets. These are the only real-world MI datasetghulvailable. While
the interested readers should refer to the paper of [Dielttet al., 1997] for de-
tailed background on the Musk datasets, we briefly deschi&in Section 6.1.1.
Section 6.1.2 we discuss another molecule activity pregtigiroblem — predicting
the mutagenicity of the molecules. Note that this problers nat originally an Ml

problem. However, with proper transformations we can wsdata in Ml learning.
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Figure 6.1: Accuracies achieved by Ml Algorithms on the Mdskasets.

6.1.1 The Musk Prediction Problem

There are two Musk datasets, each describing differenteutde (some molecules
are presented in both of them). The task is to decide whicleoutés result in a
“musky” smell. On average, Musk2 has more bags than Muskd each bag has

more instances. Table 4.2 in Chapter 4 lists some key piepatthe two datasets.

In both datasets, each molecule is represented as a bag ferérdi shapes (or
conformations) of that molecule are instances in the bagceSone molecule has
multiple shapes, we have to use multiple instances to reptes example. The
shape of a molecule is measured using a ray-based reprgsethat results in 162
features. Together with 4 extra oxygen features, we havettbutes. Since every
shape of a molecule (i.e. every instance) can be measuredhege 166 attributes,
we can construct an M| dataset. Both Musk datasets have the a#iributes as

shown in Table 4.2 in Chapter 4.

The Musk datasets are the most popular ones in the MI domaiially every Mi

algorithm developed so far has been tested on this problehsamave the algo-
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rithms in this thesis. Although we have used these datasetsdghout this thesis to
compare the performance of our methods to that of many othendthods, we list
the accuracies again in Figure 6.1. Based on this figure wasearsome evidence
which assumption really holds in the Musk datasets by examithe accuracies
of methods based on various assumptions. We use black bdentte the accu-
racy on Musk1, and white ones for Musk2. We used the best acgan algorithm
can achieve, regardless of the evaluation method used. ctheay of the wrap-
per method developed in Chapter 3 (“MI Wrapper” in the figusethat achieved
by wrapping around bagged PART with discretization. The MBRoost method
shown in the figure has unpruned regularized C4.5 as the bassfier and uses
50 iterations, same as described in Chapter 4. The two Matilugistic regression
methods (“MILogitRegGEOM” and “MILogitRegARITH” in the figre) are also
described in Chapter 4. TLDSimple and the naive Bayes (NBy@apmation of
TLDSimple are described in Chapter 5.

We deliberately divide the algorithms into 3 categoriese finst corresponds to
instance-based methods that are consistent with the Mivgsgan; the second cor-
responds to the instance-based methods that we believet ds@the M|l assump-
tion; and the last corresponds to the metadata-based nsethaidcannot possibly
use the MI assumption. As the figure shows, the methods tteatgdy depend on
the MI assumption do not seem to benefit much from this backgid&nowledge.
Instead the overall performance of the methods that areasatdon this assumption
is as good as the “MI assumption” family on these datasetsréefre the validity
of the MI assumption as the background knowledge on the Masksets appears

to be questionable.

6.1.2 The Mutagenicity Prediction Problem

There is another drug activity prediction problem, nambg/inutagenicity predic-
tion problem [Srinivasan, Muggleton, King and Sternbet@94], that can also be

represented as an Ml problem. It originated from the indedibgic programming
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Friendly Unfriendly

Number of bags 188 42
Number of attributes 7 7
Number of instances 10486 2132
Number of positive bags 125 13
Number of negative bags 63 29
Average bag size 55.78 50.76
Median bag size 56 46
Minimum bag size 28 26
Maximum bag size 88 86

Table 6.1: Properties of the Mutagenesis datasets.

(ILP) domain. The original dataset is in a relational formahich is especially

suitable for ILP algorithms. However we can transform thigioal dataset into a
MI dataset in several ways [Chevaleyre and Zucker, 2000¢kivann, 2003]. Here
we consider a setting representing each molecule as a sendkland the pairs
of atoms connected by each of the bonds. After this transibam each molecule
corresponds to a bag. But unlike the Musk datasets wheresaanice describes
the conformation of an entire molecule, each instance @srert atom-bond-atom
fragment of a molecule. One such fragment is described usiatjributes — 5

symbolic and 2 numeric attributes. Interested readers ragyr to [Weidmann,

2003] for more details on the construction of these M| ddatas&he same con-
struction method was used in other studies of Ml learningeM@teyre and Zucker,
2001; Gartner et al., 2002].

The original Mutagenesis dataset consists of 230 molecL&&molecules that can
be fitted using linear regression and the remaining 42, waiehmore difficult to
fit. These two subsets are called “friendly” and “unfriefidigspectively. The key

properties of the two datasets, after the transformatie@nslaown in Table 6.1.

We evaluated some of the methods developed in this thesisese two datasets.
Since the TLD approach can only deal with numeric attribaies there are some
nominal attributes in the Mutagenesis datasets, we campupdy LD methods to

them. We normally consider the transformation of nominailattes to binary ones
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Method Friendly  Unfriendly
Best of the TLC methods 9.311.28 18.331.61
MILogisticRegressionGEOM 15.7240.91 16.620
MI AdaBoost 13.621.31 18.542.19
Wrapper with Bagged PART  18.78.26 23.1@-2.26
Best of ILP methods 18.0 —
SVM with RBF Ml kernel 7.0 25.0

Table 6.2: Error rate estimates for the Mutagenesis dataset standard deviations
(if available).

in this case. However the TLD methods involves estimatidgdg variance and this
transformation often introduces zero variances for matjpates. Consequently
the TLD approach cannot be applied even after such transtoom Hence we only
applied the instance-based methods, i.e. the wrapper ohdtdinear logistic re-
gression methods and MI AdaBoost. In contrast to the exmariswith the Musk
datasets, MILogisticRegressionGEOM outperforms MILogRegressionARITH
and thus we only present the results for MILogisticRegme¥SEOM. Note that
logistic regression cannot deal with nominal attributekesi but it can deal with
the transformed binary attributes. Hence we transform aimalimattributes with/i’
values intoK binary attributes, each with value 0 and 1. As for the regzdaion,
we (again) use a fixed ridge parametemstead of CV. Here we usg = 0.05
for the “friendly” data and\ = 2 for the “unfriendly” data. Ml AdaBoost, on the
other hand, can naturally deal with nominal attributes, @wedapply it directly to
the Mutagenesis datasets. For the regularization in M| AdesB we use the same
strategy as in the Musk datasets. The base classifier is annetregularized
C4.5 decision tree [Quinlan, 1993] as in Chapter 4. The mahimumber of leaf-
node instances was set to around twice the averaged bage&iZ£20 instances for
“Friendly” and 100 instances for “Unfriendly”. Under thessgularization condi-
tions, we then look for a reasonable number of iterationturhits out that the best
performance often occurs with 1 iteration on the “unfrigfidlata, which lead us to
think that maybe decision trees are too strong for this éatasad we should use de-
cision stumps instead. Hence we eventually used 200 ibesatf regularized C4.5

on the “friendly” dataset and 250 iterations of decisiomgbs on the “unfriendly”

87



6.1. DRUG ACTIVITY PREDICTION

dataset. The estimated errors over 10 runs of 10-fold CVierersin Table 6.2. Ta-
ble 6.2 also shows the error estimates of the wrapper metsxtided in Chapter 3
on these two datasets. The classifier used in the wrapper aggii®) [Breiman,
1996] based on the decision rule learner PART [Frank andew/itt998], both im-
plemented in WEKA [Witten and Frank, 1999]. Bagged PART wai#io be used for
the experiments with the wrapper method on other applinatio this chapter. We
used the default parameter setting of the implementatioWéi KA, and did not do

any further parameter tuning.

It was reported that the ILP learners have achieved erres rainging from 39.0%
(FOIL) to 18.0% (RipperMI) on the “friendly” dataset usingie run of 10-fold
CV [Chevaleyre and Zucker, 2001]. The SVM with the MI kernethigved 7.0% on
“Friendly” and 25% on “Unfriendly” using 20 runs of randonalee-10-out [Gartner
et al., 2002]. Note that unlike the Musk datasets, the erpantal results between
10-fold CV and leave-10-out are not comparable here bedheseumber of bags
is quite different from 100 in both datasets. In FriendlygJe-10-out allows the
learner to use more training data whereas in Unfriendly hi@ing data in leave-
10-out will be less. In addition, leave-10-out is not sfratl, thus the 20 runs used
in the SVM with the MI kernel [Gartner et al., 2002] may suffeom high vari-
ance due to the fact that the classes are not evenly digdbatboth datasets (see
Table 6.1). The two-level classification method (TLC) [Wa@hn, 2003], which
is a model-oriented metadata-based approach, can achi&g ®n Friendly and
18.33% on Unfriendly via 10 runs of 10-fold CV. In Table 6.2 list the error rates
of these methods, together with those of the methods deselogthis thesis.

The standard deviation of MILogisticRegressionGEOM oftBeuns is zero on the
“unfriendly” dataset, indicating the stability of the rdtsu The evaluation process
allows us to compare the results of the methods developeuidrthesis to those
of the TLC method [Weidmann, 2003] and of ILP learners [Cleyu& and Zucker,
2001]. While comparable to the TLC method on the “unfriefidigtaset (actually it
seems that MILogisticRegressionGEOM slightly better tha& on this dataset),
MILogisticRegressionGEOM and M| AdaBoost are worse tharCThethods on
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the “friendly” dataset. However they seem to outperform libl¢ learners. The
small ridge parameter value= 0.05 used in MILogisticRegressionGEOM on the
“friendly” dataset indicates that under the collectiveussption, there is indeed a
quite strong linear pattern while the larger ridge paramet&ie used on the “un-
friendly” dataset may imply a weaker linear pattern. Thicamsistent with the
observation that the “friendly” data can be fit with lineagmession whereas “un-
friendly” data cannot. The performances of MILogisticReggionGEOM and Ml
AdaBoost are similar on the Mutagenesis datasets, whigasonable because they
are based on the same assumption. As long as the instamteléeision boundary
pattern is close to linear under the geometric-averagegtibty assumption, their
behaviors will be very similar. The wrapper method with baedjd?’ART is not as
good as TLC, MILogisticRegressionGEOM and MI AdaBoost,diitcomparable
to the best of the ILP methods. Besides, we did not do any peteantuning or
use other improvement techniques like discretization.hbBlether did we try the
wrapper around other single-instance classifiers. We came that we might be
able to improve the accuracy considerably with these effsetause we believe the
underlying assumption of the wrapper method (that the gessabilities of all the
instances within a bag are very similar to each other) mag redsonably well in

the drug activity prediction problems.

The overall empirical evidence seems to show that the doleeassumption may
be at least as appropriate in the molecular chemistry doasaihe Ml assumption.
We can get good experimental results on the problems of this sing methods
based on the collective assumption. This empirical observaeems to be contra-
dictory to some claims that the MI assumption is “precisély tase in the domain
of molecular chemistry” [Chevaleyre and Zucker, 2000]. tdwer, it would be in-

teresting to discuss this with a domain expert.
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Fruit
1 2 3
Number of positive bags 23 28 19
Number of negative bags49 44 53
Number of bags 72
Number of attributes 23
Number of instances 4560
Average bag size 63.33
Median bag size 760
Minimum bag size 60
Maximum bag size 120

Table 6.3: Properties of the Kiwifruit datasets.

6.2 Fruit Disease Prediction

As discussed in Chapter 1, the fruit disease predictionlprolprovides a Ml set-
ting. The identification of this problem as a Ml problem wag d¢ioi Dr. Eibe Frank.
In this problem, each bag is a batch of fruits, usually frora orchard. Every fruit
within a batch is an instance. Some non-destructive messueetaken for each
fruit. The class labels are only observable on the bag lavether words, either a
whole batch of fruits is infected by a disease or not. Althotiere is no assump-
tion explicitly stated for this problem, the collective asgption is easy to interpret
here: if the whole batch of fruits is resistant to a certaisedse, then the whole

batch is disease-free.

We have obtained one dataset consisting of 72 batches dikitsi they were la-
beled according to three different diseases, resultingrigetdatasets with identical
attributes, namely Fruit 1, 2 and 3. There are 23 non-desteumeasures describ-
ing each kiwifruit, resulting in 23 attributes, all numerighe key properties are
listed in Table 6.3. The table shows that number of instapeebag in this dataset
is more regular than in the datasets describing the drugitgqgtrediction problem,
and comparatively larger. Nonetheless, according to osemation, the number
of instances per bag does not seem to be very important isifitasion. What is

more important is the number of bags, which is scarce in @Egc
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Method Fruit 1 Fruit 2 Fruit 3
Default accuracy 68.06 61.11 73.61
TLD+EC 62.75:0 52.78+0 66.67+ 0

MILogisticRegressionARITH 71.841.47 65.6%41.97 73.61+0
MILogisticRegressionGEOM 71.1#12.34 64.03+2.31 73.61+0
MI AdaBoost 73.191.74 63.61+2.84 73.61+0
Wrapper with bagged PART  73.6®.97 61.81+2.87 71.810.67

Table 6.4: Accuracy estimates for the Kiwifruit datasetd atandard deviations.

One important fact that is not shown in Table 6.3 is that tregeesome missing
values in the dataset. Typically instances’ values areadi$sr a whole bag for a
specific attribute. We developed different strategies & déth the missing values
for our methods developed in this thesis. Ml AdaBoost hasathentage that the
base classifier usually has its own way to deal with missitiges hence it is not a
problem for it. For the TLD approach, since we assume atgimdependence, we
simply skip bags with missing values for a certain attribwteen collecting low-

order statistics for that attribute. Thus in the log-likelod function of Equation 5.7
in Chapter 5, we use less bags to estimate the hyper-panaoétkeat attribute. The
cost is that we have less data for the estimation. As for théddjistic Regression
algorithms, we use the usual way of logistic regressiondkléathis difficulty, that

IS, we substitute the missing values with some values estrfeom other training

instances without missing values. Again, in order to be isteist to our conven-
tion, we substitute the missing values with the weightedaye of other instances’
values of the concerned attribute. The weight of an inst@ég&en by the inverse

of the number of (non-missing) instances of the bag it pestto.

