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By using the irreducible decomposition on the two-dimensional light cone, the mixed basis matrix
elements for the three subgroup reductions of SO(2,1) are calculated. These matrix elements are
calculated for the principal series only and can be expressed in terms of well-known special
functions. As a consequence of appearing in this context, some new properties of these special

functions are given.

INTRODUCTION

An intensive study of the representation theory of SU(1,
1), the covering group of SO(2, 1), has been carried out in
recent years1-3, The basic motivation for such a study
stems from the crossed channel partial wave expansion
of the scattering amplitude in which the group SO(2, 1)
figures as the "little group" of the spacelike momentum
transfer3. It is also of some mathematical interest to
make such a study. In this paper we are concerned with
different ways of realizing a unitary irreducible repre-
sentation (UIR) of SO(2, 1) in terms of different subgroup
bases and how these realizations are related. The re-
presentation theory of SO(2, 1) in the compact basis
corresponding to the subgroup reduction SO(2, 1) D SO(2)
has been thoroughly examined by Bargmann4, More re-
cently the UIR's of SO(2, 1) in the noncompact basis cor-
responding to the group reduction SO(2, 1) 2 SO(1, 1) have
been studied. Mukunda®-7 has explicitly performed this
reduction for all possible UIR's of SO(2, 1) and calculated
the corresponding matrix elements. Macfadyen® has
given these matrix elements in terms of known special
functions, namely, the generalized Legendre functions of
the second kind®. The only remaining subgroup basis for
S0(2, 1) is that corresponding to the group reduction
$0(2,1) O T,. This has been partially investigated by
Vilenkin,19 who has given the matrix elements in this
basis for the principal series of SO(2,1).

In this paper we will show how by using the irreducible
decomposition of the space of square integrable functions
defined on the cone we can calculate explicit expressions
for the mixed basis matrix elements in the three sub-
group bases of SO(2,1)11, This method only enables us
to calculate matrix elements of the single valued princi-
pal series. The explicit expressions for the matrix ele-
ments which we obtain can be expressed in terms of well-
known special functions. As a consequence of appearing
in this context, we use standard techniques to derive
some new properties of these functions.

The content of the paper is arranged as follows;In Sec. 1
we review the irreducible decomposition on the cone and
give the expansions on the cone corresponding to the
three subgroup reductions of SO(2, 1). In Sec.2 we carry
out the explicit calculation of the mixed basis matrix
elements.

1. THE IRREDUCIBLE DECOMPOSITION ON THE CONE

The problem we are concerned with here is the decom-
position into irreducible components of the representa-
tion

Ug) &) = 1&g)

of functions |£) defined on the two-dimensional cone

[€,6] = 63— £3 —£3 =0

(1.1)
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(the reason for the notation |{) will become clear sub-
sequently). This problem is well known12.13 to be
equivalent to the decomposition of |£) into homogeneous
components. This is achieved via the formulas

L resiogy,
|£>~—2m, [ |85 0)do, (1.2)
509 = ltgyto-tat. (1.3)

[Comment: The notation we will use is essentially that of
Vilenkinl0 with the exception that the generators of the
pure Lorentz transformations along the ¢ axis (i = 1, 2)
are denoted by N; and the generator of the rotation sub-
group is M,. The corresponding one-parameter sub-
groups are then z,(a) = e"i®, r4(d) = €"3%,] Group-
theoretically, (1. 2) is an expansion of |£) in terms of the
irreducible representations

l=06—ip, €=0 (—o<p<x) (1.4)
of SO(2,1). We recover the unitary case when 6 = — 3.
This corresponds to the single valued principal series
of SO(2, 1). Each irreducible component as expected
satisfies the homogeneity condition

|¢a; 0) = a°|£;0), areal. (1. 5)
The expansion (1. 2) is made explicit by choosing a co-
ordinate system for £. The three expansions are now
given for the coordinate systems corresponding to the
three subgroup reductions of SO(2,1). (i) The spherical
or S system corresponding to the subgroup reduction
S0(2,1) © SO(2). Here £ is parametrized according to

