
WAVE ENERGY DISSIPATION BY ANISOTROPIC VISCOSITY IN MAGNETIC X-POINTS

I. J. D. Craig

Department of Mathematics, University of Waikato, Hamilton 3216, New Zealand; i.craig@waikato.ac.nz

and

Yuri E. Litvinenko

Institute for the Study of Earth, Oceans, and Space, University of New Hampshire,

Durham, NH 03824; yuri.litvinenko@unh.edu

Received 2006 December 19; accepted 2007 June 22

ABSTRACT

The viscous dissipation of axial field disturbances in planar magnetic X-points is examined. It is emphasized that
an accurate treatment requires a nonisotropic tensor viscosity whose components are governed by the local magnetic
field. Numerical solutions are constructed, which compare the buildup of viscous forces using the tensor formulation
against a simplified model based on conventional shear viscosity. The scaling of the global energy-loss rate with the
viscosity coefficient is shown to follow P� � �1/3 for both the traditional shear viscosity and the Braginskii bulk
viscosity. This suggests that viscous wave dissipation can occur quite rapidly, in a few tens of Alfvén times. The
results imply that large-scale disturbances, generated by magnetic reconnection in the solar corona, should dissipate
in a time on the order of a few minutes and significantly contribute to coronal heating.

Subject headinggs: MHD — plasmas — Sun: flares — Sun: magnetic fields

1. INTRODUCTION

The problem of heating the solar corona to multimillion-kelvin
temperatures remains a major challenge in space physics (see, e.g.,
Klimchuk 2006 for a recent review). It is generally accepted
that photospheric plasma motions increase the free energy of the
coronal magnetic field and thus provide the energy source for the
observed heating. Yet the dominant mechanism of the energy
release remains unidentified. Two basicmechanisms under consid-
eration are direct electric current heating and wave energy damp-
ing. In this paper, we consider the wave dissipation mechanism.

Although upward-propagating waves carry enough energy to
heat the corona, they are heavily damped by steep density and
temperature gradients in the chromosphere and transition region.
It is not clear what the solution to this difficulty is. Some studies
suggest that torsional Alfvén waves can be transmitted from the
photosphere to the corona efficiently enough to heat the corona
(Kudoh & Shibata 1999). Alternatively, once the energy is ac-
cumulated in stressed coronal magnetic fields in response to slowly
changing boundary conditions at the photosphere, impulsivemag-
netic reconnection can generate waves in the corona itself, elim-
inating the transmission problem (see, e.g., Sturrock 1999). In
order to develop this idea, wave energy dissipation rates in the
vicinity of magnetic reconnection sites need to be determined.
This is the goal of the present paper.

Since the classical electric resistivity is very small in the coronal
plasma, conventional resistive models for wave damping require
strongly localized electric currents. The plasma viscosity in the
corona is also small, yet typical viscous coefficients parallel to the
magnetic field exceed the resistivity coefficient bymany orders of
magnitude even when turbulent effects are taken into consider-
ation. This is why viscous dissipation is likely to be a more ef-
fectivemechanism of wave damping in the corona. The important
role of viscosity in a wide range of coronal processes has been
emphasized theoretically (Hollweg 1985).

Viscous-plasma dynamics and energetics are often modeled
using the standard symmetric viscous stress tensor, which corre-

sponds to the usual shear viscous force (e.g., Heyvaerts & Priest
1983). Viscous stresses, however, are highly anisotropic in a mag-
netized plasma (Braginskii 1963; Hollweg 1986), and therefore
significant viscous damping will depend strongly on the magnetic
geometry. Previous studies of the Braginskii viscosity investi-
gated in detail the dissipation associated with resonant absorption
(e.g., Davila 1987; Hollweg & Yang 1988; Ofman et al. 1994;
Erdélyi & Goossens 1995) and dissipation of waves propagating
in a homogeneous plasma with a uniform background magnetic
field (e.g., Porter et al. 1994). Here we focus on the role of an-
isotropic viscosity in the damping of shear waves in line-tiedmag-
netic X-points. Specifically, we formulate an initial-value problem
inwhich a planar magnetic X-point is perturbed by finite-amplitude
disturbances normal to the plane. The present analysis extends the
X-point study of Fruit & Craig (2006), who employed only the
conventional shear viscosity. Our results may provide a local de-
scription for interactingmagnetic loops with footpoints anchored at
the photosphere.

