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‘Sensor networks are notoriously difficult to program, given that

they encompass the complexities of both distributed and embedded

systems.’

– David Chu [17]

‘The computer should be doing the hard work. That’s what it’s paid

to do, after all.’

–Larry Wall

‘Progress is made by lazy men looking for easier ways to do things.’

– Robert A. Heinlein





Abstract

This thesis proposes the use of traditional distributed operating system and

distributed systems techniques that are adapted and applied to the wireless

sensor network domain. These techniques are applied to the creation of a

wireless sensor network operating system that allows complex applications to

be created without special programmer knowledge of sensor network program-

ming or architecture. The resulting system is capable of executing a high level

user application written in conventional single-system-image form, without the

user being aware of the mesh architecture or underlying sensor node hardware.

A wireless sensor network is a collection of battery-powered embedded sys-

tems that communicate over low-bandwidth radio. Because of their limited

hardware, niche deployments and use of embedded processors, programming

techniques for wireless sensor network nodes are generally relatively esoteric

compared to most software programming tasks. This can be relatively com-

plex for programmers not familiar with the wireless sensor network domain.

A naive approach to writing a wireless sensor network application may well

result in considerably reduced battery life due to inefficient use of the limited

power resources, requiring an expensive and time-consuming replacement or

patching process.

As a result of this complexity, traditional wireless sensor network appli-

cations are written as simply as possible. The majority of these applications

simply move passive data readings back across a mesh to a more powerful

server. While this is a sufficiently effective approach in some situations, for

other sensor network deployments involving large amounts of complex data it

is more efficient for the sensor network application to process at least some of

the data inside the mesh[91], saving on unnecessary data transmissions. How-

ever in the real world, the complexity of writing such an application in many

cases precludes this from being created. An operating system that provides

power-efficient distributed processing while presenting a more standard unified

single system image to the application developer would provide new possibil-

ities for sensor network application developers in terms of creating dynamic

and complex sensor network applications.

This thesis covers the design decisions, development process and evalua-



vi

tion of the Hydra distributed wireless sensor network operating system, an

operating system that provides these services. The system is evaluated in the

form of a scenario for monitoring intruders over a large area using accelerom-

eter monitoring[95] – during this scenario, power efficiency is gained due to

the intelligent Hydra operating system services, as the resulting accelerome-

ter data is not moved across potentially multi-hop network links. Application

code complexity is also reduced due to the higher-level single system image

programming environment.
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Chapter 1

Introduction

‘Sensor networks are notoriously difficult to program, given that

they encompass the complexities of both distributed and embedded

systems.’

– David Chu (EECS, Berkeley) [17]

1.1 Computing trends: smaller and more nu-

merous

Since the heyday of mainframe computing in the 1980s and early 1990s[59],

computing hardware and software has increasingly trended towards increas-

ingly capable and numerous smaller devices rather than one large monolithic

system. While each individual smaller device may be less powerful in compu-

tation terms than larger devices, their low individual cost and flexibility, along

with increasing availability of network bandwidth, has ensured their popular-

ity.

This trend has been seen in the consumer electronics space with the availability

of affordable smartphones[25], laptops and the more recent arrival of niche

networked applications – for instance, smart home automation tools such as

Nest[62]. The advent of ‘cloud computing’[64] is moving heavy computation
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into a set of low cost, relatively interchangeable distributed servers, where a

task is broken down automatically and a number of servers are load-balanced

to solve the project cooperatively[5].

This trend is driven by increased efficiency in production of core computer

hardware components such as CPUs, solid state memory modules and radios.

Prices for these items have dropped dramatically in recent decades, allowing

cheap mass production of small efficient devices.

This growth in low cost computing has made possible a whole new class of

networked computer system – the ‘Wireless Sensor Network’.

1.2 Sensor networks

In 1998, the ‘Smart Dust’[72] project pioneered the concept that became the

modern wireless sensor network[2]. Supported by DARPA, The Smart Dust

project aimed to build a complete sensing and communication system in one

cubic millimeter[39]. The project was conceived to serve diverse applications

such as battlefield surveillance and monitoring, inventory management and

environmental sensing.

A more complete exploration of the history of sensor networks is included in

the ‘Wireless Sensor Networks Background’ chapter.

The legacy of the hardware that the Smart Dust project pioneered continues

to this day. While today’s typical wireless sensor nodes are generally larger

than the Smart Dust goal of one cubic milliliter, nodes are still much lower

powered than conventional smartphone or other mobile hardware platforms.

While a consumer-range[40] low-end-tier 2015 era mobile phone contains a

gigabyte or more of RAM and a radio capable of communicating at multi-

megabit speeds, a typical wireless sensor network node[46] contains only a
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Figure 1.1: A MSB430 Scatterweb sensor node

few kilobytes, a limited-capacity processor such as the TI MSP430[36] and

a radio that transmits orders of magnitudes slower than typical consumer

data connections. By limiting the hardware these nodes are able to be mass-

produced at relatively low prices.

A wireless sensor network is made up of many individual nodes. Historical

trends and future predictions show sensor network nodes staying at approxi-

mately the same amount of computing power per node, with decreasing per-

node manufacturing costs as manufacturing processes become more efficient.

As such, we can expect sensor network meshes to become both larger and more

common.

Below is an illustration of a typical sensor node – specifically the MSP430-

based Scatterweb[73] node. This node was chosen for the target hardware

platform due to its range of sensors, relatively low cost and wide availability,

and also because it was specifically made for teaching wireless sensor network

concepts. As such it is quite a flexible platform.

A more complete analysis of the MSP430 node and its specific hardware fea-

tures is contained in the ‘Implementation’ chapter, where the process of build-

ing the sensor network operating system for the Scatterweb platform is dis-
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cussed. However it should be noted that the node contains 8kbytes of RAM

and a micro-controller operating at 16 MHz, and is powered by a trio of AAA

batteries. This approximate hardware configuration is the typical wireless

sensor network node as addressed by this thesis.

1.3 Why are sensor networks important?

Sensor networks are one of the fastest growing areas in both research and

commercial development. Sensor networks have been used around the world

for many important tasks. Deployments range from just a few nodes to

thousands.[3]. A few sample deployments are outlined below, which cover

a range of node counts and tasks.

1. Meteorology and hydrology monitoring in Yosemite National Park, USA[56].

2. Tracking animals in the wild in Kenya[44].

3. Intrusion detection to certain geographical areas in Sweden[95].

4. Habitat monitoring of nesting birds on an island in Maine, USA[68]

5. Collecting temperature and movement information in modern buildings[74].

As can be seen from the uses above, sensor networks enable us to perform

large scale operations with data over a distributed geographic area. This was

much more difficult to accomplish before sensor networks became common,

requiring more resource-intensive data gathering techniques.

1.4 Traditional sensor network applications

‘Despite the significant effort made, successful deployments and

real-world applications of sensor networks are still scarce, labor-

intensive and often cumbersome to achieve’ [10]

Recent decades have seen order-of-magnitude improvements in hardware cost
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and efficiency. However the software programming techniques and applica-

tion tools used for building user applications for sensor networks have not

improved at the same rate[47]. Traditionally, large-scale reliable distributed

system programming is relatively complex. As such typical large distributed

data processing systems usually present an abstraction layer to the user, hid-

ing the complexity inherent in the distributed operations. A well-known ex-

ample of a ‘big data’ distributed processing system that takes this approach

is Apache Hadoop[34], which allows efficient distributed data set processing

across a computer cluster. It does this by exposing a simple programming

model that abstracts away the underlying hardware.

Distributed systems programming complexity is greatly magnified when com-

bined with the challenges inherent to low-memory, low-power embedded sys-

tems. As such, the difficulty of sensor network programming is a constrain-

ing factor in the widespread adoption of sensor networks and in many cases

has limited the complexity and capabilities of sensor network applications.

While many research and commercial projects have successfully approached

this problem by providing a user-friendly interface for reading data from a

sensor network, if an application is intended to be more complex than in-

voking simple data collection APIs then the system must be programmed

using various low-level programming techniques, where network transactions

and classic distributed systems problems must be handled manually and in a

power-efficient manner[47].

A popular low-level programming language for wireless sensor networks is Nes-

C[31], an extension to the C language that allows component-based event-

driven programming. Nes-C is the programming language used for application

development in the TinyOS[51] operating system, the most widely deployed

sensor network operating system. The combination of TinyOS and Nes-C is

extremely flexible, compact and power-efficient and as such has yielded consid-

erable success in both academia and commercial deployment scenarios in the
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last decade[52]. However for best results it requires an application program-

mer who is familiar with the sensor network domain and the Nes-C language.

Experience in other domains such as smartphone application development may

not be sufficient. As such the bar for sensor network application deployment

is relatively high, damaging the potential of sensor networks as a concept.

module RealMainP @safe ( ) {
provides i n t e r f a c e Boot ;
uses i n t e r f a c e Scheduler ;
uses i n t e r f a c e Init as PlatformInit ;
uses i n t e r f a c e Init as SoftwareInit ;

}
implementation {

i n t main ( ) @C ( ) @spontaneous ( ) {
atomic

{
platform_bootstrap ( ) ;

call Scheduler . init ( ) ;
call PlatformInit . init ( ) ;
whi l e ( call Scheduler . runNextTask ( ) ) ;
call SoftwareInit . init ( ) ;
whi l e ( call Scheduler . runNextTask ( ) ) ;
}

__nesc_enable_interrupt ( ) ;

signal Boot . booted ( ) ;

call Scheduler . taskLoop ( ) ;
r e turn −1;

}

de f au l t command error_t PlatformInit . init ( ) { r e turn SUCCESS ; }
de f au l t command error_t SoftwareInit . init ( ) { r e turn SUCCESS ; }
de f au l t event void Boot . booted ( ) { }

}

Figure 1.2: An example of Nes-C code

When programming sensor network applications, energy-efficiency is the most

overriding concern. A typical sensor network node uses a low-capacity battery

– in the case of the MSP430, three AAA cells. As such the power supplies

of sensor network nodes can be exhausted very quickly if care is not taken to

avoid this.

In addition to this, a number of other attributes are widely accepted as being

part of the core requirements of an effective complex wireless sensor network

programming model[1]. These requirements must therefore be part of any
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effective sensor network operating system. These additional attributes are:

• Efficiency – the system must make efficient use of the wireless sensor

network hardware resources, including the aforementioned battery re-

serve, but including RAM and flash memory (if available). Because of

the highly limited nature of the hardware, performance can easily suffer

under the impact of the communications.

• Scalability – the mesh as a whole must be able to scale to different

demands and node populations.

• Localization – the system needs to be capable of utilizing the resources

of the whole mesh, with the ability to spread application tasks across

the devices.

• Synchronization – Sensor nodes need to cooperate to send back data, if

only to avoid duplication, to keep various timers in sync and to perform

multi-hop networking where needed.

It is useful to evaluate a distributed sensor network operating system against

these requirements.

1.5 Distributed Systems

Distributed processing systems (such as the previously mentioned Hadoop)

exist to efficiently process data over multiple nodes. However several key

differences between this domain and wireless sensor networks exist:

• They are used for larger data loads – multiple terabytes of data is not

uncommon.

• They are utilized on much more powerful hardware than a typical wireless

sensor network node.

• Networking speeds are much higher, generally with physical fiber or Eth-

ernet links rather than low-bandwidth radios.
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• Energy is not a scarce resource.

• Individual nodes are not as important, as any node can (generally) pro-

cess any data load identically, and does not contribute its own unique

data. On sensor networks the choice of node can be more important, as

a node may have different sensor data or power reserves or requirements

based on its geographic location in the mesh.

However many of the techniques used for distributed processing can still be

used. More specifically, the more specific distributed operating system domain

(rather than generalized distributed processing) is useful in the design of a

wireless sensor network distributed operating system, as for efficiency and

simplicity it is desirable to do these operations on the operating system level

rather than as part of a user application.

1.5.1 Distributed Operating Systems

The concept of the distributed operating system first appeared in 1954, in

the description for a general purpose computing system called ‘DYSEAC[50].

This document contained the description of a peer to peer multi-computer

operating system, that would ‘coordinate the diverse activities of all the ex-

ternal devices into an effective ensemble operation. Several other distributed

operating systems were developed around this time. However, none achieved

widespread success[93].

Much more widespread distributed operating system research was done in the

1980s, with systems such as Amoeba[84] providing a general-purpose free dis-

tributed operating system. Interest waned in the 1990s as more powerful

hardware and increasingly complex software reduced the desire and ability to

use the distributed computational model. In more recent years, the availabil-

ity of inexpensive high-bandwidth connections has brought about the rise of

‘cloud computing - a movement back towards distributed systems, making use
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of hardware in remote data centers.

For more discussion of the history of the distributed operating system and mod-

ern distributed operating system design and implementation, see the ‘Back-

ground’ chapter.

A distributed operating system is defined as ‘the logical aggregation of oper-

ating system software over a collection of independent, networked, communi-

cating, and spatially disseminated computational nodes[83]. In other words,

a distributed operating system provides an abstraction layer that (from the

point of view of an application), a number of computers look like a single

computer. This abstraction greatly reduces the complexity of the applications

built on top of it, as they gain the distributed computation benefits without

incurring the complexity costs.

This abstraction is the core distributed operating system concept, often termed

‘macro-programming’[12]. In addition to this, a number of other attributes

are widely accepted as being part of the core requirements of an effective

distributed operating system[94][76]. These additional attributes are:

• Performance – the system must make efficient use of the distributed hard-

ware resources. Because of the highly distributed nature of the system,

performance can easily suffer under the impact of the communications.

• Reliable – the system must expect and correctly handle hardware errors.

Distributed hardware means that the chances of failure of one component

is much higher.

• Resource name resolution – a way of resolving hardware devices as needed.

• Resource management – the system needs to be capable of utilizing the

resources of the whole mesh. This is also referred to as ‘load sharing, as

the application tasks are spread across the devices.

• Process management – a typical distributed operating system manages

a set of processes.
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• Synchronization – Concurrent processes inherently need to cooperate,

and this must be done in a synchronized fashion to avoid errors and

deadlock.

• Flexibility – the operating system must be adaptable to a range of con-

ditions and deployments.

As an operating system must address all of these attributes in order to be

considered a true distributed operating system, they are key to the design of a

wireless sensor network distributed operating system. Many of these attributes

also overlap with the desired attributes of a wireless sensor network operating

system.

1.6 Towards a distributed wireless sensor net-

work operating system

At this point it is useful to consider what a middle ground between highly-

abstract data collection and low-level sensor device programming would consist

of – a system that provided enough of an abstraction layer to efficiently hide

the distributed computation tasks inherent in wireless sensor network program-

ming, yet was flexible enough to allow general-purpose computing for complex

applications, while simultaneously making efficient use of limited energy re-

serves.

This thesis seeks to discover if the distributed operating system paradigm

could be useful in building such a system, helping remove some of the user

application programming complexity on wireless sensor networks. By utilizing

a distributed operating system, the bulk of the complexity is removed from

the user applications and application developers can be presented a familiar

programming model using commonly deployed programming languages and

APIs, conceptually treating the entire sensor mesh as a single logical computer.
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1.7 Problem statement and scope

An examination of the following statement is presented in this dissertation:

‘By adapting distributed operating system techniques for the wire-

less sensor networks domain, wireless sensor network user appli-

cation programming complexity can be decreased. These applica-

tions can later be executed on a sensor network mesh in an energy-

efficient manner.’

To aid in this examination, a distributed operating system for wireless sensor

networks called ‘Hydra’ was designed, developed and evaluated. The exami-

nation of Hydra is addressed by discussing the following topics:

• Theoretical basis: For distributed operating systems on wireless sen-

sor networks to be useful, it is necessary that the techniques used be

applicable and adaptable to the sensor network domain, typical deploy-

ment tasks and characteristics of the data collected. This is investigated

by reviewing both current sensor network operating systems and deploy-

ments, and traditional distributed systems techniques in the Background

chapter. The specific techniques that are most useful from both domains

and the approach taken to create a distributed operating system based

on them are then identified in the Design chapter.