£ = wg(1, cosp, sing), 0 <wg<o,0=¢ <27, (1.6)
From the homogeneity condition (1. 6),
£ p) = ws-@/2+irl|g; ), (.7
(Here we have introduced the notation &30y = |&;
— 14 + ip) etc.) By expanding |¢;p) in a Fourier
series according to
LN .
500 = 22 |psM) et (1.8)
M==0
the resulting S system expansion on the cone is
o0
16y = 2 [ dplpsMiwg-A/2riplgiMs, (1.9)
M=o %

(ii) The hyperbolic or H system corresponding to the
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subgroup reduction SO(2, 1) © SO(1,1). Here £ is para-
metrized according to

‘é = wy*(COShﬁi y 1: Sinhﬁi):

O<wy <w,—0 g, <o, (1.10)
and we define n = sgn§, in the H system. To write the
expansion correctly, we split |£) into two parts accord-
ing to

&)= 16, + &), (1.11)

[€),= 1€)6(x&,y).
Then from the homogeneity condition (1.6) we have
I&;p,:t) = wH*['(l/Z)ﬂ'p]lBi; p) (1_ 12)

By expanding |8, ;p) by means of a Fourier transform
according to

1B30) = [ Ip; £, 7) '™ dr, (1.13)
the resulting H system expansion on the cone is
8= [ ar [ dplps+, )@y, TP (1019)

(iii) The horospherical or HO system corresponding to
the subgroup reduction SO(2,1) > T';. Here T, is the
subgroup generated by M5 — N,. £ is parametrized
according to

£ = wg((r2 +1),(r2 —1),2r),

0<wg <oy, —w0<rlwo, (1.15)
From the homogeneity condition (1. 6) we have
[£50) = wgl@/2winlly o), (1.16)

By expanding |7, p) by means of a Fourier integral trans-
form according to

lr,p) = [ dslp,S)eis?, (1.17)
the resulting HO system expansion is
&)= [2dS [T dplp, S)wgl-/2mislgisr, (1.18)

2. CALCULATION OF THE MIXED BASIS MATRIX
ELEMENTS

We give here those mixed basis matrix elements which
are necessary in order to completely determine a matrix
element of the form (A|U(g) | B), with g a general group
element. Here |A) and |B) are basis vectors of dif-
ferent subgroup reductions of the same UIR of the princi-
pal series of SO(2, 1). The corresponding parametriza-
tion of the group element g is then of the form

g =8,08g, (2.1)

where g, and g, are the two one~parameter group ele-
ments generated by the diagonalized operators in the
bases A and B.

For the calculation of the S «» HO mixed basis matrix
elements the parametrization of g is

g= 73(¢)h1(a)p1(7)’

(M3-Ng)r

(2.2)
where p,(r) = e . For the explicit calculation of

the general mixed basis matrix element we rewrite
(1.1) in the following form:
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.[.: U(g) lp, S wE'(1/2)+ipeis,dS

o0
- Z; Ip’M)as-(l/z)ﬂ'peiMq;'
M=-

(2.3)
with
£g = wy(1, cose’, sing’).

This then gives the integral representation of the general
matrix element

@/2)+ip )
<p’1VIIU(g)lp;S) __f ( ) e”Mw'e_lsfrdY.
“E (2.4)
Because of the group parametrization (2. 2) we need only

calculate the matrix element of g = ,(a). We then have
that
Wg/wp=edr2 + e29), i’ = (r + je"9)/(r —ie 9

and the explicit expression for the mixed basis matrix
element is then

(p,M\h,(a)!p,S)