Now the three datasets can be tackled by all of the methodsisrthesis. We
do not have other methods to compare (apart from DD, as disduiselow), so
we list the default accuracy of the data, i.e. the accuragyeisimply predict the
majority class, in the first line of Table 6.4 for comparisélawever we found out
that these datasets are very hard to classify. For examldried DD (looking
for one target concept) with the noisy-or model and got 10-fold CV accuracies

of 64.44%(3.29%) and leave-one-out (LOO) accuracy of 66.67% on thé Eru
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dataséet— worse than the default accuracy. Thus the Ml assumptios doeseem
to hold very well for these datasets. Here we simply presamiesmethods that can
give reasonable results on these datasets. We list thesamgyoestimates for 10 runs

of 10-fold CV in Table 6.4.

As usual, we use the empirical cut point (EC) techniquesttmyewith the TLD
method. We only show the results of TLD in Table 6.4 becauselitDSimple
did worse than TLD in this case. Perhaps in these dataseta¢he of each bag
is not enough to discriminate the bags from the two classableT6.4 shows that
the TLD method, which encodes information about the first swfiicient statis-
tics, cannot achieve the default accuracy either, althdliglaccuracy estimates are
extraordinarily stable. It could be the case that in thesas#as, higher order suf-
ficient statistics are required for discrimination. It mdgcabe due to the lack of
training data as we observed that the LOO accuracy of TLDHerRruit 1 dataset
Is 70.83%, which is much better than that shown in Table 6d4batter than the de-
fault accuracy. We have seen in Chapter 5 that the TLD apprige distributional
method and may usually require many bags to provide reatmeatimates. In this

case the sample size may be too small to give accurate estimat

The instance-based methods perform reasonably well onrilie Fand Fruit 2
datasets. It seems that the Fruit 1 dataset has a non-limgance-level class de-
cision boundary under the collective assumption, whileRhet 2 dataset exhibits
linearity. This is due to the observation that the metho@sisizing in fitting non-
linear functions, like Ml AdaBoost and the wrapper methosdzhon bagged PART,
can perform better on the Fruit 1 data than the Ml linear libdgregression methods,
but worse on the Fruit 2 data. Again we did not finely tune theupeeters in any of
the methods. In the two variations of Ml logistic regressme simply used\ = 1
for both methods and for all the datasets. In Ml AdaBoost, vat fiied unpruned

C4.5 with the minimal leaf-node instance number of 120 (albeice the average

1Since DD does not have a mechanism to deal with missing vaegre-processed the data,
substituting the missing values with the average of the missing attribute values. Note that this
process may give DD an edge in classification because thiimgstiaining and testing instances
are different from the original ones and may provide morerimiation for classification.
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bag size). The result for the Fruit 2 dataset presented ite &8 is based on this
base classifier running 100 iterations. However in Fruit & olserved (again) that
one iteration gave a good result for this base classifierchviriay indicate that we
should use a weaker base classifier. Thus for Fruit 1, we us@derations of de-

cision stumps whose results are shown in Table 6.4. As fovtapper method, we
simply used the default setting in the wrapped single-msgdearners, i.e. bagging

and PART.

The Fruit 3 dataset seems to be very random and hard to glassifct, no method
can achieve better than the default accuracy. The Ml liregastic regression meth-
ods fail to find a linear instance-level decision boundargarrthe collective as-
sumption. Any ridge parameter values greater than 1 oniyitesin predicting the
majority class, which appears to be the best accuracy adtiewen this dataset. The
same happened for Ml AdaBoost. When based on the decisiorpsany iteration
number greater than 10 resulted in worse test accuracy kieadefault accuracy,
although the training error can be improved with more iieret. Thus the best one

can do in this dataset is to predict the majority class.

6.3 Image Categorization

Content-based image categorization involves classifgimgnage according to the
content of the image. For example, if we are looking for ins&agE“mountains”,

then any images containing mountains are supposed to lmfiddsas positive and
those without mountains as negative. The task is to predettass label of an

unseen image based on its content.

This problem can be represented as an Ml problem with sonmadgechniques.
The key of such a representation is that we can segment areimigseveral pixel
regions, usually called “blobs”. A bag corresponds to argejavhich has the blobs
or some combinations of blobs as its instances. Again onebBghas one class

label. Now the problem is how to generate features for theamt®s? The data
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Photo
Number of bags 60
Number of attributes 15
Number of instances 540

Number of positive bags 30
Number of negative bags 30

Average bag size 9
Median bag size 9
Minimum bag size 9
Maximum bag size 9

Table 6.5: Properties of the Photo dataset.

Figure 6.2: A positive photo exam- Figure 6.3: A negative photo exam-
ple for the concept of “mountains ple for the concept of “mountains
and blue sky”. and blue sky”.

used in this thesis was generated based on the single-btbmaighbours (SBN)
approach proposed by [Maron, 1998], although there are oidngy techniques that
can be used [Zhang et al., 2002]. More precisely, there agdtibutes in the data.
The first three attributes are the averaged R, G, B valueseblmi. The remaining
twelve dimensions are the difference of the R, G, B valuewden one specific
blob and the four neighbours (up, right, down and left) ot tiiab. As in [Maron,
1998], an image was transformed into 8x8 pixel regions amthi @x2 region was
regarded as a blob. There are 9 blobs that can possibly haggHdhours in each
image. Therefore the resulting data has 15 attributes andt@rices per bag, fixed
for each bag. Details of the construction of the MI dataseisifthe images can be

found in [Weidmann, 2003], where some other methods haweebasn tried.

Table 6.5 lists some of the properties of the photo datasaised. Since all the
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Method Photo
Best of the TLC methods 81.67
TLDSimple+EC 69.142.64

MILogisticRegressionARITH 71.6%#2.48
MILogisticRegressionGEOM  71.G(2.96
MI AdaBoost 76.6742.36
Wrapper with bagged PART fisd)

Table 6.6: Accuracy estimates for the Photo dataset andatadieviations.

dimensions describe RGB values, they are all numeric. Thkesdais about the
concept “mountains and blue sky”. There are 30 photos thagoboth mountains
and blue sky, which are the positive bags, and 30 negativeophd’ he negative
photos could contain only sky, only mountains, or neithewolexamples from
[Weidmann, 2003] illustrate the class label propertiehefliags. The photo shown
in Figure 6.2 is a positive photo, which contains both mounstand the sky, while
the one shown in Figure 6.3 is negative because it only cosithie sky (and the
plains) but no mountains. Note that the classification taeie is more difficult
than that in [Maron, 1998] and [Zhang et al., 2002] becaus# target objects
only involve one simple concept, say “mountains”, whereadwave a conjunctive

concept here, which is more complicated.

Table 6.6 lists the 1010-fold CV experimental results of some of the methods
developed in this thesis. Again we did not finely tune the pseameters. In the
MI logistic regression methods, we used a ridge paramet2fafboth methods. In
MI AdaBoost, we used an unpruned C4.5 tree as the base @assitl the minimal
instance number for the leaf-nodes is (again) twice the zg($8 instances). We
obtained the results in Table 6.6 using 300 iterations. Tdeelrlassifiers in the
wrapper method were configured using the default settings.alb list the best

result for the TLC algorithms [Weidmann, 2003] for comparns

For this particular dataset, the methods based on the tieleassumption may be
appropriate sometimes. Because the objects “mountairts”tdne sky” are large

objects that usually occupy the whole image, the class labah image is very
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likely to be related to the RGB values of all the blobs in tima&ge. However, if this
Is not the case for an image, the collective assumption mapesuitable. More-
over, the decision boundary in the instance space may be sopiasticated than
linear or close to linear (like quadratic) patterns. Thibesause we take the RGB
values as the attributes and the colours of other objectsbmasery similar to the
concept objects (i.e. “mountains” or “blue sky” in this cas&o discriminate the
positive and negative images, we may need more complexidedsundary pat-
terns. Therefore the TLD approach and the Ml logistic regjrsmethods, which
model, either asymptotically or exactly, linear or quadrdecision boundaries, are
not expected to give good accuracies on this task. Ml AdaBaog the wrapper
method (based on appropriate base learners) are more el may be more

suitable for this problem.

The natural candidate learning techniques for this proléetre TLC method [Wei-
dmann, 2003], because it can deal with a very general farhdgiacepts, including
conjunctive concepts. The DD algorithm (results not shown)the other hand,
cannot deal with this dataset because, although it can leae@sadl to deal with dis-

junctive concepts, itannothandle conjunctive concepts.

As expected, the best of the TLC algorithms (based on onefra-fold CV) in-
deed performs the best on this dataset. Ml AdaBoost and tapper method seem
to be better than the other methods developed in this theseuse they are able to
model more sophisticated instance-level decision boueslakVe also notice that
the result of the wrapper method is very stable on this dataBeDSimple per-
forms better than TLD and we only present the result for Tub3e. It produces
similar results as the Ml linear logistic regression methot@ihey are not good on
this task, as mentioned above, mainly because the instanelkdecision boundary

is unlikely to be linear (or close to linear), even if the eclive assumption holds.
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6.4 Conclusion

In this chapter, we have explored some practical applinatid MI learning, namely,
drug activity prediction, fruit disease prediction and ton-based image catego-
rization problems. We experimented with some of the metlumi®loped in this
thesis on the datasets related to these problems. We b#tiatvthe collective as-
sumption is widely applicable in the real world. This beliefsupported by the
empirical evidence we observed on the practical problemsudsed in this chap-

ter.
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Chapter 7
Algorithmic Detalls

In this chapter we present some algorithmic details thatareial to some of the
methods developed and discussed in this thesis. ThesedeaeBrrelate to either
the algorithms or the artificial data generation procesgolmant features of some

algorithms are also discussed.

More specifically, Section 7.1 briefly describes the numepitmization technique
used in some of the methods developed in this thesis. SetRatescribes in detail
how to generate the artificial datasets used in the previbapters. Because the
instance-based methods we developed in Chapter 4, edpéoegaM| linear logistic
regression methods, are quite good at attribute (featetegtson, we show some
more detailed results on attribute importance of the Musasids in Section 7.3. In
Section 7.4 we describe some algorithmic details of the Thpreach developed
in Chapter 5. Finally we analyze the Diverse Density [Ma®98] algorithm, and

describe what we discovered about this method in Sectian 7.5

7.1 Numeric Optimization

As already noted above, many methods in this thesis use arimuteehnique to
solve an optimization problem whenever the solution of tted[@m is not in a sim-

ple analytical form. For example, when the maximum liketiddML) method is
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used (in logistic regression and the TLD approach), we hgsuesort to numeric
optimization procedures to find the MLE. In some situatioms,may have bound
constraints for the variables, i.e. optimization w.r.t.righlesz with constraints
x > C and/orx < C for some constant’. It can be shown that transforming
such problems into unconstrained optimization problenasvairiable transforma-
tions likex = 3% + C orx = —y? + C (wherey is the new variable) may not be
appropriate [Gill, Murray and Wright, 1981]. Because thgeobve function may
not be defined outside the bound constraints, we also needhdinat does not
require to evaluate the function values there. Eventuadlychose a Quasi-Newton
optimization procedure with BFGS updates and the “activersshod” suggested
by [Gill et al., 1981] and [Gill and Murray, 1976]. It is basea the “projected
gradient method” [Gill et al., 1981; Chong adak, 1996], that is primarily used
to solve optimization problems with linear constraintsj &mat updates the orthog-
onal projection in each step according to the change of tb#/& constraints. In
the case of bound constraints, the orthogonal projectidheofjradient is very easy
to calculate. It is simply the gradients of the “free” vatibat that moment (i.e.
variables that are not at the bounds). Therefore the segrciategy we adopt is
quite similar to that of an unconstrained optimization [Disrand Schnabel, 1983].
We implemented this optimization procedure in WEKA [Witi@mnd Frank, 1999],
as the classweka. core. Opti m zati on. The details of the implementation
are described in Appendix B. This also serves as a formalrdeatation of this

optimization class.

In order to enhance the efficiency of the optimization pracedand reduce the
computational costs, we separate the variables as muchsaglg Such a sep-
aration of the variables basically divides one optimizatgyoblem into several
small sub-problems and applies the optimization procedmirreach of the sub-
problems. Hence in each (smaller) optimization problemnilimber of variables to
be searched is greatly reduced. Because we use a positingalafatrix to approx-
imate the Hessian matrix in the Quasi-Newton method, reclucif the variables
reduces sparsity of the matrix and leads to faster computatin this thesis, we

can sometimes separate the variables to make the optionzsdsier. For instance,
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when the parameters of different attributes are separalause we assume the
independence of attributes in the likelihood function, va@ conveniently divide
the likelihood function into sub-functions, usually one é&ach dimension. Each of
these sub-function only involves a few parameters, and elave to search for

the maximum of each sub-function individually, which is ashsimpler problem.

7.2 Atrtificial Data Generation and Analysis

In Chapters 4 and 5, we needed to generate some artificiadelataTo generate
these datasets, we needed techniques for generating ravattates from some
specific distributions. The standard Java library provigesvith routines to gener-
ate uniform and Gaussian variates but we may need variatesaed from other
distributions. Specifically, we needed to generate vasiat®ne dimensiohfrom

a normalized part-triangle distribution in Chapter 4, arahf an Inverse-Gamma

distribution in Chapter 5. We briefly describe the detailsehe

Recall that in Chapter 4, we specify the densityXofs a triangle distribution and
draw data points of one bag from this triangle distributiom Within the range of
the bag. Since we further normalize the density so that itss{imegrates) to one,
we need to generate variates from a normalized part-teegtigtribution. Figure 7.1
shows the two cases that can happen for this distributiprs ithe distribution if the
center a bag is outside the interyal /2, [/2] wherel is the length of the bag range
and (ii) is the distribution otherwise. The distributioncase (i) is a line distribution
whereas the distribution in case (ii) is a combination of time distributions. The
cornerstone for sampling from both distributions is a lingribution, denoted by
f(.). Suppose the line is withifu, b]. Then we first draw a point uniformly in
la,b). If pisin the interval that has greater densjty,(a + b)/2) in the case shown
in Figure 7.1(i), then we accept Otherwise we draw another uniform variatén

[0, £(%2)). If v > f(p) then we accept+b—p (i.e. we accept the point symmetric

!Because we assumed attribute independence, we generegads/for each dimension and then
combined them into a vector.

101



7.2. ARTIFICIAL DATA GENERATION AND ANALYSIS

f fA

i
i
i
i
i
i
i
i
i
i
i
i
i

|
!
!
|
|
|
!
!
|
|
|
!
Il

] | :
: I
] | :
i | !
a @bZ p b X a 0
(i (i)

Figure 7.1: Sampling from a normalized part-triangle dstiion.

top w.r.t. “T“’), otherwise we accept In such a way we can generate variates with

a probability that is equivalent to the area under the fiig.