In x 2, we give the mathematical formulation of the problem.
We discuss the incompressible MHD equations and introduce
the 21

2
-dimensional geometry that forms the backdrop of our anal-

ysis. Numerical results are presented in x 3, where we discuss the
velocity and magnetic field evolution and the damping of waves
by viscous forces. We also compare scalings for anisotropic vis-
cous damping against results based on conventional shear viscosity.
Specifically, side-by-side computations are introduced to compare
scalings for anisotropic viscous damping with results based on
conventional shear viscosity. Possible effects of plasma com-
pressibility on our results are explored in the Appendix. Conclu-
sions are summarized in x 4.

2. VISCOUS DAMPING IN X-POINT GEOMETRIES

2.1. The Role of Viscous Effects

To emphasize the importance of viscous effects in the solar
atmosphere, consider a typical solar active region, characterized
by amagnetic fieldB0 = 102G, plasma density �0 = 10�15 g cm�3,
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and size L = 109.5 cm. The corresponding Alfvén speed is vA =
109 cm s�1. Dimensionless measures of dissipation coefficients
are obtained by scaling the resistivity and viscosity coefficients
by 4�vAL/c

2 and vAL, respectively. The dimensionless resistivity
is then an inverse Lundquist number of order � ’ 10�14.5, based
on the classical value of resistivity �T�3/2 for a coronal plasma
temperature T = 106 K (Spitzer 1962). For the same parameters
in a fully ionized plasma, the dimensionless viscosity parallel to
the magnetic field �T 5/2 is of order � ’ 10�4.5. Hence �/� ’
1010 3 1, strongly suggesting that viscous effects can be essential
in the coronal dynamics and energetics (Hollweg 1985).

An important point is that viscous transport is highly anisotropic
in the magnetized coronal plasma (Braginskii 1963; Hollweg
1986). Specifically, the viscous stress tensor is strongly modified
when the proton mean free path exceeds the gyroradius: !p�p 3 1,
where !p = eB/(mpc) is the proton cyclotron frequency and
�p ’ 0.75T3/2/n is themean time (in seconds) betweenmomentum-
changing collisions. The above parameters lead to!p�p ’ 10631,
which confirms that an anisotropic viscosity should be employed in
studies of coronal wave damping.

It is worth stressing from the outset that the Braginskii stress
tensor contains a term proportional to the divergence of the plasma
velocity. In the model we consider, which focuses on the damp-
ing of incompressible shear waves, this term is set to zero. Al-
though there is no inconsistency in this treatment, we recognize
that compressibility generally plays an important role in the wave
dynamics by coupling various components of the wave velocity
(Davila 1987).Moreover, strictly incompressible disturbances are
not likely to be excited in a strongly structured solar corona
(Davila 1987). It follows that our treatment of wave dynamics and
dissipation may be justified only locally, say, in the vicinity of a
magnetic null, where we can ignore the complicated geometry of
multiple magnetic loops, which appear on a larger scale in the
corona. It is also worth remembering that dissipation in the prob-
lem of resonant absorption is primarily determined by shear viscos-
ity rather than by the dominant terms in the stress tensor (Hollweg&
Yang 1988; Ofman et al. 1994). Again, our neglect of the shear
component of the Braginskii stress tensor is justified as long as the
bulk viscosity effects are significant, which is indeed the case for the
assumed form of the magnetic field disturbances.

2.2. Incompressible MHD Equations

In what follows, we investigate the damping of shear wave dis-
turbances, normal to the plane of a magnetic X-point and line-tied
at a rigid rectangular outer boundary.We adopt the 21

2
-dimensional

MHD equations (e.g., Craig & Litvinenko 2005). We use the
stream function representation for the plasma velocity,

v(x; y; t) ¼ :� < ẑþW ẑ; ð1Þ

and the flux function representation for the magnetic field,

B(x; y; t) ¼ : < ẑþ Z ẑ: ð2Þ

These forms identically satisfy the constraints that v and B be
divergence-free.

