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Abstract

Most techniques for attribute selection in
decision trees are biased towards attributes
with many values, and several ad hoc solu-
tions to this problem have appeared in the
machine learning literature. Statistical tests
for the existence of an association with a
prespecified significance level provide a well-
founded basis for addressing the problem.
However, many statistical tests are computed
from a chi-squared distribution, which is only
a valid approximation to the actual distri-
bution in the large-sample case—and this
patently does not hold near the leaves of a
decision tree. An exception is the class of
permutation tests. We describe how permu-
tation tests can be applied to this problem.
We choose one such test for further explo-
ration, and give a novel two-stage method for
applying it to select attributes in a decision
tree. Results on practical datasets compare
favorably with other methods that also adopt
a pre-pruning strategy.

1 Introduction

Statistical tests provide a set of theoretically well-
founded tools for testing hypotheses about relation-
ships in a set of data. One pertinent hypothesis, when
selecting attributes for a decision tree, is whether there
is a significant association between an attribute’s val-
ues and the classes. With r attribute values and ¢
classes, this equates to testing for independence in the
corresponding 7 X ¢ contingency table (White & Liu,
1994), and statistical tests designed for this purpose
can be applied directly. Unlike most commonly-used
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attribute selection criteria, such tests are not biased
towards attributes with many values, which is impor-
tant because it prevents the decision tree induction al-
gorithm from selecting splits that overfit the training
data by being too fine-grained.

Statistical tests are based on probabilities derived from
the distribution of a test statistic. Two popular test
statistics for assessing independence in a contingency
table have been proposed for attribute selection: the
chi-squared statistic x? and the log likelihood ratio
G2 (White & Liu, 1994). For large samples, both are
distributed according to the chi-squared distribution.
But this is not the case for small samples (Agresti,
1990)—and small samples inevitably occur close to the
leaves in a decision tree. Thus it is inadvisable to use
probabilities derived using the chi-squared distribution
for decision tree induction.

Fortunately, there is an alternative that does apply in
small frequency domains. In statistical tests known as
“permutation tests” (Good, 1994), the distribution of
the statistic of interest is calculated directly instead
of relying on the chi-squared approximation—in other
words they are “non-parametric” rather than “para-
metric.” Such tests do not suffer from the small ex-
pected frequency problem because they do not use the
chi-squared approximation.

This paper describes the application of permutation
tests to attribute selection in a decision tree. We ex-
amine one such test—the Freeman and Halton test—
in detail by performing experiments on artificial and
practical datasets: the results show that this method
is indeed preferable to a test that assumes the chi-
squared distribution. The statistic of the Freeman and
Halton test is the exact probability p; of a contin-
gency table f given its marginal totals (Good, 1994).
Recently, Martin (1997) investigated the use of this
statistic, py, directly for attribute selection. We show



that results can be improved by using it in conjunction
with the Freeman and Halton test.

Section 2 introduces the idea of permutation tests and
how they can be used to test significance in a contin-
gency table. In Section 2.2 we describe the Freeman
and Halton test. The test is expensive, but simple
computational economies are described in Section 2.3.
Section 2.4 describes a novel two-stage method, based
on these ideas, for selecting attributes in a decision
tree. Section 3 presents experimental results on arti-
ficial and standard datasets. We verify that the Free-
man and Halton test does not prefer attributes with
many values, whereas the test statistic py by itself is
biased. We also verify that the parametric version of
the chi-squared test is biased in small-frequency do-
mains. Finally, we demonstrate that good results are
obtained when the new method is applied to decision-
tree building. Section 4 reviews existing work on us-
ing statistical tests for contingency tables in machine
learning, while Section 5 contains some concluding re-
marks.