When a bag’s center is close tp we will have the distribution shown in Fig-
ure 7.1 (ii)). We can view it as a combination of two line distiions — one part
in [a,0) and the other in0,b). We first decide which part the variate falls into,
according to the probabilities that are equivalent to tasunder the two lines.
We simply draw a uniform variate withii, 1) and if it is less than the area under
the line infa, 0), we pick this line distribution, otherwise the other part [(), b)).
For each line distribution we use the same technique as sfisduabove to draw
a random variate from it. This is how we draw data points farhelaag from the
conditional density given in Equation 4.3 in Chapter 4, wvehBr(z) is a triangle

distribution.

In the TLD method in Chapter 5, we need to genergtérom an Inverse-Gamma
distribution (parameterized by, andb,) and . from a Gaussian (parameterized
by m; andw,c?). Then we further generate a bag of instances with a Gaussian
parameterized by, ando?. There is a standard routine in Java for generating a
standard Gaussian variateUsing the transformationx o + i we can get a variate
following N(u, o?). For the Inverse-Gamma distribution @f, it means thatg(é)
follows a Chi-squared distribution with, degree of freedom (d.f.). Also note that

if X ~ Chi-squared2v) with (2v) d.f., thenY = £ ~ Gammév). Therefore we

2Note that the total area under the two lines sum to 1.
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first generate a variate ~ Gammab,/2) and then by simple transformation we

can getr; becaus€s = 2u = o} = §-.
k

Since there is no standard routine in Java to generate sth@@mma variates, we
built one from scratch. There are many methods to genermtelatd Gamma vari-
ates [Bratley, Fox and Schrage, 1983; Ahrens and Diete#;1®8frens, Kohrt and
Dieter, 1983]. We chose the one described in [Minh, 1988], iamplemented it in
weka. cor e. RandonVar i at es class, which also includes routines generating

the standard exponential and Erlang (Gamma with integ@npater) variates.

7.3 Feature Selection in the Musk Problems

First of all, note that we always base our models on certaaraptions, and feature
selection is no exception. In this section we discuss featatection based on the
instance-based methods discussed in Chapter 4 under tleete® assumptions
outlined in Chapter 3. The feature selection is based on xpb&eatory power

of the features for the instance-level class probabilitiaghis sense, the “feature
selection” discussed here is at the instance level, andiswgstion-based. Different

assumptions may lead to totally different interpretatiohthe features.

The Diverse Density [Maron, 1998] (DD) algorithm has alserbapplied for fea-

ture selection on the Musk datasets. It was recognizedhibdstaling parameters”,
one for each attribute, found by DD, indicate the importasiche corresponding
attributes — the greater the value of the scaling paramigiemore important the
corresponding attribute is. This explanation fits into oogderstanding of the radial
form of the instance-level probability function modeleddy. The (inverse of) the
scaling parameter controls the dispersion of the radidbgindity function. Intu-

itively, the larger the dispersion along one dimension, ilkee smaller the scaling
parameter, the “flatter” the class probability around 0.Bnét this attribute is less
useful for discrimination (because a flat probability fuactimplies low purity of

the classes on the two sides of the decision boundary). Ocothteary, the smaller
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the dispersion, i.e. the larger the scaling parameter, sharper” the probability
function along this specific dimension. In other words, thieension is more use-

ful for discrimination.

However, such a dispersion can be easily scaled. In the pildgipdunction for one
dimensiomxp[—“;—f)Q], if we multiply both the denominator and numerator by a
constant, the probability remains unchanged but we catrarity change the value
of the “scaling parameters. This means that if we multiplied every data point
in one dimension by an arbitrary constant and found the tiagu$ accordingly,
we could effectively manipulate the scaling parameter. rétoge it is necessary
to standardize the data before using the scaling paramesteaslirect indicator of
feature importance. Although [Maron, 1998] divided eveayadpoint (along all di-
mensions) in the Musk datasets by 100 in order to facilitageoptimization, which
happened to alleviate the scaling problem, the data poimts different dimensions
are still on different scales. Thus it may be premature teatlly use the scaling pa-

rameter values for feature selection.

Formally, in order to test the hypothesis whether one paranie significant (typ-
ically significantly different from 0), we should really firmut the sampling distri-
bution of the parameter in question and estimate its stanelaior from the data.
Then we can standardize it to test the significance. Howéver(assumed) sam-
pling distribution of the parameter concerned and its siesh@rror are not easy to
find, especially in Ml datasets. Thus we think it intuitiveuse the parameter values
found for the standardized data as an indicator. We use pipioach to assess the

feature importance in the linear logistic regression méoiethe Musk datasets.

In Figure 7.2 we show the absolute value of the relative liweafficients found by
MILogisticRegressionARITH with a ridge parameter= 2 on the Musk datasets.
The coefficients are taken as the relative values to the naXebsolute value of)
coefficient value, thus the largest is 100%. The data waglatdized using the
weighted mean and standard deviation, as described in &hapin linear logistic

models, the meaning of the coefficients of the attributesraghtforward. If we
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Figure 7.2: Relative feature importance in the Musk dagastte left plot is for
Musk1, and the right one for Musk2.
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fix the value of all dimensions but one, and plot the probghbilinction along that
one dimension, we will find the familiar shape of the sigmaidi@iverse sigmoid)
function, and the absolute value of coefficient controlsstiiapness of the function
around the value of 0.5. If the absolute value of a coeffiaié¢one attribute is high,
then the probability function is very sharp around the valti®.5. It means that
on both sides of the decision boundary, the purity of twosgass high and we can
easily separate them with this attribute, and vice versaréfbre, it is intuitive to
regard this as an indicator of the feature importance. Nuwdéih order to avoid
the scaling problem mentioned above, we use the coefficestisiated from the
standardized data (and do not include the intercept). Tdgermethod tends to
shrink the coefficients to zero, and this is what we obserfted the transformation
of the coefficients back to original scale. As can be seengur€i7.2, the relative
coefficients estimated from both datasets do not differ ashninetween attributes
as we might expect from the results presented in [Maron, 1@8though we do
observe that some attributes are much more important themsytespecially in the
Musk1 dataset. If we set a threshold for the relative coeffits to select attributes,
say 40% or 50%, we may indeed pick up only a minority of thelaites (based on

the collective assumption and the linear logistic instalegel model).

7.4 Algorithmic Details of TLD

There are three important factors in the implementatiomefiLD method devel-
oped in Chapter 5: the first is the integral in the model; tlvesd is the constrained
optimization; and the third is the numeric evaluation of @@mma function. The
second factor has already been addressed in Section 7.1eaddeuss the other
two in this section. In addition, we discuss more about therpretations of the

parameters involved in TLD.

For the specific integral calculus for Equations 5.6 and B.€hapter 5, we list
the solution in Appendix C. We then maximize the formula hasg from the

integration. However, in general, if we specify arbitrangtance and bag-level
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distributions, the integration of the instance-level paeters is really hard, if not
impossible, which may restrict the practical feasibilifytlois method. It was thus
suggested in the EB literature that an EM algorithm is usethis method [Maritz
and Lwin, 1989]. More specifically, using EM terminology, vegard the instance-
level parametef as the “unobservable data” and the bag-level paraniétas the
“observable data” in Equation 5.1 of Chapter 5. Now given ecHjt value ofd},

we have the probability of, Pr(0|63) and the “complete data” likelihood function
L(B;,0,08) = Pr(B,|0,6]) = Pr(B;]|0). Thus the integral can be regarded as
taking the expectation of the“complete data” likelihoodiétion over the “unob-
servables”, i.eEy[L(B;, 0,44 )]. This constitutes the E-step in EM and the resulting
formula of the expectation is exactly the same as the lasitifcquation 5.1. Then
we regard the “observableg? as a random variable and maximize this expected
likelihood function w.r.t. 6%, which is the M-step. Under some regularity condi-
tions, we can maximizé(B,, 6, §¥) within the expectation sign. Henegthin the
expectation signwe take a Newton step frod} to get a new valué?, that is

6V = 6¢ + E(H;")E(g;) whereH; ' is the Hessian matrix (second derivative) of
the likelihood andy;, is the Jacobian (first derivative) at the podtjt The expecta-
tion is, again, ovef and can be numerically evaluated now. This defines an ierati
solution of this maximum likelihood method, which was citegdthe well-known
original paper of the EM algorithm [Dempster et al., 1977hasearly example of
the EM algorithm.

In the TLD method we also have a Gamma function to evaluatequmaion 5.6.

More precisely, we need to evaluate:

U'((bg +n5)/2)
=TT )

Defineh = ||, ands = Y*_ log(by/2 + h — z). If n; is even,g = —s

according to the well-known identity(y + 1) = yI'(y). But if n; is odd, we have

%, thus we still have log-Gamma function to evaluate. We

used the implementation suggested by [Press, Teukolskieriieg and Flannery,

g = —s—log

1992] to evaluatéog I'(y). However, since the method we use to search for the
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Figure 7.3: Log-Likelihood function expressed via paranetand b.

minimum of the negative log-likelihood function requirégtlacobian and Hessian

2

matrix of the functior® we also need to evaluat% logT'(y) and dLyQ log'(y) in

this case. Fortunately there is an easy approximation antfArtin, 1964]:

d 1 X1 1
d—ylogF(y):—C—§+Z<z—y+i>

=1
d2 S
— logI'(y)) = — S

i=1

whereC' is Euler’s constant and is canceled out when taking diffegeras in Equa-
tion 5.6.

We would like to further analyze the model in TLD to get morsight into the
interpretation of the parameters in this method. We rasiiic discussion to one
dimension so that we can discard the subsdripthe parameters andb together
define the properties of’. The parameter, the mean ofi, is quite independent on
the other parameters whereaslepends on both the variance.oénd the (expected
value of)o2. Thus it seems that the most difficult part of the interpietatomes
from the parameters andb. If we fix the values ofw andm, and assume some

reasonable value for the sample meaand the sample varianc%éz—l, we can get a

3Note that the Quasi-Newton method we used itself does nattheeHessian matrix. We provide
the Hessian to give better solutions in case of the boundi@ints.
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log-likelihood (LL) function similar to that in Figure 7.8vhich shows the value of
the LL function we constructed associated with differedtiga ofa andb, denoted
by LL(a,b).

Although it looks flat, thereare maximal points in LL, according to the contour
plot on the a-b plane. As a matter of fact, the maximal poieensto lie on a

particular line. To explain this, note that follows an Inverse-Gamma distribution,
alternatively, (%) follows a Chi-squared distribution withdegree of freedom. Thus

the density function of? is:

(5%)"" expl— 5]

2T (b/2) o

dF(0?) =

If we calculate the mean (i.e. the first moment), it is:

N (#)b/2 expl—gr3] .
E(o )—/0 XOP) do

By settingy = a/(207), we have

1 o0 a
= —)/ Yy exp(—y)=— dy
0

INE 2y
a

00 b
= y> “exp(—y) dy
zr(g)/o )

and if0 < g # 1, we use integration by parts,

S { ! [yglexp(—y)?i"ﬂL/oooyglexp(—y)dy]}

ar(g)yle—1
a 1 by by b
= 2 — 0o — 2 — +F_
S LT I Pl — 44 el 1)
a 1 b b
= O— 5_1 — +F_
ZF(g) { % 1 [ ) exp( y)|y—>0 (2)]}

If2>1,ie.b>2, % Yexp(—y)|y—»o = 0, SOE(0”) = 7%. Otherwise, ifb < 2,
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y2~"exp(—y)]yo = oo and thusE(o2) = co. If b = 2,

2I'(3)

E(c%) = /Ooo y~ " exp(—y) dy = oo.

Therefore, ifb < 2, the distribution is proper but the mean does not exist, rotise

the mean i%.

Hence as long as the ratio@findb — 2 keeps a constant, the (expected) valueof
is the same, and so is the LL function value given other pair@mand the data. But
note that the variance of is not the same even if/ (b — 2) is a constant because
Var(o?) = 2a?/[(b — 2)%(b — 4)] provided that) > 4. That is why in Figure 7.3
the values ofi andb corresponding to the maximal LL values are not exactly linea

but very close to linear.

This analysis is useful for performing feature selectiangghe TLD method. Even
if two features have different, andb, values but similar values kf2, wy, and
my, they are still not useful for discrimination. Moreoveretharameteiw, denotes
the ratiov%%“k). GivenVar(uy), wy actually depends om, andb,. Experiments
(on the artificial data) show that if we specify an independéir-(y;) andb, > 2,
the TLD method will findwy, asVar(u) /55, which is reasonable according to

the above analysis. Howeverpif < 2, whatever TLD finds will be uninterpretable.

Unfortunately, we did find many such attributes in the Mustagdahich may be a
reason why the simplified model TLDSimple can work bettemtiaD on this
data. On the other hand, when we applied TLD on the kiwifratbdets described
in Chapter 6, we did not observe this (adverse) phenomeranalib,’'s > 2). As
aresult, TLD can be applied successfully and, as discuss€tapter 6, it actually

outperformed TLDSimple on this data.
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7.5 Algorithmic Analysis of DD

In this section we briefly describe how we can view the Divédgasity (DD) al-
gorithm [Maron, 1998] as a maximum binomial likelihood madh and how we

should interpret its parameters.

The Diverse Density (DD) method was proposed by Maron [Mal®@®8; Maron
and Lozano-Pérez, 1998] and has EM-DD [Zhang and Goldn@02]2as its suc-
cessor, which claims to be an application of the EM algoritbrthe most-likely-
cause model of the DD method. However, we think that the EMdlgorithm has
problems to find a maximum likelihood estimate (MLE), as shawAppendix D.
Thus we are strongly skeptical about the validity of EM-DB@&ution as an ML

method. We only discuss the DD algorithm here.