(— 1)MS-1/2
= Ta ) B2, 5 >0,
=<p9 _Mlhl(a)lpy_s>, S <0’ (2'5)

where W, (Z) is the Whittaker function as defined in
Ref. 14, The standard techniques of the infinitesimal
method now enable us to derive the raising and lowering
operators in the index M of these functions. To do this,
we use a fixed column of the mixed basis matrix ele-
ment (p,MlU(g) |p,S) as an S system basis for the UIR
l=—3%—ip, € = 0 of SO(2,1). In the parametrization
(2.2) th1s basis vector has the form
(p,M|U(g)p, S) = eiM{p,MI|h,(a) | p, S) €7, (2.6)
and the generators of SO(2, 1) are expressed as differen-
tial operators in the parameters a, ¢,7 according to

=9
3% 5

, NlizN2=e*’¢(a—iza—¢ze “a—> .
da 20 or (2.7

Then from the formulas, for the action of the generators
N, £iN,,on an S system basis?® f,, viz.,

(Ny #iNg) fiy = (~
we have on separating out the ¢ and » dependence the

well-known recurrence relations for the Whittaker func-
tions,

3+ FM) fory (2.8)

— xWyy ;%) + (zx — M)W, Lip(X) = Wiy (%), (2.9)
Wy 3 p(%) + (3x — M)Wy ;o(%)
=(z+ip —M) 3z —ip —M)Wy_y ;,(x). (2.10)

These relations are, however, known to be true for the
functions W, (Z) quite generally (i.e., with y, v, Z com~-
plex). Asa further illustration of our calculation we
write the identity

Jo ds{p, MIny(a) 0, S)<p, S|y (b) Ip,N)
=(p,Mlhy(a +b)|p,N) (2.11)

explicitly and obtain the new identity
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L4 - -~
J:) dS[WM‘ip(e‘“S)WN__ip(é‘bS) + W,M.ip(e““S)W_N'_ip(ebS)]

= 4(— 1MeNp /2040 (cosh(a + D)) (2.12)

where

Wog,i(®) = Wy (1)) T(3 — ip — M).

We note in particular that if @ = — b, the right~hand side
of this identity is $6,.y.

For the calculation of the S «» A mixed basis matrix ele-
ments, the parametrization of g is

&= 7’3(¢)h1(a)hz(3)

(remember for our choice of H system coordinates on
the cone we have diagonalized N 2). The explicit calcula~
tion is achieved by writing (1. 1) in the form

(2.13)

E [ ar vlg) lp; +, 7) wzl/Dio gires

= E ip,ﬂl}

M=

-(1/2)+z,s eimd’  (2,14)

with @y and ¢’ as in (2. 3). The integral representation
of the general matrix element is then

1 e \-@mio
(P, MU p;4,7) = — > (-j—) Mg |
i (2.15)

Because of the parametrization (2. 13) we need only cal-
culate the matrix element of g = ,{a). We then have
that

W

= cosha coshg, + sinhg,
Wy

oid' = sinha coshg, * cosha + {sinhg,
= . L4
cosha coshB, + sinha

and the explicit expression for the mixed basis matrix
element is then

o-stiman L2 — 10 —i7)
I(z —ip — M)

X @/2iP(— i sinha),

{p,MIRy(a)|p; +,T) =;—

(2.186)

where Qi {Z) is the generalized Legendre function of the
second kmd as defined by Azimov®. The other matrix
element is given by the relation

(P MIky(@) 13— ) = (= D#p, M|k (— a) [p5 +,— 7).
(2.17)
Using the infinitesimal method we may, as we did with ‘
the Whittaker functions find the raising and lowering
operators in the index M for the @,(Z) functions as

they appear in (2.16). The § system basis vector is
now, for the parametrization (2.13),

(p,M\U(g)|p; £, 7) = ei¥®{p,M|h,(a) |p; £, T) ei"B,

(2.18)
and the generators N, = N * iN, have the form
Nwem(—a—-:tztanha—a-:b_i—-—i). (2.19)
da 3¢ cosha 28

Using (2. 8) and separating out the ¢ and g8 dependence,
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1 [ ar{@s, (i sinha),

we get the new recurrence relations

(Ji — M tanhe +

(1/2)+ip(; sinha
da cosha) Qi )

