Bagging Ensemble Selection

Quan Sun and Bernhard Pfahringer

Department of Computer Science
The University of Waikato
Hamilton, New Zealand
{gs12,bernhard}@cs.waikato.ac.nz

Abstract. Ensemble selection has recently appeared as a popular en-
semble learning method, not only because its implementation is fairly
straightforward, but also due to its excellent predictive performance on
practical problems. The method has been highlighted in winning solu-
tions of many data mining competitions, such as the Netflix competition,
the KDD Cup 2009 and 2010, the UCSD FICO contest 2010, and a num-
ber of data mining competitions on the Kaggle platform. In this paper
we present a novel variant: bagging ensemble selection. Three variations
of the proposed algorithm are compared to the original ensemble se-
lection algorithm and other ensemble algorithms. Experiments with ten
real world problems from diverse domains demonstrate the benefit of the
bagging ensemble selection algorithm.

1 Introduction

The problem of constructing an ensemble of classifiers from a library of base
classifiers has always been of interest to the data mining community. Usually,
compared with individual classifiers, ensemble methods are more accurate and
stable. We here reproduce the mathematical expression used in [8] to illustrate
the idea of ensemble learning: let x be an instance and m;,i = 1...k, a set of
base classifiers that output probability distributions m;(z, ¢;) for each class label
¢;,j = 1..n. The output of the final classifier ensemble y(x) for instance x can

be expressed as:
k

y(z) = arg maxZwimi(x, ), (1)
G =1
where w; is the weight of base classifier m;. In this particular form, ensemble
learning strategies can be seen as methods for calculating optimal weights for
each base classifier in terms of a classification goal. Since the mid-90’s, many
ensemble methods have been proposed. For a more detailed review of recent
developments please refer to [2,9].

Before introducing the new methods, we briefly review bagging (bootstrap
aggregating) [3] and the ensemble selection algorithm proposed in [5]. Bagging is
based on the instability of base classifiers, which can be exploited to improve the
predictive performance of such unstable base classifiers. The basic idea is that,



given a training set T of size n and a classifier A, bagging generates m new
training sets with replacement, T;, each of size n’ < n. Then, bagging applies A
to each T; to build m models. The final output of bagging is based on simple
voting [2].

Ensemble selection is a method for constructing ensembles from a library of
base classifiers [5]. Firstly, base models are built using many different machine
learning algorithms. Then a construction strategy such as forward stepwise se-
lection, guided by some scoring function, extracts a well performing subset of
all models. The simple forward model selection based procedure proposed in [5]
works as follows: (1) start with an empty ensemble; (2) add to the ensemble the
model in the library that maximizes the ensemble’s performance to the error
metric on a hillclimb set; (3) repeat Step 2 until all models have been examined;
(4) return that subset of models that yields maximum performance on the hill-
climb set. One advantage of ensemble selection is that it can be optimised for
many common performance metrics or a combination of metrics. For variants
of the ensemble selection algorithm, the reader is referred to [4,5]. In the next
section, we will describe the proposed bagging ensemble selection algorithms and
explain the motivation of combining bagging and ensemble selection.

2 Bagging Ensemble Selection

Based on the data sets and comparison results from [5], the simple forward
model selection based ensemble selection algorithm is superior to many other
well-known ensemble learning algorithms, such as stacking with linear regres-
sion at the meta-level, bagging decision trees, and boosting decision stumps.
However, sometimes ensemble selection overfits the hillclimbing set, reducing
the performance of the final ensemble. Figure 1(a) shows the hillclimb and test

0.85 — 0.965
Hillclimb set performance —+—
Test set performance

0.96 -

0955 F " L P

AUC
)
&

0.945
0.7 1

0.94 -

0.65

] 0.935
200 400 600 800 1000 10 20 30 40 50 60 70 80 90

Model library size % used for the hillclimb set (H/F)

