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Abstract

Prediction intervals for class probabilities are of interest in machine learning because they

can quantify the uncertainty about the class probability estimate for a test instance. The

idea is that all likely class probability values of the test instance are included, with a

pre-specified confidence level, in the calculated prediction interval. This thesis proposes a

probabilistic model for calculating such prediction intervals. Given the unobservability of

class probabilities, a Bayesian approach is employed to derive a complete distribution of the

class probability of a test instance based on a set of class observations of training instances

in the neighbourhood of the test instance. A random decision tree ensemble learning

algorithm is also proposed, whose prediction output constitutes the neighbourhood that

is used by the Bayesian model to produce a PI for the test instance. The Bayesian

model, which is used in conjunction with the ensemble learning algorithm and the standard

nearest-neighbour classifier, is evaluated on artificial datasets and modified real datasets.
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Chapter 1

Introduction

From helping to perform critical medical diagnosis to forecasting of destructive natural

phenomena, decision makers are frequently faced with the necessity of obtaining not

only accurate predictions but also uncertainty estimates associated with the predictions.

Machine learning technologies have become important tools desired by decision makers

to make accurate and reliable predictions across various fields. However, these techniques

generally fail to quantify predictive uncertainty: the prediction is a single number, and

it does not provide any information about how likely the number is the desired ’true’ value.

When using machine learning techniques to perform categorical data analysis, the

output normally takes the form of a classification, often with a probability estimate. The

estimated probability indicates, in conjunction with the classification of the training data,

the degree of belief that an unknown example belongs to the predicted class. A commonly

used approach to obtaining a classification and the corresponding probability estimate is

to take a majority vote to obtain the classification and then compute the proportion of

interest among all the observations in order to estimate the class probability. Instead of

simply providing a probability estimate for the class of an unknown example, this thesis

attempts to quantify the uncertainty associated with the class probability estimate, as the

estimate is usually based on limited data.

1.1 A Medical Diagnosis Example

Using machine learning algorithms for the analysis of medical data has a long history.

Today, technologies derived from these algorithms are well suited for specialised diagnosis

problems. Many modern hospitals are equipped with expert systems built upon machine

learning techniques, and patients are often diagnosed by these ’smart’ programs before

being actually admitted by human physicians (Kononenko, 2002, p. 2). Suppose a

potential cancer patient comes to a hospital. Based on her or his symptoms, searching

a database of records of previous cancer patients gives a result of five similar cases, of
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which four were diagnosed with cancer. Taking a majority vote gives the diagnosis that

the patient has developed cancer, and the estimated probability that this diagnosis is

correct is 0.8 (four out of five).

Before asking the patient to take any further tests, can the physician be sure, based on

the patient’s specific symptoms, that 0.8 is the ’true’ probability that she or he is having

cancer? The answer to this question depends on the similarity between this patient’s

symptoms and the symptoms of the five previous patients, on which the diagnosis was

based. It also depends on the amount of data (i.e. the number of patient records) that

was involved in the diagnosis and used to come up with the estimated probability, 0.8.

In fact, this probability value (0.8) is just an estimate of the likelihood that any patient,

who has a set of symptoms similar to that of the patient currently being diagnosed, has

developed cancer. This is not what the physician really wants. Ideally, the physician

would like a probability, and an interval estimate, that are estimated based on the records

of a group of patients with the exact symptoms of the current patient. If such data

were available, the task of predicting the desired class probability, along with an interval

estimate, would be easily accomplished by many existing techniques. Unfortunately, in

practice, we are unlikely to observe different patients with known diagnoses who present

exactly the same symptoms. Therefore probabilities and intervals of this sort cannot

be directly estimated, and straightforward application of standard methods is not possible.

All we can do with machine learning is use the records from patients with similar

symptoms in order to diagnose a new patient. We have noticed that the new patient is

still sharing at least some of the symptoms with each of the previous patients with known

diagnoses. Thus, we first use these common symptoms to select a group of patients with

symptoms similar to that of the new patient, resulting in a set of values that are either 1

or 0, where 1 means cancer and 0 means not cancer. Then we derive a Bayesian model,

which takes as input this set of values (i.e. 0s and 1s) to produce an entire range of

plausible probabilities that contain, with a specified degree of confidence, the ’true’ value

of probability of the new patient having cancer. Therefore, we can use the width of the

computed probability range to predict what the chances of the patient having cancer

really are. If the obtained range is too wide (such as one near 1.0), which indicates the

estimate is too imprecise, we may have to ask the patient to take further tests before

making the final diagnosis.
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A question that may arise at this point is that a patient either has developed cancer or

has not, which means the ’true’ probability value for the patient is either 1 or 0. How can

we say a probability takes on a value somewhere between 0 and 1? The explanation for this

is that we do not have complete knowledge about the physical conditions of the patient.

Here, by ’complete knowledge’, we mean that anything and everything that accompanies

the disease and is regarded as an indication of existence of the disease must be known. In

this sense, our limited knowledge, in the form of the symptoms we have observed on the

patient, leads to an estimated probability value between 0 and 1, rather than just the two

possible values 0 or 1.

1.2 Prediction Intervals

In statistics, an interval like the one described above is called prediction interval

(henceforth abbreviated PI), which is computed to contain an unknown quantity with

a specified confidence level. In the above discussed medical diagnosis example, the

unknown quantity is the probability of a patient having cancer. Applying the medical

example in the machine learning context, the unknown quantity is considered to be the

class probability of an unknown instance. A PI is usually comprised of an upper and a

lower limit, between which a future unknown value is expected to lie with a prescribed

confidence level. The future value can be something that is observable, such as a person’s

height. Or it may be unobservable, such as the probability value in the cancer patient

example.

Figure 1.1 illustrates the concept of PI. Note that the calculated vertical PI line forms

a joint continuous range. In fact, a PI could comprise two (or may be more) disjoint

intervals, in which case, the term prediction regions may be more appropriate. Regardless

of this, the desired ’true’ probability value must not, with the pre-specified degree of

confidence, fall outside the interval(s). The width of the computed PI can thus be used

to quantify the uncertainty about the probability prediction of how likely the estimated

probability is the ’true’ probability.

Despite being rather neglected (Chatfield, 1998), there have been several approaches

to computing PI proposed by researchers. Unfortunately, none of the methods derived

from these approaches were designed, nor are they suitable for solving the problem in our

situation. The reason for this is that those PIs are computed for either an observable
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Figure 1.1: Illustration showing a prediction interval (PI).

unknown quantity, or the observable properties of an unknown quantity, whereas we want

to compute PIs for class probabilities, which cannot be directly observed.

1.3 Aims of the Study

In this study, we restrict our attention to computing PIs for the class probability of

a single unknown instance, not a set of unknown instances. We also consider only

classification problems with dichotomous outcome, and do not consider the more difficult

multi-class problems.

We begin with deriving a model, using the Bayesian approach. The model can be

used to compute a PI for the class probability of an unknown instance, based on a set

of previous instances with known classes. Then we introduce a random decision tree

ensemble learning algorithm, based on which a classifier is built to produce a group of

similar training instances (e.g. the instances in a leaf node of a tree). These selected

instances are then used to compute an estimated class probability for an unknown

instance. The class labels of those selected training instances are used as input in the

proposed Bayesian probabilistic model to produce a PI for the class probability of the

tested new instance. The calculated PI is supposed to capture the ’true’ class probability

of the unknown instance.

We conduct experiments with the aim of testing how well the Bayesian PI model per-

forms in terms of the percentage that the PIs capture the ’true’ class probabilities, and

the narrowness of the widths of the computed PIs. The proposed decision tree learner is

4



evaluated by the measurement of root-mean-squared-error (RMSE), which is used to mea-

sure the accuracy of the generated probability estimates. The results of the experiments

show that, (a) the decision tree learner has prediction performance comparable with the

k-nearest-neighbour classifier, and (b) the capture percentage of the PI calculation model

reaches the specified confidence level while still maintaining reasonably narrow widths.

1.4 Thesis Structure

The rest of the thesis is organised as follows. In Chapter 2, we first introduce some

background on Bayesian data analysis. Then we review the basic concepts that are useful

for understanding statistical intervals. We also discuss with examples three commonly

used types of statistical intervals. Finally, we discuss three classification models.

Chapter 3 conducts a brief survey of literature regarding the construction of PIs.

We categorise the methods of calculating PIs according to various approaches, based on

which different methods have been derived. We give examples of the methods and point

out the advantages and disadvantages.

The proposed Bayesian probabilistic model derived within a parametric modelling

framework is developed in Chapter 4. We present the reasoning behind the mathematical

form of the proposed model, and the computation of the resulting distribution. Issues

such as the assumptions made during the model derivation process are also discussed. A

random decision tree ensemble learning algorithm is also proposed in this chapter.

In Chapter 5, experiments are performed to evaluate the proposed ensemble learning

algorithm and the Bayesian PI model. In the evaluation, we use hypothetical instances,

artificially generated datasets, and datasets selected from the UCI repository of machine

learning datasets. We analyse and discuss the results from the experiments on respective

datasets.

The thesis is concluded in Chapter 6. We summarise the main findings of the study.

We discuss the advantages and limitations of the proposed model and prioritise issues that

require further investigation.
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Chapter 2

Background

This chapter is devoted to material that is useful for understanding what will be discussed

in subsequent chapters. We begin in Section 2.1 with a introduction to the basic concepts

of Bayesian data analysis. We describe the core idea behind Bayesian thinking: updating

prior knowledge about an unknown quantity with the observed data to arrive at the desired

posterior distribution. This is followed by a description of the main tasks involved in the

Bayesian learning process such as specifying the prior probability model. We also discuss

some of the commonly used numerical methods for posterior computation. Section 2.2

introduces the basic concepts of statistical intervals. Three types of statistical intervals

are described. We point out the situations in which each should be used. Section 2.3

discusses several relevant classification models, including the nearest-neighbour classifier,

the linear and logistic regression models, and some ensemble learning approaches that

utilise a combination of several models. We summarise the chapter in Section 2.4.

2.1 Bayesian Data Analysis

Driven by the availability of modern computing capabilities, as well as the philosophical

advantages of Bayesian thinking, applications of Bayesian data analysis have rapidly

appeared in many different fields in recent years. In this section, we introduce the basic

concepts of Bayesian data analysis.

2.1.1 The Bayesian Framework

The Bayesian approach to data analysis computes conditional probability distribu-

tions of unknown quantities, such as future observations, based on the observed data.

Let y denote an unknown quantity of interest and D denote the observed data. The

goal is to obtain a probabilistic statement about the unknown quantity y given D: p(y | D).
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From the definition of conditional probability, we can make the following statement

about the joint probability, p(y, D), which describes how y and D behave in conjunction

p(y, D) = p(y)p(D | y) (2.1)

The first function on the right-hand side of the equation, p(y), is called the prior distri-

bution of y. It is termed prior because it is specified before incorporating the observed

data into the model. The form of p(y) depends on our prior knowledge about y. The

second factor, p(D | y), is the likelihood function, which represents how likely the data D

is, based on y. Yet, the joint probability p(y | D) is what we are really interested in –

the distribution of the unknown quantity y. This is where Bayes’ theorem comes into play.

Bayes’ theorem is a result of probability theory. It forms the most fundamental basis

of probability calculation. Suppose that there are two events, A and B. The axioms of

probability tell us that the probability of A conditional on B is given by:

p(A | B) =
p(A,B)
p(B)

(2.2)

Likewise

p(B | A) =
p(B, A)
p(A)

(2.3)

Since p(A,B) = p(B,A), rearranging (2.2) and (2.3) gives

p(A | B)p(B) = p(B | A)p(A)

p(A | B) =
p(A)p(B | A)

p(B)
(2.4)

Equation (2.4) is the famous Bayes’ theorem.

Following a similar process as above, we can produce the following equation from (2.1):

p(y)p(D | y) = p(D)p(y | D) (2.5)

Rearranging it produces

p(y | D) =
p(y)p(D | y)

p(D)
, (2.6)

which gives the desired probability distribution of the unknown quantity y conditioned

on the observed data D. The denominator p(D) is the unconditional probability of D.
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In Equation (2.6), if y is a continuous random variable, the term p(D) can be computed

as

p(D) =
∫

p(D, y)dy =
∫

p(y)p(D | y)dy, (2.7)

which is achieved by integrating p(D) over all possible support values of y. In the case of

discrete y, the sum over y is used instead, i.e. p(D) =
∑

y p(y)p(D | y). p(D) is typically

called the normalising constant, or the prior predictive distribution. Its purpose is to

ensure that p(y | D) integrates to one, which is required by the definition of probability

density function. Because the denominator p(D) is independent of y, omitting it from

Equation (2.6) yields

p(y | D) ∝ p(y)p(D | y)

This states that the unnormalised posterior distribution of y is proportional to (∝) the

prior distribution times the likelihood function, i.e.

Posterior ∝ Likelihood × Prior

We can summarise the preceding discussion as the following Bayesian learning process:

specify a probability model that incorporates some prior knowledge about the unknown

quantity, then incorporate the information from the observed data into the specified

probability distribution through the likelihood function, and finally, derive (analytically

or by simulation) the posterior distribution of the unknown quantity.

There are some assumptions implied in the summarised Bayesian learning process.

First, the probability model specified for the unknown quantity is in parametric form,

which is chosen by the individual modeler. This highlights the main difference between

parametric and nonparametric modelling. Second, from the Bayesian perspective, the

unknown quantity is probabilistically described and thus assumed to follow a distribution

rather than have a fixed value as in the traditional ’frequentist’ approach (Gill, 2002, p. 3).

2.1.2 Model Specification

Having placed ourselves in the Bayesian parametric modelling framework, the first step

towards making predictive inferences about an unknown quantity is to assign a probability

distribution for it. This is actually the process of encoding our prior knowledge about

the unknown quantity into a probabilistic parametric model. We now discuss some of
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the principles of assigning such a model and review the typology of prior distributions

commonly applied in Bayesian work.

The Principles

Developing Bayesian models requires specifying prior distributions for unknown quan-

tities. Gill (2002, p. 114) discusses three different approaches that can be applied in

the specification of prior distributions. Classical Bayesians consider prior distribution

as an inconvenience and thus tend to specify a noninformative prior so as to inject the

least possible amount of prior knowledge. Modern parametric Bayesians prefer conjugate

priors because of the benefit of mathematical conveniences. Subjective Bayesians derive

prior distributions based on existing scientific knowledge from previous empirical work in

the field. In practice, these three categories are not mutually exclusive, and it is common

to use a mixed approach that adopts a prior combining various aspects.

In practice, model specifications based on the observed data are much recommended.

Gelman (2004, p. 14) states the following principle of how probability models can

be specified: ”whenever there is replication, in the sense of many exchangeable units

observed, there is scope for estimating features of a probability distribution from data

and thus making the analysis more ’objective.’” Another general approach, which also

specifies models based on the observed data, is summarised by Gregory (2005, p. 185).

In that, constraint information is first abstracted from observed data (called testable

information). Then, if there is more than one probability distribution that agrees with

the given constraint information, select the one that ”maximises the uncertainty in the

probability distribution, while still being maximally constrained by the given testable

information”, so as to minimise the subjectiveness injected by the modeler.

Common Priors

• Proper or Improper Prior

Proper priors are distributions that add, in the case of probability mass function

(PMF) for discrete variables, or integrate, in the case of probability density function

(PDF) for continuous variables, to a finite quantity. The following is an example of
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proper prior (Press, 2003, p. 54):

p(y) = 1, 0 ≤ y ≤ 1 (2.8)

where y is an unknown quantity. This is a proper prior because it has a bounded

value. It is also called a normalised proper prior, because it integrates to one.

Improper priors are ones that do not possess bounded values. For example, if there

are some reasons not to bound the value to be less than one, then a prior

p(y) = 1, 0 ≤ y ≤ k (2.9)

can be specified. This prior is unnormalised because it does not integrate to one;

but it is a proper prior because it still yields a finite value.

In most circumstances, it is more common to specify proper priors because they lead

to the desired proper posteriors, and thus the check of properness of the resulting

posterior can be relaxed. Moreover, since an improper posterior only occurs in

situations where an improper prior is specified, improper priors must be used with

caution (Gill, 2002, p. 128).

• Noninformative Prior

A noninformative prior is one that provides the least amount of knowledge about the

unknown quantity. Noninformative priors are usually given in situations where there

is no previous subjective information about the quantity of interest known to the

modeler. Thus, they are sometimes referred to as the ’ignorance’ prior. The uniform

distribution, among some others, is an obvious choice of such noninformative prior.

As discussed above, a uniform prior can be specified as a proper or an improper

prior by defining it over a bounded or an unbounded space.

• Conjugate Prior

In Bayesian probability theory, a conjugate prior is a family of prior probability

distributions which has the property that the posterior probability distribution also

belongs to that family. In other words, when both the prior and posterior come

from the same distribution family, then the prior and likelihood are said to be

conjugate.

Consider the problem of inferring a distribution for the unknown quantity y, which
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we discussed in Equation (2.6) and (2.7),

p(y | D) =
p(y)p(D | y)

p(D)

=
p(y)p(D | y)∫
p(y)p(D | y)dy

Different distributions of the prior p(y) may cause the product p(y)p(D | y) to have

different forms. For certain choices of p(y), the posterior has the same algebraic

form as the prior. Such a choice is a conjugate prior. A conjugate prior is a

mathematical convenience: otherwise a difficult numerical integration may be

necessary.

Examples of some sampling distributions along with their corresponding natural

conjugate priors include the Poisson distribution with its mean following a gamma

distribution, and the exponential distribution with a gamma distributed mean, etc.

After specifying a probability distribution that models the quantity of interest, the

next step involves combining the specified probability model with the observed data

through the likelihood function. Since we are in the Bayesian parametric modelling

context, probability distributions are specified with parameters. These parameters need

to be estimated in order to compute the posterior distribution. We shall discuss the

estimation of model parameters in the next section.

2.1.3 Numerical Computation

Numerical techniques arise due to the increased use of complex models, especially when

the parameter vector of the model is high-dimensional, for which the analytical calculation

is often not possible. Moreover, for models that are analytically solvable, numerical

computation sometimes is still required. The advent of modern powerful computers has

made such kind of computation much easier.

In numerical Bayesian analysis, we are mostly interested in estimating an integral

quantity and thus obtaining the posterior distribution, from which the desired inference

can be drawn. By utilising simulation, analytically unsolvable integrals can be deliv-

ered through approximation. In particular, a set of simulated values that exhibit the
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distributional properties as the posterior density are first generated. Then the empirical

distribution of these simulated values can be determined and used to describe the posterior.