2 A Permutation Test and its
Application to Attribute Selection

The procedure for permutation tests is simple (Good,
1994). First, a test statistic is chosen that measures
the strength of the effect being investigated, and is
computed over the data. The null hypothesis is that
the observed strength of the effect is not significant.
Next, the labels of the original data are permuted
and the same statistic is calculated for the relabeled
data; this is repeated for all possible permutations of
labels. The idea is to ascertain the likelihood of an
effect of the same or greater strength being observed
fortuitously on randomly labeled data with identical
marginal properties. Third, the test statistic’s value
for the original data is compared with the values ob-
tained over all permutations, by calculating the per-
centage of the latter that are at least as extreme, or
more extreme, than the former. This percentage con-
stitutes the significance level at which the null hypoth-
esis can be rejected, in other words, the level at which
the observed strength of the effect can be considered
significant.

2.1 Permutation Tests for Contingency
Tables

Contingency tables summarize the observed relation-
ship between two categorical response variables. Sev-
eral different statistics can be used to measure the

strength of the dependency between two variables
(Good, 1994), the two most common being the chi-
squared statistic x2 and the log likelihood ratio Gs.
The standard tests using these statistics are based on
the fact that the sampling distribution of both statis-
tics is well-approximated by the chi-squared distribu-
tion. They calculate the significance level directly from
that distribution.

Unfortunately, as noted in the introduction, the chi-
squared distribution assumption is only valid for either
statistic when the sample size is large enough. The
chi-squared distribution approximates the true sam-
pling distribution poorly if the sample size is small
(or the samples are distributed unevenly in the con-
tingency table). In a decision tree the sample size be-
comes smaller and smaller and the distribution of the
samples more and more skewed the closer one gets to
the leaves of the tree. Thus one cannot justify using
a test based on the chi-squared approximation for sig-
nificance testing throughout a decision tree (although
one might at the upper levels where samples are large).
Permutation tests offer a theoretically sound alterna-
tive that is admissible for any sample size.

The standard permutation test for r x ¢ contingency
tables, which we have also chosen to employ for this
paper, is based on the statistic py, the exact probabil-
ity of a contingency table given its marginal totals. It
is known as the “Freeman and Halton” test and it is
a generalization of Fisher’s exact test for 2 x 2 tables
(Good, 1994). However, we emphasize that other test
statistics could equally well be used, thereby obtaining
exact, non-parametric, versions of conventional para-
metric tests that are valid in small-frequency domains
(Good, 1994).1

2.2 Testing the Significance of an Attribute

For attribute selection, we seek to test whether there is
a significant association between an attribute’s values
and the class values. With r attribute values and ¢
classes, this is the same as testing for independence in
the corresponding r x ¢ contingency table (White &
Liu, 1994).

If the r x c contingency table f contains the frequencies
fij with column marginals f; and row marginals f;,,
the probability py of this table is given by

!We have also used a permutation test based on 2,
instead of on py, in all the experiments described in Section
3, and obtained almost identical results.
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Permuting the instances’ class labels does not affect
the row and column totals, and therefore the set of all
permutations of the class labels corresponds to the set
of all contingency tables with the same row and column
totals. If p is the proportion of tables for which py is
less than or equal to the probability p, of the original
table, then

p=>Y_I(ps < po)ps,

where I(.) denotes the indicator function, constitutes
the p-value of the Freeman and Halton test. The func-
tion computing p is known as a multiple hypergeomet-
ric distribution (Agresti, 1990). The resulting value
of p is simply compared with a prespecified desired
significance level.

2.3 Approximating the Exact Test

Exact computation of the p-value of a permutation
test is only possible for sparsely populated tables, and
is computationally infeasible for most tables resulting
from practical machine learning datasets. Fortunately,
p can be approximated to arbitrary precision by Monte
Carlo sampling as follows (Good, 1994).

For each of n trials the class labels are randomly per-
muted, the test statistic is computed, and its value is
compared to the value for the original (unpermuted)
data. The percentage of trials for which the arti-
ficially generated value is less than or equal to the
original value constitutes an estimate p of the ex-
act significance level p. This estimate is a bino-
mial random variable with standard error se(p) =
/(1 = p)/n, and so its 100(1 — @)% confidence inter-
val is ptt,_1(a/2)se(p), where t,_1(a/2) is obtained
from Student’s t-distribution.