(a) KDD 09 customer churn data (b) The waveform-5000 data

Fig. 1. Ensemble selection hillclimb and test set learning curves

set learning curves of running ensemble selection on a data set. The red curve is
the hillclimb set performance and the blue curve is the test set performance. It



demonstrates that as the number of models in the model library increases, the
performance (in terms of AUC) of ensemble selection on the hillclimb set gradu-
ally increases. However, the corresponding performance on the test set does not
always increase; it may reach a peak (local or global) and then gradually decline.
Also, as indicated in [5], for certain data sets, the root-mean-squared-error met-
ric sometimes can decline very quickly. To overcome this problem, the authors of
[5] proposed three additions to the simple forward selection procedure to reduce
the chance of hillclimb set overfitting. The proposed additions are: (1) selection
with replacement, where each individual classifier can be selected multiple times,
which means some classifiers get larger weights than others; (2) sorted ensemble
initialization, where instead of starting with an empty ensemble, models in the
library are sorted by their performance, and the best N models are put into
the initial ensemble; (3) “bagged” ensemble selection, where K groups (bags) of
models are randomly selected from the model library, and ensemble selection is
done inside each bag; the final ensemble is the union of the subsets selected for
each of the bags. All three procedures also introduce additional parameters to
the simple ensemble selection algorithm.

Furthermore, there is one more issue: how much data should be used for the
hillclimb set? Figure 1(b) shows a typical test set learning curve for running
ensemble selection with hillclimb sets of varying sizes. Assume the training set
is F', and the hillclimb set H is a subset of F. Here, the z-axis shows the ratio
H/F and indicates the percentage of F' that is used for the hillclimb set. Based
on the learning curve, we can see that the performance of ensemble selection is
not stable, and is related to how much data is used for H. In the figure, there is
a performance peak at x = 40%, but performance starts to drop from =z = 50%.
Different data sets may have different optimal ratios, which usually can be found
only by using cross-validation. Therefore, this parameter indirectly increases the
complexity of ensemble selection. Based on these observations, we propose a
new ensemble learning algorithm called bagging ensemble selection: if we view
the simple forward ensemble selection algorithm as an unstable base classifier,
then we can apply the bagging idea to construct an ensemble of simple ensemble
selection classifiers, which should be more robust than an individual ensemble
selection classifier. In addition, the respective out-of-bag samples can be used as
the hillclimb set. Specifically we will use the following three variations of bagging
ensemble selection.

The BaggingES-Simple algorithm is the straightforward application of
bagging to ensemble selection, with ensemble selection being the base classi-
fier inside bagging. In this algorithm, the amount of data used for the hillclimb
set is still a user-specified parameter (with a default of 30%). Each bootstrap
sample is split into a train and a hillclimbing set according to this parameter.

The BaggingES-OOB algorithm uses the full bootstrap sample for model
generation, and the respective out-of-bag instances as the hillclimb set for selec-
tion. The bootstrap sample is expected to contain about 1 —1/e & 63.2% of the
unique examples of the training set [1, 3]. Therefore the hillclimb set (out-of-bag
sample) is expected to have about 1/e &~ 36.8% unique examples of the train-



Inputs:
Training set S; Ensemble Selection classifier F; Integer T (number of bootstrap
samples)

Basic procedure:
fori=1toT {
Sy = bootstrap sample from S (i.i.d. sample with replacement)
Soob = out of bag sample
train base classifiers (can be a diverse model library) in E on Sp
FE; = do ensemble selection based on base classifiers’ performance on Soop

Fig. 2. Pseudocode of the BaggingES-OOB algorithm

ing set for each bagging iteration. An advantage of BaggingES-OOB is that the
user does not need to choose the size of the hillclimb set. Figure 2 shows the
pseudocode for training the BaggingES-OOB ensemble.

The BaggingES-OOB-EX algorithm is an extreme case of BaggingES-
OOB, where in each bagging iteration only the single best classifier (in terms of
performance on the hillclimb set) is selected. Therefore, if the number of bagging
iterations is set M, then the final ensemble size will be exactly M as well.

