
Abstract

This thesis expands the usage of partial order reduction methods in reducing

the state space of large models in model checking. The work done can be

divided into two parts. In the first part we introduce two new ample con-

ditions that utilise strongly connected components in place of two existing

ample conditions that use cycles. We use these new conditions to optimise

existing partial order reduction verifiers and extend them to verify nonblock-

ing properties. We also introduce two selection strategies for choosing ample

event sets and an improved ample algorithm in order to improve the efficiency

of ample set computation, and investigate how the various combinations of

these suggested algorithmic improvements effect several models of varying

size. The second part of the thesis introduces the concept of using partial

order reduction techniques in combination with compositional verification

techniques. We introduce a modified version of the silent continuation rule

that makes use of the independence relationship from partial order reduction

methods and include algorithms by which they may be implemented in a

model verifier. All of the original concepts developed in this thesis are also

proven correct.
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Chapter 1

Introduction

Model verification of discrete event systems [5] typically involves determin-

ing certain properties of different models. In order to do this, the various

states that a system may be in are examined. Since a system is often rep-

resented by several indivudual components, each with its own set of states

that it may be in, to determine a state of the whole system we construct a

synchronous composition [11,16] out of all of the seperate components. This

synchronous composition represent every possible combination of states that

the different components may be in. For large systems with many different

components or with many states in each component, the number of states in

this synchronous composition grows exponentially, resulting in what is called

a state-space explosion. Since we may wish to determine propeties in various

large systems like this, it is helpful to use methods by with the state-space

explosion problem may be mitigated.

Once such method is partial order reduction. This method aims to exploit

certain structures that are present in a synchronous composition in order the

identify and eliminate redundant states. To do this we use use a relationship

between the events in the system known as independence. If we notice that

two event are independent, then we know that the order in which these events

occur if they are ever both able to be performed in the same state, does not

matter. This gives rise to some states that do not add unique behaviour in

the system and thus may be removed.
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Another method is compositional verification [22]. This approach is based

around making abstraction of the components using several different rules

that identify states that are able to be merged together. The merging of the

states yields state space reduction in the component automata, which when

composed together two at a time, may have the process repeated on the

resulting composition. Continuing to reduce the components and synchronise

until the system is small enough to verify is the goal of this process.

This thesis will develop methods for both partial order reduction and com-

positional verification. In particular a partial order reduction implementation

will be introduced to verify both nonblocking and controllability properties.

We will also offer several optimisations to the partial order reduction con-

trollability verifier offered in [17] along with some new conditions and proofs

for the correctness of the process. A new abstraction rule for use in composi-

tional verification which utilises concepts from partial order reduction is also

offered, along with the necessary algorithms for development and proofs of

correctness.

The report is organised as follows. Chapter 2 introduces definitions and

terminology used throughout the report and offers background information

to set give context so that the later discussions can be readily interpreted.

Chapter 3 explains the research done in implementing partial order reduction

model verifiers for nonblocking and controllability. It includes subsections

for detailing the algorithms that were developed, proofs of the various condi-

tions introduced, experimental results and conclusions. Chapter 4 explains

the research done in developing a new abstraction rule for compositional ver-

ification with ideas from partial order reduction. It includes subsections for

detailing the algorithms that were developed, proofs of the various conditions

introduced and conclusions. A functional implementation of the research

given in Chapter 4 has not yet been realised so the experimental results are

excluded from that chapter. Chapter 5 then concludes the thesis.
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Chapter 2

Preliminaries

This chapter introduces the concepts and mathematical notation used through-

out this thesis. Any additional notation or concepts specific to particular

areas will be introduced as required in later chapters.

2.1 Automata

An automaton [6] (singular form of automata), also known as a finite state

machine (FSM), is a collection of states and the transitions between those

states using events. The states represent a certain configuration that the sys-

tem being modelled can be in. As events are performed, a transition occurs

changing the current state of the automaton, thus changing the configuration.

Definition 2.1. An automaton A is defined as the tuple 〈Σ, S, S◦,→, Q〉

where:

• Σ is the complete set of events of the automaton, also referred to as

the alphabet

• S is the complete set of states of the automaton

• S◦ ⊆ S is the set of initial states of the automaton. These are the states

that the automaton can be in before any transitions have occurred.
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Figure 2.1: An example automaton.

• → ⊆ S × Σ× S is the transition relation of the automaton.

• Q ⊆ S is the set of marked states.

An example automaton is given in figure 2.1. In this automaton we have

Σ = {α, β, γ}, S = {s0, s1, s2, s3}, S
◦ = {s0} and Q = {s1, s3}. We can

also see that (s0, α, s2) ∈ →. This may also be expressed as s0
α
→ s2. This

represents the transition from state s0 to state s1 using event α.

Definition 2.2. Let A = 〈Σ, S, S◦,→〉 be an automaton. An event α ∈ Σ is

defined to be enabled in a state s ∈ S if there exists a another state s′ ∈ S

and a transition s
α
→ s′. This may also be represented as s

α
→ if the target

state of the transition is not identified. The set of events enabledA(s) ⊆ Σ is

the set of all events that are enabled in s. If event β is not enabled from a

state s, this is expressed as s 6
β
→.
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In the automaton given in Figure 2.1 we can see that α, β ∈ enabled(s2),

and γ /∈ enabled(s2). The following expressions then are all true: s2
α
→,

s2
β
→, s2 6

γ
→, s2

β
→ s1, s2

α
→ s3.

Definition 2.3. A path is defined to be a sequence of transitions taken in an

automaton. The length of a path π is expressed as |π|. The initial state of a

path is the state from which the first transition occurs, and the end state of

a path is the target state of the final transition in the path. Two paths may

be composed together if the end state of the first path is the initial state of

the second path. For two such paths π0 and π1 , this is expressed as π0 ◦ π1.

In the automaton given in Figure 2.1 a valid path would be

s0
α
→ s2

α
→ s1

β
→ s2

β
→ s3

γ
→ s0

in which the initial state and the end state are both s0. This may also be

expressed as the composition of two paths such as

s0
α
→ s2

α
→ s1 ◦ s1

β
→ s2

β
→ s3

γ
→ s0

Definition 2.4. A string is a sequence of events from Σ written in succession

such as σ1σ2 . . . σn. The events of a path may be expressed as a string, for

example the path s
σ1→ t

σ2→ u would have the string σ1σ2. Strings may also

be used in transitions to omit intermediate states, for example s
σ1σ2−−→ u.

The set of all finite strings of events in Σ, including the empty string, is

represented as Σ∗ .

Definition 2.5. Let A = 〈Σ, S, S◦,→, Q〉 be an automaton and s, t ∈ S.

States can be considered reachable with respect to other states represented

as s → t, or with respect to automata represented as A → t. In the latter

case this means that state t is reachable from the initial state S◦. In both

instances there is an implied existence of a string p ∈ Σ∗ where s
p
→ t,

meaning that state t is reachable from state s using only the events from

string p.

Definition 2.6. A strongly connected component is a maximal set of states

C ⊆ S with the property that for all states si, sj ∈ C we have si → sj .
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Figure 2.2: An automaton with one strongly connected component.

This means that every state in a strongly connected component is able to

reach every other state in the strongly connected component. Figure 2.2 gives

an example of an automaton with one strongly connected component. It can

be seen that every state in this automaton is able to reach every other state.

Figure 2.3 shows the same automaton as in Figure 2.2 but the transition from

state s5 to s3 has been removed. As a result the automaton now has two

strongly connected components C1 = {s0, s1, s2, s3} and C2 = {s4, s5, s6}.

Definition 2.7. An automaton is defined to be deterministic if it meets the

following criteria:

Let s1, s2, s3 ∈ S, α ∈ Σ, then

s1
α
→ s2 ∧ s1

α
→ s3 =⇒ s2 = s3

and

s1 ∈ S◦ ∧ s2 ∈ S◦ =⇒ s1 = s2

Or more simply there cannot exist two transitions from a single state on

the same event if those transitions would result in different states, also there

maybe be only one initial state. Any automaton that is not deterministic is

defined to be non-deterministic. An example of a non-deterministic automa-
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Figure 2.3: An automaton with two strongly connected components after
removing a transition.

ton is given in Figure 2.4. This example automaton is non-deterministic due

to the fact that there are two transitions from state s0 using event α.

2.2 Synchronous Composition

A synchronous composition or synchronous product of several automata is

achieved by taking several automata and synchronising them on their events.

The result of this is a single large automaton that models the system as if

each of the automata involved in the synchronous composition were execut-

ing their transition operations in parallel. This allows a large complicated

system to be constructed by creating smaller, simpler component automata,

each responsible for a part of the whole system and then constructing the

synchronous composition from the components.

The idea behind this is that there will be a set of common events across

the alphabets of each automaton and that the automata all run concurrently.

An event α is only enabled in a state in the synchronous composition if

every component automaton containing α in its alphabet has α enabled in

its current state. When α is executed, each of these automata performs the
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Figure 2.4: An example of a non-deterministic automaton.

appropriate transition and changes state, while all of the other automata

remain unchanged. This is only possible however if each automaton that

contains α in its alphabet has α enabled in its current state, otherwise α is

disabled for the entire system. This effectively means that in an automaton

that does not include α in its alphabet, a transition occurs on α in every state

where the target state is the same as the current state for that automaton.

This type of transition is referred to as a selfloop.

The synchronous composition then has states that each represent the com-

bination of single states from each of the automata. The current state of the

synchronous composition then translates into a current state in each of the

automata, i.e., if the current state of the synchronous composition is its initial

state, then the current state of every automaton involved in the synchronous

composition will be the initial state also. When an event is executed from

the current state of the synchronous composition this is analagous to each

of the automata executing that event from its current state and the com-

bination of all of the resulting states across all of the automata will be the

target state of that transition in the synchronous composition. This process

is called lock-step synchronisation or handshaking. Composing each of the
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automata can be approached algorithmically and is defined mathematically

as follows [4, 11]:

Definition 2.8. Let M1 = 〈Σ1, S1, S
◦
1 ,→1〉 and M2 = 〈Σ2, S2, S

◦
2 ,→2〉 be

two automata. The synchronous composition of M1 and M2 is

M1||M2 = 〈Σ1 ∪ Σ2, S1 × S2, S
◦
1 × S◦

2 ,→〉 where

• (x, y)
α
→ (x′, y′) if α ∈ Σ1 ∩ Σ2, x

α
→1 x

′ and y
α
→2 y

′;

• (x, y)
α
→ (x′, y) if α ∈ Σ1 \ Σ2 and x

α
→1 x

′;

• (x, y)
α
→ (x, y′) if α ∈ Σ2 \ Σ1 and y

α
→2 y

′.

An example [16] of a small factory comprised of two machines and a buffer

modelled using automata is given in Figure 2.5. The way that this system

operates is that the two machines can either be idle, working, or broken;

as respresented by the states I, W and B respectively. The subscript on

each state represents the specific machine number ie. I1 represents the initial

state of machine 1. The buffer may either be empty or full; represented

by states E and F respectively. Machine 1 works on one item at a time.

Whenever machine 1 finishes working on an item then the item is placed

in the buffer, causing the buffer to become full. Machine 2 may then start

working by removing the item from the buffer, causing the buffer to become

empty. When either machine is working it is possible for the machine to

break, at which point any work that it was currently doing is lost and the

machine must be repaired before it may start working again.

To model this behaviour, the two machines begin in the idle state and the

buffer starts in the empty state. Since these automata are synchronised on

their common events, only the s1 event corresponding to machine 1 starting

work is possible. This is because even though machine 2 would allow event

s2, the fact that the buffer has a transition involving s2 but does not allow s2

in state E means that the system is unable to perform event s2, so machine 2

cannot start work. s1 is allowed because even though machine 2 does have a
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transition involving s1 from its idle state, s1 does not appear in the alphabet

of machine 2, so there are implicit selfloops on every state in machine 2

using event s1. In fact this is the case for every event from machine 1, so

machine 2 will never prevent an event from machine 1 happening, and will

always remain in the same state on execution of such an event. The reverse

is also true so no events from machine 2 will affect the state of machine

1. After performing event s1, machine 1 transitions to state W signifying

that it is now working, whereas the buffer and machine 2 remain in states

E and I respectively. From here events b1 or f1 are possible, representing

machine 1 breaking down or finishing work. If event b1 is taken then machine

1 tranistions to state B1 and must receive an r1 event before going back to

state I1, at which point the process can begin again. If event f1 is taken

then machine 1 returns to state I1 and the buffer transitions to state F1,

signifying that machine 1 has placed an item into the buffer. From here

event s2 is now permitted as the buffer is no longer disabling it. Performing

event s2 takes the buffer back to state E while machine 2 transitions to state

W2. Now either f2 or b2 are available, representing machine 2 finishing work

or breaking down as was the case with machine 1. Taking event b2 works in

the same way as b1 did with machine 1, and taking event f2 causes machine

2 to transition back to state I2. Once this has happened the system is back

in its initial state and these processes can begin again.

Figure 2.6 is the synchronous composition of the three component auto-

mata shown in Figure 2.5. Each of the states that exist in this diagram are

given labels corresponding to the states that each of the component auto-

mata are in. For example the initial state is labelled E.I.I, which represents

the states of the buffer, machine 1 and machine 2 in turn. This means that

initially the buffer is in state E (empty), machine 1 is in state I (idle), and

machine 2 is also in state I (idle). The subscripts are omitted here as the

ordering can be used to determine which state belongs to which automaton.

This example shows that even when considering a relatively small system

where only a very small amount of possible operations can be performed,

a fairly large and complicated synchronous composition is produced as it
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Figure 2.5: Small factory model.

mimics all of the possible interactions with the system.

Since there is this notion of local and global states in single automata and

the synchronous composition respectively, notation is needed to define the

relationship between them.

Definition 2.9. Let M = M0||M1|| . . . ||Mn be represented by the tuple

〈Σ, S, S◦,→〉. A global state is then any state in S.

Definition 2.10. Let s = (s0, s1, . . . , sn) ∈ S be a global state, where each si

represents a local state of automaton Mi. enabledi(s) = enabledMi
(si) repre-

sents the set of events that are enabled in the local state of Mi corresponding

to global state s.

An issue does arise however when constructing the synchronous compo-

sitions. As the number of component automata grow along with the number

of states and events in the component automata, what is seen is the number

of states, or state space, of the synchronous composition increases exponen-

tially in size. This phenomena is known as state space explosion. Eventually

the state spaces of large models become too large for memory and so it is

advantageous to apply techniques whereby the state space can be reduced in

size while preserving the properties of interest of the model.

12



F.W.B

E.W.I

F.W.I

E.I.B

F.W.W

E.W.W

E.B.I

F.B.BE.I.I

F.B.I

E.B.B

F.B.W

E.I.W

F.I.B

E.B.W

F.I.I

E.W.B

F.I.W

s1

s1

s1

s1
s1

s1

s2

s2

s2 b1

b1

b1

b1

b1

b1

b2

b2

b2

b2

b2

b2

f1

f1

f1

f2

f2

f2

f2

f2

f2

r1

r1

r1

r1

r1

r1

r2

r2

r2

r2

r2

r2

Figure 2.6: Synchronous composition of the small factory model.

2.3 Controllability Checking

The concept of controllability introduces the notion that there may exist bad

states within a system. We call these bad states uncontrollable states. These

states represent behaviour of the system that is undesirable, such as the doors

to an elevator cabin being opened while the cabin is moving between floors

for example. A system is said to be controllable if there are no states that are

uncontrollable, otherwise the system is defined to be uncontrollable. These

concepts are introduced in [16]. To determine the controllability of states

several factors must first be observed.

• Events may be classified as either controllable or uncontrollable.

• Automata may be classified as either specifications or plants.

A plant automaton is an automaton that describes the behaviour of the

physical system that is being modelled. A specification automaton is an
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automaton that describes a controller for the physical system. An uncontrol-

lable event is an event that will occur in the system outside of the control of

the system itself or any user of the system. Events such as a car arriving at

traffic lights or an incoming call would be examples of uncontrollable events

in a systems modelling traffic lights and a system modelling a telecommunica-

tions centre respectively. A controllable event is an event that the system can

perform in response to some other event, be it controllable or uncontrollable.

In the same two example systems controllable events might be changing the

lights from red to green or connecting an incoming call to an operator. Un-

controllable states occur whenever a specification automaton prevents the

system from performing an uncontrollable event that the plants would oth-

erwise allow. The reasoning behind this is that uncontrollable events can not

be prevented from happening so any controllers must handle those events

when they occur.

This can be described as follows:

Definition 2.11. Let G be a plant automaton and K be a specification

automaton. K is controllable with respect to G if for every global state

(sG, sK) that is reachable in G||K and every uncontrollable event µ

µ ∈ enabledG(sG) =⇒ µ ∈ enabledK(sK)

Any global state for which this does not hold is an uncontrollable state. Any

model in which all specification automata are controllable with respect to all

plant automata is said to be a controllable model, otherwise the model is said

to be uncontrollable. This is equivalent to saying the any model whose syn-

chronous composition has no reachable uncontrollable states is controllable,

otherwise it is uncontrollable.

Consider the synchronous composition given in Figure 2.7. This is the

same model as Figure 2.6 except now we are considering the ideas of con-

trollability covered above. In this model machine 1 and machine 2 are plants

and the buffer is a specification. The controllable events are s1, s2, r1 and

r2, and the uncontrollable events are b1, b2, f1 and f2. This makes sense as
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a machine breaking or finishing the work it was doing are not events that

can be controlled. What we see as a result of this are three uncontrollable

states, F.W.I, F.W.W , and F.W.B, signified by the red crosses on each of

them. Let us examine one of these states to determine why it is uncontrol-

lable. The first of these states, F.W.I, has the buffer in state F , machine

1 in state W1, and machine 2 in state I2. If we refer to Figure 2.5 we can

see that the enabled events in each of the component automata are s2 in the

buffer and machine 2, and f1 in machine 1. The f1 event has been declared

uncontrollable however and is enabled in the plant automaton machine 1, so

following the conditions for controllability above it must also be the case that

each specification automaton enables f1. This is not the case however, since

the buffer disables f1 in state F , leading to this state F.W.I being an uncon-

trollable state. Since the buffer is uncontrollable with respect to machine 1

in this case, this means that this model is uncontrollable.

Definition 2.12. A controllability counterexample is a path taken from the

initial state to an uncontrollable state in the synchronous composition.

For the uncontrollable state that was used in the previous example, a

counterexample can be constructed by examining the diagram in Figure 2.7

E.I.I
s1→ E.W.I

f1
→ F.I.I

s1→ F.W.I

This counterexample represents a problem with the system, wherein the buf-

fer which can only hold one item at a time has been put in a situation where

it must accept a new item when it is already storing an item. This is known

as buffer overflow. To address this problem, the buffer specification must be

modified so that buffer overflow can not occur.

It is possible and is also useful to consider controllability of automata in

another way. By replacing specification automata with plant automata that

have transitions to states marked as a bad states every time a controllability

problem is encountered, it can be shown that all controllability problems can

be translated into reachability problems with respect to these new states. The

15



process for constructing these plant automata out of specification automata

is as follows [8]:

Definition 2.13. Let K = 〈Σ, S,→, S◦, Q〉 be a specification automaton

and Σu ⊆ Σ be the set of all uncontrollable events of K. The complete plant

automaton K⊥ for K is

K⊥ = 〈Σ, S ∪ {⊥},→⊥, S◦, Q〉

where ⊥ /∈ S is a new state and

→⊥ = →∪ {〈s, α,⊥〉 | s ∈ S, α ∈ (Σu ∩ Σ), s 6
α
→}

∪{〈⊥, β,⊥〉 | β ∈ Σ}

Using this translation the following is then true: K is controllable with

respect to G if and only if there is no state (x,⊥) with x ∈ SG, reachable in

G||K⊥. In a synchronous composition involving more than one specification,

the model is uncontrollable if there exists a reachable global state where at

least one of the local states is ⊥.

This interpretation in known as plantification and is useful in later chap-

ters when proving the correctness of the partial order reduction method.

2.4 Conflict checking

Another property of systems that is often of interest is that of conflict or

blocking. This idea deals with reachability within a system with regard to a

set of states which are marked. These marked states often represent states

in which the system may come to rest or terminate safely and as such an

inability to reach these states from any given state can be undesirable. In

diagrams, states that are shaded grey are the marked states. A system is said

to be nonblocking if for all reachable states a path exists to a marked state,

otherwise it is considered blocking. When several automata are involved then
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Figure 2.7: Synchronous composition of the small factory model with uncon-
trollable states.
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the problem of blocking and nonblocking in the synchronous composition is

often referred to as conflicting or nonconflicting.