Simulation techniques form a central part of much applied Bayesian analysis. With

simulation techniques involved, it is relatively easy to generate samples from a probability

distribution. Over the years, numerous such techniques have been proposed by researchers.

What follows is a brief summary of some of the methods used in the numerical computation

of integrals.

• Mote Carlo Integration

This method is based on the idea that an integration can be approximated by sum-

ming over a large number of simulated values. If the integration is bounded in a

range, for example [α : β], then the values are randomly generated only within

[α : β].

• Rejection Sampling

This method is used instead of the basic Monte Carlo method when simulating the

required samples is not possible. The idea is to obtain an integral quantity through

generating random samples, but only accept those that are determined to belong to

the correct distribution.

• Importance Sampling

This is an improved version of the rejection sampling method, and is useful for

quantile estimation. The idea is to control the sampling in order to take more

samples from the part of the distribution that is important to the problem being

estimated. It thus places more emphasis on higher density regions than others, and

hence achieves more efficiency through variance reduction.

Numerical methods have progressively become important tools in Bayesian data

analysis. However, there have been concerns about ”less human consideration of the

details,” which may cause the simulation results to be over-trusted (Gill, 2002, p. 280).

To avoid problems of such kind, analytic calculations should be tried as the first solution

whenever possible.
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2.2 Statistical Intervals

This section presents the basic concepts of statistical intervals. We discuss the difference

between point and interval estimation. We differentiate at an elementary level among

three types of statistical intervals. We also discuss the necessary assumptions that are

required in the calculation of the intervals, and point out the situations where each type

of intervals should be used.

2.2.1 Point Versus Interval Estimation

When an unknown quantity is estimated, the estimate can either be a single number – a

point estimate, or an range of values – an interval estimate. Point estimates provide no

information about the precision and reliability of estimation, and hence are usually not

as informative as interval estimates.

Suppose a sample of hot dogs is randomly selected from a production process, and the

average value x̄ of the fat content of these hot dogs is calculated. If x̄ is used to provide

a point estimate of the true average fat content µ of all hot dogs that are produced from

the same process, because of sampling variability, it is quite unlikely that x̄ = µ. The

value x̄ is of course eligible for estimating µ, but to what extent is this estimate reliable?

An answer to this question is to calculate a range of possible values of the true average

fat content, i.e. an interval estimate.

Interval estimation predicts an unknown quantity by not giving exact answers. It

admits uncertainty or inability to estimate a single, exact value of the unknown quantity.

Through the following properties, interval estimates can provide much more information

about the predicted quantity than point estimates:

• Confidence level

An interval estimate is always calculated by first selecting a confidence level. The

phrase confidence level is used to describe the likelihood that the resulting interval

does contain the unknown quantity. The confidence level is usually expressed as

a percentage. In practice, the most commonly used percentage value is 95% (or 0.95).

Depending on whether a Bayesian or ’frequentist’ approach is used, an interval

computed with a 95% confidence level can be interpreted in two ways. On one hand,

it means that for 95% of the time the intervals computed using the same sampling
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procedure will capture the true value of the unknown quantity, but for the other

5% of the time they will not. It is equivalent to say that 95% of all possible random

samples from the population can result in an interval that will capture the true

value of interest, as long as the calculating procedure is consistent. Despite this, if

we select any of the random samples (or any of the calculated intervals), we would

not be able to know whether it is in the successful 95% portion or in the failed

5%. This is known as the ’frequentist,’ ’classical,’ or ’sampling theory’ approach

to statistical inference. On the other hand, Bayesian theory states that, for any of

the calculated intervals, we have 95% confidence that it will contain the true value

of the unknown quantity, as long as the same procedure is used; in the meantime

there is also 5% chance that a computed interval will not contain the true value of

the unknown quantity.

It would be wonderful if we could be 100% confident that a calculated interval

contains the target value. Unfortunately, unless the entire population has been

sampled or the interval is so wide as to be useless, gaining 100% confidence is not

possible. An unusually high confidence level will probably cause the calculated

interval not to be informative.

• Interval width

Information about the precision of an interval estimate is conveyed by the width

of the interval. The width of statistical interval varies according to two factors:

confidence level and sample size. The confidence level is the degree of assurance

that the calculated interval contains the value of the unknown quantity. Thus,

when choosing a confidence level, the risk of not capturing the target value must be

taken into account because when the level of confidence is raised, the width of the

resulting interval becomes wider. Statistical intervals are usually constructed based

on limited sample data. In general, for a fixed level of confidence, narrower intervals

are expected with larger samples. Thus, when the sample sizes are relatively

small,the confidence level has to be decreased in order to obtain a narrower interval.

Putting it all together, if the confidence level is set to a high value and the resulting

interval is quite narrow, our knowledge about the value of the unknown quantity is

reasonably precise. A wide interval however, might indicates that there is a great deal
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of uncertainty concerning the estimated value. In general, how much confidence we need

to hold when calculating a statistical interval and how precise we want the calculated

interval to be depend on specific applications. For instance, in critical situations, such

as diagnosing a patient with a life-threatening disease, or analysing whether a terrorist

group is going to launch a nuclear strike, we need to set up a high confidence level and

a narrow width, whereas in situations that are less serious, lower confidence levels and

wider widths may be acceptable.

2.2.2 Types of Statistical Intervals

Having defined the term statistical interval, we now look at the three frequently used

statistical intervals: confidence interval, tolerance interval, and prediction interval (PI)

(Hahn & Meeker, 1991, pp. 2–3). They each serve different purposes.

• A confidence interval, the most commonly used type of statistical intervals, is com-

puted to contain an unknown value of a property of a population or process. The

properties of a population include its mean and standard deviation, etc. We have

discussed an example in Section 2.2.1, in which an interval is calculated, based on

a random sample of the products, to contain the average fat content of hot dogs

produced from the same production process. This is an example of computing a

confidence interval to contain the population mean.

• Tolerance intervals are defined to contain a specified proportion of the population,

from which a sample was drawn. For instance, based on the sampled data of hot dog

fat content, we might wish to compute an interval to contain the fat content values

of at least 95% of the hot dogs produced from the same production process.

• A prediction interval (PI) is computed to contain one or more future observations

from a previously sampled population. For example, after having measured 20

hot dogs, if an interval is computed to contain the fat content of the 21th hot

dog that is randomly selected from the same process, the computed interval is

a PI that contains a single future observation. If the fat content values of five

such hot dogs were claimed to be included in the computed interval, then the

interval is called a PI for all five future observations. And intuitively, it is also pos-

sible to calculate a PI that contains the average fat content of all five future hot dogs.
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Figure 2.1: Comparison of widths of statistical intervals for the same example.

We now perform a quick comparison between the three types of intervals by their

relative widths computed from the same example. The following is a sample of fat content

(as a percentage) of 10 hot dogs (Beilken, Eadie, Jones & Harris, 1990, pp. 395–409;

Devore, 2000, p. 299):

25.2, 21.3, 22.8, 17.0, 29.8, 21.0, 25.5, 16.0, 20.9, 19.5.

By assumption, these were randomly selected from a normally distributed hot dog

population. With the same 95% confidence level, we compute a confidence interval for

the mean fat content of the population, a PI for the fat content of the 11th hot dog, and

a tolerance interval to contain the fat content percentages of at least 95% of the hot dog

population. Figure 2.1 shows the computed intervals [based on Figure 5.1 in (Wadsworth,

1998, Section 5.6)]. Note that, both the PI and the tolerance interval are substantially

wider than the confidence interval. This is because the confidence interval is computed

to contain the average fat content of the hot dogs, which is a fixed value regarding a

particular population. Whereas the PI is calculated to include the fat content of a single

future hot dog, which is a random variable. The tolerance interval has the largest width

because it is computed to cover, not a single value, but the values of 95% of the population.

2.2.3 Why Do We Need PIs

As described above, various types of statistical intervals exist and users can use them

to answer relevant questions from given data. This requires users choose an appropriate

type of interval in order to solve a specific problem. The following general guidelines on

the choice of statistical intervals are given in (Hahn & Meeker, 1991, Section 2.1). In

particular, it involves answering the following two questions:
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(1) Is the interval for description or prediction?

In general, statistical intervals are designed for two main purposes: ”describing the

population or process” from which random samples were selected, or ”predicting the

results of a future sample from the same population.” (p. 27) Regarding the differ-

entiation of the three types of intervals, confidence interval and tolerance interval are

more related to the purpose of description, whereas the intention of PI is more of

prediction.

(2) What is the interval like?

By examining the characteristics of an unknown quantity, for which statistical

intervals are computed, we can classify which type of intervals is appropriate in a

specific situation. It is equivalent to answer the following questions: is the unknown

quantity about (a) location – what the single future value might be; (b) spread –

how a sample or population deviates (standard deviation); (c) an enclosure – how

large the proportion of a sample or population could be; (d) limit – probabilities that

a value will exceed a threshold (Hahn & Meeker, 1991, p. 28).

Here is an example that can help to elaborate the above discussed guidelines. When

we are testing the performance of a classifier in a series of experiments, we may be

interested in the accuracy of the classifier in the next experiment – a PI; its average

accuracy over all the experiments – a confidence interval; or the accuracy values of at

least 95% or 99% of total experiments – a tolerance interval.

Consider the example of diagnosing a cancer patient (Section 1.1), what we are really

interested in is the uncertainty about the cancer probability of the next patient – a new

individual – based on a group of patients with symptoms similar to that of this new

patient. Here, we assume that the given group of patients forms a random sample that

was drawn from the same population as the new patient. Hence, what we need is a PI

that is computed based on a observed sample and contains the desired probability value

of a single future observation (the new patient) with a specified confidence level.

2.2.4 Assumptions in Interval Calculation

The calculation of statistical intervals normally requires certain assumptions, either

explicitly or implicitly. Two basic assumptions are the random sample assumption and
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the normality assumption. These are discussed in this section.

Random Sample Assumption

The random sample assumption is important because the way that how samples are

selected from a population may affect the validity of the inferences about the properties

of the population computed based on the selected samples. For the resulting inferences

to be valid, samples must be drawn randomly in order to be representative of a population.

The following example illustrates how to draw a random sample (Ross, 2004, p. 217).

Consider selecting a sample of size 2 from a population consisting of three elements, a,

b, and c. To draw a random sample, the first element of the sample must equally likely

be any of a, b, or c; the second element must then equally likely be any of the remaining

two elements of the population, i.e. sampling without replacement. In other words, the

sample is equally likely to be any of three subsets, (a, b), (b, c), and (a, c). Moreover, a

sample is said to be random also means that the sample elements are independent of one

another. This may not be the case in the cancer patient example. If the patients were

from the same town or region where the living conditions, such as air and water, are quite

similar, this assumption would be highly questionable.

In the case of computing a PI for a future observation, the random sample assumption

implies that the sample that is used to estimate the properties of the underlying population

must be selected from the same population as the future observation for which the PI is

to be calculated. Going back to the cancer patient example again, since the candidate

patients with known diagnoses are from records in the past, whereas the real interest is

in diagnosing an upcoming new patient. In this case, and in many others, the sampled

population may differ from the population about which inferences are to be drawn, and

thus PIs calculated using the ’sampling theory’ approach (or ’frequentist’ approach) based

on such an invalid assumption may not be correct.

Normality Assumption

The normal distribution is the most commonly assumed probability distribution because it

can be observed in many natural processes. In situations where the normality assumption

is met, the mean and standard deviation of a population can be estimated using the mean

and standard deviation of a random sample drawn from the population.
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When the normal distribution assumption cannot be justified and the sample size

is also fairly small, the sample mean becomes a random variable from a population of

an unknown distribution. It would thus create a great deal of uncertainty by using the

sample mean to estimate the population mean, which is fixed, but unknown value. This

also holds for the sample standard deviation. Hence, the calculation of statistical intervals

using the population mean and standard deviation estimated based on the random

samples would lead to seriously incorrect intervals (Hahn & Meeker, 1991, Section 4.9).

When the sample size is large, however, the normality assumption may be relaxed.

For example, in the process of computing a confidence interval to contain the population

mean, an important theorem called the Central Limit Theorem can make the normality

assumption less critical than it would be with small sample sizes (Wadsworth, 1998,

Section 5.2.3). The Central Limit Theorem states that, when the sample size is large, no

matter what the nature of the underlying population distribution is, the sample mean will

have an approximately normal distribution. Also, the larger the sample size, the better

the approximation. Hence, a normality-assumption-bounded procedure for computing,

for example, a confidence interval for the population mean may be used in situations

where the normal distribution assumption is not strictly met.

There are also other statistical intervals, of which the calculations can make use of the

Central Limit Theorem when the underlying distribution is not normal but the sample

size is fairly large. For example, when calculating PIs containing the mean fat content of

all hot dogs sold in the whole month next month (i.e. PIs to contain the mean of a future

sample), the normality assumption can be relaxed given the size of the future sample

is large. Unfortunately, for PIs to contain a single future value (which is of particular

interest in our study), the use of the Central Limit Theorem cannot be justified (because

the size of the future sample is only one). Therefore, normal-distribution-based methods

for computing PIs to contain a single future observation may be appreciably off when

sampling from a non-normal population (Hahn & Meeker, 1991, Section 4.9, p. 65).

It is worth pointing out that, in addition to the above two assumptions, statistical

intervals are also generally computed by assuming symmetricalness around the mean, or

whatever the point predictor being used. This implicitly assumes that the predictor is

an unbiased point estimate. Hence, they are often called unbiased mean and standard
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deviation predictors.

2.2.5 Distribution-free Statistical Intervals

When the assumption of normality is not met, one may have to find the underlying

distribution in order to produce the desired statistical intervals for an unknown quantity.

An alternative to this is the distribution-free approach. Statistical intervals computed

using distribution-free methods are usually not as informative as those based on an

assumption of the underlying model (Wadsworth, 1998, Section 5.2.3).

In particular, distribution-free methods have the following limitations. First,

distribution-free intervals will normally be wider than the corresponding intervals based

on a particular distribution assumption, given the assumed distribution is correct. One

way of looking at this limitation is to image that distribution-free intervals extend the

computed widths to compensate for the void of uncertainty, which is eliminated by the

distributional assumptions.

The second drawback of distribution-free intervals comes from the way they are

computed: they use specifically selected values in the sample as interval endpoints.

Because the observed sample values are fixed, it is generally not possible to obtain

an interval with the desired confidence level (Hahn & Meeker, 1991, Section 5.1,

p. 76). In other words, the intervals are ’observed’ rather than calculated. An ex-

ample of calculation of such distribution-free intervals will be discussed in the next chapter.

However, as the name implies, distribution-free intervals do not require one assume

a particular population distribution (although the randomness assumption still pertains).

Because of this, statistical intervals computed this way have less inherent uncertainty

introduced by distributional assumptions than ones calculated otherwise, and thus are

still useful in certain situations.

2.3 Classification Models

Interval estimates are computed as supplements for point estimates that are made by

classification models. A classification model stores information that can be used to

make predictions about an unknown example; the stored information can also be used to
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compute intervals for the unknown example. In this section, we discuss three classification

models.

2.3.1 Regression Model

Regression analysis concerns with modelling relationships among variables. It quantifies

how a response (or dependent) variable is related to a set of explanatory (independent or

predictor) variables. If the true relationships among the variables were known exactly,

one would be able to accurately predict the responses corresponding to new explanatory

variables. Unfortunately, this is rarely the case and one has to rely on empirical evidence

to develop approximations to the relationships.

Moreover, the responses will vary from time to time, because in practice the exper-

iment cannot be repeated under absolutely identical conditions. The variation of the

responses is called noise, which occurs from one repetition to the next. The noise can

come from many sources, for example, measurement errors. To take this into account,

a probabilistic model is needed to approximate the relationship in order to fulfill the

prediction tasks.

The most common form of structural assumption about the relationship is that, there is

a single response variable Y , which depends on the values of a set of explanatory variables

through a mathematical function f and an additive random error component ε, such that

Y = f + ε (2.10)

where the error term ε is assumed to be normally distributed with zero mean. This is

called the regression model. Since ε is a random variable, the model (2.10) is probabilistic.

To use the regression model for prediction, the unknown regression function f must

be determined. This can be achieved by first making assumptions about the form

of the relationship, then estimating the parameters of the model (called regression

parameters), based on the observed data, (x1, y1), . . . , (xn, yn), which consists of n

observed responses at corresponding predictor locations.
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The Linear Regression Model

To approximate the form of the relationship between the explanatory and response vari-

ables, a simple and historically much used solution is to make direct linear assumption

about f , i.e.

yi(xi) = f(β; ai) + ε = β0 + β1a
i
1 + · · ·+ βmai

m + ε, (2.11)

where f(β; ai) is a mathematical function of the m independent variables ai
1, . . . , a

i
m at

the predictor location xi and the unknown parameters β0, β1, . . . , βm.

In the machine learning context, y1, . . . , yn are the classes of the corresponding

instances x1, . . . , xn. Variables ai
1, . . . , a

i
m are the attributes of instance xi, i = 1, . . . , n;

and β0, β1, . . . , βm are the weights observed together with the attributes. The quantity ε

is a random variable, which is assumed to be normally distributed. The quantity ε plays

an important role in computing the value of the response variable in regression models.

Without ε, any observed pair (x, y) would correspond to a point falling exactly on the

line y(x) = β0 + β1a1 + · · · + βmam with resolved parameters β0, β1, . . . , βm. This line is

called the true regression line.

We can use linear regression to predict the numeric class if all other attributes of the

instance are also numeric. The unknown parameters, β0, β1, · · · , βm, can be estimated

using the well-known principle least squares. The least squares method minimises the

sum of the squares of the difference between the predicted and the actual class values. It

thus measures the goodness of fit of an estimated regression line to the observed instances.

The estimated parameters are called the least squares estimates.

The method of using linear regression for classification in domains with numeric

attributes is called multiresponse linear regression. The idea is to estimate a set of

parameters for each of the classes. It proceeds by setting the output of the regression

function equal to one for instances that belong to the class and zero for those that do

not. Thus, each class has a linear regression function formed by the estimated set of

parameters. This again makes use of the least squares estimation technique. Given a new

instance, its membership values for each class are calculated and the class corresponding

the biggest value is chosen as its classification (Witten & Frank 2005, p. 119).

Linear regression is an excellent, simple method for numeric prediction and classifica-
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tion. However, several drawbacks exhibit.

