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Abstract

Inputs of dissolved organic carbon (DOC) to lakes derived from the surrounding landscape can be stored, mineralized or
passed to downstream ecosystems. The balance among these OC fates depends on a suite of physical, chemical, and
biological processes within the lake, as well as the degree of recalcintrance of the allochthonous DOC load. The relative
importance of these processes has not been well quantified due to the complex nature of lakes, as well as challenges in
scaling DOC degradation experiments under controlled conditions to the whole lake scale. We used a coupled
hydrodynamic-water quality model to simulate broad ranges in lake area and DOC, two characteristics important to
processing allochthonous carbon through their influences on lake temperature, mixing depth and hydrology. We calibrated
the model to four lakes from the North Temperate Lakes Long Term Ecological Research site, and simulated an additional 12
‘hypothetical’ lakes to fill the gradients in lake size and DOC concentration. For each lake, we tested several mineralization
rates (range: 0.001 d~' to 0.010 d ") representative of the range found in the literature. We found that mineralization rates
at the ecosystem scale were roughly half the values from laboratory experiments, due to relatively cool water temperatures
and other lake-specific factors that influence water temperature and hydrologic residence time. Results from simulations
indicated that the fate of allochthonous DOC was controlled primarily by the mineralization rate and the hydrologic
residence time. Lakes with residence times <1 year exported approximately 60% of the DOC, whereas lakes with residence
times >6 years mineralized approximately 60% of the DOC. DOC fate in lakes can be determined with a few relatively easily
measured factors, such as lake morphometry, residence time, and temperature, assuming we know the recalcitrance of the

DOC.
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Introduction

At the global scale, lakes number more than 300 million [1] and
may have significant effects on regional carbon balances [2,3].
They act as vents to the atmosphere for inorganic carbon
accumulated in ground and surface waters and as storage and
mineralization sites for organic material derived from terrestrial
production [2,4]. In turn, terrestrial carbon affects lake properties,
including water color, thermal stability, water chemistry, commu-
nity composition, and higher trophic levels [5-8]. Despite the
abundance of information on effects of organic carbon on several
lake attributes, we know surprisingly little about the relationship
between terrestrial inputs and lake responses over time scales of
ecological significance, from days to weeks to seasons.

Understanding the roles lakes play in landscape carbon budgets
requires that we quantify the magnitude and degradability (or
recalcitrance) of the organic carbon (OC) fluxes and that we
understand how lakes process those carbon loads [9]. Both aspects
are challenging. For many lakes, measuring the loads is difficult
because inputs are diffuse and highly variable through time.
Furthermore, the recalcitrance of the load, especially in terms of
the biological availability of the OC, is very difficult to quantify.
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Thus, we have three components that can have high uncertainty:
the magnitude of the load, the recalcitrance of the load, and the
processing capacity of the lake.

To reduce the complexity of these issues, it can be helpful to
focus on the most abundant fraction of the organic pool, dissolved
organic carbon (DOC) [10]. Even if we have highly uncertain
estimates of the allochthonous contributions to lake DOC, we can
attribute changes in observed lake DOC to multiple sources and
sinks by making some simple assumptions. To illustrate, we
provide this simplified mass balance model of organic carbon
processing rates in lakes:

dDOC/dt=I1+A—S—R—E (1)

where [ is allochthonous input, 4 is autochthonous contribution, .§
is sedimentation, R is mineralization (respiration plus photo-
oxidation), and E is export. If we assume that § of DOC is
negligible, but see [11], that 4 can be estimated from primary
productivity [10,12], and that £ can be calculated from hydrologic
outflow and lake DOC concentration, then only / and R remain.
Unfortunately, these terms are directly related in equation 1 and
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are not mathematically separable when both are unknown. In
cases in which we wish to estimate /, for example, and we assume
we know R from literature values, uncertainty in R translates
directly to uncertainty in 1. If by chance mineralization is over-
estimated, then the load will be over-estimated as well. Thus,
reducing our uncertainty about R will help us solve for Z, which in
turn is necessary in determining the role lakes play in the
landscape-scale carbon budget.

Respiration at the ecosystem scale (Rp) is particularly challeng-
ing to estimate. Scaling measurements of respiration made under
controlled laboratory conditions (Ry) [13-15] are riddled with
challenges associated with the spatio-temporal heterogeneity in
temperature, light, and oxic conditions in lakes. In studies that
have estimated R at the ecosystem scale [7,12,16], little attention
has been placed on how the recalcitrant nature of the DOC or the
nature of the lake affect scaling, i.e., how we derive R from R,
Critical components of the scaling are the temperature, oxygen,
and light environment to which the DOC is exposed. These can be
highly variable in space and time, and may be controlled by lake
characteristics, such as lake size, hydrologic residence time, and
water clarity.