Definition 2.14. An automaton M = 〈Σ, S, S◦,→, Q〉 is nonblocking if for

every state s ∈ S where M → s, we have s → t where t ∈ Q. Two automata

M1 and M2 are nonconflicting if M1||M2 is nonblocking.

There are two practical ways in which an automaton may be determined

to be blocking. Either an unmarked state can have no outgoing transitions

in which case clearly no marked states can be reached, or the only states

reachable from an unmarked state are all unmarked and in turn cannot reach

a marked state. In the former case this is referred to as deadlock and in the

latter case this is referred to as livelock. Any states found to be in either

deadlock or livelock are blocking states.

Consider the automaton in Figure 2.8. This automaton can be observed

as being blocking. The only marked state is state s2, and the only states

that can reach it are the states s4 and s5. This means that states s0, s1 and

s3 are blocking states. It can be seen that each of the states s0 and s3 are in

livelock as they each have outgoing transitions, yet no sequence of transitions

from any of these states will ever reach s2. State s1 is in deadlock as it has

no outgoing transitions and is itself unmarked. Adding a transition from s1
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Figure 2.9: Automaton with blocking states resolved.

to either s2, s4 or s5 would resolve the issue of blocking in this automaton,

as pictured in Figure 2.9.

It will prove useful when constructing proofs that involve conflict ver-

ification to use an abstracted automaton model. For this abstraction we

introduce a termination event ω and for each marked state, add a transition

with ω to a special dump state ⊥. The abstraction is defined as follows.

Definition 2.15. Let M = 〈Σ, S, S◦,→, Q〉. The abstraction for M is then

Mω = 〈Σ, S ∪ {⊥}, S◦,→ω〉 where ⊥ /∈ S is a new state and

→ω = →∪ {〈s, ω,⊥〉, 〈⊥, α,⊥〉 | s ∈ Q,α ∈ Σ}

Mω is then nonblocking for every state s where Mω → s we have s
pω
→ for

some string p ∈ Σ∗

2.5 Partial Order Reduction

The ideas discussed in this section introduce concepts that are fundamental

to the partial order reduction process outlined in this thesis. The two main

concepts introduced are independence and ample sets. Independence is a

relation between events and is used to identify structure in the state space
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where there may be redundant states. The section on page 20 will describe

the criteria by which events are considered to be independent and what this

means in terms of an automaton. Ample sets are the result of the process by

which reduction of the state space of an automaton is achieved. The ample

set of a state s, denoted ample(s), is a subset of enabled(s). The section on

page 21 will describe the criteria by which ample(s) is able to be selected

and shows how to apply those criteria with a small example.

2.5.1 Independence

The notion of independence [3] [6] [10] is an important one when considering

how to reduce the state space of a synchronous composition. Since the re-

duction is made possible by eliminating redundancies in the full state space

it is necessary to identify relationships between events that would give rise

to such redundancies. This relationship is known as independence.

Definition 2.16. In an automaton A = 〈Σ, S, S◦,→〉, two events α, β ∈ Σ

are defined to be independent if in every state s ∈ S where α, β ∈ enabledA(s)

they satisfy the following condition:

s
α
→ t1 and s

β
→ t2 =⇒ there exists v ∈ S where t1

β
→ v and t2

α
→ v

Firstly this ensures that once α is performed from state s then the re-

sulting state still has β enabled, and vice versa. This is equivalent to saying

that it ensures that α does not disable β. Events that are not independent

are defined to be dependent.

Definition 2.17. Let A = 〈Σ, S, S◦,→〉 be an automaton and let α, β ∈

Σ, s1, s2 ∈ S. α disables β in state s1 if

α, β ∈ enabled(s1), s1
α
→ s2 and s2 6

β
→

Definition 2.16 also ensures that the order in which α and β are executed

has no effect on the final resulting state. Another way to say this is to say

that α and β commute. Figure 2.10 gives an example of an automaton where
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Figure 2.10: Automaton demonstrating independence of events α and β.

two events α and β are independent. It can be seen in this example that

enabled(s0) = {α, β}. The target states of the transitions involving each of

the events leave the other enabled, meaning that s0
α
→ s2, s2

β
→ and s0

β
→ s3,

s3
α
→. It can also be seen that the targets of those transitions result in the

same state, seen by observing the transitions s2
β
→ s1 and s3

α
→ s1.

If both of these conditions hold for all states of an automaton A in which

α and β are both enabled then α and β are said to be independent in A,

otherwise they are defined to be dependent, both of which will be a key

relationship when determining how to calculate ample sets.

2.5.2 Ample sets

The partial order reduction technique achieves reduction by identifying a

subset of enabled(s) for some state s which will be called ample(s) [3,6]. Only

the successor states of the events of ample(s) are then used to construct the

synchronous composition. If the number of events in ample(s) is less than

the number of events in enabled(s) then what results is fewer states being

added to the state space of the synchronous composition.
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Following are a set of conditions known as the ample conditions that are

taken from existing texts [3, 6], with one notable exception where we have

replaced one of the conditions with a weaker version. These conditions are

the criteria by which ample(s) is selected. To show that the model produced

by selecting a reduced number of states in this way preserves the proper-

ties of controllability and nonblocking of the full synchronous composition

based on lock-step synchronisation as considered in this thesis, an original

proof is offered in Section 3.2, proving that adhering to the ample conditions

is sufficient when attempting to construct a reduced model that preserves

properties of controllability and blocking.

For the following definitions let A = 〈Σ, S, S◦,→〉 be an automaton and

let s ∈ S

Definition 2.18. Condition C1 is the non-emptiness condition.

If enabled(s) 6= ∅ then ample(s) 6= ∅

This first and simplest condition ensures that as long as there is at least

one event enabled in state s, then there must be at least one event included

in ample(s).

Definition 2.19. Condition C2 is the dependency condition.

For every transition sequence from s in automaton A, an event that is depen-

dent on any event chosen for ample(s) may not occur before an event from

ample(s).

Definition 2.20. Condition C3 is the cycle condition.

A cycle consisting of states S ′ = {s0, s1, . . . , sn} may only exist if

∀α ∈ enabled(s0) ∪ enabled(s1) ∪ . . . ∪ enabled(sn) : α ∈ ample(si) for some

0 ≤ i ≤ n

That is to say that a cycle may only exist in a reduced model if the

combined set of all enabled events for the states on that cycle are at some

point included in the ample sets of states on the same cycle.

22



Ensuring condition C3 can prove to be challenging when constructing

the algorithm, so a stronger condition C3′ that ensures C3 may be used

instead. This stronger condition introduces the concept of a state being fully

expanded.

Definition 2.21. A state s is defined to be fully expanded if ample(s) =

enabled(s).

Definition 2.22. Condition C3′ is the strong cycle condition.

Let S ′ = {s0, s1, . . . , sn} be a cycle, then there exists some state si ∈ S ′

where si is fully expanded.

It has been shown in [17] that the conditions C1, C2 and C3′ are proven

to preserve controllability. In this thesis we will replace C3 and C3′ with

conditions C4 and C4′, which are given in Chapter 3 which are subsequently

proven in Section 3.2. If the ample conditions are satisfied when selecting

events for each state then the resulting reduced model is guaranteed to pre-

serve the properties of controllability and blocking of the full synchronous

composition. This means that if M is uncontrollable or blocking then the

reduced model MR, generated by adhering to the ample conditions, will also

be uncontrollable or blocking respectively. Likewise if M is controllable or

non-blocking then so too will MR be. A proof of this will also be given in

Section 3.2.

Figure 2.11 gives an example of an automaton prior to reduction. We can

try to reduce the state space in this example by applying the ample conditions

when selecting ample(s) for each successive state. First consider state s0. It

can be observed that enabled(s0) = {α, β, σ}. Determining the independence

of these events gives us that α and β are independent and so are β and σ,

while α and σ are dependent. Since β has the most independencies consider

β first for ample(s0). C1 is satisfied right away, C2 is satisfied since β is

independent of every other event, meaning no event dependent on β could

be taken on any path before β itself is taken, and C3 is satisfied since no

cycles have been created yet. Since all ample conditions are satisfied, set

ample(s0) = {β} and add transition s0
β
→ s1 to the reduced model. Now
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Figure 2.11: Automaton before reduction.

consider state s1. It can be observed that enabled(s1) = {α, σ} and we

already know that those two events are dependent, so arbitrarily consider α

first for ample(s1). C2 is violated now since the path s1
σ
→ s1 exists from

state s1 which yields an event dependent on α occuring before α, so we cannot

choose ample(s1) = {α}. Next consider ample(s1) = {σ}. This violates C3

as a cycle has been formed and α ∈ enabled(s1) was not included in the

ample set for any states on the cycle. This leads to the only remaining case

where ample(s1) = {α, σ} = enabled(s1). Set ample(s1) = enabled(s1) and

add transitions s1
σ
→ s1 and s1

α
→ s2 to the reduced model. Now consider

state s2. It can be seen that enabled(s2) = {γ}, so condition C1 gives us

enabled(s2) = {γ} = enabled(s2) immediately. Set ample(s2) = enabled(s2)

and add transition s2
γ
→ s1 to the reduced model. Since no more states were

added with this transition the reduced model is complete. Figure 2.12 shows

the reduced model.
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Figure 2.12: Automaton after reduction subject to ample conditions.

2.6 Compositional Verification

Compositional verificaton is another technique that is used to try and address

the state space explosion problem. As the problem generally arises when

dealing with the composition of several automata, a sensible approach would

seem to be reducing the state space in the individual components before

composition. Once we have established that this can be done, we can compose

automata two at a time, and once again perform the simplification step on

the result. These resulting simplified automata can then be subjected to the

same process and be composed two at a time and again simplified. This can

be done until the system has been simplified to a point that verification can

be carried out in the conventional way.

Obviously key to this process are the methods by which the automata can

be simplified. This needs to be done safely so that the resulting abstractions

will still remain conflict equivalent to the original automata. As such there

are several rules which can typically be applied, each of which attempt use a
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different approach to reduce the state space by identifying different properties

of the states. There is however no universally determined method to obtain

the greatest reduction for an arbitrary automaton. Since this is the case it is

not required for compositional verification to use any particular combination

of reduction rules, rather that as much reduction as possible is achieved using

whichever rules are appopriate while limiting the computational overhead of

doing so.

These reduction rules operate fundamentally by exploiting the behaviour

of the system when silent transitions occur.

Definition 2.23. The silent event τ is a special event used in each of the

rules. Typically τ is not included in the event alphabet for an automaton,

however when it is useful to do so the event set is referred to by Στ . A

transition involving a silent event is known as a silent transition. Such tran-

sitions are identified as they can be performed in the automaton in which

they appear without having any effect on the state of any other automaton.

Definition 2.24. In order to make use of this silent event τ , abstractions

of automata are created where certain events are removed from the alphabet

and all transitions involving those events replaced by τ transitions. This

process is knows as hiding.

In order to achieve this effect of creating silent transitions, the events that

are hidden by the hiding process are often the local events of an automaton,

those being the events of an automaton that do not appear in any other

automaton.

Definition 2.25. When considering τ as part of a string it is often use-

ful to be able to refer to that string with the τ events removed. If p =

τ ∗σ1τ
∗σ2τ

∗ . . . τ ∗σnτ
∗ ∈ Σ∗

τ , then Pτ (p) denotes the string q = σ1σ2 . . . σn,

that is, the string p with the τ events removed. Conversely s
q
⇒ t implies the

existence of string p such that Pτ (p) = q and s
p
→ t, which is to say that

p
→

denotes a path with exactly the events of q, whereas
p
⇒ denotes a path with

an arbitrary number of τ events inserted into the string p.
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In order to safely perform the reduction rules there must be some quali-

tative way to determine whether or not the abstracted automaton achieved

post reduction is still equivalent to the original automaton. The composi-

tional verification process can be used to reduce models for the purposes of

controllability [20] or nonblocking verification. For the purposes of this thesis

during compositional verification we concern ourselves with the property of

nonblocking. We then introduce the concept of conflict equivalence [?]. Con-

flict equivalence is an equivalence relationship that determines whether two

automata, which when composed with an arbitrary automaton, will yield the

same result of blocking or nonblocking. The arbitrary automata used for the

compositions are called tests and will often be referred to as an automaton

T when conflict equivalence is being established.

Definition 2.26. Two automata G1 and G2 are considered conflict equiva-

lent, G1 ≃conf G2 if, for any test T , G1||T is nonblocking if and only if G2||T

is nonblocking.

The application of the rules are at a state level in a single component

automaton. This is to say that the states in a single component automata

are examined in an attempt to identify states that exhibit certain properties

with respect to the silent event. These states can then have the appropriate

rules applied to them repeatedly. The criteria that the states must satisfy

for the purposes of this thesis pertain to conflict equivalence. This means

that any states selected for the rule application must not have any future

behaviours that can be distinguished by conflict equivalence. Such states

are known as conflict equivalent states and may be merged without affecting

possible conflicts with other components.

While there are several rules that may be applied during compositional

verification, this thesis attempts to introduce a variation of just one of those

rules, the silent continuation rule [8]. To effectively describe silent continu-

ation a some more notation must be introduced.

Definition 2.27. A stable state is a state without any outgoing τ transitions.
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Figure 2.13: Automaton before application of the silent continuation rule.

Definition 2.28. Let G = 〈Σ, S, S◦,→, Q〉 be an automaton. The relation

≃inc ⊆ S × S is defined such that s ≃inc s
′ if

S◦ ε
⇒ s ⇐⇒ S◦ ε

⇒ s′; (2.1)

∀t ∈ S, ∀σ ∈ Σ : t
σ
⇒ s ⇐⇒ t

σ
⇒ s′ (2.2)

If this holds s and s′ are considered incoming equivalent.

The silent continuation rule states that if two states are incoming equiv-

alent, and they can each reach one or more stable states using a nonempty

sequence consisting entirely of silent transitions, then those two states are

conflict equivalent. The idea here is that in essence, the silent transitions do

not have any effect on any tests that could be introduced. As such the only

transitions that matter are the non τ transitions. Ensuring that the states

can always be reached by the same sequence of non τ events ensures that the

same sequence will be able to reach the merged state. Similarly, since the

silent transitions have no effect on the tests, only the outgoing events from

the stable states are required in order to reach marked states. As such the

τ transitions may be collected together into the merged state as a single τ

transition to the stable states.
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Figure 2.14: Automaton after application of the silent continuation rule.

Figures 2.13 and 2.14 give examples of an automaton before and after

the application of the silent continuation rule respectively. On application

of this rule states s0 and s3 have been merged. It can be seen in Figure

2.13 that states s0 and s3 can both be considered initial, since both can be

reached with 0 or more silent transitions, satisfying the first condition for the

application of the silent continuation rule. Also they can both reach state s2

using a nonempty sequence of τ transitions. State s2 is observed as being a

stable state, as its only outgoing transition is using event β. This satisfies

the second condition for the application of the silent continuation rule. Since

all of the silent continuation rule conditions are met by states s0 and s3 they

can be merged into a single state, shown as state s0 in Figure 2.14.

This rule will serve as the basis for the developments in Chapter 4. Some

of the requirements are altered slightly so a proof is offered in the same

chapter.
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Chapter 3

Partial Order Reduction With

Tarjan’s Algorithm

This chapter will introduce and discuss the work done in adapting the existing

work of partial order reduction in discrete event systems for safety properties.

Several areas of improvement have been explored and this has prompted the

development of new algorithms and proofs.

Section 3.1 will detail the various algorithms that were created or improved

upon to realise the research done in this area. This will include both a

description of the algorithms along with the motivations for them and the

areas in which they improve upon existing work wherever it exists. Section

3.2 will provide proofs for the various conditions, concepts, and algorithms

developed in this chapter. The work done in [17] introduced an algorithm for

partial order reduction in discrete event systems for controllability. We build

on this research by extending the algorithm to also work for nonblocking. As

such some of the proofs offered in this thesis will be altered versions of those

offered in [17], while some will be original proofs, the distinction of these

will be made clear in Section 3.2. Section 3.3 will provide the experimental

results of the research in this area along with analysis. A discussion of

expected results versus achieved results will also be included. Section 3.4

will summarise the research done, reflect on what was achieved and discuss

the possibilities for further research in this area.

30



Before beginning a discussion on the algorithms developed for this chapter

it will be valuable to first discuss which various areas of improvement were

discovered and to introduce any new concepts that resulted.

It was noticed that it was possible for a potentially fewer number of

states to be fully expanded in order to comply with cycle condition C3′. The

motivation behind this was the realisation that the logic used in the original

proof of correctness for condition C3′ satisfying C3 could extend to strongly

connected components instead of being limited to just cycles. This leads to

the introduction of two new ample conditions particular to this section.

Definition 3.1. Condition C4 is the component condition.

A component consisting of states S ′ = {s0, s1, . . . , sn} may only exist if

∀α ∈ enabled(s0) ∪ enabled(s1) ∪ . . . ∪ enabled(sn) : α ∈ ample(si) for some

0 ≤ i ≤ n

Definition 3.2. Condition C4′ is the strong component condition.

Let S ′ = {s0, s1, . . . , sn} be a component, then there exists some state si ∈ S ′

where si is fully expanded.

Conditions C4 and C4′ have been introduced to replace the cycle condi-

tions C3 andC3′ respectively, which are offered by [3,6].The component con-

ditions are weaker versions of the cycle conditions, which we predict should

be able to allow a greater number of reduced ample sets at the cost of the

computational overhead of calculating strongly connected components. This

reasoning for this is that each cycle belongs to a strongly connected com-

ponent. If every cycle were to contain a fully expanded state, which is the

requirement of condition C3′, this could result in several fully expanded

states on one component, in order to satisfy condition C3′. If we instead re-

quire only one fully expanded state per strongly connected component, this

then allows for potentially less states to be fully expanded. This would be

a more optimal result as it would result in fewer transitions being added to

the reduced model, which in turn has the potential to result in fewer states

being created.
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Figure 3.1: An example system to demonstrate the strict component condi-
tion.

An example is provided in Figures 3.1, 3.2 and 3.4. The system in Figure

3.1 depicts the system that will be reduced. The first automaton has just

two states with a γ transition between them. Notice that state s1 is the

only marked state in the system, so unless a γ transition occurs, the sys-

tem cannot reach a marked state, and furthermore once a γ transition has

occurred the system cannot leave a marked state. The other two automata

are simple two state cycles, using α and β transitions. Notice that all of

the events in this system are independent, thus any choice of event for the

ample sets when constructing the reduced model is guaranteed to satisfy the

dependency condition C2. Figure 3.4 shows the complete synchronous prod-

uct for this system. It can be seen that this synchronous composition has

18 distinct cycles and two strongly connected components. Let component

C1 = {s0, s2, s4, s6} and C2 = {s1, s3, s5, s7}. Notice that the only way to

get from C1 to C2 is by taking a γ transition. As this is the case, the result-

ing markedness of the components has all the states in C2 marked whereas

the states of C1 are all unmarked. To illustrate the necessity of the compo-

nent and cycle conditions C4 and C3 respectively, consider constructing the

reduced synchronous product without using either condition.

From the initial state s0 there are three enabled events enabled(s0) =

32



β1

β1

β1

β1

β2

β2

β2

β2

γ

γ

γ

γ

α1

α1

α1

α1

α2

α2

α2 α2

s0

s3

s4s5

s6s7

s1 s2

Figure 3.2: Synchronous composition of the automata given in Figure 3.1.
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Figure 3.3: Synchronous composition without C3 or C4.

{γ, α1, β1}. Since all events are independent, it is safe to choose any event

for ample(s0). Let us choose ample(s0) = {α1}. Following that transition

we reach state s4. Similarly as for state s0, we can choose ample(s4) = {α2},

which takes us back to s0, completing the algorithm. Figure 3.3 shows the

resulting reduced automaton when the component condition is not used.

Clearly this does not retain the property on nonblocking of the full syn-

chronous composition as there are no reachable marked states. The problem

arises as since γ and β1 are independent of the choices for ample, the γ and

β1 transitions are always deferred off to a later stage. This is a problem

because, as we noticed, a cycle was closed before the γ and β1 transitions

were added, which effectively meant they were ignored.

To remedy this we can impose the strict cycle condition C3′. What will

now be shown is that without careful selection of which states should be fully

expanded, many more states than necessary can end up being added to the

reduced synchronous composition. When using the cycle condition, the final

step in the previous example is noticed to have closed the cycle {s0, s4}, so

one of the states on the cycle must be fully expanded. Suppose we choose

to fully expand the state s0, this then adds states s2 and s1 to the reduced

automaton. Let us consider for the moment constructing the ample set for

s2. We have enabled(s6) = {γ, α1, β2}, for the same reasoning as above we
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Figure 3.4: Automaton constructed using the strict component condition
instead of the strict cycle condition.

can choose ample(s6) = {β2}. Once again we notice that a cycle has been

created, namely {s2, s0}, and we must fully expand a state on this cycle. The

problem that arises here is that every state in this graph is part of a cycle,

so every time a state is fully expanded and new states are included, they

too in turn may find themselves to be part of a cycle and fully expand, until

the reduced synchronous product is no different than the full synchronous

product shown in Figure 3.2.