This information is used to decide when to stop per-
forming trials. Let paxeq be the prespecified desired
minimum significance level that an attribute must
achieve unless it is to be considered independent of
the class—the level at which the null hypothesis of
“no significant dependence” is to be rejected. Then,
with probability (1 — «),

D > Pfixed if Pfixed < ﬁ - tn—l(a)se(ﬁ)a
and

D < Prixed if  Phixed > P+ tn—1(a)se(p)).

If the first inequality holds we judge the attribute to
be significant; if the second holds we do not.? As n
increases, the likelihood that one of the two inequal-
ities will be true increases, but if p is very close to
Pfixed, Deither inequality will become true in a rea-
sonable amount of time. Therefore the procedure is
terminated when the number of trials reaches a pre-
specified maximum,® and any attribute that survives
this number of trials is considered significant. The in-
troduction of this cut-off point slightly increases the
probability that an attribute is incorrectly judged to
be significant.

2.4 Procedure for Attribute Selection

At each node of a decision tree we must decide which
attribute to split on. This is done in two steps. First,
attributes are rejected if they show no significant as-
sociation to the class according to a pre-specified sig-
nificance level. To judge “significance” we employ
the Freeman and Halton test, approximated by Monte
Carlo sampling as described above. Second, from the
attributes that remain, the one with the lowest value
of py is chosen.* The selected attribute is then used to
split the set of instances, and the algorithm recurses.

The division into two steps is a crucial part of the pro-
cedure. It distinguishes clearly between the different
concepts of significance and strength. For example, it
is well known that the association between two distri-
butions may be very significant even if that association
is weak—if the quantity of data is large enough (Press,
Teukolsky, Vettering & Flannery, 1988, p. 628). First,
we test the significance of an association using a per-
mutation test (specifically, the Freeman and Halton
test); then we consider its strength (as measured by
the exact probability py).

If no significant attributes are found in the first step,
the splitting process stops and the subtree is not ex-
panded any further. This gives an elegant, uniform,
technique for pre-pruning.

3 Experimental Results

We begin with two controlled experiments that are de-
signed to verify the relative performance of (a) the use

*Here, « is used instead of /2 because the comparisons
are one-sided. In our experiments we set a to 0.005.

3We use at least 100 and at most 1000 trials in our
experiments.

4Other attribute selection criteria could be employed at
this stage; py was chosen to allow a direct comparison with
the method proposed by Martin (1997).



Table 1: Average probabilities for random data (600 instances; uniformly distributed attribute values)

Attribute Values Class Values (a)p (b) py  (c) py
2 2 0.525 0.045 0.488
2 5 0.511  1.63e-05 0.509
2 10 0.506 1.80e-10  0.505
5 2 0.497 1.55e-05  0.496
5 5 0.500 9.25e-18 0.497
5 10 0.491 6.62e-35 0.487
10 2 0.498 1.77e-10 0.495
10 5 0.520 7.84e-35 0.515
10 10 0.512  4.89e-68 0.503

Table 2: Average probabilities for random data (20 instances; non-uniformly distributed attribute values)

Attribute Values

Class Values

2 2
2 5
2 10
5 2
5 5
5 10
10 2
10 5
10 10

@5 B @b
0.745 0.285 0.515
0.674 0.024 0.466
0.741 0.004 0.446
0.549 0.027 0.444
0.561 1.02e-4 0.448
0.632 1.80e-6 0.418
0.548 0.004 0.430
0.581 1.72e-6 0.425
0.639 1.42¢-8 0.382

of the exact-probability p; statistic in the Freeman
and Halton test, (b) the use of py by itself with no
significance test (Martin, 1997), and (c) the use of the
parametric version of the chi-squared test, that is, the
probability of x2 calculated from the chi-squared dis-
tribution (White & Liu, 1994). The first experiment
exhibits an artificial dataset for which method (b) per-
forms poorly because it is biased towards many-valued
attributes, whereas (a) performs well (and so does (c)).
The second exhibits another dataset for which method
(c) is biased towards towards many-valued attributes
and performs poorly (and (b) performs even worse),
whereas (a) continues to perform well.