How does DOC recalcitrance, in combination with the
processing capacity of lakes, control the fate of DOC loads to
lakes> We address this question using a one-dimensional
hydrodynamic-water quality model, calibrated to data from the
North Temperate Lakes Long Term Ecological Research (NTL
LTER) program. We simulate lakes over orthogonal gradients of
lake size, trophic state, and recalcitrance of loads to study the
relative importance of these factors for determining DOC fates.
We found that a few lake characteristics related to size and trophic
state were important in determining DOC fate. Equally important,
though perhaps more uncertain, is the recalcitrant quality of the
DOC load.

Results

Model calibration

Results from the model calibration process show predictions
approximated to observations for the four calibration lakes, which
covered broad ranges in lake area and DOC concentration (Fig. 1).
All lakes showed seasonal stratification, although CB showed some
short periods of near isothermal conditions (Fig. 2). TB, which is a
small lake with high DOC concentration, had the shallowest mixed
layer and the coolest depth-integrated temperature over the
simulation. Predicted and observed temperatures were strongly
correlated (1): CB (0.93); SP (0.87); TB (0.94); and TR (0.94). As a
collection, the lakes show broad ranges in their thermal properties.
Overall, we met the goal of reproducing what we consider to be the
important lake attributes in this study — thermal properties and
mixing regimes. The mean observed lake DOC concentrations were
well represented, even though the details of subseasonal dynamics
were not (Fig. 3). An exception was TB, in which DOC predictions
were slightly lower than observations. Considering the approach
was to fix the daily loads to eliminate them as a confounding factor
in the remainder of the analysis, the agreement between
observations and predictions was encouraging. One of the purposes
of calibration was to determine the DOC load required to
reproduce the observed lake concentrations, given the assumed
value of DOC respiration (Ry) of 0.005d~'. Under these
conditions, the annual areal loads required to produce near
constant DOC for each lake were 60 (TR), 55 (SP), 50 (CB), and
190 (TB) g C m ™2y~ !, respectively. It is important to note that
these loads, determined through calibration, are strongly influenced
by our assumed model parameters and hydrologic residence times.
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Ecosystem R (Rp) varied markedly within and between
simulations. In the four calibration lakes, Ry was highly variable
through time for each lake, but in ways that were lake specific
(Fig. 4 A-C). Under calibrated conditions, Rz varied most in TB,
with the Rz R, ratio exceeding one on many days. Conversely, in
TR, Rz Ry never exceeded one. When results from all simulations
are plotted (Fig. 4D-F, note that data are smoothed), lake area,
DOC concentration, and even R, affect the Rz: R, ratio. The ratio
was highest in the smaller lakes (Fig. 4D) with the lowest DOC.
Curiously, Ry was similarly low across lakes when DOC was low
and R, was high. In the large lakes (Fig. 4F), none of the scenarios
produced high Ry Ry.

Seasonal changes in mean lake temperature exerted strong
influence on Rj. Seasonal variation in water temperature differed
among lake areas and among DOC concentrations within lake
areas (Fig. 5A—C). The largest seasonal change was in the smaller
lakes, while the smallest change was in the largest lake. Biggest
differences among simulations within a given lake area occurred in
the smaller and midsized lakes (Fig. 5A, B, respectively). The
scenario resulting in highest water temperatures was is in the small
lake when DOC concentration was low. The general trend is an
inverse relationship between DOC and water temperature.

When all data from all scenarios are plotted, Ry shows a direct
and nonlinear change with temperature (Fig. 5 D-F). In each
panel in Fig. 5, the upper cluster of points corresponds to
Ry=0.010d"", the middle to R,=0.005 d” " and the bottom to
Ry=0.001 d™ . The different colors of dots represent the different
simulated DOC conditions. In the small, clear lakes (Fig. 5D),
where mean lake temperatures sometimes exceeded 15°C, Rp
sometimes exceeded R,. The same was true for simulations in mid-
sized lakes when Ry=0.001 d™'. However, in all simulations, most
of the Ry values were below the R values. The apparent hysteresis
in Rp for any one simulation results primarily from the change in
temperature through the simulation.