3 Experimental Results

We experiment with ten classification problems. All of them are real world data
sets which can be downloaded from the UCI repository [6], the UCSD FICO
data mining contest website! and the KDD Cup 2009 website?. These data
sets were selected because they are large enough, and they come from very
different research and industrial areas. Table 1 shows the basic properties of these
data sets. To make experiments possible for large model libraries, selecting from
thousands of base classifiers, all five multiclass data sets were converted to binary
problems by keeping only the two largest classes each. After this conversion to
binary problems, for data sets that are larger than 10,000 instances, a subset
of 10,000 instances is randomly selected for our experiments. Table 1 (in the
rightmost column) shows the basic properties of the final data sets.

Ensemble selection is not restricted by the type of base classifiers used. The-
oretically, any classifier can be used as a base classifier for ensemble selection. In
this paper, the WEKA [7] implementation of the random tree classifier is used as
the base classifier for all experiments. There are two reasons for focussing solely
on random trees as base classifiers. The first one is simplicity: just by varying a
single parameter, the random seed, we can obtain a large and relatively diverse
model library. The second one is fair comparsion: most other ensemble methods

! The University of California, San Diego and FICO 2010 data mining contest,
http://mil.ucsd.edu/
2 The KDD Cup 2009, http://www.kddcup-orange.com/



Table 1. Data sets: basic characteristics

Data set with release year #Insts Atts:Classes||Class distribution (#Insts)
Adult 96 48,842 14:2 23% vs 77% (10,000)

Chess 94 28,056 6:18 48% vs 52% (8,747)
Connect-4 95 67,557 42:3 26% vs 74% (10,000)
Covtype 98 581,012 54:7 43% vs 57% (10,000)

KDD09 Customer Churn 09 50,000 190:2 8% vs 92% (10,000)
Localization Person Activity 10 164,860 8:11 37% vs 63% (10,000)
MAGIC Gamma Telescope 07 19,020 11:2 35% vs 656% (10,000)
MiniBooNE Particle 10 130,065 50:2 28% vs 72% (10,000)
Poker Hand 07 1,025,010 11:10 45% vs 55% (10,000)

UCSD FICO Contest 10 130,475 334:2 9% vs 91% (10,000)
Original data sets Final binary data sets

are limited to uniform base classifiers. To speed up our experiments, parame-
ter K of the random tree, the number of random attributes, is always set to 5,
and the minimum number of instances at each leaf node is set to 50. In [5], the
authors have shown that ensemble selection can be optimised to many common
evaluation metrics. Bagging ensemble selection inherits this very useful feature;
the goal metric is therefore a user-specified parameter. In this paper, the AUC
(area under the ROC curve) metric is used for all experiments.

The following sections present two sets of results. One shows the results
from comparing the three bagging ensemble selection algorithms to the simple
forward ensemble selection algorithm (ES) and the ES++ algorithm, which is the
improved version of ES with the three additions, as described in the introduction.
This is followed by an analysis of the final ensemble sizes for these algorithms.
The other set of results shows a comparison between bagging ensemble selection
and other ensemble learning algorithms.

3.1 Comparison of Bagging Ensemble Selection Algorithms to the
Forward Ensemble Selection Algorithms

In this experiment the following setup is used: the number of bags (bagging
iterations) for BaggingES-Simple, BaggingES-OOB and BaggingES-OOB-EX is
set to 50. For each data set, we run 10 experiments per algorithm, increasing
the size of the model library per bag by 10 for each successive experiment: from
10 to 20, then to 30 and so on until 100 for the tenth experiment. For example,
when the size of the model library is 100, then, in total, 5,000 base classifiers
(random trees) are trained. Accordingly, we run 10 experiments on each data
set for the ES algorithm and the ES++ algorithm (hillclimb ratio is set to
30% for both ES and ES++) that we want to compare. The size of the model
library increases by 500 in each successive experiment, from a base 500 to 1,000,
then 1,500 until it reaches 5,000 in the tenth experiment, which means all five
algorithms in the comparison use the same number of base classifiers in each



individual experiment. Also, for the ES++ algorithm, the number of subgroups
is set to 50.