• Feasibility: Using distributed operating system methods on a sensor

network may be theoretically possible, but it needs to be demonstrated

that doing so is practical. The Implementation chapter discusses the

decisions made while creating the Hydra software, and any compromises

to the design that were required as a result of moving from a theoretical

design to a real-world development.

• Suitability: The Deployment chapter discusses the choice of a test sce-

nario. The test scenario is the main method of evaluating the effective-

ness of the wireless sensor network distributed operating system. As
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such it should be emblematic of a typical wireless sensor network task,

as outlined briefly in this chapter and in more depth in the Background

chapter.

• Evaluation: The Evaluation chapter discusses the results of the test

scenario, focusing on correctness, performance and scalability. The pre-

viously outlined criteria for attributes of efficient wireless sensor network

operating systems as well as distributed operating systems will also be

used to evaluate.

The conclusions to this thesis are presented in the Conclusion chapter. The

possibility of future work and improvements to the system is also discussed.

1.8 Availability

The Hydra implementation includes the features discussed in the design chap-

ters of this thesis, though at the time of writing it is not yet stable enough to

be deployed in production. The development code is available in the public

Subversion repository:

http://bieh.net/svn/hydra





Chapter 2

Distributed Operating Systems

‘ However, as every parent of a small child knows, converting a

large object into small fragments is considerably easier than the

reverse process... ’

– Andrew S. Tanenbaum, ‘Computer Networks’ 4th ed.

This chapter presents a discussion on existing distributed operating systems

and their design choices, with the intent of establishing the primary character-

istics of existing distributed operating systems. Once the characteristics of the

existing systems have been established, this knowledge is used in the later De-

sign chapter to evaluate how the two areas of sensor networks and distributed

operating systems can be combined above and beyond the existing work to be

applied to one or many of the common wireless sensor network use-cases.

Distributed operating systems and wireless sensor networks are two research

areas that have historically remained relatively separate, with limited overlap

between the two.

This thesis seeks to properly evaluate how effectively the distributed operating

system paradigm can be applied to wireless sensor networks. Therefore this

chapter first reviews the established research to:

• Define a distributed operating system, outlining typical hardware and
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deployment configurations.

• Identify the core attributes and historical context of the classic dis-

tributed operating system.

• Identify more recent trends in modern software implementation and de-

ployments that have applied these classic distributed operating systems

techniques to other areas.

2.1 What is a distributed operating system?

This thesis presents the design and evaluation of a distributed operating system

for a wireless sensor network. As such, the concept of a ‘distributed operating

system’ must first be defined.

A distributed operating system is ‘the logical aggregation of operating sys-

tem software over a collection of independent, networked, communicating, and

spatially disseminated computational nodes[83]. In other words, a distributed

operating system provides an abstraction layer that allows a number of com-

puters to look like a single computer.

This abstraction is the core distributed operating system concept. In addition

to this, a number of other attributes are widely accepted as being part of the

core feature set of a complete and effective distributed operating system[76].

These additional attributes are:

• Performance – whether the system makes efficient use of the distributed

hardware resources. Because of the highly distributed nature of the

system, performance can easily suffer under the impact of the communi-

cations.

• Reliable – whether the system expects and correctly handle hardware

errors. Distributed hardware means that the chances of failure of one

component is much higher.
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• Resource name resolution – whether the system provides a way of resolv-

ing hardware devices as needed.

• Resource management – whether the system is capable of utilizing the

resources of the whole mesh. This is also commonly referred to as ‘load

sharing, as the application tasks are spread across the devices.

• Process management – whether a set of processes can be handled, or if

the system allows only one task.

• Synchronization – as concurrently executing processes inherently need

to synchronize on some level (if only to share access to shared hardware

resources), this must be done in a coordinated fashion to avoid errors

and deadlock.

• Flexibility – whether the system is adaptable to a range of conditions

and user application requirements (ie: it should be generalisable to a

range of tasks).

An operating system implementation must address all of these attributes in

order to be considered a useful distributed operating system. Therefore they

are key to the design of a capable wireless sensor network distributed operating

system.

2.2 Classic distributed operating systems

As stated in the introduction, the concept of the distributed operating system

first appeared in 1954 as part of the description for a general purpose comput-

ing system called ‘DYSEAC[50]. This document contained the description of

a peer to peer multi-computer operating system, that would ‘coordinate the

diverse activities of all the external devices into an effective ensemble opera-

tion. Several other distributed operating systems were developed around this

time. However, none achieved widespread success[93].
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Much more widespread distributed operating system research was done in the

1980s, with systems such as Amoeba[84] that provided a general-purpose free

distributed operating system. Interest waned in the 1990s as more powerful

hardware and increasingly complex software reduced the desire and ability to

use the distributed computational model. In more later years, the availability

of inexpensive high-bandwidth connections brought about the rise of ‘cloud

computing – a movement back towards distributed systems, making use of

hardware in remote data centers. This trend is discussed later in this section.

The original pieces of computing hardware on which these early distributed

systems operated were extremely rudimentary in terms of processing capacity

and memory limitations – much like that of a modern wireless sensor network

node (as will be specified in more detail later in this section). As the creators

of these original distributed operating systems were still able to accomplish

complex distributed systems tasks despite these limitations, it suggests that

accomplishing similar tasks on sensor network nodes may be in principle pos-

sible despite the limited CPU and memory capacity of sensor node hardware.

2.2.1 Classical distributed operating system computa-

tional models

There are a number of main computational models that are used by distributed

operating systems. These computational models refer to the layout of nodes in

the distributed system, and the control flows between them. When designing a

sensor network distributed operating system, the computational model chosen

will be central to the design. Therefore it is paramount that we select the

correct model.

The primary computational models adopted by traditional distributed oper-

ating systems are the centralized, decentralized, and distributed[86][92]

models. Each model is outlined in turn.
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Figure 2.1: A centralized layout[92]

2.2.1.1 The centralized model

The centralized model has one master node, with all other nodes controlled

by the master. This is the simplest computational model. An example is

shown in Figure 2.1

Because there is one known master node, there is no need for complex decision-

making. This means that the primary advantage of this architecture is sim-

plicity – both in terms of development time and run-time overhead. However

the system can be adversely affected if the master node encounters a problem,

as it is a single point of failure. In addition to this, there may be considerable

network overhead caused by the need to move all network transmissions to

and from one central point, which may be far removed from where the trans-

missions originate. This may mean that the system is less efficient in terms

of power usage and memory overhead due to having to pass messages through

intermediate nodes, and the master node may exhaust its computational or
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Figure 2.2: A decentralized layout[92]

power resources quickly due to the increased load placed upon it.

2.2.1.2 The de-centralized model

The decentralized model is similar to the centralized one, but can exist in

layers - a master node of one layer can be a slave of a higher-level master node.

However, there is ultimately one node at the top of the hierarchy. An example

is shown in Figure 2.2.

The decentralized model tries to address one of the main failings of the simpler

master-node model – the requirement to move all messages to a single point.

This is accomplished by attempting to handle as much processing as possible

at lower levels in the hierarchy, which if successful will reduce overall network

load and individual node load on the nodes higher in the hierarchy. However,

this comes with a complexity cost, as knowledge of the node structure must

exist. Additionally, while there is still one single master node that can fail, the
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Figure 2.3: A distributed layout[92]

case of nodes lower in the hierarchy must be handled correctly as well, with

their responsibilities shifted as needed.

2.2.1.3 The distributed model

The distributed model has no hierarchy - nodes are connected in a peer-to-

peer mesh. This provides the most flexible layout, but is complex to manage.

An example is shown in Figure 2.3.

The peer to peer model is the most resilient in terms of protection against

failure and can be the fairest when it comes to spreading load over the mesh.

This makes it ideal for many sensor network applications, as these attributes

are often key to a successful real-world sensor network deployment. However,

constructing a distributed peer to peer mesh is complex. Nodes must often

maintain at least partial knowledge of the state of the mesh, and managing out

of date information is a complex problem. If care is not taken when designing
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and implementing the system, the positive benefits of a distributed layout can

be subsumed by the overhead caused by increased complexity.

2.2.2 Reliability

Ensuring the reliability of a distributed operating system is extremely impor-

tant. A large amount of research has been put into developing a number of

different reliability techniques for distributed systems and distributed oper-

ating systems in particular[89][87]. When designing a distributed operating

system for wireless sensor networks reliability will need to be a key considera-

tion, as real-world scenarios for sensor networks typically require a system that

can complete the task reliably. The following discussion outlines the existing

reliability techniques that can be applied to sensor networking.

In general, the process for ensuring reliability can be divided into two sections

– error detection and error handling.

2.2.2.1 Error detection

Error detection is the process of determining whether a particular system is in

an ‘error state. There are a number of techniques that can be used for this.

• Replication checks - a system can perform the same task simultaneously

in multiple locations, checking to make sure that all the results are con-

sistent. If an inconsistency is detected, then the system is in error.

• Timing - a system can make sure that a result is delivered inside a certain

time window. If a timeout occurs, the system is in error.

• Constraints - a system can make sure that the result is inside some

predetermined constraint window. If its outside, the system is in error.

• Background diagnostics - a system can perform run-time checking of any

processing that is occurring. The type and effectiveness of diagnostics
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that can be performed depend on the application.

Once an error state has been detected, the task of the system then becomes

error handling

2.2.2.2 Error handling

The goal of error handling is to restore the system to a ‘safe state, pre-error.

Two main techniques have been developed to perform this task.

• Rollback – the operations that brought the system into the error state

are applied in reverse order. This – assuming a deterministic system –

will cause the system to return to a safe state.

• Checkpointing – the system periodically is required to snapshot the entire

state of the system, allowing a previously valid state to be restored.

Once the system has been restored from the error state, normal functioning

can resume. The choice of the most appropriate reliability technique is heavily

dependent on the individual requirements of the distributed operating system

being developed – the type of environment it runs in, the types of tasks being

performed, and so on.

2.3 Distributed operating system concepts ap-

plied in modern cloud systems

In recent years, research and commercial interest in conventional full-featured

distributed operating systems has waned. This can be attributed to a number

of factors, primarily the rise of cheap, powerful computing hardware that made

it possible to consolidate large workloads on to one physical machine.

However variations on various concepts first developed in the distributed op-
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erating system domain are still in use today in more modern software systems.

These typically exist as platform or application layer services, rather than

working on the operating system level, and are primarily found in large-scale

server deployments to handle datasets with processing requirements too large

to efficiently be contained on one physical machine, or to move computation

off devices with comparatively fewer resources. These use-cases are expected

to continue to become more and more common over time[49] as mobile devices

such as smartphones become more widespread and more intelligent power us-

age techniques are required.

2.3.1 Automatic scaling

Various Platform As A Service (PAAS) providers allow automatic scaling of

application level code across multiple servers. This provides ‘the illusion of in-

finite computing resources available on demand’[6]. While of course in practice

the computing resources available are finite, this technique is useful as it al-

lows a level of transparent scaling to be achieved horizontally across relatively

cheap computational hardware.

PAAS providers such as Heroku[35] or Microsoft Azure[8] create multiple vir-

tual machines and use distributed operating system techniques to provide an

abstraction layer allowing user applications to be automatically shared, parti-

tioned and duplicated across multiple virtual machine instances. Higher level

systems such as Google App Engine[30] go even further, requiring that all ap-

plications be written to a specific framework to provide completely programmer-

transparent scaling.

At a lower level of abstraction, load balancing systems under Amazon Web

Services[7] can be configured to redistribute tasks to nodes most suited to

each task, based on some heuristic defined by the application. In this case the

application must be manually configured to receive tasks, which can lead to
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more efficient layout than a fully transparent method if sufficient care is taken

to define the heuristic and distribution strategies. However this means more

of the distributed systems burden is placed upon the application programmer.

2.3.2 Fault tolerance

Techniques developed as part of distributed operating system fault tolerance

systems are used in many commercial and open source data storage systems.

A common example of this is the ‘distributed database’, a database that is

under the control of a central database management system (DBMS) in which

storage devices are not all attached to a common CPU.[69]. These distributed

database systems use replication and error detection techniques common in

distributed operating systems to achieve consistency.

2.3.3 Conclusion

This chapter briefly summarizes the existing literature and research in the

distributed operating system domain. It outlines the existing design and im-

plementation strategies used in both fields.

The next chapter describes the wireless sensor network domain.





Chapter 3

Wireless Sensor Networks

‘Negotiating the design space for WSNs can be daunting even for

the experienced designer.’

–Wireless Sensor Networks: From Theory to Applications[42]

This chapter presents a discussion on an overview of existing wireless sensor

network programming operating systems and their respective programming

models.

In order for this thesis to evaluate how effectively the previously-established

distributed operating system paradigm can be applied to wireless sensor net-

works, it is necessary to first review the established research. This provides:

• A definition of a wireless sensor network, outlining typical hardware and

deployment configurations.

• An outline of the basic differing approaches in wireless sensor network

operating system design, examining the design choices made by the most

widely-deployed sensor network operating systems.

• An overview of the broad categories of sensor network deployment, iden-

tifying which type of sensor network software is typically deployed on

each deployment category.

Once the characteristics of the existing software systems and the fundamental
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different types of sensor network deployments have been established, this thesis

then provides the context to evaluate how the two areas of sensor networks and

distributed operating systems can be combined above and beyond the existing

work to be applied to one or many of the common wireless sensor network

use-cases.

3.1 Wireless sensor networks

Before developing a sensor network distributed operating system, it is useful

to survey the existing non-distributed operating systems that exist for sensor

network platforms. By examining the design choices of existing wireless sensor

network software platforms, this thesis seeks to identify the fundamental re-

quirements of sensor network operating systems to evaluate the Hydra sensor

network operating system in terms of these requirements. The decisions made

by these existing systems help inform the decisions made when designing a

new sensor network operating system, as many of the same requirements and

restrictions will apply to a new system, regardless of if it adapts distributed op-

erating systems techniques. This section primarily addresses traditional sensor

network operating systems rather than distributed systems specifically built

for sensor networks. Projects that provide some forms of distributed systems

services on sensor networks are covered in the next section.

Because wireless sensor networks are a relatively new area and one that has

significantly different requirements than most other areas of software devel-

opment, no standard paradigm for programming wireless sensor networks has

emerged. Many systems have been developed to run on wireless sensor nodes,

which can be divided into three categories.
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3.1.1 Single node operating systems

The first wireless sensor network applications were written to directly use

the embedded hardware, with no operating system abstraction. While this

approach makes efficient use of the limited hardware of the wireless sensor

nodes, it was not particularly efficient in terms of programmer time and energy.

Small operating systems have became popular, some designed specifically for

wireless sensor networks and some developed for generic embedded systems and

ported to sensor node hardware. While these operating systems are very simple

compared to more common OS’s such as Linux or Windows, they perform

roughly the same role - to provide the programmer with a simpler abstraction

than the underlying hardware, resulting in application software being easier

to write and maintain.

Applications written to run on all of these operating systems operate on a

single sensor node - the programmer must be aware of this, with interactions

with other devices explicitly specified in the design and implementation phases

of application development. This approach maps most closely to traditional

single-machine programming models for non-sensor network platforms, and as

such is often simpler for application software development.

3.1.1.1 Component-based programming model

TinyOS[51], was developed in 2000 and is currently the most widely used

operating system for wireless sensor networks[52]. TinyOS is a component

based operating system, written in a language called NesC. NesC is based on

the C programming language but with language and runtime extensions for

the type of programming required for TinyOS.