The basic idea of DD is to find a pointin the instance space such that as many
positive bags as possible overlap on the point but no (or f@ggtive bags cover it.
The “diverse density” of a point stands for the probability for this point to be the

“true concept”. Mathematically,
DD(x) = Pr(x =t|B{,--- ,B,By, - ,B,)

whereB is one bag. The4/—" sign indicates a bag’s class label ahi the true
concept. DD aims to “maximize this probability with respeet, to find the target
conceptc; that is most likely to agree with the data’[Maron, 1998]. &ftsome

manipulations, it is equivalent to maximizing the followiHikelihood” function

LizB)= [[ Pr@=4B") [[ Prx=1B)) (7.1)
1<i<n 1<j<m
We believe this notation is confusing and may even disghisessence of the DD
method. Hence we would like to express this method usingferdiit perspective.
As is usually done in single-instance learning, we would ti&k explicitly represent

the class labels as a varialdfe In MI, there is still aY’, not for each instance, but
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for each bag. Ingeneral = 1,2, - -- | K for K-class data but the Musk datasets are
two-class data. Here we say= 0 if the bag is negative antif it is positive. In the
above formulation this variable is disguised by the€ ‘and “—" sign and we believe
thatPr(x = t|B;") really meansr (Y = 1|B;), and likewisePr(z = t|B; ) means
Pr(Y = 0|Bj).

[Maron, 1998] proposes two approximate generative moaeisiely the noisy-or
and the most-likely-cause models, to calculBt€z = t|B;") and Pr(z = t|B;")

in practical problems. They can be described as follows:

¢ Noisy-or model: DD borrows the noisy-or model from the Bayesian net-
works’ literature. Noisy-or calculates the probabilityasf event to happen in
the face of a few causes, assuming that the probability otange failing to
trigger this event is independent of any other causes. DBrdsgan instance
as a cause and;‘being the underlying concept” as the event, hence using the

original notation

Pr(z =tB;) = H[l — Pr(z =t|Bj;)]
and

Pr(t|Bf) =1—[[1 - Pr(z = t|By)].
J

¢ Most-likely-cause model:In the most-likely-cause model, only one instance
in each bag is regarded as the cause for making a certhm“true concept”,

say, thez!" instance in the’” bag. z; is defined as
z; = argmax,,{ Pr(x = t|B;,,)}.
As before, we have the two complementary expressions as

Pr(z =1|B;) = 1 — mazx;Pr(z = 1| B;;)
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and

Pr(z = t|B}") = max;Pr(z = t|Bf}).

A well-known category of single-instance learners modelgbsterior probability
of Y given the feature dat&’, Pr(Y = k|X) (k = 1,2) directly, e.g. logistic
regression or entropy-based decision trees. Logistiessgsn models the process
that determines an instance’s class label as a one-stagewleprocess and hence
fits a one-stage binomial distribution fév (Y = k| X). It then uses the ML method
to estimate the parameters involved. According to our wtdading, DD still uses
the above single-instance paradigm. Each point (i.e. e&thnce) in the instance
space has a probability of being positive and negative andriobels the posterior
probability of Y directly. The difference is that we now have multiple ins&s

associated with one class label.

In the noisy-or model, we model the process that determime<liass label of a
bag as ann-stage Bernoulli process wherneis the number of instances inside the
bag — each one of the instances corresponds to one stageosewp knew the
probability for each instance to be positite (Y = 1|z,) (b = 1,2,---,m), then
we could first determine the class label of each instancetége$ according to its
class probability. Given this, what is the probability &df the instances (stages) to
be negative if they arendependerit This is a simple question and the solution is
[T, (1 = Pr(Y = 1|z;)). The complementary probability— [[,~,(1 — Pr(Y =
1]xp)) corresponds to the probability fat least one of therto be positive. Thisis a
probabilistic representation of the standard MI assumptiow the log-likelihood

function of this multi-stage Binomial probability is sinypl

L=> [Yig(l—][J(1=Pr(y =1|z)))+ (1=Y) log(] [(1 = Pr(Y = 1|x;)))]
B b=1 b=1
(7.2)
where there aré? bags in total. This is exactly what DD with the noisy-or model
uses. Within this multi-stage Bernoulli process, it is igfinforward to write down
other formulae if the conditions for the Ml assumption chenfpr instance, as

“a bag is positive if at least (1 < r < m) instances are positive and negative
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otherwise”, etc.

The most-likely-cause, on the other hand, selects a rease of each bag based
on Pr(Y = 1|z,). More specificallyp = argmaxye,,{Pr(Y = 1|x;)}, i.e. it

selects the instance with the highest probability to betpesin a bag. Therefore
it literally degrades a bag into one instance and the orgesiBernoulli process
is applied to determine the class label, as in the monosfcst@ase. The log-

likelihood function is now

L= Z[Y log(mazyem{Pr(Y = 1|xy)})+

(1 =Y)log(1 — mazpem{Pr(Y = 1|xp)})]

— STV log(mawpem Pr(Y = 1)) + (1 — V) log(minse, Pr(Y = 0la,))]
(7.3)

where there aré3 bags in total. This is exactly what DD with the most-likely-
cause model uses. The most-likely-cause also follows tredard Ml assumption
because, by selecting an instance in a negative bag thatdasaiximal probability
to be positive and setting that probability (via the bindmiadel) to less than 0.5, it
implies that the probability to be positive for every instamn a negative bag cannot

be greater than 0.5.

This means that DD uses the binomial probability formulatieither one stage or
multiple stage, to model the class probabilities of the balgsgeneral, we can
separate the modeling into two levels if we introduce a nefatsée denoting the
bagsB. On the bag level we always have a one-stage binomial fotroaldéor
Pr(Y|B) and on the instance level we build a relationship betweeft’| B) and
Pr(Yx|X) whereYy is an instance’s class label, which is unobservable from the

data. Mathematically, at the bag level, assuming i.i.d 8&a marginal probability

“We assume that the class labElg of the bagsB; are independent and identically distributed
(i.i.d) according to a binomial (or multinomial in a multiass problem) distribution.

114



CHAPTER 7. ALGORITHMIC DETAILS

of Y is a one-stage binomial distribution,
Pr(Y|B;) = 07 (1—6)' "™

wheref = Pr(Y = 1|B;). Normally we have a parametric model féwith a
parameter vectof estimated using the data, i.8.= ¢(3, B;) in this case. Thus
we can regard the marginal probability Bfas being parameterized by In other

words, the likelihood function fof is

L(6|YB) :PT(YBU"' :YBN|BI:"' :BNaB)
=TI 9(8. B0 (1 - g(8. B))' "™,

1<k<N

and, assuming positive bags anéh negative bags,

1<i<n 1<j<m

(7.4)

At the instance level, we build a relationship betwéenY|B;) and Pr(Yx|X})
with Xy, € By, i.e. Pr(Y|Biy) = h(Pr(Yx|Xwu)) = 9(8,B:;) = h(f(8, Xw))
where f(3, X)) = Pr(Yx|Xy). In the noisy-or modelha(f) = 1 — [*,(1 —
f(B, Xk). In the most-likely-cause modely f) = max;{f(5, Xx)}. One could
plug in otherh(.)'s based on other assumptions believed to be true but theného
likelihood function in Equation 7.4 remains unchanged. sTip¢rspective on DD

establishes its relationship with the Ml methods describedhapter 4.

The likelihood in Equation 7.4 is a generalization of Eqolasi 7.2 and 7.3, and it is
identical to the “likelihood” function in Equation 7.1 thaias given in the original
description of DD. Now if we think off as fixed and estimate by maximizing the
likelihood function, it is easily recognized that DD is silyja maximum binomial

likelihood method.

The last question to ask is how to establish an exact formuaHhe instance-
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level probability Pr(Yx|Xy) = f(5, Xw). [Maron, 1998] proposed three ways.
One is to usexxp(—|| X — p||?) where||.|| is the Euclidean norm angl is the
parameter standing for a point in the instance space. Thendegne is to use
exp(—||s(Xy — p)||?) wheres is a diagonal matrix with diagonal elements that are
the scaling parameters for the different dimensions. Therteodel is a variation
of the second one that models a set of disjunctive conceat$, ef which is the
same as the second model. As a matter of fact, suppose we keesvareD con-
cepts to be found. Then the DD method would héveets of parameters (instead
of one set of parameters), v,,--- ,vp, Wherev,, d = 1,2,---, D, is a vector
of parameters consisting of both point and scaling paramébteand s) for each
dimension. In the process of searching for the values opjlseands,’s, the prob-
ability of each.X;, is associated with only one concept — the one that makes

to have the highesPr(Y = 1|Xj;). In other wordsPr(Y = 1|Xy,) is calculated

aSmaxd{exp(—HSd(Xkl - pd)||2}-

The formulation of Pr(Yx|Xy) (f(8, Xx)) is in a radial (i.e. “Gaussian-like”)
form, with a center o, and a dispersion oi in thet"” dimension (where, is the
t'" diagonal element ig). The closer an instance istpthe higher its probability to
be positive. And the dispersion determines the decisiomthary of the classifica-
tion, i.e. the threshold of wheRr(Yx|X},) = 0.5. Itis similar to the axis-parallel
hyper-rectangle (APR) [Dietterich et al., 1997] on the amete level. But APR is
not differentiable. In order to make it differentiable, DBsentially models the
(instance-level) decision boundary as an axis-parallpehellipse (APE) instead
of a hyper-rectangle. The diameter of this APE along#he&limension is@.
For example, in a two-dimensional space, the decision banyrid

(21 —p1)® | (22— p2)?
log 2 + log 2

2 2
571 55

=1

exp[—si(z1 — p1)? — s3(22 — p2)’] = 0.5 =

wherepy, ps, s1, So are the parameters to be estimated. We know this is an ellipse

centered ap; andp,, and being®s? and'®2 in diameter along the two axes. Any
1 2

point within this ellipse should be classified as positivaislis exactly the second

formulation in DD described above. The third model in DD misdrore than one
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APE usingf (3, Xi). No matter what the formulation fgi(3, X},) is, note tha3 is
an instance-level parameter and DD aims to “recover” thiante-level probability
in a structured form under the MI assumption. Hence we caigthe DD method

as an instance-based approach.

Nonetheless, DD interprets the parameter vecturely as a scaling parameter and
does not recognize it as related to the diameter of the @edmiundary. As a result

it never uses it for classifying a new exemplar (bag). Irsteties to find new axis-
parallel thresholds via an additional time-consuming roation procedure. We
regard this as unnecessary because the instance-levaliitybhas already been
recovered (parameterized pyands) and why not use it? We hence suggest that all
the parameters are simply plugged into the noisy-or (or #ikeslty-cause) model to
calculate the binomial probability dfg . for a new bagB,..,. The classification

is made depending on whether this probability is greatem th&. We have done
some experiments with DD based on the noisy-or model butowttkearching for
the threshold (i.e. using 0.5 as the threshold) and foundttiea10 runs of 10-
fold cross validation (CV) accuracy of the DD method is 8%4371.40% on the
Musk1 data and 83.24%2.29% on the Musk2 data. These are very similar to the
best results reported when searching for the threshold;hwdme88.9% on Muskl1
data anc®2.5% on Musk?2 dat&, but the computational expense is greatly reduced.
The misunderstanding of the parametenay have also compromised the feature

selection in DD, which was discussed in Section 7.3.

Finally we discuss the optimization problem in the ML methodD. There are
no difficulties to numerically maximize the “likelihood” fiction with the noisy-or
model. L in Equation 7.2 can be maximized directly via a numeric oation

procedure. But in the most-likely-cause model, therenate functions in the like-
lihood of Equation 7.3, which makes it not differentiablehel“softmax” function
is used in DD, which is the standard way to make#ther function differentiable.

The EM-DD method [Zhang and Goldman, 2002] was proposed éocowme the

SBecause [Maron, 1998] did not report how many runs of 10-@Wiwere used, and neither the
standard deviation of the accuracies, we cannot do a signifiest to see whether the differences
are significant.
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difficulty of non-differentiability and to make this modeldter. However, as shown

in Appendix D, it has problems to find the MLE.

Even with the noisy-or model, DD still has a difficult globadtonization to solve
due to the radial form oPr(Yx|X},;). The usual way to tackle the global optimiza-
tion problem is to try different initial values when searaiifor the optimal value
of the variables. [Maron, 1998] proposed a strategy to seatching with the value
of every instance within all the positive bags. However ftiategy is computation-
ally too expensive to be practical, especially on large skttalike Musk2. [Maron,
1998] also mentioned that, theoretically, to start fromrgvastance within one
positive bag can be enough to approximately find the poirit tiie¢ highest diverse
density. We thus adopt the latter strategy in our implententaf DD (in theM
package, as described in Appendix A). More precisely, wegulaup the positive
bag(s) with the largest size (we picked all of them if there rmiore than one), and
tried every instance within the bag(s) as the start valudefsearch. In fact we
observed that this strategy gives a higher accuracy thasttagegy that starts with
instances’ values from all the positive bags on the Muska.deiowever, the im-
provement proposed in Section 4.6 of Chapter 4, namely togghthe formulation

of Pr(Yx|Xy), can help avoid this inconvenience in the optimization pssc

In summary, we recognize DD as a parametric method that heesaximum bino-
mial likelihood method to recover the instance-level plmliy function in an APE
form based on the MI assumption. Therefore it is a memberefARPR-like + Ml

assumption” family.
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Chapter 8

Conclusions and Future Work

The approach adopted in this thesis is a “conservative” ortee sense that it is
similar to existing methods of multiple instance learnimduch of the work is an
extension or a result derived from the statistical intesdren of current methods in
either single-instance or Ml learning. Although some newrWdthods have been
described in this thesis, we basically adopted a theotgimapective similar to
that of the current methods. Hence much of the richness omtlléple instance
problems is left to be explored. In this chapter, we first saripe what has been
done in this thesis. Then we propose what could be done to systematically

explore Ml learning in a statistical classification context

8.1 Conclusions

In this thesis, we first presented a framework for Ml learn@ged on which we
summarized Ml methods published in the literature (ChapjerWe defined two
main categories of MI methods: instance-based and methdatd approaches.
While instance-based methods focus on modeling the cladspility of each in-
stance and then combine the instance-level probabilitkesbiag-level ones, meta-
data-based methods extract metadata from each bag and thedeletadata di-
rectly. Note that in the instance-based methods, the caatibmof the instance-

level predictions into bag-level ones requires some assang
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The standard assumption that can be found in the literasuiteei Ml assumption.
We proposed a new assumption instead of the MI assumptiooadiadi it the “col-

lective assumption”. We also explained that some of theeoctiil methods have
implicitly used this assumption. Under the collective asption, we developed
new methods that fall into two categories: bag-conditicarad group-conditional

approaches.

A bag-conditional approach models the probability of a<lgisen a bag of. in-
stancesPr(Y| Xy, - - -, X,,) (or some transformation of the probability). Under the
collective assumption we can model it as some funcfiojof the point-conditional

probability Pr(Y|X) (or a transformation of this probability), i.e.