(a) If the response has a nonlinear relationship with the predictor variables, the ’best-

fitting’ regression line may not fit very well.

(b) The least squares line should not be used to make a prediction about responses at

input levels that are far from those used to obtain the estimated regression line. This

is because the fitted relationship, i.e. the estimated regression line, may not be valid

for such values due to the ”danger of extrapolation” (Devore, 2000, p. 501).

(c) Multi-response linear regression can not produce proper class probability values. That

is, the regression equation

Pr(y | x) = β0 + β1a1 + · · ·+ βmam

computes the probability Pr(y | x), which must be a value between 0 and 1, but

β0 + β1a1 + · · ·+ βmam need not to be in the range.

(d) The independency and the normality assumption that are required by the least

squares principle are violated (Witten & Frank, 2005, p. 121).

The Logistic Regression Model

Logistic regression does not suffer from the problems (c) and (d) discussed in the last

section. It allows Pr(y | x) to be a function of (β0 + β1a1 + · · · + βmam), rather than

(β0+β1a1+ · · ·+βmam) itself. The function is called logit function and, for a binary-class

problem, has the form

Pr(1 | x) =
eβ0+β1a1+···+βmam

1 + eβ0+β1a1+···+βmam
(2.12)

Straightforward algebra gives

Pr(y | x)
1− Pr(y | x)

= eβ0+β1a1+···+βmam (2.13)

where the expression on the left-hand side is called the odds ratio.

Instead of using the squared error in linear regression, logistic regression uses the

log − likelihood to measure the goodness of fit. The log-likelihood function of the model
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is given as
n∑

i=1

(1− yi)log[1− Pr(1 | xi)] + yilog[Pr(1 | xi)]

Just as in linear regression, fitting the logistic regression to the observed data requires the

parameters β0, β1, · · · , βm be estimated so that the log-likelihood reaches its maximum

value. Maximising the log-likelihood gives the parameter values, for which the observed

data is most likely to be generated (Witten & Frank, 2005, Section 4.6). The details

of the maximum likelihood technique are quite involved. Fortunately most prepackaged

software will readily do this on request.

2.3.2 Nearest-Neighbour Classification

The standard nearest-neighbour approach is quite simple. Given the training data, the

nearest-neighbour classifier finds the closest (according to some distance metric, which

will be discussed further below) training instance to an unknown test instance, and

predicts the class of that training instance.

The k-nearest-neighbour algorithm is a variation of standard nearest-neighbour.

Instead of searching for only one instance that is closest to the test instance, k such

neighbouring instances are computed and the most frequently occurring class in the k

neighbours (or the distance-weighted average, in the case of numeric class) is assigned to

the test instance. In the event of a tie, a class that is randomly chosen between the tied

classes can be used.

In the nearest-neighbour approach, which instance is selected as a neighbour depends

on the distance between the instance being examined and the test instance. The usual

choice of the distance metric is Euclidean distance (
√∑n

i=1(x1i − x2i)2). But others

are also possible, among which are Absolute Distance ( 1
n

∑n
i=1 |x1i − x2i|), City Blocks

(arg maxi|x1i − x2i|) and Mahannobolis (
√∑n

i=1 ωi(x1i − x2i)2,
∑n

i=1 ωi =1) (Holmes &

Adams, 2002).

The nearest-neighbour classifier has been widely used in the field of statistical pattern

recognition. It has the advantages of being able to learn quickly from a small dataset,

working well for numeric data, and simplicity and ease of implementation. However, one

of its limitations is that it can only provide predictions of class label for a new instance;
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it cannot be used to derive a suitable model from the training data. Thus, there is

no probabilistic interpretation that can be attached to those predicted labels. Another

disadvantage of the the algorithm is that some attributes are more associated with the

class than others, and deriving suitable attribute weights from training set to reflect this

can be difficult (Witten & Frank, 2005, pp. 78–79).

2.3.3 Ensemble of Classifiers

Combining multi-classifiers to make predictions, instead of using a single model, is a

common approach to increasing predictive performance. Several techniques based on this

approach have emerged in the machine learning context, prominent among which are

schemes called bagging, boosting, and stacking. In general, these can be used to make

numeric predictions as well as classifications. The first two generate ensemble classifiers

using the same learning algorithm (e.g. decision tree or neural network training), while

the third approach combines classifiers generated using different learning algorithms

(Dzeroski, 2004, p. 255).

A summarisation given in (Dietterich, 1998, pp. 838–839) listed the following four

methods that have been previously used to construct ensemble classifiers:

1. Manipulating the training data

The bagging and boosting methods can be characterised into this category. Bag-

ging works by resampling the original dataset, whereas boosting combines multiple

classifiers by explicitly seeking models that complement one another.

2. Manipulating the attributes

This strategy relies on the fact that some subset of the attributes may be more

effectively associated with the class than all the attributes as a whole. By performing

attribute selection, prediction accuracy can be improved. Preprocessing methods

play an important role in this approach.

3. Manipulating the output targets

The use of error-correcting output codes is an example of this strategy. In general,

the method proceeds by first learning a set of classifiers from the training dataset.

Each of the classifiers then have to vote for the classes. Eventually the prediction

is assigned to the class with the highest number of votes. It is claimed that better
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performance from both C4.5 decision trees and the back propagation neural net-

work method is achieved on many classification problems by using this technique

(Dietterich & Bakiri, 1995).

4. Randomising the fitting procedure

This is an alternative to the method bagging, in which randomness is injected into

the learning algorithm’s input in order to generate a diverse ensemble of classifiers.

2.4 Summary

In this chapter, we have discussed some background knowledge about Bayesian data anal-

ysis, statistical intervals and predictive models, which are useful for the development of

PI computation methods. We looked at some general principles of how to encode prior

knowledge into a probability model. We discussed how different choices of prior distribu-

tions relate to corresponding posterior distributions. We also discussed some numerical

techniques that are commonly used to compute Bayesian distributional models. Different

types of statistical intervals are designed for different purposes. We have given examples

of how to choose the appropriate type of interval in various situations and explained why

prediction interval (PI) is the appropriate interval for expressing the uncertainty about

the class probability of a single unknown instance when the prediction is made based

on a group of similar instances. Finally, three classification models, regression, nearest

neighbour classification, and ensemble learning were discussed in Section 2.3. In the next

chapter, we will present a literature survey of existing approaches to PI calculation.
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Chapter 3

Literature Review

3.1 Introduction

As stated in earlier chapters, measures of precision and reliability in predictions are of

paramount importance in many applied fields, such as forecasting and medical diagnosis.

One way to express the uncertainty about a point prediction is to provide an interval

estimate to supplement the point estimate. Thus, more information about the predicted

quantity is given by the computed interval. A PI is computed to contain, with a certain

confidence level, a range of possible estimates, in which the ’true’ value of the quan-

tity is supposed to lie. The uncertainty is thus quantified by the width of the computed PI.

Whilst pointwise prediction and the well-known confidence interval have been widely

studied, the construction of PIs has received fairly little attention. The literature with

regard to calculating PIs has been surveyed by Chatfield (1993). Previously proposed

approaches include: (a) using theoretical formulae conditional on a best-fitting model; (b)

relying on the observed empirical distribution of prediction errors, rather than assuming

that the chosen model is true; (c) using simulation and resampling methods to generate

possible future trends either based on simulation from the fitted model or by finding

the variance of the prediction errors; (d) applying a distribution-free approach; and (e)

computing PIs based on the Bayesian approach. This chapter reviews these approaches

and presents insight into how PIs are computed using various methods.

3.2 PI Computation Using Theoretical Formulae

The commonest approach to computing PIs is to use existing theoretical formulae condi-

tional on a best-fitting model. When using this approach, the basic steps in the construc-

tion of a PI can be summarised as follows:
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Step - 1 By assumption, find the probability distribution of the predicted unknown quan-

tity, for which a PI is to be computed.

Step - 2 Compute the point estimate of the unknown quantity.

Step - 3 Compute the probability distribution of the residual – the difference between

the unknown quantity and its estimate, and derive a PI based on the resulting

distribution and the specified confidence level.

For the purpose of demonstration, we discuss a method of constructing a PI for the

value of a new response variable yn+1 at the input level xn+1. The prediction uses a

simple linear regression model, based on the observed data (x1, y1), . . . , (xn, yn). The

discussion below closely follows and extends the discussion in Ross (2004, p. 374).

For Step - 1, suppose the response yn+1 follows a normal distribution, and has its

expected value calculated as E[yn+1] = α + βxn+1 (the true regression line discussed in

the last chapter) and its variance σ2, i.e. yn+1 ∼ N (α+βxn+1, σ2). The notation ∼ N (·)
means that the random variable is normally distributed with the necessary parameters

inside the parentheses. The parameters, α and β, and the standard deviation σ are yet

to be estimated based on the observed data.

The next step (Step - 2) towards computing a PI for the response yn+1 is to find a

point estimator for it. Let A be the estimator of α and B be the estimator of β, then the

estimator of yn+1, corresponding to the input xn+1, is A + Bxn+1. By using the method

of least squares to minimise the sum of the squared differences between the estimated

responses and the actual response values,
∑n

1 (yi−A−Bxi)2, it is not difficult to compute

the two estimators A and B. This is actually the process of fitting the model by finding

the most appropriate parameters and thus making the error term the smallest.

With A and B estimated, the task in Step - 3 is to determine the probability distribu-

tion of the residual ε = yn+1 − (A + Bxn+1). The residual is a linear combination of two

independent normal random variables, so itself is normally distributed. The properties

that need to be determined for this distribution are the mean and variance. The residual

has the mean value of zero because the two random variables yn+1 and A + Bxn+1 have

the same mean α + βxn+1. Its variance is the addition of the variances of the two terms,

i.e. V ar(ε) = V ar(yn+1)+V ar(A+Bxn+1). Based on the normality assumption of yn+1,

and the relationship between the normal distribution and the chi-square distribution, both
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V ar(yn+1) and V ar(A + Bxn+1) can be computed using the observed data. Hence, with

100L percent confidence, the value of the response yn+1 at the input level xn+1 will be

contained in the interval

A + Bxn+1 ± t(1−L)/2,n−2

√
V arn(ε) (3.1)

where t(1−L)/2,n−2 is the appropriate (two-tailed) percentage point on the measurement

axis, for which the area under the t curve with n − 2 degrees of freedom to the right of

the percentage point is (1− L)/2.

The above PI method can be used to compute a PI to contain the ’true’ value of an

unknown quantity. From the method development process, we can see that this standard

technique relies on the normality assumption of the underlying distribution to calculate

the percentile value t. It also requires the values of the existing data be observable.

Moreover, a study in (Phillips, 1979) shows that, when the model parameters, α and

β, are estimated from the same data that is used to compute the point estimator of

the unknown quantity, the distribution of the residual may not in general be normal.

Nevertheless, Equation (3.1) forms the basis for many approaches to PI calculation.

There are also other methods that utilise this theoretical formula approach. Olive

(1998) proposed a PI method based on a large sample of observations. The author claims

that the normality assumption used in some other methods can be relaxed by putting ap-

propriate weights on the model parameters (p. 11). Møller et al. (2005) used the Poisson

model to compute PIs for cancer incidence rates for a future period based on past records

in different countries. They estimated the variance of the residual by decomposing it into

two components: the variance reflecting the uncertainty of the model and the random

variation of the future number of cancer cases (for which a PI is to be calculated). They

computed the PIs based on that: (a) there is no uncertainty about the Poisson model,

hence assuming the adequacy of the chosen model (the ’true’ model), and (b) the distribu-

tion of the future number of cancer cases is normal. They concluded that, as the sample

size increases, uncertainty about the model adequacy is too substantial to be ignored,

and the coverage percentages of the calculated PIs fall below the specified confidence level.
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3.3 Empirically based PIs

An empirically Based PI is an alternative when theoretical formulas for certain models

are not available, or the validity of the chosen model is doubtful. Methods that employ

this approach rely on observing the actual distribution of the prediction residual, rather

than assuming a distribution for it. Being computationally demanding is one of the

disadvantages of the empirically based PI approach.

A recently proposed method (Shrestha & Solomatine, 2006) using this approach

computes PIs by estimating the underlying functional relationship between the input and

the prediction limits of the PIs. It estimates the variance of the prediction residual by

observing the empirical distribution of historical residuals between the model outputs

(expressed as functions of the model’s input values) and the corresponding actually

observed data. Shrestha & Solomatine believe that these residuals are the best available

indicators of the discrepancy between the real-world process and the model that is

assumed to represent it.

The proposed method begins with partitioning the training dataset into clusters with

similar residuals or residuals with similar distributions. Then PIs for each cluster are

computed based on the empirical distribution of the residuals of a particular cluster. In

the case of crisp clustering, each instance in a cluster has the same PI, whereas if fuzzy

clustering is used (which means that a particular instance might be clustered into two or

more clusters), membership grades have to be taken into account. After the PIs for the

training instances have been established, the instances are now ready to be used to train

any algorithm (e.g. neural networks) to construct a mapping function relating a future

input instance to its corresponding PI (p. 229).

An earlier empirical PI method proposed by Gardner (1988, p. 546) employs a

’stepwise’ strategy. The method fits the model parameters to the training data in k steps

and uses the Chebyshev inequality to estimate the error variances in order to calculate

the PIs. Based on Gardner’s method, Talor & Bunn (1999) proposes an empirically based

approach, which is nonparametric and thus avoids the common normality assumption.

Another development by Williams & Goodman (1971) also uses a technique similar to

Gardner’s method and calculates PIs by using the appropriate percentage points of the

empirically found distribution, rather than relying on distributional assumptions.
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3.4 PI Methods by Simulation and Resampling

Simulation and resampling (or bootstrap) methods provide an alternative to empirically

based PI approach. These methods require fewer assumptions than those based on

other approaches and are useful when the size of the observed data is small or when the

assumption about normally distributed residuals can not be justified. However, these

methods can be even more computationally demanding than empirically based ones,

particularly when using resampling. This is because in practical problems, the estimation

is quite complex and large number of replications is thus often required.

The bootstrap, for example, is a nonparametric resampling approach to estimating

the conditional distribution of an unknown quantity, xn+1, by resampling the residuals

with replacement. As discussed in Section 3.2, producing PIs requires resolving the α

percentile value tα, which is typically unknown. The bootstrap method does not assume

any parametric distribution. Instead, it seeks an approximation to the absolute value of tα.

In the case of calculating one-sided PIs (i.e. prediction bounds), the following resampling

scheme was discussed in (Mojirsheibani, 1998, p. 491). Let F be the empirical distribution

of the observed data xi, i = 1, . . . , n, i.e. xi ∼ F ; let x∗i , i = 1, . . . , n be an independent and

identically-distributed (iid) random sample drawn with replacement from F , with mean

x̄∗ = 1
n

∑n
i=1 x∗i and standard deviation s∗; also let x∗n+1 be from F , independent of x∗i . A

distribution function T ∗ is defined as

T ∗ =
x∗n+1 − x̄∗

s∗
√

1 + 1
n

.

If we use t∗α to refer to the α percentile value of the distribution T ∗, then t∗α can be found

using bootstrap resampling. Using t∗α to approximate tα, yields a bootstrap PI for xn+1

[
x̄ + t∗α

√
s2(1 +

1
n

) , ∞
)

Bai (1990) provides discussions of coverage error rates for such bootstrap PIs. Stine

(1985) looks at nonparametric bootstrap PIs for regression and concludes that uncon-

ditional PIs, such as the ones obtained using the bootstrap, compare favourably with

normal-distribution-based PIs. Thombs & Schucany (1990) compute bootstrap PIs under
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the primary assumption that the chosen model does fit the observed data. Finally,

Romano (1992) reviews and compared various PI methods.

3.5 Distribution-free PIs

As discussed in Section 2.3.4, some shortcomings may limit the value of distribution-free

statistical intervals and thus discourage users from considering using them. However, such

intervals still serve as a useful alternative in certain situations. In this section, we use

an example to demonstrate the calculation of distribution-free PI in the case of discrete

variables. The calculation uses the typical ”order statistics” strategy for computing

distribution-free PIs (Hahn & Meeker, 1991, Section 5.4, p. 76; Guttman, 1970, pp. 7–8).

The general setup is as follows: let a sample of n independent observations, xi, i =

1, . . . , n, be taken from a population of an unknown distribution. Suppose a new but

unknown observation, xn+1, is also randomly selected from the same population, inde-

pendent of the previous xi. We wish to determine an interval, (PL, PU ), such that xn+1

falls in the interval with a specified confidence level L. Arrange the sample observations

xi according to their values, denoting the ordered xi by x′i, where x′1 < x′2 < . . . < x′n.

Since by assumption x1, . . . , xn, xn+1 are invariant under all permutations, the n + 1th

observation is equally likely to occupy any of the ’bins’ formed by the order statistics

of x′1 < x′2 < . . . < x′n, including the two leftmost and the rightmost positions if xn+1

happens to be the smallest or the largest. Because there are in total n + 1 gaps formed

by the n available observations, as illustrated in Figure 3.1, each bin carries a probability

of 1/(n+1). It then follows that the probability that the (n+1)th observation falls inside

the entire range of n observations (excluding the two leftmost and rightmost positions:

position 1 and n + 1 in the figure) is 1− 1
n+1 × 2. That is,

P (PL < xn+1 < PU ) = 1− 1
n + 1

× 2 =
n− 1
n + 1

where PL = x′1 and PU = x′n. The probability that the interval (PL, PU ) captures the

(n + 1)th observation is just the specified confidence level L, i.e.

P (PL < xn+1 < PU ) =
n− 1
n + 1

= L
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Figure 3.1: The new observation xn+1 could occupy any of the n + 1 positions formed by
the n ordered observations.

Straightforward algebra gives the sample size requirement

n =
1 + L

1− L
.

Therefore, to calculate, for example, a 95% PI, we need to sample at least n = 1+0.95
1−0.95 = 39

observations and find the values of the largest and smallest observations as the interval

endpoints (alternative bootstrap-alike techniques may be needed otherwise).

In the case of continuous variables, Saw, Yang & Mo (1984) computed the following

distribution-free PI for sample data xi:

x̄± λ(1 + 1/n)1/2s (3.2)

where λ ≥ 1, x̄ = 1
n

∑n
i=1 xi is the sample mean, and s = [

∑n
i−1(xi − x̄)2/(n − 1)]1/2 is

the usual unbiased estimator of the standard deviation. Konijn (1987) elaborated some

useful properties of the PI in (3.2) with regard to the parameter λ.