The third subsection presents results for building deci-
sion trees on practical datasets using the new method.

3.1 Using the Exact Probability p; is Biased

In order to show that the exact probability py is bi-
ased towards attributes with many values, we adopt
the experimental setup of White and Liu (1994). This
involves an artificial dataset that exhibits no actual
association between class and attribute values. For
each class, an equal number (300) of instances with
random, uniformly distributed attribute values is gen-
erated. The estimated p-value of the Freeman and Hal-
ton test p, the exact probability py, and the p-value of

the parametric chi-squared test p, are calculated for
this artificial, non-informative, attribute.®> This pro-
cedure is repeated 1000 times with different random
seeds used to generate the instances.

Table 1 shows the average values obtained. It can
be seen in column (b) that py systematically decreases
with increasing number of classes and attribute values.
Even more importantly, it is always close to zero. If
used for pre-pruning at the 0.01 level (as proposed by
Martin, 1997), it would fail to stop splitting in every
situation except that represented by the first row. On
the other hand, neither p nor p, varies systematically
with the number of attribute and class values. For
these reasons it is inadvisable to use py for attribute
selection without preceding it with a significance test.

3.2 Parametric Chi-Squared Test is Biased

A similar experimental procedure was used to show
that the parametric chi-squared test is biased in small
frequency domains with unevenly distributed samples.
Instead of generating the attribute values uniformly,
they are skewed so that more samples lie close to the
zero point. This is done using the distribution |kz?],
where k is the number of attribute values and z is

50ur experiments use N = 1000 Monte Carlo trials to
estimate p.



distributed uniformly between 0 and 1. The number
of instances is reduced to twenty.

Table 2 shows the average values obtained using this
procedure. It can be seen that p, decreases system-
atically as the number of attribute values increases,
whereas this is not the case for p. The test based on
Py is too liberal in this situation. There also exist sit-
uations in which it is too conservative (Good, 1994).
If used for pruning in a decision tree, a test that is too
liberal does not prune enough, and a test that is too
conservative prunes too much.

3.3 Comparison on Practical Datasets

Results are now presented for building decision trees
for thirty-one UCI datasets (Merz & Murphy, 1996) us-
ing the method described above. We eliminated miss-
ing values from the datasets by deleting all attributes
with more than 10% missing values, and subsequently
removing all instances with missing values. The result-
ing datasets are summarized in Table 3. All numeric
attributes were discretized into four intervals of equal
width.8

We compare pre-pruned trees built using (a) py with
prior significance testing using the Freeman and Hal-
ton test p, (b) the exact probability ps, (c) py with
prior significance testing using the parametric chi-
squared test p,, and (d) post-pruned trees built us-
ing C4.5’s pessimistic pruning with default parameter
settings (Quinlan, 1993). We also include results for
pruned and unpruned trees as built by C4.5. Note that
for (a) and (c) we are now applying the two-step at-
tribute selection procedure developed in Section 2.4,
first discarding insignificant attributes and then se-
lecting the best among the remainder. Results are
reported for three significance levels: 0.01, 0.05 and
0.10. All results were generated using ten-fold cross-
validation repeated ten times with different random-
izations of the dataset. The same folds were used for
each scheme.”

Table 4 shows how method (a) compares with the oth-
ers. Each row contains the number of datasets for
which it builds significantly more (+) or less (—) ac-
curate trees, and significantly smaller (+) or larger (—)
trees than the method associated with this row. We
speak of results being “significantly different” if the

81f the class information were used when discretizing the
attributes, the assumptions of the statistical tests would be
invalidated.

"Appendix A lists the average accuracy and standard
deviation for a representative subset of the methods.