Now let us construct the reduced automaton using the strict component

condition C4′ instead of the strict cycle condition C3′. Using the previous

example to the point where the cycle {s2, s0} was created, we now can use the
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fact that cycles {s2, s0} and {s4, s0} belong to the same strongly connected

component C1. Since this is the case, and the component rule demands that

just one state per strongly connected component must be fully expanded,

we are under no obligation to fully expand any more states. Since we have

now finished exploring state s0, all that remains is to explore state s1 that

was reached on the addition of γ to ample(s0). We can notice here that if

we ignore the γ transitions, states s0 and s1 share the same structure, each

having a α1+α2 cycle with states s4 and s5 respectively; and a β1+β2 cycle

with states s2 and s3 respectively. As such, continuing the creation on the

reduced automaton ends up creating both of these cycles from s1. Again

however once the second cycle is created we notice that a state in component

C2 has already been fully expanded, and thus the algorithm can terminate

without adding any new states. The resulting reduced automaton is given in

Figure 3.4.

What we can observe here is that while a careful selection of which states

to fully expand could achieve the same result with the cycle condition as with

the component condition, the component condition guarantees the result. As

models typically contain a very large number of cycles and usually only one or

two strongly connected components, the computational overhead involved in

implementing the two methods is far larger in the case of the cycle condition.

Where the component condition need only track how many components have

been created and whether or not they contain a fully expanded state, which

may often simply occur accidentally, the cycle condition must keep track of all

fully expanded states throughout the entire process so that it may be checked

whether or not a state in a current cycle has already been fully expanded. In

very large systems this can often be a significant memory allocation, which

would be counter to the goal of the overall process.

Another area in which the component condition yields improvements over

the cycle condition lie in the algorithm used to detect each of them. The

algorithm originally detailed was simply an approximation for cycle detec-

tion. That is that while every state that was part of a cycle was definitely
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detected as such, it was also the case that there could potentially be some

states that were determined as being part of a cycle, despite that not being

the case. Because of this there were improvements to be found by more ac-

curately detecting these cases which is handled by the component condition.

It will be shown in Section 3.1 that the algorithm developed to handle the

component condition determines exactly all of the components in the reduced

automaton, so no over-approximation of states is ever required.

All of this does of course hinge on the fact that these new conditions

are in fact still correct, as the cycle conditions have been proven to be. As

mentioned on page 30 the correctness of these conditions will be proven in

Section 3.2.

It was also noticed that when selecting the events for the ample sets, us-

ing some criteria might help yield smaller ample sets in general, which again

could result in greater reduction in the state space of the reduced model.

The existing strategy for selecting events just used a greedy approach of

events ordered the same way as they were originally passed in to the algo-

rithm. It seemed quite likely that this was not optimal so several different

selection strategies were attempted instead. One of these strategies was to

order events according to the number of independencies that they shared

with other events. By ordering events this way we predicted that it should

be easier for the ample sets to satisfy the dependency condition C2, lead-

ing to generally smaller ample sets overall. The reasoning behind this was

that by selecting an event with the maximum possible number of indepen-

dencies, we are simultaneously selecting an event with the minimum number

of dependencies. This should make it less likely to encounter an event that

depends on one of the events chosen for ample on a path from the current

state, before encountering one of those ample events on the same path, which

is what condition C2 states.

Another selection strategy was to order events dynamically on a state by

state basis depending on whether or not the events will take us to a state
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that has already been visited. This ordering would need to be determined as

a state was being explored due to the fact that the target state for an events

depends upon the source state. The strategy would put events that take us

to states that have previously been visited before events that would make us

visit new states. The reasoning behind this was that if at all times we are

attempting to make sure that we do not visit new states unless we have to,

this should lead to a smaller state space in general. There is the possibility

however that forcing this ordering could lead to suboptimal ample sets, which

would then require adding additional events which could lead to the creation

of new states. This suggests that some combination of the independence

selection strategy and this one could be a better approach.

3.1 Algorithms

This section introduces the algorithms developed and improved upon in order

to implement the partial order reduction model verifier described in this

thesis. In particular a verifier for nonblocking is a new development in this

research while the controllability verifier builds upon the work done in [17].

As this suggests, there will be two versions of this verifier implemented, a

controllability verifier and a nonblocking verifier, that vary with regard to

the property that they are verifying. Since these model verifiers will be

used to verify the properties of controllability and nonblocking in the models

that they attempt to solve, the algorithms have been designed in such a

way that those properties of the original models are preserved in the models

that are generated as a result of the partial order reduction process. Once a

verifier has completed the verification process, a result of either true or false

is returned signifying that the given model was nonblocking or not in the

case of the nonblocking verifier, or if it was controllable or not in the case of

the controllability verifier.

The work in [17] offered a depth first search implementation of the partial

order reduction process to determine controllability. We have now generalised

and improved upon this so that the partial order reduction process can also

38



answer questions pertaining to nonblocking, as well as utilising strongly con-

nected components to satisfy the ample conditions. This means that now

these algorithms no longer attempt to satisfy ample condition C3 or C3′,

but instead will satisfy the weaker conditions C4 and C4′. Due to the differ-

ence in the properties of controllability and nonblocking, the verification of

these properties must be handled quite differently. Since controllability is de-

termined by whether or not a particular state enables certain uncontrollable

events, it can be determined on a state by state basis if a model is control-

lable. This means that, as in the existing work, controllability is determined

as each state is expanded just before selecting the ample set. Nonblocking

however is a question of reachability and as such can not be determined on

a state by state basis. Instead we must determine if all reachable states

can reach a marked state, a question which typically requires the full state

graph to answer. We can however introduce a new criterion for determining

nonblocking using strongly connected components, which allows us to verify

nonblocking during the depth first search.

Definition 3.3. Let G = 〈Σ, S, S◦,→, Q〉 be an automaton. G is non-

blocking if and only if for all strongly connected components C ⊆ S ∈ G,

∃s ∈ C, t /∈ C : s ∈ Q ∨ s → t

This means that if a component is created that does not contain a marked

state, then then it must be able to reach another component, or the model

is blocking. We introduce an iterative implementation of Tarjan’s algo-

rithm [19] in order to calculate the strongly connected components. Tar-

jan’s algorithm offers a linear time solution to finding the strongly connected

components in a graph. More specifically the complexity of the algorithm is

O(s+ t) where s is the number of states in the graph and t is the number of

transitions in the graph. Tarjan’s algorithm operates by making two inter-

leaved traversals of the state space. First, a depth first traversal of the state

space is performed. As this is happening, states are added to a stack and they

are marked with a root index which represents to index of the component

which they belong to. Initially this root index is equivalent to the depth first

index of the state, the order in which the state was visited during the depth
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first traversal, it is then updated to be the minimum index of any successor

state that has already been visited and has not already been determined to

be in a component. Once a component has been found, all states that be-

long to that component are marked as belonging to that component. This

is accomplished by removing states from the stack until encountering a state

whose component root index is equivalent to its depth first index. Those

states then form the component indexed by that component root index.

3.1.1 Tarjan’s Algorithm

In this section we will describe in more detail how Tarjan’s algorithm operates

in order to determine the strongly connected components of a system. Note

that since Tarjan’s algorithm applies generally to all graph theory and not

just model checking, the terminology used differs somewhat to that which

has been introduced in this thesis so far. As such for the remainder of this

section, a node can be considered to be a state, and an edge can be considered

to be a transition. Algorithm 1 gives the psuedocode for Tarjan’s algorithm.

The algorithm is comprised of two functions, MAIN which is used to

make sure every state is visited, and V ISIT which is recursively called in

order to perform the depth first traversal and calculate the strongly con-

nected components. This algorithm uses to idea of a root node for each

component. Each component is designated one node that is to serve as its

root node. The root can be considered as the ”starting point” for a compo-

nent. There are a number of global variables used in order to keep track of

various things during the traversal. Global variable stack stores the states

that are being explored in the depth first traversal and is the main mech-

anism behind the depth first search. Global variable root[] is an array of

nodes, indexed by nodes. This is used in order to determine which node is

the root of the strongly connected component that the node being used to

index the array belongs to ie. node[v] = w indicates that the root of the

strongly connected component to which node v belongs, is node w. Finally

40



Algorithm 1 Tarjan’s algorithm

1: function VISIT(v)
2: root[v] = v
3: InComponent[v] = false
4: PUSH(v, stack)
5: for all nodes w where v → w do

6: if w is not already visited then

7: V ISIT (w)
8: end if

9: if ¬InComponent[w] then
10: root[v] = MIN(root[v], root[w])
11: end if

12: end for

13: if root[v] = v then

14: repeat

15: w = POP (stack)
16: InComponent[w] = true
17: until w = v
18: end if

19: end function

20: function MAIN

21: stack = ∅
22: for all nodes v ∈ V do

23: if v is not already visited then

24: V ISIT (v)
25: end if

26: end for

27: end function
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global variable InComponent[] is a boolean array indexed by nodes used to

determine whether or not a node has already been determined to be part

of a component ie. InComponent[v] = true states that node v has been

determined to be part of a component already. The goal of the algorithm

is to determine the root of every component, and hence calculate all the

components of the system.

The algorithm begins in MAIN by first initialising stack to store the

states in the depth first traversal. There is then a call to the recursive method

V ISIT for every state that has not already been visited. This ensures that

even the strongly connected components comprised of unreachable states are

calculated, as otherwise the depth first search made by V ISIT would only

visit states that are reachable from the initial state. The rest of the algorithm

takes place in the V ISIT method.

The V ISIT (v) method operates as follows. Initially we set root[v] = v and

InComponent[v] = false, meaning that the node being visited is initially

considered to be the root of the component to which it belongs, and also not

yet part of any found component. Node v is then pushed onto the stack.

Next, every successor node w from the edges of node v is visited with the

recursive call V ISIT (w). This begins the depth first traversal, as this process

is then repeated on node w, and each subsequent node from there. Once the

V ISIT routine completes on node w, we are ensured that all reachable nodes

from node w have been visited. Some of these nodes may have been visited

prior to node w in depth first order, as such this would indicate that node

w, and hence node v, belongs to a component whose root is at least one of

those earlier visited nodes. The next step sets the root of node v to be the

result of MIN(root[v], root[w]), where MIN(x, y) returns x where x appears

before y in depth first order, otherwise it returns y. This effectively finds the

minimum node in terms of depth first order that is reachable from node

w, if that state appears earlier than node v, then node v must belong to a

component whose root is the minimal node that was found, since node v can

reach node w. To see how this works, consider the example given in Figure
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s0

s1

s2

s3

Figure 3.5: Example automaton to demonstrate Tarjan’s algorithm.

3.5.

First observe that this automaton has two strongly connected components

C1 = {s0} and C2 = {s1, s2, s3}. Initially we call V ISIT (s0) which sets

root[s0] = s0. Then we recursively call V ISIT on nodes s1 . . . s3 each of

which set root[si] = si. In V ISIT (s3) we notice that the successor of s3

is s1. Since s1 is already visited we do not make another recursive call,

and now we have run out of successors so the recursion can start to return

back. Before that happens however, we have to set root[s3] = s1, as s1

was a successor and MIN(s3, s1) = s1 since s1 appears before s3 in depth

first order. We now return back to the V ISIT (s2) call, and set root[s2] =

root[s3] = s1. Returning back to V ISIT (s1) now we notice that root[s2] = s1,

which is the node we are visiting. This indicates that all of the nodes reached

from the edge that visited node s2 belong to the same component as node

s1. Since node s1 has no other outgoing edges, this means that we have

found the component C2. Returning back to the V ISIT (s0) call we have

MIN(root[s0], root[s1]) = root[s0] = s0, which again is the node we are

43



visiting. Again since there are no more outgoing edges from node s0, we

have found the last component C1.

We see from this example that once we have visited all of the successors

of a node and the root for that node is still equivalent to that node, then we

have found a strongly connected component. All that remains is to create the

strongly connected component, which is done by setting InComponent[v] =

true for every node v in the component. This is done after the loop visiting

each of the successors. First we check if root[v] = v. As previously stated,

if this condition is true then we have found a strongly connected component

with its root of node v, so we can begin to create the component. We then

pop nodes from the stack and set them in component, until we pop the root

itself, at which point the strongly connected component has been created.

As the nodes are being popped we are guaranteed that they all belong to

the same strongly connected component. This is because the components

are found in depth first order, so any nodes belonging to other components

will have already been popped, or have not yet been visited by the algorithm

and hence have not yet been added to the stack.

3.1.2 Depth First Search with an Iterative Tarjan’s Al-

gorithm

In this section we will introduce an iterative implementation of Tarjan’s al-

gorithm. This iterative implementation of takes the principles of Tarjan’s

algorithm, but removes the need for recursive calls. This was necessary as

the heavily recursive nature of Tarjan’s algorithm would have severe memory

requirements in keeping track of the function frame stack when attempting to

calculate the strongly connected components in large models. By translating

the algorithm to an iterative approach we eliminate these resource require-

ments which then allows us to use strongly connected components during the

partial order reduction process. Algorithm 2 gives the psuedocode for the

iterative implementation of Tarjan’s algorithm.

44



We again use the idea of a component root in this algorithm, but this time

we need another stack in order to keep track of which states in the depth first

search has been fully explored and hence can be added to a strongly connected

component. We still have the original component stack, so now we have two

stacks called the requestStack and the componentStack. The items added

to the requestStack are tuples of the form (requestType, prev, state), where

requestType may be either CLOSE or V ISIT , and prev and state are both

states. These tuples represent a transition in the system and whether or

not the successor state of that transition has been fully explored. If the

request type is CLOSE then this indicates that the state variable for this

transition has been fully explored, whereas V ISIT indicates that this tuple

is still part of the current forward search. The state variable represents the

successor state of the transition whereas prev represents to source state of

the transition. We keep all of this information in the tuples so that the roots

of states found in the depth first traversal may be passed back down the

same path that was taken. This requestStack mimics the recursion that is

present in Tarjan’s original algorithm.

The algorithm begins by pushing the tuple (V ISIT, null, init) to the

requestStack, where init is the initial state of the model. We then begin

the loop that performs depth first traversal which will add tuples to the

requestStack, so that once the requestStack is empty we should have com-

puted all of the strongly connected components. During the loop we always

have access to the variables prev and state which have been detailed above.

We also have the req variable which stores the requestType of the current

tuple being considered. The first part of this loop is the conditional on line 5

which checks whether or not req = V ISIT ∧state not visited. If this is true,

then the current tuple represents a forward transition in the depth first search

to a state that has not yet been visited, as such the state must be explored.

To explore the state, first we set state.visited(true). This ensures that any

subsequent transitions to state will not result n state being explored again,

as the above condition would be violated. We also set root[state] = state

meaning that initially every state is considered to be the root of the strongly
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Algorithm 2 Iterative Tarjan’s Algorithm

1: function FindComponents(init)
2: requestStack.push(V ISIT, null, init)
3: while requestStack 6= ∅ do

4: (req, prev, state) = requestStack.pop()
5: if req = V ISIT and state not visited then

6: state.setV isited(true)
7: root[state] = state
8: if state has successors then
9: inComponent[state] = false

10: componentStack.push(state)
11: requestStack.push(CLOSE, prev, state)
12: for all states succ where state → succ do
13: requestStack.push(V ISIT, state, succ)
14: end for

15: else

16: inComponent[state] = true
17: end if

18: else

19: if prev 6= null then
20: if ¬inComponent[state] then
21: root[prev] = min(root[prev], root[state])
22: end if

23: if requestStack.top() 6= (V ISIT, prev, ?) then
24: if root[prev] == prev then

25: repeat

26: w = componentStack.pop()
27: inComponent[w] = true
28: until w == prev
29: end if

30: end if

31: end if

32: end if

33: end while

34: end function
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connected component to which it belongs, as was the case with the original al-

gorithm. We then have componentStack.push(state) which means that this

state will, at some point when the strongly connected component to which

state belongs, be able to be added to that component. Next we push the tu-

ple (CLOSE, prev, state) followed by (V ISIT, state, succ) for each successor

succ of state. This ensures that by the time we pop the (CLOSE, prev, state)

tuple, we must have already popped each of the successor tuples and per-

formed the exploration on them, meaning that at that moment we are ready

to consider the strongly connected components to which prev and state be-

long. The manner in which this consideration is made will be explained when

we examine from line 21. Note that all of this is only done if there exist succes-

sors for state. If not then we simply set inComponent[state] and add nothing

to either stack. This is because by definition a state with no successors must

belong to a one state component, consisting of that state. As such state need

not be added to the componentStack, nor must a (CLOSE, prev, state) tuple

be added to the requestStack, as the component can just be created imme-

diately, so there is effectively no component left to close. This brings us to

line 21. At this point we either have that req == CLOSE or that state has

already been visited. In either case we are ready to determine the minimum

root of prev. This is either going to be some state that occurs before prev in

the depth first ordering, or prev itself. In the former case, let us refer to this

minimum root as minRoot. In the req == CLOSE case we have finished

exploring from state, and so if it has been found that a state minRoot with

a smaller root than prev could be reached, this information will have been

passed down to state, and since prev can reach state, the minimum root for

prev must be minRoot. In the case that state has already been visited, we

have arrived at a point where it may be the case that root[prev] represents

a state with a greater depth first index than root[state]. As such if this is

the case then we can safely update the root of prev to be the root of state.

Regardless of which case we fall in to however, if it is the case that prev

is null then we have must have popped off the tuple (CLOSE, null, init),

meaning that the initial state has been fully explored and hence all compo-

nents found, so we can skip to the end of the main loop. That case aside,
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we then check if ¬inComponent(state). If this is not true then the current

tuple represents a transition to another strongly connected component con-

taining state. This means that prev, which is part of the current forward

search, must be a part of a different strongly connected component, since

every state in state’s component has already been determined. As such we

do not need to reconsider the root of prev, as only states that can be a part

of the current strongly connected component are valid choices for root[prev].

If however it is not the case that inComponent(state) then it must be the

case that state and prev belong to the same strongly connected component.

Since this is the case we then set root[prev] = min(root[prev], root[state])

for the reasons detailed above. Once we have determined the correct root of

prev we then check if requestStack.top() 6= (V ISIT, prev, any) on line 26.

By this we are determining whether or not there are still states to explore

from prev in the current forward search. The any state represents an arbi-

trary state. A false result would mean that there may still be states to be

considered for this strongly connected component, so the traversal must first

explore those states. A true result however means that from prev, there are

no more states to consider for this strongly connected component. As such

we can then check to see if all of the states for this component have been

found. We do this by checking if root[prev] = prev. If this is the case, and

the root of prev has not been changed, then no state with a smaller depth

first index than prev was reachable from prev, as such prev must be the root

of this strongly connected component. We then create the component by

popping states from the componentStack and marking them inComponent,

until prev has been popped from the componentStack.

It can be seen from this algorithm that when states are re-visited and

smaller roots are found in the forward search, these smaller roots are then

passed back through all of the previous states on the depth first path, until

the root itself is being considered in a CLOSE tuple. Note that not all

states in the strongly connected component necessarily have a reference to

the actual component root, it is only necessary that the states determine

that they are not themselves the root and pass that information back.
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Using this algorithm as a base, we can now perform the partial order re-

duction process with the strict component condition C4′. We can then check

the resulting models for either nonblocking or controllability. To perform the

partial order reduction process we must calculate the ample set of events for

the states when we are exploring the successors. Also before we create a

strongly connected component we must ensure that it contains at least one

fully expanded state. Algorithm 3 gives the psuedocode for determining con-

trollability in models using partial order reduction and Tarjan’s algorithm,

and Algorithm 4 shows the same but for nonblocking.