It is convenient to work with the curled form of the momen-
tum equation and to scale the system using typical magnitudes
for the length, density, and magnetic field intensity. Velocities
are then measured in units of the Alfvén speed and times are
scaled by the Alfvén time. We employ Poisson brackets, typi-
fied by [ , �] = @x @y� � @y @x�, and write F for the viscous

force. Ignoring gravity, theMHD equations reduce to the follow-
ing system:

@t(9
2�)þ ½92�; �� ¼ ½92 ;  � þ G; ð3Þ

@t þ ½ ; �� ¼ �92 ; ð4Þ

@tW þ ½W ; �� ¼ ½Z;  � þ F?; ð5Þ

@tZ þ ½Z; �� ¼ ½W ;  � þ �92Z: ð6Þ

Here

G ¼ �(: < F) = ẑ; F? ¼ F = ẑ ð7Þ

define planar and axial viscous contributions, while the electric
current density �92 accounts for resistive decay. These equations
are assumed to hold within the rectangular domain (|x |, |y |) � 1.
Field lines are anchored on a boundary that is idealized as a highly
conducting rigid surface on which the velocity field vanishes.
This choice of boundary condition is synonymous with the as-
sumption of line-tying at the photosphere. The photospheric plasma
is so dense that coronal disturbances must vanish at the photo-
spheric boundary. Line-tying is a standard choice for a boundary
condition in studies of wave dynamics in the corona (e.g., Dı́az
et al. 2004).
Below we formulate the initial-value problem that describes

the viscous damping of axial field disturbances W(x, y, t) and
Z(x, y, t) in planar magnetic X-points.

2.3. Viscous Stresses and Viscous Dissipation

TheMHD system described above has provided the basis for a
wide class of analytical and numerical investigations, often in-
volving the reconnection of field lines. In such cases themain focus
is typically on the flux transfer afforded by the resistive term �92 .
On the other hand, viscosity is often either completely neglected
without much justification or given a simplified classical descrip-
tion. In particular, if we write

F ¼ : = SSSS ð8Þ

for the viscous force, then the classical form for the shear vis-
cosity Fi = @jSi j = �9

2vi is based on the symmetric tensor

Si j ¼ �(@jvi þ @ivj � 2
3
�i j: = v): ð9Þ

As already mentioned, however, the viscosity becomes highly
nonisotropic in the presence of a sufficiently strong magnetic
field, necessitating amore accurate tensor description. If!p�p 3 1,
then the dominant terms in the viscous stress tensor are as follows:

Si j ¼ �0

�
3
BiBj

B2
� �i j

��
BmBk

B2
@kvm � : = v

3

�
ð10Þ

with �0 ’ � (Braginskii 1963; Hollweg 1986). Equations (9) and
(10) simplify somewhat in the incompressible limit : = v = 0,
considered in this paper. Note, however, that the term involving
: = v is retained in the compressible viscous computations de-
scribed in the Appendix.
The global viscous dissipation rate is given by

P� ¼
Z

SSSS = :v dV : ð11Þ
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In sharp contrast to the usual shear viscosity, the dominant terms
in the viscous stress tensor in a magnetized plasma describe the
bulk viscosity. In this case, viscous forces and dissipation rates
depend sensitively on the magnetic field. One can see from equa-
tion (10) that a necessary condition for bulk viscous dissipation
is that gradients of v along the field lines are nonvanishing, that
is, (B = :)v 6¼ 0. As a simple example, note that if the magnetic
field is unidirectional, say,B = Bẑ, the dissipation rate reduces to
P� = 3�0

Ð
(@zW )2dV (where W = v = ẑ). Clearly, viscous dissi-

pation is absent unless the plasma is accelerated along the mag-
netic field lines.Although thismay happenwhenflux-pileupmag-
netic reconnection is driven by vortical plasma flows (Litvinenko
2005), more generally we expect significant viscous dissipation
only if strong corrugations of the magnetic field develop in the
course of the evolution of the system.