Table 3: Datasets used for the experiments

Dataset Size Attributes Classes
(numeric/total)
anneal 898 6/38 5
audiology 216 0/67 24
australian 653 6/15 2
autos 193 14/24 6
balance-scale 625 4/ 4 3
breast-cancer 277 0/ 9 2
breast-w 683 9/ 9 2
german 1000 7/20 2
glass (G2) 163 9/ 9 2
glass 214 9/ 9 6
heart-c 296 6/13 2
heart-h 261 5/10 2
heart-statlog 270 13/13 2
hepatitis 137 3/16 2
hypothyroid 3404 2/24 4
ionosphere 351 34/34 2
iris 150 4/ 4 3
kr-vs-kp 3196 0/36 2
lymphography 148 3/18 4
mushroom 8124 0/21 2
pima-indians 768 8/ 8 2
primary-tumor 336 0/15 21
segment 2310 19/19 7
sick 3404 2/24 2
sonar 208 60/60 2
soybean 630 0/16 15
splice 3190 0/61 3
vehicle 846 18/18 4
vote 312 0/15 2
vowel 990 10/13 11
Z00 101 1/16 7

difference is statistically significant at the 1% level ac-
cording to a paired two-sided t-test, each pair of data
points consisting of the estimates obtained in one ten-
fold cross-validation run for the two learning schemes
being compared. Results are shown for three different
significance levels: note that this refers to the level
at which attributes are rejected prior to the selection
process.

Observe first that pre-pruning using p outperforms
pre-pruning using py (the three rows marked (b)), con-
firming our findings from Section 3.1. For all three sig-
nificance levels p dominates py in both accuracy and
size of the trees produced. These results show that if
the splitting attribute is selected based on the value of
Py, it is better to use a significance test first.

One might think that py performs poorly with respect
to p because the former does not prune sufficiently—
it is inferior in terms of both accuracy and tree size.
Consequently, we also ran pre-pruning using py at the
0.005 and 0.001 levels, and found that the performance



Table 4: Number of times p performs significantly better (+) or worse (—) than (b) py, (c) py, (d) post-pruned
trees, and pruned and unpruned C4.5 trees with respect to accuracy and tree size

Accuracy Tree Size

3 + - + =

Prixed = 0.01 (D) ps 8 5 17 6
(c) py 9 3 8 11

(d) post-pruned 4 14 20 7

C4.5 pruned 3 17 20 7

C4.5 unpruned 11 11 31 0

Dfixed = 0.05  (b) ps 8 2 22 3
(c) px 6 6 24 2

(d) post-pruned 4 9 8 17

C4.5 pruned 2 16 11 15

C4.5 unpruned 8 9 29 2

Pfixed = 0.1 (b) pf 9 2 24 1
(c) py 5 5 24 0

(d) post-pruned 4 12 5 22

C4.5 pruned 3 16 3 24

C4.5 unpruned 8 8 29 2

Table 5: Number of times p with gain ratio (Method a') performs significantly better (+) or worse (—) than p
with p; (Method a), and pruned and unpruned C4.5 trees

Accuracy Tree Size

p with gain ratio + — + —

Pixed = 0.01  p with ps 8 3 10 10
C4.5 pruned 3 14 21 6

C4.5 unpruned 13 7 30 1

Pfixed = 0.06 P with pg 10 4 11 14
C4.5 pruned 0 10 10 14

C4.5 unpruned 12 7 30 1

Phixed = 0.1 p with py 10 5 11 12
C4.5 pruned 1 15 6 22

C4.5 unpruned 13 8 30 0

difference between py and p can not be eliminated by
adjusting the significance level.

Next, observe from the three rows marked (c¢) that for
the 0.01 significance level, pre-pruning using p beats
pre-pruning using p, with respect to the accuracy
of the resulting trees. For this significance level the
two methods produce trees of similar size. However,
for both the 0.05 and the 0.1 levels p produces trees
that are significantly smaller than those produced by
py- For these two significance levels the two methods
perform comparably as far as accuracy is concerned.
These facts indicate that for both the 0.05 and the
0.1 levels p, is a more liberal test than p if applied
to attribute selection and pre-pruning; p, stops later
than p—as for the artificial dataset used in Section

3.2. However, it is sometimes more conservative—in
particular for the 0.01 level. The two tests really do
behave differently: they cannot be forced to behave
in the same way by adjusting their significance levels.
However, the results show that trees produced by p are
preferable to those produced by py.