There are also other PI methods based on the distribution-free approach. Butler

& Rothman (1980) proposed a method based on a cross-validation or sample reuse

methodology that makes use of a ”one-at-a-time schema of observational omissions.”

Aiming to get precise network state information, Yin, Chaw & Yaacob (2005) adopt the

nonparametric distribution-free approach to construct two-sided PIs in helping to infer

the future available bandwidth and generate quality of service (QoS) metrics.
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3.6 PIs based on the Bayesian Approach

The PIs we have discussed up to this point are computed and evaluated from the so-called

’classical’ (’frequentist’ or ’sampling theory’) point of view. Bayesian methods provide

a useful alternative that allows the analyst to combine his or her prior beliefs about the

quantity of interest with information contained in the observed sample, and then make

statistical inferences about the quantity by summarising the computed posterior distribu-

tion. In this section, we review some of the methods that use this approach to compute PIs.

Chhikara & Guttman (1982, pp. 321–322) constructed a two-sided PI for the inverse

Gaussian distribution. In order to primarily rely on the likelihood based on the observed

data, they used the following ”diffuse” prior:

p(θ, λ) = p(θ | λ)p(λ) ∝ 1
λ

(3.3)

where θ = 1/µ; and µ and λ are the two parameters of the inverse Gaussian distribution.

The parameterisations I( 1
µ , λ), instead of the usual I(µ, λ), for the inverse Gaussian

distribution is also employed to avoid improper prior and posterior distributions for the

parameters. A closed form of the predictive distribution, h(xn+1 | X), of a single future

observation xn+1, given the data X, is then found analytically. The determination of

the PI limit points, however, still requires numerical integration from computer power.

A PI was also constructed by using the ’frequentist’ approach in the same paper. A

comparison of the two approaches leads to a conclusion that Bayesian inference has a

”definite advantage” over the other (p. 323).

A method of computing PIs for the unimodal log-normal distribution, Y =

logX ∼ N (µ, σ2), was presented in (Dahiya, 1982, p. 279). They used the same ”diffuse”

prior as in (3.3) for the normal parameter σ2, and also found a similar form of the

predictive density function. They derived a method that can be used to compute PIs

with the shortest width. The method was illustrated by using the log-normal distribution

to model the ”time to failure” models (p. 290).

Jaheen (2003) constructed one-sided prediction bounds for the sth future observation.

The proposed method uses ”a finite mixture of two-component Gompertz model” to

represent the underlying population, from which the observations were sampled. By using

Monte Carlo simulations, the proposed method computes the lower and upper prediction
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bounds for the minimum and maximum of future observations with a coverage percentage

”close to the specified confidence level.”

Faulkenberry (1973) also proposed a Bayesian procedure for computing PIs. The

method obtains a distribution for an unknown observation for which the PI is to be

computed. The obtained model is ”conditional on a sufficient statistic” for the model

parameter. The observed sample data and the unknown observation are assumed to have

different distributional functions indexed by the same parameter, and the joint distribu-

tion is derived and used to compute the PI. Two examples of using the procedure were

demonstrated, using the negative exponential and the Poisson distribution, respectively.

Other probability distributions, for which consideration of PI computation has been

given using the Bayesian approach, include the exponential distribution for different

sampling schemes with regard to the observed data, and a distribution whose pdf

itself is randomly selected according to a Dirichlet process on the space of distribution

functions (Campbell & Hollander, 1982).

3.7 Summary

In this chapter, we have reviewed some previously proposed approaches to computing PIs.

The most widely used approach is the theoretical PI formula with the normal distribution

assumed for the underlying process. When the probability assumption is not met, or

when the theoretical formulas are not available for some complex or nonlinear models,

approaches that require fewer distributional assumptions can be used. Distribution-free

methods can be useful in certain situations. Empirically based and resampling approaches

are normally computationally demanding. Yet modern computer technologies have made

it possible to solve problems that could not be solved before. The Bayesian approach

has many practical advantages such as easy accommodation of unobservable variables

and incorporating information from previous studies through prior distributions, etc. In

the next chapter, we will derive a Bayesian model to compute PIs for class probability

predictions made by models such as decision trees, i.e. the particular machine learning

context considered in this thesis.
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Chapter 4

Methodology

4.1 Introduction

As we discussed in the last two chapters, inevitable uncertainties come with point esti-

mates. Interval estimates are known to be able to provide much more information than

point estimates, and have been widely used to quantify the uncertainties around point

predictions. A prediction interval (PI) is computed to contain, with a specified confidence

level, a single unknown quantity, and the width of the PI is used to indicate the uncertainty.

Various PI methods have been proposed with the aim of solving a particular problem

in a particular situation. However, the construction of PIs for the class probability of

an unknown instance has not been attempted in previous research. In this chapter,

a Bayesian approach is employed to derive a theoretical formula that can be used to

compute a PI for the class probability of a test instance based on the outcome of a de-

cision tree classifier, or similar techniques that provide a neighbourhood for a test instance.

The chapter is organised as follows. We discuss the proposed Bayesian prob-

abilistic model from Section 4.2 to 4.5, including the setup of the framework, the

modelling of the class probability and the computation of the model. A decision tree

ensemble algorithm is introduced in Section 4.6. The chapter is summarised in Section 5.3.

4.2 General Setup

In the cancer diagnosis example discussed in Chapter 1, the task of building a diagnostic

system is to establish a relationship between a set of symptoms of a patient and a

corresponding diagnosis. Let x be a patient; and y be the diagnosis for the patient, which

we shall define as taking the value 1 if a patient has developed cancer and 0 otherwise.

In the machine learning context, the patients, their symptoms and the diagnoses are
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generalised as instances (the xs), the attributes, and the classes (the ys) of the instances,

respectively. Since the class y only takes on value 0 and 1, we have a binary classification

problem.

Suppose an ensemble of random decision tree classifiers (discussed in Section 4.6) is

trained using a set of training instances, and the ensemble defines a group of n instances

(x1, y1), . . . , (xn, yn) as the neighbourhood of an unknown instance (xn+1, yn+1). The

classification for the unknown instance can be obtained by calculating the majority class

in the observations y1, . . . , yn. We can also calculate k/n, where k is the number of 1s

in y1, . . . , yn, to express an estimate of the true probability that the unknown instance

belongs to the class 1, i.e. P (yn+1 = 1) = k/n.

The aim of the study, however, is to compute a PI to include the true class probability

of P (yn+1 = 1), with a specified confidence level L, given only the class observations

D = (y1, . . . , yn). We assume the computed PI is a joint interval, which can be expressed

as [PL, PU ] with the lower and upper limits PL and PU , i.e. PL < P (yn+1 = 1) < PU .

(We will discuss the more complicated disjoint PIs later in the chapter.) For simplicity

purposes, we shall hereafter use Pn+1 to implicitly mean P (yn+1 = 1).

One of the often praised advantages of Bayesian inference is that it enables us to find

a complete distribution of an unknown quantity of interest. Thus, we can compute a PI

for Pn+1 by seeking the probability distribution of Pn+1 conditional on the observed data

D, i.e. Pr(Pn+1 | D). The distribution Pr(Pn+1 | D) defines the relationship between

the probability value Pn+1 and the observed class set D.

Deriving a distribution of the quantity of interest is just the first necessary step

towards constructing a PI. To compute PIs of various kinds, such as a PI with the

narrowest width, different methods are required. With the yet to be found, applicable

density function Pr(Pn+1 | D), they are all attainable. We will focus on deriving the form

of Pr(Pn+1 | D) in the next two sections, and discuss the computation of the narrowest

PIs in Section 4.5.
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4.3 Parametric Modelling Framework

The density function Pr(Pn+1 | D) is the probability distribution of Pn+1, conditional on

D(y1, . . . , yn), about which the theory of conditional probability tells us that

Pr(Pn+1 | D) =
Pr(Pn+1 ∩D)

Pr(D)
=

Pr(Pn+1, y1, . . . , yn)
Pr(y1, . . . , yn)

(4.1)

whenever the mass function in the denominator is non-zero. In fact, with fixed (y1, . . . , yn),

the factor Pr(D) does not depend on Pn+1 and thus is considered a constant, yielding an

equivalent form of (4.1), with Pr(D) omitted, as follows:

Pr(Pn+1 | D) ∝ Pr(Pn+1, y1, . . . , yn) (4.2)

The form on the right-hand side of (4.2) is called the unnormalised posterior density,

because of the omission of the denominator Pr(D).

We need a model for the distribution of Pn+1. So we introduce a parameter vector θ

that lies in the parameter space Θ, i.e. θ ∈ Θ, such that,

Pr(Pn+1 | D) ∝ Pr(Pn+1, y1, . . . , yn) =
∫

Θ
Pr(Pn+1,y | θ)Pr(θ)dθ (4.3)

where y = (y1, . . . , yn).

Now let us look at the composition of the data space D. From the discussion about

the cancer patient example in earlier chapters, we know that the probability of the

(n + 1)th patient having developed cancer depends on not only the class set y1, . . . , yn,

but also P1, . . . , Pn, which are the probability values of the corresponding patients with

known diagnoses. Hence, we define D ∈ (y1, . . . , yn, P1, . . . , Pn).

Since P1, . . . , Pn are unobservable, we take them into account by integrating over all

possible values of P1, . . . , Pn in the range (0, 1). Thus, by substituting Equation 4.3 into

the right-hand side of (4.2), together with D ∈ (y1, . . . , yn, P1, . . . , Pn), the distribution

Pr(Pn+1 | D) becomes

Pr(Pn+1 | D) ∝
∫

θ

∫ 1

P=0
Pr(Pn+1,y,P | θ)Pr(θ)dPdθ

∝
∫

θ

∫ 1

P=0
Pr(Pn+1 | y,P, θ)Pr(y,P | θ)Pr(θ)dPdθ (4.4)
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where y = (y1, . . . , yn), and P = (P1, . . . , Pn).

The term Pr(Pn+1 | y,P, θ) in (4.4) can be further simplified to

Pr(Pn+1 | y,P, θ) = Pr(Pn+1 | θ), (4.5)

based on the fact that Pn+1 is independent of y and P, given the model parameter θ

(Gelman, 2004, p. 9).

From the definition of conditional probability, we can also write

Pr(y,P | θ)Pr(θ) = Pr(y,P, θ) (4.6)

Substituting (4.5) and (4.6) into (4.4) results in

Pr(Pn+1 | D) ∝
∫

θ

∫ 1

P=0
Pr(Pn+1 | θ)Pr(y,P, θ)dPdθ

∝
∫

θ

∫ 1

P=0
Pr(Pn+1 | θ)Pr(y | P)Pr(P | θ)Pr(θ)dPdθ

∝
∫

θ
Pr(Pn+1 | θ)

n∏

i=1

[∫ 1

0
Pr(yi | Pi)Pr(Pi | θ)dPi

]
Pr(θ)dθ (4.7)

Here, we have used that Pr(y | P, θ) = Pr(y,P). The last equation follows from the fact

that y1, . . . , yn and P1, . . . , Pn are exchangeable. We continue the computation of the

right-hand side of (4.7) in the next section.

4.4 Modelling Class Probabilities

In this section, we specify a distributional model for the class probabilities. We also

discuss the parameter vector θ that is associated with the specified probability distribution.

Ideally, modelling the class probabilities of the instances involves making a specific

distributional assumption about P1, . . . , Pn, based on our prior knowledge of their likely

values. Unfortunately, because the values of P1, . . . , Pn are unobservable, we do not have

the necessary prior information about their empirical distribution. All we know about the

values of P1, . . . , Pn is that they are in the range [0, 1]. Therefore, to fulfill the principle of

maintaining maximum uncertainty in the chosen class of models, as discussed in Chapter
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2, we choose the beta distribution to model the distribution of P1, . . . , Pn. We make our

choice based on the following grounds:

(1) The flexibility of the beta distribution, which is represented by a wide variety of density

curves, reflects our lack of knowledge about the unobservable probability values.

(2) We can use the beta distribution to approximate any smooth unimodal distribution

in the range [0, 1]. Figure 4.1 shows some examples of the beta density graph in the

range [0, 1], corresponding to different combinations of its α and β parameter values

between 0 and 3 (Lee, 2004, pp. 74–75; Gregory, 2005, p. 117).

(3) The beta distribution is commonly used in Bayesian analysis to describe initial knowl-

edge concerning probability of success or failure, i.e. class 1 or 0 (Hahn & Shapiro,

1994, p. 94).

A beta distribution that is defined in the range [0, 1] is called the standard beta

distribution. A random variable X, which follows a standard beta distribution with the

two parameters α and β (both positive), has the following probability density function:

f(x; α, β) =





Γ(α+β)
Γ(α)·Γ(β)x

α−1(1− x)β−1 0 ≤ x ≤ 1, 0 < α, 0 < β

0 otherwise
(4.8)

In Figure 4.1, we can see that different combinations of α and β result in different shapes

of the beta distribution. For example, when α > 1 and β > 1, the distribution is single

peaked; when α < 1 and β < 1, it is U shaped; with α < 1 and β ≥ 1, it is reverse J

shaped, and so on. Thus, both parameters affect the distribution shape, i.e., they are

both shape parameters. Now we can define the parameter space θ in (4.7) to be θ ∈ (α, β).

To avoid carrying the whole heavy notation, we for now only deal with the part

∫ 1

0
Pr(yi | Pi)Pr(Pi | θ)dPi (4.9)

in (4.7). Putting Pi in place of x in Equation (4.8) yields

Pr(Pi | θ) = Pr(Pi | α, β) =
Γ(α + β)

Γ(α) · Γ(β)
Pα−1

i (1− Pi)β−1 (4.10)

A property that the class observations y1, . . . , yn have is that, each yi takes on value

1 with the corresponding probability Pi, or 0 with probability 1 − Pi. That is, yi are

Bernoulli random variables. Thus, the class observations yi have the probability mass
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Figure 4.1: Examples of beta densities.
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function:

Pr(yi) =





Pi yi = 1

1− Pi yi = 0

Therefore,

Pr(yi | Pi) = yi · Pi + (1− yi) · (1− Pi) (4.11)

Substituting Equation (4.10) and (4.11) in (4.9) yields

∫ 1

0
Pr(yi | Pi)Pr(Pi | θ)dPi =

∫ 1

0
[yiPi + (1− yi)(1− Pi)]

· Γ(α + β)
Γ(α) · Γ(β)

Pα−1
i (1− Pi)β−1dPi (4.12)

A solution to this integral was obtained using the Mathematica software package:

αyi · 2F1(α + 1, 1− β; α + 2; 1)− (α + 1)(yi − 1) · 2F1(α,−β; α + 1; 1)
α(α + 1)B(α, β)

(4.13)

where B(·) is the beta function, which can be decomposed using the gamma function

Γ(·) as B(α, β) = Γ(α)Γ(β)/Γ(α + β), and the function 2F1(·) has the generalised form

pFq(a1, . . . , ap; b1, . . . , bq;x), that, with the corresponding parameters p = 2, q = 1,

is called the first hypergeometric function (also known as the Gauss’s hypergeometric

function).

The reasoning that is needed to simplify (4.13) is quite involved, yet with Kummer’s

(1836) solution to the first hypergeometric function (also called Kummer’s first formula),

it is achievable. We omit the lengthy manipulation here and give the details in Appendix

A. The following is the final form of the result:

yiα + (1− yi)β
α + β

(4.14)

Substituting (4.14) back into (4.7) yields

Pr(Pn+1 | D) ∝
∫

Pr(Pn+1 | θ)
n∏

i=1

[
yiα + (1− yi)β

α + β

]
Pr(θ)dθ

∝
∫

Pr(Pn+1 | θ)
∏n

i=1[yiα + (1− yi)β]
(α + β)n

Pr(θ)dθ (4.15)

To simplify the product
∏n

i=1[yiα + (1− yi)β] in (4.15), let k be the number of obser-

vations in y1, . . . , yn that take on value 1, and hence the remaining n− k observations all
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take on value 0. Since

yiα + (1− yi)β =





α yi = 1

β yi = 0

the above product can be written as

n∏

i=1

[yiα + (1− yi)β] = αkβn−k (4.16)

Again, by the earlier modelling assumption that Pn+1 is beta distributed with param-

eters α and β, Equation (4.15) becomes

Pr(Pn+1 | D) ∝
∫

Pr(Pn+1 | θ) αkβn−k

(α + β)n
Pr(θ)dθ

∝
∫ ∫

(Pn+1)α−1 · (1− Pn+1)β−1

B(α, β)
· αkβn−k

(α + β)n
Pr(α, β)dαdβ (4.17)

where 0 ≤ Pn+1 ≤ 1, 0 < α < ∞, 0 < β < ∞, and Pr(α, β) is the prior distribution of

the parameters and will be discussed in the next section.

4.5 PI Computation by Model Simulation

Now we have established a probability model from which we can make various posterior

inferences about Pn+1. An example of such inferences is to report the entire posterior

distribution, i.e. a graphical display, as we will see later in the section. Other numerical

summaries of the distribution, which are more of practical use, include reports on location,

such as the mean, median, and mode of the distribution; and the standard deviation and

other percentiles to summarise the variation of the distribution. The desired inference

in this study is an interval summary (a PI) to report the posterior uncertainty of an

unknown quantity.

To compute a PI for Pn+1, which is a continuous random variable in the range [0, 1],

we begin with the definition of probability density function. If X is a continuous random

variable, then the probability density function of X is a function f(x) such that any two

numbers, a and b, with a ≤ b,

p(a ≤ x ≤ b) =
∫ b

a
f(x)dx (4.18)

The left-hand side of Equation (4.18) is the probability that x takes on a value in the

interval [a, b], which is also the area under the density f(x). Substituting [a, b] with
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[PL, PU ] and f(x) with Pr(Pn+1 | D) in (4.18), we have

p(PL ≤ Pn+1 ≤ PU ) =
∫ PU

PL

Pr(Pn+1 | D)dPn+1 (4.19)

From the definition of confidence level, we know that if the integral [PL, PU ] claims

to contain the quantity Pn+1 with confidence level L, then L is just the probability that

Pn+1 lies in [PL, PU ]. That is,

P [PL < P (yn+1 = 1) < PU ] = L (4.20)

Combining Equation (4.20) with (4.19) yields

∫ PU

PL

Pr(Pn+1 | D)dPn+1 = L (4.21)

That is, to compute a PI for Pn+1 at the confidence level L, we need to find the two

interval endpoints PL and PU such that the area under the graph of the density function

Pr(Pn+1 | D) between the two percentiles PL and PU is L (e.g., 95% or an equivalent

value 0.95).