2.4. Axial Field Dissipation in Magnetic X-Points

As a basis for all the subsequent discussion, we assume that
finite-amplitude axial displacements are superposed on a static
magnetic X-point:

 ¼ xy; � ¼ 0: ð12Þ

We are interested in global initial disturbances, since these are
the most difficult to dissipate efficiently but most likely to con-
tain the bulk of the wave energy. The initial displacements sat-
isfying the line-tying condition are taken to be

Z0 ¼ 0; W0 ¼ sin �x sin �y: ð13Þ

To explore the effect of the magnetic field geometry, we also
consider wave damping near a one-dimensional neutral sheet,

 ¼ 1
2
y2; � ¼ 0; ð14Þ

with the corresponding initial conditions

Z0 ¼ 0; W0 ¼ cos 1
2
�x sin �y: ð15Þ

Previous studies of viscous wave damping in these geome-
tries assumed that the shear viscosity provides the dominant
damping mechanism (Craig & Fruit 2005; Fruit & Craig 2006).
It has been shown that for long-wavelength axial disturbances,
there is an initial quasi-ideal phase inwhich sharp cross-field gra-
dients on length scales on the order of �l � �1/3 are built up by
phase mixing (Heyvaerts & Priest 1983). This is followed by a
stage of strong wave damping, in which energy is rapidly dis-
sipated,P� � �W 2/(�l)2 � �1/3. The later asymptotic decay can be
quite complicated, and it is possible for self-similar modes to
develop in which there is a breakdown of energy equipartition.
But since the bulk of the wave energy is lost within 20 or 30
Alfvén times (for � ’ 10�4.5), before the asymptotic phase sets
in, the global energetics is largely unaffected.

We now ask, how effective is the Braginskii (anisotropic) vis-
cosity in damping the global wave energy? We assume velocity
and magnetic fields of the form

B ¼ (Bx;By; Z(x; y; t)); v ¼ (0; 0;W (x; y; t)); ð16Þ

with Bx = x and By = �y for the X-point geometry (eq. [12]). We
calculate the axial viscous force using

F? ¼ @xS31 þ @yS32; ð17Þ

and for the case of the X-point field the forms in equation (16)
lead to

F? ¼ 3�0

�
@x

�
x
Z 2

B4
(x@xW � y@yW )

�

þ @y

�
y
Z 2

B4
( y@yW � x@xW )

��
: ð18Þ

The corresponding expression in the case of the neutral sheet
(eq. [14]) is as follows:

F? ¼ 3�0y
2@x

�
Z 2

B4
@xW

�
: ð19Þ

These expressions for F? are used to obtain numerical solutions
for W(x, y, t) and Z(x, y, t) assuming that anisotropic viscous
damping is the dominant dissipation mechanism, �0 3 �. Note
that in the case of the one-dimensional sheet, we expect that the
buildup of sharp cross-field corrugations by phase mixing should
have little effect on the resulting viscous force, since gradients in
y are not represented in equation (19). A further point is that close
to a null point (or line), the magnetic field vanishes and the
Braginskii viscous tensor is not valid. Hence it is legitimate to
augment F? with a term describing the classical shear viscosity
in the vicinity of the null. In fact, the computations presented
below are generally insensitive to the shear components acting
close to the null, at least as far as X-point wave energy damping
is concerned (see x 3.2).

Figure 1 shows a typical example of the corrugated field struc-
ture that develops as a result of the quasi-ideal X-point evolution
for the case of anisotropic viscosity with �0 = 10�3 and � = 10�5.
The surface plots for the axial wave fields Z and W were taken
around the time of maximum energy dissipation rate. For �0 3 �,
this time (t ’ 9) approximately coincides with the time of max-
imum viscous forces on the plasma. Figure 2, which shows the
corresponding contour plots, confirms that the developing cor-
rugations are aligned with planar projections of the X-point field
lines. Quite similar corrugated structures are observed when the
shear viscosity is substituted for the Braginskii form (see Fruit &
Craig 2006).

3. SIMULATION OF THE AXIAL FIELD EVOLUTION

3.1. Viscous Dissipation in the X-Point Field

In the results that follow, we demonstrate how the buildup of
viscous forces in the plasma leads to significant rates of energy
dissipation. Since the corrugated wave field profiles of Figures 1
and 2 derive from the effects of quasi-ideal phase-mixing pro-
cesses, similar structures are achieved for both tensor and shear
viscosities. The time taken to achieve the peak dissipation rate
does, however, depend on the strength and form of the viscous
damping.