Table 4 also shows that post-pruning consistently
beats pre-pruning using p, so far as accuracy is con-
cerned (rows marked (d)). Our findings show that all
the investigated pre-pruning methods perform signifi-
cantly worse than pessimistic post-pruning.® For both
the 0.01 and the 0.05 levels, there are five datasets

8This contradicts a previous result (Martin, 1997) that
trees pre-pruned using py are as accurate as, and smaller
than, trees post-pruned using pessimistic pruning.



on which all pre-pruning methods consistently per-
form significantly worse than post-pruning: hypothy-
roid, kr-vs-kp, sick, splice, and vowel. On kr-vs-kp and
vowel the pre-pruning methods stop too early, on the
other three they stop too late. This means that the
problem cannot be solved by adjusting the significance
level of the pre-pruning methods.

For reference Table 4 also includes results for pruned
and unpruned decision trees built by C4.5. C4.5’s
method for building pruned trees differs from post-
pruning method (d) only in that it employs the gain
ratio® instead of py for attribute selection.

Suprisingly, Table 4 shows that p does not perform
better than C4.5’s unpruned trees as far as accuracy is
concerned, although p performs better than unpruned
trees built using py (results not shown). This indicates
that the gain ratio produces more accurate trees than
pr. We therefore replaced attribute selection using py
in the second step of pre-pruning method (a) by selec-
tion based on the gain ratio. As Table 5 shows, the new
method (a’)—selection based on the gain ratio with
prior significance testing using the Freeman and Hal-
ton test p—indeed performs better than method (a),
and it also outperforms C4.5’s unpruned trees. How-
ever, as Table 5 also shows, post-pruning—in this case
represented by C4.5’s pruned trees—still consistently
beats pre-pruning using p.

4 Related Work

Several researchers have applied parametric statistical
tests to attribute selection in decision trees (White &
Liu, 1994; Kononenko, 1995) and proposed remedies
for their shortcomings (Martin, 1997). These are re-
viewed in the next section. Following that we discuss
work on permutation tests for machine learning, none
of which has been concerned with attribute selection
in decision trees.

4.1 Use of Statistical Tests for Attribute
Selection

White and Liu (1994) compare several entropy-based
selection criteria to parametric tests that rely on the
chi-squared distribution. More specifically, they com-
pared the entropy-based measures to parametric tests
based on both the chi-squared and log likelihood ra-
tio statistics. They conclude that each of the entropy

9More precisely, it selects the attribute with maximum
gain ratio among the attributes with more than average
information gain.

measures favors attributes with larger numbers of val-
ues, whereas the statistical tests do not suffer from this
problem. However, they also mention the problem of
small expected frequencies with parametric tests and
suggest the use of Fisher’s exact test as a remedy. The
extension of Fisher’s exact test to r x ¢ tables is the
Freeman and Halton test that we have used above.

Kononenko (1995) repeated and extended these exper-
iments and investigated several other attribute selec-
tion criteria as well. He shows that the parametric test
based on the log likelihood ratio is biased towards at-
tributes with many values if the number of classes and
attribute values relative to the number of instances
exceed the corresponding figures considered by White
and Liu (1994). This is not surprising: it can be traced
to the problem of small expected frequencies. For the
log likelihood ratio the effect is more pronounced than
for the chi-squared statistic (Agresti, 1990).

Kononenko also observes another problem with sta-
tistical tests. The restricted floating-point precision
of most computer arithmetic makes it difficult to use
them to discriminate between different informative at-
tributes. The reason for this is that the association
to the class is necessarily highly significant for all in-
formative attributes.'® However, there is an obvious
solution, which we pursue in this paper: once it has
been established that an attribute is significant, it can
be compared to other significant attributes using an at-
tribute selection criterion that measures the strength
of the association.

Recently, Martin (1997) used the exact probability of
a contingency table given its marginal totals py for at-
tribute selection and pre-pruning. Our method differs
from his only in that we employ a significance test,
based on py but not identical to it, to determine the
significance of an attribute before selecting the best of
the significant attributes according to py. As Section 3
of this paper establishes, direct use of py for attribute
selection produces biased results.