TinyOS is based on the concept of connecting various types of ‘components’

together, which provide abstractions for various operations such as reading
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from sensor devices or sending network packets. It is completely non-blocking

and event based. Any operation that takes longer than 200 milliseconds must

be implemented with callbacks. The TinyOS operating system does not pro-

vide any method of threading or the conventional process abstraction, which

can lead to added complexity when implementing longer running CPU inten-

sive tasks. However, several third-party extensions exist for adding lightweight

thread support to the OS[21]. It has also been extended to support run-time

reprogramming of sensor nodes, which allows for dynamically updating appli-

cation code[70].

Support for conventional tasks/processes with blocking execution contexts is a

long standing historical debate among wireless sensor networks operating sys-

tem researchers. If the operating system supports these, it makes application

programming significantly easier in many cases. However, this comes with

a memory, processing and power overhead compared to a pure event based

system, which is undesirable on hardware as constrained as wireless sensor

nodes.

3.1.1.2 Multiprocessing programming model

Despite this concern, several operating systems have been developed for wire-

less sensor networks that do provide various types of processes/tasks and block-

ing execution. The Contiki[22] operating system provides protothreads[23], a

lightweight threading abstraction that saves memory by not storing the execu-

tion context of each thread. MANTIS[11] is another operating system for wire-

less sensor networks that provides more traditional threads, with pre-emptive

multitasking and full context switching while still striving to maintain a small

memory footprint of less than 500 bytes of RAM. LiteOS[14] is a more recent

system built on similar principles.
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3.1.2 Virtual machines

Application virtual machines such as the Java Virtual Machine and the .NET

Common Language Runtime have long been popular on both conventional

consumer desktop and higher end server systems. They provide platform in-

dependence and program isolation. In recent years this technique has been

used in sensor node programming to assist with the problem of reprogramma-

bility - the ability to dynamically inject new program code into a sensor node

in order to deploy updates to existing code or entire new applications. Virtual

machines are a useful technique to provide this functionality as their bytecode

is more easily moved, modified and relocated at run-time than traditional na-

tive machine instructions. The bytecode is also typically smaller in size than

native code, increasing the efficiency of moving application code over the net-

work link.

Mate[53] is a stack-based virtual machine that interprets application-specific

bytecode - the virtual machine is designed for running a specific class of ap-

plications, which lets each bytecode instruction represent a relatively large

amount of functionality. This technique necessarily limits the flexibility of the

system, but lets the program be represented in a very small amount of virtual

machine code, which reduces power and storage requirements.

VMStar[48] is a framework for allowing easy creation of application specific

virtual machines similar to Mate.

Another use of virtual machines on wireless sensor networks is similar to the

use on more conventional platforms - hardware abstraction, providing a com-

mon platform to write to across multiple hardware devices. The ‘t-kernel’[32]

is a wireless sensor network operating system kernel implementing a virtual

machine that provides this feature. It also provides additional features that

are not provided by the underlying hardware such as memory protection and

virtual memory.



32

The Java Virtual Machine specification has been implemented on sensor net-

work hardware as an alternative to more limited virtual machine systems.

These implementations typically do not provide the entire Java stack, but still

allow use of some of the Java framework. Popular implementations include

Darjeeling[13] and SunSPOT[81][75].

These virtual machines are typically used to support execution using the single-

node operating system model.

3.1.3 Sensor network deployments

Sensor networks have a number of applications, the characteristics of which

inform the choice of application software and operating system design deployed

on the sensor network[79]. Though sensor networks are generally focused on

data collection, the type of data and the event patterns associated with the

data can vary widely between deployments.

Sensor network applications can be broadly categorized into two categories:

• ‘Static data, where nodes passively collect data periodically and return

them to a central hub for processing. Examples of these include tem-

perature monitoring, humidity monitoring, and other environmental at-

tribute monitoring systems.

• ‘Dynamic data, where nodes are waiting for a specific event to happen

to a node or group of nodes before processing it. Examples include road

traffic monitoring, intruder detection or landslide detection.

As a result of these different characteristics, a sensor network operating system

may perform better on one category of application over another. A useful

distributed sensor network operating system could adapt to either category –

existing work in the area has concentrated on dynamic reconfigurability for

existing sensor network systems on the application level[82].
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3.2 Existing distributed systems services on

sensor networks

Before beginning the Hydra project, a review of the existing literature was

conducted, searching for embedded operating systems that:

• provided the full distributed operating feature set as described previously

in this chapter

• operated on typical wireless sensor network hardware as described in

section 2.2

No wireless sensor network operating system that fulfilled these requirements

was found.

However, there are examples of operating systems that provide at least some

distributed system services for ‘wireless sensor platforms’. These generally

are designed to operate on hardware more similar to conventional desktop or

laptop systems than the considerably more restrained hardware environment

of most wireless sensor nodes. However they provide some valuable insights

into what is currently possible on at least superficially similar systems, and so

they are discussed here.

A useful technique when writing distributed applications is to have the ability

to perform operations on a number of nodes at once. This makes it simpler

to perform generic operations across the mesh. A number of systems provide

this abstraction.

This approach can make programming sensor network applications simpler as

less knowledge is needed about the underlying network and hardware. The

cost is less flexibility in writing complex applications as the details of the

lower-level system are not available.
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3.2.1 Group-level abstraction

The concept of a group-level abstraction in wireless sensor network program-

ming is to provide a method for dividing up the mesh of sensor nodes into

logical groups, then performing operations on those groups rather than on the

individual nodes. This technique hides the details of communication between

the nodes. It is useful for implementing various types of ‘localized algorithms’,

a term specifying operations where a sensor node is limited to interacting with

only the nodes in its group.

Various criteria can be used to allocate node groups. The most common

method is to use the physical location of the node - this works well to minimize

network hops in sensor networks given their wireless mesh topology. Another

method is to define the groups based on some other property of the node, such

as the type of sensors or the energy levels remaining in the node. Groups can

be static or dynamic, depending on configuration.

A well-known example of a system that allows this segmentation is FACTS[88],

which allowed researchers to perform in-network distributed event monitoring

and analysis using a hierarchical layer of nodes[95].

3.2.2 Network-level abstraction

The network-level abstraction concept treats the entire sensor network as one

abstract machine. There are two main approaches in this category - the

database abstraction and macro-programming.

Treating the sensor node as a database is a useful metaphor as sensor nodes

are often used to collect data. TinyDB[58] and Cougar[29] allow program-

mers to issue SQL-like queries over the sensor mesh, with intelligent caching,

query dissemination and data acquisition techniques to minimize the power

requirements of each query. The database abstraction is an intuitive interface
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to sensor nodes that is easy to use for simple data collection - a use case that

covers a large subset of sensor node applications. However, these queries tend

to be insufficient for implementing more complex systems.

Macroprogramming attempts to address this limitation by providing a more

flexible method of creating sensor node applications that work at the net-

work level. Regiment[63] is a functional programming language similar to

Haskell that is specifically designed for macroprogramming wireless sensor

networks. The functional language choice makes it easier for the compiler

to create the node-specific code that eventually runs on the individual sen-

sor devices. Kairos[33] is another similar system that provides an extension

to existing programming languages with ‘var@node’ syntax to allow shared

memory abstraction across nodes. This lets programs that run on individual

nodes to have limited access to hardware on other nodes. TrainSense[77] and

Net-Tree[91] are middleware systems which provide intelligent placement of

computation across the network based on heuristics such as power usage.

A challenge in the network-level abstraction is the problem of referring to

mesh resources. Spatial Programming[80] is a system that allows resources to

be referred to by their physical location - for example, ‘Hill1:microphone[0]’

for referring to the microphone sensor node on ‘Hill1’. This is a similar naming

problem to that faced by distributed operating systems.

The various forms of network-level abstraction, in a similar fashion to the

group-level abstraction, simplify the task of the application programmer. This

again comes at a price of flexibility - it is often difficult to implement complex

applications that run on the mesh using the network level abstraction, due to

limiting or cumbersome programming methods.
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3.2.3 Conclusion

This chapter briefly summarized the existing literature and research in the

wireless sensor network and distributed operating system domain. It outlined

the existing design and implementation strategies used in both fields.

The next chapter describes how the existing techniques and work in the wireless

sensor network and conventional distributed operating system fields can be

used to inform the design of a distributed operating system for sensor networks.

This operating system will provide the distributed operating system feature

set as outlined in section 2.1.2. This design is suitable for implementation on

sensor network hardware, as is outlined in chapter 4.





Chapter 4

Design

‘A distributed operating system is one that looks to its users like

an ordinary centralized operating system but runs on multiple, in-

dependent central processing units. This is easier said than done’

– Andrew Tanenbaum

This chapter presents an overview of the high level design decisions made when

architecting the Hydra distributed operating system. These design decisions

are informed by the requirements of providing distributed operating system

services while simultaneously providing useful functionality on a wireless sensor

network.

The implementation decisions made when implementing this system design are

discussed in the following chapter.

The effectiveness of the Hydra operating system as designed here is evaluated

against the deployment scenarios in the Evaluation chapter of this thesis.

4.0.1 Distributed Operating System

As discussed in the Distributed Operating Systems Background chapter, the

canonical definition of a ‘distributed operating system’ is an operating system
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that provides a certain set of services to user applications. The core goal of

this thesis is to investigate the practicality of distributed operating systems

on wireless sensor networks. As such, the distributed operating system needed

to be designed in such a way that it met the canonical distributed operating

system requirements.

A summary of these canonical services are as follows:

• Single system image – transparently merge spatially distributed hard-

ware so that it appears as one logical machine.

• Performance – the system must make efficient use of the hardware re-

sources.

• Reliable – the system must handle hardware errors in some fashion.

• Resource name resolution – a way of resolving hardware devices.

• Resource management – the system needs to be capable of utilizing the

resources of the whole mesh.

• Process management – a typical distributed operating system manages

a set of processes.

• Flexibility – must be adaptable to a range of conditions.

The decisions behind the design of the Hydra operating system were influenced

by the various strengths and weaknesses of similar design decisions made by

related projects. The primary projects used to compare these decisions were

the widely-deployed single-system wireless sensor network operating system

Contiki[22] and the research-focused distributed operating system Amoeba[84].

General background material on these systems can be found in the appropriate

Background chapters of this thesis.

In order to be an effective wireless sensor network operating system, the design

of Hydra was also informed by the requirements of typical real-world wireless

sensor network scenarios. Two scenarios were selected for this, based on previ-

ously published material – event detection, specifically a motion-detecting fence
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security system[95] implemented at Freie Universitt[15] in Berlin and livestock

monitoring, envisaged here is primarily position and behavioural tracking, sim-

ilar to the requirements of ZebraNet[44], a tracking system for herds of Zebra at

the Mpala Research Centre[16] in Kenya. This deployment is broadly similar

to many other livestock tracking deployments[60][4][54].

These two scenarios of event detection and livestock monitoring differ in several

important ways, which made them good test cases for evaluation:

• Mobility – static node placement versus a mix of static and dynamic

moving nodes.

• Data – unpredictable ‘alarm’ events versus periodic data reporting.

• Node failure – low expected node failure rate of static nodes on a security

barrier versus higher potential failure rates when attached to livestock.

The design of Hydra as presented in this chapter provides a workable wireless

sensor network solution for these scenarios. Additionally the design incorpo-

rates the previous mentioned list of distributed operating system requirements.

This chapter presents the design of the Hydra system in terms of the list of

distributed operating system requirements. Each requirement is evaluated to

ascertain how it can be designed to fit the wireless sensor network domain.

The Hydra operating system is evaluated against the deployment scenarios in

the Evaluation chapter of this thesis.

4.1 Single system image

Typical wireless sensor network operating systems like Contiki have largely

been based on the single-node model, where code executes on one node at a

time, and network operations must be explicitly defined.

However, as established in the Distributed Operating System Background
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chapter, distributed operating systems such as Hydra must present a collec-

tion of independent nodes as a single logical system. In a distributed operating

system network communications are performed to link the individual nodes on

a low level, under an abstraction layer that hides the communications.

A useful way of implementing a single system image is by pooling a set of

independent computing devices together and executing native user code on

the next available processor. In this architecture processes run on exactly one

workstation, with the operating system managing load balancing to keep the

distributed execution invisible to the user. Process migration can optionally

be supported. The Amoeba distributed operating system is an example of a

distributed operating system that provides a single system image service in this

way. This design was evaluated for use in Hydra, but unfortunately was not

suitable for the wireless sensor network domain when larger user applications

were required – owing to the limited resources of a typical wireless sensor

network node, it is likely that a complex application will not fit on a single

sensor network node.

While it is possible to implement a wireless sensor network distributed operat-

ing system using this technique – where a program exists entirely on one node

and simply makes remote requests to any other hardware resources it needs

– it was desirable when designing Hydra to support finer-grained partitioning

of user applications into smaller objects. This design meant that application

code and run-time memory was not constrained to exist entirely on one node,

allowing more efficient use of the resources available across the sensor mesh.

The finer granularity made much more efficient power optimization possible

and, at the same time, reduced the amount of program data that will be sent

as the individual code objects will be smaller than the entire application. The

Hydra design as presented in this chapter provides these services as part of

the operating system layer.

To implement the single system image abstraction requirement, Hydra was
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designed to execute user code on a distributed virtual machine, as opposed to

more conventional native machine code instructions. The use of a high-level

virtual machine allowed user applications to be more easily split up and dis-

tributed at run-time – bytecode instructions could be transparently redirected

to perform distributed networked operations as necessary. These program

fragments could also be moved between nodes dynamically at runtime. This

allowed the virtual machine to treat an entire mesh of sensor nodes (or other

compatible devices) as one logical machine. In this way, the single system

image goal was achieved as required by the distributed operating system re-

quirements.

Implementing these techniques on the operating system level allowed a Hydra

sensor network application developer to design complex applications easily,

without being aware of the details of the underlying network communications.

Communication with multiple remote nodes is typically a requirement of any

distributed application, especially with low-level sensor network programming

techniques – under a distributed operating system design like the above, this

burden is removed from the application programmer.

When implementing an application in practice, the complexity of the applica-

tion code is decreased as a result of these operating system services. Pseudo-

code for a fence monitoring scenario as previously discussed would be as simple

as:

f o r a in accelerometers :
i f get_activity_amount ( a ) > THRESHOLD :

sound_alarm ( )

Figure 4.1: Psudeo-code for a fence monitoring application
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And for monitoring positions of a herd of livestock:

f o r g in gps_devices :
i f is_outside_geofence ( g ) :

sound_alarm ( )

Figure 4.2: Pseudo-code for livestock geofencing

In both situations the dynamic nature of the code relocation as designed

worked to help optimize for power usage, moving code fragments to the places

they are most efficient.

4.1.1 Virtual Machines

Operating systems such as Contiki and Amoeba both concentrate on running

native machine code, usually a dialect of ahead-of-time compiled C or assem-

bly. This is the most efficient method of executing user code, but the low

level of abstraction from the hardware inherent in machine code means there

are limitations in how the code can be manipulated at runtime, especially in

regards to dynamically partitioning and moving code across different physical

hardware devices and platforms as required by the Hydra design.

As such, the Hydra system runs user applications under a virtual machine.

Virtual machine bytecode is typically hardware-agnostic – the same bytecode

can be portably executed under many different environments. This allows vir-

tual machine bytecode to be moved easily between computation nodes, which

is a key goal of our wireless sensor network distributed operating system.

Virtual machines can also optimize and further compile the bytecode into the

machine code for the specific execution platform – a task commonly performed

by Just In Time compilers. JIT-compiled code usually offers significantly bet-

ter performance than interpreted code, as well as potentially allowing better

performance than traditional static compilation, as many optimizations are
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only feasible at run-time.