Pr(Y|Xy,---,X,) = fI[Pr(Y|X;)],i=1,--- ,n.

Because many single-instance learners méd€l’| X) (or a transformation of it),
we can either wrap around them (Chapter 3) or upgrade theapt€h4) to enable

them to deal with Ml data. The resulting methods are instdrased MI learners.

A group-conditional approach models the probability dgnsi a bag ofn instances
given a class, i.e. Pr(X;,---,X,|Y), and then calculate®r (Y| Xy, -+, X,)

based onPr(Xy,---, X,|Y) and Bayes'’ rule. It is not obvious how to model the
density Pr(Xy,---, X,,|Y) directly. Under the collective assumption, we could
have simply assumed, - -- , X,, are from the same density. However, the gen-

erative model would have been too simple to solve real-wprtitblems. Instead,
we assumed that all instances from the same bag are from riiee density while
different bags correspond to different (instance-levebgities. We then related the
parameters of these densities to one another by using a-tigigbution (or bag-
level distribution) on the parameters. This resulted in@atevel distribution (TLD)
solution (Chapter 5) to Ml learning. This is essentially aadata-based approach.
We discovered that this approach is an application of theitapBayes method

from statistics to the Ml classification problem.
Then we explored some practical applications of Ml learntrghe drug activity
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prediction, fruit disease prediction and content-baseabencategorization (Chap-
ter 6). We also performed some experiments on datasets frese practical do-
mains and found that the methods developed in this thesisarpetitive with

published methods.

Finally we presented some important algorithmic detailganmethods discussed
in this thesis (Chapter 7). These include numeric optinoratchniques, artificial
data generation details, feature selection on the Muslksdegtaalgorithmic details

of the TLD method, and the analysis of the DD algorithm [Marb®98].

As a by-product of this thesis, we also discovered the aatiip between Ml learn-
ing and the meta-analysis problem in statistics (SectiérirbChapter 5), notified
some errors in some of the current Ml methods (Appendix D) iamalemented

some numeric procedures for the WEKA workbench [Witten anahk, 1999]

(Chapter 7 and Appendix B).

8.2 Future Work

MI learning differs from single-instance learning in twoyga (1) it has multiple
instances in an example, and (2) only one class label is widslerin the data for
each bag of instances. Although the name “multiple instas®ems to denote only
the first property, it has become a convention in Ml learningt tboth should be
satisfied. Let us factorize these two ways into two stepsclvimay help us see a

direction for future work on Ml learning with a statisticatspective.

Learning problems with multiple instances per bag

First, let us consider a problem simpler than the Ml problewe-have multiple in-
stances in an example, but each instance has its own cladsltabther words, we

construct the data as in single-instance learning, addiegnaore attribute named

121



8.2. FUTURE WORK

“Bag ID” that indicates which bag an instance is from. Atiegtime, a new bag of
instances is given but each instance is to be classifiedithdilly. The reader might
think that this is an uninteresting problem because we capjiy single-instance
learners directly to solve this problem by deleting the “B@t However, this line

of thinking may not be true. If the fact that some instancesfaom the same bag
indeed provides us with some additional information abbairtclass labelsione

of the single-instance learners can perform well on thidlemm because they all

ignore this extra information that implicitly resides irettata.

For example, suppose the posterior (class) probabilitpolfiénstance is dominated
by some parametet, Pr(Y'|X, ), whereX includes all the attributesxceptthe
“Bag ID” attribute. Now supposg changes from bag to bag, following a specific
distribution. Then we havg;, for each instance in the first bag and can generate
its instances’ class labels accordingRe(Y'| X, 3,), (. for another bag, generating
its instances’ class labels based Bn(Y'|X, 3,), etc. Obviously normal single-
instance learners are not expected to deal with this dataulsecthey cannot use
the information provided by the “Bag ID” attribute. Sincestinformation resides

in the data, there is room to develop a new family of methodschn fully utilize

the bag information. Such new methods may outperform nogimglle-instance

learners on this type of problems.

We call such a problem a “semi-MI” problem because the seguagerty of Mi
problems is not satisfied. As shown above, much of the richnésnultiple in-
stances learning already appears in semi-MI problems wiwgreal single-instance
learning cannot be applied. When classifying a test ingtamsemi-MI learning,
we can regard the rest of the instances within the same bag ‘@naironment”
for the classification. Even if the instance to be classifiedsdnot change, the
classification may change if the “environment” (i.e. othestances within the bag)

changes. Ignoring this contextual information may not gimeaccurate prediction.

Nevertheless Ml research seems to regard the semi-MI probkethe same set-

ting as normal single-instance learning, and semi-MI| goid do not appear to
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be actively researched. Almost all of the current Ml methadd the methods in
this thesis (except the TLD approach) hangt thoroughly and systematically ex-
plored the extra information provided purely from the seftof multiple instances
per example. Therefore we regard this as the first step téetddkproblems in the

future.

Note that even when there is only one instance per bag, ieeddta degenerates
into mono-instance data, methods that treat instancesgendmted bags may be
totally different from normal single-instance learneriefe is some work in normal
single-instance learning that already has such a perspe@&uch methods can be

shown to have some asymptotic optimal properties [Wang aitteiy2002].

The setting of multiple instances per bag is not restriocbeithé classification case.
It can be extended naturally to regression and clusterihg;twnay be more com-
monly seen in practical problems. Therefore we stronglyoadte the study of

“semi-MI” problems in the MI domain.

One class label for a bag

Once we have fully explored the richness of semi-MI problewes can consider
MI problems where the instances’ labels are not observaliés can be, for ex-

ample, based on some assumptions that relate a bag’s diassddhe correspond-
ing instances’ class labels. The Ml assumption has beentedidy many current

(instance-based) MI methods, and the collective assumg@dopted in this thesis.
Future work is likely to focus on these assumptions made sti#y of assumptions
can follow two directions: (1) the creation and formulataimew assumptions, and

(2) the interpretation and assessment of existing assangpti

Note that the categorization in our framework described laZer 2 is actually
highly related to the assumptions. In instance-based rdsthtbe underlying as-
sumptions are purely related to the (unobservable) inst&raass labels, while

in metadata-based methods the assumptions are, partlyeby, sssociated with
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the attribute values of the instances. Note that if the apsioms are no longer
associated with the instances’ (latent) class labels (asetadata-based methods’
generative models), the problemnset related to either single-instance or semi-Mi
learning because, whether the instances’ class labels@xi®t, the bags’ class
labels are generated by some procedimmegevantto the instances’ labels. In the
future, more assumptions can be created within this framewvdsually the domain
knowledge gives rise to these assumptions, and the assamapésideutsidethe
data. The prediction could benefit from incorporating soorents of background
knowledge. A common way to incorporate background knowdgdgo formulate

it mathematically in the model, thus we are typically intesl in the exact formu-

lation of the assumptions involved.

The second avenue of future work regarding assumptions €do assess and in-
terpret existing assumptions, using both domain knowleatye data. Currently
the assessment of the validity of the assumptions on a Spdatiaset is performed
via prediction accuracy on the data. However, there is arila sometimes. On
the one hand, methods based on seemingly sound domain ldgevieay not per-

form well on corresponding datasets. On the other hand, adstthat perform

well on practical datasets may be based on some assumptiwsewnterpretation
in the corresponding domain is not straightforward. Theeeive need to acquire
both strong background knowledge and modeling skills tty fuhderstand some
assumptions. Such efforts may lead to breakthroughs inrtderstanding of the

domain and in the understanding of the learning algorithms.

Applications

We expect that multiple instance learning will keep atiragtesearchers, mainly
due to its prospective applications in various areas. Hewene of the biggest
obstacles is the lack of fielded applications and publichilable datasets. More M
datasets and practical applications would stimulate rekea real world problems

for Ml learning. In fact, we observed that there are manysittain which instances
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are grouped into “bags” while each instance has its own d¢¢dmd. Hence “semi-
MI” learning may actually be more promising in terms of apptions in the real

world.

On the whole, we regard research to Ml learning as still irrédy stages. Much
work on algorithm development, property analysis and jpraktpplications re-

mains to be done.
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Appendix A

Java Classes for M| Learning

We have developed a multiple instance package using thepdageamming lan-
guage for this project. A schematic description is shownigufe A.1. This pack-
age is directly derived or modified from the correspondingesin the WEKA
workbench [Witten and Frank, 1999We put the programs for the MI experiment
environment and MI methods directly into the package, some artificial data gen-
eration procedures into thd . dat a sub-package, and some data visualization
tools into theM . vi sual i ze sub-package. Although the documentations of the

programs are self-explanatory, we briefly describe sombkehtin the following.

A.1 The “MI” Package

We first developed an experiment environment for Ml learpmgich includes eval-

uation tools, some interfaces and related classes. Sorhe ofdsses are:
e M. M Eval uati on : A bag-level evaluation environment for M| algo-
rithms.

e M . Exenpl ar : The class for storing an exemplar, or a bag. Each exemplar

has multiple instances but only one class label.

1As a matter of fact, we copied some of the source codes fronVEKA files.
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SV

(Ml algorithms  and MI.data Ml.visualize
experimental environ- _ o
ment) (Ml data generation (Ml data visualization

procedures) tools)

Figure A.1: A schematic description of the MI package.

e M . Exenpl ar s : The class holding a set of exemplars.

e M .M assifier : Aninterface for any MI classifier that can provide a

prediction given a test exemplar.

e M.MDistributionC assifier : An interface for any Ml classi-
fier that can provide a class distribution given a test examplt extends
M.MC assifier.

All the MI methods developed in this thesis as well as somerdthi methods are

implemented in thé&1 package. More precisely, they are:

e M. M W apper : The wrapper method described in Chapter 3.

e M. M LRGEOM: MiLogisticRegressionGEOM described in Chapter 4.

e M . M LRARI TH: MILogisticRegressionARITH described in Chapter 4.

e M. M Boost : Ml AdaBoost described in Chapter 4.

e M. TLD: TLD described in Chapter 5.

e M. TLDSi npl e : TLDSimple described in Chapter 5.

e M . DD : The Diverse Density algorithm with the noisy-or model [Mday
1998] that looks for one target concept. Details are desdrnb Chapter 7.
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A.2 The “Ml.data” Package

The sub-packagkl . dat a includes the classes that generate the artificial datasets

used in this thesis:

e M . data. M Dat aPopul ati on: This class uses the population version

of the generative models described in Chapter 3 (not usddgnrtesis).

e M. dat a. M Dat aSanpl e : This class implements the sample version of
the generative models described in Chapter 3. The artitiai@ generated by
this procedure is used in Chapters 3 and 4, with differemhédations of the
density of the feature variabl€, Pr(X).

e M . dat a. TLDDat a : This class generates the data according to what the
method “TLD” models. In particular, given the parametersvialed by the
user, it first generates the variance of a bagccording to an Inverse-Gamma
distribution parameterized by the user parameters and &aa of that bag:
based on a Gaussian distribution parameterized with thepasametersn,

w and the generated varianeé (i.e. generatg: from N (m,wo?)). Finally,
it generates a bag of instances according to a Gaussian @@razad by
andco?. The datasets generated by this class are used to show ithatést

properties of TLD in Chapter 5.

e M . dat a. TLDSi npl eDat a : This class generates the data that fits what
the method “TLDSimple” models. The details of the data gatien process
and the generated data are shown in Chapter 5. The geneedtestis are

used to show the estimation properties of TLDSimple.

e M .data. BagStats : This is a class written by Nils Weidmann, with
some functionality added by myself, to summarize bag intdrom for a

dataset. It was used for the descriptions of the dataseteaptér 6.
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A.3 The “Ml.visualize” Package

In the sub-package ol . vi sual i ze, we developed some visualization tools to
visualize Ml datasets. The key clasdMs. vi sual i ze. M Expl or er , in which
we implemented a data plot and a distribution plot for MI data. The data plot is
used to provide a 2D visualization of a dataset, with the “B2igof each instance
clearly specified. Some modifications of this plot were use@hapters 3, 4 and
5 to illustrate the artificial datasets. The distributiontgk trying to capture the
distributional properties within each bag, if possible.usht draws a distribution
per bag using a kernel density approach. This type of plot masused in this

thesis.
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Appendix B

weka.core.Optimization

This appendix serves as a documentation ofwth&a. core. Opti m zati on
class. Interested readers or users of this class may fincedezigtion here helpful

to understand the algorithm.

In brief, the strategy we used is a “Quasi-Newton methoddbaseprojected gra-
dients”, which is primarily used to solve optimization pleins subject to linear

inequality constraints. The details of the method are desdrin the following.

First of all, let us introduce the Newton method to solve acamstrained opti-
mization problem. We shall convince ourselves, without@firthat the following
procedures can find at least a local minimum if the objectivefion is smooth.
The rigorous proof can be found in various optimization ®étke [Chong and

Zak, 1996], [Gill et al., 1981], [Dennis and Schnabel, 19&3¢.

1. Initialization. Set iteration counter k=0, get initighvable valuesg,, cal-
culate the Jacobian (gradient) vecgprand the Hessian (second derivative)

matrix Hy usingxg.
2. Checkgy. If it converges to 0, then STOP.

3. Solve for the search directialy, Hydy = —gy. Alternatively this step can

be expressed ak, = —H " 'gi

10ne can easily get the update in Step 4 below by Taylor sexigansion to the second order
from xy.
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4. Take a step to get new variable valugs ;. Normally, this is done as one
Newton steply, however, when the variable values are far from the function
minimum, one Newton step may not guarantee a decrease objbetive
function even iidy is a descent direction. Thus we are looking for a multiplier
a such thatv = argmin(f(xx + ady)) wheref(.) is the objective function
to be minimized. The search faris carried out using a line search and once

itisdonexy ;1 = xx + ady.

5. Calculate the new gradient vectgg,,; and the new Hessian matrbly ., 4

uSiNgxy 1.

6. Set k=k+1. Go to 2.

As a conventiongly is often referred to as “newton direction” or simply “dirgxt”,
a as “step length”, and\x = ady as “newton step” or simply “step”. We adopt

these terms here.

Note that in Step 4 above, we search for the exact value thiat minimizes the
objective function. Such a line search is called an “exawt Bearch”, which is
computationally expensive. It was recommended that onlglaevof« that can
lead to a sufficient decrease in the objective function iglede In other words,
an “inexact line search” is preferable in practice and morapgutational resources
should be put into searching for the valuexahstead ofx [Dennis and Schnabel,
1983; Press et al., 1992]. Thus we use an inexact line seatelacktracking and
polynomial interpolations [Dennis and Schnabel, 1983sfm et al., 1992] in our

project.