4.2 Use of Permutation Tests in Machine
Learning

Apparently the first to use a permutation test for ma-
chine learning, Gaines (1989) employs an approxima-
tion to Fisher’s exact test to judge the quality of rules
found by the INDUCT rule learner.!! Instead of the

10The probability that the null hypothesis of no asso-
ciation between attribute and class values is incorrectly
rejected is very close to zero.

"'He uses the one-tailed version of Fisher’s exact test.



Figure 1: Two 2 x 2-tables which both optimize the
test statistic

hypergeometric distribution he uses the binomial dis-
tribution, which is a good approximation if the sam-
ple size is small relative to the population size (smaller
than 10 percent).

Jensen (1992) gives an excellent introduction to per-
mutation tests.!? He discusses several alternatives,
points out their weaknesses, and deploys the method-
ology in a prototypical rule learner. However, he does
not mention the prime advantage of permutation tests,
which makes them especially interesting in the context
of decision trees: their applicability to small-frequency
domains.

5 Conclusions

We have applied an approximate permutation test
based on the multiple hypergeometric distribution to
attribute selection and pre-pruning in decision trees,
and explained why it is preferable to tests based on
the chi-squared distribution. We have shown that us-
ing the exact probability of a contingency table given
its marginal totals without a prior significance test is
biased towards attributes with many values and per-
forms worse in comparison. Although we were able to
improve on existing methods for pre-pruning, we could
not achieve the same accuracy as post-pruning.

Apart of the standard explanation that pre-pruning
misses hidden attribute interactions, there are two
other possible reasons for this result. The first is that
we did not adjust for multiple comparisons when test-
ing the significance of an attribute. Recently, Jensen
and Schmill (1997) showed how to reduce the size of
a post-pruned tree significantly by taking multiple hy-
potheses into account using a technique known as the
“Bonferroni correction.” The second reason is that
tests for r X ¢ contingency tables are inherently multi-
sided. Consider the table shown at the left of Fig-
ure 1, which corresponds to a perfect classification of
two classes using an attribute with two values. There is
another permutation of class labels, shown at the right,
that also results in a contingency table with the same
optimum value of the test statistic. The significance

12He uses the term “randomization test” instead of per-
mutation test.

level achieved by the original table is only half as great
as it would be if there were only one table that opti-
mized the test statistic. In the case of two attributes
and two classes, the one-sided version of Fisher’s exact
test avoids this problem. Generalizing this to the r x ¢
case appears to be an open problem.
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Table 6: Experimental results: percentage of correct classifications, and standard deviation using p, pr, py, post-
pruned trees, p with gain ratio, C4.5’s pruned trees, and C4.5’s unpruned trees. Because of space constraints,
we could only include results for one of the three payeq vales used in Table 4: we chose pgxeq = 0.05. In the last
six columns, figures are marked with e if they are significantly worse than the corresponding results for p, and
with o if they are significantly better.