In general, a PI (i.e. [PL, PU ]) calculated using Equation (4.21) is not unique un-

less further conditions are imposed. However, when computing a PI of coverage level

L, which is the so-called central interval of the distribution, the two endpoints can be

uniquely identified in the following calculation. Since 0 ≤ Pn+1 ≤ 1, from the definition

of probability density function, we have

p(Pn+1 < PL) + p(PL < Pn+1 < PU ) + p(Pn+1 > PU ) = 1

Also, because it is a central coverage interval that we are computing, it follows that

p(Pn+1 < PL) = p(Pn+1 > PU )

=
1− p(PL < Pn+1 < PU )

2

=
1− L

2

Then the two endpoints of the PI, PL and PU , are given by

∫ PL

0
Pr(Pn+1 | D)dPn+1 =

1− L

2
(4.22)
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and ∫ PU

0
Pr(Pn+1 | D)dPn+1 =

1 + L

2
(4.23)

An example of central coverage interval is shown in Figure 4.2 (a). PIs with other

requirements such as the narrowest PIs can also be computed by demanding different

strategies. These will be discussed later in the section.

For the right-hand side of (4.17) to be used in the calculations of PL and PU , such

as the above discussion, it must be a proper density. Recall that the density function in

(4.17) is called the unnormalised posterior density, because the denominator was omitted

in the beginning of the reasoning (Equation 4.2). To get a proper density, normalisation

is required. This can be achieved by dividing the value of each point on the unnormalised

density curve by the total area under the curve.

To calculate the area under a density curve within a certain range, we have to

compute the value of the integral on the right-hand side of (4.17). Hence, we need to

decide on the prior distribution Pr(α, β) of α and β. We choose the gamma distribution

with both of its shape and scale parameter equal to one. This assumption is an

attempt at noninformativeness to reflect our lack of knowledge about the two beta

parameters. We also choose a Monte Carlo approach to compute the integral. This is

discussed in more detail further below. For the moment, let us assume that we can

compute the density curve for Pn+1 by evaluating the integral over different values of Pn+1.

The next problem is the computation of the area under the density curve. We employ

a simple approximation technique for this. The idea is to ’discretise’ the X-axis in the

interval [0, 1] into 10,000 units. Thus, the total area under the density curve is uniformly

divided into 10,000 ’rectangles’ with all of them having a tiny ’curvy’ top and the same

unit width. Given the small range of [0, 1], the size 10,000 for the discretisation can make

the calculation of the area quite accurate. Now the integration of the density curve can

be approximated by the summation of the areas of those ’flat’ top rectangles with each of

them calculated by the unit width (i.e. 1/10,000=0.0001) times the corresponding density

values. Note that the height of a particular rectangle is approximated by the density

value of a point on the curve that corresponds to the rectangle [see Figure 4.2 (b)].

One thing worth pointing out here is that, when computing the area under the density
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Figure 4.2: (a) p(PL ≤ Pn+1 ≤ PU ) = the area under the density curve between PL and
PU . (b) Smooth curve area is simulated by summation of a large number of rectangles.

curve, the two endpoints 0 and 1 (or PL and PU ) are excluded to prevent a division by

zero. This can be justified because

(a) the probability assigned to any particular single value is zero, and

(b) the probability of an interval does not depend on whether either of its endpoints is

included.

These properties follow from the fact that the total area that corresponds to a particular

single value is zero (the area can be thought of as covering only a vertical line with a zero

width), and that the area under the curve above an interval is unaffected by exclusion or

inclusion of the endpoints of that interval [see Figure 4.2 (a)].

Now we compute the density curve for Pn+1, using (4.17). We achieve this using a

Monte Carlo approach based on the gamma prior for the parameters α and β. We proceed

as follows:

(1) Generate values of the beta parameters α and β by sampling from the gamma distribu-

tion with its two parameters both equal to 1. We shall write this gamma distribution

as gamma(1, 1).

(2) For each pair of the generated α and β values, we take each of the ’discretised’ values

of Pn+1 in the interval (0,1) with the endpoints excluded, and compute the value of

(Pn+1)α−1 · (1− Pn+1)β−1

B(α, β)
· αkβn−k

(α + β)n

(3) For each value of Pn+1, we compute 1000 such density values and sum them up. The

accumulated density is then normalised, which gives us the simulated posterior distri-
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bution (for the adequacy of using the sampling size 1000, see Gelman, 2004, p. 25–26).

To understand how the accumulation of the sampled densities works, consider the following

proposition:

Proposition 1. When the condition

α

α + β
=

k

n
(4.24)

is met, the likelihood function αkβn−k

(α+β)n in (4.17) reaches its maximum.

Thus, the α and β pairs that best ’fit’ the observations (represented by the values k

and n) dominate the result of the accumulation, so as to present the most influence on

the posterior distribution.

Besides using the prior gamma(1, 1) for sampling the two beta parameters, another

choice of relatively noninformative prior is to use the uniform distribution. For example,

one prior that uses the uniform distribution is α ∼ U(0, 10) and β ∼ U(0, 10) [we use the

notation that U(a, b) denotes the uniform distribution in the range (a, b) exclusive]. The

third prior that we have tested in the experiments is one that assumes α + β = 10, where

α and β are generated by first sampling α ∼ U(0, 10), then subtracting α from 10 to get

β. Note that the chosen number 10 could be replaced by any other number of moderate

size.

The difference among the above mentioned priors is that they have different sizes of

sampling space, from which the parameters α and β are sampled. This is illustrated in

Figure 4.3. The figure shows that the sampling space for the priors in (a), (b), and (c)

increases as the priors become more and more nonspecific. The trend is also reflected in

the widths of the computed PIs using these three priors (as shown in the results of the

experiments in the next chapter). A likely explanation for this is that the smaller the

sampling space, the less uncertainty we introduce into the model. However, this does not

mean that we can use priors as specific as we want, because the more specific the prior,

the more optimistic our interval estimates become.

Note that, the computation using the prior (a) in Figure 4.3 is slightly different from

the other two, in the way that how α and β are sampled in our experiments. That is, the
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Figure 4.3: Different priors come with different sampling spaces in relation to the compu-
tation of the posterior distribution. (a) The straight line forms the sampling space for the
prior α + β = 10. (b) The triangular area under the line α + β = 10 forms the sampling
space for the prior U(0, 10). (c) The whole square area forms the sampling space for the
prior gamma(1, 1).

1000 fixed points are uniformly selected on the line α + β = 10. Thus, the 1000 pairs of

α and β values used in the posterior computation are defined as (0.01, 9.99), (0.02, 9.98),

· · · , (9.99, 0.01).

The PI that we computed in equations (4.22) and (4.23) is the central coverage PI

with a joint range of values. In many situations such as diagnosing life threatening

diseases, however, of more practical use are PIs that have the narrowest width given

a certain confidence level. The usefulness of the narrowest PIs is that the unknown

quantity is confined in the smallest possible range. Thus, the most definite quantification

of uncertainty is provided.

Note that, when the resulting probability model is not single peaked, a central

coverage PI may not have the narrowest width, given a specified confidence level. For

example, for the highly conjectural bimodal posterior density graph pictured in Figure

4.4 (a) and (b), a central coverage joint PI with cuts from both ends in (a) is wider than

its counterpart in (b) consisting of two disjoint intervals, with both of them computed at

the same confidence level.

A central coverage PI that does not have the narrowest width also occurs when the

density curve is highly skewed. For example, in Figure 4.4 (c) and (d), the central PI in

(c) is clearly wider than that in (d), in which a large part of the width has been cut off

while still maintaining the same size of grey area as that in (c). Obviously, for a central

joint PI to also have the narrowest width, the posterior distribution has to be single

peaked and symmetric.
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Figure 4.4: A U-shaped symmetric posterior density graph for which the 95% PI is com-
puted in two different ways: (a) a central joint PI; (b) a disjoint PI with the narrowest
width. A skewed J-shaped posterior density curve, for which the calculated 95% PI is
computed: (c) a central PI; (d) the narrowest PI becomes an one-sided interval bound.

From Figure 4.4, it is also to be noticed that not only do the gray areas in (b) and

(d) contain 95% of the posterior probability, they also have the characteristic that the

density within the area is never lower than that outside. This is the characteristic that

differentiates the types of PIs fundamentally. In Bayesian inference, the type of PIs in

(b) and (d), which has the shortest width for a given confidence level, is also referred to

as highest posterior density region (HPD).

Computing a central PI with a confidence level L by using the method in Equation

(4.22) and (4.23) is equivalent to cutting off the area under the curve from both ends

until the specified criterion (i.e. 1−L
2 ) is reached. The method of calculating a PI with the

narrowest width, however, is to gradually read off the ’rectangles’ one by one in the order

from the shortest to the highest, until the remaining area is L, resulting in an interval

corresponding to the region with the highest density.

Different types (joint/disjoint) of PIs demand different interpretations in various

situations. For instance, for a disjoint PI such as the one shown in Figure 4.4 (b) that

is computed for the cancer patient example, it means that the probability of the patient

who has developed cancer is either low (in the region [PL1, PU1]), or high (in the region
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Figure 4.5: Illustration of the random tree ensemble inducting and prediction process.
The letters A to K represent 10 training instances in the training dataset. The superscript
denotes the corresponding instance’s class. The induced ensemble consists of four single
trees, in which splitting nodes are represented by circles and leaves by rectangles. In this
example, Leaf-1 to Leaf-4 are used to form the neighbourhood for a test instance.

[PL2, PU2]). Whereas the PI in Figure 4.4 (a) tells us what the highest and lowest

probabilities are (the two endpoints of the interval), and yet contains more uncertainty

with a wider width. An interpretation that is slightly more deterministic can also be

given when a PI such as one in Figure 4.4 (d) is calculated, in which case the patient

definitely has a high probability of being diagnosed with cancer.

4.6 A Random Tree Ensemble Classifier

PI computation methods, such as the Bayesian model discussed above, are used in

conjunction with prediction methods when constructing PIs. The prediction method is

required to provide a set of class labels for a test instance, which are obtained from the

neighbourhood of the test instance. This section presents such an algorithm that is based
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on an ensemble of random decision trees. The algorithm does not do any search to fit the

ensemble to the data so as to avoid biasing the computed PIs.

Decision trees are powerful and popular tools for classification and prediction. They

are simple and easy to understand and interpret, able to handle both nominal and

categorical data, and able to analyse a large amount of data in a short time and perform

well. One of the useful advantages of decision trees is that we can use them to identify

target groups. For the example of diagnosing cancer patients, a decision tree diagnosing

system allows the patients to self-diagnose themselves by simply answering a few yes/no

questions, or filling in a couple of values in a form, such as ”the time period of having been

presenting a symptoms”. Then an answer of Yes/No (cancer/not cancer) and a numeric

value that shows how likely the answer is correct are returned from the system. In this

case, the system is actually making use of the records of a group of identified patients to

give the diagnosis. It is also easy for the physician to access the records that were used by

the system to make the diagnoses, e.g. how many cancer/noncancer records contributed

to the resulting probability value, etc. Also, We can combine multiple decision trees and

form an overall prediction. In a typical ensemble of trees, the process is repeated for each

tree and the predictions are combined.

The general decision tree structure comprises both splitting and leaf nodes. The

splitting nodes involve testing a particular attribute. Depending on the attribute value,

instances are assigned to the corresponding branches from a particular splitting node.

When classifying an unknown instance, it is routed down each of individual trees and

one leaf node in each tree is identified. Leaf nodes give a classification that applies to all

instances that reach the leaf. In the terminology of trees, the node at the top of the tree,

where the splitting starts, is called the root node, and the splitting nodes and leaf nodes

are also called branching and terminal nodes, respectively.

We build an ensemble of random trees based on the following algorithm. At each

node we select a splitting attribute at random, starting with the root node. If the

attribute that is tested at a splitting node is a nominal attribute, the number of split

branches is the number of values of the attribute; if the attribute is numeric, a constant

value is determined by averaging the attribute values of two randomly selected instances.

Then the comparison between the attribute value of a tested instance and the constant

determines which branch the instance goes to, giving a two-way split. Note that, a
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numeric attribute can be tested several times in any given path down the tree from the

root to a leaf with each test involving a different constant.

When training the ensemble of decision trees, the same induction process applies to

each tree in the ensemble. However, this does not mean that the resulting trees are all the

same, because (a) each time an attribute is picked out at a splitting node, it is randomly

selected from all the candidate attributes, (b) the constants used at each splitting node

are computed from the values of randomly selected instances. Thus, the trees in the

ensemble are different from one another.

A distinctive feature of our ensemble random tree algorithm is that, instead of

combining the predictions made by each of the trees in an ensemble to form an overall

decision as existing algorithms usually do, it unites all unique instances from the trees’

leaves before making a prediction. This is so that we can get a neighbourhood to compute

a PI. Figure 4.5 illustrates the induction of an ensemble of decision trees and how the

neighbourhood for a test instance is calculated.

In Figure 4.5, four classifiers (T-1 to T-4) are generated from a dataset with 10

instances. Suppose a test instance is routed down from the root nodes of the four trees,

and four leaf nodes (Leaf-1 to Leaf-4) are reached by this test instance. Because each

individual tree is built from the same training dataset, the ensemble is likely to have

duplicate instances contained in the four leaf nodes. To level the impact of each training

instance on the prediction for the test instance, and so as to make it possible to compute

unbiased PIs, we unify the instances in the four leaves and eliminate all duplicate

instances. As a result, two instances C0 and G0 are removed because they appear more

than once. The resulting observations of the two classes are 5 and 3, respectively. The

statistics are used by the Bayesian model to compute a PI for the class probability of the

test instance.

To prevent the resulting trees in the ensemble from containing empty leaf nodes where

no instance resides, we impose a restriction to allow no fewer than a certain number of

instances in a leaf node: this number is taken as the value of a parameter of the tree

induction algorithm.

Another situation that may possibly occur during the tree growing process is that all
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instances in a node belong to the same class before the total number of instances reaches

the imposed limit. In this case, a parameter is set to signify whether to stop splitting such

a ’pure’ node, or continue until the minimum number limit is reached. Other parameters

used in the induction of the classifier include whether to allow numeric attributes to be

further split in the subsequent nodes, etc. These are discussed in the next chapter.

There is also another slightly modified version of this random tree ensemble algorithm

that we investigate. It combines the strategies of the k-nearest-neighbour algorithm and

decision tree learning. That is, instead of using all the instances in the resulting union,

a subset of the instances that are the closest to the test instance are used (measured

by Euclidean distance). The specified number of the closest instances is also taken as a

parameter of the tree model. If the number happens to be smaller than the total number

of instances in the union, all instances are used.

4.7 Summary

Most of this chapter has been concerned with deriving a Bayesian probabilistic model.

The model defines the density function of the class probability of a test instance, given

a set of instances with known classes. When calculating the likelihood function, a beta

distribution is assigned to the class probabilities of the known instances. We do this

because (a) the class probability values are unobservable, (b) we lack the knowledge

about the true underlying distribution. Thus, employing a distribution like beta, which

is flexible enough to model any unimodal distribution in a limited range, is the most

conservative choice. We computed the model by simulation. Depending on what

assumptions we are willing to make about the prior distribution, various types of PIs can

be computed.

The final section of the chapter dealt with the construction of an ensemble of random

trees (a random forest classifier), of which the prediction result for a test instance is taken

as the input of the Bayesian PI model. Both the random tree ensemble classifier and the

Bayesian model will be evaluated in the next chapter.
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Chapter 5

Evaluation

In this chapter, experiments are run with the aim of evaluating the performance of the

proposed Bayesian PI model and the two random tree ensemble classifiers. To avoid

confusion, we name one random tree ensemble classifier EnsembleRT , and the other

KnearEnsembleRT (as it has the features of both EnsembleRT and the k-nearest-

neighbour algorithm). We shall also call the k-nearest-neighbour classifier Knear.

The chapter is organised as follows. Section 5.1 compares classifiers EnsembleRT,

KnearEnsembleRT, and Knear. The Bayesian PI model is evaluated in Section 5.2, in

conjunction with the three classifiers. Section 5.3 summarises the chapter.

5.1 Classifier Evaluation

Since the three classifiers are parameterised with different sets of options, the experi-

mental objective of this section is not only to conduct a performance comparison among

the classifiers, but also to find the set of option values, with which the classifiers have

their best prediction performance. In subsequent sections of the chapter, the discovered

option values will be used in the evaluation of the Bayesian PI model. We do this

because the coverage percentages of the computed PIs are only useful when the classifiers

are making accurate classifications. Table 5.1 lists the options that apply to the classifiers.

In terms of the scope of the evaluation and the dataset types to be covered, learning

tasks for the classifiers are restricted to binary class datasets only. Also, the instances

with missing values are removed from the datasets before the datasets are used to train

the classifiers. The nine datasets used in the experiments are listed in Table 5.2. The

datasets contain mixed numeric and nominal attributes with a wide range of difficulties

and class imbalances. The testing is performed using 10–fold cross validation.
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Table 5.1: Available options for the three classifiers.
Classifier Option Function
EnsembleRT -E Number of trees in the ensemble

-M Minimum number of instances allowed in leaf node
-U Stop splitting when all instances in a node

have the same class
-F Allow a numeric attribute to be further split on

in subsequent splitting nodes
-S Seed used when randomly selecting an attribute to

split on and split points for numeric attributes
Knear -K Number of neighbour instances used in the prediction

-N Normalise numeric attribute values when computing
distances between instances

KnearEnsembleRT
... (It has all options of the above two classifiers.)