Because wireless sensor networks are a relatively new area and one that has

significantly different requirements than most other areas of software develop-

ment, no standard paradigm for programming wireless sensor network virtual

machines has emerged. While there are a large number of virtual machine

implementations, most are tightly bound to their particular esoteric bytecode

format or research focus. Therefore it was necessary to either adapt a compar-

atively niche and unknown virtual machine standard from an existing wireless

sensor network project, construct a new virtual machine technology (and asso-

ciated toolchain) from scratch, or adapt an existing system design from outside

the sensor network domain, implementing parts of the system on sensor net-

works as required.

Because the goal of this thesis is to develop a new distributed operating sys-

tem – not to develop a new virtual machine technology – the latter option was

selected in order to reuse as much existing technology as possible. User ap-

plications in the Hydra distributed operating system were programmed using

Java.

4.1.1.1 Adapting Java to WSNs

Java and the JVM has a reputation as being slow and memory-hungry, which

does not naturally translate to being a good fit for the wireless sensor network

domain. However, much of this is due to the standard library that the Java

stack typically provides. The full Java standard library is not feasible to

support on a sensor network – the GNU Classpath[18] implementation of this

standard library includes nearly 4000 base classes, many of which would be

superfluous and unnecessary on a sensor mesh. A subset of the standard library

was selected for support, the design of which allowed for extension with further

library support as necessary.
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The use of the core Java language means that many of the programming con-

structs, APIs and development tools that are commonly used in desktop or

server development can now be utilized on sensor networks. Java is also famil-

iar to a large number of developers outside of the sensor network domain. In

addition, because Hydra and the Hydra toolchain targeted the Java bytecode

specification, rather than the Java language itself, any language that compiled

to Java bytecode can be used. At the time of writing, over 60 languages[65] ex-

ist that target Java Virtual Machine bytecode as a compilation target, includ-

ing Python[45], Ruby[26], PHP[66] and Javascript[67]. In real-world scenar-

ios, implementing user code algorithms in a higher-level language is preferable,

given that these systems may be implemented by users who are not primarily

wireless sensor network developers.

Java has been used in the past to run application code on wireless sensor

networks for both research[55] and industry[81] projects – while the focus of

this thesis is not on implementing a low-power JVM specifically, many of the

techniques from these other projects are applicable here too.

While bytecode interpretation will consume more energy from the wireless

sensor network node on a per-instruction basis compared to native assembly

or compiled C code, the flexibility provided by running higher level bytecode

allows for the more advanced distributed operating system features to be per-

formed. This can lead to a net decrease in overall power usage across the

mesh.

4.1.2 Single System Image with Java

A standard Java program can be thought of as a collection of objects, where

each object contains a number of bytecode methods and/or references to other

objects. Hydra was designed to execute a micro Java Virtual Machine on each

node as the only native code user service. Each virtual machine can contain
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a number of Java Objects. When the Java bytecode for an object method

requires an operation on another object, the operation is invoked by Hydra

either locally or remotely, conceptually similar to a standard Java remote

method invocation or Ameoeba Remote Procedure Call (RPC). This remote

object invocation was designed to be transparent to the programmer.

4.2 Performance / Efficiency

It is generally a goal of operating systems to make efficient use of the limited

hardware resources available to them. This is especially true when designing

an operating system for sensor networks, as the hardware resources are more

limited than is typical. Because a typical wireless sensor node runs on low-

capacity batteries and replacing those batteries in the field is often inconvenient

or impossible, energy efficiency is a primary concern of sensor network devel-

opers. Therefore the Hydra design as described here incorporates a number of

features in order to achieve power efficiency when implemented.

Typical distributed operating systems such as Amoeba does not have power

usage minimization as an explicit goal, as they are targeted at workstation

or server hardware that is connected to a reliable power source. However the

distributed processing / load balancing model it employs helps to make efficient

use of the hardware resources available to it, indirectly reducing overall power

usage.

Contiki provides a single-node threading model called ‘protothreads’[24] to

allow for low-power execution.

Protothreads is a programming model ... that combines the advan-

tages of event-driven (sometimes also called state machine) pro-

gramming and threaded programming. The main advantage of

the event-driven model is efficiency, both speed and memory us-

age. The main advantage of the threaded model is algorithm clar-
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ity. Protothreads gives you both. A protothread is an extremely

lightweight thread. As with event-driven programming, there is a

single stack; but like threaded programming, a function can (at

least conceptually) block.[37]

This hybrid approach is adapted for use in the Hydra execution model. Hydra

is designed to provide support for both event callbacks and longer-running

code. When executing either pattern in a distributed fashion while maintaining

a single system image model, the largest challenge is to minimize network

communication. The primary energy consumer on a sensor network node is

the radio – the vast majority of energy expended by a sensor node is used on

network communications. Therefore reducing network communication leads

directly to a reduction in overall power usage.

4.2.1 Minimizing network communication in Hydra

Network communication power usage is potentially one of the most serious

obstacles for a wireless sensor network distributed operating system, as net-

work communications are by necessity common in the coordination of spatially

distributed components and radios are by far the most power-intensive compo-

nent in a typical sensor node. To address this obstacle, the Hydra system was

designed to make use of the object partitioning service provided by the Hydra

virtual machine – in particular the capacity for dynamic movement of objects.

As part of object migration, the total data consumed by each object to a re-

mote node is recorded. The amount of data used by each object is periodically

tallied and the object is dynamically migrated to another location in the mesh

when appropriate. As a result, objects that communicated frequently tended

to migrate to become ‘closer’ to each other. The goal of object migration then

becomes to reduce the amount of network traffic, as a result decreasing the

power requirements of the application as a whole.
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An important requirement to ensure efficiency is to determine the optimal

layout of program objects. The Hydra design provided a number of algorithms

for determining the placement decisions of objects. Most of these algorithms

operate on a per-node basis – they do not attempt to maintain knowledge about

the entire mesh. This means that the memory and processing requirements

for these node-local algorithms are reduced. This can be contrasted with the

Amoeba approach, where complete knowledge of the load on each node is

known by a single master dispatcher.

The Hydra virtual machine design defined a timeslice in which it tracks the

data transmitted by each object to any remote nodes that it interacts with.

This can result from many types of interactions – for example remote reads,

remote writes, and remote method invocations. At the end of each timeslice,

the Java Virtual Machine provided this data to the placement algorithm.

The placement algorithm then calculates the savings if the object was in a

different location in the mesh. If the potential savings were over a threshold

calculated from the estimated cost of moving the object, the system moves

the object to appropriate node. This provides an estimate of what would have

happened if the object had been moved in the last timeslice, and is used to

predict its power usage in the future.

It was important that the layout algorithms be able to perform efficiently in

varied scenarios. In the livestock deployment scenario, nodes are attached

to animals and can move unpredictably. As such the inputs to the layout

algorithm will change over time. In the intruder detection scenario, node

placement is static, and thus inputs will remain more stable.

The basic operation of a generic layout algorithm is shown in Figure 4.3.
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Figure 4.3: A layout algorithm in operation
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Hydra was designed with an internal interface for plugging in layout algo-

rithms, although only one is used at a time. No single algorithm is suitable

for every situation, so the choice is user-configurable. A number of layout

algorithms have been developed, with the most useful described below:

4.2.1.1 Layout algorithm #1: ‘None’

This was a null implementation that simply leaves all program objects in their

original positions, never moving. This was useful for when the programmer

wishes to place objects manually, overriding the automatic placement.

4.2.1.2 Layout algorithm #2: ‘Simple’

This monitored the communications an object has with other nodes. Each

timestep, the object was moved to the node with the most bandwidth usage.

4.2.1.3 Layout algorithm #3: ‘Better’

This was a heuristic algorithm that attempts to find an intelligent placement,

based on the individual nodes knowledge of the mesh. It attempted to approx-

imate knowledge of the mesh by monitoring interactions with other nodes, and

the status metadata attached to some network messages.

The inputs to the heuristic were:

• The number of objects on a node, either explicit or estimated through

object movement updates

• Node RAM remaining

• Node power

Not all of these inputs were necessary at all times, and could be disabled or

weighted differently with configuration settings as the scenario dictates.
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4.2.1.4 Layout algorithm #4: ‘Perfect’

This algorithm required full knowledge of the mesh layout. This is available

under the simulation environment, or by doing periodic full-mesh updates of

status whenever a change occurs. This causes considerable traffic. However, it

produces the most optimal placement (based on the previous timestep), and

is useful for benchmarking and evaluation purposes, as well as where power

usage is less of a concern than traffic efficiency.

4.3 Reliability

All operating systems have reliability as one of their key goals. However the

approaches taken towards ensuring reliability differ between operating systems.

Single node operating systems like Contiki concentrate on restoring and man-

aging software errors, as well as explicit notifications for gradual hardware

failure like power loss. The loss of one node will typically result in the loss

of all computation being performed on that node, unless the user application

was specifically built to avoid such failures.

Distributed operating systems like Ameoba or Hydra are more susceptible to

general reliability problems than conventional single-system operating systems,

as the more complex mesh of connected hardware is statistically more prone to

failure in individual components. Errors in a hardware device that is connected

to the distributed operating system must be handled in a way that limits the

impact on the system as a whole. Ideally the user applications would not

be aware of the failure. While Ameoba itself is not fault-tolerant[85], some

extensions to it have provided fault-tolerance services[20].

When designing Hydra, it must be recognized that the potential for hardware

failure is exacerbated in wireless sensor networks as the hardware is relatively
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failure-prone compared to conventional server or desktop systems, thanks to

less robust hardware and limited energy reserves.

The design of a fault-tolerant system is informed by the types of hardware

failure and their consequences. There are two main classes of hardware failure

in sensor networks.

• Immediate – the hardware suffers an unexpected and sudden failure, such

as being crushed by livestock or an intruder. In this case there is no way

to anticipate the failure.

• Gradual – the hardware deteriorates over time, usually because of de-

pleting energy reserves or cumulative hardware wear. At a certain point

it can be determined that the node should transition into a failure state

and disable itself gracefully.

In many sensor network deployments (where nodes simply pass raw sensor data

back to a central collection point), the loss of a number of individual nodes

may not be of a large concern. As long as sufficient sensor nodes continue to

operate, the sensor mesh as a whole will continue to operate, although possibly

with decreased efficiency and possibly network re-routing overhead as the mesh

adapts to the damage.

However the distributed operating system techniques employed by Hydra in-

creased the importance of individual nodes. Because objects were stored on

individual nodes, the loss of a node meant the loss of those objects. In almost

all cases, the loss of an object means the application failed to operate as ex-

pected. If the object that is lost was a currently executing object, then without

robust reliability mechanisms, the application will be effectively terminated.

As such it was necessary to design the sensor network operating system such

that applications can be protected from hardware failure. The reliability sys-

tem must – without requiring explicit support on the part of the user applica-

tion developer – provide these services:
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• Provide protection from gradual failure

• Provide protection from immediate failure

• Be transparent – where possible the user application should not be aware

of the failure of the underlying hardware.

• Be robust – in the event of hardware failure, the system as a whole must

continue executing the user application without changes

• Be efficient – require as small amount of additional resources as possible

One possible solution for this issue would be to use hardware redundancy – that

is, to run multiple sensors at once to perform the task. Supporting this would

be a useful addition to Hydra. However the shared/single-system execution

model makes this complicated to support both transparently and efficiently

without explicit user-level multi-processing support.

Hydra implements a checkpointing system to accomplish the desired reliability

goals.

4.3.1 Checkpointing

Checkpointing is a widely deployed reliability technique that involves taking

periodic snapshots (or ‘checkpoints’) of the current system state. When a fault

is detected, the objects from the anomalous node are restored to the state that

they were in when the last checkpoint was taken. Checkpoints are stored in

such a way that they are not damaged by the loss of a node.

This approach has several advantages:

• Conceptual simplicity – because Hydra controlled the entire virtual ma-

chine, it is relatively straight forward to extract the entire state. Check-

points are done per-node, not per-object, allowing a compact represen-

tation of an entire nodes state in a single checkpoint.

• Efficiency – when compared to other reliability techniques such as ‘hot
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standby’, checkpointing can be more efficient in terms of overall CPU

and power usage. Only one node executes a thread at a time, other

nodes simply manage checkpoint states.

However, there are several inherent challenges to checkpointing, especially in

a wireless sensor network environment:

• Storage requirements – because wireless sensor network nodes have such

limited storage, the additional operational overhead of maintaining check-

point data is problematic

• Checkpoint location – most of the failures of wireless sensor network

nodes are due to hardware failure on the individual node. This means

that a node cannot store its own checkpoints, as the checkpoints would

likely be lost or otherwise become inaccessible due to the hardware fail-

ure.

• Lost operations – if an object performs operations and then fails be-

fore those operations have been checkpointed, its actions since the last

checkpoint will be lost.

A viable wireless sensor network distributed operating system needs to imple-

ment a checkpointing system that correctly handles these challenges.

Storage requirements as well as the transmission overhead are reduced by

only checkpointing the differences between the current state and the state at

the last checkpoint. This is accomplished with minimal overhead – objects

have an internal flag that indicates if they have changed. On checkpoint, only

the ‘changed’ objects are transmitted and the flag is reset for all objects. When

the checkpoint update is received, the diff is applied to the saved state.

Checkpoint location is difficult, as the optimal checkpoint placement de-

pends on the nature of the application and the likely failure states. In some

applications, failure of a node is often accompanied by the failure of nodes

that are physically nearby. For example, an application that monitors road
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traffic using a number of tightly clustered sensor nodes could lose an entire

geographic cluster in the event of a traffic accident. In this case the correct

strategy is to place checkpoints as far from the original node as possible. How-

ever, in applications where this is not an issue, it is advantageous to locate

checkpoints as close to the original node as possible to minimize the number

of hops required to transfer the data and to ease restoration. The strategy

used by Hydra is configurable on a per-application basis, allowing the user to

pick whichever they feel most appropriate.

Lost operations are encountered when an object performs operations – ex-

ecuting code, remote function calls, etc – but then fails before the results of

these operations can be checkpointed. The system needs to be capable of

handling this correctly, without loss of data.

In order to prevent this, operations are cached until they are successfully check-

pointed. In this way, any node can be lost, and the system can recover. This

occurs without impacting the user application.

In real-world usage scenarios, hardware failure will likely still require replace-

ment hardware to be deployed – for example, an animal with a defective tracker

node will fail to be tracked, and a fence section with a defective monitoring

node will fail to raise the alarm. However the rest of the system should go on

unchanged in either scenario.

4.4 Resource name resolution

Naming is a common problem in distributed operating system design. Re-

sources are spread across multiple different nodes and a naming scheme is

used to allow user applications to refer to the resources that they need. Hy-

dra uses a very simple naming system to remove the overhead of potentially

slow name lookups. This naming scheme was implemented specifically for Hy-
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dra based on the constraints of the project and the range of likely hardware

availability for testing.

• Node IDs – sensor nodes are assigned a unique numeric identifier, con-

ceptually similar to the MAC address on conventional network interface

cards. Node IDs are assigned statically and sequentially. This numbering

system allows for simple identification and discovery of nodes.

• Sensor IDs – individual sensor objects on nodes are assigned numeric

sensor IDs, that correspond to the type of sensor that is being accessed.

At runtime, constant strings can be used.

• Object IDs – individual virtual machine objects have a unique numerical

identifier, although this is not visible to user applications. It is used

internally in the virtual machine.

The combination of these two systems means that any individual sensor device

can be uniquely identified and discovered with two numbers – the node ID and

sensor type. It is to be noted that this approach limits the system from fully

utilizing sensor nodes with two of the same type of sensor attached. It would

be a relatively minor change to extend the naming system to allow this.

It should be noted that while this approach is not sufficiently secure to be

deployed in a potentially malicious environment, it is sufficient for the current

research purposes.