Since it is effectively the same in both cases, we will use Algorithm 3

to explain how the partial order reduction is performed and the same de-

scription will apply for Algorithm 4. On line 12 we notice that we make

a call to ample(state) in order to return the ample set of events, stored in

the collection ample, for state. In the special case for the controllability

checker, we also check to see if this set returned is null, in which case we

have determined that state in in fact uncontrollable, so we return false. If

this is not the case however, we then use the events from ample to push on

the new tuples. In addition to this on line 28 we check to see if the strongly

connected component that has been detected contains a fully expanded state

with a call to fullyExpanded(). As we are calculating the ample sets we

also check to see if for any state s, ample(s) = enabled(s), at which point we

flag s.fullyExpanded(true). Because of this we can easily check if there is a

fully expanded state in the strongly connected component. If the component

does not contain a fully expanded state, then we are not ready to create the

component yet. We then take the root of the component prev and expand

it using enabled(prev) instead of ample(prev), ensuring that prev is fully

expanded and that the component contains a fully expanded state. Again

just for the controllability verifier, we return false if this call to expand(prev)

returns null. Any new states will then be added to the componentStack and

included in the component creation the next time the component is closed.
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Algorithm 3 Iterative Tarjan’s Algorithm with Partial Order Reduction for
Controllability
1: function IsControllable(init)
2: requestStack.push(V ISIT,null, init)
3: while requestStack 6= ∅ do

4: (req, prev, state) = requestStack.pop()
5: if req = V ISIT and state not visited then

6: state.setV isited(true)
7: root[state] = state

8: if state has successors then

9: inComponent[state] = false

10: componentStack.push(state)
11: requestStack.push(CLOSE,prev, state)
12: if (ample = ample(state)) = null then

13: return false

14: end if

15: for all states succ ∈ ample do

16: requestStack.push(V ISIT, state, succ)
17: end for

18: else

19: inComponent[state] = true

20: end if

21: else

22: if prev 6= null then

23: if ¬inComponent[state] then
24: root[prev] = min(root[prev], root[state])
25: end if

26: if requestStack.top() 6= (V ISIT, prev, any) then

27: if root[prev] = prev then

28: if fullyExpanded() then

29: repeat

30: w = componentStack.pop()
31: inComponent[w] = true

32: until w = prev

33: else

34: if (enabled = enabled(prev)) = null then

35: return false

36: end if

37: for all states succ ∈ enabled do

38: requestStack.push(V ISIT, prev, succ)
39: end for

40: prev.fullyExpanded(true)
41: end if

42: end if

43: end if

44: end if

45: end if

46: end while

47: return true

48: end function
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Algorithm 4 Iterative Tarjan’s Algorithm with Partial Order Reduction for
Nonblocking
1: function IsNonBlocking(init)
2: requestStack.push(V ISIT,null, init)
3: while requestStack 6= ∅ do

4: (req, prev, state) = requestStack.pop()
5: if req = V ISIT and state not visited then

6: state.setV isited(true)
7: root[state] = state

8: if state has successors then

9: inComponent[state] = false

10: componentStack.push(state)
11: requestStack.push(CLOSE,prev, state)
12: for all states succ ∈ ample(state) do

13: requestStack.push(V ISIT, state, succ)
14: end for

15: else

16: inComponent[state] = true

17: if ¬isMarked(state) then

18: return false ⊲ Deadlock detected
19: end if

20: end if

21: else

22: if prev 6= null then

23: if ¬inComponent[state] then
24: root[prev] = min(root[prev], root[state])
25: end if

26: if requestStack.top() 6= (V ISIT, prev, any) then

27: if root[prev] = prev then

28: if fullyExpanded() then

29: blocking = true

30: repeat

31: w = componentStack.pop()
32: inComponent[w] = true

33: if isMarked(w) then

34: blocking = false

35: else

36: if more than one component then

37: if canReachComponent(w) then

38: blocking = false

39: end if

40: end if

41: end if

42: until w = prev

43: if blocking then

44: return false ⊲ Livelock detected
45: end if

46: else

47: for all states succ ∈ enabled(prev) do

48: requestStack.push(V ISIT, state, succ)
49: end for

50: prev.fullyExpanded(true)
51: end if

52: end if

53: end if

54: end if

55: end if

56: end while

57: return true

58: end function
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As was suggested, the nonblocking verifier is a bit more involved than the

controllability verifier as it deals with reachability of states. We will now be

referring to Algorithm 4. Every time we create a component we now must

check for the conditions given in Definition 3.3. We see on line 18 this amount

to simply checking if state is marked with a call to isMarked(state). This

is because at this point it has already been determined that state has no

outgoing transitions, so it is clearly unable to reach any other strongly con-

nected components. As such if that state itself is not marked then it violates

the conditions given in Definition 3.3 and hence the model is blocking and

we return false. The situation from line 29 is more interesting however. Now

it must be verified if there exists a marked state in the strongly connected

component, or if some state in the component can reach some other strongly

connected component. To do this, as we create the component and each

state w is popped from the componentStack, we first check if that state is

marked with isMarked(w), and if not then we check if it has a transition

to some other component with canReachComponent(w). In the latter case

this check is only made if there has been more than one component created,

as if there is only one component clearly there is no other component to

reach. If either of these conditions is met then we set blocking = false, as

the current component satisfies Definition 3.3. If this is not the case then we

have detected a component that violates Definition 3.3, and hence we have

found a livelock, and return false.

3.1.3 Ample set calculation

This section will introduce and detail the ample algorithm used in Algorithms

3 and 4. The ample algorithm developed during this research improves on the

efficiency of the ample algorithm in previous work [17] shown in Algorithm 5

in a number of ways. It has been discussed that paying particular attention

to how the events of the enabled set for a state are ordered can help to yield

smaller ample sets on average, and those ordering will be explored here. Not

only that but Algorithm 5 has a worst case run time complexity of O(e5)

where e is the number of events in the model. This is due to the fact that
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every time a new event is added to the current consideration of the ample

set on line 8, all events are iterated over again in order to calculate any

new dependencies on the ample set. The improved implementation shown

in Algorithm 6 iterates over only the events that depend on each ample

event instead of all events. As events are added to the end of the ample set,

checking the dependencies of those events is deferred until the end of the

ample iteration, so it is never necessary to restart the iteration. The worst

case time complexity of this implementation of ample is O(e3).

The ample algorithm being introduced is designed so that the dependency

condition C2 is satisfied. As it stands, C2 presents an enormously complex

task to satisfy minimally, which would be the desired result. This is because

it requires that no path from the current path may exist where any event

that depends on ample occurs before an event in ample. To determine this

precisely, multiple searches of the state space of the complete synchronous

composition must be performed on every calculation of an ample set for a

state, and this calculation must occur for every state in the reduced model.

This amount of searching has severe time requirements, leading to a run time

complexity O(e2∗ t∗s∗sR) where t is the number of transitions in the model,

s is the number of states in the model, and sR is the number of states in the

reduced model. Because of this we introduce local conditions which are easier

to verify and which satisfy C2.

C2.1 Every α ∈ ample(s) is independent of any β ∈ enabled(s) \ ample(s).

C2.2 Let D = {α ∈ Σ \ ample(s) | α depends on some β ∈ ample(s)}. Any

α ∈ D cannot become enabled through the actions of some automaton

M , using only events that are independent of every event β ∈ ample(s).

The ample algorithm developed as part of this research is given in Algo-

rithm 6 and we will use this to describe how the local conditions C2.1 and

C2.2 have been satisfied. We begin by initialising four sets. The ample

set is the set that will be used to contain the ample events of state s, the

dependentNotEnabled set will be used to represent the set D defined in

condition C2.2, the dependent set represents the union of sets ample and
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Algorithm 5 Original ample set computation

1: function Ample(State s)
2: ample = ∅
3: dependent = ∅
4: for all α ∈ enabled(s) do
5: ample = {α}
6: for all β ∈ Σ \ ample do

7: if β depends on ample then

8: if β ∈ enabled(s) then
9: ample = ample ∪ {β}

10: dependent = ∅
11: restart loop in 6
12: else

13: dependent = dependent ∪ {β}
14: end if

15: end if

16: end for

17: independent = Σ \ (ample ∪ dependent)
18: for all σ ∈ dependent do

19: danger = false
20: for all Mi where σ ∈ Σi do

21: if canBecomeEnabled(σ,Mi,independent , si) then
22: danger = true
23: break

24: end if

25: end for

26: if danger = true then

27: next α
28: end if

29: end for

30: return ample

31: end for

32: return enabled(s)
33: end function
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Algorithm 6 New ample set computation

1: function Ample(State s)
2: ample = ∅
3: dependentNotEnabled = ∅
4: dependent = ∅
5: enabled = enabled(s)
6: while ¬enabled.isEmpty() do
7: α = enabled.removeF irst()
8: ample = ample ∪ {α}
9: for all β ∈ ample do

10: for all γ where γ depends on β do

11: if γ ∈ enabled(s) then
12: ample = ample ∪ {γ}
13: else

14: dependentNotEnabled = dependentNotEnabled ∪ {γ}
15: end if

16: dependent = dependent ∪ {γ}
17: end for

18: end for

19: for all σ ∈ dependentNotEnabled do

20: danger = false
21: for all Mi where σ ∈ Σi do

22: if canBecomeEnabled(σ,Mi,dependent , si) then
23: danger = true
24: break

25: end if

26: end for

27: if danger = true then

28: ample = ∅
29: next α
30: end if

31: end for

32: if ample.size() = enabled(s).size() then
33: s.setFullyExpanded(true)
34: end if

35: return ample

36: end while

37: s.setFullyExpanded(true)
38: return enabled(s)
39: end function
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dependentNotEnabled, and enabled represents the enabled set of events of

state s. We begin by initialising all of these sets but enabled as empty. The

enabled set we initialise with a call to enabled(s) which will return the en-

abled events of state s. Specific to this implementation is the ordering of the

events that are returned by enabled(s), so we choose our ample events by

removing events from the beginning of enabled. We continue to remove items

from enabled and consider them for the ample set until enabled is empty. To

consider them for the ample set we take the event removed from enabled and

add it to ample. The we iterate over all the events currently in ample and

consider the events that depend on each ample event. We calculate ahead of

time, when we determine the independencies, the set of dependent events for

every event in the model. This means that we can immediately iterate over

the dependent events without needing to calculate anything. Every depen-

dent event γ falls into one of two categories; it is either enabled in the current

state or not. If γ is enabled in the current state it is added to ample and if it

is not enabled in the current state then it is added to dependentNotEnabled.

In both cases it is also added to dependent. During this process of iterating

over ample, ample grows by including all enabled events that are dependent

on events in ample. We are guaranteed to satisfy C2.1 once this is completed

as the process will only terminate once either no events that are not already

in ample are dependent on γ, or there are no events that depend on γ.

Once we have our candidate ample set we then go about satisfying C2.2,

so we must determine that none of the events in dependentNotEnabled can

become enabled in any of the component automata using only events from

Σ\dependent. To do this we iterate over the events of dependentNotEnabled.

For each of these events σ we then iterate over each of the component auto-

mata Mi where σ ∈ Σi and make a call to the algorithm given in Algorithm 7.

Algorithm 7 determines the above requirement. It is improved slightly from

the equivalent implementation given in [17] in that only the events local to the

automaton that is being considered are used to determine if the dependent

events can become enabled. This is done by creating the set independent and

iterating over the local events of automaton Mi. If we have event α ∈ Σi and
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α /∈ dependent then we have identified α as one of the events that must be

used to check the reachability of the dependent event σ in automaton Mi, so

we add α to independent. Once independent contains all local events inde-

pendent of ample, we then perform a depth first search of the state space of

automaton Mi using only transitions that involve events from independent.

If at any point in the search we encounter a state ti such that ti
σ
→i when

then know that an event that depends on ample can become enabled using

only events independent of ample in automaton Mi, so we return true. If

we exhaust the depth first search and never encounter such a state then we

have verified that σ can not become enabled, so we return false. Since this

is checked for every component automata for every dependent event, if it

was never the case that Algorithm 7 returned true then we can safely say

that no events that depend on ample may become enabled using only events

independent of ample. As such we have an ample set satisfying C2.1 and

C2.2 and we propose that this ample set then satisfies condition C2, a proof

of which is offered in Section 3.2. We can then return this ample set for

use in the construction of the reduced model. We also know that as soon

as Algorithm 7 returns true that this is not the case, so we begin the loop

in line 6 again to consider a new ample set. Since the ample sets calculated

in this way are in closure under the dependency relation, it is needless to

consider new events that are a part of a previously computed ample set, as

these events will generate the same ample set. Because of this we maintain

another set considered that contains all events that have been included in

any ample set as part of the current ample set calculation, and only events

in enabled \ considered are the considered for a new ample set.

3.1.4 Ordering of events

A large part of the optimisations developed during this research are achieved

by an ordering of the events in order to try and calculate the smallest possible

ample sets. We will explore two event orderings in this section; one based

on the number of independencies of events, and one based on whether or

not the inclusion of events would lead to the creation of more states. This
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Algorithm 7 Determining enabledness of events in local automata

1: function CanBecomeEnabled(Event σ, Automaton Mi, Event[]
dependent, State si)

2: independent = ∅
3: for all α ∈ Σi do

4: if α /∈ dependent then
5: independent = independent ∪ α
6: end if

7: end for

8: stack = ∅
9: stack.add(si)

10: while stack 6= ∅ do

11: currentstate = stack.pop()
12: if currentstate

σ
→i then

13: return true
14: end if

15: for all β ∈ others do

16: if currentstate
β
→i nextstate then

17: stack.add(nextstate)
18: end if

19: end for

20: end while

21: return false
22: end function
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section will introduce and detail the algorithms used to perform these event

orderings.

The way in which these event orderings are proposed to result in a smaller

state space in the reduced model is by selecting events from the enabled set

of events for ample, such that the ample sets created by using those events

are as small as possible. In order to achieve this we give an ordering to

the enabled set of events, so that the ample algorithm can select the events

appropriately. The way in which this ordering is determined is by adding

the enabled events to a priority queue as they are discovered, where the

weightings used to determine the priority for the events is determined based

on the selection strategy that is being used.

Algorithm 8 shows the algorithm used to find the enabled events and

order them based on whether or not the events are involved in a transition

whose target state has already been visited. The majority of this algorithm

remains unchanged from the similar algorithm given in [17]. What differs

here is that enabled is now a priority queue, meaning that as the events are

added to it they are now sorted with respect to the weighting given to them.

To determine this weighting we must calculate the target state for each event

considered. We create a state variable t to represent this target state, which

is initially given the same value as the current state s = (s0, s1, . . . , sn).

We then consider each event in the model to determine their enabledness.

For each event α ∈ Σ we then iterate over each component automaton Mi

with 0 ≤ i ≤ n. If it is not the case that α appears in the alphabet of

Mi then we continue to the next automaton Mi+1 as this means that the

local state si is not affected by a transition on event α, giving us ti = si in

this case. If however α is in the alphabet of Mi we then check to see if si

enables α. If this is not the case then this means that an α transition may

not occur from state s, so we have s 6
α
→ and we can consider the next event.

We must also consider the case of controllability in this case however, as if

Mi is a specification and α is an uncontrollable event, then that means we

have discovered an uncontrollable state. In this instance we can terminate
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Algorithm 8 Enabled with previously visited ordering

1: function Enabled(State s)
2: enabled = new PriorityQueue
3: t = s
4: for all α ∈ Σ do

5: for all Mi with 0 ≤ i ≤ n do

6: if α /∈ Σi then

7: continue

8: end if

9: if si 6
α
→ then

10: if Mi is specification ∧ α is uncontrollable then

11: terminate algorithm ⊲ System is uncontrollable
12: else

13: next event
14: end if

15: else

16: ti = s′i where si
α
→ s′i

17: end if

18: end for

19: if stateSet.contains(t) then
20: setV isited(α)
21: end if

22: enabled.add(α)
23: end for

24: return enabled

25: end function
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Algorithm 9 Event independency ordering algorithm

1: function DependencyWeightings

2: for all event pairs (α, β) do
3: if α depends on β then

4: dependencyWeightings[α] = dependencyWeightings[α] + 1
5: dependencyWeightings[β] = dependencyWeightings[β] + 1
6: end if

7: end for

8: updateComparator(dependencyWeightings)
9: end function

the algorithm as we have determined that the model is uncontrollable. Note

that this algorithm is still safe to be used for nonblocking verification as all

automata in models used in nonblocking verification are set to be plants, so

the check for specifications will always be false. If it was the case that si

does enable α, then we store the target state of that transition to our target

state t. Once all component automata have been iterated over, t represents

the result of a successful transition from state s on event α. We can then

check to determine whether or not t is a previously visited state by seeing

if it appears in stateSet, the set of states containing all states that have be

included in the reduced model. If t has already been visited then we record

that as shown in line 20. What this does is affect the comparator for the

priority queue signifying that α is to be given a higher weighting. When α is

then added to the priority queue on line 22 it appears first in the ordering of

enabled events. Events that have not been found to be previously visited will

be added to the end of the priority queue, giving us that when all enabled

events have been added in this way, we have our desired ordering.

Algorithm 9 shows the algorithm used to set the event weightings based

on the number of independencies they share with other events. They way

in which the events are selected for enabled is identical to how they are

selected when using the selection strategy detailed above, except the tar-

get state no longer needs to be calculated as the weightings are calculated

ahead of time. Since this is the case all enabled events may just be added

to the priority queue enabled without any further calculation. This algo-
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rithm is very simple as the majority of the work required for this is done

in calculating the dependency relationship. That process remains identical

to the algorithm given in [17]. Once the dependency relationship has been

established we introduce an array of integers called dependencyWeightings,

of size equal to the number of events in the model. This array is to store

the number of events that each event depends on. For example if we have

dependencyWeightings[α] = 5 that would mean that event α depends on five

other events. Now we consider each distinct pair of events and if those events

depend upon one another, we increase the value for each of those events in

dependencyWeightings by one. By the time this has completed the values

in the dependencyWeightings array should contain the correct number of

events that each event depends on. Now that this has been determined we

can use this information in the comparator for the priority queue such that

events with a fewer number of dependencies are given a higher priority than

events with a higher number of dependencies, while events with identical

numbers of dependencies are considered equal.

3.2 Proof of Correctness

This section provides proofs for the various conditions that have been asserted

as sufficient in order to ensure that once the algorithms detailed in Section

3.1 have been performed, the resulting model will have the same properties

of controllability and blocking as the original model.

Theorem 1 provides a proof that whenever the strict component condition

C4′ holds, then necessarily so too does the component condition C4. The-

orems 2, 3, 4 and 5 together with Lemma 1 to provide a proof that as long

as the ample conditions all hold, then the reduced model produced by the

algorithms outlined in Section 3.1 with have the same properties of control-

lability and blocking as the original model. Theorem 6 provides a proof that

Algorithm 6 outlined in Section 3.1 ensures that the ample dependency con-

dition C2 is satisfied. These three proofs together prove the correctness of

the entire partial order reduction process outlined in this thesis with respect
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to both controllability and nonblocking.

All of the proofs offered are based on existing work, however most of

them have required some extra consideration so that they apply to this par-

ticular implementation of partial order reduction in discrete event systems

for controllability and nonblocking. Theorem 1 is based on a proof taken

from [3] adapted to work with strongly connected components, and shows

that a weaker criterion for the component condition C4 may be used while

preserving the result. The proofs on pages 65 and 115 however have been

altered somewhat from their sources [3, 6] in order to prove the correctness

of the conditions with respect to the criteria mentioned above.

Since the partial order reduction process is now being used to verify

nonblocking as well as controllability, we have generalised the proof offered

in [6,17]. To do this we have identified the criteria by which the source proofs

operated and created Lemma 1 that could then be used to prove that the

partial order reduction process preseves both controllability and nonblock-

ing. Theorem 2 together with Theorem 3 show that the process preserves

nonblocking, and Theorem 4 together with Theorem 5 show that the process

preserves controllability. The proof in Theorem refthm:prfamplealg differs

from the original proof [3] as the way in which ample sets are chosen in [3]

differ slightly from the way the algorithm given in Algorithm 6 describes.

In the algorithm we have described, the ample sets for global states are not

restricted to the enabled sets for particular local states as they are in [3], thus

the proof that the algorithm still satisfies C2 is altered to reflect the way

ample sets are selected accordingly. The principle behind our proof however

is similar to the one offered in [3].

3.2.1 The strict component condition is a sufficient cri-

terion for the component condition

The result taken from [3] shows that whenever it is the case that one state on

a cycle is fully expanded and the dependency condition C2 holds for every
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state on the cycle, then there can not be an event in enabled(si) for some

state si on the cycle, that is not included in ample(sj) for some other state

sj on the cycle. We have introduced a weaker condition that uses strongly

connected components instead of cycles.

It was noticed that since each cycle belongs to a strongly connected com-

ponent, then the same nature of reachability used in the proof for the so

called strict cycle condition is also present when the matter is raised to the

component level. The strict component condition then requires only a single

state in each strongly connected component need be fully expanded for the

result in C4 to be achieved. The following offers a proof of this.