Figure 4 shows the test set learning curves of the ES algorithm, the ES++
algorithm, and the three bagging ensemble selection algorithms based on 500
individual experiments (5 algorithms, 10 data sets, 10 different model library
sizes per data set). For each experiment, the algorithms are trained on 66% of
the data set and evaluated on the other 34%. We repeated each experiment five
times and the mean values were used for generating the figures and comparison.
Based on Figure 4, we can see that ES and ES++ outperform bagging ensemble
selection when the size of the model library is greater than 1,000 on the Adult-96
data set. For all other nine data sets, bagging ensemble selection, particularly
BaggingES-OOB (blue curves) and BaggingES-OOB-EX (green curves), clearly
outperform the ES algorithm and the ES++ algorithm. For data sets Chess-94,
KDD-09 and Localization-10, BaggingES-OOB and BaggingES-OOB-EX gave

similar performance.

An interesting pattern is that, for data sets Connect-4-95, Magic-07 and
UCSD-10, the test performance of BaggingES-OOB-EX declines as the size of
the model library increases. This is probably due to the fact that model diversity
is more important for these data sets than for others. Thus, as the model library
gets larger and larger, the best base classifier of each of the 50 bags of BaggingES-
OOB-EX might become more similar to each other, thus losing model diversity.

For 6 out of 10 model library sizes, the BaggingES-Simple algorithm out-
performs all other algorithms on the UCSD-10 data set. The ES++ algorithm
outperforms other algorithms on the UCSD-10 data set when model library sizes
are 500 and 5,000, but had a relatively poor performance when model library size
is 1,000. Again, we can see that, for Covtype-98, KDD-09, MiniBooNe-10 and
UCSD-10, the learning curves of the ES algorithm are not very stable. Figure
3 (left panel) shows the histogram presentation of the performance in terms of
the number of wins for each algorithm over the ten data sets. We can see that
BaggingES-OOB and BaggingES-OOB-EX are the top two winners.

Number of wins as histogram for each data set Overall number of wins as histogram
20 ES o BaggingES:- Ogg
. y agging - | eeaceex]
BaggingES-O0B =1 70 BaggingES-OOB-EX £z
15 BaggingES-OOB-EX &=z | BaggingES-Simple
BaggingES-Simple s 60 | ES++ ——

ES++

Number of wins

Number of wins

Across ten data sets

Fig. 3. Histogram presentation for counting number of wins for each algorithm



Next, we look at the final ensemble sizes of ES, ES++, BaggingES-OOB,
BaggingES-OOB-EX and BaggingES-Simple. Figure 5 shows the relationship
between model library size and the final ensemble size for these algorithms on
the ten data sets. Please note that the final ensemble size of BaggingES-OOB-EX
is always 50 because the number of bagging iterations is set to 50. Except for the
BaggingES-OOB-EX algorithm, we can see that the final ensemble size of the
other four ensemble algorithms increases linearly or sublinearly as the size of the
model library increases (note that the y-axis is logarithmic). The final ensemble
size of BaggingES-OOB, ES, and ES++ grows relatively faster than BaggingS-
Simple’s ensemble size. One possible reason is that in Bagging-OOB-Simple, the
size of the build set (training set excluding the hillclimb set) is relatively small
compared to BaggingEES-OOB. Theoretically, for BaggingEES-OOB, the hillclimb
set (out-of-bag sample) has 36.8% unique instances of the training set, and the
training set has 63.2% unique instances; however, BaggingES-Simple uses the
bootstrap sample for both training and hillclimbing. For this experiment, the
hillclimb ratio for BaggingES-Simple is set to 30%, thus its hillclimb set has
fewer unique instances than BaggingES-OOB’s hillclimb set. Therefore adding
more base classifiers to BaggingES-Simple’s model library may not necessarily
improve the hillclimb performance since the hillclimb set might be too simple
and the local hillclimb performance maximum could be achieved quickly.