Rj; increased exponentially with temperature, and is fit well
with a classical Arrhenius equation. We fit the Arrhenius
equation to data in Figure 5D-F solely for the purpose of
simplifying the data for each simulation. In Figure 6, we display a
subset of those data to illustrate key points. In 6A, we plot
scenarios of small lake area, constant Ry =0.005 d ', and the full
range of DOC levels, represented by the four different lines. All
simulations produced Ry above what would have been expected
by temperature alone (dashed line). Only in the two low-DOC
simulations did temperature exceed 15°C, and in those
simulations Rp met or exceeded R, at higher temperatures.
DOC had a profound effect on water temperature, presumably
through changing water clarity. It also appears that differences
among simulations altered scaling of Rz In Figure 6B, R, and
DOC were held constant at the mid-level values, and lake area
was varied. Lake area influenced lake temperature, resulting in
the highest Ry in small lakes. The lake area effect on Ry scaling
was similar in magnitude to the DOC concentration effect seen in
Figure 6A.

At the seasonal scale, mean Ry was consistently lower than R,.
When seasonal mean Ry was plotted against Ry, the slope of the
lines was less than 1 (Fig. 7), indicating that as R, increases, Rp
increases more slowly. If it were just the recalcitrance of the load
that determined its fate, we would see Ry equal Ry, and Ry would
fall on or parallel to the 1:1 line, but it does not. Ry increases at a
rate less than that of R, and near linearly across an order of
magnitude in recalcitrance (0.001-0.01 d™"). The lines do not
pass through the origin, however, because Ry also includes photo
oxidation of DOC, which in this model we do not covary with Ry.
Seasonal mean Ry exceeded Ry only in the small lakes when R,
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Fate of DOC Loads to Lakes

Figure 1. Calibration lakes embedded in points from a survey of lakes representing the NHLD. For each of the 16 lakes, represented by
boxes, three different load recalcitrant values (i.e., Ry) were simulated. The yellow boxes are the calibration lakes. Total simulations =48. Dots are

taken from Hanson et al. [19].
doi:10.1371/journal.pone.0021884.g001

was at its lowest in the low DOC simulations. The DOC
concentration effect was greatest in the small lakes under low-
DOC simulations (Fig. 7A), where higher temperatures (Fig. 6A)
led to a corresponding increase in Rp.

The fate of the organic carbon in lakes was partitioned primarily
between respiration and export, and was influenced by R,. Lake
area and the corresponding hydrologic residence time had a strong
influence on the fate of OC as being exported or respired (Fig. 8).
In the midsized and larger lakes (Fig. 8B,C), most OC was
respired. At Ry values of about 0.005 d™ ' and higher, more than
80% of the OC load was respired. Only in the smaller lakes at very
low R, (Fig. 8A) did export exceed respiration. DOC concentra-
tion had a minor influence on the fate of OC, even though it was
important in determining Rg (e.g., Fig. 6A).

In our study, the balance between three factors — residence
time, the choice of Rj), and lake characteristics, primarily
temperature and DOC concentration — controlled the fate of
allochthonous DOC. For illustrative purposes, let us assume that
export (E) and mineralization (R) are the dominant fates of OC
loads to lakes. We can simply calculate the fate of OC as R for
lakes of different residence times for a number of Ry values (Fig. 9,
solid lines). The large lakes in this study have a residence time of
ca.7 years, which approximates to daily export rate of
0.0004 d™'. When we choose an Ry of 0.005 d™!, then the fate
of DOC would be 93% as R and 7% as E (i.,e., proportion
R=0.005/(0.005+0.0004) = 0.93). However, in our simulations
and under the above conditions the proportion of fate as R is
closer to 84% (Fig. 8C, and center black dot of the right group on
Fig. 9). In effect, lake characteristics other than residence time
have lowered the fate as R by about 9% by reducing seasonal
mean Ry from 0.005 d™' to a seasonal Ry of 0.002 d™' (Fig. 7C).
If we repeat the above thought experiment, but with the small
lakes that have a residence time of ca. 4 years, then expected fate
as R would be 88%, based on R, of 0.005 d”'. As we see in
Figure 8A and the center black dot in the left group of dots in
Figure 9, fate as R in our simulations is closer to 78%), and again,
the reduction by 10% is due to R, being reduced to an Ry of
about 0.0025 d™' (Fig. 7B).
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Discussion

Substantial research in the past decade has characterized lakes
as hot spots of carbon cycling in the landscape, acting both as
conduits of inorganic carbon and mineralization sites for
terrigeneous organic carbon [2,10,12]. As the environment is
subject to increasing levels of land use change and climate change,
we might expect an increase in the frequency of extreme
disturbances at the landscape scale [17]. Disturbances may be
manifested, in part, by increased fluxes of nutrients through
watersheds. How might lakes process these nutrients, especially
organic carbon? The results of this study highlight the importance
of understanding both the nature of the load, in terms of the
recalcitrance of the organic carbon, and the physical character-
istics of the lake. Here, we focus discussion on the interplay
between those two important components and the implications for
carbon cycling.