Theorem 1. If C1 and C2 hold, then C4′ =⇒ C4

Proof. By contradiction. Let S ′ = {s0, s1, . . . , sn} be a component in a state

graph produced using partial order reduction, where ample(sj) = enabled(sj)

for some 0 < j ≤ n, i.e., condition C4′ is satisfied. Assume that C4 is

violated, i.e., for some i 6= j there exists an event β ∈ enabled(si) where

β /∈ ample(sk) for all 0 < k ≤ n. Consider the smallest path from state si

to state sj si
αi+1

−−→ si+1
αi+2

−−→ · · ·
αj

→ sj. We know this path exists since S ′ is

a strongly connected component and also from our assumption that αl 6= β

with i ≤ l ≤ j. Since this is a component in a reduced model, it follows that

αi+1 ∈ ample(si) (only ample events are chosen when creating the reduced

model). Condition C2 yields that all events in ample(si) are independent of

all events in enabled(si)\ample(si). Since β ∈ enabled(si)\ample(si) it must

be the case that αi+1 is independent of β. Since they are independent, it must

also be the case that β ∈ enabled(si+1). From our assumption we know that

β /∈ ample(sl), meaning that β must still be enabled in every state sl on that

path. This must mean however that we have β ∈ enabled(sj) \ ample(sj).

This is of course a contradiction however since we asserted that state sj was

fully expanded.
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3.2.2 Ample conditions preserve properties of control-

lability and blocking

The following result is a modified version of the proof given in [6] which

shows that as long as the three ample conditions C1, C2 and C3 are satis-

fied when choosing a reduced set of events for each state in an automaton,

then the resulting reduced automaton will still satisfy the same property of

controllability and nonblocking that the original automaton satisfied. The

proof offered simplifies and generalises the original, encapsulating the core

principle of the original proof in a lemma. The lemma is then used to prove

that the ample conditions offered; including the revised condition C3′, retain

properties of both blocking and controllability, instead of just controllability.

For the purposes of the following proofs, let M = 〈Σ, S, S◦,→, Q〉 be a

synchronous composition and let MR be M produced by using partial order

reduction.

Lemma 1. If x → y in M then there exists y′ ∈ S and x → y′ in MR with

y → y′ in M.

Proof. Let C = x → y be a path in M of length n.

It is shown by induction on i = 0, . . . , n that there exist paths ηi and θi

such that C = η0 ◦ θ0 and

1. ηi ◦ θi is a path in M

2. ηi ◦ θi ends with a state reachable from y.

3. ηi starts at state x.

4. ηi is a path in MR.

5. |θi| = n− i.

Note that every state is considered reachable from itself, so condition1 is

covered if ηi ◦ θi ends with state y.
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We are trying to obtain an path in MR that starts at state x and ends with

a state reachable from y, given that C is a path in M . Condition 5 shows

that as i approaches n, ηi will constitute a larger and larger portion of the

path, and when i = n it will be the case that ηi ◦ θi = ηi. If conditions 1 and

2 both hold then it will be the case that ηi ◦ θi is a valid path in M that ends

with a state reachable from y. Condition 3 will ensure that the path begins

at state x, and if condition 4 also holds then the ηi path will be a path in

MR. Together then the 5 conditions will yield the result of giving us a path

in MR beginning at x and ending in a state reachable from y, which is our

desired result.

Base case i = 0. Let η0 = x, θ0 = C. Clearly η0 ◦ θ0 = x ◦ C = C

1. η0 ◦ θ0 = C is a path in M by assumption.

2. η0 ◦ θ0 = C ends with state y which is defined to be reachable from y.

3. η0 = x begins at state x.

4. η0 = x is a path in MR as every state forms a path.

5. |θ0| = |C| = n = n− 0.

Assume that conditions 1-5 hold for i, now consider i+ 1. We know that we

have ηi and θi from the inductive assumption. Let θi = b0
α1→ · · ·

αk→ bk where

k = n− i, and let |w| represent the length of the shortest path in MR from w

to a fully expanded state. We can safely do this as the component condition

gives us that every component contains at least one fully expanded state. It

can be shown by induction on m = 0, . . . , |b0| that the paths ηi+1 and θi+1

exist.

Base case m = 0. In this instance it must be the case that b0 is a fully

expanded state, so α1 ∈ ample(b0). Let ηi+1 = ηi ◦ b0
α1→ b1 and let

θi+1 = b1
α2→ · · ·

αk→ bk. Now ηi+1 ◦ θi+1 = ηi ◦ b0
α1→ · · ·

αk→ bk = ηi ◦ θi

1. ηi+1 ◦ θi+1 = ηi ◦ θi is a path in M as this was part of the inductive

assumption.
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2. ηi+1 ◦ θi+1 = ηi ◦ θi ends with a state reachable from y as this was part

of the inductive assumption.

3. ηi+1 = ηi ◦ b0
α1→ b1 has the same start state as ηi which is state x by

inductive assumption.

4. ηi+1 = ηi ◦ b0
α1→ b1 is a path in MR since ηi is a path in MR and

α1 ∈ ample(b0) by assumption.

5. |θi+1| = |θi| − 1 = n− i− 1 = n− (i+ 1)

Assume that for all ηi and θi = b0 → · · · → bk that satisfy conditions 1-5 for

m, there exist paths η′i and θ′i satisfying conditions 1-5 for i + 1. Show this

is true for m+ 1. We now have two cases:

• Some γ ∈ ample(b0) occurs on θi. Consider the first such event γ = αj.

Ample condition C2 gives us that all the events preceding γ on θi are

independent of ample(b0). Therefore γ is independent of each αl with

0 < l < j, γ remains enabled in each state bl. There then exist states

cl for every bl where bl
γ
→ cl. Again due to the independence of γ and

each αl there exist transitions cl
αl+1

−−→ cl+1 for every cl. This means

that the paths b0
α1→ b1

α2→ · · ·
αj−1

−−−→ bj−1
γ
→ bj and b0

γ
→ c0

α1→ · · ·
αj−2

−−−→

cj−2
αj−1

−−−→ bj both exist in M . An example of this is shown in Figure

3.6.

Now let η′i = ηi ◦ b0
γ
→ c0 and let θ′i = c0

α1→ · · ·
αj−2

−−−→ cj−2
αj−1

−−−→ bj
αj+1
−−−→

bj+1
αj+2

−−→ · · ·
αk→ bk. Then η′i ◦ θ

′
i = ηi ◦ b0

γ
→ c0

α1→ · · ·
αj−2

−−−→ cj−2
αj−1

−−−→

bj
αj+1
−−−→ · · ·

αk→ bk.

1. η′i ◦ θ′i is a path in M . It has been shown that the path b0
γ
→

c0
α1→ c1

α2→ · · ·
αj−2

−−−→ cj−2
αj−1

−−−→ bj exists in M . The path bj
αj+1

−−→

bj+1
αj+2

−−→ · · ·
αk→ bk was already part of C which also exists in

M . ηi is a path in M by inductive assumption. Since η′i ◦ θ
′
i is a

composition of paths that exist in M , it must also be a path in

M .
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2. η′i ◦ θ′i ends with a state reachable from y since the end state bk

is the same as the end state of θi, which is reachable from y by

inductive assumption.

3. η′i = ηi ◦ b0
γ
→ c0 has the same start state as ηi which is state x by

inductive assumption.

4. η′i = ηi ◦ b0
γ
→ c0 is a path in MR since ηi is a path in MR and

γ ∈ ample(b0) by assumption.

5. |θ′i| = |θi| − 1 = n− i− 1 = n− (i+1), since the γ transition that

was a part of θi has been removed and is now a part of η′i.

• All events on θi are not in ample(b0). They are then all independent

of of ample(b0) by ample condition C2. Let b0 = d0
γ1
→ d1

γ2
→ · · ·

γm+1

−−−→

dm+1 be a shortest path from b0 to a fully expanded state in MR. This

fully expanded state exists because |b0| = m+ 1 by assumption. Using

the same reasoning as before we know that there exists the path d1 =

c0
α1→ · · ·

αk→ ck as shown in Figure 3.7. Now let η′′i = ηi ◦ b0
γ1
→ d1 = c0

and θ′′i = c0
α1→ · · ·

αk→ ck. Then η′′i ◦ θ′′i = ηi ◦ b0
γ1
→ c0

α1→ · · ·
αk−1

−−−→

ck−1
αk→ ck. Note here that |θ′′i | = |θi|, and that |c0| < |b0| where c0 is

the initial state of θ′′i and b0 is the initial state of θi. Since |c0| < |b0|

this suggests that as m increases, the distance to a fully expanded

state from the initial state of the new θ path decreases, and thus will

eventually reach 0. At this point this initial state e0 of our θ path

θ′′′i will have α1 ∈ ample(e0) at which point we can construct paths

η′i = η′′′i ◦ e0
α1→ e1 and θ′i = e1

α2→ · · ·
αk→ ek.

1. η′i ◦ θ
′
i is a path in M . It has been shown that η′′′i exists and the

path e0
α1→ e1

α2→ · · ·
αk−1

−−−→ ek−1
αk→ ek exists in M .

2. η′i ◦ θ
′
i ends with a state reachable from y since the end state bk of

θi is reachable from y by inductive assumption, and the end state

ek has been shown to be reachable from bk.

3. η′i has the same start state as ηi which is state x by inductive

assumption.
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Figure 3.6: Example of independent events remaining enabled.

4. η′i is a path in MR since η′′′i is a path in MR and α1 ∈ ample(e0)

by assumption.

5. |θ′i| = |θi| − 1 = n − i − 1 = n − (i + 1), since the α1 transition

that was a part of θi has been removed and is now a part of η′i

Figure 3.6 shows how an event β independent of events α0, . . . , αn, re-

mains enabled in each successive state, and as such a parallel path t0
α1→ · · ·

αn→

tn exists. Figure 3.7 shows how successive independent events β0, . . . , βk give

rise to a series of parallel paths tj0
α1→ · · ·

αn→ tjn with 0 ≤ j ≤ k.

Theorem 2. Let Mω be the abstraction of automaton M = 〈Σ, S, S◦,→, Q〉

achieved using the process defined in Definition 2.15, then

M is nonblocking ⇐⇒ ∀s ∈ S where Mω → s : s
pω
→ for some path p, and

M is blocking ⇐⇒ ∃s ∈ S where Mω → s : s 6
pω
→ for all paths p.

Proof. Assume M is nonblocking, we must show that for all s ∈ S where

Mω → s we have s
pω
→. Consider an arbitrary state s ∈ S where Mω q

→ s.

Since Mω is constructed by only adding ω transitions to ⊥ we have M
q
→ s.

Since M is nonblocking we have s → t where t ∈ Q. We also have t
ω
→ ⊥ in

Mω , and again since only ω transitions were added to construct Mω we have

Mω q
→ s → t

ω
→ ⊥. Since this was true for arbitrary reachable state s, we

have for each reachable state s ∈ S, s
pω
→, which is our result.
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Figure 3.7: Example of events remaining enabled over a succession of inde-
pendent events.
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Now assume that for all s ∈ S where Mω → s we have s
pω
→ for some path

p. We must show that M is nonblocking. Consider an arbitrary state s ∈ S

where M → s. Since Mω is constructed by only adding ω transitions to ⊥

we have Mω q
→ s. From our assumption we have s

p
→ t

ω
→ for some state t

and path p. From the construction of Mω we have t ∈ Q, and again since we

only added ω transitions we have s
p
→ t in M , which gives us M → s

p
→ t.

Since t ∈ Q and this was true for arbitrary reachable state s, we have M is

nonblocking.

Assume M is blocking, we must show that there exists a state s ∈ S where

Mω p
→ s and for all paths p, s 6

pω
→. From the construction of Mω and since

M is blocking, we have ∀s ∈ S : s 6
ω
→. This immediately gives us our result.

Now assume that there exists a state s ∈ S where Mω p
→ s and for all

paths p, s 6
pω
→, we must show that M is blocking. Since Mω is constructed by

only adding ω transitions to ⊥ we have M
q
→ s. From our assumption there

are no paths to any state t where t
ω
→. From the construction of Mω this

means that there exist no paths to any state t where t ∈ Q, which gives us

our result that M is blocking.

Theorem 3. Let M = 〈Σ, S, S◦,→, Q〉 then M is nonblocking =⇒ MR is

nonblocking and M is blocking =⇒ MR is blocking.

Proof. From Theorem 2 this is equivalent to saying that if we have s → ⊥

for all reachable states s in Mω, then the same is also true for all reachable

states in Mω
R, and if there exists a reachable state s in Mω where s 6→ ⊥ for

all paths p, then there also exists such a state Mω
R .

Assume M is nonblocking and let s be an arbitrary reachable state in

Mω
R . We have that s is also reachable in Mω as Mω

R is constructed only

by removing transitions from Mω and not adding them. Consider the path

s0 → ⊥ in Mω which must exist since we know that s is co-reachable. By

Lemma 2 we know that since s → ⊥ in Mω then s → ⊥′ in Mω
R where

⊥ → ⊥′. Since the only transitions from ⊥ are selfloops however this means
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that ⊥′ = ⊥, which gives us s → ⊥ in Mω
R. Since the only transitions to ⊥

are on event ω, we have Mω
R → s → t

ω
→ ⊥ for some state t ∈ S. From the

construction of Mω we have t ∈ Q, therefore an accepting state is reachable

from s0 in MR, giving us our result that any arbitrary reachable state of MR

is also co-reachable and hence MR is non-blocking.

If M is blocking then there exists a state s ∈ S where Mω → s such that

s 6→ ⊥. It follows that it must be the case that any state s′ 6→ ⊥ where

s → s′. By Lemma 2 we know that such a state s′ is reachable in Mω
R, giving

us our result that a non-coreachable state is reachable in Mω
R and hence MR

is also blocking.

Theorem 4. Let M ′ = 〈Σ, S ′, S◦,→′, Q〉 be the abstraction of automaton

M = 〈Σ, S, S◦,→, Q〉 = M1|| . . . ||Mn achieved using the process defined in

Definition 2.13, then

M is uncontrollable ⇐⇒ ∃s = (x0 . . . , xn) ∈ S ′ where xi = ⊥ for some

0 ≤ i ≤ n.

Proof. AssumeM is uncontrollable, we must show that ∃s = (x0 . . . , xn) ∈ S ′

where xi = ⊥ for some 0 ≤ i ≤ n. Since M is uncontrollable there exists

a state reachable t = (y0, . . . , yn) ∈ S where for all plant automata Mj we

have yj
α
→ xj , and for some specification automaton Mi we have yi 6

α
→ with

α ∈ Σi ∩ Σu. Since plantification only adds transitions on uncontrollable

events to the dump state ⊥, we have S ⊆ S ′, and so S ′ → s. From the

construction of M ′ we have yi
α
→ xi = ⊥, which in turn yields the transition

t = (y0, . . . , yn)
α
→

′
s = (x0, . . . , xi = ⊥, . . . , xn), which is our result.

Assume ∃s = (x0 . . . , xn) ∈ S ′ where xi = ⊥ for some 0 ≤ i ≤ n, we must

show that M is uncontrollable. By contradiction, assume M is controllable.

This means that for all specification automata Mj , α ∈ Σj ∩ Σu =⇒ ∀t ∈

Sj : t
α
→. From the construction of M ′ this means that there exist no

transitions to the dump state ⊥. Since xi = ⊥ however this means that such

a transition must have occurred, so we have a contradiction and therefore M

is uncontrollable.

72



Theorem 5. M is controllable =⇒ MR is controllable and M is uncontrol-

lable =⇒ MR is uncontrollable.

Proof. IfM is controllable then every state ofM is a controllable state. Since

states are only ever removed and not added when constructing MR it must

be the case then that MR also contains only controllable states and hence is

controllable.

If M is uncontrollable then there exists some counterexample s0 → sn

in M where sn is an uncontrollable state. By Theorem 4, this means that

for some xk with sn = (x0, . . . , xm) it is the case that xk = ⊥. Since ⊥ has

selfloops for all events, it is the case that xk
α
→ xk for all α ∈ Σ. This means

that any state s′n where sn → s′n must also be an uncontrollable state as it

includes xk = ⊥. By Lemma 2 we know that such a state s′n is reachable in

MR, giving us our result that an uncontrollable state is reachable in MR and

hence MR is also uncontrollable.

3.2.3 Ample algorithm satisfies the dependency condi-

tion

The following result will use a modified version of the proof offered in [3] to

show that the steps taken by the ample algorithm implemented in this thesis

satisfy the dependency condition C2. That is to say that as long as C2.1

and C2.2 hold in state s, then no sequence of events taken from state s will

result in an event that is dependent on some event α ∈ ample(s) before some

event β ∈ ample(s) has occurred, where it may be the case that β = α.

Theorem 6. If C2.1 and C2.2 hold in state s, then ample(s) will satisfy

C2 for all sequences of transitions from state s.

Proof. By contradiction. Let M = 〈Σ, S,→, S◦〉 be a synchronous composi-

tion and let s0 = (x0, x1, . . . , xn) ∈ S. To select ample(s0), first some event

α ∈ enabled(s0) is considered and added to ample(s0), then all of the events

that depend on α that are also in enabled(s0) are included in ample(s0) as

well. All of the enabled events that depend on the events added in this way
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are then also included in ample(s0), this repeats until no more events are

added. The set ample(s0) is then comprised entirely of dependent enabled

events, which leaves two other sets of events to consider; events that are in-

dependent from all the events of ample(s0), call this set I, and events not in

enabled(s0) that are dependent on one or more of the events in ample(s0),

call this set D. Recall that ample(s0) is only considered viable by the al-

gorithm presented in Chapter 3 if there exists no component automaton Mi

where an event from D can become enabled in the final state of a path from

state xi using only events from I.

Assume then that ample condition C2 is violated after ample(s0) has been

created in this way. Then there exists some path from state s0 where an event

dependent on an event in ample(s0) occurs before an event from ample(s0).

Let this path be s0
β1

→ s1
β2

→ · · ·
βj

→ sj , where βj depends on an event in

ample(s0) and each βi with 0 ≤ i < j is independent of all of the events in

ample(s0), hence each βi ∈ I. Since all of the dependent enabled events for

state s0 were included in ample(s0) it must be the case that βj ∈ D. Consider

the component automata M0,M1, . . . ,Mn in states s0, . . . , sj−1. Since βj ∈

enabled(sj−1), this means that each Mk where βj ∈ Σk has transitioned to

a state x′
k where βj ∈ enabled(x′

k). There must exist at least one such Mk,

as if was the case that βj /∈ Σk for all 0 ≤ k ≤ n, then it would be the

case that βj /∈ Σ, which is false by assumption. Also it must have been the

case that xk 6
βj

→ for some k where βj ∈ Σk, as otherwise it would be the case

that βj ∈ enabled(s0), contradicting the fact that βj ∈ D. This Mk has then

transitioned to this state x′
k, however only events exclusively from I have

been used, meaning that βj ∈ D has become enabled in automaton Mk using

only events from I, which contradicts how the algorithm chose ample(s).

Therefore our assumption that C2 has been violated must be incorrect, so

the algorithm must satisfy C2.
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3.3 Experimental Results

The algorithms outlined in Section 3.1 have been implemented in the WA-

TERS [1, 18] model checking suite and have been run on various models to

determine how much reduction can be observed. Another metric of signifi-

cance will be the time taken to run the algorithm on models of various sizes.

When compared to a standard model verifiers that create the entire state-

space, much more computation is done for each state explored in a partial

order reduction verifier. This is because on top of calculating the enabled

set of events for each state, the partial order reduction process requires us-

ing the enabled set to compute an ample set. Most the time spent in the

partial order reduction process is spent calculating ample sets, so this would

suggest that the algorithm would take longer to perform the verification in

all cases. Since a smaller set of successor states are being explored in some

cases however, this reduces the number of states for which this computation

is being performed. Because of this there should exist some relationship be-

tween how effective the partial order reduction method is at reducing the

state space of a given model and the run time for that model. Tables 3.1, 3.2

and 3.3 shows the results of analyzing various models for with the different

algorithms developed in Section 3.1.

Table 3.1 compares using a regular monolithic model checker, the partial

order reduction verifier given in [17] which makes use of the ample algo-

rithm given in Algorithm 5, and a partial order reduction verifier that has

been implemented using the optimised ample algorithm given in Algorithm

6. The monolithic model checker explores every successor of every state using

a breadth-first search. The two partial order reduction verifiers used in this

table differ only by the ample algorithm used. This means that they are both

using the depth first search given in [17], which uses the cycle condition C3

instead of the component condition C4 developed in this chapter. There are

five metrics considered in this table, given by the five columns States, Time,

Cycles, Reduced Sets, and Full Expansions. States and Time should be self

explanatory, so only the remaining three metrics will be explained. The Cy-
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cles metric gives the number of times that a partial order reduction algorithm

generated a transition that closed a cycle. This is of importance since the

depth first search algorithm being used uses the fact that a cycle was closed

in order to know when to fully expand states, thereby potentially increasing

the state-space. It is therefore advantageous to try have as few cycles closed

as possible. The Reduced Sets metric gives the number of times an ample set

was created for a state by a partial order verifier, that was smaller than the

enabled set for that state. Obviously the greater this value is the better, as

generating smaller ample sets is the main factor in reducing the state-space.