Table 5.2: Datasets used in the experiments.
Number of Number of Class Source

No. Dataset Instances Attributes Proportion Reference
D1 breast-cancer 277 10 81:196 M. Zwitter, 1988
D2 breast-w 683 10 239:444 M. Zwitter, 1988
D3 credit-rating 653 16 357:296 J. R. Quinlan, 1992
D4 pima-diabetes 768 9 268:500 V. Sigillito, 1990
D5 heart-statlog 270 14 120:150 D. W. Aha, 1988
D6 hepatitis 80 20 67:13 G. Gong, 1988
D7 ionosphere 351 35 225:126 V. Sigillito, 1990
D8 sonar 208 61 111:97 T. Sejnowski
D9 vote 232 17 108:124 J. Schlimmer, 1987

Table 5.3: Option values tested with the three classifiers, from which the optimum values
were selected.
Classifier Option Option values tested in the experiments
EnsembleRT -E {5, 10, 20, 30, 40, 50, 60, 80, 100, 200, 500}

-M {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20}
-U on/off
-F on
-S {1}

Knear -K {1, 2, 4, 6, 8, 10, 15, 20, 25, 30, 40, 50, 60, 70, 80}
-N on/off

Classifier: KnearEnsembleRT
D1 -E{10, 20, 40, 60, 80} -M{7, 8, 9, 10} -K{40} -U -F -S{1} -N
D2 -E{20, 30} -M{1, 2, 4, 6, 8, 10} -K{20} -U -F -S{1} -N
D3 -E{20, 30} -M{1, 2, 4, 6, 8, 10} -K{10} -U -F -S{1} -N
D4 -E{10, 20, 30} -M{4, 5, 6, 8, 10} -K{20} -U -F -S{1} -N
D5 -E{30, 40, 60, 80} -M{1, 2, 8, 10} -K{20, 30} -U -F -S{1} -N
D6 -E{30, 40, 50} -M{1, 2, 4, 6, 8, 10} -K{10} -U -F -S{1} -N
D7 -E{20, 30, 40} -M{1, 2} -K{2, 4} -U -F -S{1} -N
D8 -E{20, 30, 40, 50} -M{1, 2, 4} -K{4} -U -F -S{1} -N
D9 -E{10, 20, 30} -M{1, 2, 4, 6} -K{10} -U -F -S{1} -N
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Table 5.4: Optimum option values selected for the three classifiers on the nine datasets
tested in the experiments.
No. Dataset EnsembleRT Knear KnearEnsembleRT
D1 breast-cancer -E10 -M7 -U -F -K40 -N -E80 -M10 -U -F -K40 -S1 -N
D2 breast-w -E30 -M1 -U -F -K20 -N -E20 -M8 -U -F -K20 -S1 -N
D3 credit-rating -E30 -M1 -U -F -K10 -N -E30 -M10 -U -F -K10 -S1 -N
D4 pima-diabetes -E10 -M5 -U -F -K20 -N -E30 -M10 -U -F -K20 -S1 -N
D5 heart-statlog -E80 -M1 -U -F -K30 -N -E30 -M10 -U -F -K20 -S1 -N
D6 hepatitis -E30 -M1 -U -F -K10 -N -E40 -M10 -U -F -K10 -S1 -N
D7 ionosphere -E20 -M1 -U -F -K4 -N -E40 -M1 -U -F -K2 -S1 -N
D8 sonar -E20 -M1 -U -F -K4 -N -E50 -M1 -U -F -K4 -S1 -N
D9 vote -E10 -M2 -U -F -K10 -N -E10 -M2 -U -F -K10 -S1 -N

Results and Discussion

Table 5.3 lists the option values that are tested with the three classifiers. The classifiers

EnsembleRT and Knear are tested using the combinations of their corresponding option

values listed in the upper part of the table. Based on the performance of EnsembleRT

and Knear, the option values in the lower part of the table are then selected and used

to test the classifier KnearEnsembleRT on the corresponding datasets. Table 5.4 lists

the option values that give the classifiers the best performance in terms of prediction

accuracy, based on the above performed experiments.

Figure 5.1, 5.2, and 5.3 present the prediction performance of the three classifiers,

which is accomplished using the option values shown in Table 5.4. The performance is

measured using root-mean-squared-error (RMSE) on the nine datasets listed in Table 5.2.

The RMSE for a single test instance is given by:

√
(p1 − a1)2 + . . . + (pn − an)2

n

where p1, . . . , pn are predicted values on the tested instances, a1, . . . , an are the actual

values. The datasets listed under the classifier names, on the right-hand side of each figure,

are the ones on which the corresponding classifier has significantly better performance

than the other, according to a corrected resampled t-test (Nadeau & Bengio, 2003).

For the datasets unlisted, there is no significant difference between the two particular

classifiers in terms of RMSE.

The three figures show that, on comparison, none of the classifiers stands out and

significantly surpasses the others. In particular, regarding the number of datasets for
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Figure 5.1: Prediction accuracy comparison between EnsembleRT and Knear. Ensem-
bleRT is better than Knear on datasets D6, D7, and D9; Knear is more accurate than
EnsembleRT on D5 and D8.

Figure 5.2: Prediction accuracy comparison between KnearEnsembleRT and Knear. Only
on one dataset (D6) do the two have significant difference, where KnearEnsembleRT out-
performs Knear.

Figure 5.3: Prediction accuracy comparison between EnsembleRT and KnearEnsembleRT.
EnsembleRT and KnearEnsembleRT outperform each other on the datasets D7, D9 and
D5, D8, respectively.
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which better predictions are produced, EnsembleRT and KnearEnsembleRT are all better

on only one more dataset than Knear, while in the other comparison EnsembleRT and

KnearEnsembleRT are level with each other. Also note that the three classifiers perform

analogously on the nine datasets.

5.2 Evaluation of the Bayesian PI Model

In the evaluation of the Bayesian model, we define the term trial to denote a leave-one-out

testing process, in which an instance is selected from the dataset as the test instance

while the rest of the dataset is used to train the classifier and then a PI for the class

probability of the test instance is computed. If the true class probability of the test

instance is within the range of the calculated PI, it is called a capture for the trial;

otherwise, it is a miss. For each of the nine datasets listed in Table 5.2, 100 trials

are performed. Out of 100 trials, 100L% are suppose to result in capture, where L is

the specified confidence level that is used in the computation of the PIs. The observed

percentage of captures for a particular dataset is called the capture percentage of

the PI (PICP) of the Bayesian model for the tested dataset. The idea of this eval-

uation process is illustrated in Figure 5.4 [based on Fig. 3 in (Willink & Lira, 2005, p. 65)].

Apart from evaluating whether the PICP is equal to (or exceeds) the specified con-

fidence level L, another measure in evaluating the Bayesian model is the width of the

computed PI. Since there is no widely accepted standard about a PI’s width in the lit-

erature, we set the following guidelines for the assessment of the average width of 100

computed PIs at one of the most commonly used confidence levels – 95%:

• If a PI’s width is in the range [0, 5.5], it is said to be narrow.

• If the width is in the range [5.5, 6.5], it is good.

• A PI with a width within [6.5, 7.5] is acceptable.

• A width in the range [7.5, 1.0] is wide.

The above criteria are used for the evaluation in this section.
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Figure 5.4: Depiction of PIs and their targets (the ¥) on eight trials. The number on the
PI line is the width of the PI. In 100L% of the trials the value of the target should lie in
the computed PI. The numbers marked on the lines are the widths of the PIs.

5.2.1 Experimental Setup for the Bayesian PI Model

The experiments for the Bayesian PI model are run in three stages. In the first stage,

we generate random numbers from the beta distribution. The numbers are used to

simulate class probability values of hypothetical test instances. We do this because the

prior distribution we use in the Bayesian model is the beta distribution, and when the

underlying distribution of the class probabilities matches the assumption of the prior

distribution, the Bayesian PI model is expected to have satisfactory performance. We

take this stage as the validation of the Bayesian model. There is no prediction method

(classifier) involved in this first stage.

In the second stage, the model is evaluated on artificial datasets. The generation of

the artificial datasets is based on assuming a multivariate normal distribution for the

attribute values in each class. The goal in this stage is to test whether the posterior

resulting from the beta prior distribution is able to model class probabilities that do not

follow the beta distribution.

In the third stage, experiments are run using the real datasets that were used in

Section 5.1. A difficulty with the experiments in this stage is the unavailability of the

necessary ’true’ class probability values of the instances in the dataset. A possible solution

is to simulate these class probability values for the instances based on their attribute

values. Because the attribute values will not be involved in the computation of the PIs,

the probability values calculated in this way are independent of the Bayesian model and

can thus be used as the ’true’ class probabilities in the evaluation of the Bayesian model.
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Figure 5.5: Illustration of the localised instances (the oval for EnsembleRT, and the small
rounded rectangles for the other two), based on which the prediction is made.

We use the support vector machines combined with logistic regression to compute the

probability values.

5.2.2 Testing with Beta Random Numbers

As discussed in the last chapter, the Bayesian model

Pr(Pn+1 | D) ∝
∫ ∫

(Pn+1)α−1 · (1− Pn+1)β−1

B(α, β)
· αkβn−k

(α + β)n
dαdβ (5.1)

can be used to compute a PI for Pn+1, based on the observed data D. In the model, α and

β are the two parameters of the beta distribution; n is the number of class observations

in D; and k is the number of observations with the positive class label in n. To compute

PI for Pn+1, these four parameters need to be determined.

One way to generate the two parameters α and β is to sample from the assumed prior,

for example the prior gamma(1, 1), which we discussed in the last chapter. To generate

a sample, the inverse CDF method is used. That is, the two parameters of the gamma

distribution, γ = 1 and θ = 1, are substituted into the following gamma probability density

function:

f(x) = xγ−1 e−x/θ

θγ Γ(γ)
, (5.2)

where x ≥ 0. This gives f(x) = e−x. Taking the natural logarithm on both sides yields

x = −lnf(x), in which f(x) ∼ U(0, 1), i.e. it is a randomly generated real value from

the uniform distribution in the range (0, 1), and x follows a gamma distribution with the

desired parameters.

Without any prediction methods being involved in this stage (because there are no
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real instances involved either), we have to generate the proportion (i.e. the two numbers

n and k) by simulation. In fact, the value n is just the number of a group of instances

that the classifiers use to make predictions for a test instance. The instance group is

defined as: for classifier EnsembleRT – the union of instances from the different trees’

leaves; for Knear – the group of neighbouring instances; and for KnearEnsembleRT – the

group of neighbouring instances within the union. The concepts are illustrated in Figure

5.5. We will hereafter universally call the group of decisive instances the ’union’ for all

the three classifiers.

To generate n and k, we assume that the size of the union from the leaf nodes

of a hypothetical ensemble of trees is less than 40. Thus, the value of n is simulated

by randomly selecting an integer number between 1 and 40, based on the uniform

distribution. Once the size of the union is determined, the n simulated class probability

values are generated as follows. We draw a pair of values of the two beta parameters

α and β from the distribution gamma(1, 1). Using the values of α and β, we sample n

random numbers from the standard beta distribution. An extra beta random number

is also generated to simulate the (n + 1)th observation – the class probability of the

predicted test instance.

Depending on different values of the parameters α and β, which are both positive

real numbers, there are the following four cases to be considered in the generation of a

particular beta random number. All cases use the acceptance/rejection strategy, except

for the trivial case when both α and β are equal to one, in which the inverse method is

used.

Case 1: When α = 1 and β = 1, the beta distribution becomes the uniform distribution.

Case 2: When both α and β are less than one, the compact algorithm by Johnk (1964,

Metrika 8, pp. 5–15) is used.

Case 3: When both α and β are greater than one, the algorithm BB of Cheng (1978,

C.A.C.M., 21, pp. 317–322, 10, Crain, I. K.) is used.

Case 4: This case uses the algorithm BA of Cheng (1978) and catches all other combina-

tions of α and β.

Each of the generated beta random numbers represents a hypothetical instance in the

union. To assign class values to these instances, the binomial distribution is used. This is
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done by comparing each number with a randomly generated real value between 0 and 1

from the uniform distribution. In each comparison, a different random value is generated

a corresponding beta number. If the beta random number is greater than the uniform

random value, it is labelled positive; otherwise, it is negative.

The value of k is defined as the number of the instances with the positive class label

in the union (the n random numbers). Thus, k and n together predict the class of the

(n + 1)th instance, and the value k/n represents the estimated probability of the instance

having the positive class [i.e. the value of the (n+1)th number]. The PI that is computed

using the Bayesian model based on n and k is then checked to see whether it contains

the probability of the (n + 1)th instance having the positive class. Note that, throughout

the three-stage experiments, we calculate PIs to contain the probability that a tested

instance belongs to the positive class so as to maintain consistency.

Having obtained n and k, to compute the PI for the (n + 1)th random number

[the (n + 1)th instance’s class probability], we need to sample 1000 pairs of α and β

values, using the same prior as used in the generation of the beta random numbers

[i.e. the 1st, 2nd, · · · , nth, (n + 1)th numbers]. These 1000 pairs are used to compute

the posterior distribution by accumulation (as discussed in Section 4.5 in the last chapter).

Apart from the prior gamma(1, 1), the other two priors, U(0, 10) and α + β = 10,

which were also discussed in the last chapter, are tested in the experiments as well. In

that case, those priors are used to obtain the two beta parameters to generate the hypo-

thetical data, and also used to sample the 1000 pairs to compute the posterior, respectively.

Results and Discussion

The experimental results are shown in Figure 5.6, 5.7, and 5.8. Figure 5.6 shows the two

performance indicators: PICP and average width. We only present PIs at confidence

levels ranging from 50% to 99%, as PIs at confidence levels lower than 50% are rarely

used in practice.

The capture percentages represented by the four splines in the upper part of Figure

5.6 show that almost all the PICPs are above their corresponding confidence levels. They

are close to the desired ideal percentages at confidence levels higher than 80%, especially
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Figure 5.6: Comparison of the PICPs (the four splines in the upper part) and the average
widths of the PIs (the three splines in the lower part), computed at various confidence
levels. The number of trials at each level is 1000. The red spline with upward triangles
represents the theoretical (ideal) PICPs, i.e. the corresponding confidence levels.

Figure 5.7: Comparison of the highest and lowest widths of the PIs, computed at various
confidence levels. The number of trials is also 1000.

Figure 5.8: Experiment results of 10,000 trials. The PIs were computed with the 95%
confidence level. (a) The trend of PICP, corresponding to 1000, 5000, and 10,000 trials.
(b) The trend of average width. (c) The comparison of the average value of (k

n − α
α+β )

between the successful trials (marked as ’capture’) and those failed (marked as ’miss’).
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at 95% and 99% (these are the mostly used confidence levels). Because the margins

between the PICPs and the theoretical line at confidence levels below 90% are larger

than that at confidence levels 95% and 99%, we may say that the PICPs computed at

confidence levels below 90% are a little overoptimistic, compared to those at 95% and

99%. In general, the overall performances of the PICPs for the three priors are similar to

one another.

The average widths of the PIs are compared in the lower part of Figure 5.6. First,

note that the average widths clearly ascend as the confidence levels increase. This follows

from the fact that higher confidence levels require wider intervals for those levels to be

achieved. Secondly, at most of the confidence levels (except for those below 60%), the

widths for the priors gamma(1, 1), U(0, 10) and α + β = 10 follow the order of becoming

narrower. Moreover, according to the guidelines discussed at the beginning of the section,

the widths for the three priors fall into three different categories: good, acceptable, and

wide, respectively (at the confidence level 95%). This is because they have different

sampling spaces, as we discussed in Chapter 4, which introduces different degrees of

uncertainty into the posterior distribution.

From Figure 5.6, we can see that different sampling spaces, resulting from using

different priors for the model parameters, have much more impact on the width than

on the PICP of the PI. As a result, the widths of the computed PIs can be adjusted by

choosing different priors for the model parameters, as long as the assumptions implicit

in the prior can be reasonably met in situations where the model is applied. Figure 5.6

also verifies that the proposed Bayesian PI model achieves PICPs over the corresponding

confidence levels.

Figure 5.7 compares the lowest (the three splines in the lower part) and the highest

widths (the three splines in the upper part) of the PIs. Note that, at confidence levels

above 90%, the highest widths for the three priors are comparable. It is the lowest widths

that bring the differences into their average widths (refer back to the three splines in the

lower part of Figure 5.6), which makes the PIs for the prior gamma(1, 1) wider than the

other two.

An experiment with more trials was also run with the aim of testing the performance

of the computed PIs when the number of trials increases. The results are shown in Figure
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5.8. From Figure 5.8 (a), we can see that the PICPs stay almost the same from 1000

trials to 10,000 trials; and they stay much the same across the three different priors as well.

The PIs’ average widths are presented in Figure 5.8 (b). The figure shows that the

three priors share the same stability of the average widths as the number of trials increases

from 1000 to 10,000. Among the three priors, the average widths still maintain the

pattern that we discovered in Figure 5.6; that is, the PIs become wider as the sampling

space increases from α + β = 10 to gamma(1, 1).

Recall that, based on Proposition 1 discussed in Section 4.5, the more the value

k/n agrees with the fraction α/(α + β), the more influence the observed data has on

the posterior distribution. The results shown in Figure 5.8 (c) are from a test that

calculates the average value of ( k
n − α

α+β ) over trials with a capture and trials with a

miss, respectively (refer to the illustration in Figure 5.4). Here, α and β are the (α, β)

pair that was sampled from a corresponding prior [e.g. gamma(1, 1), etc.], and k and n

are based on the data generated from that pair. Obviously, because the data generation

process is random, the two fractions differ. The results show that, when a trial fails

(i.e. corresponds to a miss), the value of ( k
n − α

α+β ) is much larger than when the trial

succeeds (i.e. corresponds to a capture). And for the priors α + β = 10 and U(0, 10), the

calculated difference value for the former is almost twice as large as that for the later.

This means that the more the observed data agrees with the true parameters, the more

likely the PI is to succeed.

In the experiments in this section, we have been assuming the size of the union is

between 1 and 40. The following experiment is conducted to see how the PICPs and the

average widths react to the variation of the union size. To do this, we let the union size

increase in steps of 10 instances from 10 to 100. As before, the three priors, gamma(1, 1),

U(0, 10), and α + β = 10, are used to sample the two beta parameters, α and β, in three

different experiments. In each experiment, the same pair of values of α and β is used in

the generation of the random beta numbers in the union for all union sizes. At each union

size, 100 random beta numbers are tested, and the average value of the widths of the 100

computed PIs is calculated. The PICP is computed as the capture percentage as usual.

The value k was also determined using the same method as before. The confidence level

used when computing the PIs was 95%. Figure 5.9 shows the results.

68



Figure 5.9: Results of experiments computing the PICPs and the widths of the PIs when
systematically varying the union size with different sampling priors for the beta param-
eters. The sampled beta parameter values are: (a) α = 1.93, β = 0.14; (b) α = 4.82,
β = 7.98; (c) α = 9.64, β = 0.36.

The results in the figure show that, as the union size increases, the average width of

the PI decreases. However, when the class observations in the union increase to a certain

size, there exists a point after which the average width remains stable. Specifically, for

gamma(1, 1) and U(0, 10), this occurs at the union size 50; for α + β = 10, it is at the

size 40. This is when there is enough data to pick out the appropriate beta distribution(s)

based on their likelihood. The PIs are then effectively based on this reduced set. The

PICPs exhibit some random fluctuation around 95% as expected because the class

proportions in the unions are randomly determined for each union size.