Importance of the lake physical characteristics
Differences in size determine the extent to which lakes process
OC loads. The most obvious consequence of lake size in this
model is its effect on hydrologic residence time. Larger lakes in this
region tend to have longer residence times, and the longer that
DOC is resident in a lake, the more opportunity there is for that
OC to be mineralized (Fig. 8C) [18]. Drawing inferences about
OC processing rates from observational data remains challenging
at the ecosystem scale due to the difficulties in measuring key
hydrologic and DOC fluxes. However, a landmark study by Dillon
and Molot [16] provides a basis for comparison. Although
hydrologic residence times are longer in our lakes than in theirs,
extrapolating the relationship between export and load from their
study suggests that our mid-sized lakes should export about 15% of
their loads, and indeed this estimate is reasonably close for values
of Ry near 0.005 d™' (Fig. 8B). For the smaller lakes in our study,
we do not have well constrained estimates of hydrologic residence
times, but if we estimate them to be equal to the mean depth in
years (a rough approximation for groundwater fed lakes in this
region), we would expect about 40% export, based on Dillon and
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Figure 2. Observed and modeled temperature profiles through the open water season for the calibration lakes. All calibration

simulations use Ry=0.005 d .
doi:10.1371/journal.pone.0021884.9002
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Figure 3. Observed and modeled whole-lake mean DOC
concentrations. All simulations are for values of R,=0.005d .
Values are hypsometrically weighted mean water column values.
doi:10.1371/journal.pone.0021884.9003

@ PLoS ONE | www.plosone.org

Molot [16]. Our estimates of export for smaller lakes range from
about 20-40%, suggesting that other factors, such as higher DOC
concentrations, play a role in the OC processing.

Lake DOC concentration appears to influence DOC process-
ing. Most lakes in this region are strongly stratified for much of the
open water season, cover broad ranges in temperature and
nutrients, and have chromophoric compounds that attenuate
irradiance [19]. More highly stained lakes (i.e., those with higher
concentrations of recalcitrant DOC), such as T'B, tend to be cooler
[20], with obvious effects on the kinetics of mineralization. Darker
lakes are also more strongly stratified with shallower mixed layer
depths [21] and with cooler more anoxic hypolimnia [19]. Indeed,
in this study the mean temperature of the smallest low-DOC lake
(about 18°C) was nearly double that of the smallest high-DOC
lake. Lakes with high DOC concentrations have low light
penetration, which restricts depth of mineralization of OC [22]
directly through photooxidation and indirectly through increasing
the lability of recalcitrant OC [15]. We did not adjust photolytic
decay parameters with load recalcitrance. However, in real
ecosystems, it may be reasonable to expect these two rates to
covary [15]. The importance of photolytic decay is difficult to
gauge at the ecosystem scale. Although DOC degradation occurs
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near the surface of the lake, resulting in photo-oxidation of DOC
or conversion of DOC to a much more labile state [15], rapid
attenuation of light, especially ultraviolet radiation, decreases
photolytic decay rates deeper in the water column [22]. At an
ecosystem scale, photo-oxidation has been found to account for
about 10% of total mineralization [23]. Clearly, the interactions
between photo-oxidation, photolytic decay to a more labile state,
and bacterial respiration warrant more careful study.

Importance of the recalcitrance of the load

The recalcitrance of the load interacts with the lake physical
characteristics to determine load fate. Recalcitrance is represented
by a single parameter in this study, Ry. What does the recalcitrance
number, Ry, really mean? Rates from past work span roughly an
order of magnitude, suggesting uncertainty from a variety of
factors, including the source of the OC and the method for
estimating the rates [24]. For example, in a mass balance study of
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a Swedish lake, daily mineralization of OC was found to be about
0.001-0.003 d~' [7]. In a study of lake water DOC from a north
temperate system, Houser [25] found the mean degradation rate to
be about 0.005 d™'. In laboratory incubations, dark botte decay
has been found to be about 0.0035 d™' [15] or as high as
0.016 d™"' [26], whereas long-term degradation experiments have
estimated decay rates to be closer to 0.0007 d™! for river DOC
[27] or 0.0008 d~! for DOC derived from a wetland [28]. For the
ranges given above (~0.0007-0.016 d™"), there would be an
approximate five-fold change in Ry at the whole-lake scale (Fig. 7).