To obtain quantitative results, we compare the time evolution
of the global wave energy,

E(t) ¼
Z

1

2
(Z 2 þW 2)dV ; ð20Þ

using side-by-side computations for the bulk and shear viscosity.
We compute the W- and Z-fields from

@tW ¼ ½Z;  � þ F?; @tZ ¼ ½W ;  � þ �92Z; ð21Þ
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which follow from equations (5) and (6) on assuming the forms
in equation (16). The viscous forceF? is derived from theX-point
and current-sheet fields, as discussed in x 2.4.

Figure 3 provides energy-loss rates for the X-point for the
parameters �0 = � = 10�3 3 �. The global dissipation rates are
physically significant in both cases, but the viscous forces build
more slowly and there is a modest reduction in the peak damping
rate when the nonisotropic viscosity is introduced. This behavior
is common to all simulations with �0 = � 3 �.

Figure 4 summarizes dissipation scalings based on peak energy-
loss rates for the range 10�4 � � = �0 � 10�2 with � = 10�2�.
Note that the lower limit corresponds to the viscosity in a coronal
plasma with temperature around 106 K. Perhaps the most im-
portant observation is that the Braginskii viscosity retains the
scaling P� � �1/3 for the global energy-loss rate associated with
the shear viscosity.

Given that the conventional shear viscosity is not represented
in the dominant terms of the Braginskii tensor, it is perhaps sur-
prising that the anisotropic bulk viscosity is so effective at dis-
sipating the X-point wave energy. According to the scalings of
Figure 4, peak rates are reduced by only a factor of 3, compared
with those for the unrealistic shear viscosity. Yet the physics of
energy dissipation is quite different: evidently the strong corru-
gations in the magnetic field, formed during the quasi-ideal phase
of the evolution, provide multiple locations where the plasma can
flow along the local magnetic field—and these are just the con-
ditions required for rapid wave damping by bulk viscosity (see
discussion at the end of x 2.3).
It is important to remember that all the present results are based

on the field decomposition of equation (16). This form is justified
for the shear viscosity because planar and axial field disturbances
decouple as long as the disturbances remain incompressible. The

Fig. 2.—Contour plots of the axial magnetic field Z and the axial velocity field W for the parameters of Fig. 1.

Fig. 1.—Surface plots of the axial magnetic field Z and the axial velocity fieldW taken at the time of maximum viscous dissipation rate (t = 9), using the Braginskii
viscosity for �0 = 10�3 and � = 10�5.
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Braginskii viscous stresses, on the other hand, induce planar
viscous forces even when only axial flows are present initially.
In this case, we assume that the induced planar fields can be
regarded as secondary effects that derive from the buildup of
viscous forces during the initial phases. This simplification,
which corresponds to neglecting the viscous contribution G in
equation (3), is valid as long as axial flows with dimensionless
speeds of order unity (that derive from the initial conditions)
remain large compared with induced planar flows with speeds of
order �0T1. This argument is supported by the close agreement of
the incompressible and compressible X-point runs, described in the
Appendix. The extent to which the neglect of secondary planar
flows is justified in later stages of the wave evolution will be
investigated elsewhere.

3.2. Influence of the Field Geometry

We now turn to the influence of the field geometry on the vis-
cous dissipation mechanism. As already mentioned, the current-
sheet geometry (eq. [14]) is expected to reduce wave damping by
the Braginskii viscosity quite significantly. Figure 5 is based on
the same parameters as Figure 3 and confirms that the buildup of the
viscous force and the peak dissipation rate are both weak when
compared with the shear viscosity simulation. Even so, contrary
to the argument following equation (19), there is a clear buildup in
the dissipation rate as sharp gradients develop by phase mixing.

Fig. 3.—Viscous dissipation rates in the Braginskii (solid line) and shear (dashed
line) viscosity computations for the two-dimensional X-point (�0 = � = 10�3, � = 0).