5.2.3 Testing with Artificial Datasets

In the last section, the Bayesian PI model was tested on random numbers generated from

beta distributions, and it was validated by obtaining satisfactory results for the PICPs

and the average widths of the PIs. In this section, we test the model using artificial

datasets, in which the class probabilities of the instances are generated by assuming

that the attribute values in each class follow a multivariate normal distribution (or

multi-normal distribution).

A dataset is composed of instances; an instance consists of a number of attributes, one

of which represents the class of the instance. To create an instance, we need to generate

a specified number of attributes, based on which the class probability of the instance is

produced. To simplify matters, we make all the attributes numeric, and also store the
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class probability in one of the attributes, specifically the second to last attribute (the last

attribute is set to be the class attribute by default). we call the second to the last attribute

of an instance the class probability attribute.

Class Probability Computation

If the true distribution of the attribute values in each class is known, computing the class

probabilities for the instances is simple and can be done based on Bayes’ rule of conditional

probability (discussed in Chapter 2). That is, the probability that an instance x has the

class cj can be computed as

Pr(cj | x) =
Pr(x | cj) · Pr(cj)

Pr(x)
=

Pr(x | cj) · Pr(cj)∑i
j=1 Pr(x | cj) · Pr(cj)

(5.3)

where Pr(x) is called the marginal distribution of the instance x, and expressed in the

above equation using the conditional probability Pr(x | cj), and the prior probability

Pr(cj). For a binary class problem, i.e. i = 2 in the equation, the probability that an

instance x has the class yes can be written as

Pr(yes | x) =
Pr(x | yes) · Pr(yes)

Pr(x | yes) · Pr(yes) + Pr(x | no) · Pr(no)
(5.4)

The probability that the instance x is in class no [i.e. Pr(no | x)] can be computed

by substituting no for yes in the numerator in the equation, or simply subtracting

Pr(yes | x) from one.

To use the expressions to compute the desired class probabilities of the instances,

we first need to assign class labels to the instances using the prior probabilities Pr(yes)

and Pr(no). The attribute values of an instance are generated based on the normal

distribution with specified mean and standard deviation, depending on what class

label has been assigned to the instance. The conditional probabilities Pr(x | yes) and

Pr(x | no) for each instance are generated based on the normal distribution densities of

each attribute of the instance. The class probability value of an instance can then be

computed using these conditional probability values and the above expressions. Note

that, in the class probability attribute of an instance, we only store the probability of

the instance having the class yes, regardless of the class label of the instance; and it is

consistent for all instances in the generated datasets.
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The specified prior probabilities, Pr(yes) and Pr(no), determine the class proportions

in the generated instances of the dataset, which are in turn determined based on the

prior knowledge that we have about the dataset. We specify the values of the two prior

probabilities in two ways. The first one is simple: we make Pr(yes) = Pr(no) = 0.5.

These equal class proportions are a little unrealistic, as there should be a variety of class

proportions for real datasets. Another option is to specify the class proportions according

to real datasets, i.e. empirical class proportions. We use the datasets that were used in

the evaluation of the classifiers in the last section (Table 5.2).

Having specified the prior probabilities, we can use them to label the instances. In

particular, for each instance, a different random value between 0 and 1 is generated

based on the uniform distribution. This random value is then compared with a prior

probability value (whether the prior probability value for the class yes or class no is used

does not matter, as long as the same probability is used consistently for all instances in

the dataset). If the former is larger than the later, the instance is assigned to the class

yes; otherwise the class no (this also has to be consistent for all instances).

Now we generate attribute values of the instances, based on their corresponding class

labels assigned in the above step. As mentioned at the beginning of this section, in the

generation of the artificial datasets, we use a multivariate normal distribution to model

the attribute values in each class. In probability theory and statistics, a multivariate

normal distribution can be thought of as a generalisation of the one-dimensional normal

distribution. In the general case, the multivariate normal density for an instance x for a

particular class c can be written in the following notation:

Pr(x | c) = Nm (µ,
∑

), (5.5)

where m is the number of attributes of the instance x; µ is the mean; and
∑

is

the covariance matrix of the attributes. Note the notation Nm in Expression (5.5),

which makes it explicit that Pr(x | c) is m-dimensional. In the above expression,

we assume that
∑

is a diagonal matrix. The diagonal entries of the matrix are

variances of the normally distributed attributes, while the off-diagonal entries are all

zero, which is based on the assumption that the attributes are independent of one another.

Because the attributes in each class are assumed to be multinormally distributed
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and the attributes are also assumed to be independent of one another, the values of

a particular attribute in a dataset are normally distributed with a specified mean and

standard deviation. We also know that, by ’standardising,’ any probability involving a

normal random variable (denoted by rv) with mean µ and standard deviation δ can be

expressed as (rv−µ)/δ, which is a standard normal random variable. That is, subtracting

µ shifts the mean from µ to zero, then dividing by δ scales the variable so that the

standard deviation is 1 rather than δ. Therefore, we can simply reverse the process and

’unstandardise’ a standard normal random variable with a specified mean and standard

deviation to generate the value of an attribute of an instance for each class.

This is achieved specifically as follows. A random value from the standard normal

distribution (with mean zero and standard deviation one) is produced. Then the following

two values are computed for an attribute a:

ayes = rv ∗ δyes + µyes

ano = rv ∗ δno + µno (5.6)

where µs and δs are the means and standard deviations, which are further specified

below. Depending on the class label of the instance, the attribute is assigned either the

value ayes or ano.

Now we need to specify the values of the mean (µ) and the standard deviation (δ) for

each of the attributes in the dataset in order to generate the attribute values. We set the

mean and standard deviation as follows:

µyes = 1, µno = −1;

δyes and δno are randomly selected from {0.05, 0.1, . . . , 1}. (5.7)

That is, if an instance is in the class yes, each of its attributes is assigned the value 1

to be the attribute’s mean; if the class is no, the mean is assigned -1. Two values ran-

domly selected from {0.05, 0.1, . . . , 1} are assigned as the attribute’s standard deviations

for class yes and class no, respectively. This specification generates datasets such that the

distributions of the two classes slightly overlap with each other, which is common in real

datasets. The two distributions are illustrated in Figure 5.10, using an example of a single

attribute dataset.
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Figure 5.10: Illustration of the distributions of the two classes of a generated artificial
dataset with a single attribute.

Having generated the attribute values, the conditional probability of an instance can

be computed by calculating the product of individual normal densities of each attribute

value with regard to each class. That is,

Pr(x | yes) =
m∏

i=1

f(ai,yes; µi,yes, δi,yes),

P r(x | no) =
m∏

i=1

f(ai,no; µi,no, δi,no) (5.8)

where x is the instance; m is the number of attributes; ai,yes and ai,no are the attribute

values generated using the expressions in (5.6); and f represents the normal density func-

tion. Note that the generation of the conditional probability Pr(x | ·) uses all attributes

and thus allows them to make equal contribution to the likelihood (no weighting is used),

which is, again, based on the assumption that the attributes are equally important and

independent of one another.

By using the conditional probabilities Pr(x | yes) and Pr(x | no) generated for each

instance, the class probabilities that the instances belong to the class yes (as discussed

above, we always use the probabilities of class yes) can be computed based on the expres-

sion in (5.4). The generated datasets are tested in the next section.

Results and Discussion

The properties of the nine generated artificial datasets are listed in Table 5.5. Figure 5.11,

5.12, and 5.13 show the experimental results in terms of PICP, average width, and average
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union size, using the three classifiers. In the figures, the blue splines with squares represent

the datasets generated by assuming the prior distributions Pr(yes) = Pr(no) = 0.5,

i.e. equal class proportion; the brown splines with diamonds represent those with prior

probabilities based on the real datasets listed in Table 5.2, i.e. empirical class proportion.

The statistics in these figures are obtained by using the gamma(1, 1) prior distribution

to sample the two beta parameters of the Bayesian model, and the confidence level used

in the computation of the PIs is 95%.

Figure 5.11 (a) shows that most of the PICPs are close to the desired 95% level. The

PICPs for datasets D2 and D3 with both class proportions, however, are around 80%. To

see a likely reason for the poor performance on D2 and D3, we look at Figure 5.11 (c),

in which the average union sizes for D2 and D3 are the largest ones among the datasets.

A large union can cause variation in the underlying class probabilities, thus making it

harder for the sampling process to catch the true class proportion (i.e. k/n) and create a

reliable interval.

Looking at the average widths in Figure 5.11 (b), most of the widths are in the ac-

ceptable range, i.e. below 0.75. By examining both (b) and (c) in Figure 5.11, we note

that, the larger the average union size, the lower the average width. This applies to the

datasets with both class proportions. Also, when the average union sizes of the two class

proportions are close to each other, their average widths are also close. This can also

be observed from the experimental results for classifiers Knear and KnearEnsembleRT in

Figure 5.12 and 5.13, in which the average widths obtained from the two class proportions

are almost always the same because of the same union sizes used in the corresponding

tests. In general, the PICPs for the equal class proportion are slightly higher than those

for the empirical class proportion. This holds for all three classifiers.

5.2.4 Testing with Semi-Real Datasets

As the section title implies, the datasets that we will be testing on are not the real

datasets as it were because we need to simulate the class probabilities for the instances

so that the dataset can be used to test the Bayesian PI model. In this section, the nine

datasets listed in Table 5.2 are modified and then tested using the same procedure that

was used in the last section.

There are two tasks involved in the modification of the datasets. We first have to
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Figure 5.11: Experiment results for classifier EnsembleRT on artificial datasets created
with two different class proportions.

Figure 5.12: Experiment results for classifier Knear on artificial datasets created with two
different class proportions.

Figure 5.13: Experiment results for classifier KnearEnsembleRT on artificial datasets cre-
ated with two different class proportions.
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Table 5.5: The class proportions of the artificial datasets generated using equal prior
probability (the third column), and based on the class proportions of the real datasets
listed in Table 5.2 (the fourth column).
Artificial Dataset Number of Instances Equal Proportion Empirical Proportion

D1 277 140:137 78:199
D2 683 339:344 231:452
D3 653 326:327 365:288
D4 768 378:390 267:501
D5 270 137:133 124:146
D6 80 40:40 64:16
D7 351 178:173 225:126
D8 208 103:105 112:96
D9 232 115:117 107:125

add an extra attribute into the dataset, which holds the simulated class probability of a

particular instance. Secondly, the original classes of the instances have to be reassigned

based on the simulated class probability values. In particular, the class of an instance

is assigned based on the result of comparing its class probability value with a real value

between 0 and 1, which is randomly generated from the uniform distribution. For each

instance, a different value is generated, with which the class probability of the instance

is compared. The classes are also assigned with consistency. This means that, for any

instance in the dataset, if the class probability value of a particular instance is greater

than the correspondingly generated random value, a positive class (i.e. the value 1.0) is

assigned to the instance. Otherwise a negative class (i.e. the value 0.0) is assigned.

We use a support vector machine with a logistic regression model fit to its output

to generate the simulated class probability for an instance, based on the attribute

values of that instance. Two types of kernels are used with the support vector model,

of which one kernel (the polynomial kernel with the exponent set to 1) creates a

linear boundary between the two classes of the instances, while the other utilises redial

basis functions (RBF) and nonlinearly divides the data space according to the two classes.

Results and Discussion

Figure 5.14 shows the testing results of the Bayesian PI model on the modified real

datasets, in which the model is tested in conjunction with the three classifiers. We use a

95% confidence level in the PI calculation, and gamma(1, 1) as the prior distribution for

the two parameters of the beta distribution throughout the experiments in this section,

unless otherwise stated. The prediction accuracy shown in the rightmost column in the
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Figure 5.14: Comparison between datasets with linear and nonlinear class spaces. (a) –
(c) for EnsembleRT; (d) – (f) for Knear; (g) – (i) for KnearEnsembleRT.

Figure 5.15: PICP and average width at various confidence levels. The classifier used was
EnsembleRT, and the dataset was ionosphere.arff.
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Figure 5.16: Comparison of PICP, average width, and prediction accuracy when normal-
ising and not normalising the attribute values of the dataset. (a) – (c): classifier Knear on
linear dataset, and (d) – (f): Knear on nonlinear dataset; (g) – (i): classifier KnearEnsem-
bleRT on linear dataset, and (j) – (l): KnearEnsembleRT on nonlinear dataset.
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figure is measured with percentage correct of class predictions.

We can see from the graphs in Figure 5.14 that the model is showing consistent

performance across the two types of datasets for all three classifiers. Also note that when

the PICP is lower [e.g. for dataset D2 in (a) and dataset D4 in (d) and (g)], the average

widths of the PIs are also narrower [in (b), (e), and (h)]. For the classifier EnsembleRT,

the best performance occurs on dataset D6, in which the PICP is close to the specified

confidence level, the average width is below 0.6, and the prediction accuracy is close to

90%. The other two classifiers, Knear and KnearEnsembleRT, exhibit their best result on

dataset D2, with the average width remaining below 0.6 and good PICP and accuracy.

Figure 5.15 shows the trend of the PICPs and the average widths at various confidence

levels. In the figure on the left, the PICPs for the dataset with linear boundary in the

instance space stay above the theoretical line across all the confidence levels. The PICP

line also becomes closer to the theoretical line at the levels above 90%. The same is

observed for the datasets with nonlinear boundaries, except at confidence levels lower

than 60% when the percentages fall below the theoretical line. In the figure on the right,

almost undistinguishable lines of average widths between linear and nonlinear datasets

are obtained in the figure, with acceptable widths at 95% confidence level and the levels

below, and a wide PI (close to 0.9) at 99%.

Finally, a comparison is made in Figure 5.16 between normalising and not normalising

the attribute values when computing the neighbouring distance between instances. The

experiments are thus run only with classifiers Knear and KnearEnsembleRT. The results

show that, regarding the three measurements (PICP, average width, and prediction

accuracy), there is not much difference between the datasets with the linear and nonlinear

class boundaries. So are the PICPs for all cases (the four figures in the first column).

However, when the normalisation option is turned off, the interval widths become wider

and the prediction accuracies decrease for most of the datasets. The experiments on the

original real datasets (before they were modified to suit the need of PI testing by using

the predictions of the support vector machines to obtain class probabilities and new class

labels) also showed that when the normalisation option -N was on, the highest accuracies

occur (Section 5.1). Another observation in the figures is that turning off the -N option

does not affect the model performance on some of the datasets, for example, on dataset

D1. This is because these datasets either only have nominal attributes or only contain a
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minority of numeric attributes.

5.3 Summary

There were three classifiers together with the proposed Bayesian PI model involved

in the evaluation described in this chapter. We first evaluated the three classifiers by

finding the best set of the parameter values for the classifiers (Section 5.1). With the

specified parameter values, the classifiers performed to a comparable degree in terms

of prediction accuracy across the nine selected binary class datasets. The Bayesian

PI computation model was evaluated using three different, successively more realistic

scenarios. It was first validated by computing PIs for random numbers generated from

the beta distribution, which is the same probability distribution as the prior assumed for

the model. Then it was tested on artificial datasets, in which the attribute values of the

instances follow a multivariate normal distribution in each class. The results from the

tests on the artificial datasets demonstrate that our model based on the beta distribution

produces satisfactory PIs in most cases. Finally, promising results were also obtained

from the experiments testing the Bayesian PI model on modified real datasets.
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Chapter 6

Conclusions and Future Work

As the machine learning approach becomes widely applied in the fields of forecasting

and medical diagnosis, and many others, there is a need for expressing the uncertainties

that inevitably come with the class probability predictions for new examples. Unfor-

tunately, not only has there been no available method in any of the existing systems

that can fulfill the function, but there also appears to have been no such attempt in

the research literature in the case where prediction intervals (PIs) are calculated for

the class probability predictions made by classifiers based on decision tree or nearest

neighbour learning. There is thus a need to investigate methods of constructing PIs for

the class probabilities of a predicted instance. This defines the central mission of this study.

Specifically, in the first chapter of this thesis, we set up the following two objectives:

(a) derive a Bayesian model for PI computation, and (b) introduce a decision-tree-based

learning algorithm suitable for the computation of PIs, with the former being the main

goal of this study. This chapter describes the contributions of the thesis, possibilities for

extensions and future work.

6.1 Contributions

The strong point of this thesis is that it appears to contribute the first attempt to quan-

tify the uncertainty inherent in the class probability estimates of a decision-tree-based

classifier and a nearest neighbour classifier. To this end, it introduces a Bayesian method

for computing PIs. The inevitable uncertainty about the class probability estimate for a

new instance can now be quantified by the width of the calculated PI. The significance

of the study lies in that, when it comes to reporting a probability estimate, as well as

the precision of the estimate, users can now directly examine the uncertainty about the

estimate by computing a PI for it, rather than having to rely on other means to infer the
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reliability of the predicted probability.

The research described in this thesis is also an effort of employing Bayesian inference

to derive PIs for class probability estimates of machine learning classifiers. The challenge

imposed by the unobservability of the class probabilities is surmounted by taking advan-

tage of the Bayesian approach, in which a prior distribution is assigned to the possible

distributions of unobservable class probabilities (which we assumed to be beta densities),

and the prior is updated based on the observed data – the instances with known classes

in the neighbourhood of the test instance. These known instances are returned from

the prediction models (e.g. the decision tree classifier introduced in the thesis) that are

built from binary class training datasets. The returned instances provide a set of class

labels (i.e. a set of 0s and 1s). These labels are then taken as the input of the Bayesian

PI model in the form of class proportions, which represent the number of the instances

with positive and negative classes, respectively. A complete predictive distribution for

the class probability of a test instance is derived from the combination of the specified

prior distribution and the class observations. The desired PI can then be calculated from

this posterior distribution. We discussed and evaluated a method for performing this

calculation, which ensures that the width of the resulting PI covers the area that exhibits

the highest posterior density, and thus constructs the PI with the shortest width.

A new decision-tree-based learning algorithm was also proposed and described in this

thesis. The classifier induced by the proposed algorithm is composed of an ensemble of

a specified number of random decision tree classifiers. Each classifier in the ensemble is

trained upon the same training dataset, but with randomness injected into the training

process. The class labels in the training data are only used (optionally) to decide when

to stop splitting, so as not to bias the subsequent computation of the PI. Another feature

of the proposed algorithm that distinguishes it from existing ones is that, instead of

combining the predictions made by the individual classifiers, it unifies the leaf nodes from

the different tree classifiers in the ensemble and then comes up with a prediction based on

the union of the instances of those leaves. This is so that every instance is only counted

once when the PI is computed.