The value chosen for R, has substantial bearing on the
estimated fate of DOC at the ecosystem scale. For lakes with a
residence time of two years, the fate as R could be as low as 40% or
as high as 85% (Fig. 9), depending on the value chosen for R,.
However, results from other studies that focused on carbon loads
and exports, rather than respiration rates, may help us constrain
Rpg. In Figure 9, we plot the proportion of DOC fate as R from this
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study and from five other studies in which lakes are from a similar
latitude, hydrologic residence time has been estimated, and R, was
not simply assumed but measured as part of the study or was
inferred by us from loads and exports. For literature values, we
plot carbon retention (retention = mineralization+sedimentation)
because the balance between mineralization and sedimentation is
not always well quantified (Fig. 9). Dillon and Molot [16]
calculated retention of DOC as the difference between stream
mputs and outputs from their lakes. Estimates from their study
benefit from well-defined inflows and outflows, but for many
seepage lakes, such as those typical of northern Wisconsin, inputs
are diffuse and difficult to measure. In Stets et al. [26], Ry was
determined from laboratory experiments and scaled to the
ecosystem using an Arrhenius temperature function. They
assumed sedimentation was negligible. Sobek et al. [7] provide a
comprehensive organic carbon budget for their lake, including
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contributions to DOC by emergent macrophytes. We cannot
separate respiration of macrophyte DOC from that of other OC
sources, so as a first order approximation we assume the same rate
and plot the proportion fate as R, which equates to 0.4. Buffam et
al. [29] estimated carbon loads to lakes at the regional scale, and
the plotted value represents their median carbon retention.
Finally, Algesten et al. [18] estimated both the organic carbon
loads and exports from lakes. Of the studies plotted in Fig. 9, Stets
et al. [26] clearly has the highest fate as respiration. Their estimate
for Ry from bottle incubations was 0.016 d~', which is high
relative to other studies. The values of fate of DOC as R from their
study fall below our R;=0.010 d™" line, probably because they
adjusted their R, for temperature using a scaling function similar
to ours. What we find striking about Figure 9 is that most literature
values fall near the Ry=0.001 d™' line. Because the plotted data
are retention, which includes sedimentation, they likely overesti-
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mate R. If we were to adjust retention in these studies by removing
the sedimentation component, which may range from 13-44%
[9,18,29] or even as high as 50% in small humic lakes [11], then
the literature data would tend to fall just below the Ry =0.001 d~"
line, which corresponds reasonably well to results from lakes in this
study, represented by the lowest black dots in Fig. 9. The shape
and magnitude of the lowest curve in Fig. 9 is remarkably similar
to that determined by Curtis [30] in an empirical analysis of
dissolved organic matter retention for Ontario lakes.

Uncertainty in R can lead to uncertainty in carbon load
estimates for lakes. For most lakes, we do not have well-
constrained estimates of the OC loads or their mineralization
rates. If, for example, we assume fixed values for R and £ in
Equation 1, rearrange to solve for the loads (/), then we can
calculate the DOC load necessary to produce the observed lake
DOC concentrations through time, according to:

1=d[DOC]/dt+R +E (3)

Under steady state conditions, uncertainty in R and £ manifests
directly in uncertainty in 1. As we see in Figure 9, a small change in

@ PLoS ONE | www.plosone.org
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R or residence time, especially for lakes with residence times <c.
3 years, has a big impact on the fate of DOC. For lakes in our
study, lowering R, from 0.005 d™ ! the value used in calibration,
to 0.001 d”' requires a reduction in the loads of 30-60%,
depending on the lake, to approximate the steady state used in
calibration. Thus, the selection of an ecosystem-scale mineraliza-
tion rate of DOGC, while seemingly innocuous, has a large bearing
on the magnitude of DOC load required to balance the lake OC
budget.

For lakes in the Northern Highland Lake District of Wisconsin,
we also have much to learn about the timing and magnitude of
OC loads, which probably exert the highest uncertainty in lake
carbon budgets [7]. In temperate zones, autumnal leaf litter fall
tends to dominate the particulate C load from terrestrial systems to
lakes [31-33]. However, a continuous input of fine particulates
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Figure 8. Fate of DOC as a function of R,
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during summer [34] and pollen in spring [35,36] supplements the
more episodic, autumnal inputs. While leaf litter is a major source
of terrestrial OC to lakes, forest canopies also entrain atmospheric
deposition that can then be deposited during autumnal litterfall, or
as throughfall, during episodic rain events [37]. The medley of
litter types and atmospheric carbonaceous compounds may
account for variability in timing, magnitude, and quality among
these various sources of terrestrial carbon. Furthermore, variability
in surface flows that deliver allochthonous DOC, as well as
changing water levels in lakes, would affect the dynamics of lake
carbon budgets. For most lakes in the NHLD, which on average
have a hydrologic residence time of about four years [3], we doubt
that subannual loading dynamics would impart much observable
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Figure 9. Proportion of fate as R (or retention) versus water
residence time. Lines are calculated under the assumption that R,
represents true ecosystem respiration and that R, and export, as
calculated from residence time, are the only two fates of DOC. The two
groups of black dots correspond to fates from the small lakes and large
lakes simulations, when Ry is set to the three respiration rates used to
generate the lines. The colored markers are from studies that have
quantified loads and export or respiration, as well as hydrologic
residence time in northern latitude lakes. Values from the literature
represent retention (retention = mineralization+sedimentation).
doi:10.1371/journal.pone.0021884.9g009