Finally the Full Expansions metric gives the number of times that a partial

order algorithm was forced to fully expand a state in order to comply with

the cycle condition C3. A smaller value here is better as fully expanding

states reduces the number of reduced sets in the process. It should be noted

here that the values in the states column for the monolithic checker that are

prefixed with a * represent models for which the monolithic checker could not

construct the entire state space before running out of memory, as such the

time spent for these models with the monolithic checker is undetermined and

so is represented by a ? in the time column. In these cases, other techniques

have been used to discover the number of states in these large models. The

three columns Aut, Events and Cont under Model represent the number of

component automata in the model, the number of events in the model, and

whether or not the model is controllable, respectively.

Table 3.2 compares using a partial order reduction controllability verifier

using the different selection strategies given in Algorithms 8 and 9. For each

of these comparisons the depth first search algorithm given in Algorithm 3 is

used, which means that for these tests the component condition C4 is being

used as opposed to the cycle condition C3. Also the ample set calculation is

done with Algorithm 6, as we can see from Table 3.1 that this algorithm per-

forms better than version given in [17] in almost all cases. The columns PO

Comp Ind, PO Comp Visit and PO Comp Both give the results for running

the verifiers in this way so that they differ only by the selection strategy used.

The PO Comp Ind selection strategy uses the algorithm given in Algorithm
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9 where events are ordered by the number of independencies they share with

other events. The PO Comp Visit selection strategy uses the algorithm given

in Algorithm 8 where events are ordered depending on whether or not they

are involved in transitions to states that are already visited. Finally the PO

Comp Both selection strategy uses both of the pervious strategies combined.

The way that this works is that events with higher visited priority trump

those events with a lower visited priority, and if events have the same visited

priority then the independence priority is used. The metrics in this table

remain the same, except the cycles metric has been replaced by the Compo-

nents metric. Since Algorithm 3 calculates precisely all of the components

of a model instead of estimating, as was the case for cycles in the algorithms

given in [17], this information can be included under the model column. From

the strict component condition C4′, we must only fully expand one state per

strongly connected component, so we would expect fewer full expansions for

these tests.

Table 3.3 compares using a partial order reduction nonblocking verifier

with a monolithic nonblocking verifier. Again the monolithic verifier gener-

ates the entire state-space of the synchronous composition, only this time it

is searching for blocking states. The partial order algorithm used is Algo-

rithm 4. As with the previous set of tests this uses the component condition

C4. It is no longer optional in this case, as we have from Definition 3.3

that components are used in order to determine in a model is nonblocking.

This is also using the ample algorithm given in Algorithm 6 and the selection

strategy given in Algorithm 9 for the best possible results. Included as an

added metric in this case is Reduction. This gives the percentage reduction in

state space achieved by partial order reduction over the standard monolithic

implementation.

The models in this suite of tests can be grouped into four distinct groups;

transferLine [4,21], central locking [15], philosophers [7], and profisafe [12,13].
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The transferLine tests are based on systems created by the process out-

lined in [4]. This involves taking functional blocks, and combining them into

larger systems which are effectively all of the blocks running in parallel. The

blocks themselves are simple systems similar to the example given in Figure

2.5. Each consists of a machine, two buffers and a test unit. The first buf-

fer B1 stores units of work to pass to the machine, while the other buffer

B2 receives units of work from the machine and passes them on to the test

unit. The test unit can either pass the work on to the next functional block,

or send the work piece back to B1 to be processed again by the machine.

The capacities of B1 and B2 are 3 and 1 respectively. The tests model this

system with 4 and 5 funtional blocks corresponding to the number in the

model name for the test. It can be seen immediately that the state space of

the full synchronous product increases drastically as more functional blocks

are added, evidenced by the states for the monolithic model verifier in Ta-

ble 3.1. Looking at the partial order reduction results we can see that PO

old using Algorithm 5 barely achieves any reduction and takes significantly

longer than the monolithic verifier. The PO new test using Algorithm 6

however achieves roughly a 20% reduction in of the full state-space and per-

forms much faster then the older version, although not enough reduction is

achieved in order to yield times lower than that of the monolithic verifier.

Looking at the different selection strategies in Table 3.2 we see that none of

them have managed to improve on the results of PO new. They all share

the same state-space and differ only in the time taken to run. This suggests

that there is not sufficient variation in the different ample sets that can po-

tentially be computed and as such the improved ample algorithm suffices to

find an effective ample set. Examining the nonblocking verifier results in

table 3.3 however gives drastically different results. Here we see state-space

reductions of 94.3% and 98.1% for transferline 4 and 5 respectively. The

reductions are so great using the partial order reduction nonblocking verifier

that two additional models with 6 and 7 functional blocks have been included

with projected state spaces included for the monolithic nonblocking verifier.

The reduction for transferline7 approaches 100% due the exponential rate at

which the total state-space grows while the reduced model state-space only
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grows linearly. Thanks to this extreme reduction in state-space these models

are able to be verified very quickly as there are much fewer states to explore.

The reason we observe such drastic improvements with the nonblocking ver-

ifier as opposed to the controllability verifiers we propose is due to how the

dependency relation is affected in the two cases. In the controllability veri-

fier the transition relation of the model is changed in order to construct the

plantification of specification automata given in Definition 2.13. This adds

transitions on existing uncontrollable events to the dump state ⊥ that would

not otherwise be present, forcing a dependency relationship between events.

It is these dependencies that ensure the verifier will not exclude any uncon-

trollable states when computing ample sets. In the case of the nonblocking

verifier however the abstraction defined in Definition 2.15 is used, which adds

an ω transition to the dump state ⊥ for each accepting state. This does not

add any dependencies as ω is independent of every other event, due to the

selfloops for all events on ⊥. When considering how the system operates

then we can hypothesise why reductions of this magnitude are observed. Es-

sentially the functional blocks within the complete system are independent

systems running in parallel. It is only when a unit of work is passed between

the functional blocks that they share events. As a result of this we can see

that the vast majority of the time there is only some number of independent

events occurring, meaning that the vast majority of states in the system have

transitions enabled largely on independent events. As this is the main crite-

ria by which ample sets are selected, the result is that minimal selections for

ample sets can be made most of the time, as we can see by the size of the

reduced sets when compared to the number of states produced.

The central locking tests consist of dreitueren, koordwsp and koord-

wsp block. These tests are part of the BMW central locking system modelled

in the KorSys project [15]. As the description suggests they model the cen-

tral locking system of automobiles. While this may seem like a simple task

to model it can be seen from the state spaces from the complete synchronous

product that these models are sufficiently complex. Again when verified for

controllability we see similar results to that of transferline. When using the
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old ample algorithm no reduction is achieved except for around 20% for dre-

itueren, and when the new ample algorithm is used we see reductions of

around 50% for the koordwsp models while the results for the different selec-

tion strategies continue to remain consistent with those of PO new. We can

put this down to the lack of varied potential ample set solutions again. In

the nonblocking verifier case however we again see improved results. While

dreitueren remains at around 20% reduction, koordwsp and koordwsp block

enjoy 77.1% and 99.5% reduction respectively. We can most likely discount

the koordwsp block result due to the fact that it is blocking, which means

that it may just be luck that the depth first search of the partial order reduc-

tion verifier managed to find close a component satisfying the nonblocking

check given in Definition 3.3 sooner than the breadth first search of the mono-

lithic verifier. The high reduction achieved in the koordwsp model is likely

due to the same reason as the high rates of reduction that were explained in

the transferline case.

The philosoper tests are based on the classic computer science problem

of the “dining philosophers” introduced by [7]. The problem is described

as a number of philosophers sitting at a round table each with a bowl of

food in front of them. In between each pair of adjacent philosophers is a

fork. At each step, each philosopher may either pick up a fork, put down

a fork, consume the food, or wait/think. Each philosopher may only eat if

they are holding two forks. The problem is to devise a strategy that each

philosopher can employ such that no philosopher can go forever without

comsuming any food. Clearly a problem arises when the strategy of each

philosopher is to first pick up the fork on his/her left, and then the fork

on the right, and then eat. As soon as each philosopher picks up the left

fork, no forks remain, and so each philosopher is waiting forever to pick

up the right fork. This is known as deadlock. The dirty philosopher and

dining philosopher tests have no controlling strategy and as such simply map

the state space for all possible sequences of decisions any of the philosophers

can make. The ordered philosophers tests add a strategy where deadlock

is avoided by requesting forks in a fixed order. In all tests the number in
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the model name denotes the number of philosophers sitting at the table.

Clearly as the number of philosophers increases the state space very quickly

grows as the permutation of events for each philosopher grows exponentially.

These tests also exhibit quite large reduction, with ordered philosophers 12

being unable to fit in memory when checked by the monolithic model checker

while the partial order methods enjoy around a 70% state-space reduction.

Interestingly, for the dining and ordered philosophers models the old ample

algorithm achieves slightly more reduction than the new ample algorithm,

although the new ample algorithm is substantially faster. To determine why

this is we must examine the other three metrics, cycles, reduced sets, and full

expansions. When we compare the cycles metric of the two implementations

we see that the new implementation has closed substantially more cycles

than the old implementation. There is no safeguard in either implementation

that attempts to prevent this happening, and the random ordering of events

allows for this to happen. This then impacts the full expansions metric and

the new implementation is forced to fully expand more states. It may be

reasonable to think then that the reduced sets metric would be lower for the

new implementation, but we observe a higher number of reduced sets. This is

due to the fact that while the new implementation may originally create more

reduced ample sets, when a cycle is closed one of the states that achieved

one of these reduced sets may very well then get fully expanded, causing

the actual number of reduced sets to be lower than that which is reported.

The results for the dirty philosopher models support this reasoning. These

models are slightly better for the new implementation, and when we look

at the cycles metric we see that for these models the new implementation

creates fewer cycles than the old implementation. Looking at the results

for the different selection strategies this also reinforces this reasoning. Here

we begin to see further reductions in the state space once some ordering is

given to the events chosen for the ample sets. These tests are also using

strongly connected components in order to determine when full expansions

have to happen which, when compared to the number of cycles and full

expansions of the previous implementations, makes a large difference. We do

still see however that it does not matter which strategy is used, with each
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one differing only in the time taken to complete, which does still suggest

that the set of different potential ample sets is not too great. Even more

interesting are the results of the nonblockin verifiers. Again we can discount

the dirty and dining philosopher models for the same reasons as we did for

koordwsp block as they are blocking, although the results do suggest that

using strongly connected components to determine nonblocking could be a

better approach than the approach used in the monolithic verifier, as the

blocking states appear to be found much sooner in all cases. The nonblocking

verifier however does not achieve as much reduction and the controllability

verifiers for the ordered philosopher models however, to the point where the

ordered philosohers 12 model could not be included in Table 3.3 due to the

state-space being too large. As of the writing of this thesis an explanation

of why this should be the case is not yet understood, and further analysis of

this case may be required to further understand where the shortcomings and

advantages of the partial order reduction process lie. In all cases however a

large reduction in the total state-space is still achieved. This is similar to

the case of the transferline example. The vast majority of the events are

independent and most of the time, each philosopher is only concerned with

his own actions and those of his neighbours.

The profisafe tests are based on the field bus protocol models introduced

in [12, 13]. These tests serve in this case to illustrate that partial order

reduction is not effective in all cases. Immediately we can observe that none

of the partial order reduction methods have yielded any reduction whatsoever

in any of these tests, while the tests perform slower than the monolithic

checkers in all cases. This is to be expected of course as we have discussed

earlier that the only time we will observe gains in run time will be when

large gains in state space reduction are achieved. We do notice however that

the new ample algorithm performs much faster than the old implementation.

This is due mainly to the fact that the profisafe models have a staggeringly

large number of events. As was discussed in section 3.1, Algorithm 5 has

a worst case run time complexity of O(e5) where e is the number of events

in the model. The optimisations made in Algorithm 6 are shown by these
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results to have a significant impact on run time when verifying models with

a large number of events such as these. It was initially hypothesised in [17]

that part of the reason for the absence of any reduction was due to the

large number of cycles, and hence fully expanded states, in the models. This

has been shown to be false upon further analysis of these models however.

As is somewhat reflected by the reduced sets metric in these results, the

dependency relation of the events does not allow for the creation of reduced

ample sets due to the dependency condition C2. For almost all ample set

calculations the dependency relation is such that the entire enabled set is

added to ample.

Figure 3.8 gives a chart showing state-space comparisons for most of the

models when verified by the various model checkers outlined in this section.

The models ordered philosophers 12, transferLine 4, and tictactoe have been

excluded fro the chart due to visibility issues brought on by scaling.
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Model States Time(s) Cycles Reduced Sets Full Expansions
Name Aut Events Cont. Mono PO old PO new Mono PO old PO new PO old PO new PO old PO new PO old PO new

transferLine 4 21 22 Yes 87578 86072 69603 0.253 1.062 0.450 108244 69051 15995 16825 22912 15718
transferLine 5 26 27 Yes 1280020 1268814 1017290 3.754 19.756 6.865 1868791 1428079 200045 245912 331793 244176
tictactoe 28 35 No 2422 43 43 0.058 0.020 0.018 0 0 0 0 0 0
dreitueren 33 74 Yes 420283 341561 341274 3.500 8.224 4.387 237768 283749 89623 98848 129041 140864
koordwsp 25 52 Yes 465648 465648 208996 3.020 23.824 3.784 2335120 766989 0 60652 452119 145609
koordwsp block 24 42 Yes 634608 634608 327172 3.878 32.655 5.755 3170996 1198536 0 94348 616124 228638
ordered philosophers 10 20 50 Yes 983038 422584 428889 3.451 6.846 2.143 140301 210954 335077 341382 36689 43515
ordered philosophers 11 22 55 Yes 3932158 1451400 1502751 17.071 30.113 8.019 480308 723414 1175954 1227305 114229 138416
ordered philosophers 12 24 60 Yes *15728638 4938155 5094767 ? 121.597 33.116 1594116 2192058 4071096 4227708 353081 415790
dining philosophers 9 18 45 Yes 855093 682639 689182 2.573 8.945 3.370 289159 418477 420352 426895 89599 96582
dining philosophers 10 20 50 Yes 3900559 2928081 2957325 13.760 45.166 16.551 1190092 1736750 1879326 1908570 344883 374146
dirty philosophers 8 24 40 Yes 390623 229057 226749 1.346 3.435 1.226 112606 105625 191305 188997 49165 48529
dirty philosophers 9 27 45 Yes 1953123 975819 966558 8.038 17.169 5.565 489781 470425 835216 825955 194257 189739
dirty philosophers 10 30 50 Yes *89765623 4108435 4102333 ? 89.840 28.496 2089061 2026719 3584073 3577971 757463 740129
profisafe i3host efa 21 248 Yes 258056 258056 258056 3.524 65.654 11.512 609875 610138 0 0 105030 105038
profisafe i4host efa 21 298 Yes 508780 508780 508780 9.850 147.968 28.878 2335129 1215523 0 0 452119 210667
med bmw 25 54 Yes 948024 923808 850139 4.492 21.588 9.290 1611779 1411569 59812 353755 244193 255802

Table 3.1: Table showing results of controllability checking using monolithic, and partial order reduction with both
old and new ample implementations.
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Model PO Comp Ind PO Comp Visit PO Comp Both
Name Aut Events Cont. Components States Time(s) Reduced

Sets

Full Ex-
pansions

States Time(s) Reduced
Sets

Full Ex-
pansions

States Time(s) Reduced
Sets

Full Ex-
pansions

transferLine 4 21 22 Yes 2 69603 0.459 16825 0 69603 0.527 16825 0 69603 0.525 16825 0
transferLine 5 26 27 Yes 2 1017287 7.337 245909 0 1017287 8.686 245909 0 1017287 8.543 245909 0
tictactoe 28 35 No 0 36 0 0 0 36 0.019 0 0 36 0.018 0 0
dreitueren 33 74 Yes 2 340641 3.598 91172 0 340799 4.207 90881 0 340791 4.199 90928 0
koordwsp 25 52 Yes 32 208725 2.719 60381 0 208725 3.428 60381 0 208725 3.132 60381 0
koordwsp block 24 42 Yes 1183 326901 5.142 94077 0 326901 6.118 94077 0 326901 5.733 94077 0
ordered philosophers 10 20 50 Yes 1 398573 2.102 311066 0 398573 2.471 311066 0 398573 2.495 311066 0
ordered philosophers 11 22 55 Yes 1 1352598 8.107 1077152 0 1352598 9.799 1077152 0 1352598 9.696 1077152 0
ordered philosophers 12 24 60 Yes 1 4566108 33.669 3699049 0 4566108 40.863 3699049 0 4566108 40.877 3699049 0
dining philosophers 9 18 45 Yes 3 655353 3.703 393066 0 655353 4.387 393066 0 655353 4.432 393066 0
dining philosophers 10 20 50 Yes 3 2796195 20.211 1747440 0 2796195 23.882 1747440 0 2796195 23.678 1747440 0
dirty philosophers 8 24 40 Yes 203 148032 0.769 110280 0 148032 0.882 110280 0 148032 0.894 110280 0
dirty philosophers 9 27 45 Yes 400 603528 3.207 462925 0 603528 3.744 462925 0 603528 3.748 462925 0
dirty philosophers 10 30 50 Yes 790 2443569 15.098 1919207 0 2443569 17.956 1919207 0 2443569 18.143 1919207 0
profisafe i3host efa 21 248 Yes 22165 258056 7.998 0 0 258056 9.278 0 0 258056 9.147 0 0
profisafe i4host efa 21 298 Yes 30283 508780 19.728 0 0 508780 22.531 0 0 508780 22.433 0 0
med bmw 25 54 Yes 5 824466 7.858 328082 0 824466 9.199 328082 0 824466 9.131 328082 0

Table 3.2: Table showing results of partial order reduction controllability verification using strongly connected
components for the depth first search together with different selection strategies.

85



Model States Time(s)
Reduction

Reduced
Sets

Full Ex-
pansionsName Aut Events Conf. Mono PO Mono PO

transferLine 4 21 22 Yes 87578 4977 0.427 0.121 94.3% 4524 0
transferLine 5 26 27 Yes 1280020 24497 6.708 0.227 98.1% 22699 0
transferLine 6 31 32 Yes *6584988 116353 ? 0.688 98.2% 109178 0
transferLine 7 36 37 Yes *273438928 538881 ? 3.186 99.8% 510201 0
tictactoe 28 35 Yes 6324 6796 0.100 0.182 0% 6324 0
dreitueren 33 74 Yes 420283 340642 3.982 4.016 19.9% 91172 0
koordwsp 25 52 Yes 465648 106714 3.883 1.542 77.1% 46779 0
koordwsp block 24 42 No 634608 3064 5.257 0.198 99.5% 646 0
ordered philosophers 10 20 50 Yes 983038 600751 5.458 6.778 38.9% 414327 0
ordered philosophers 11 22 55 Yes 3932158 2182911 27.159 30.036 44.5% 1546439 0
dining philosophers 9 18 45 No 97464 6622 0.374 0.181 93.2% 826 0
dining philosophers 10 20 50 No 382614 17305 1.427 0.283 95.5% 2850 0
dirty philosophers 8 24 40 No 28725 1059 0.170 0.053 96.3% 69 0
dirty philosophers 9 27 45 No 115806 1207 0.521 0.091 99.0% 43 0
dirty philosophers 10 30 50 No 467274 7085 2.264 0.218 98.5% 437 0
profisafe i3host efa 21 248 Yes 258056 258061 3.958 8.510 0% 4 0
profisafe i4host efa 21 298 Yes 508780 508785 9.591 20.319 0% 4 0
med bmw 25 54 Yes 948024 666766 6.829 7.179 29.7% 298132 0

Table 3.3: Table showing results of nonblocking verification using both monolithic and partial order reduction
algorithm verifiers.
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Figure 3.8: Chart showing state-space for models using various tests.
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3.4 Conclusions

The partial order reduction implementations discussed in this chapter have

yielded some interesting results. Using the results achieved in this chapter

we have been able to verify the effectiveness of several optimisations to the

partial order reduction process offered in [17]. Some of these optimisations

were hypothesised in [17] and some were developed due to considerations

that were made over the course of this research. It remains the case that the

partial order reduction method is most effective when verifying models that

have a large number of independent events and also when verifying models

that exhibit a large amount of symmetric structure. We were also able to

verify some negative results showing that partial order reduction can not

always be effective for verifying very large models.