The proposed random tree ensemble classifier (the EnsembleRT classifier) was also

modified by applying the well-known k-nearest-neighbour algorithm to the obtained

union of instances, which results in the derivation of the k-nearest-neighbour random tree
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ensemble classifier (the KnearEnsembleRT classifier).

The Bayesian PI model and the proposed random tree ensemble classifiers were imple-

mented and evaluated, and the two classifiers were compared with the k-nearest-neighbour

classifier. The Bayesian model was evaluated, in conjunction with each of the three

classifiers, based on hypothetical class probabilities generated from beta distributions,

one artificial dataset, and nine selected real-world binary datasets, for which the class

probabilities were generated using a support vector machine.

The results of the experiments show that the two random tree ensemble classifiers

perform comparably with the k-nearest-neighbour classifier. Performance was measured

by the root-mean-squared-error (RMSE) of the predicted probabilities. The tests of the

Bayesian PI model also show that, (a) it produces PIs with capture percentages close to

the specified confidence levels when the assumption of beta distributed class probabilities

is correct, and (b) when applied to the predictions of the learning algorithm, it produces

PIs with capture percentage exceeding the specified confidence level in most cases, while

still maintaining relatively narrow interval widths.

6.2 Future Work

It is often the case that more questions than answers are produced in academic research.

This study is no exception to this rule. This section lists some points that could give rise

to further exploration of the proposed Bayesian PI model.

• When the Bayesian model was tested on the modified real datasets, we found that

altering the option -N specified for the classifiers did not cause significant changes

to the PICPs, but that it influenced the widths of the PIs for most of the datasets.

Therefore, more experiments with other prediction methods, combined with the

Bayesian model, need to be tested to see whether there is a connection between the

configuration of the prediction method used and the properties of the computed PIs.

In other words, is it possible in practice to simultaneously achieve an appropriate

PICP, the narrowest width of the PI, and the highest accuracy of the prediction? In

addition to what has been discovered in this study, a comprehensive investigation of

the relationship between the PICP, the width of the PI and the prediction accuracy

would be very useful.

• The beta distribution was used to model the unobservable class probabilities pri-
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marily because of its simplicity and flexibility. However, we do not want to rule out

the possibility that a distribution other than the beta distribution could be used to

model the class probabilities of the instances in the union, and could perhaps be

more appropriate.

• In the computation of the posterior, the state of convergence was assumed to have

occurred when a large, fixed number of density values has been accumulated. Al-

though, initial experiments showed that varying the number of iterations has only a

minor effect on the posterior distribution, an accurate determination of the conver-

gence could bring up a more truthful distribution of the unknown quantity.

• There is always uncertainty created when simulation techniques are used in the com-

putation of a quantity. Analytically solving the calculation of the posterior (e.g. by

finding an appropriate conjugate prior) would eliminate the uncertainty introduced

by the simulation process. Another solution to reducing uncertainty, which is more

practical, may be to test the model with priors that are more informative than the

ones used in the experiments.

• In this study, only one PI is computed for the unknown class probability. We could

compute several PIs for the same estimate with randomness injected into the com-

putation of each PI, and then somehow combine them together. One way to combine

these PIs may be to average their upper and lower limits, respectively, but an obvious

obstacle is that the PIs could be disjoint. Averaging PIs should make the interval

estimates more reliable.

• Another approach to combining multiple PIs is that, a PI could be computed based

on the leaf node of each individual tree classifier in the ensemble, and these PIs could

then be combined to form one single PI.

• A functionality that is missing in the implementation of the Bayesian model is the

ability to handle missing values in a dataset.

• Dealing with multi-class problems is another possible extension of the method. This

could be achieved using the multinomial distribution and the Dirichlet distribution.

There are so many situations in which decision makers should have interval estimates

available when making critical decisions. For example, in the teleconference meeting on

the night before the space shuttle Challenger was launched, there was a debate on the
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issue whether it was safe to launch the shuttle the next morning because there had been a

forecast of a 31◦F temperature at launch time and this low temperature could impact the

performance of some parts of the shuttle. If the participants in the meeting had available

an interval estimate for the probability of failure for the scheduled launch (or even an

interval estimate for the probability of damage of a particular part), they might not have

spent three hours in the discussion and at the end made the wrong decision to launch the

shuttle at the scheduled time, and a catastrophic event could possibly have been avoided

(Dalal et al., 1989, p. 945). This example demonstrates a situation similar to diagnosing

a patient who possibly has developed cancer (discussed in Chapter 1), and to many others

as well. Over the years, many researchers and other interested parties are placing a great

emphasis on improving the accuracy of prediction systems. It is hoped that this study

will help to draw more attention to interval prediction, because when uncertainty about a

prediction is inevitable, producing an interval estimate can provide a basis for the process

of making important decisions.
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Appendix A

We pick up from Equation (4.13) in Chapter 4.

To solve the formula

αyi · 2F1(α + 1, 1− β;α + 2; 1)− (α + 1)(yi − 1) · 2F1(α,−β; α + 1; 1)
α(α + 1)B(α, β)

(1)

we utilize the following Kummer’s first formula:

2F1(
1
2

+ m− k;−n; 2m + 1; 1) =
Γ(2m + 1)Γ(1

2 + m + k + n)
Γ(1

2 + m + k)Γ(2m + 1 + n)

The simplification of the formula can be done by letting in

a =
1
2

+ m− k, b = −n, and c = 2m + 1,

which gives

2F1(a; b; c; 1) =
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b)

(2)

Applying the above simplified formula to Equation (1) yields

αyi ·2F1(α+1,1−β;α+2;1)−(α+1)(yi−1)· 2F1(α,−β;α+1;1)
α(α+1)B(α,β)

= −1
α(α+1)B(α,β)

[
(α + 1)(yi − 1)Γ(α+1)Γ(β+1)

Γ(α+β+1) − αy Γ(α+2)Γ(β)
Γ(α+β+1)

]

= −1
α(α+1)B(α,β)

[
(α + 1)(yi − 1)Γ(α+1)Γ(β)β

Γ(α+β+1) − αy Γ(α+1)(α+1)Γ(β)
Γ(α+β+1)

]
(3)

The last line follows because Γ(x) = (x− 1)Γ(x− 1). Also because

Γ(α + 1)Γ(β)
Γ(α + β + 1)

= B(α + 1, β)

we can simplify (3) as
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yα(α + 1)B(α + 1, β)− β(α + 1)(y − 1)B(α + 1, β)
α(α + 1)B(α, β)

=
yB(α + 1, β)− β

αB(α + 1, β)(y − 1)
B(α, β)

(4)

By letting in the following one of the beta function’s identities derived using the Gauss

multiplication formula
β

α
B(α + 1, β) = B(α, β + 1) (5)

formula (4) becomes
yB(α + 1, β)− (y − 1)B(α, β + 1)

B(α, β)
(6)

Substituting B(α, β) for B(α + 1, β) + B(α, β + 1) gives

yB(α + 1, β)− (y − 1)B(α, β + 1)
B(α + 1, β)B(α, β + 1)

= y
1

1 + B(α,β+1)
B(α+1,β)

− (y − 1)
1

1 + B(α+1,β)
B(α,β+1)

(7)

Simple manipulation of the beta function’s identity (5) yields

B(α, β + 1)
B(α + 1, β)

=
β

α

Substituting it into (7) gives

y
1

1 + β
α

− (y − 1)
1

1 + α
β

=
yα + (1− y)β

α + β
(8)

The above solves Equation (4.14).

88



Bibliography

Agresti, A. (2002). Categorical Data Analysis. New York: Wiley-Interscience.

Akaike, H. (1980). The interpretation of improper prior distribution as limits of data-

dependent proper prior distributions. Journal of the Roral Statistical Society, 42(408),

945–957.

Ansley, C. F. (1993). Calculating interval forecasts: Comment. Journal of Business &

Economic Statistics, 11(2), 136–137.

Barnes, E. W. (1908). A new development in the theory of the hypergeometric functions.

In London Math. Soc., Volume 6 (pp. 141–177).

Barnett, V. (2004). Comparative Statistical Inference. New York: Wiley.

Bauwens, L., Lubrano, M. & Richard, J.-F. (1999). Bayesian Inference in Dynamic Econo-

metric Modeling. Oxford England: Oxford University Press.

Beilken, S. L., Eadie, L. M., Jones, P. N. & Harris, P. V. (1990). Sensory and mechanical

asseessment of the quality of frankfurters. Journal of Texture Studies, 21, 395 – 409.

Bernardo, J. M. & Smith, A. F. M. (1994). Bayesian Theory. New York: Wiley.

Box, G. E. P. (1980). Sampling and bayes’inference in scientific modelling and robustness.

Journal of the Royal Statistical Society, 143(4), 384–430.

Breiman, L., Friedman, J. H., Olshen, R. A. & Stone, C. J. (1984). Classification and

Regression Trees. Monterey CA: Wadsworth.

Butler, R. & Rothman, E. D. (1980). Predictive intervals based on reuse of the sample.

Journal of the American Statistical Association, 75(372), 881–889.

Campbell, G. & Hollander, M. (1982). Prediction intervals with a dirichlet-process prior

distribution. The Canadian Journal of Statistics, 10(2), 103–111.

89



Chatfield, C. (1993). Prediction intervals. Journal of Business and Economic Statistics,

11(2), 121–135.

Chatfield, C. (1998). Prediction intervals. Technical report, University of Bath.

Chen, M.-H. & Deely, J. J. (1996). Bayesian analysis for a constrained linear multiple

regression problem for predicting the new crop of apples. Journal of Agricultural,

Biological, and Environmental Statistics, 1(4), 467–489.

Chhikara, R. S. & Guttman, I. (1982). Prediction limits for the inverse gaussian distribu-

tion. Technometrics, 24(4), 319–324.

Dahiya, R. C. & Guttman, I. (1982). Shortest confidence and prediction intervals for

the log-normal. The Canadian Journal of Statistics, 10(4), 277–291. The Canadian

Journal of Statistics is currently published by Statistical society of Canada.

Dalal, S. R., Fowlkes, E. B. & Hoadley, B. (1989). Risk analysis of the space shuttle:

pre-challenger prediction of failure. Journal of the American Statistics Association,

84(408), 945–957.

David, H. A. (1981). Order Statistics. New York: John Wiley and Sons Inc.

Deming, E. W. (1975). Probability as a basis for action. Am. Stat., 29, 146–152.

Denison, D. G. T., Holmes, C. C., Mallick, B. K. & Smith, A. F. M. (2002). Bayesian

Methods for Nonlinear Classification and Regression. West Succex, England: Wiley.

Devore, J. L. (2000). Probability and Statistics for Engineering and The Sciences. USA:

Brooks Cole.

Diaconis, P. & Ylvisaker, D. (1985). Quantifying prior opinion. Bayesian Statistics, 2.

Dietterich, T. G. (1998). Discussion: Arcing classifiers. The Annals of Statistics, 26(3),

838–841.

Draper, D. (1995). Assessment and propagation of model uncertainty. Journal of the

Royal Statistical Society, Series B(57), 45–97.

Dunsmore, R. (1974). The bayesian predictive distribution in life testing models. Techno-

metrics, 16(3), 455–460.

Dzeroski, S. & Zenko, B. (2004). Is combining classifiers with stacking better than selecting

the best one? Machine Learning, 54(3), 255–273.

90



Faulkenberry, G. D. (1973). A method of obtaining prediction intervals. Journal of the

American Statistical Association, 64(342), 433–435.

Fine, T. L. (2006). Probability and Probabilistic Reasoning. New Jersey: Pearson Educa-

tion, Inc.

de Finetti, B. (1930). Funzione caratteristica di un fenomeno aleatoria. Men. Acad. Naz.

Lincei, 4, 86–133.

Fisher, R. A. (1930). Inverse probability. In Proceedings of the Cambridge Philosophical

Society.

Gardner, E. S. (1988). A simple method of computing prediction intervals for time series

forecasts. Management Science, 34(4), 541–546.

Gardner, M. J. & Altman, D. G. (1989). Statistics with Confidence. London: British

Medical Journal.

Gauss, C. F. (1812). Disquisitiones generales circa seriem infinitam
[

αβ
1·γ

]
x +[

α(α+1)β(β+1)
1·2·γ(γ+1)

]
x2+etc. pars prior. Commentationes Societiones Regiae Scientiarum

Gottingensis Recentiores, 2. Reprinted in Gesammelte Werke, Bd. 3, pp. 123-163 and

207-229, 1866.

Gelman, A. (2004). Bayesian Data Analysis. Wiley.

Gill, J. (2002). Bayesian Mehtods A Social and Behavioral Science Approach. Chapmen

and Hall.

Gregory, P. (2005). Bayesian Logical Data Analysis for the Physical Sciences. Cambridge

England: Cambridge University Press.

Hahn, G. J. (1969). Factors for calculating two-sided prediction intervals for samples

from a normal distribution. Journal of the American Statistical Association, 64(327),

878–888.

Hahn, G. J. & Meeker, W. Q. (1991). Statistical Intercals: A Guide for Practitioners.

New York: Wiley-International Publication.

Hahn, G. J. & Shapiro, S. S. (1994). Statistical Models in Engineering. New York: Wiley.

Hamilton, H., Gurak, E., Findlater, L. & Olive, W. (2001). Overview of decision trees.

Rudjer Boskovic Institute.

91



Holmes, C. C. & Adams, N. M. (2002). A probabilistic nearest-neighbour method for

statistical patten recognition. J. Roy. Statist. Soc., B64, 1–12.

Jaheen, Z. F. (2003). Bayesian prediction under a mixture of two-component gompertz

lifetime model. Text, 12(2), 413–426.

Jaynes, E. T. (1957). How does the brain do plausible reasoning? Technical report,

Stanford University Microwave Laboratory Report. Reprinted in Maximum Entropy

and Bayesian Methods in Science and Engineering.

Konijn, H. S. (1987). Distribution-free and other prediction intervals. The American

Statistician, 41(1), 11–15.

Kononenko, I. (2002). Machine learning for diagnosis: History, state of the art and per-

spective.

Kummer, E. E. (1836). über die hypergeometrische reihe. J. reine angew. Math., 15,

39–83 and 127–172.

Lee, P. M. (2004). Bayesian Statistics: an introduction. Hodder Arnold: a member of the

headline group.

Leonard, T. & Hsu, J. S. J. (1999). Bayesian Methods: An Analysis of Statisticians and

Interdisciplinary Researchers. Oxford England: Oxford University Press.

Lindley, D. V. (1965). Introduction to Probability and Statistics from a Bayesian View-

point. Cambridge England: Cambridge University Press.

Mojirsheibani, M. (1998). Iterated bootstrap prediction intervals. Statistica Sinica, 8,

489–504.

Møller, B., Weedon-Fekjer, H. & Haldorsen, T. (2005). Empirical evaluation of prediction

intervals for cancer incidence. BMC Medical Research Methodology, 5(21).

Nadeau, C. & Bengio, Y. (2003). Inference for the generalization error. Machine Learning,

52, 239 – 281.

Olive, D. J. (2006). Prediction intervals for regression models. Technical report, Dpartment

of Mathematics, Southen Illinois University, Carbondale, IL 62901-4408, USA.

Phillips, P. C. B. (1979). The sampling distribution of forecasts from a first-order autore-

gression. Journal of Econometrics, 9, 241–261.

92



Press, S. J. (2003). Subjective and Objective Bayesian Statistics: principles, models, and

applications. Hoboken, New Jersey: John Wiley & Sons, Inc.

Preston, S. (2004). Course: Introduction to statistics. State university of new york website.

Romano, C. L. D. N. P. J. P. (1992). Bootstrap technology and applications. Technomet-

rics, 34(4), 378–398.

Ross, S. M. (2004). Introduction to Probability and Statistics for Engineers and Scientists.

London: Elsevier Academic Press.

Saw, J. G., Yang, M. C. K. & Mo, T. C. (1984). Chebyshev inequality with estimated

mean and variance. The American Statistician, 38, 130–132.

Shannon, C. E. (1948). The mathematical theory of communication. Journal of Bell

Systems Tech., (27), 379.

Shrestha, D. L. & Solomatine, D. P. (2006). Machine learning approach for estimation

of prediction interval for the model output. Technical report, UNESCO-IHE Institue

for Water Education.

Smith, A. F. M. (1986). Some bayesian thoughts on modelling and model choice. The

Statistician, 35(2), 97–101.

Stine, R. A. (1985). Bootstrap prediction intervals for regression. Journal of the American

Statistical Association, 80(392), 1026–1031.

Talor, J. W. & Bunn, D. W. (1999). A quantile approach to generating prediction intervals.

Management Science.

Thombs, L. A. & Schucany, W. R. (1990). Bootstrap prediction intervals for autoregres-

sion. Journal of the American Statistical Association, 85(410), 486–492.

Wadsworth, H. M. (1998). Handbook of Statistical Methods for Engineers and Scientists.

New York: McGraw-Hill.

Wikipedia (2006). Prediction Interval. http://en.wikipedia.org/wiki/Prediction interval.

Williams, W. H. & Goodman, M. L. (1971). A simple method for the construction of

empirical confidence limit for economic forecasts. Journal of Amer. Statist. Assoc.,

66, 752–754.

Willink, R. & Lira, I. (2005). A united interpretation of different uncertainty intervals.

Journal of Measurement, 38, 61–66.

93



Winkler, R. L. (1972). A decision-theoretic approach to interval estimation. Journal of

the American Statistical Association (pp. 187–191).

Wintle, B. A., McCarthy, M. A., Volinsky, C. T. & Kavanagh, R. P. (2003). The use

of bayesian model averaging to better represent uncertainty in ecological models.

Conservation Biology, 17(6), 1579–1590.

Witten, I. H. & Frank, E. (2005). Data Mining: Practical Machine Learning Tools and

Techniques. Morgen Kaufmann.

Yin, C. S., Chaw, L. T. & Yaacob, M. (2005). Hop-by-hop qos routing using statistical

distribution-free approach. Malaysian Journal of Computer Science, 18(2), 28–37.

Faculty of Computer Science & Information Technology University of Malaya 50603

Kuala Lumpur Malaysia email: sychan@perdana.um.edu.my tchaw@um.edu.my

mashkuri@um.edu.my.

94