pattern on lake DOC. However, for small lakes with very short
hydrologic residence times, a DOC pulse commensurate with a
hydrologic pulse may be mostly exported if the magnitude of the
hydrologic pulse approaches the lake volume. Such episodic events
are not captured in this study but are worthy of further exploration
and can be modeled using our current approach, provided there
are adequate inflow measurements.

Our simplification of the carbon budget by focusing on
allochthonous DOC leaves additional issues to be addressed. A full
accounting of a lake’s carbon budget would need to include the
aforementioned fluxes of particulate organic carbon, sedimentation
of autochthonous primary production, especially in highly eutrophic
systems [38], and even flocculation of DOC in boreal lakes [11]. Do
these fluxes alter the fate of allochthonous DOC? Certainly
flocculation would, although the magnitude of this flux is not well
quantified for a broad range of lakes. For example, Wachenfeldt and
Tranvik [11] found sedimentation flux of DOC in highly humic
lakes to be about 0.02 d ™', which greatly exceeds the upper end of
R, tested in this study. However, it is not clear the extent to which
this carbon is permanently buried in the sediments. If DOC
sedimentation and permanent burial is a flux much greater than
respiration, it would either require an additional load of
allochthonous DOC to balance the overall budget or remove most
of the observable DOC from the water column. High-DOC lakes in
this study are at the upper end of the range found in Wisconsin,
where most of the water volume at a regional scale is in larger lakes
with lower DOC concentrations [19]. For lakes with relatively low
DOC concentrations, organic matter buried in sediments is thought
to derive primarily from particulate autochthonous sources, such as
phytoplankton and macrophytes [39]. An additional challenge in
larger lakes may be separating in our observed data the
allochthonous and autochthonous contributions to DOC pools
and fluxes, because values are relatively low.

Recent understanding of the importance of freshwater systems
in continental-scale carbon cycling compels us to better under-
stand underlying mechanisms of DOC processing in lakes [9].
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Although empiricism has helped explain relationships between
lake DOC and geologic setting, land cover, and local climate
[40,7], well-constrained quantification of the magnitude and
quality of loads to lakes remains elusive. Predicting the fate of
DOC in lakes under changing climate and land use requires better
quantification of DOC mineralization and export rates. DOC
respiration has been inferred indirectly from measures of COq
concentration [41] or scaled -up from bottle experiments assumed
to be applicable at the ecosystem scale [10,22,23,42]. However, we
are unaware of any study that has explored the controls on DOC
mineralization in a range of lake types. A unique feature of the
present study is the use of broad gradients of key lake features to
better understand the relative importance of DOC quality and
lake characteristics in determining the fate of DOC in lakes.

We have seen emerge from this complex suite of physical,
chemical, and biological processes a relatively small number of
factors that exert primary control over the fate of allochthonous
DOC in lakes (Fig. 10). Hydrologic residence time and Ry appear
to be equally important to the fate of DOC in lakes with residence
times of roughly 2—4 years, assuming a relatively high level of
recalcitrance in DOC (Fig. 9, R,=0.001 d™"). Naturally, higher
rates of R, tip the balance of fate more toward respiration;
however, results from other studies suggest Ry may be closer to the
bottom end of the range. Temperature is important in scaling R,
to Ry, and may lower R, dramatically (~50%, Fig. 7). However, in
determining the fate of DOC, effects of temperature are
dampened by the overall importance of residence time, and to a
lesser extent the effects of lake size and DOC on mixing and
photo-oxidation. Encoding these factors — residence time, R, and
water temperature, estimated from lake area and DOC concen-
tration — in simplified models parameterized over a larger gradient
of lake types would be a substantial advancement toward modeling
lake carbon cycling to obtain whole-lake carbon budgets that are
necessary to better understand the contributions of lakes to carbon
cycling at the landscape scale.