The main improvement that can be taken from this chapter is in addressing

the main drawback that the implementation offered in [17] had, that being

the time taken to verify very large models. Only in a few unique cases

did the reduction achieved allow for faster verification, and generally the

partial order reduction verifier in [17] performed significantly slower than

the standard monolithic verifier. With the implementation of Algorithm 6 in

place of Algorithm 5 we have drastically improved the run time of the partial

order reduction process. Since the majority of the time spent during this

process is in calculating ample sets, providing an effective way to minimise

the amount of searching required has had a great effect. The advantages

of this new ample algorithm over the original one are two fold. Firstly, as

is outlined in Section 3.1, the worst case run time complexity is two orders

of magnitude lower. This should yield an immediate benefit for verifying

models with large numbers of events, as seen when verifying the profisafe

models. Secondly the way in which the ample set is constructed allows for

a reduced amount of searching. The original implementation would start

with an arbitrary event α from the enabled set of events, and construct the

dependent enabled and dependent not enabled sets in order to see if an ample

set containing α is valid. If it was not valid however, we would continue to
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just keep adding events from the enabled set of events to ample until either

we had a valid ample set, or the ample set contained all of the enabled

events. In this new implementation, once an ample set has been checked

and discarded, we start with a fresh ample set and we never consider an

event that has already appeared in a previously discarded ample set. This is

because of the reflective nature of the dependency relation, if we have chosen

α for ample and β depends on α, then we have subsequently discarded that

ample set, we should no longer choose β for ample as it will generate the

identical ample set as the one that was discarded. While the events may

still be chosen arbitrarily from the enabled set of events, these optimisations

generally allow for smaller ample sets and much less computational overhead.

Addressing the arbitrary nature by which the events were selected for

ample was one of the issues raised in [17]. We have explored two such ways

to do that during this research with mixed results. Initially it seemed like

this would be a defining factor in generating the smallest possible ample sets.

In reality however it seems that the number of viable ample sets, generally

speaking, for some state, is not great enough to yield consistently smaller

ample sets. This is further highlighted in Table 3.2 where it can be seen that

for all models that were verified, it made no difference at all which selection

strategy was used, even in the cases where it did seem to reduce the state

space from an arbitrary selection of events. This may be due to the way

in which the selection strategies were implemented, and there may be more

effective selection strategies to attempt, though it seems that models with a

consistently relatively high number of potential ample sets may be required

in order to effectively test these different strategies.

The introduction of the component condition and an interative version of

Tarjan’s algorithm to perform the depth first search were born out of another

concern highlighted in [17], that of the high number of fully expanded states

due to the cycle condition C3. These developments certainly had the effect

that was intended though the result was not as significant as suspected.

We can see from Tables 3.2 and 3.3 that of all models verified using the
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component condition C4 instead, none of them were forced to fully expand

any states. This is due to the fact that we recorded inside the state whenever

it was the case that an ample set was equal to the enabled set for that state,

then when it came time to close a component, if t was determined that any of

the states in that component had already been fully expanded incidentally, we

did not need to do anything in order to satisfy C4′. As has been mentioned

this did result in eliminating the need to fully expand states, however the

results show that except in a few cases, this has not had a significant impact

on the state space. The strongly connected component approach however

did allow for a simple implementation of a nonblocking verifier with partial

order reduction. This proved to be an effective verification tool as in all

blocking models, the nonblocking component check given in Definition 3.3

was able to be determined very quickly after exploring on average about

95% fewer states than the monolithic nonblocking verifier. The partial order

reduction process as it is implemented in this chapter appears to be better

suited to nonblocking verification than it is for controllability verification.

This is due the the reason explained in Section 3.3, where the plantification

process increases the number of dependencies in the model which leads to

fewer reduced ample sets. Worth particular mention is the transferLine series

of tests with the nonblocking partial order reduction verifier. This was so

successful that is could be worth examining these models specifically to try

and determine the best ways to go about creating ample sets.

There are several avenues in which further work could be done in improv-

ing the partial order reduction verifiers discussed in this chapter. While the

ample algorithm seems to be quite efficient, there still remains work to be

done in finding an optimal strategy for ordering the events. Once such strat-

egy might be to consider altering the transition relation with a new abstrac-

tion by grouping events, and considering the independence of the groups.

Since there are a vast number of ways in which events could be grouped,

a routine may be developed to examine the existing events and determine

the best, or at least a good grouping of the events that might yield a higher

number of independencies. Another improvement targetted at improving the
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controllabiity verifier might be to consider a different abstraction that does

not introduce additional dependencies into the model. It may be the case

that these dependencies are required in order to safely verify for controllabil-

ity, but it is worth exploring this as an option. It may also be worth spending

time looking at the particular models that exhibited both good and bad be-

haviours when checked by the partial order reduction verifiers. The specific

models in this case would be transferLine and ordered Philosophers when

checked for nonblocking. As has been mentioned determining precisely what

allows the greatest reduction, or inhibits it, could prove useful when making

further considerations for optimising the partial order reduction process.

91



Chapter 4

Partial Order Reduction in

Compositional Verification

This chapter will introduce and discuss the work done in developing a model

verifier with elements of both partial order reduction and compositional veri-

fication. This will take each of those concepts and provide an original abstrac-

tion that can be used for nonblocking compositional verification. This chap-

ter is arranged similarly to Chapter 3 with sections for algorithms, proofs,

results and conclusions. Section 4.1 will detail the various algorithms that

were created in order to develop the model verifier. The algorithms offered

in Section 4.1 are based on those described in [9] for a compositional model

verifier for nonblocking, and it will be made clear where the original work has

been introduced. Section 4.2 will provide an original proof for the correctness

of the abstraction used as the basis for the model verifier described in this

chapter. Section 4.3 will summarise the research done, reflect on what was

achieved and discuss the possibilities for further research in this area.

Before beginning a discussion on the algorithms developed for this chapter

it will be valuable to first introduce the concepts upon which they are based

and the motivations behind them.

As we have established in Section 2.6, compositional verification operates

by applying different rules repeatedly to the component automata that are
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being synchronised. This is often done by identifying states that match

certain criteria and merging them into a single state. What this is in effect

doing is creating an abstraction of the automaton such that the abstraction

and the original automaton are equivalent in some way with respect to the

property that is being verified. One such rule that was introduced in Section

2.6 was the silent continuation rule, where the equivalence relation used is

conflict equivalence. It was mentioned that the silent continuation rule was

used as a basis for work described in this chapter, we will now now introduce

this new abstraction and explain how it is derived from the silent continuation

rule.

We use the silent continuation rule which allows us to merge states that

are incoming equivalent and able to reach one or more stable states using

only silent transitions, with the idea of independence as used in partial order

reduction. This new abstraction differs uniquely to the other compositional

verification rule in that it is applied as two component automata are being

synchronised. We first observe that when two component automata A1 =

〈Σ1, S1,→1, S
◦
1〉 and A2 = 〈Σ2, S2,→2, S

◦
2〉 are synchronised, the τ event

used in transitions of A1 is guaranteed to be independent of the τ event

used in transitions of A2. This is because the τ event is used exclusively

in transitions where events local to that automaton would be used. For

the sake of explanation we will refer to transitions involving τ from A1 as

using event τ1 and similarly for transitions involving τ from A2 we will use

event τ2, even though in practice there is only one τ event. To show how

this independence is guaranteed, consider an arbitrary state (x1, x2) from the

synchronous product of A1||A2, where we have x1, y1 ∈ S1, x2, y2 ∈ S2, x1
τ
→1

y1. and x2
τ
→2 y2. We then have an arbitrary state where both τ1 and τ2 are

enabled. We will then have transitions (x1, x2)
τ1→ (y1, x2), (x1, x2)

τ2→ (x1, y2),

(y1, x2)
τ2→ (y1, y2), and (x1, y2)

τ1→ (y1, y2). This is the independence diamond

that was introduced in Section 2.5. We propose that in each such state where

τ events from the different automata are enabled and this independence

diamond exists, we can exclude the intermediate states (x1, y2) and (y1, x2),

and instead create the transition (x1, x2)
τ
→ (y1, y2). In order to do this
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while preserving conflict equivalence we must preserve the transitions to the

successor states of the intermediate states that are being excluded. This is

where we borrow from the silence continuation rule. We identify each of the

stable states reachable from (x1, x2) and consider the paths to those states.

We then take all of the states on those paths and take their non τ transitions,

then add those transitions to (x1, x2). That way we preserve the reachability

of states that could potentially otherwise only be reachable from the excluded

states. An example of this process is given in Figures 4.1, 4.2, and 4.3. Figure

4.1 shows two component automata A1 and A2. Each have one local event

and synchronise on event α. Figure 4.2 shows the synchronous conposition

A1||A2. In this we can see the independence diamond formed by the local

events τ1 and τ2. We also have successor states using event α from each of the

intermediate states (x1, y2) and (y1, x2) of the diamond. Finally in Figure 4.3

we have the abstraction of A1||A2 using the process described above. Here

we see that the intermediate states (x1, y2) and (y1, x2) have been excluded,

and the transition (x1, x2)
τ
→ (y1, y2) added. Also we can see that we now

have three transitions on event α from (x1, x2). These transitions have been

taken from the intermediate states. Consider the intermediate state (x1, y2).

The only stable state reachable from this state is the state (y1, z2). Following

the process that has been described, we then examine each state on the path

p with (x1, y2)
p
→ (y1, z2). Every non τ transition is then added to state

(x1, x2). The only such transition is (x1, y2)
α
→ (x1, z2), which leads to the

creation of the transition (x1, x2)
α
→ (x1, z2) in the abstraction. The same

process happens to the opposite intermediate state (y1, x2) leading to the

creation of the transition (x1, x2)
α
→ (z1, x2). Note that the τ1 and τ2 events

have been replaced by the τ event in the abstraction, as once the abstraction

is completed and there are no longer any independencies to identify, there is

no longer any need to distinguish between them. A formal definition of this

abstraction is given in the following definition.

Definition 4.1. Let A1 = 〈Σ1, S1,→1, S
◦
1〉 and A2 = 〈Σ2, S2,→2, S

◦
2〉 be two

automata. Let G = A1||A2 = 〈Σ, S,→G, S
◦〉 and H = 〈Σ, S,→H , S

◦〉 with

→H = {((x1, x2), σ, (y1, y2)) | x1
σ
→1 y1, x2

σ
→2 y2, σ ∈ Σ1 ∩ Σ2 ∨ σ = τ}

∪ {((x1, x2), σ, (y1, x2)) | x1
σ
→1 y1, σ ∈ Σ1 \ Σ2 ∨ (σ = τ ∧ x2 6

τ
→2)}
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α

α α

α

τ1 τ2

x1

y1

z1

x2

y2

z2

Figure 4.1: Component automata A1 and A2

∪ {((x1, x2), σ, (x1, y2)) | x2
σ
→2 y2, σ ∈ Σ2 \ Σ1 ∨ (σ = τ ∧ x1 6

τ
→1)}

∪ {((x1, x2), σ, (y1, z2)) | x1
τ
→1, x1

σ
→1 y1, σ 6= τ, x2

τ+

→2 y2
σ
→2 z2}

∪ {((x1, x2), σ, (y1, z2)) | x2
τ
→2, x2

σ
→2 y2, σ 6= τ, x1

τ+

→1 y1
σ
→1 z1}

Then H is the abstraction obtained from G on application of the silent

continuaton with independence rule applied to all appropriate states.

One issue does remain however in borrowing from the silent continuation

rule in order to preserve the non τ successors of the states on the paths to the

stable states. That issue is that the silent continuation rule requires incom-

ing equivalence between those states with what would be state (x1, x2) in the

example given. As can be seen from the definition this is not a requirement

of this abstraction. Figures 4.4, 4.5 and 4.6 demonstrate the abstraction

process when incoming equivalence is not present in the process. Figure 4.4

shows the component automata A′
1 and A′

2 which are A1 and A2 extended to

include some extra behaviour that will generate incoming transitions for the

intermediate states in the independence diamond of the synchronous com-

position. These automata still only have one local τ event each but they
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α

α

α

ατ1

τ1

τ1τ2

τ2

τ2

(x1, x2)

(x1, y2)

(x1, z2)

(y1, x2)

(y1, y2)

(y1, z2)

(z1, x2)

(z1, y2)(z1, z2)

Figure 4.2: Regular synchronous composition A1||A2

96



α

α

α

α
τ

τ τ

(x1, x2)

(x1, z2) (y1, y2)

(y1, z2)

(z1, x2)

(z1, y2)(z1, z2)

Figure 4.3: Abstraction of A1||A2 under new rule

now synchronise on four distinct events α, β, γ and σ. Figure 4.5 shows

the synchronous composition A′
1||A

′
2. It can be seen that the independence

diamond formed by τ1 and τ2 is still present, though now there are two new

successor states from the initial state (x1, x2) given by (x1, x2)
β
→ (u1, u2)

and (x1, x2)
α
→ (v1, v2). These new states are the states from which the in-

coming transitions to the intermediate states (y1, x2) and (x1, y2) originate.

Each of these states has two outgoing transitions, one to each intermediate

state. The result of this is each intermediate state having two non τ incom-

ing transitions, a σ transition and a γ transition. These transitions mean

that the intermediate states (y1, x2) and (x1, y2) are not incoming equivalent

to the initial state (x1, x2). Figure 4.6 shows the abstraction of A′
1||A

′
2 with

the silent continuation with independence rule. Immediately we see that

the state-space has remained unchanged, though the transitions have been

altered. To understand what has happened here it will be helpful to step

through the process of constructing the automaton given in Figure 4.6. Start-

ing at the initial state (x1, x2) we calculate all the successors as determined

by the transition relation given in Definition 4.1. This yields the transitions
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α

αα

α

ββ

γ

γ

γ

γ σ

σ

σ σ

τ1 τ2

x1

y1

z1

x2

y2

z2

u1 v1 u2 v2

Figure 4.4: Component automata A′
1 and A′

2

(x1, x2)
τ
→ (y1, y2), (x1, x2)

β
→ (u1, u2), (x1, x2)

α
→ (v1, v2), (x1, x2)

α
→ (z1, v2),

and (x1, x2)
α
→ (v1, z2). At this point it is clear that as in the previous case,

the intermediate states have been excluded. Next we can consider any of the

successor states that were computed and explore those. What we find here

is that since states (u1, u2) and (v1, v2) have transitions to states (x1, y2) and

(y1, x2), those states that were previously excluded are then added to the

state-space once (u1, u2) and (v1, v2) are expanded. What this means is the

states that would otherwise not be eligible for silent continuation due to not

having incoming equivalence, are able to be considered for silent continuation

with independence. This is because of the fact that when those transitions

that violate the incomng equivalence relationship are explored, the states

that were previously excluded by the silent continuation with independence

rule are then added to the state-space. A proof showing the correctness of

this abstraction for conflict equivalence is given in Section 4.2.
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α

α

α

α

β

γ

γ
σ

σ

τ1

τ1 τ2

τ2

(x1, x2)

(x1, y2)
(y1, x2)

(y1, y2)

(z1, z2)

(u1, u2)

(v1, v2)

(z1, v2) (v1, z2)

Figure 4.5: Regular synchronous composition A′
1||A

′
2
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γ
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τ

(x1, x2)

(x1, y2)
(y1, x2)

(y1, y2)

(z1, z2)

(u1, u2) (v1, v2)

(z1, v2) (v1, z2)

Figure 4.6: Abstraction of A′
1||A

′
2 under new rule
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4.1 Algorithms

This section introduces the algorithms developed in order to construct syn-

chronous compositions for nonblocking verification using the silent continua-

tion with independence rule. This work builds upon the general synchronous

product builder given in [9] and adjusts the way in which successor states

of states that the transition relation given in Definition 4.1 identifies. This

implementation is used for nonblocking verification, so as with the imple-

mentation in Chapter 3, the algorithms used are such that the resulting

automaton that is constructed preserves the property of nonblocking that

the regular synchronous composition would exhibit.

4.1.1 Tau closure algorithm

One of the key parts to applying this rule is finding all of the τ successors

of the states in the model. By τ successors we mean all of the states that

can be reached from some state using only τ transitions. The reason this is

important is that for each of the states in the synchronous composition that

enable more than one local τ event, we need to find all of the τ successor

states, and then for each of those successor states the non τ transitions must

be added to the state that is being explored. The way in which this has been

handled in this implementation is by modifying the transition relation in the

original model to include the τ closure for each state. That is to say that

for every state x of every automaton in the model, every state y reachable

using only τ transitions from state x is then added as the target state of a

new τ transition from state x. Figures 4.7 and 4.8 give an example of an

automaton before and after performing the τ closure on each of the states.

It can be seen in Figure 4.7 that there exist paths p, q, and r consisting of

only τ transitions where x
p
→ y1, x

q
→ y2 and x

r
→ y3. Figure 4.8 then shows

the τ closure of x adding transitions x
τ
→ y1, x

τ
→ y2, and x

τ
→ y3. Since

the τ closure is performed on all states we also have the y1
τ
→ y3 transition

added.

Algorithm 10 gives the algorithm used to calculate the τ closure and
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τττ

x y1 y2 y3

Figure 4.7: Simple automaton prior to τ closure

τ

τ

τ

τ τ

τ

x y1 y2 y3

Figure 4.8: Automaton after τ closure

update the transition relation. This algorithm explores the state space of

each component automata performing a depth first search using only τ tran-

sitions. To accomplish this we first iterate over all automata in the model

and then over all states in those automata. The search begins as each state

s is considered. We initialise two variables; stack which will serve as a state

stack to keep track of the states still to be explored in the depth first traver-

sal, and visited which will serve as the set of states that have been visited in

the depth first traversal. These are both initialised with state s included in

them. Then comes the main loop in the depth first traversal, where we loop

until stack is empty. At each iteration of this loop we pop a state current

from the top of stack and consider all of the τ successors of current. Since

the hiding process replaces all local events in an automata with τ , this will

often lead to non determinism, so there may be several τ transitions from

state current. For each τ successor t of state current we then check to see

whether or not t ∈ visited. This makes sure that we do not return to explore

states that have already been explored. Every successor t /∈ visited is then

added to both stack and visited. At the end of this process visited will
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contain all states that are reachable from state s using only τ transitions,

and we can use those states to perform the τ closure of s.

First state s is removed from visited, as we do not want to add the

transition s
τ
→ s to the transition relation. Once this is done we then iterated

over all states in visited. For each such state t we check whether or not there

is not already a transition s
τ
→ t. If there is no such transition, we add it to

the transition relation, otherwise we move on to the next t. Once this has

been done, the τ closure of state s is complete and the transition relation has

had all of the appropriate transitions added. We then move on to the next

state s and reeat until all states in all automata have had their τ closure

performed. This will allow for a simpler calculation of τ successor states

when constructing the synchronous composition.

4.1.2 Permute non tau successors

As it has been suggested, by performing the hiding process we often in-

troduce non determinism into the component automata of the synchronous

product that we are creating. As such, this means that as we explore states

we are no longer guaranteed that there will be a single successor state for

a transition on an event. Not only may there be several successor states

for an event in a component automaton, when we consider a global state of

the synchronous product comprised of several local states of the component

automata, the possible successor states for that event for the global state

are the combination of all the different transitions on that event in the com-

ponent automata. Let (x0, x1, . . . , xn) be a global state of the synchronous

product A1||A2|| . . . ||An and |x
α
→ | be the number of outgoing α transitions

from state x, then the number of successor states on event α from state

(x0, x1, . . . , xn) is given by
n∏

i=0

|xi
α
→ |. An example of this is given in Figures

4.9 and 4.10. Figure 4.9 gives two simple nondeterministic component auto-

mata A1 and A2 and Figure 4.10 gives the expansion of global state (w1, w2)

to find all successor states. It can be seen from Figure 4.10 that there are

four successor states, two for each event. If we consider what happens when
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Algorithm 10 Tau closure algorithm

1: function TauClosure

2: for all Automata A = 〈Σ, S, S◦,→, Q〉 do
3: for all s ∈ S do

4: stack = {s}
5: visited = {s}
6: while ¬stack.isEmpty() do
7: current = stack.pop()
8: for all t where current

τ
→ t do

9: if t /∈ visited then

10: stack.push(t)
11: visited = visited ∪ {t}
12: end if

13: end for

14: end while

15: visited = visited \ {s}
16: for all t ∈ visited do

17: if s 6
τ
→ t then

18: → = →∪ {(s, τ, t)}
19: end if

20: end for

21: end for

22: end for

23: end function

104



A1 A2

w1 w2

α
αα ββ

β

x1 y1 z1 x2 y2 z2

Figure 4.9: Nondeterministic automata A1 and A2

(w1, w2)

αα

ββ(x1, x2) (x1, y2)

(y1, z2) (z1, z2)

Figure 4.10: Expansion of state (w1, w2) in A1||A2

determining the successor states for event α, we can observe from 4.9 that

A1 has only one such transition w1
α
→ x1, whereas A2 has two transitions

w2
α
→ x2 and w2

α
→ y2. This gives two possible state combinations for the

global successor state. A1 will always do its only α transition to state x1, but

A2 can perform either of its two α transitions. This leads to global successor

states (x1, x2) and (x1, y2) for event α, as seen in Figure 4.10. The successor

states (y1, z2) and (z1, z2) for event β can be found in a similar way.