=[(M + 3)2 + p2]Q{L{2)4i* (i sinha), (2.20)
(ﬁ + M tanha — ;3};) Q{L{@+r(i sinha)
= Q{L/Pye(i sinha).  (2.21)

The analogous identity to (2. 12) for the § <> H mixed basis
matrix elements is

(= 7 sinhd) + (— 1)MN

1r

X QP (i sinha) Q" (— i sinhb)]
= P{}(®+o(cosh(a + b)),

where

(2.22)

T —ip — 7

5o (i ai
Q5 ¢ sinha) = I‘(?_—-zp v

Q{1{2Mir(— i sinha)

Again the interesting case of this identity is when a =
- b,

There are two group parametrizations necessary for
the calculation of the HO <> H mixed basis matrix ele~
ments, viz.,

g = ha(Bry(a)p1(r), = -, (2.232)
g = holB)hq(a)r 5(mp 1 (7),

The explicit calculation is achieved by writing (1.1) in
the form

n=+ (2. 23b)

z} f dr U(g) lp, +, T) wl(l/Z)-np ir8,

1/2)+
= [2 aslp, $)wp P, (2.29)

with

tg=we{r2+ 1,72 —1,277.
The integral representation of the general matrix ele-
ment is then

1 W\ "2
(p,SIUE) P52, 7) = e (»-—5> e g, .

-0 \Wy

{2.25)
Because of the parametrizations (2. 23a), (2. 23b) we need
only calculate the matrix element of k,(a) for n = —and

hy(ayr g(m) for n = +. We then have that
(QS:’!WI{&} =g® COSh%ﬁi,ar' = @ tanh%ﬁi,

and the explicit expression for these matrix elements
is
{p,S|hy(a) lp; — T = (p, Slky(a)r3(m) ] p; +, T)

= 1/27 (3 e-9) CA/DipI B3 —ip — iT, § — ip + iT)e#5¢"

x yFy(3 —ip —iT,1 — 2ip, 2iSe?), (2. 26)
where
B(%,y) = D(x)T(y)/ T(x + y)
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and 11F1(b; c;z) is the confluent hypergeometric func~
tion15,

We also give here the expression for the matrix ele-
ment (p, S|k (@) p; +,7),it is

(0, SIhy(@) o3 +,7) = 4—; (— easz)-@/Dein

X [T(z —ip + in)W_;, _; ,(— 2iSe?)
+ I(3 —ip — i)W, _;,(2iSe 9], (2.27)
We also have directly from the integral representations
the asymptotic equality

(pyMlhy(@) p; £, 7) = [(p,S|hy(@)p5 %, D)]sopy,  (2.28)
which holds for large a. This is the direct analogy of a
similar relation which is known to hold for the sub-
group reductions of SO(3, 1)12,

CONCLUDING REMARKS

We have seen in this paper how the method on the cone
can be used to directly calculate the mixed basis mat-
rix elements for the principal series of SO(2, 1). The
use of this method for calculating matrix elements is
due to Verdievl5 and has been extensively used for the
subgroup reductions of SO(3, 1)12, From our calcula-
tions we can immediately find the overlap functions by
putting a = 0. These overlap functions can be used to
factorize the overlap functions of the subgroup reduc-
tions of SO(3, 1). An example of this factorization is

(I,m|t,1,s) =(J,m|+,l,m){m|s).

Here |J,m), |+, l,m),and |%,1, s) are basis vectors for
the same UIR of SO(3, 1) corresponding to the group re-
ductions SO(3, 1) O SO(3) O S0O(2), SO(3,1) D S0(2,1) O
$0(2), and SO(3,1) D SO(2,1) 2 T, respectively. The
Lorentz group labels have been suppressed in these
vectors. The matrix (m|s) is then the S=HO overlap
function which is given by (2. 5) after putting ¢ = 0.
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[Note: We have assumed here that [ is in the principal
series I = — 3 + ip, € = 0 of SO(2,1).] We intend in the
near future to make a complete study of matrixelementsin
the subgroup reductions of SO(2, 1) for all possible UIR's.
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