Materials and Methods

We wuse a coupled hydrodynamic-biogeochemical model
calibrated to observed data from four lakes in northern Wisconsin
to study the fate of DOC loads to lakes. Data are from 2006, and
we focus on the open water period that spans roughly April
through October. Our first goal is to study different DOC
recalcitrance values on the fate of DOC loads, but not the

Fate of DOC Loads to Lakes

magnitude of the loads themselves. Therefore, we fix the
magnitude of carbon loads to the lakes and vary the assumed
recalcitrance level of DOC, represented here by a first-order decay
rate (Rp). Our second goal is to determine how lake characteristics,
such as temperature, water clarity, and wind-driven mixing, alter
Ry. Finally, we assess the fate of the DOC load as being
mineralized or exported downstream. We use four lakes that cover
broad ranges in lake area and DOC concentration (Fig. 1) as
calibration systems within an ensemble of 48 simulations. Finally,
we compare our estimates of the fate of DOC loads to lakes with
those from the literature.

Study lakes

The four calibration lakes in this study are primary study lakes
of the North Temperate Lakes Long Term Ecological Research
program (NTL-LTER) [42]. These lakes are located in the
Northern Highland Lake District of Wisconsin, and are charac-
terized by moderate to low acid neutralizing capacity (ANC),
conductivity, and productivity. The lakes were chosen for their
contrasts in morphometry and concentrations of carbon and
phosphorus (Table 1). These variables are known to affect mixed
layer depth [21], and ecosystem primary productivity and
respiration [43]. Organic carbon-rich lakes may be especially
responsive to photobleaching [22] and photoxidation [13],
particularly when the DOC originates from terrestrial sources
[15]. These characteristics likely influence how lakes process OC
pulses and how they respond to meteorological forcing. Crystal
Bog Lake (CB) and Trout Bog Lake (T'B) are small dystrophic lakes
with moderate to high dissolved organic carbon (DOC) and total
phosphorus (TP) concentrations. Sparkling Lake (SP) and Trout
Lake (TR) are large and deep oligotrophic lakes with low DOC
and TP concentrations. Physical and chemical data pertaining to
these lakes were collected by the NTL LTER program in 2006.
Analytical methods for these variables are described at http://lter.
limnology.wisc.edu.

The model

To simulate the lakes, we used DYRESM-CAEDYM (DC;
http://www.cwr.uwa.edu.au/services/models.php). DC  couples
one-dimensional hydrodynamics with a broad collection of
chemical and biological processes to simulate mixing, transport,
and transformational processes at high vertical (<1 m) and
temporal (<1 d) resolution [44-46]. DC has been used in a wide

Lake size <&

DOC concentration{}

Re

-
Water temperature

Residence time

Relative importance of lake

Relative importance of process
to the fate of DOC
Characteristics in determining Rg
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Figure 10. Factors controlling the fate of DOC loads to lakes. (Left) For a broad range of lakes in the NHLD, both residence time and
ecosystem respiration (Rg) can have near equal influence over the fate of DOC loads to lakes. (Right) The controls of R: depend primarily on assumed
recalcitrance (Ry) and water temperature, however, DOC concentration and lake size exert minor control as well. The overall effect on R, for lakes in
this study was to reduce it by approximately 50%. The effects on fate as respiration are less dramatic because of the importance of residence time in

the governing equation.
doi:10.1371/journal.pone.0021884.g010
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Table 1. Limnological characteristics for the four calibration lakes.

Hydrologic Residence

Lake Area (ha) Mean depth (m) Time (yr)* T (°C) DOC(mgL ") DIC(mgL"') TP(uglL™"
Crystal Bog Lake (CB) 0.5 1.7 1.7 10.7 9.3 2.0 19.8
Trout Bog Lake (TB) 1.1 5.6 5.6 10.1 21.0 3.8 389
Sparkling Lake (SP) 64.0 10.9 10 10.7 3.3 8.8 15.1
Trout Lake (TR) 1607.9 14.6 5 9.9 2.8 1.3 1.1

temperature.

doi:10.1371/journal.pone.0021884.t001

range of water quality and ecosystem applications, including an
ecosystem study in our region [47]. We chose a one-dimensional
model because the study lakes strongly stratify during summer,
leading to marked vertical gradients in the characteristics
important to DOC synthesis and degradation, such as light,
nutrient concentrations, and temperature. Further, our observa-
tional data are one-dimensional, based on profiles of a central
monitoring station, and the primary dynamic of interest was
seasonal rather than spatial change. DC was not designed to
model ice-covered lakes, so we limited our analyses to the open-
water season.