Fig. 4.—Scaling of the peak wave energy dissipation rate with viscosity (‘‘S’’
indicates shear, ‘‘T’’ indicates tensor viscosity). The dot-dashed lines correspond
to the power laws P� ’ 0.77�0:30 (shear viscosity, upper line) and P� = 0.28�0:33

(Braginskii viscosity, lower line). In all cases we have taken � = 10�2�.

Fig. 5.—Same as Fig. 3, but for the one-dimensional current sheet.

Fig. 6.—Global energy decay, based on the viscous wave-damping compu-
tations of Figs. 3 and 5 (� = 10�3, � = 0). Solid and dashed lines show results for
the bulk and shear viscosity, respectively. In each case, the X-point geometry
provides a more effective wave-damping model. The bulk viscosity model in the
current-sheet geometry provides the weakest damping.
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This effect can be traced back to the residual influence of shear
viscosity acting in the narrow weak-field region overlying the
neutral line y = 0. When only the bulk viscosity contribution in
the computation is represented, this buildup is eliminated. Inciden-
tally, shear viscosity components are less of an issue in the X-point
computation because any residual shear viscous contribution is
restricted only to a small circular region of negligible measure
overlying the neutral point.

Figure 6 summarizes the global energy evolution in bothX-point
and current-sheet geometries. Shear and bulk viscosities are simi-
larly effective in removing the bulk of the wave energy in around
20 Alfvén times for the X-point plasma. For the one-dimensional
current sheet, however, damping by the bulk viscosity appears to
be relatively ineffective. This conclusion is strengthened when it
is remembered that shear viscosity components acting in the
vicinity of the neutral line account for increases in the current-
sheet dissipation rate.

4. DISCUSSION

We have considered the viscous damping of shear Alfvén
waves in magnetic X-point geometries. The principal new result
of this paper is the demonstration that shear waves in the vicinity
of a magnetic reconnection site can be damped within 20 or
30 Alfvén times when realistic bulk viscosity is the primary dis-
sipation mechanism. This rate corresponds to an energy decay time
of a fewminutes for conditions typical of the solar corona. There-
fore, bulk viscous dissipation of waves, generated in the corona
by magnetic reconnection or other mechanisms, can significantly
contribute to coronal heating. The only caveat regarding this result
is that the underlying magnetic geometry should not be overly
simple. For instance, our examples show that wave damping in a
two-dimensional X-point geometry is considerablymore effective
than in the one-dimensional current-sheet field.

In connection with the rate of the wave energy release, we
note that anomalously enhanced dissipation coefficients are some-
times invoked in order to interpret the observed energy release in
the corona. It appears unlikely though that turbulent resistivity or
viscosity could change our estimates based on the classical values.
It can be argued that the turbulent resistivity at coronal recon-
nection sites is enhanced by no more than a factor of 106 relative

to the classical value (e.g., Litvinenko & Craig 2000 and refer-
ences therein), which is still many orders of magnitude less than
the classical viscosity coefficient. As far as turbulent viscosity is
concerned, it can be estimated as (�B/B)2v2A�c, where �B is a
characteristic amplitude of turbulent fluctuations and �c ’ !�1

p

is a coherence time (Tsuda 1967). Given the smallness of the pa-
rameter (!p�p)

�1 ’ 10�6 in the corona (see x 2.1), it is clear that
even a high turbulence level will not lead to enhancement of the
viscous coefficient with respect to the classical value employed
in this paper. What should be kept in mind, however, is that al-
though bulk viscosity plays the dominant role in dissipation in
our problem, this conclusion could change if we considered a
more general problem of evolution of waves with nonvanishing
compressible components. For instance, in studies of viscous dis-
sipation by resonance absorption it is the shear viscosity, compar-
able inmagnitude to the classical electric resistivity, that determines
the rate of energy dissipation (e.g., Hollweg&Yang1988; Ofman
et al. 1994). Even so, at least for the X-point damping problem,
the results summarized in the Appendix suggest that the present
computations are relatively robust to the inclusion of compress-
ible effects.
Somewhat surprisingly, the key scaling P� � �1/3 for themax-