4.5 Resource Management

Distributed operating systems need to make effective use of the limited hard-

ware resources. This is especially true in the sensor network domain, where

resources are so limited. An important aspect of this is to load share resources,

making the best use of the cumulative resources available across the mesh.
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Ameoba accomplishes this by use of the ‘process descriptor’, which defines the

hardware environment that a process requires.

The key element of Amoeba’s process management mechanisms is

the process descriptor. It is a portable structure that [in part] ...

describes the properties of the host on which the process may run

(e.g., CPU architecture, memory availability, etc.). A process can

only run on a host that has the properties matching those in its

process descriptor. [20]

Using these requirements as well as existing knowledge about the load on each

node, the Amoeba kernel will identify nodes that fit the execution criteria for

a particular process and execute the system on that hardware node.

While this technique is simple and works efficiently to distribute whole-process

machine code across potentially different platforms, Hydra has a different set

of challenges. Because of the virtual machine, we can safely assume that

all nodes can at least execute the code. However they may not be able to

execute the entire program at once – there may not be sufficient memory or

energy resources on the node to accomplish this. Therefore it is useful to have

relatively sophisticated techniques to manage resources, which can allocate

resources on the Object level, rather than the entire process.

Hydra uses two primary techniques to manage resources.

4.5.1 Intelligent object location

When a new object is created, the selection of the node to create it on is

important. It can be assumed that the new object will be utilized in some

way by the creator, so to avoid network overhead, ideally the object will be

placed on the node the creation request originates from. However, this may

not always be possible – for example, the object may not have sufficient RAM.

If this is the case, a number of attributes are considered to find a placement
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for the new object. Nodes are ranked on these attributes, which include (in

order of importance)

• Power remaining (excluding nodes with a low-power warning)

• Number of network hops from the originating node

• Free memory

• CPU capacity

Once a node is selected, a remote creation request is sent and the object ID is

returned.

4.5.2 Paging

Paging is a technique that is widely used on conventional desktop and server

operating systems. It refers to the ability of these systems to dynamically

and transparently use hard disk storage instead of RAM when more working

memory is required than the amount of physical RAM in the machine. Memory

that has not been accessed recently can be ‘paged’ to disk when free physical

memory becomes low. This technique is accomplished by using the Memory

Management Unit (MMU) present in the CPU of these machines to intercept

reads and write operations. These operations are then performed on hard disk

storage instead of RAM.

While hard disk operations are much slower than RAM operations, this al-

lows operating systems to continue to operate even when physical memory is

exhausted.

Hydra has a similar capability. While there is no MMU on a conventional

sensor node, because Hydra operates as a virtual machine, the same type of

operation is possible. Hydra can page objects in and out of mass storage as

necessary, allowing many more objects to be created at runtime than con-

ventional RAM limitations allow. This allows Hydra applications to operate
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without concern of overloading memory limitations on individual nodes – al-

lowing the creation of more complex systems.

4.6 Process Management

Hydra was designed to support a single-process model – only one user appli-

cation can be executing simultaneously.

Traditional operating systems provide support for multiple user processes run-

ning simulataneously. However, a single user process is usually sufficient for

sensor networks, which tend to concentrate on one task. It is typically un-

likely on sensor networks that multiple indpendent applications are required –

if multiple tasks are needed, they can be modules of the same application.

However it should be noted that the Contiki sensor network operating system

allows multiple processes, so it may be useful to extend Hydra to provide

similar functionality in future. The fundemental design of the Hydra system

does not preclude this from taking place – it would just require some more

complicated user-side library support.

4.7 Flexibility

An important goal of any operating system is flexibility. The system must

be able to perform a number of varied tasks on a variety of hardware con-

figurations. Hydra accomplishes programming flexibility through its use of a

general purpose bytecode language (compiled from the general purpose Java

language). Another aspect of flexibility is that of hardware configuration flex-

ibility. In the sensor network domain, it is often necessary to add and remove

sensor hardware at runtime. Hydra supports dynamic addition and removal of

sensor nodes – additional nodes can be added simply by powering them on and
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letting them broadcast an initial message to the mesh. Nodes can be removed

simply by switching them off and letting the reliability system perform any

necessary cleanup.

This flexibility of platform independence allows for hybrid approaches to sen-

sor network hardware when deploying Hydra–for example, a sensor network

that required mass storage as part of its application could associate with a

Linux-based Java Virtual Machine that allowed use of its hard drive. The

combination of the object migration system and the virtual machine abstrac-

tion layer allows a hybrid approach to sensor node hardware. Hydra virtual

machines running on platforms with more resources accept more objects. In

a deployment, this can be used to allow a set of simple embedded sensors to

be supplemented with a small number of more powerful Linux-based base sta-

tions. In another scenario, a variety of hardware models of sensor nodes can

belong to the same mesh. As long as they have some method of communica-

tion, the hardware abstraction given by the Java Virtual Machine means that

they can share data and code seamlessly.

4.8 Design finalization

This chapter outlines the design of the Hydra wireless sensor network dis-

tributed operating system. The following chapter discusses the next stage in

the process – implementing the design.





Chapter 5

Implementation

‘The goal of Computer Science is to build something that will last

at least until we’ve finished building it.’

– Anonymous

The previous chapter outlined the design decisions and requirements of the

wireless sensor network distributed operating system. This chapter describes

the implementation of that design.

The core goal of this thesis is to investigate the practicality of distributed op-

erating systems on wireless sensor networks. As such, it is useful to discuss the

challenges and techniques used to implement the design outlined in the pre-

vious chapter, as the distributed operating system needed to be implemented

in such a way that it met the design specifications and yet was also compact

enough to fit in the space available on a typical wireless sensor node.

The primary hardware platform targeted was the Scatterweb wireless sensor

network node[73].
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Figure 5.1: A MSB430 Scatterweb sensor node

5.1 Scatterweb

The Scatterweb sensor network platform was developed at the University of

Berlin, and consists of a modular wireless sensor network board and a soft-

ware middleware package designed for the hardware. Hydra makes use of the

Scatterweb hardware platform, with some of the underlying driver software

adapted from the Scatterweb middleware. Specifically we use the ‘Modular

Sensor Board 430’ node, which was developed in 2005[73].

The Scatterweb platform was targeted for several reasons:

• It has been used as the basis for a number of research projects, both

hardware and software-based[61][28][9][71]

• It is extensible, consisting of a number of boards that can be customized

as necessary, so it is flexible for multiple deployment scenarios

• Out of the box, it consists of a number of embedded useful sensor devices

(see below for details)

• The software and compiler build-chain is well documented and sup-

ported.

• It is otherwise a ‘typical’ sensor node platform, with constrained CPU

and RAM and a conventional radio with power supply.
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The specifications of the MSB430 Scatterweb sensor nodes are:

• A MSP430F1612 CPU, operating at 8mhz

• 5 kilobytes of RAM

• 55 kilobytes of flashable ROM

• A CC1020 radio, operating on 402-470 MHz / 804-940 MHz, at a maxi-

mum data rate of 153.6 kBaud

• A MicroSD card reader/writer.

• Various sensors – humidity, acceleration, light.

• Powered by 3 x AAA batteries.

As of this writing, the most popular sensor node hardware platform is the

TELOSB/TMote Sky node, developed at Berkeley. The TMote platform uses

a MSP430F1611 CPU, with 10 kilobytes of RAM, 48 kilobytes of ROM and

provides 1024 kilobytes of external flash that can be used for mass storage.

Adding support for the TMote platform or other similar hardware platforms

should be straight forward, given the similarity in CPU architecture.

Hydra will make use of the increased RAM and external storage if available,

but does not require it. As such, the Hydra design is applicable to most wireless

sensor network nodes, irrespective of their capacity.

5.2 Java

Hydra applications are developed using the Java language[78]. One of the

benefits of Java is that there are many implementations of the virtual machine

runtime that have been developed and tested thoroughly over many years.

Popular implementations include:

• Sun Java[43] – the official implementation of the Java specification. It

includes a toolchain, compiler, and runtime libraries for several operating
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system platforms. The bytecode language the compiler produces is an

open standard.

• Dalvik[57] – A Java variant developed by Google for the Android mobile

phone operating system project, Java language applications are compiled

to a Dalvik-specific bytecode language.

• MikaVM / TinyVM[38] – Small Java Virtual Machines intended to run

on embedded devices.

• JCVM[19] – Compiles Java code to C, so code can be run without the

overhead of an interpreter.

While these implementations are deployed and work well in many situations,

unfortunately it became obvious that they were not suited for Hydra – the

very specific requirements for distributed operating services as outlined in the

Design chapter would require considerable modifications to the Java Virtual

Machine, with deep integration required with the rest of the system. As such,

Hydra implements a custom micro Java virtual machine called HydraVM that

both interprets Java bytecode and provides the distributed systems services

required for the distributed operating system to function.

5.3 Toolchain

While it was not possible to use the existing virtual machine technology di-

rectly, the Java software stack is much larger than the core virtual machine –

and it was desirable to utilize as much of this existing software stack as pos-

sible to reduce the amount of software that needed to be built. The standard

(and most widely deployed) Java compiler suite is the Sun Java environment,

and Hydra was implemented to leverage this compiler toolchain as part of the

build process.

The Sun javac compiler is used directly to take .java source files and output
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Figure 5.2: An overview of the Hydra application compilation process

compiled .class bytecode. However in order to further optimize the output

for the Hydra platform, hydrac then performs several further compilation steps

using a custom toolchain. An overview of the steps involved in the toolchain

are outlined in Figure 5.6 – the toolchain is complex, but it means that as

much as possible is done at compile time, rather than runtime.

While the purpose of this thesis is not directly to create the most optimal

virtual machine – or virtual machine toolchain – it is nevertheless desirable

to minimize resource usage where necessary to ensure the efficient and useful

operation of the distributed operating system.

Explanation of each step in the toolchain follows.
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5.3.1 Creation of .java

The user writes Java code in their text editor of choice, against a subset of the

standard Java APIs and some Hydra-specific APIs as necessary.

5.3.2 .java to .class

The standard Sun Java compiler javac is used at this stage. It takes a .java

source file as input, and produces a standard Java .class file.

5.3.3 .class to .class.c

The class file produced in the previous step is not optimized for size, however

– a simple ‘Hello world’ program compiles to 426 bytes of bytecode. While this

output file size is still small, the number of instructions per byte is relatively

small compared to other systems.

The primary uses of space in the Java bytecode size are:

• The symbol table / constant pool. Java programs make heavy use of the

‘constant pool’, a table which contains literal values that may be used

in the program.

• String symbols. These are strings — stored in the constant pool – such

as function names that are used at runtime for lookups. For example,

when a method is invoked, the method signature used is a string that is

retrieved from the constant pool.

• Bytecode is stored in a format primarily intended for fast execution

rather than compact storage.

It is also important to note that the .class file requires parsing to build up

the constant pool, function table, fields, and so on. This parsing requires a
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non-trivial amount of CPU and RAM – and thus power – on a limited sensor

node platform.

In order to address these issues, the Hydra-specific build tools are used. Hydrac

is the first step in this process. It is a code generator that takes a .class file as

input, parses it, and produces a .c file as output. The .c file can be compiled

with standard GCC tools and linked into the system image at compile time.
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const byte test_method_1_bytecode [ ] = { //main BYTECODE (7 bytes )
3 , 184 , 0 , 2 , 167 , 255 , 252

} ;

const vm_method_t test_method_1 = { //main
1 , ”main” , 1 , &test_method_1_bytecode , 1 , 1 , 1

} ;

const vm_method_t ∗test_vm_methods [ ] = { //METHODS
&test_method_0 , &test_method_1

} ;

const vm_class_t class_test = { //FINAL CLASS OBJECT
0 , ”Test ” ,
( vm_cpentry_t ∗∗) test_vm_constantpool ,
( vm_method_t ∗∗) test_vm_methods ,
NULL , 21 , 0 , 2

} ;

Figure 5.3: A portion of the output from hydrac

This .c file contains a pre-processed set of initialized C structs that provide

the function definitions, as well as the bytecode for each method. An example

is shown in figure 5.3

There are two main benefits to this strategy. Firstly, the pre-processing and

parsing of the .class file is moved to occur at compilation time, not runtime.

This means that the – rather complex – parsing logic is not required to be

loaded on to the sensor nodes, decreasing the code footprint. Secondly, the

runtime memory usage is reduced - the MSP430 hardware platform provides

much more addressable ROM than RAM, and the const declaration in the

generated code causes the code to be located in ROM, leading to savings in

RAM.

5.3.4 .class.o to machine code

The next step is to compile the .c file. In this case msp430-gcc is used to

produce the object file. This is a fork of GCC for the msp430 CPU, which is

used by the Scatterweb hardware platform.
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5.3.4.1 What about multiple architectures?

Note that currently this implementation restricts migration to only those plat-

forms that can execute MSP430-style machine code. However as MSP430

emulators exist for a number of platforms[27], a VM implementation for x86

or similar could use an emulator as the base code for executing the foreign

machine instructions on faster hardware.

Alternately a system image for alternate platforms (as per the following sub-

section) can be compiled ahead of time that includes all necessary machine

code for multiple platforms – ie: a msp430-platform system image can be

compiled for msp430 sensor nodes, an x86 system image can be compiled for

x86 nodes. The compiled code can then exist on each node until it is activated

by the higher-level instructions.

5.3.5 Produce system image

The object file is then linked in with the Hydra libvm and basic operating

system layer to produce a .elf system image. The .elf is then processed

with msp430-objcopy to create the final system image file. JTAG is used to

flash the image on to the device.

5.3.6 Runtime

At runtime the virtual machine uses the structures created in the hydrac

output file directly, locates the compiled bytecode, and starts execution. More

information about the virtual machine operation is in the next section.
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5.4 HydraVM

The Hydra virtual machine is the core of the distributed operating system

runtime. It is an interpreter of the Java bytecode language. Although inter-

preters are slower than more advanced Java Virtual Machine techniques such

as Just-In-Time compilation, the limited resources of the sensor node hardware

precludes these.

The Hydra virtual machine can be run on wireless sensor network hardware

as well as on desktop or server Linux systems, communicating with the sensor

node virtual machines over a network link. We have tested Hydra on 16-bit

MSP430-based Scatterweb nodes, and 32 or 64-bit Debian Linux.

Java standard library methods are implemented in native C code. Because

most Java applications will make heavy use of the standard library, the ma-

jority of the processing time will be spent in the relatively fast C. Typically

a sensor network application will also spend much of its time waiting on I/O

events from sensors.

The Hydra virtual machine runtime provides a subset of the standard Java

libraries.

5.4.1 Hydra virtual machine distributed execution

A collection of Hydra virtual machines cooperate to run a single application.

A thread can execute on only one virtual machine at a time – in other words,

there is only one program counter per thread, and it can move from node to

node.

The virtual machine can transition between one of several states:

• Active – executing code, or waiting for I/O that will then return to
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executing code

• Inactive – not executing code, no objects.

• Waiting – waiting for remote operations.

Objects are ‘owned’ by one (and only one) node. Initially they are owned by

the creator, but ownership changes when objects are moved. Nodes maintain

a local knowledge of where objects are, based on their view of the network.

If this knowledge becomes out of date and a node addresses a message to an

node that no longer owns an object, that node will know where the object has

gone and will transmit a routing update to the sender accordingly.

A number of remote operations are supported:

• Object move: an object is being relocated from one node to another.

The state of the object is transmitted, along with some additional exe-

cution state data if the current object contained the program counter.

• Remote invoke: a method on an object can be invoked remotely. The

method is executed and a remote object reference is returned to the

caller.

• Remote read: read the state of a primitive (such as an integer)

• Remote set: set the state of a primitive

• Status update: request or return the state of the node in terms of

metrics such as (estimated) power usage, CPU use, memory use

• Checkpoint update transmit the checkpoint state or checkpoint delta

of an object. The checkpoint implementation is discussed in the next

section.