Now we carry on with Quasi-Newton methods. The idea of Qd&esiAon methods
is notto use the Hessian matrix because it is expensive to evaodtsometimes it
Is not even available. Instead a symmetric positive defmaérix, sayB, is used to
approximate the Hessian (or the inverse of the Hessian). rAatter of fact, it can
be shown no matter what matrix is used, as long as it is synmpaisitive definite,

and an appropriate update of the matrix is taken in eachiberghe search result
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will be the same! [Gill et al., 1981] Thus the key issue is howpdate this matrix
B. One of the most famous methods is a variable metric methiteticd8royden-
Fletcher-Goldfarb-Shanno”(BFGS) algorithm, which usear&k two modification
of the oldB. There are, of course, many other update methods, but itepasted
that BFGS method works better with the inexact line searandd this method is
preferred in practice. In summary, the only difference lestwthe Quasi-Newton
method and the Newton method conceBhandH. Hence the major modifications
of the above algorithm concern Step 5. A Quasi-Newton algariusing BFGS

updates can be described as follows:

1. Initialization. Set iteration counter k=0, get initighvable valuesg,, cal-
culate the Jacobian (gradient) vecgprusingxg, and initialize a symmetric

positive definite matrixBy.
2. Checkgy. If it converges to 0, then STOP.

3. Solve for the search directiah, Bxdx = —gy. Alternatively this step can

be expressed ak = —By 'gk.
4. Search fory using a line search and set,; = xx + ady.

5. Calculate the gradient vectgy, ;1 usingxy ;. SetAx, = xi 1 — x, and

Agr = gkr1 — Bk- 1he BFGS update is:

AgkAng BkAXkAXkTBk
AngAXk AXkTBkAXk

Bk+1 - Bk +

6. Set k=k+1. Go to 2.

Before we move on to the optimization with bound constraititsre are some de-

tails to be elaborated here.

First of all, if we apply the Sherman-Morrison formula [ClypandZak, 1996] to
By twice in Step 5B, 1, is readily available and in the next iteration Step 3 is
easy to carry out. Nevertheless, we wilit adopt this strategy because of a minor

but important practical issue involved.
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Since the whole algorithm depends on the positive defin#epeoperty of the ma-
trix B (otherwise the search direction will be wrong, and it caretakuch much
longer to find the right direction and the target!), it woulkel ¢pood to keep the pos-
itive definiteness during all iterations. But there are twses where the update in

Step 5 can result in a non-positive-defiride

First, the hereditary positive-definiteness is theoréficuaranteed ifiAg, " Ax; >

0 and this condition can be ensured in an exact line searchdtail., 1981]. When
using an inexact line search, apart from the sufficient fonctiecrease criterion,
we should also impose this second condition on it. Thus waaanse the line
search in [Press et al., 1992], instead we use the “modifiedcskarch” described in

[Dennis and Schnabel, 1983] in Step 4.

Second, even if the hereditary positive-definiteness isréteally guaranteed, the
matrix B can still lose positive-definiteness during the update dueunding errors
when the matrix is nearly singular, which are not uncommapratctice. Therefore
we keep a Cholesky factorization Bfduring the iterationsB = LDL” whereL is
the lower triangle matrix anB is a diagonal matrix. The positive definitenes®of
can be guaranteed if the diagonal elemen® @ire all positive. If the resulting ma-
trix after a low rank update is theoretically positive deaBnithere exist algorithms
that avoid rounding errors during the updates and ensutelhie diagonal ele-
ments ofD are positive [Gill, Golub, Murray and Saunders, 1974; Gadf 1976].
This factorized version of the BFGS updates is the reasonwehglo not usés, "

in Step 3 — because with a Cholesky factorization, the eqo®i.d, = —gj can

be solved inO(N?) time (whereN is the number of variables) using forward and
backward substitution, and henBg* is no longer needed. The reader might notice
that the BFGS update formula in Step 5 is not convenient ithelesky factoriza-
tion of By is involved. However, using the fact thB Ax, = aBydy = —agx,

we can simplify the formula to:

AgkAng . gkng

B =B
ot kT AgiTAx,  gkldk

134



APPENDIX B. WEKA.CORE.OPTIMIZATION

Note that this involves two rank one modifications, and theffitments >

0 andﬁ < 0 respectively. Hence the first update is a positive rank omkigp
and the second one a negative rank one update. There is ardinkdwo modifi-

cation algorithm [Goldfarb, 1976], but for simplicity we ptemented two rank one
modifications using the C1 algorithm in [Gill et al., 1974} the former update and
the C2 algorithm, also in [Gill et al., 1974], for the lattemedo Note that all these

algorithms have) (N?) complexity.

In summary, we use a factorized version of the Quasi-Newtethad to avoid the
rounding errors and achieve positive-definitenesBafuring updates. Note that
the total complexity of using Cholesky factorization(@§N?). If we did not use
it, the computational cost would still b@(N?) due to the matrix multiplication.

Therefore there is hardly additional expense for computihglesky factorization.

Finally, we reach the topic of optimization subject to bowadstraints. We adopt
basically the same strategy as described in [Gill and Muf@y6] and [Gill et al.,

1981]. Itis fairly similar to the above unconstrained opaation method.

First we consider the optimization subject to linear equalonstraintsAx = b. It
is an easy problem because it can actually be cast as an wratoed optimization
problem with a reduced dimensionality. A common method taesthis problem
is the “projected gradient method”, in which the above QNmivton method with
BFGS updates remains virtually unchanged. We simply repllae gradient vector
g and the matrixB by projected versionZg and Z"BZ respectively, wher&
IS a projection matrix. There are various methods to calelaand usually the
orthogonal projection oA (in the constraints) is taken [Chong aBdk, 1996; Gill
et al., 1981]. Particularly if the constraints are boundstmaints, it is typically
easy to calculate because some variables become constanti® anot affect the
objective function any more. The projection mat#éxs thus simply a vector with

entries of 1 for “free” (i.e. not in the constraints) variabland Os otherwise.

Next let us go further into the problem of optimization swbje linear inequality

constraintsAx > b. There are several options to solve this kind of problems but
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we are interested in the one(s) that does not allow varidblezke values over the
bounds, because in our case the objective function is notaetethere. Hence we
use the “active set method”, which has this essential fedtill et al., 1981]. The
idea of the “active set method” is to check the search stepch &eration such that,
if some variables are about to violate the constraints etlcesstraints become the
“active set” of constraints. Then, in later iterations, tise projected gradient and
the projected Hessian (& in the Quasi-Newton case) corresponding to the inactive
constraints to perform further steps. We will not dig deeptg this method because
in our case (i.e. for bound constraints), the task is esfhgeasy. In each iteration
in the above Quasi-Newton method with BFGS updates, we gitegst whether
a search step can cause a variable to go beyond the corrésgpdizdind. If this
occurs, we “fix” this variable, i.e. treat it as a constantatel iterations, and use
only the “free” variables to carry out the search. Thus thexmzodification in the
above algorithm is in the line search in Step 4. We should nsgpaer bound for
« for all possible variables. The upper boundrim(”id;fi) (whereb; is the bound
constraint for the'” variablex;) if the directiond; of z; is an infeasible direction
(i.e. if d; < 0). This means that we always calculate the maximal step hetgit
doesnot violate any of the inactive constraints and set this as thpeupound for
the trial. Therefore this line search is called “safegudide search”. This method
can be readily extended to the case of two-sided bound ecomistri.e.u > x > 1,

which is now in the implementation in WEKA.

Last but not least, there is a natural question to be askeddig our method: “will
any ‘fixed’ variables be released some time? If so, when am®horhe answer is
certainly “yes”. In our strategy, we only check the pos#ipif releasing fixed vari-
ables when the convergence of the gradient is detected.aftribment, we verify
both the first and second order estimates of the Lagrangephens of all the fixed
variables (where the function implementing the secondvdévees are provided by
the user). If they are consistent with each other, we redrdécond order estimate
as a valid one and check whether it is negative. The negati¥ia valid Lagrange
multiplier indicates non-optimality, hence the corresgiog variables can be made

“free”. If any fixed variables are to be released, then weqmigjhe gradient and the
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Hessian back to the corresponding higher dimensions,p@ate the corresponding
entries ing andB (basically set them to the initial state for these origiyndlixed”
variables). Nonetheless, if the user does not provide ttenskderivative’,we only

use the first order estimate of the Lagrange multiplier.

The above is a description of what we have done for the opéitioz subject to
bound constraints. For completeness, we write down the &lggdrithm in the
following, although it is basically just a repetition of tlaove description. Note
we use the superscript “FREE” to indicate a “projected” sectr matrix below (i.e.

they only have entries corresponding to tree variables).

1. Initialization. Set iteration counter k=0, get initighvable valuesg,, cal-
culate the Jacobian (gradient) vecggrusingx, and compute the Cholesky
factorization of a symmetric positive definite matBy using a lower triangle

unit matrixLg and a diagonal matrii,.

2. Checkgy. If it converges to 0, then test whether any fixed (or boundi} va
ables can be released from their constraints using botraficssecond order

estimates of the Lagrange multipliers.

3. If no variable can be released, then STOP, otherwiseselki® variables and
add corresponding entries i " #F (set to the bound valuegg, " #¥F (set
to the gradient values at the bound valuds), **”, andD,/" " (if the j*
variable is to be released, we ¢gtandd;; to 1 and the other entries ji{"

row/column to 0).

4. Solve for the search directiah " **” using backward and forward substitu-

FREEI)kFREE(LkFREE)TdkFREE2: FREE

ﬁon,Lk —8k

5. Cast an upper bound @enand search for the best value®filong the direc-

FREE

tion dy using a safeguarded inexact line search with backtrackalg a

polynomial interpolation. Sety“*” = x, REF 4 ad, " HPP.

2|t is often the case because one of the reasons why peopleai€riasi-Newton method is that
they do not need to provide the Hessian matrix.
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6. If any variable is “fixed” at its bound constraint, delefedorresponding en-

tries inXkFREE, ngREE’ LkFREE, andeFREE.

7. Calculate the gradient vectgg 1 "2FF usingxy 1" #7F. SetAx, [ RFF =
X1 P REE _ x FREE gnd Ag FREE — g, FREE _ o FREE  Then the

update is:

FREE FREE FREENT FREE{y. FREE(y FREE\T
L1 D1 (Lit1 )" =Ly Dy (Lk )

AngREE (AngREE)T

(AngREE)TAXkFREE
ngREE (ngREE)T

(ngREE)TdkFREE

We use the aforementioned C1 and C2 algorithms to performptates.

8. Setk=k+1. GO TO 2.
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Appendix C

Fun with Integrals

This Appendix is about the detailed derivation of the finalagpns for both TLD
and TLDSimple in Chapter 5.

C.1 Integrationin TLD

As discussed based on Equations 5.3, 5.4 and the second brfeino Chapter 5,

ik = /JFOO/J“)O 271'0 —n;/2 exp [ szk + nj(fjk B /“Lk)Z]
J 20,%

b1 (e —my)?
29— by +3 ap + ~———+
ak (62 exp [ —— ] } dpy do?.

(mwi)T (br/2) 207,
Re-arranging it, we get

bk

+00 400 a2 _bptn+3 a
-] { : (o) (o)
(27w, )T (by /2) T

1
exp < - 2 [wk)S]?k; + nwi(Tj, — ,Ulc)2 + (g — mk)2]) d iy daz,
Zwkak
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Since

- N;WET i + My 2
[wiSi + (@ — ) + (e — )] = (14 njwe) | 1o — W

wknj(fjk — mk)Q + wkSJQk(l + n]-wk)

1+ n;j W ’

we can further re-arrange the above equation as

by

+00 p+o00 a,? _ bpt+n;+3 Qg
B[ { : (o) exp(— )
0 J-oo | 2727 \/(2mwy)T(bg/2) Tk

1 (T — my)® + S5(1 4 njwy) (pu, — My,)? )
— W= T g, d
20.]% [ 1+ njwy ]) exp [ 2V, ] Hi A0y,

exp(—

. 7. 2 - - -
whereM;, = %ﬁﬁ“ andVj, = 575~ Using the identity

]dl*bk:]-a

+o0o ) — M 2
[ emveplte 20

o0

we integrate oufi,

“+o00 2 bp+n;+3
- { e () exp(— 5 )
ETT) 20'2
0 272/ (2mwyg)T(be/2) k

1 (T —me)?+ 5?2 (1+nw 2
exp(— 5 2[ i (Tjn k) ]k( J k)]> o WkO daz.
Oy 1+ n;j Wi 1+ n;jWg

Now we sety = ;% and re-arrange again:
k

+o0 za_(nj"‘Q)/Q bytn 42
B = k 2 exp(—«o do?
ik /0 {w/? T njka(bk/2)y p(—ay) ¢ doy

wherear = [(1 + njwy)(ay + S3,) + nj(Tjr — my)?]/ [ax(1 4+ njwi)]. Because
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2 2 -2 _ bp4n;
o) = g—; = doj, = —%y~* dy, we sets = “-~ and get

’ ai”m B—1
- Trexp(—ao d
/4_00 71'"]'/2 1+ n]ka(bk/Z)y Xp( y) Y

+oo a}:nj/2 51
— “rexp(—a d
/0 71'"]'/2 1+ n]ka(bk/Z)y Xp( y) Y

Sincel'(8) = [" e~"#~" dt, substituting witht = ay, we get the well-known
(

0
T +

identity; 12 = [ ¢—ayy8-1 4y [Artin, 1964]. Hence the solution becomes:
b 0

a,"°T(8)
7"i/2, /1 + njwpalT(by/2)
al? (1 + njwy,) O D/20 (b 4 nj /2)

bp.+mn;
k J n;
J bk

[(1 + njwk)(ak + S?k) + nj(fjk — mk)ﬂ 2 71'71—‘(3)

Bjk =

This is the formula we got in Equation 5.6.

C.2 Integration in TLDSimple

In TLDSimple, we regard; as fixed and estimate it directly from the data. There-
fore in Equation 5.2 we plug in a Gaussian-Gaussian fornauathat is, thez

of each bag has the sampling distribution of a Gauss\, Z—E) (according to
Central Limit Theorem), ang,. further follows a Gaussian parameterizedry

andwy, N (my,w;). o} is now fixed. Hence Equation 5.6 now becomes:

5, :/_+00{ 1 exp [_ (T _ggﬂk)2] ( 1 exp [_ M] } .