Another interesting pattern is that ES has a much smaller ensemble size than
BaggingES-OOB and BaggingES-Simple have. This could be because the local
performance maximum of ES on the hillclimb set can be achieved more quickly
compared to bagging ensemble selection. Again, adding more base classifiers to
ES’s model library may not necessarily improve the hillclimb performance.

Based on those observations, it seems that one reason for the good perfor-
mance of BaggingES-OOB is that it usually has a larger final ensemble compared
to all other algorithms. However, this does not imply that a larger final ensemble
always yields better predictive performance. Refer to the learning curves in Fig-
ure 4, for data sets Chess-94, KDD-09 and Poker-07: BaggingES-OOB-EX’s per-
formance is competitive with BaggingEES-OOB even though its final ensemble size
is only 50. Therefore, whenever final ensemble size is crucial, for example, when
an application requires fast real-time prediction, then the BaggingEES-OOB-EX
algorithm should be considered.

To sum up, we conclude that the advantage of the BaggingEES-OOB algorithm
and the BaggingES-OOB-EX algorithm over ES/ES++ is that their ensembles
are evaluated on diverse hillclimb sets generated by the bagging procedure, and
therefore are more robust and stable.

3.2 Comparison of Bagging Ensemble Selection Algorithms to
Other Ensemble Learning Algorithms

In this experiment, we compare BaggingES-OOB (the most successful variant
of the bagging ensemble selection based algorithms) to other popular ensemble
learning methods. The following algorithms (WEKA [7] implementations) are
evaluated: Voting with probability averaging, stacking with linear regression at



Table 2. Mean and standard deviation of the AUC performance of BaggingES-OOB
and five other popular ensemble learning methods

Data set

BES-OOB

Voting

Stacking

AdaBst.M1

RandomFrst

ES++

Adult-96

0.905+0.001

0.90240.002%*

0.89240.004*

0.78340.008*

0.90240.002*

0.906£0.002

Chess-94

0.875+0.004

0.85940.003*

0.841£0.011%*

0.971+£0.0020

0.862+0.004*

0.866+0.003*

Connt-4-95

0.918+0.006

0.91140.006*

0.897+0.007*

0.90540.005*

0.91240.006*

0.916£0.005

Covtype-98

0.884+0.002

0.88240.002%*

0.87540.004*

0.8784+0.003*

0.88240.002*

0.88140.001%*

KDD-09

0.678+0.029

0.678+0.027

0.656+0.031%*

0.580+0.011*

0.675+0.029

0.669£0.029

Localiz-10

0.966+0.002

0.95740.002*

0.940£0.006*

0.93840.004*

0.960£0.002*

0.963+0.003*

Magic-07

0.920£0.004

0.916+0.004*

0.910+0.004*

0.868+0.005*

0.91940.004*

0.9134+0.002%*

MiniB-10

0.964+0.002

0.96340.002*

0.959+0.002*

0.92840.006*

0.963£0.002*

0.963+0.001*

Poker-07

0.697+0.018

0.66040.022*

0.620£0.041*

0.740+£0.0070

0.674+0.018*

0.671+0.020*

UCSD-10

0.649+0.011

0.648+£0.008

0.61240.016*

0.63240.010%*

0.646+0.008

0.646+0.007*

(win/tie/loss)

(0/2/8) (0/0/10) (2/0/8) (0/2/8) (0/3/7)