imum rate of viscous energy dissipation turns out to be independent
of whether the usual shear viscosity or theBraginskii stress tensor is
adopted. We conclude that in the latter case, rapidly formed mag-
netic field corrugations play the central role in creating large viscous
stresses and ensuring comparable dissipation scalings.What should
be investigated in the future is the validity of the assumption that the
induced planar flows do not significantly influence the damping of
the initially imposed axial flows—the decoupling assumption
made in x 3.1. We will address this question elsewhere.
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(grant ATM 05-19249), by the NASA Solar and Heliospheric
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NNX07AI04G), by the NASALiving with a Star program (grant
NNG05GM43G), and by theMarsden Fund (02-UOW-050MIS).
The authors would like to thank Professor Roger Hosking for dis-
cussions on the form of the viscous stress tensor.

APPENDIX

COMPRESSIBLE VERSUS INCOMPRESSIBLE EVOLUTION

In this paper, we analyzed the damping of shear waves in the incompressible approximation, setting from the outset the divergence
of the plasma velocity to zero. Because compressibility can generally play an important role in the wave dynamics in the solar corona
(e.g., Davila 1987), we have also performed a series of compressible runs, based on the polytropic law p = k�� with plasma 	’s in the
range 0 � 	 � 1 and � ’ 1. In general, it is difficult to make a definitive comparison with the incompressible computations because
compressible models involve additional phenomena that depend on both the wave perturbation amplitudes and the details of the
pressure profiles. Qualitatively, we find compressible structures that mimic the highly corrugated profiles of the incompressible com-
putations and global dissipation rates that are comparable to the rates associated with the incompressible bulk viscosity.

There is an important limiting case, however, that does allow a quantitative, side-by-side comparison with the bulk viscosity
computation, namely, the evolution of low-amplitude axial disturbances in a highly compressible plasma of negligible gas pressure.
Since the equations for the axial fields are formally identical in both models, it is possible to use an identical set of run parameters
(those of x 2.4). Of course, the compressible computation incorporates the: = v term in the viscous stress tensor (eq. [10]), as well as
the ‘‘secondary’’ planar field that is generated by the planar components of the viscous force. Hence, the coupling of the axial and
planar fields is explicitly modeled in the compressible computation.

Figure 7 shows results based on a typical side-by-side comparison. It is clear that, at least for the initial phases of interest, the energy
dissipation profiles for each model are virtually indistinguishable. The dashed and solid lines show the evolution of the global magnetic
and kinetic energies for the compressible and incompressible runs, respectively. The profiles match so closely that, to facilitate a visual
comparison, we have adjusted the initial conditions to allow for a slight separation of the decay curves. Similar computations confirm
that the dissipation scalings, associated with the incompressible bulk viscosity computation (Fig. 4), are closely matched by the com-
pressible model.
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Fig. 8.—Gradual buildup of viscous forces in the compressible computation. Also shown are relative individual contributions to the viscous stress tensor. The relative
compressible contribution : = v remains only a small fraction of the incompressible contribution (BmBk /B

2)@kvm throughout the evolution.

Fig. 7.—Typical time profiles of the global magnetic and kinetic energies for the incompressible (solid lines) and compressible (dashed lines) viscous tensor models
(� = 5 ; 10�3, � = 10�4). The gas pressure is negligible in the compressible computation. Although the energy initially resides in the axial velocity field, a significant
fraction is transferred to the magnetic field over 1 Alfvén time. Once energy equipartition has set in, there is a steady monotonic decline in both components.



Figure 8 shows the buildup of the viscous forces in the compressible computation. Also shown are time traces of individual con-
tributions to the compressible viscous stress tensor (eq. [10]), namely, the maximum: = v over the mesh and the maximum of the sum
(BmBk /B

2)@kvm. The fact that : = v makes only a minor contribution to the tensor confirms that compressibility does not have a major
impact on the energy decay. The same applies to the transfer of axial wave energy into the planar wave components, an effect neglected
in the incompressible bulk viscosity computation (see x 3.1).

These results suggest that the assumption of incompressiblity does not compromise the viscous dissipationmodel in any significant
manner, at least in the case of low-amplitude axial perturbations in planar magnetic geometries in a uniform background plasma.
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