< |\ fordd o) V) 2

Re-arranging it, we have

:/_0:0{7(2;‘/]6) exp [_ (e Z—Viwlc) ]

(27rwknj + 013)_1/2 exp [—”j(fjk - mk)Z] } e

1
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whereMj, = MUZitM qnqys . We9E \wjith the identity

a%—knjwk U'E_-I-nju)k

oo 1 (e — My)?

. me"p[_ 2V,

we integrate out,, and get

] duk =1,

. 2\ —1/2 (7 2
wpn; + o n; (T m
o Lk k) p[ (T k)]

By — (2
ik n; 2(wgnj + o)

This is Equation 5.9 from Chapter 5.
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Appendix D
Comments on EM-DD

EM-DD [Zhang and Goldman, 2002] was proposed to overcomaliffieulty of
the optimization problem required to find the maximum likelbd estimate (MLE)
of the instance-level class probability parameters in Bigdensity (DD) [Maron,
1998]. Note that there are two approximate generative nsqateiposed in DD to
construct the bag-level class probability from the instalevel ones — the noisy-
or and the most-likely-cause model. In the noisy-or modedre is no difficulty
in optimizing the objective (log-likelihood) function wikiin the most-likely-cause
model, the objective function is not differentiable be@akthe “maximum” func-
tions involved. DD used the “softmax” function to approxit@the maximum func-
tion in order to facilitate gradient-based optimizatiorhigh is a standard way to
solve non-differentiable optimization problems. EM-DD, the other hand, claims
to use an application of the EM algorithm [Dempster et al77]90 circumvent
the difficulty. Therefore EM-DD provides no improvement ¢ tmodeling pro-
cess in DD, only on the optimization process. Since DD usesstAndard way
to treat non-differentiable optimization problems [Legeral, 1989] and was sup-
posed to find the MLE, why can EM-DD be such an improvement?idéss we
have not found any case in the literature that EM can simplifon-differentiable
log-likelihood function in conjunction with a gradientd®d optimization method
(i.e. a Newton-type method) in the “M-step”. Can the staddaM algorithm be
applied to a non-differentiable log-likelihood functiohese questions lead us to

be skeptical about the validity of EM-DD.
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D.1. THE LOG-LIKELIHOOD FUNCTION

In the following we first analyze the log-likelihood funatidhat EM-DD aims to
maximize, then we present the EM-DD algorithm and an ilatste example to see
whether it can work on this function. Finally we point out astake in the “proof”
for EM-DD. We can also show that in general the monotonicitiglel-DD cannot

be proved, thus theoretically EM-DD is not guaranteed tokwor

D.1 The Log-likelihood Function

EM-DD is based on the log-likelihood function constructedhvthe most-likely-

cause model (Equation 7.3 in Chapter 7):

L= Z[Y log(mazpem { Pr(Y = 1|zp)})+

(1 =Y)log(1 — mazpem{Pr(Y = 1|xp)})]

= Z[Y log(mazpe, Pr(Y = 1|xp)) + (1 — Y) log(minye, Pr(Y = 0|xy))]
B
(D.1)

The parameter vecto? determines our estimate é&fr(Y = 1|z;,), and we seek
the value of$ that maximizesl, i.e. Sy g. Given a certain value of, we se-
lect one instance from each bag (the “most-likely-causstaince) to construct the
log-likelihood. In the process of searching 61z, when the parameter value
changes, the “most-likely-cause” instance to be selectag atso change. Thus,
the log-likelihood function may suddenly change forms whies parameter value
changes. More specifically, if we arbitrarily pick up onetarsce from each bag and
construct the log-likelihood function, we have one posslbb-likelihood function
— we call it one “component function”. If we change the ingt@ann one bag,
we obtain another, different (unless the changed instasmdegentical to the old
one) component function. Obviously, if there areinstances in thé* bag, s,
instances in th@"? bag, ...,s,,., instances in thém + n)"* bag, then there are

S1 X 89 X -+ X $pu, COMponent functions available (whereandn are the number
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Figure D.1: A possible Figure D.2: An illustrative example of the log-
component function in one likelihood function in DD using the most-likely-cause
dimension. model.

of positive and negative bags respectively). And the trgelikelihood function is
constructed usingomeof these component functioAswWhen the parameter value
falls into one range in the domain ¢f the log-likelihood function is in the form
of a certain component function. And if it falls into anotlange, then it becomes
another component function. Although the true log-likebld function changes its
form for different domains of, it is continuous at the point when the form of the
function changes from one component function to anotheailmez of the Euclidean
distance [, norm) used in the radial (or Gaussian-like) formulationfof(Y'| X),

but it is no longer differentiable at that point.

In Figure D.1 we show the shape of a part of one possible coemgdanction in
one dimension, i.e. we only have one attribute and fix theevaluthe “scaling
parameter” in DD. Thus the only variable here is the “poirmapaeter”. Note that
there are three local maxima in this function, and the fumcis not continuous be-
cause the log-likelihood is undefined in two locations (attjuthe parameter value
in any location is equal to the attribute value of an instan@negative bag). This

is due to the radial formulation d?r (Y| X') in DD. The usual way in both DD and

'Note that not all of the component functions are used becsmuse instances (from different
bags) will never be picked up simultaneously for any valug.of
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D.1. THE LOG-LIKELIHOOD FUNCTION

EM-DD to tackle this problem is to search for the paramet&rasusing (different)
multiple starts, in the hope that one start point can leattéogtobal maximum of
the function. From now on, we assume that we can always findgilbbal) max-
imum for each component function, perhaps using multipdetst Regardless of
the local maxima, the shape of a component function is rqughédratic. This is
reasonable because at least for the parts of the functicstramted using only the
positive instances (in this appendix we say an instance ios#tipe bag a “posi-
tive instance” and an instance in a negative bag a “negaistamce”), it is exactly
quadratic. The negative instances only make the functiscoditinuous, as shown
in the function’s shoulders in Figure D.1 (actually the figdioes not show clearly
the discontinuity of the function — there should be no miniman the shoulders,

instead the function value goes-tax there).

If we ignore the (small) local maxima in each of the comporenttions, we can il-
lustrate (a part of) the true likelihood function using aesVike those in Figure D.2.
Note that this figure does not rigorously describe the sidnadf maximizing the
log-likelihood in Equation D.1. It only serves an illusicat. However, it does give
us an idea when EM-DD can work and when it cannot. Althoughesdetails may
not be accurate (like the coordinates or the exact shape abimponent functions),

these factors do not affect the key ideas of the illustration

There are three component functions in the plot, denoted, l2yahd 3. The dot-
ted lines are the part of the component functioosused in the true log-likelihood
function. The solid line plots the true function. Again wdyoplot, in one dimen-
sion, the “point parameter” against the log-likelihood eEhapes of the component
functions are different because we also incorporate a figégevof the “scaling pa-
rameter” for each one of the component functions (i.e. dbfie component func-
tions have different “scaling parameter” values). Themefave simplify the opti-
mization procedure as a “steepest descent” method whergstéiXithe “scaling
parameter” and search for the best “point parameter”, tixahdi “point parameter”
and search for the optimal “scaling parameter”. In Figur, e do not show how

to search for the value of “scaling parameter”. We assumiewbare “given” the
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optimal “scaling parameter” value every time we start deiaig for the “point pa-
rameter”. We also assume that the “steepest descent” proceddes equally well
as the Quasi-Newton method used in DD and EM-DD on this sippmblem. We
need to make all these assumptions to simplify the situamhenable us to see the

essence of this (extremely complicated) optimization (@b

Note that the true function value can $mallerthan the values of component func-
tion. To see why, let us look back to the Equation D.1. Giverxedfiparameter
By, picking an instance with the maximal value Bf (Y = 1|X, ;) in a positive
bag must result in a greater log-likelihood value than pigkip another instances
in the same bag. On the contrary, selecting an instance hatimaximal value of
Pr(Y = 1|X, gy) (i.e. the minimal value o’r(Y" = 0|X, /3;)) in a negativebag
has to result in @mallerlog-likelihood value than selecting other instances in the
same bag. Therefore the true log-likelihood function igwofiot the one with the
greatest value among all the component functions, asriitest in Figure D.2, as

long as there is more than one instance in each negative bag.

In this example, the true function shifts between the cormeptsitwice, and the
shifting points are indicated by small triangles antl ‘and “Y” respectively. At

both points the log-likelihood function is still increagibut the newly-shifted com-
ponent function value is less than the value of the old corapbfunction. Shifting

between components means that we should change the irstaneach bag that
construct the log-likelihood function. In the new componfmction, a new set
of instances, one from each bag, are picked up. Obvious$yttbe function is
non-differentiable at the two points when it shifts compatse but it has a local

maximum at point D.
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D.2 The EM-DD Algorithm

Now we briefly sketch the EM-DD algorithm [Zhang and Goldm2002]. EM-DD

iterates with initial values of, sayf,, and the initial log-likelihood as

Ly = Z log[mazpem{Pr(Y = 1|z, Bo) }+

1<i<n

> logl — mazyen{Pr(Y = 1|z, 5y)}].

1<j<m

Then it cycles between the E-step and M-step as follows cotivergence (Suppose

this is thep!” iteration):

e E-step: find the instance in each bag that has the grei€3t| X, 5,), say,

the z!" instance in theé' bag.

e M-step: search for

By = argmaz{ Y log[Pr(Y = 1|z, B)]+

1<i<n

Z log[(1 — Pr(Y = 1|z;.,, 8))]}

1<j<m

where there are positive bags and: negative bags. And then compute

Lp+1 — Z log[mabem{PT(Y = 1|xb7ﬁp+1)}]+

1<i<n

Z log[l — mazpem{Pr(Y = 1|zp, Bps1)}]

1<j<m

The convergence test is performed before each E-step @uregith M-step) via the

comparison of the values of the log-likelihood functibpandL,, ;.

To give an illustration, we first apply the above algorithnthe artificial example
shown in Figure D.2 and see what it could find given “A” as thertstalue fors.

This example is deliberately set up so that we may see bo#saasvhich EM-
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DD can work (in the first iteration) and cannot work (in the @ad iteration). As
mentioned before we assume the search procedure used in-$epNk “steepest
descent” — one member of the gradient descent family. AlghoEM-DD used
a Quasi-Newton method, this does not matter much in thislsisipuation. Note
that the “M-step” in EM-DD corresponds to searching for thaximum inone
componentunction because the instance to be selected in each bagdks Wihich

means it often goeabovethe true log-likelihood function in “M-step”.

In the E-step in the first iteration, EM-DD selects the setnstances as required.
This is to say it finds the correct component function — thevewvith the solid
line. Then it calculated., as the function value at the point A. In the M-step it
finds point B’ as the maximum of Component 3 (assuming it alsdsfthe optimal
“scaling parameters” in the M-step, which determine thg@sttd next componentin
Figure D.2). When it computes the log-likelihodgl, it will necessarily “return” to
the true log-likelihood function. In other words, it pickp the new set of instances
according to3; (the X-axis coordinate of B/B’). As a result; is the value of the

log-likelihood function at point B.

In the second iteration, EM-DD first comparkesandL,, i.e. the function values at
A and B. In this case, it indeed finds a better value of the patamso it continues.
In the E-step it picks an instance in each bag according tdrhe corresponding
new component function is Component 1. In the M-step it wiltlfthe maximum

of Component 1 at point C’. Then it calculatég as the true function value. This

is actually point C on Component 2.

In the third iteration, EM-DD first compards, and L, i.e. the function values at
B and C. However, this time it finds that it cannot increaseftimetion value so
the algorithm stops and point B is returned as the solutien, EM-DD will not
be able to find point D which is the true maximum of the log4ifkeod function.
If it kept searching, it would have found D. Nonetheless, dathis, it must break
the convergence test, which is a crucial part of the proofonivergence for EM-

DD [Zhang and Goldman, 2002]. Without this convergence EdtDD is not
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an application of EM but simply a stochastic searching mefioo a combinatoric

optimization problem.

Therefore, even if we assume that the global maximum in eaatponent func-
tion can be found, EM-DD cannot find the maximum of the loglikood func-
tion. Note that we have simplified this example a lot — the otdye function is
concave and in one dimension in this case. In reality, siheeetare many more
dimensions (typically EM-DD searches fox266 parameters simultaneously on
the Musk datasets), the situation is much more complicdtad the above exam-
ple. For instance, saddle points can occur, which is a cas&M cannot deal with

anyway [McLachlan and Krishnan, 1996].

Note that in the above example, we required EM-DD to starhfpmint A. With a
different start point for the search f@r it may find the maximum point D. Indeed,
we observed that EM-DD depends heavily on multiple starhisoinot only for
searching for the global maximum but also for improving tharaes to find just
a local maximum. In other words, it really relies on good luakher than strong

theoretical justifications.

D.3 Theoretical Considerations

In spite of the above counter-example, it is not sufficiertdovince ourselves that
EM-DD is not a valid algorithm because it was proved in [Zhamgl Goldman,
2002] that this algorithm will converge to a local maximunhigproof is analogous
to that in the EM algorithm. However, it turns out that the tiogportant part was

missed.

The Expectation-Maximization (EM) algorithm [Dempsteragt 1977] was pro-
posed to facilitate the maximum likelihood method when “aservable” data is
involved in the log-likelihood function. It is discusseddetail in a variety of ar-

ticles or books [Bilmes, 1997; McLachlan and Krishnan, J9%ince the M-step
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necessarily increases the log-likelihood function, the fa& proving the mono-
tonicity of the EM algorithm is to prove that the E-step casoahcrease the log-
likelihood. The property of an increase in the log-likeliabfunction in the E-step
is a consequence of Jensen’s inequality and the concavityedbgarithmic func-
tion [Dempster et al., 1977; McLachlan and Krishnan, 199®jat is why EM can
also be viewed as a “Maximum-Maximum” procedure [McLachéard Krishnan,
1996; Hastie et al., 2001]. Nonetheless, [Zhang and Gold2@02] does not pro-
vide proof of the increase of the log-likelihood function Equation D.1) in the
E-step at all. Instead it uses the convergence test (of atmg the algorithm if
L, > L,.,) to prevent the log-likelihood from decreasing. Note tmasiandard
EM, since the E-step also increases the log-likelihood¢ctherergence test is only

to test whethel, = L,,, involving no “>" sign.