“*” BaggingES-OOB is significantly better, “o” BaggingES-OOB is significantly worse, level

of significance 0.05

the meta-level (Stacking), AdaBoostM1, and RandomForest. ES++ is also in-
cluded for comparison. All ensemble algorithms use the random tree as the base
classifier. The total number of base classifiers allowed to be trained for each en-
semble algorithm is equal. For bagging ensemble selection the number of bags
is set to 50, and the number of base classifiers of individual ensemble selection
in each bag is set to 100; thus in total 5,000 base classifiers (random trees) are
trained. For other ensemble algorithms, the number of base classifiers is set to
5,000. The training complexity of random tree is O(nlogn), where n is the size of
the training set. In this experiment, all ensemble algorithms train on the same
number of random trees, therefore the training costs for the model library of
each ensemble algorithm in this comparison are roughly the same.

Table 2 shows the performance of each algorithm on the ten data sets. Stan-
dard deviations and significant test results were calculated from five indepen-
dent runs of 66% (training) versus 34% (testing) split validation. The results
for which a significant difference with BaggingES-OOB was found, are marked
with a “*” or “o” next to them. An asterisk “*” next to a result indicates that
BaggingES-OOB was significantly better than the respective method (column)
for the respective data set (row). A circle “o” next to a result indicates that
BaggingES-OOB was significantly worse than the respective method. We can
see that AdaBoost.M1 significantly outperforms BaggingES-OOB on the Chess-
94 and the Poker-07 data sets. On the other eight data sets, BaggingES-OOB
is competitive (7 ties) to or superior (41 significant wins) to all other ensemble
algorithms.

4 Conclusions

Ensemble selection is a popular ensemble learning method. Over the past several
years, ensemble selection has been empirically examined and has proven to be



a very effective and accurate ensemble learning strategy. One disadvantage of
ensemble selection is that it is unstable and sometimes overfits the hillclimb
set. In this paper, to further improve ensemble selection we proposed using the
bagging strategy, which utilises the unstable property, to reduce the variance of a
single ensemble selection. Our experiments on ten real world problems show that
the bagging ensemble selection, especially BaggingES-OOB, which uses the out-
of-bag sample as the hillclimb set, yields a robust and more accurate classifier
ensemble than the original ensemble selection.

When the underlying problem requires fast prediction, we suggest using
BaggingES-OOB-EX instead, because the user can control the size of the fi-
nal ensemble. In terms of predictive performance, bagging ensemble selection is
also competitive (in many cases, superior) to other state-of-art ensemble learning
algorithms, such as voting, random forest, stacking and boosting. Again, bagging
ensemble selection is not restricted by the type of base classifiers.

We experimented with only one type of base classifier in this paper, but to
get the best out of the algorithm, we suggest using a more diverse model library.
The bagging ensemble selection idea can be easily generalised to regression prob-
lems, since bagging is applicable to both classification and regression. In future
research, we will compare bagging ensemble selection to other ensemble meth-
ods for regression problems. The success of the proposed methods on the diverse
data sets selected for the study strongly suggests the applicability of the bagging
ensemble selection algorithm to a wide range of problems.

References

1. Bauer, E., Kohavi, R.: An empirical comparison of voting classification algorithms:
bagging, boosting, and variants. Machine learning 1(38) (1998)

2. Brazdil, P., Giraud-Carrier, C., Soares, C., Vilalta, R.: Metalearning: Application
to Data Mining. Springer (2009)

3. Breiman, L.: Bagging predictors. Machine Learning 24(2), 123-140 (1996)

4. Caruana, R., Munson, A., Niculescu-Mizil, A.: Getting the most out of ensemble
selection. In: ICDM ’06 Proceedings of the Sixth International Conference on Data
Mining (2006)

5. Caruana, R., Niculescu-Mizil, A., Crew, G., Ksikes, A.: Ensemble selection from
libraries of models. In: ICML ’04 Proceedings of the twenty-first international con-
ference on machine learning (2004)

6. Frank, A., Asuncion, A.: UCI machine learning repository (2010), http://archive.
ics.uci.edu/ml

7. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.: The
weka data mining software: An update. SIGKDD Explorations 11(1) (2009)