5.4.2 Checkpointing

An important goal when implementing the checkpointing system was that it

perform its operations efficiently in terms of memory and CPU usage. This
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applied not only to the serialization and de-serialization of checkpoints, but

also to the storage of checkpoints at runtime. The more compact the storage

of checkpoints at runtime is, the more checkpoints can be saved. Likewise,

efficient serialization and de-serialization allows for efficient and quick recovery

from errors.

However in some ways, these two goals are mutually exclusive. Increasing the

complexity of the compression may decrease the storage requirements for indi-

vidual checkpoints, but it decreases the ease of saving and restoring, increasing

CPU and time requirements on CPU-poor devices.

A trade-off therefore had to be made between the two factors. It was decided

that it was most desirable to store the checkpoints in the most compressed

form possible - smaller checkpoints means smaller data transmissions over the

air.

5.4.2.1 The checkpoint object

Checkpoint objects contain a complete snapshot of the state of the node at

the time of the checkpoint. In this way, a single checkpoint object can be used

to restore a node. The structure of a checkpoint object is stored as a packed

C memdump, the structure of which is displayed in figure 5.4,

Each individual node is in charge of deciding when it will create a checkpoint

and where it will send it to. Checkpoint objects are created on the sending

node, and transmitted in the compressed form. The receiving node receives the

checkpoint object and stores it directly in the compressed state after stripping

out the ‘deleted objects’ section (if any).
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Figure 5.4: The structure of a checkpoint

5.4.2.2 Checkpoint diffs

Because the entire state of an object can be relatively large, the checkpointing

system supports the concept of checkpoint ‘diffs’. Objects have a single bit

internal flag that marks them as ‘dirty’ to the checkpointing system. When

objects are initially created they are ‘dirty’. In addition, whenever their in-

ternal data state or code pointer changes, they are also marked as ‘dirty’.

The checkpointing system traverses the local object graph and packs only the

‘dirty’ objects into the checkpoint update. After the checkpoint is complete,

the ‘dirty’ state is reset on all objects.

In this way, no separate code path is required for diffs vs full checkpoints - the

dirty/clean system ensures that the correct objects are transmitted each time.

When a checkpoint is received by a node that has already received a check-

point from the same sender, the receiver compares the old and new checkpoint

objects and merges the update into the old, updating data where necessary.

While this takes a certain amount of CPU time, the benefits of smaller check-

point updates transmitted over the network outweigh the cost.
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5.4.3 Operation caching

As outlined in the previous chapter, it is necessary to cache messages that

are transmitted between checkpoint updates in order to restore a state that is

synchronized with the rest of the mesh.

In order to reduce code complexity, these messages are intercepted at the

network layer and cached until they are obsoleted by the arrival of a new

checkpoint. Because the caching is done at a low layer, it is not necessary for

the upper virtual machine layer to cache (potentially expensive) per-message

metadata.

The messages are cached as part of the checkpoint and applied sequentially

when a checkpoint is restored in order to bring the checkpoint up to date.

5.4.4 Paging

The paging system is implemented by monitoring the usage patterns of objects

in a ‘least recently used’ list – objects that have been unused longest are paged

out, removed from RAM and stored in the paging area. When an object is

accessed by the virtual machine, if it is paged out it is restored from the paging

area and moved to the top of the LRU list.

The paging area backend storage implementation is either a separate memory

block on Linux-based virtual machines, or to a predefined (empty) area of the

flash memory on Scatterweb devices.

5.5 HydraSim

HydraSim is a simulation framework that was developed to test layout algo-

rithms for Hydra.
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Figure 5.5: The HydraSim tool, running a simulation on an earthquake dataset

with a large number of nodes
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It is a GTK2 application that implements the high-level migration logic for mi-

gration algorithms, and allows automated repeatable testing against different

event test datasets. It does not execute a virtual machine process for simulated

nodes, it only models the input and output events. Migration algorithms are

written in C, using an API that matches that of the virtual machine.

This allows for much faster development and debugging of migration algo-

rithms compared to testing on physical hardware or on full virtual machines.

Once the testing and development in HydraSim is complete, the migration

algorithm code can then be directly used in the full Hydra virtual machine.

5.6 Hydra Test Framework

The Hydra Test Framework is a separate system from HydraSim. Unlike

HydraSim, the test framework provides simple mechanisms for large-scale au-

tomated testing of the Hydra virtual machine.

The test framework is implemented as a Python application that spawns a

large number of Hydra nativevm processes under Linux. These processes are

put into a specialized ‘test mode’ that causes them to output changes in state

to a network socket. The test framework receives these messages and processes

them to determine the health of the mesh and whether an error has occurred.

In this way the test framework and virtual machine processes do not have to

exist on the same physical machine, allowing for larger number of test nodes.

This framework can perform automated tests on a number of the Hydra sub-

systems:

• Remote access – remote get/set/invoke operations are monitored for

correctness and to make sure that all involved nodes are successful.

• Migration – it can monitor the location of objects and ensure that they
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Figure 5.6: The structure of the Hydra OS

are migrated correctly from object to object.

• Checkpointing – the checkpoint and object state can be compared on

both sides of the operation to ensure there has been no error in trans-

mission or serialization/de-serialization.

It also allows testing of loss in the mesh. The framework can optionally ter-

minate virtual machine processes with or without warning. This tests the pre-

dictable and unpredictable shutdown logic, along with the reliability system.

A key test of the reliability and checkpointing system is that it can correctly

deal with any particular node(s) in the mesh being terminated unexpectedly.

5.7 Hydra structure

The Hydra virtual machine is implemented as a static library - libvm. This

library provides an interface for external C programs to invoke the virtual

machine. It is linked into either the Hydra operating system layer for running

on sensor node hardware.

5.7.1 Hydra operating system layer

The Hydra operating system layer is based on an earlier wireless sensor network

operating system project[41], and provides a number of common operating
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system features that abstract away the underlying hardware. These include:

• IP, ICMP and UDP networking layers, SLIP layer2 protocol.

• Task management, threading via a (partial) implementation of the PThreads

API

• Heap memory management (malloc() and free())

A major component of the Hydra operating system layer is the hardware-

specific driver layer that implements a common driver interface for various

classes of devices. These typically include:

• Radio interface

• Serial port (for raw text or SLIP)

• Mass storage (such as the MicroSD cards on Scatterweb)

• Sensors such as the accelerometer

• Misc devices such as the Piezo and LEDs

To port to a new hardware platform it is only necessary to implement this

section of the operating system layer. Currently the only implementation of

the driver layer is for Scatterweb hardware.

The final output produces a binary image that can be uploaded over JTAG.

5.7.2 Platform independence

Hydra is platform and architecture independent (except for the hardware ab-

straction layer component of the kernel). Because the virtual machine code is

implemented as a library – libvm – it becomes possible to create nativevm,

a native Linux application that runs the virtual machine library against the

Linux APIs for networking and process management. nativevm is created as

part of the standard build process.

This means that the core Hydra technology can run on 16, 32 and 64 bit plat-
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forms. Platform independence allows for hybrid approaches to sensor network

hardware – for example, a sensor network that requires mass storage as part

of its application can contain a nativevm process that allows use of the local

hard drive. This allows a set of simple embedded sensors to be seamlessly and

dynamically supplemented with a small number of more powerful Linux-based

base stations.

A variety of different hardware models of sensor nodes can belong to the same

mesh. As long as they have some method of communication, the hardware

abstraction given by the Java Virtual Machine and the platform-independent

network transmission means that they can share data and code seamlessly.

5.8 Implementation Summary

This chapter outlined the implementation of the Hydra design. The imple-

mentation takes the form of a multistage compilation pipeline ‘hydrac’, a

hardware-agnostic distributed virtual machine ‘hydravm’ (in the form of a

libvm static library) and a low-level runtime hardware driver abstraction layer.

These components are combined to implement the entire Hydra operating sys-

tem stack.

In the following chapter the deployment to evaluate the Hydra implementation

is outlined.





Chapter 6

Deployment

‘Software and cathedrals are much the same – first we build them,

then we pray.’

– Sam Redwine

A useful method of demonstrating the real-world effectiveness of the prototype

wireless sensor network distributed operating system is to use it to perform a

typical wireless sensor network task.

The goal of this thesis is to discover whether the distributed operating system

techniques can be applied in a sensor network context, and if so, whether they

provide valuable improvements. As such, the following statements need to be

demonstrated to prove this applicability:

• That the distributed operating system can perform a basic, typical sensor

network task.

• That the distributed operating system can be practically extended to

perform more complex tasks, such that the improvements and advantages

over more conventional systems can be demonstrated.

This chapter discusses the process of deploying Hydra to prove these state-

ments.
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The first step is to select a sensor network use-case.

6.1 Selecting a use-case

Sensor networks are widely deployed against a highly varied range of appli-

cations. As such, there are a large number of possible use-cases we could

implement as a prototype. The criteria for use-case selection were as follows:

• The use-case is well-known and, if possible, outlined in published re-

search. This means that the use-case is more likely to be widely accepted

as an effective test of a sensor network system.

• Sufficient information on the existing implementation(s) is available that

a Hydra implementation is possible. Ideally this would take the form

of source code, though a sufficiently detailed description of the systems

involved would suffice. This is necessary to allow for a proper comparison

of the two systems.

• The task is suitable to run on the Scatterweb hardware – it had been

implemented in the past on the same class of hardware device. This

means that the two systems will be compared on the merits of their

software only.

• The task is relatively simple, but extensible – the use-case should allow

a simple implementation that can be extended as necessary. This allows

the testing to prove the additional ‘valuable improvements’ requirement.

• The task appears to be one that would generate events dynamically,

rather than simple periodic data collection. This means that the appli-

cation would benefit from the distributed paradigm and allow us to high-

light the advanced in-mesh data processing capabilities the distributed

operating gives sensor network applications.

A literature search was undertaken with these criteria in mind, with some
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examples named in the Background chapter.

6.2 Fence Monitoring

The use-case selected for detailed evaluation was an application first outlined

in ‘Fence Monitoring – Experimental Evaluation of a Use Case for Wireless

Sensor Networks’ [95], published at the European Conference on Wireless Sen-

sor Networks (EWSN) in 2007.

This use-case is described as follows:

”The Fence Monitoring project is a use case for Wireless Sensor

Networks (WSNs) focused on collaborative, in-network data pro-

cessing. The goal is to develop a distributed event detection algo-

rithm that can reliably report security relevant incidents (e.g. a

person climbing over a fence) to a base station. The vision is that

through cooperation of many sensor nodes the accuracy of event

detection can be greatly improved, while at the same time saving

energy by reducing multi-hop communication with the base sta-

tion.”[95]

This use-case meets the necessary criteria outlined at the beginning of this

chapter:

• The project was published in major conferences – eWSN and SenSys.

• The algorithms and system structure used is outlined in the paper.

Source code for the system outlined in the paper was later published,

and so can be compared.

• The implementation used the same Scatterweb hardware Hydra was de-

veloped on.

• Fence monitoring is a specialized case of signal processing – in this case,

accelerometer data over time. This processing has a large amount of

scope for extension.
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• The project helped to establish the validity of in-network data processing,

a technique that our sensor network distributed operating system uses

extensively.
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6.3 The implementation

The implementation of the fence monitoring use-case is therefore a valid method

of demonstrating the effectiveness of the Hydra distributed operating system.

The first implementation task is to examine the fence monitoring system as

described in the paper – henceforth referred to as the ‘reference application’ –

as a Hydra user application.

6.3.1 The Reference implementation

The algorithm as described in the paper is as follows:

• Identify low-level events: events must be between 100 and 500ms. The

total intensity must be above a pre-determined threshold.

• At least three events must take place inside 1750ms

• Old events are purged after this time.

• If at least three other nodes also have detected events, then trigger a

climb event and inform the base station

The reference application was implemented in FACTS[88], a middleware pack-

age that provides a high-level query language for sensor networks. FACTS

applications consist of ‘rules’ for processing sensor data, which are applied to

filter sensor data and produce a result. FACTS runs on top of the Scatter-

web software platform, which, like Hydra, was developed specifically for the

Scatterweb hardware platform. Figure 6.1 shows an example of a FACTS rule.

The full FACTS code for the fence-monitoring system is in Appendix A.

The reference application as described[95] contained 15 of these rules that,

combined, process accelerometer signal data to classify events. The Hydra im-

plementation of this application is written as a Java-based Hydra user applica-

tion, implementing the core functionality described in the paper – identifying
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rule aggregateBasicEvents 100
eval ( ( count { basicEvent }) >= 3)
eval ( ( sum { basicEvent duration }) >= 0 .49 )
eval ( ( sum { basicEvent duration }) <= 1 .71 )
define eventCandidate [ intensity = ( max { basicEvent intensity }) ]
retract { basicEvent }

Figure 6.1: An example of a single FACTS rule

and reporting specific movement events.

The reference application used a complex communication hierarchy, with sev-

eral layers of nodes. Nodes were explicitly delegated into groups, and event

data was passed up the various layers to eventually be distilled into a single

event.

This communication architecture was specifically designed to optimize network

traffic. From the paper:

‘The advantages of this design for the raw data aggregation layer

are twofold: Memory usage is kept at a minimum by aggregating

sensor readings as they are being sampled, and excessive energy

consumption is avoided during in- tervals in which no events occur.

The drawback is that the raw data itself is not available for event

detection. However, we regard this as unproblematic given the right

selection of data items to aggregate.’

The architecture diagram reproduced in Figure 6.2 displays this architecture.

While the FACTS middleware and the underlying Scatterweb system layer

provide an abstraction layer to much of the low level operations (e.g ‘transmit

a buffer of data to a node over the radio’), the node hierarchy and interactions

were explicitly specified in the FACTS ruleset.
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Figure 6.2: The network architecture of the reference application, reproduced

from [95]

6.4 The ‘Basic’ Hydra implementation

One of the goals of the Hydra implementation was to leverage the distributed

operating system paradigm in such a way that this explicit specification of

node goals and hierarchy was avoided.

6.4.1 Implementation details

The first Hydra implementation of the system consists of a single Java applica-

tion. A truncated code listing showing the application structure is reproduced

in Figure 6.3.

This code is intentionally as simple and readable as possible – making a more

compact implementation would be possible, but that was not the goal. It

reads from sensors in turn, watches for an initial event above a threshold, then

performs further processing using the algorithms described in the reference

application paper. This processing determines if the event class is an ‘intruder’

or not.

When an event is detected, a piezo beeper on the currently executing node
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c l a s s FenceDetect{

s t a t i c const i n t NUM_NODES = 8 ;
s t a t i c const i n t CACHE_SIZE = 10 ;
s t a t i c i n t THRESHOLD = 10 ;

pub l i c boolean isIntruder ( i n t [ ] data ) {
//Data p ro c e s s i ng took p lace here as per the paper

}

pub l i c s t a t i c void main ( String [ ] args )
{

i n t cache [ NUM_NODES ] [ CACHE_SIZE ] ;
i n t pos = 0 ;

f o r ( i n t i=0;i<NUM_NODES ; i++){
Sensor s = Hydra . getSensor ( i ) ;

i n t reading = s . read ( ) ;

//Data p ro c e s s i ng took p lace here as per the paper

i f ( reading > THRESHOLD ) {
Processor p = new Processor ( ) ;

i f ( p . isIntruder ( cache [ i ] ) == true ) {
System . out . println ( ” Int ruder a l e r t ! ” ) ;
Hydra . setLED (0 , t rue ) ; // p i e zo beep

}
}

}
pos++;

}
}

Figure 6.3: The initial implementation

is enabled and a notification is printed to the standard output stream – note

that the stdout stream is automatically transported over the network to a log

collector on a remote machine. A more complex event reporting system could

easily be swapped in as desired.