The reason why the proof used in the standard EM algorithns do¢ apply to
EM-DD is due to the special property of the “unobservablgaddan EM-DD, the
unobservable data is, an index for the bag that indicates which instance should
be used in the log-likelihood function. This variakldas not quite “unobservable”
in this case because for each valuepit is fixed (i.e. no probability distribution is
needed) and observable in the data, although for differ@oeg off its value also
changes. Therefore if one insists on regarding it as a |ateble in EM, then

given a certain parameter valgg, the probability ofz; is

1 if z; = argmaxPr(Y = 1z, 5y)
Pr(zl6,) = _ ’
0 otherwise
This probability function is very unusual, and still invely amax function, which
is not smooth, and thus the proof in EM cannot apply to the egadog-likelihood

function in the E-step in EM-DD.

As a matter of fact, as shown in Section D.2, in the E-step of[EM the log-
likelihood is very likely todecreasgin which case the algorithm has to stop. Note
that in Equation D.1, in a negative bags- maxye,, { Pr(Y = 1|z})} is equivalent

to minpem {1l — Pr(Y = 1|zy)} = mingen{Pr(Y = 0lx;)}. Hence in the E-
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step, changing any negative instances to construct a nelikildhood function will
alwaysdecreasehe log-likelihood function. In the extreme, if in one Eqstehe
positive instances involved in the current log-likelihdadction remain unchanged,
but some negative instances are changed, then the nevk&ipiod is guaranteed
to be lower than the current one. In that case, it may be premad halt the
algorithm, as shown in the example in Section D.2. Therefargike EM, the
monotonicity of the E-step in EM-DD cannot be proved in gahewhich is the

major theoretical flaw in EM-DD.

The fact that the log-likelihood fails to increase “aftee first several iterations” for
EM-DD [Zhang and Goldman, 2002] is probably due to a decr@asiee E-step.
Moreover, it was also observed that “it is often beneficialtow NLDD (the neg-
ative log-likelihood of Diverse Density) to increase sligh[Zhang and Goldman,
2002]. We believe this is not solely because of local maxionaninima for the neg-
ative log-likelihood) — it may also allow the algorithm toéq@ searching, where it
would otherwise fail. Indeed, without the convergence nexment of EM (that
EM-DD cannot achieve), we can develop an algorithm that erguteed to find
the solution of the MLE — we simply search for the global maximin each of
the component functions, either in a systematic (say, bramd-bound) or stochas-
tic manner, and pick up the parameter with the highest “ttag-likelihood. This
amounts to searching in all the component functions inwblaehe log-likelihood
function. However this has nothing to do with EM. And the cartgtional expense

varies greatly from case to case. The worst-case cost cewery high.

The problem with EM-DD lies in the objective of using a normgeddient-based EM
to solve a non-differentiable optimization problem. Naffedtentiable optimization
has been a hot research topic in the optimization domairofoedime [Lemaréchal,
1989]. One of the methods to deal with non-differentiablgrojzation problem is
to transform the objective function into a differentiablmétion. The method used
in DD to substitute the “max” function with the “softmax” fation is of this kind.
Although the “softmax” does not accurately transform thection, it approximates

the true log-likelihood function precisely enough. In tlzese shown in Figure D.2,
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it will approximate the true function using a differentiadnction, hence this dif-
ferentiable function will look similar to the true log-likkood function and has a
maximum point close enough to point D. Using a normal Newtigre method we

can easily find this point.

In summary, because DD uses a sound maximization procecheras EM-DD’s

approach may not find an MLE, we are inclined to believe thestantin [Maron,

1998] that DD with the most-likely-cause model actuallyfpans worse than with
the noisy-or model on the Musk datasets, and we are skepticalt the good re-
sults reported for EM-DD [Zhang and Goldman, 2002] (esplsoi@nsidering that

there are also problems with the evaluation procedure ug&thang and Goldman,
2002)).

153



D.3. THEORETICAL CONSIDERATIONS

154



BIBLIOGRAPHY

Bibliography

Ahrens, J. and Dieter, U. [1974]. Computer methods for samggtom Gamma,
Beta, Poisson and Binomial distributionGomputing (12), 223-246.

Ahrens, J., Kohrt, K. and Dieter, U. [1983]. Algorithm 59@nspling from Gamma
and Poisson distribution&CM Transactions on Mathematical Softwa9¢€2),

255-257.

Artin, E. [1964]. The Gamma FunctionNew York, NY: Holt, Rinehart and Win-
ston. Translated by M. Butler.

Auer, P. [1997]. On learning from multiple instance exarsplempirical evalua-
tion of a theoretical approach. Proceedings of the Fourteenth International
Conference on Machine Learnin@p. 21-29). San Francisco, CA: Morgan

Kaufmann.

Bilmes, J. [1997]. A gentle tutorial of the EM algorithm artd application to pa-
rameter estimation for Gaussian mixture and hidden Markodets. Technical

Report ICSI-TR-97-021, University of Berkeley.
Blake, C. and Merz, C. [1998]. UCI repository of machine feag databases.

Blum, A. and Kalai, A. [1998]. A note on learning from multgplnstance examples.
Machine Learning30(1), 23-30.

Bratley, P., Fox, B. and Schrage, L. [1983]Guide to SimulationNew York, NY:
Springer-Verlag.

155



BIBLIOGRAPHY

Breiman, L. [1996]. Bagging predictordachine Learning24(2), 123-140.

le Cessie, S. and van Houwelingen, J. [1992]. Ridge estimatdogistic regres-
sion. Applied Statistics41(1), 191-201.

Chevaleyre, Y. and Zucker, J.-D. [2000]. Solving multipistance and multiple-
part learning problems with decision trees and decisioestuApplication to

the mutagenesis problem. Internal Report, University oisF&a

Chevaleyre, Y. and Zucker, J.-D. [2001]. A framework forrteag rules from
multiple instance data. IRroceedings of the Twelveth European Conference

on Machine Learningpp. 49-60). Berlin: Springer-Verlag.

Chong, E. andZak, S. [1996]. An Introduction to Optimization New York, NY:
John Wiley & Sons, Inc.

Cohen, W. [1995]. Fast effective rule induction. Pmoceedings of the Twelveth
International Conference on Machine Learnifap. 115-123). San Francisco,

CA: Morgan Kaufmann.

Dempster, A., Laird, N. and Rubin, D. [1977]. Maximum likebod from incom-
plete data via the EM algorithndournal of the Royal Statistics Society, Series
B, 39(1) 1-38.

Dennis, J. and Schnabel, R. [1983Jumerical Methods for Unconstrained Opti-

mization and Nonlinear Equation&nglewood Cliffs, NJ: Prentice-Hall, Inc.

Devroye, L., Gyorfi, L. and Lugosi, G. [1996]A Probabilistic Theory of Pattern
Recognition New York, NY: Springer-Verlag.

Dietterich, T. and Bakiri, G. [1995]. Solving multiclasslaing problems via error-

correcting output codegdournal Artificial Intelligence ResearcR, 263—-286.

Dietterich, T., Lathrop, R. and Lozano-Pérez, T. [1997]olvihg the multiple-
instance problem with the axis-parallel rectanghesificial Intelligence 89(1-
2), 31-71.

156



BIBLIOGRAPHY

Frank, E. and Witten, I. [1998]. Generating accurate rute sahout global opti-
mization. InProceedings of the Fifteenth International Conference @thMne

Learning(pp. 144-151). San Francisco, CA: Morgan Kaufmann.

Frank, E. and Witten, 1. [1999]. Making better use of globacdetization. In
Proceedings of the Sixteenth International Conference achihe Learning

(pp. 115-123). San Francisco, CA: Morgan Kaufmann.

Frank, E. and Xu, X. [2003]. Applying propositional leargialgorithms to multi-
instance data. Working Paper 06/03, Department of Com@dence, Uni-

versity of Waikato, New Zealand.

Freund, Y. and Schapire, R. [1996]. Experiments with a nessbog algorithm. In
Proceedings of the Thirteenth International Conferencé/athine Learning

(pp. 148-156). San Francisco, CA: Morgan Kauffman.

Friedman, J., Hastie, T. and Tibshirani, R. [2000]. Additlagistic regression, a
statistical view of boosting (with discussionfpnnals of Statistics28, 307—

337.

Gartner, T., Flach, P., Kowalczyk, A. and Smola, A. [200Rjulti-instance ker-
nels. InProceedings of the Nineteenth International Conferenc&lachine

Learning(pp. 179-186). San Francisco, CA: Morgan Kaufmann.

Gill, P., Golub, G., Murray, W. and Saunders, M. [1974]. Mtk for modifying
matrix factorizationsMathematics of Computatiop8(126) 505-535.

Gill, P. and Murray, W. [1976]. Minimization subject to bailsion the variables.
Technical Report NPL Report NAC-72, National Physical Liatbory.

Gill, P., Murray, W. and Wright, M. [1981]. Practical Optimization London:

Academic Press.

Goldfarb, D. [1976]. Factorized variable metric methodsdaconstrained opti-

mization. Mathematics of ComputatioB80(136) 796-811.

157



BIBLIOGRAPHY

Hastie, T., Tibshirani, R. and Friedman, J. [2001IThe Elements of Statistical
Learning : Data mining, Inference, and PredictioNew York, NY: Springer-

Verlag.

John, G. and Langley, P. [1995]. Estimating continuougitiistions in Bayesian
classifiers. IProceedings of the Eleventh Conference on Uncertainty i Ar

ficial Intelligence(pp. 338-345). San Mateo, CA: Morgan Kaufmann.

Lemaréchal, C. [1989]. Nondifferentiable optimization Nemhauser, R. Kan and
Todd (Eds.),Optimization Volume 1 ofHandbooks in Operations Research
and Management Scienahapter VI, (pp. 529-569). Amsterdam: North-
Holland.

Long, P. and Tan, L. [1998]. PAC learning axis-aligned regtas with respect
to product distribution from multiple-instance examplédachine Learning
30(2), 7-21.

Maritz, J. and Lwin, T. [1989] Empirical Bayes Method& Ed.). London: Chap-

man and Hall.

Maron, O. [1998]. Learning from Ambiguity PhD thesis, Massachusetts Institute
of Technology, United States.

Maron, O. and Lozano-Pérez, T. [1998]. A framework for npld-instance learn-
ing. In Advances in Neural Information Processing Systeigpp. 570-576).
Cambridge, MA: MIT Press.

McLachlan, G. [1992] Discriminant Analysis and Statistical Pattern Recogmitio
New York, NY: John Wiley & Sons, Inc.

McLachlan, G. and Krishnan, T. [1996T.he EM Algorithm and Extensiondlew
York, NY: John Wiley & Sons, Inc.

Minh, D. [1988]. Generating Gamma variatééCM Transactions on Mathematical
Software4(3), 261-266.

158



BIBLIOGRAPHY

von Mises, R. [1943]. On the correct use of Bayes’ formilae Annals of Mathe-

matical Statistics13, 156—165.

Nadeau, C. and Bengio, Y. [1999]. Inference for the gereatibn error. InAd-
vanced in Neural Information Processing Syste¥Wmdume 12 (pp. 307-313).
Cambridge, MA: MIT Press.

O’Hagan, A. [1994]Bayesian Inferencé/olume 2B ofKendall's Advanced Theory

of Statistics London: Edward Arnold.

Platt, J. [1998]. Fast training of support vector machingagisequential minimal
optimization. In B. Scholkopf, C. Burges and A. Smola (Edadvances in
Kernel Methods—Support Vector Learnitigambridge, MA: MIT Press.

Press, W., Teukolsky, S., Vetterling, W. and Flannery, B9]. Numerical Recipes
in C: The Art of Scientific Computi{@ Ed.). Cambridge, England: Cambridge

University Press.

Quinlan, J.[1993]C4.5: Programs for Machine Learningan Mateo, CA: Morgan

Kaufmann.

Ramon, J. and Raedt, L. D. [2000]. Multi instance neural oeta. InAttribute-
Value and Relational Learning: Crossing the Boundarié&§orkshop at the

Seventeenth International Conference on Machine Learning

Ruffo, G. [2001]. Learning Single and Multiple Instance Decision Trees fonCo
puter Security ApplicationdPhD thesis, Universita di Torino, Italy.

Srinivasan, A., Muggleton, S., King, R. and Sternberg, M94]. Mutagenesis:
ILP experiments in a non-determinate biological domain.Ptaceedings of
the Fourth International Inductive Logic Programming Wehlop (pp. 161—
174).

Stuart, A., Ord, J. and Arnold, S. [1999}lassical Inference and the Linear Model
Volume 2A ofKendall's Advanced Theory of Statistidcsondon: Arnold.

159



BIBLIOGRAPHY

Vapnik, V. [2000]. The Nature of Statistical Learning TheoryNew York, NY:
Springer-Verlag.

Wang, J. and Zucker, J.-D. [2000]. Solving the multipletamee problem: a lazy
learning approach. IRroceedings of the Seventeenth International Conference
on Machine Learningpp. 1119-1134). San Francisco, CA: Morgan Kauf-

mann.

Wang, Y. and Witten, I. [2002]. Modeling for optimal probhtyi prediction. In
Proceedings of the Nineteenth International Conferenc®aohine Learning

(pp. 650—-657). San Francisco, CA: Morgan Kaufmann.

Weidmann, N. [2003]. Two-level classification for genezai multi-instance data.

Master’s thesis, Albert-Ludwigs-Universitat Freibu@grmany.

Weidmann, N., Frank, E. and Pfahringer, B. [2003]. A twoeleearning method
for generalized multi-instance problems. Mnoceedings of the Fourteenth

European Conference on Machine LearniAg be published.

Witten, I. and Frank, E. [1999Data Mining: practical machine learning tools and

techniques with Java implementatioS&n Francisco, CA: Morgan Kaufmann.

Zhang, Q. and Goldman, S. [2002]. EM-DD: An improved mu#hnhstance learn-
ing technique. IfProceedings of the 2001 Neural Information Processing Sys-
tems (NIPS) Conferendpp. 1073-1080). Cambridge, MA: MIT Press.

Zhang, Q., Goldman, S., Yu, W. and Fritts, J. [2002]. Conteaged image retrieval
using multiple-instance learning. Iroceedings of the Nineteenth Interna-
tional Conference on Machine Learnirfgp. 682—689). San Francisco, CA:

Morgan Kaufmann.

160