8. Partalas, 1., Tsoumakas, G., Vlahavas, I.: An ensemble uncertainty aware measure
for direct hill climbing ensemble pruning. Machine Learning 81(3) (2010)

9. Rokach, L.: Ensemble-based classifiers. Artificial Intelligence Review 33, 1-39 (2010)



0.905 0.88 0.925 o 0.888
0.904 0.92 KoK R 0.886 s K KK
0.903 i e X ogis * 084 kX T e
Soz e 087§ ¥ 0.905 f g s 0882

0.9 e 0.865 097 B B 0.88 P
0.899 ES —— 0895 0878} & oo 8@

0.898 | BaggingES-OOB-EX 0.86 - 008-355’ 0.876 =5

0.897 BaggingES-O0B 0.855 - 8 8 0.88 0.874 \/

0.896 BaggngS»SwErré;i\f =} - (] 0.875 0.872

0.895 5 0.8

1000 2000 3000 4000 5000

(a) Adult-96

1000 2000 3000 4000 5000

(b) Chess-94

1000 2000 3000 4000 5000

(c) Connect-4-95

1000 2000 3000 4000 5000

(d) Covtype-98

0.69

0.965

0.92

= Fow
oo ol
068 | xx ey 0964 e x X 00188 g Bn B g g §
087 XK 0.963 e ) o
- oge2 | % 0916
0.66 @B 0961
a-a y
065 o B8 7 0.96 0914
0.959 0912
0.64 /\//‘\'—J
0.958
0.91
063 09574 f g BaPag
0.956 0.908
1000 2000 3000 4000 5000 1000 2000 3000 4000 5000 1000 2000 3000 4000 5000
(e) KDD-09 (f) Localization-10  (g) Magic-07
0.966 0.72 0.654
0.965 e } — o5
0.964 | X Xk 07 o A K K 3
: * o Py o . 0.648
0963 694 x om0 B0 0646
N 0.68 =2 0.644
0.962 0.67 0.642
0.961 0.64
\////\./ 066 0.638
096 065 0636
0.959

(h) MiniBooNe-10

Fig. 4. Learning curves of ES, ES++ and the three bagging ensemble selection algo-

0.64
1000 2000 3000 4000 5000

(i) Poker-07

0.634
1000 2000 3000 4000 5000

1000 2000 3000 4000 5000

(j) UCSD-10

rithms. X-axis is the model library size; y-axis is the AUC performance

1000 e 100 10000 10000
= 8-a -8 a oKX . *
o " "
° ° 8-8-g-a-0-8-8-8 1000 |yt XX 1000 | etk o
100 100 e e o oo oo
100 100 )
WOW 10 M/ M i
BaggingES-OOB - 10 10 N ]
BaggingES-Simple =
ES+s

1000 2000 3000 4000 5000

(a) Adult-96

1000 2000

(b) Chess-94

3000 4000 5000

1000 2000 3000 4000 5000

(c) Connect-4-95

1000 2000 3000 4000 5000

(d) Covtype-98

1000 1000 1000 —
e Ho g K s e R K R MR X
* - g-8-g-8-g- g8 8 g-8-8-g 8888
e 100
100 100
10/_/,_,/ i

1000 2000 3000 4000 5000

1000 2000 3000 4000 5000

1000 2000 3000 4000 5000

(e) KDD-09 (f) Localization-10  (g) Magic-07
10000 1000 PR 1000 *******
10003‘******* 100DDDDDDDD 100DDDDDDDD
100 o 0j L T e
10 S

1000 2000 3000 4000 5000

(h) MiniBooNe-10

Fig. 5. Final ensemble sizes of ES, ES++ and the three bagging ES based algorithms.
X-axis is the model library size; y-axis is the final ensemble size in logarithmic scale

1000 2000 3000 4000 5000

(i) Poker-07

1000 2000 3000 4000 5000

(j) UCSD-10