6.4.2 Evaluation

This system operated in a similar fashion to the reference application, while

needing no explicit separation or programming of node hierarchies to achieve

the desired distributed event processing.

However, there was one major difference – this Hydra application was inher-

ently single-threaded on a mesh level. Only one execution context could be
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operating at once, and while this context could move over the mesh as neces-

sary, overall efficiency was degraded as a result of the lack of parallel execution

while code waited for other nodes to process data and return. It was possible

for events to be lost while this took place.

6.5 The ‘Parallel’ Hydra implementation

A useful improvement to the basic implementation would be to support parallel

execution. While this is not strictly necessary to create a distributed fence

monitoring platform, it would mean that the CPU resources in the mesh could

be more efficiently utilized.

The Hydra userspace API supports the concept of ‘task’ objects, which lever-

age the object migration infrastructure. Task object support is built into

the standard userspace library, and the basic single-threaded application was

henceforth modified to take advantage of this feature.

6.5.1 Implementation details

The new taskpool-based system defines a Processor object, a design pattern

that means that a resource-intensive task is managed by a single object. This

Processor object extends the TaskPoolSensorProcessor interface, which is

part of the Hydra standard libraries and allows the object to be scheduled

inside a task pool. A truncated code listing showing the the task-pool appli-

cation can be seen in Figure 6.4.

Hydra also supports a subset of the Java threading APIs. Utilizing the Runnable

interface is also an option to achieve distributed execution - in this way sensor

nodes can be thought of as CPU cores that can be scheduled. A truncated

code listing of the thread-based application can be seen in Figure 6.5.
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c l a s s FenceDetect{

s t a t i c const i n t NUM_NODES = 8 ;

c l a s s Processor extends TaskPoolSensorProcessor {
pub l i c i n t run ( Sensor s ) {

whi le ( t rue ) {
//Wil l b lock un t i l some data i s a v a i l a b l e
i n t reading = s . readBlocking ( ) ;

//Data p ro c e s s i ng took p lace here as per the paper

i f ( /∗ i n t rude r detec ted ∗/ ) {
r e turn 1 ;

}
}

}
}

pub l i c s t a t i c void main ( String [ ] args )
{

TaskPool tp = Hydra . makeTaskPool ( NUM_NODES ) ;

f o r ( i n t i=0;i<NUM_NODES ; i++){
Sensor s = Hydra . getSensor ( i ) ;
tp . addTask (new Processor ( s ) ) ;

}

whi le ( t rue ) {
i n t [ ] results = tp . runAll ( ) ; // w i l l b lock un t i l something ←֓

r e tu rn s

f o r ( i n t i=0;i<NUM_NODES ; i++){
i f ( results [ i ] == 1) {

System . out . println ( ” Int ruder a l e r t ! ” ) ;
Hydra . setLED (0 , t rue ) ; // p i e zo beep

}
}

}
}

}

Figure 6.4: A Parallel implementation (truncated)

It is generally more efficient to use the task pool system – the Hydra scheduler

can use the knowledge of the Sensor object associated with the task to move

the object to the correct node immediately instead of waiting for the location

heuristics to select it. In addition, task pool tasks do not have to be sched-

uled to run simultaneously, so if there are insufficient resources remaining in

the mesh to support simultaneous execution, some objects can be delayed as

necessary.

However, the Runnable/Java threading system is more familiar to many pro-

grammers and so is retained as an optional use or for program architectures
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c l a s s FenceDetect{

s t a t i c const i n t NUM_NODES = 8 ;

c l a s s Processor implements Runnable{
pr i va t e Sensor s ;

Processor ( Sensor sensor ) {
s = sensor ;

}

pub l i c void run ( ) {
whi le ( t rue ) {

i n t reading = s . readBlocking ( ) ;

//Data p ro c e s s i ng took p lace here as per the paper

i f ( /∗ i n t rude r detec ted ∗/ ) {
System . out . println ( ” Int ruder a l e r t ! ” ) ;
Hydra . setLED (0 , t rue ) ; // p i e zo beep

}
}

}
}

pub l i c s t a t i c void main ( String [ ] args )
{

f o r ( i n t i=0;i<NUM_NODES ; i++){
t = new Thread ( new Processor ( Hydra . getSensor ( i ) ) ) ;
t . start ( ) ;

}
}

}

Figure 6.5: A alternate threading/Runnable based Parallel implementation

that do not fit the task pool design pattern.

6.6 Extended system

In order to demonstrate the more advanced processing tasks possible with a

distributed operating system, a more advanced test case is necessary. The

advanced test case is an extension of the basic fence monitoring concept, im-

proved in some way.

The results section of the reference fence monitoring paper states:

59.7% of the all other [non-fence-climbing] events are also classi-

fied as event candidates...this level of accuracy observed is less than

the one we had expected...’ [95]
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’...the level of accuracy we achieved in our experiments is by far

not sufficient for a production- level deployment’ [95]

From this it can be seen that accuracy was an issue. The rationale for this

as stated in the paper was a combination of a simplistic algorithm – causing

large numbers of false positives – and contention for node resources caused by

nodes combining data gathering and processing. A useful improvement to the

reference system would then be an application that:

• Reduced or removed the contention caused by limited node resources

• Supported one or more complex signal processing algorithms, which

could reduce the number of false positive results

The distributed operating system paradigm is very useful here in addressing

both of these issues. The first point has already been addressed in the task

pool / threaded implementations – Hydra will automatically place Processing

objects in appropriate places in the mesh, where resources are not contended.

Therefore the most important improvement would be to support more complex

signal processing algorithms.

6.6.1 Fast Fourier Transforms

A Fast Fourier Transform (or FFT) is a very common signal processing task. It

is an efficient method of computing the Discrete Fourier Transform (or DFT),

a method of decomposing a signal into it’s component frequencies.

It is important to note that while the details and exact uses of the FFT are

outside the scope of this thesis, the process of calculating the DFT of a set

of accelerometer data is a useful example of an intensive processing task of

the kind that would be difficult to calculate in-network on a conventional sen-

sor network system. This type of intensive in-network processing over large

datasets is something that the distributed operating system services can make



94

relatively simple – the FFT/DFT algorithm is simply an example implemen-

tation of one such processing task.

6.6.2 Implementation details

The FFT system was heavily based on the task pool implementation. A

FFTProcessor object was added that contains a standard Java implemen-

tation of the FFT algorithm. When the original algorithm detects a possible

event candidate, the FFTProcessor object is initialized with the dataset and

executed. It will be instantiated somewhere in the sensor mesh, the result will

be calculated and then returned to the caller.

For simplicities sake, this implementation does not use a separate task pool or

thread for the FFT calculations.

A truncated code listing of the thread-based system can be seen in Figure 6.6.

6.7 Accuracy and evaluation

The results of our implementations compared to the reference system are de-

scribed and discussed in the following chapter, ‘Evaluation’
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c l a s s FenceDetect{

s t a t i c const i n t NUM_NODES = 8 ;

c l a s s FFTProcessor{
pub l i c i n t run ( i n t [ ] data ) {

//Perform the FFT ca l c u l a t i o n on data [ ] here
re turn result ;

}
}

c l a s s Processor extends TaskPoolSensorProcessor {
pub l i c i n t run ( Sensor s ) {

whi le ( t rue ) {
i n t reading = s . readBlocking ( ) ;

//Data p ro c e s s i ng took p lace here as per the paper

i f ( /∗ i n t rude r detec ted ∗/ ) {

System . out . println ( ” Po s s i b l e i n t rude r ” ) ;

//Now run the FFT and make sure
FFTProcessor fft = new FFTProcessor ( ) ;
i f ( fft . run ( s . getHistoricalData ( ) ) > THRESHOLD ) {

System . out . println ( ” Int ruder Ale r t ! ” ) ;
Hydra . setLED (0 , t rue ) ; // p i e zo beep

}
}

}
}

}

pub l i c s t a t i c void main ( String [ ] args )
{

// as be fore , bu i ld up the task pool
}

}

Figure 6.6: A parallel FFT implementation





Chapter 7

Evaluation

‘A ‘passing’ test doesn’t mean ‘no problem.’ It means no problem

observed. This time. With these inputs. So far. On my machine.’

– Michael Bolton[90]

This chapter presents a discussion on the results obtained while testing the

Hydra system, contrasting them with the results gained from the reference

implementation described in ‘Fence Monitoring – Experimental Evaluation of

a Use Case for Wireless Sensor Networks’ [95], published at the European

Conference on Wireless Sensor Networks (EWSN) in 2007.

We evaluate the following systems:

• The reference implementation (the ‘full event detection’ system as de-

scribed)

• The ‘Basic’ Hydra implementation

• The ‘Parallel’ Hydra implementation

7.1 Evaluation metrics

We chose to compare several metrics when evaluating each system. These are:
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• Sensitivity – how sensitive was the system in detecting an event. 100%

sensitivity equates to ‘no events were missed‘.

• False-positives – how accurate was the system when categorizing an event

into ‘intruder’ and ‘non-intruder’? 100% false-positive rate equates to

‘all events were mis-categorized‘.

• Complexity – how complex was the user application code? We use ‘ap-

plication lines of code’ as an approximate proxy for program complexity

here.

• Efficiency – how efficient was the system in terms of packets sent? This

directly corrosponds to the amount of power required to run the system

in the long term.

Each Hydra system was run for 1200 seconds under similar inputs to those

that the reference implementation was given, as described in the paper. These

were run in real life, not under simulation – while the exact data inputs the

reference implementation was given are not available, the means of testing was

described and a similar test applied to the Hydra deployment. Hydra results

were averaged across 10 test runs.

Results for the reference implementation were taken directly from the paper.

7.2 Evaluation results

Criteria Reference HydraBasic HydraParallel HydraParallelFFT

Sensitivity 100% 40% 100% 80%

False-positives 59.7% 60% 70% 30%

Efficiency 1000 (approx.) 10353 1623 1862

Due to the library support provided by Hydra, the lines of code required for

a parallel task pool are relatively low. Note that the FFT complexity stated
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above does not include the FFT calculation code, only the code used to invoke

it. This code would typically be part of a standard library.

7.3 Discussion

• The Basic implementation was less sensitive than the Parallel implemen-

tation. This was due to the single-threaded polling architecutre of the

basic application causing the system to miss events. The Parallel imple-

mentation successfully detected all the events, as it is not built around

a single active polling thread.

• The false-positive rate is much lower on the FFT implementation, due

to the FFT providing deeper analysis of the data at runtime.

• The efficiency of the basic implementation is relatively poor. The rapid

polling caused a large number of packets to be sent and recieved through-

out the mesh. Parallel implementation efficiency is comparable to the

reference implementation, though still higher. This is due to the parallel

processing/blocking nature of these implementations causing events not

to be processed unless some activity has taken place.

7.4 Application Complexity Comparison

It is difficult to give a direct comparison of the overall application develop-

ment complexity of Hydra vs traditional wireless sensor networks, as this is

dependent on a number of factors. However there is one obvious comparison

we can make comparing the sample codebases:

Criteria Reference HydraBasic HydraParallel HydraParallelFFT

Lines of Code 233 63 68 75
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The complexity of the basic and parallel systems are low compared to that

of the reference implementation. The code architecture is conceptually much

simpler, thanks to the single-system image provided by Hydra. It should also

be noted that the Java syntax that the Hydra applications are written in will

most likely be easier to build, maintain and extend than the custom bytecode

used in the reference implementation.

Further investigation and comparison using larger and more varied applications

from other sensor network systems would be an interesting research problem

for future work. It is likely that the single-system-image concept will lead to

much simpler application code on larger user tasks.

7.5 Summary

We have demonstrated that it is feasible to use the Hydra sensor network

distributed operating system to perform more complex sensor network tasks.

Hydra applications can perform complex processing-intensive tasks and the

distributed operating system layer will automatically place the workload in

the appropriate place in the mesh.

Our FFT-based implementation has higher accuracy to the reference imple-

mentation described by Wittenburg et al while being conceptually much sim-

pler from a programming perspective (discounting the in-app FFT implemen-

tation). This is possible because of the benefits of the distributed operating

system.

Efficiency could be increased by further optimisation of the network protocol

underlying the distributed operating system services.





Chapter 8

Conclusion

‘The function of good software is to make the complex appear to be

simple.’

– Grady Booch

8.1 Thesis summary

In this thesis, we sought to demonstrate that distributed operating systems

techniques can be applicable to the wireless sensor network domain, poten-

tially decreasing the complexity of user application development for wireless

sensor networks. By utilizing a distributed operating system, the bulk of the

complexity is removed from the user applications and application developers

can be presented a familiar programming model using commonly deployed pro-

gramming languages and APIs, conceptually treating the entire sensor mesh

as a single logical computer.

In other words:

‘By adapting distributed operating system techniques for the wire-

less sensor networks domain, wireless sensor network user appli-

cation programming complexity can be decreased. These applica-
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tions can later be executed on a sensor network mesh in an energy-

efficient manner.’

In order to demonstrate this, a distributed operating system for wireless sensor

networks called ‘Hydra’ was designed, developed and evaluated in this thesis.

This operating system provides the aforementioned distributed processing and

operating system-level services on typical commodity wireless sensor network

hardware. The examination of Hydra was addressed by discussing the following

topics.

• Theoretical basis: For distributed operating systems on wireless sensor

networks to be useful, it was necessary that the techniques used be appli-

cable and adaptable to the sensor network domain, typical deployment

tasks and characteristics of the data collected. This was investigated

by reviewing both current sensor network operating systems and deploy-

ments, and traditional distributed systems techniques in the Background

chapter. The specific techniques that were most useful from both do-

mains and the approach taken to create a distributed operating system

based on them were identified in the Design chapter.

• Feasibility: Using distributed operating system methods on a sensor

network is theoretically possible, but it was necessary to demonstrate

that doing so was practical. The Implementation chapter discussed the

decisions made while creating the Hydra software, and any compromises

to the design that were required as a result of moving from a theoretical

design to a real-world development.

• Suitability: The Deployment chapter discussed the choice of a test

scenario. The test scenario as described in this chapter was the chosen

method of evaluating the effectiveness of the wireless sensor network

distributed operating system. As such it was emblematic of a typical

wireless sensor network task, as outlined briefly in this chapter and in

more depth in the Background chapter.
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• Evaluation: The Evaluation chapter discussed the results of the test

scenario, focusing on correctness, performance and scalability. The pre-

viously outlined criteria for attributes of efficient wireless sensor network

operating systems as well as distributed operating systems was be used

to evaluate.

After these discussions were completed, a number of associated conclusions

can be drawn from the Hydra system.

8.2 Conclusions

The Hydra operating system and associated software ecosystem as outlined in

this thesis provide several benefits to simplify wireless sensor network applica-

tion software development:

• ‘A single system image’ programming model, where the operating system

provides an abstraction over the disparate and physically distributed

underlying sensor node hardware, allowing the application developer to

conceptually treat the entire sensor mesh as a single logical computer.

• A familiar programming environment, through the use of the Java toolchain

and HydraVM. This means that many of the programming constructs,

APIs and development tools that are commonly used in desktop or server

development can now be utilized on sensor networks. Java is also familiar

to a large number of developers outside of the sensor network domain.

• The hydrac buildchain provides tooling to compile, then compact and

compress program code, easing the deployment process.

In summary, the single system programming model and familiar programming

tools free developers to concentrate on their application rather than the sensor

network environment.
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The Hydra operating system also performs conventional distributed operating

system tasks that on standard wireless sensor network operating systems are

required to be handled manually by the sensor network application developer.

• Performance – by using the automatic process object/code layout sys-

tems discussed in the Design and Implementation chapters, the sys-

tem will automatically make efficient use of the distributed hardware

resources.