p pf DPx post- p with C4.5 C4.5
pruned gain ratio pruned unpruned
anneal 98.6+0.1 98.5+0.0 o 99.0+0.1 o 98.4+0.1 o 98.3+0.3 98.0+0.3 o 98.3+0.3
audiology 71.6+1.9 70.3£1.9 o 71.5+1.7 71.941.3 73.8+1.2 o 74.84+1.0 o 74.84+1.3 o
australian 85.7+0.5 86.7+0.5 o 85.01+0.5 o 86.44+0.0 o 84.8+0.5 o 85.24+0.4 83.8+1.0 o
autos 67.3+2.2 67.2+2.4 72.7+2.4 o 70.5+2.4 o 73.3+£2.3 o 73.0+2.0 o 72.94+2.3 o
balance-scale 66.1+0.9 70.5%1.2 o 65.94+1.2 67.3£1.0 67.2£1.2 o 67.9£+1.0 o 74.1£1.0 o
breast-cancer 69.0+1.5 65.0+1.4 e 69.84+1.2 67.6+1.1 72.5+1.1 o 74.441.2 o 66.6+1.4 e
breast-w 95.240.7 95.14+0.6 95.0+0.7 95.240.6 95.7+0.3 96.0+0.3 o 95.6+0.3
german 70.3+0.7 70.44+0.7 70.4+1.1 70.51+0.5 70.5+0.8 70.94+0.8 67.2+1.2 o
glass (G2) 70.5+4.3 70.6+2.5 70.5+3.3 71.3+1.7 67.3+2.5 79.7+1.4 o 79.5+1.6 o
glass 59.8+1.4 59.3+1.4 59.6+1.1 60.2+1.3 60.1+1.6 59.9+2.1 59.3+1.4
heart-c 78.2+1.1 76.8+1.4 76.61+0.9 o 79.242.4 77.0+£1.2 77.5+1.2 75.1+14 o
heart-h 73.940.9 72.6+1.6 74.8+1.2 73.7+0.9 77.841.2 o 79.54+0.8 o 76.6+£1.0 o
heart-statlog 79.2+1.5 77.7£1.7 o 78.1+1.9 e 80.140.7 76.2+1.6 o 78.5+1.9 75.7£2.0 o
hepatitis 79.8+2.4 79.54+2.2 79.5+1.7 80.7+1.6 84.4+1.8 o 84.44+1.3 o 80.7+1.4
hypothyroid 91.7+0.1 91.740.0 91.740.0 91.940.0 o 91.7£0.0 91.940.0 o 91.740.1
ionosphere 87.0+1.0 86.710.8 87.4+0.8 88.14+0.5 o 87.8+1.4 87.2+0.6 86.6+0.7
iris 91.84+0.3 91.54+0.9 91.84+0.3 91.54+0.8 91.94+0.2 91.54+0.9 90.7+1.1
kr-vs-kp 99.3+0.1 99.340.1 99.340.1 99.44+0.1 o 99.340.1 99.540.1 o 99.54+0.1 o
lymphography 75.240.8 76.3+2.1 75.2+1.5 76.0+2.4 76.1+1.6 78.6+1.6 o 75.84+2.0
mushroom 100.0+0.0 100.0+0.0 100.0+0.0 100.0+0.0 100.0+0.0 100.0+0.0 100.0+0.0
pima-indians 74.04+0.8 72.94+0.7 74.2+0.5 71.94+0.4 o 74.14+0.6 74.14+0.5 69.4+0.8 o
primary-tumor 39.8+1.1 36.1t1.4 e 37.6+14 e 35.7+14 e 38.7+1.9 40.04+0.5 40.34+1.1
segment 91.0+0.2 91.240.3 91.1+0.2 o 91.3+0.2 91.54+0.3 o 91.840.2 o 91.840.3 o
sick 93.3+0.1 93.340.1 93.2+0.1 o 93.4+0.0 o 93.340.1 93.44+0.0 o 93.240.1 o
sonar 68.8+2.5 68.3+2.5 68.6+3.5 69.1+2.4 70.3£2.6 71.5+£2.2 70.5+3.1
soybean 75.14+0.8 72.24+0.8 o 76.14+0.7 o 73.5+0.6 o 77.6+£0.5 o 77.7£0.5 o 76.7£0.7 o
splice 92.6+0.3 92.3+0.3 o 92.24+0.3 o 93.44+0.2 o 93.24+0.2 o 94.24+0.2 o 92.24+0.2 o
vehicle 63.4+0.9 62.0+0.6 o 64.1+1.0 o 64.21+0.7 65.71+0.7 o 66.14+0.5 o 64.21+0.7
vote 95.440.4 95.5+0.4 95.54+0.3 95.6+0.5 95.5+0.4 95.5+0.4 96.2+0.5 o
vowel 77.941.0 78.0+1.0 79.54+1.0 o 80.84+1.0 o 73.8+0.6 o 76.61+0.5 o 78.2+0.7

700 92.5+1.8 92.8+1.6 94.04+2.0 94.8+2.1 o 89.6+1.4 o 90.8+1.5 91.5+1.4