Meteorological and inflow data drive the model, beginning with
starting conditions in April based on observed limnological
profiles. Wind speed was measured by sensors mounted on a
buoy located in the deepest part of the lake. Irradiance, both short-
and long-wave, as well as precipitation, were measured at a nearby
(<5 km) weather station. Hydrologic residence times were from
previous studies or assumed to equal mean depth for the bog lakes,
CB and TB (Table 1). For lakes with no well-defined defined
surface flow, hydrologic residence time is closely related to mean
depth because annual inflow due to precipitation and groundwater
is about 1 m [48]. Lakes in this study have low productivity [42],
therefore, nutrient loads (nitrogen and phosphorus) were set to low
values. All inflows and loads were held constant through the
simulation. Although this simplifying assumption under-represents
natural time variability, it allows us to attribute DOC dynamics to
meteorology and internal lake processes. We approximated DOC
loads from previous modeling results [10], adjusting them slightly
to ensure near steady-state of DOC concentration in each
calibration lake through the simulation. Model output is displayed
at daily time-steps and aggregated to mean epilimnetic and mean
hypolimnetic values to allow for easy comparison with observa-
tional data. A number of parameters control physical and
chemical (Table S1), phytoplankton (Table S2), and zooplankton
(Table S3) processes in DC. In our study, nearly all parameters
were set to values from the literature and were assumed to be the
same for all lakes. To greatly simplify the phytoplankton dynamics
of the lakes, we modeled four phytoplankton functional groups,
assuming mid-range parameter values for growth, death, and
sedimentation. The model was calibrated to DOC and temper-
ature observational data by adjusting the aforementioned
parameters until predictions best matched observations. Visual
inspection of predictions and data was used to assess goodness of
fit. Data were not weighted by volume, unless otherwise specified.
We fit to mixing depth and timing of mixing to provide an
indication of the fit of the model for temperature and to verify
mixing dynamics were adequately captured, in common with
previous use of DC [47]. We also provide Spearman’s rank
correlation coefficient as a quantitative metric of fit.

@ PLoS ONE | www.plosone.org
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DOC, TP, and ANC are 2006 annual means integrated through the water column during the simulation period. T is hypsometrically weighted mean annual water

*Hydrologic residence time (yr) for SP and TR from Ackerman [48], and for CB and TB were assumed to equal mean depth (m).

Many of the results in this study are described as “fates™ of the
organic carbon input. Fate is defined as the sum total over the
simulation of DOC that has been mineralized or respired (R, all
forms of mineralization) or exported from the lake via water flow
(E). Because external DOC loads were adjusted to produce near
steady-state DOC in the lakes, we do not consider changes in
standing stock as a fate. Rather, we subtract any small changes in
standing stock from the loads and use that result as the total load,
which always equals the sum of respiration and export.

One focus of this study is to compare assumed rates of
respiration, with the actual total ecosystem respiration. The
assumed rate is represented by a first order decay parameter,
typically measured in laboratory experiments and standardized to
20°C,, and we label that rate R, (dfl). During simulations, Ry is
scaled in the model according to the general biogeochemical
temperature scaling function:

f(T)=6""% 2)
where 7 is the observed temperature in °C and 0 is 1.073, which
equates to a Q10 value of 2.0 when scaled according to the
exponent 7 with reference to 20°C. Because the model tracks
vertical temperature gradients, R, scaled to the ecosystem scale
will reflect the vertical temperature of the lake. The model also
tracks photo-oxidative losses, which can be added to mineraliza-
tion losses due to R. Thus, the effective daily respiration at the
ecosystem scale is the sum of all forms of DOC mineralization. In
this study, we calculate daily DOC mineralization simply through
changes in mass balance and term that ecosystem respiration (R
d™!). Our goal is not to study the form or parameterization of
equation 2, but rather how our choice of Ry, in balance with lake
characteristics, results in Rz Furthermore, we are interested in
how variations in Ry influence the fate of the DOC load as being
respired or exported from the ecosystem.

Scenarios

To test the effects of lake size, lake DOC state, and assumed
value of respiration (Rj on Ry and the fate of DOC loads, we
create simulations orthogonal in those characteristics. Figure 1
shows the 16 simulations that cover broad ranges in lake area and
DOC concentration. The shaded boxes indicate the actual areas
and mean DOC concentrations for the four calibration lakes. For
each of the 16 simulations, we tested three values of Ry 0.001,
0.005, and 0.010 d™'. Thus, the total number of simulations was
48. These values of R, are reasonably representative of the range
documented in the literature for laboratory DOC degradation
experiments. We give a more complete description of the literature
values of R, in the Discussion.
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