• Reliable – the system will expect and correctly handle hardware errors

with the various failure modes described in the Implementation chapter.

• Resource name resolution – by presenting a single system image with

well-known resource names, the system provides a useful abstraction

layer to traditional resource name resolution issues.

• Resource management – By using the technique of automatic application

code movement, Hydra will automatically balance to utilize the resources

of the whole mesh, as the application tasks are spread across the devices.

• Synchronization – Concurrent processes inherently need to cooperate,

and this must be done in a synchronized fashion to avoid errors and

deadlock.

• Flexibility – the operating system must be adaptable to a range of con-

ditions and deployments.

Furthermore in the Evaluation chapter we have demonstrated that these tech-

niques allow the addition of significant and valuable additions of complex pro-

cessing to a typical sensor network task, improving the results.

Notably these improvements are not limited to the example application – the

ability to transparently utilize the processing power of the entire sensor mesh

is an improvement that is useful to many classes of application.
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8.3 Future work

The concept of applying distributed operating system services to sensor net-

works still needs additional investigation in several areas. There are a number

of topics for further research, extending the Hydra system.

• More layout algorithms – find better ways of laying out the program code

objects, as well as more efficient methods of optimizing their runtime

movement.

• Mixing hardware classes – make a hybrid mesh that consists of Linux or

specific high-powered nodes, which would transparently add processing

power to the mesh.

• Smarter layout – at compile time, statically analyze the object code to

identify hardware resources access, and place them accordingly. Add

additional runtime metrics to place objects more efficiently.

• Add support for languages other than Java. Java was chosen because of

its ease of splitting application code by Object boundary. C would be

more efficient to run, but harder to partition.
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Hellmich, Alexander Brändle, Tim Guilford, and Jochen Schiller. Au-

tonomous monitoring of vulnerable habitats using a wireless sensor net-

work. In Proceedings of the workshop on Real-world wireless sensor net-

works, REALWSN ’08, pages 51–55, New York, NY, USA, 2008. ACM.

[62] nest. nest.com.

[63] Ryan Newton, Greg Morrisett, and Matt Welsh. The regiment macro-

programming system. In IPSN ’07: Proceedings of the 6th international

conference on Information processing in sensor networks, pages 489–498,

New York, NY, USA, 2007. ACM.

[64] Future of cloud computing survey. http://talkincloud.com.

[65] Wikipedia: List of JVM languages. http://en.wikipedia.org/wiki/list of

jvm languages.

[66] P8 PHP on the JVM. http://www.infoq.com/presentations/nicholson-

php-jvm.

[67] Rhino Javascript on the JVM. http://www.mozilla.org/rhino/.

[68] Joseph Polastre, Robert Szewczyk, Alan Mainwaring, David Culler, and

John Anderson. Analysis of wireless sensor networks for habitat monitor-

ing. In Wireless sensor networks, pages 399–423. Springer, 2004.



114

[69] Princeton. http://www.princeton.edu/ achaney/ distributed

database.html.

[70] KaiGuo Qian and ZhiQiang Xu. Reprogramming in wireless sensor net-

works. In Proceedings of the 9th International Symposium on Linear

Drives for Industry Applications, Volume 4, pages 657–662. Springer,

2014.

[71] Mohammad Al Saad, Leszek Mysliwiec, and Jochen Schiller. Scatterplug:

A plug-in oriented framework for prototyping, programming and teach-

ing wireless sensor networks. In Proceedings of the Second International

Conference on Systems and Networks Communications, ICSNC ’07, pages

37–, Washington, DC, USA, 2007. IEEE Computer Society.

[72] Michael J. Sailor and Jamie R. Link. Smart dust: nanostruc-

tured devices in a grain of sand. page 1375, 2005. URL:

http://duca.acm.jhu.edu/papers/Caching-1.pdf.

[73] Jochen Schiller, Achim Liers, and Hartmut Ritter. Scatterweb: A wire-

less sensornet platform for research and teaching. Comput. Commun.,

28(13):1545–1551, August 2005.

[74] Lars Schor, Philipp Sommer, and Roger Wattenhofer. Towards a zero-

configuration wireless sensor network architecture for smart buildings. In

Proceedings of the First ACM Workshop on Embedded Sensing Systems

for Energy-Efficiency in Buildings, pages 31–36. ACM, 2009.

[75] Doug Simon, Cristina Cifuentes, Dave Cleal, John Daniels, and Derek

White. Java&#8482; on the bare metal of wireless sensor devices: the

squawk java virtual machine. In Proceedings of the 2nd international

conference on Virtual execution environments, VEE ’06, pages 78–88, New

York, NY, USA, 2006. ACM.

[76] Pradeep K. Sinha. Distributed Operating Systems: Concepts and Design.

Wiley-IEEE Press, 1st edition, 1996.

[77] Hugues Smeets, Chia-Yen Shih, Marco Zuniga, Tobias Hagemeier, and
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Appendix A

FACTs code

/∗

∗ Copyright 2006 , Fre i e Un i v e r s i t a e t Be r l i n . A l l r i g h t s r e s e rved .

∗ Please r e f e r to the COPYING f i l e f o r d e t a i l e d l i c e n s i n g in fo rmat ion .

∗

∗ Contr ibutors : Georg Wittenburg

∗/

/∗

COPYING: Copyright 2005−2006 , Fre i e Un i v e r s i t a e t Be r l i n . A l l r i g h t s r e s e rved←֓

.

These sou r c e s were developed at the Fre i e U n i v e r s i t t Ber l in , Computer

Systems and Telemat ics group .

Red i s t r i bu t i on and use in source and binary forms , with or without

mod i f i ca t i on , are permitted provided that the f o l l ow i n g cond i t i on s are met :

− Red i s t r i bu t i on s o f source code must r e t a i n the above copyr ight not i ce ,

t h i s l i s t o f c ond i t i on s and the f o l l ow i n g d i s c l a ime r .

− Red i s t r i bu t i on s in binary form must reproduce the above copyr ight not i ce ,

t h i s l i s t o f c ond i t i on s and the f o l l ow i n g d i s c l a ime r in the documentation

and/ or other mat e r i a l s provided with the d i s t r i b u t i o n .

− Neither the name o f Fre i e Un i v e r s i t a e t Be r l i n (FUB) nor the names o f i t s

c on t r i bu t o r s may be used to endorse or promote products der ived from th i s

so f tware without s p e c i f i c p r i o r wr i t t en permis s ion .
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This so f tware i s provided by FUB and the con t r i bu t o r s on an ” as i s ” bas i s ,

without any r ep r e s e n t a t i o n s or war rant i e s o f any kind , expre s s or impl i ed

inc lud ing , but not l im i t ed to , r e p r e s e n t a t i o n s or war rant i e s o f

non−in f r ingement , merchantab i l i ty or f i t n e s s f o r a p a r t i c u l a r purpose . In no

event s h a l l FUB or con t r i bu t o r s be l i a b l e f o r any d i r e c t , i nd i r e c t ,

i n c i d en t a l , s p e c i a l , exemplary , or con s equen t i a l damages ( inc lud ing , but not

l im i t ed to , procurement o f s ub s t i t u t e goods or s e r v i c e s ; l o s s o f use , data ,

or p r o f i t s ; or bus in e s s i n t e r r up t i on ) however caused and on any theory o f

l i a b i l i t y , whether in contract , s t r i c t l i a b i l i t y , or t o r t ( i n c l ud ing

neg l i g en c e or o therw i s e ) a r i s i n g in any way out o f the use o f t h i s so f tware ,

even i f adv ised o f the p o s s i b i l i t y o f such damage .

This implementation was developed by the CST group at the FUB.

For documentation and que s t i on s p l e a s e r e f e r to the web s i t e at

http ://www. i n f . fu−b e r l i n . de/ i n s t /ag−tech / p r o j e c t s /FACTS/

Ber l in , 2006

∗/

/∗∗

∗

∗ This r u l e s e t implements f ence monitoring , i . e . i t aggregate s low− l e v e l

∗ events ( both l o c a l l y and with in an n−hop neighborhood ) and route s high−←֓

l e v e l

∗ events to a base s t a t i o n .

∗

∗∗/

ruleset FenceMonitoring

/∗∗

∗ Generic system setup .

∗∗/

name system = ”system”

fact system [ broadcast = 255 , tx−range = 10 ]

slot systemID = {system owner}

slot systemBroadcast = {system broadcast}

slot systemTxRange = {system tx−range}
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/∗

∗ Def ine standard names and s l o t s f o r t h i s r u l e s e t .

∗/

name init = ” i n i t ”

name shake = ”shake”

name climb = ”climb”

name alert = ” a l e r t ”

/∗

∗ Step 0 : Build Routing Tree / Route A l e r t s to Sink

∗

∗ Build a spanning t r e e f o r rout ing and send any a l e r t f a c t s back to the ←֓

s ink .

∗/

name createRoute = ” createRoute ”

name route = ” route ”

fact route [ nextHop = 0 ]

slot routeNextHop = {route nextHop}

rule buildRoutingTreeOnInit 250

<− exists {init}

−> set routeNextHop = systemID

−> define createRoute [ source = systemID ]

−> send systemBroadcast systemTxRange {createRoute}

−> retract {createRoute}

−> retract {init}

rule addRoute 240

<− exists {createRoute}

<− eval ( routeNextHop == 0)

−> set routeNextHop = {createRoute source}

−> set {createRoute source} = systemID

−> send systemBroadcast systemTxRange {createRoute}

−> retract {createRoute}

rule retractCreateRoute 235

<− exists {createRoute}

−> retract {createRoute}

rule processAlertsAtSink 230

<− exists {alert}

<− eval ( routeNextHop == systemID )
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−> call print ( ”SE” , {alert owner })

−> retract {alert}

rule routeAlertsToSink 225

<− exists {alert}

//−> send routeNextHop systemTxRange { a l e r t }

−> retract {alert}

/∗

∗ Step 1 : Node−Local Event Proce s s ing

∗

∗ Aggregate low− l e v e l shake events i n to a high− l e v e l c l imb event .

∗/

name localAggregation = ” loca lAggr ega t i on ”

fact localAggregation [

discardEventsAfter = 10 , // Use 30000 f o r Haske l l run .

minShakeIntensity = 200 ,

minShakeDuration = 100 ,

minCombinedShakeDuration = 500 ,

maxCombinedShakeDuration = 1750 ,

minShakeEventsTrigger = 3

]

slot localAggregationDiscardEventsAfter = {localAggregation ←֓

discardEventsAfter }

slot localAggregationMinShakeIntensity = {localAggregation minShakeIntensity←֓

}

slot localAggregationMinShakeDuration= {localAggregation minShakeDuration}

slot localAggregationMinCombinedShakeDuration= {localAggregation ←֓

minCombinedShakeDuration }

slot localAggregationMaxCombinedShakeDuration= {localAggregation ←֓

maxCombinedShakeDuration }

slot localAggregationMinShakeEventsTrigger= {localAggregation ←֓

minShakeEventsTrigger }

slot newShakeTime = {shake time

<− eval ({ t h i s modified} == true )

}

rule purgeOldAndWeakShakeEvents 200

<− exists {shake}

−> retract {shake

<− eval ({ t h i s time} < ( newShakeTime − ←֓

localAggregationDiscardEventsAfter ) )
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}

−> retract {shake

<− eval ({ t h i s intensity} <= localAggregationMinShakeIntensity )

}

−> retract {shake

<− eval ({ t h i s duration} <= localAggregationMinShakeDuration )

}

rule aggregateShakeEvents 190

<− exists {shake} // FIXME: Workaround f o r the ru l e eng ine .

<− eval ( ( count {shake }) >= localAggregationMinShakeEventsTrigger )

<− eval ( ( sum {shake duration }) >= localAggregationMinCombinedShakeDuration )

<− eval ( ( sum {shake duration }) <= localAggregationMaxCombinedShakeDuration )

−> define climb [ confidence = (( max {shake intensity }) ∗ ( max {shake ←֓

duration }) ) ]

−> retract {shake}

/∗

∗ Step 2 : One−Hop Neighborhood Event Aggregat ion

∗

∗ Broadcast new cl imb events to one−hop neighbors , r ep ly with ACK or NACK

∗ depending on l o c a l events . After a t imer runs out , dec ide whether to send

∗ the event to the base s t a t i o n .

∗/

name ack = ”ack”

name nack = ”nack”

name neighborhoodSendDelayTimerExpired = ”neighborhoodSendDelayTimerExpired ”

name neighborhoodAggregationTimerExpired = ”←֓

neighborhoodAggregationTimerExpired ”

name neighborhoodAggregation = ”neighborhoodAggregat ion ”

fact neighborhoodAggregation [

minShakeEventsTrigger = 3 ,

minAckTrigger = 1

]

slot neighborhoodAggregationMinShakeEventsTrigger= {neighborhoodAggregation ←֓

minShakeEventsTrigger }

slot neighborhoodAggregationMinAckTrigger= {neighborhoodAggregation ←֓

minAckTrigger }

slot newReceivedClimbEvent = {climb

<− eval ({ t h i s modified} == true )

<− eval ({ t h i s owner} != systemID )
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}

/∗

s l o t newReceivedClimbEventID = { cl imb id

<− eva l ({ t h i s modi f i ed } == true )

<− eva l ({ t h i s owner} != systemID )

}

∗/

slot newReceivedClimbEventOwner = {climb owner

<− eval ({ t h i s modified} == true )

<− eval ({ t h i s owner} != systemID )

}

rule delayOnNewLocalClimbEvents 150

<− exists {climb

<− eval ({ t h i s owner} == systemID )

}

−> call defineLater ({ neighborhoodSendDelayTimerExpired } , 1)

rule broadcastNewLocalClimbEvents 145

<− exists {neighborhoodSendDelayTimerExpired }

−> send systemBroadcast systemTxRange {climb}

−> retract {neighborhoodSendDelayTimerExpired }

−> call defineLater ({ neighborhoodAggregationTimerExpired } , 3)

rule ackNewReceivedClimbEvents1 140

<− exists newReceivedClimbEvent

<− exists {climb

<− eval ({ t h i s owner} == systemID )

}

−> define ack // [ eventID = newReceivedClimbEventID ]

−> send newReceivedClimbEventOwner systemTxRange {ack

<− eval ({ t h i s owner} == systemID )

}

−> retract {ack

<− eval ({ t h i s owner} == systemID )

}

−> retract newReceivedClimbEvent

rule ackNewReceivedClimbEvents2 130

<− exists newReceivedClimbEvent

<− eval ( ( count {shake }) >= neighborhoodAggregationMinShakeEventsTrigger )

−> define ack // [ eventID = newReceivedClimbEventID ]

−> send newReceivedClimbEventOwner systemTxRange {ack

<− eval ({ t h i s owner} == systemID )

}

−> retract {ack
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<− eval ({ t h i s owner} == systemID )

}

−> retract newReceivedClimbEvent

rule nackNewReceivedClimbEvents 120

<− exists newReceivedClimbEvent

−> define nack // [ eventID = newReceivedClimbEventID ]

−> send newReceivedClimbEventOwner systemTxRange {nack

<− eval ({ t h i s owner} == systemID )

}

−> retract {nack

<− eval ({ t h i s owner} == systemID )

}

−> retract newReceivedClimbEvent

rule evalAcksOnTimeout 110

<− exists {neighborhoodAggregationTimerExpired }

<− eval ( ( count {ack }) >= neighborhoodAggregationMinAckTrigger )

−> define alert [ confidence = {climb confidence } ]

rule retractAcksAfterTimeout 100

<− exists {neighborhoodAggregationTimerExpired }

−> retract {ack}

−> retract {neighborhoodAggregationTimerExpired }

−> retract {climb}

rule retractNacks 90

<− exists {nack}

−> retract {nack}