Clearly then an algorithm is required to compute all of these successor

states accounting for the nondeterminism. Algorithm 11 gives the psuedo
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code for the algorithm that generates all of the permutations of the successor

states for some state s in a nondeterministic synchronous composition and

creates the transitions to those states. This algorithm is taken from [9].

Generally speaking the way in which this algorithm works is by keeping track

of a global target state t which will be used to created each successor state

from s. First the enabled set of events for state s is computed and we set

t = s before computing the successors for each event. Then PermuteNormal

is recursively called for each enabled event α, which at each step changes

decreases the variable a by 1, and a single local state in t indexed by a, so

by the time a reaches zero every local state has been updated to reflect a

transition on event α in the component automata. We will now offer a more

detailed description of the algorithm.

ExpandNormal just serves to calculate the enabled set of events for state

s and compute the successors for each such event. Before PermuteNormal is

called global state variable t is initialised and given the same value as s, this

way if some automaton does not contain the enabled event in its alphabet,

we can preserve the state for that automaton. We call PermuteNormal for

each enabled event alpha passing in n + 1, s and alpha. The first argument

is one more than the number of component automata, as the first thing to

happen in PermuteNormal is to decrement a which will initially receive the

value n+1, so once that happens the very first consideration for target states

will be for state xn. Now lets examine the PermuteNormal function. Of

the four arguments, a is the one of most interest. There are two states s and

source passed in as one is used for creating the transition and the other is

used for computing local successor states; it will be clearer as to why we need

both of these when we discuss Algorithm 12. The variable a in this function

represents the index of the local automaton that the current function frame is

to consider. The initial line checks whether or not a = 0. We will come back

to this point once the rest of the routine has been explained. In the case that

a 6= 0 we proceed to decrement a by 1. This means that on each subsequent

call to PermuteNormal as long as a > 0, we update a to represent the index

of a different component automaton. Next we examine the local state xa of
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component automaton Ma. We have already established that α is enabled

in state s, though it is still potentially the case that xa 6
α
→. For this to be

the case we must have α /∈ Σa, and as such a transition on event α does not

affect state xa. We then update t accordingly, setting x′
a = xa, before making

a recursive call to PermuteNormal. If however it is the case that xa
α
→ then

we must consider all of the successor states of for xa using event α. Again

there may be several of these successor states due to the nondeterminism of

the component automata after hiding. We then consider each local state y

where xa
α
→ y, and update the target state t setting xa = y. We then make a

recursive call to PermuteNormal before doing the same for the next y. What

is happening here is that since every distinct local successor state generates

at least one distinct global successor state, we record that local transition in

the global target state t and then move on to consider the changes in all of

the other local states. Since we start this process at state xn and proceed

until x0, by the time the first recursive call resolves when considering the

successors of state xn, we will have computed all possible global successor

states for the the first local successor of xn on event α. The reason for this is

more easily explained considering the process from the end of the recursion

and working backwards. When a = 0 this means that all local states xn . . . x0

have been updated in t, so the current state of t represents a valid successor

state in the synchronous composition, so the transition source
α
→ t can be

created. When a = 1, we first decrement a to 0 and proceed to calculate

the successor states for local state x0. Each of the states computed make a

call to PermuteNormal where a = 0, creating a global successor state for

every such call. Consider the state of the algorithm from where the a = 1

recursive call was made however. It was called after calculating just one of

the local successor states for x1. This means that for every successor of x1, all

successors of x0 are computed. Going one step further up the recursion gives

us that for every successor of x2, all successors of x1 are computed, which in

turn each compute the successors of x0. This propogates all the way up to

the first call where a = n meaning that by the time all successors of an have

been computed, we have created transitions to every global successor state t

where source
α
→ t.
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Algorithm 11 Permute non tau successor states

1: function ExpandNormal(s = (x0, . . . , xn))
2: for all α ∈ Σ where s

α
→ do

3: t = (x′
0, . . . , x

′
n) = s

4: PermuteNormal(n + 1, s, s, α)
5: end for

6: end function

7: function PermuteNormal(a, s = (x0, . . . , xn), source, α)
8: if a = 0 then

9: createTransition(source, α, t)
10: else

11: a = a− 1
12: if xa 6

α
→ then

13: t = (x′
0, . . . , x

′
a = xa, . . . , x

′
n)

14: PermuteNormal(a, s, source, α)
15: else

16: for all y ∈ Sa where xa
α
→ y do

17: t = (x′
0, . . . , x

′
a = y, . . . , x′

n)
18: PermuteNormal(a, s, source, α)
19: end for

20: end if

21: end if

22: end function
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4.1.3 Permute tau successors

The algorithms described in this section is similar to Algorithm 11 but a little

more involved. The purpose here is to manufacture the new transitions given

in Definition 4.1. That is to say that when we encounter states that have two

or more τ events enabled, we must make sure to exclude the transitions to

the intermediate states, copy all outgoing transitions from the intermediate

states to the source state, and create a new τ transition from the source state

to the state reached once all of the enabled τ transitions have been taken. To

find these intermediate states we must permute the different combinations

of taking the enabled τ transitions. Figure 4.11 shows an example of the

expansion of a state with three different τ events enabled. In this example

the intermediate states are any of the states containing a combination of xi

and yi local states. We need to calculate these states, find their outgoing

transitions, and add them to state (x0, x1, x2). We must also create the

transition (x0, x1, x2)
τ
→ (y0, y1, y2). It can be seen from Figure 4.11 that

each of these states are reached by performing τ1, τ2 and τ3 in different

orders, suggesting that we must permute all the combinations of the enabled

τ events in order to calculate all of the intermediate states. Notice however

that this example is deterministic. As was the case before, since we are

dealing with nondeterministic component automata we must also allow for

the fact that there may be several τ transitions in the same local state and

calculate each of the intermediate states reached using these transitions as

well. The number of intermediate states to be found assuming determinism

is n! where n is the number of different enabled τ events.

Algorithm 12 gives the psuedo code for performing the process described

above. This is similar to the process described for Algorithm 11, however

where Algorithm 11 permutes the successor states for a single event at a

time, Algorithm 12 instead permutes the different enabled τ events to find

the successor states. The algorithm begins in ExpandTau where a collection

of events enabledTau is initialised to store each of the different enabled τ

events of state s. Once the enabled τ events have been determined we check
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(x0, x1, x2)

(y0, x1, x2)

(x0, x1, y2)
(x0, y1, x2)

(y0, x1, y2) (y0, y1, x2) (x0, y1, y2)

(y0, y1, y2)

Figure 4.11: Result of expanding state with three different τ events enabled
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to see whether there are either two or more enabled τ events, or a single

enabled τ event. If there is just a single τ event enabled then we can treat

this as a normal transition and simply make a call to PermuteNormal, which

will generate the appropriate successor states for s. If there are two or more

enabled τ events then we make a call to PermuteTau passing in the number

of enabled τ events, the collection enabledTau, two copies of the state s being

expanded, and the boolean value true for the last two arguments. It will be

made clear exactly what these variables are used for in the description of

PermuteTau.

As was mentioned above, PermuteTau differs from PermuteNormal in

that it is permuting the order in which the different τ transitions are per-

formed. As such, the integer value t that serves as the end point for the

recursion is no longer the index of a component automaton, but the number

of enabled τ events. Now as t decreases we are using it to select the next τ

event from enabledTau, although this does also have the effect of selecting a

component automaton however as a τ event will only exist in the alphabet of

a single automaton. Also the role of state s changes in PermuteTau. Since

we are no longer just calculating direct successors of source and we may now

need to calculate intermediate states that are reached after several transitions

from source, we need to save the changes we make to s and use the updated

state s in order to calculate further states. New to PermuteTau also are

the boolean variables first and last. These variables are used to determine

whether or not a state that has been calculated is one of the intermediate

states, the source state, or the final state once all τ transitions have been

performed.

The initial line checks to see if t = 0. If this is true then this signifies the

end of recursion at which point state s will be a potential intermediate state.

The further check of ¬first ∧ ¬last determines if s is an intermediate state

or not, which will be explained shortly. If t 6= 0 then we first decrement t by

1 and make a recursive call to PermuteTau. We do this before making any

changes to s because we must consider the intermediate states where some
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of the τ transitions have not been taken. To use the example in Figure 4.11,

state (y0, x1, x2) is one of the intermediate states, but only the τ1 transition

has been taken. This means that for the two values of t representing events

τ2 and τ3, we need to make a call to PermuteTau before any changes are

made to s, which is what happens on line 27. Note that this will include the

permutation of none of the τ transitions being taken as one of the potential

solutions. Obviously this is not one of the intermediate states as nothing has

changed, so this solution must be skipped. This is handled by the boolean

variable first. Initially first has the value true passed in from ExpandTau.

It can be seen from the two recursive calls to PermuteTau that line 27

preserves the value of first whereas line 33 passes in false in place of first.

This means that the only way first = true by the time t = 0 is if none of

the recursive calls from line 33 have been made. Of course if this is the case

then we have the case that was just described where none of the τ transitions

have been taken, so we can conclude that if first = true when t = 0 then

s = source, and as such should be skipped. After the recursive call on line

27 we proceed to calculate successor states for the τ event indexed by t in

enabledTau. We get the event and store it in event variable α and then

we determine the component automaton index a of the automaton whose

alphabet contains α. Since τ events are local events it is guaranteed that there

is only one such automaton. We then store a backup of xa in the variable

backup so that we may restore the state s to its original state once all of the

successors have been computed. We then consider each local state y where

xa
α
→ y, and update state s setting xa = y. We then make a recursive call to

PermuteNormal before doing the same for the next y. The way this works

is the same as in PermuteNormal except for the boolean variables first and

last. It has been explained how the first variable is used to determine if the

state that has been calculated is the source state, but it remains to be shown

how the last variable is used. Similarly to how first was handled it can be

seen that line 33 preserves the value of last whereas line 27 passes in false in

place of last. This means that the only way last = true by the time t = 0 is

if none of the recursive calls from line 27 have been made. The effect of this is

that if last = true and t = 0, then every τ event in enabledTau has been used
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and its successor state included in state s, meaning that we have identified

the final state s once all τ transitions have been performed. This state is

a special case as we do not copy its outgoing transitions back to the start

state, rather we create the transition directly to it from source with event τ .

Since we know that last = true and first = true do not yield intermediate

states, we then have that if ¬first∧¬last when t = 0 then we have identified

an intermediate state. At this point it remains to copy all non τ outgoing

transitions from this state s back to source. To do this we make a call to

AddTauSuccessors(s, source). AddTauSuccessors works very similarly to

ExpandNormal but with one critical difference. Each enabled event of state

s is passed in to PermuteNormal again with a fresh target state t initialised

as t = s, however now s and source are not the same state. The effect of

this is that once a successor state t is found in PermuteNormal, now the

transition that is added is (source, α, t) where source is the original state

s that was passed in to ExpandTau. Once this has happened for every

enabled non τ event, we will have successfully created transitions to every

non τ successor of the intermediate state found in PermuteTau from state

source.

4.2 Proof of Correctness

This section provides a proof for the correctness of the abstraction achieved

by application of the silent continuation with independence rule described

in Definition 4.1. This is an original proof which consists of two lemmas,

Lemma 2 and Lemma 3, and Theorem 7.

Lemma 2 proves that if a state y can be reached from state x in the

abstraction H using some path p, then the same state y can also be reached

from state x in the original automaton G using the same path, but with an

arbitrary number of τ events shuffled in. Lemma 3 proves that if a state x

can be reached in G from state w using path t, then a state y can be reached

in H from state w using a path that contains all of the events of t but not

necessarily in the same order, where x is able to reach state y in G using
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Algorithm 12 Permute tau successors
1: function ExpandTau(s = (x0, . . . , xn))
2: enabledTau = ∅
3: for all α ∈ Σ where s

α
→ do

4: if IsTau(α) then

5: enabledTau.add(α)
6: end if

7: end for

8: if enabledTau.size() > 1 then

9: PermuteTau(enabledTau.size(), enabledTau, s, s, true, true)
10: else

11: if enabledTau.size() = 1 then

12: PermuteNormal(n + 1, s, s, enabledTau.first())
13: end if

14: end if

15: end function

16: function PermuteTau(t, enabledTau,s = (x0, . . . , xn),source,first, last)
17: if t = 0 then

18: if ¬first ∧ ¬last then
19: AddTauSuccessors(s, source)
20: else

21: if last then

22: createTransition(source, α, s)
23: end if

24: end if

25: else

26: t = t− 1
27: PermuteTau(t, enabledTau, s, source, first, false)
28: α = enabledTau.get(t)
29: a = GetAutomatonIndex(α)
30: backup = xa

31: for all y ∈ Sa where xa
α
→ y do

32: s = (x0, . . . , xa = y, . . . , xn)
33: PermuteTau(t, enabledTau, s, source, false, last)
34: end for

35: s = (x0, . . . , xa = backup, . . . , xn)
36: end if

37: end function

38: function AddTauSuccessors(s, source)

39: for all α ∈ Σ where s
α
→ do

40: if ¬isTau(α) then

41: t = (x′

0, . . . , x
′

n) = s

42: PermuteNormal(n + 1, s, source,α)
43: end if

44: end for

45: end function
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only silent transitions. Theorem 7 then uses Lemmas 2 and 3 to prove the

result claimed in Definition 4.1, that G ≃conf H .

4.2.1 Silent continuation with independence abstrac-

tion conflict equivalence

For the proofs given in this section let G and H be the synchronous compo-

sition automata as described in Definition 4.1. For clarity then we have G =

A1||A2 = 〈Σ, S,→G, S
◦〉 where A1 = 〈Σ1, S1,→1, S

◦
1〉 andA2 = 〈Σ2, S2,→2, S

◦
2〉,

and H = 〈Σ, S,→H , S
◦〉.

Lemma 2. If (x, xT )
s
→ (y, yT ) in H||T , then (x, xT )

P (s)
=⇒ (y, yT ) in G||T .

Proof. Let s = σ1 . . . σn and (∗)(x, xT ) = (x0, x0
T )

σ1→ (x1, x1
T )

σ2→ · · ·
σn→

(xn, xn
T ) = (y, yT ). Consider an arbitrary transition (xi, xi

T )
σi+1

−−→ (xi+1, xi+1
T )

from s, where xi = (x1, x2) ∈ S, then one of the following cases must be true:

• xi+1 = (y1, y2) and x1
σi+1

−−→1 y1, x2
σi+1

−−→2 y2

– σi+1 ∈ Σ1 ∩ Σ2. The transition described in this case is part

of the standard synchronous composition transition relation and

thus (xi, xi
T ) = (x1, x2, x

i
T )

σi+1

−−→ (y1, y2, x
i
T ) = (xi+1, xi+1

T ) exists

in G||T .

– σi+1 = τ . It must be the case here that x1
τ
→1 and x2

τ
→2.

Since these events commute in the synchronous product, we have

(x1, x2)
τ
→G (y1, x2)

τ
→G (y1, y2), thus (x

i, xi
T ) = (x1, x2, x

i
T )

P (σi+1)
=⇒

(y1, y2, x
i
T ) = (xi+1, xi+1

T ) in G||T .

• xi+1 = (y1, x2)∧x1
σi+1

−−→1 y1∧((σi+1 ∈ Σ1 \Σ2)∨(σ = τ ∧x2 6
τ
→2)). The

transition described in this case is part of the standard synchronous

composition transition relation and thus (xi, xi
T ) = (x1, x2, x

i
T )

σi+1

−−→

(y1, x2, x
i
T ) = (xi+1, xi+1

T ) in G||T .

• xi+1 = (x1, y2)∧x2
σi+1

−−→2 y2∧((σi+1 ∈ Σ2 \Σ1)∨(σ = τ ∧x1 6
τ
→1)). The

transition described in this case is part of the standard synchronous
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composition transition relation and thus (xi, xi
T ) = (x1, x2, x

i
T )

σi+1

−−→

(x1, y2, x
i
T ) = (xi+1, xi+1

T ) in G||T .

• (σi+1 ∈ ΣT \ (Σ1 ∪ Σ2)) ∨ (σi+1 = τ ∧ xi
T 6= xi+1

T ). In this case we

have xi = xi+1 as the transition is a transition from the test, thus the

transition will also be available in G||T .

• x1
τ
→1, x2

τ
→2, σi+1 6= τ

– x1
σi+1

−−→1 y1, x2
τ+

→2 y2
σi+1

−−→2 z2, x
i+1 = (y1, z2). In this case we

are observing the transition (x1, x2)
σi+1

−−→H (y1, z2) which does not

exist inG. By including τ transitions however we have (x1, x2)
τ+

→G

(x1, y2)
σi+1

−−→G (y1, z2), thus (x
i, xi

T ) = (x1, x2, x
i
T )

P (σi+1)
=⇒ (y1, z2, x

i
T ) =

(xi+1, xi+1
T ) in G||T .

– x2
σi+1

−−→2 y2, x1
τ+

→1 y1
σi+1

−−→1 z1, x
i+1 = (z1, y2). In this case we

are observing the transition (x1, x2)
σi+1

−−→H (z1, y2) which does not

exist inG. By including τ transitions however we have (x1, x2)
τ+

→G

(y1, x2)
σi+1

−−→G (z1, y2), thus (x
i, xi

T ) = (x1, x2, x
i
T )

P (σi+1)
=⇒ (z1, y2, x

i
T ) =

(xi+1, xi+1
T ) in G||T .

Since all possible cases yield in a possible path in G||T to the target state

and this holds for an arbitrary transition on the path (∗), it follows that

(x, xT ) = (x0, x0
T )

P (σ1)
=⇒ (x1, x1

T )
P (σ2)
=⇒ · · ·

P (σn)
=⇒ (xn, xn

T ) = (y, yT ), and thus

(x, xT )
P (s)
=⇒ (y, yT ) in G||T .

Lemma 3. If (w,wT )
t
⇒ (x, xT ) in G||T then there exist (y, yT ) and t′ ∈ Σ∗

such that

• (x, xT )
ε
⇒ (y, yT ) in G||T .

• (w,wT )
t′

⇒ (y, yT ) in H||T .

• ∀σ : σ ∈ t ⇐⇒ σ ∈ t′.

Proof. Let t = σ1 . . . σn and (w,wT ) = (x0, x0
T )

σ1→ (x1, x1
T )

σ2→ · · ·
σn→

(xn, xn
T ) = (x, xT ) in G||T . It is shown by induction on i = 0 . . . n that

there exist paths ηi and θi such that t = η0 ◦ θ0 and
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1. ∀σ ∈ Σ : σ ∈ ηi ◦ θi ⇐⇒ σ ∈ t.

2. θi is a path in G||T .

3. ηi is a path in H||T .

4. (x, xT )
ε
⇒ (x′, xT

′) where (x′, xT
′) is the final state of θi in G||T .

5. |θi| ≤ n− i.

Base case i = 0, let η0 = (x0, x0
T ), θ0 = t. Clearly η0 ◦ θ0 = t.

1. η0 ◦ θ0 = t contains exactly all of the events of t.

2. θ0 = t is a path in G||T by assumption.

3. η0 = (x0, x0
T ) is a path in H||T as every state forms a path.

4. (xn′, xn
T
′) = (xn, xn

T ) in this instance and every state can reach itself

silently.

5. |θ0| = |t| = n = n− 0 = n− i.

Assume this holds for i, now consider i+ 1. Let xi = (xi
1, x

i
2). The following

cases arise when selecting ηi+1 and θi+1:

• σi+1 ∈ Σ1 ∪ Σ2 ∨ (σi+1 = τ ∧ (x1 6
τ
→ ∨x2 6

τ
→)). These conditions make

the transition fall into one of three categories for the transition relation

in H . It could be the case that σi+1 ∈ Σ1 ∩Σ2. If so then it cannot be

the case that σi+1 = τ as that would lead to both x1
τ
→ ∧x2

τ
→, so the

transition exists in H in this case. If σi+1 = τ it is also the case that

at least one of x1 and x2 disable τ , leading to the transition existing in

H by the second or third rule. The only remaining case is that σi+1 ∈

Σ1 \Σ2 or σi+1 ∈ Σ2 \Σ1, both of which yield that the transition exists

in H also by rules two or three. Since all possible cases lead to the same

transition being in H , we can let ηi+1 = ηi ◦ (xi, xi
T )

σi+1

−−→ (xi+1, xi+1
T )

and θ = (xi+1, xi+1
T )

σi+2

−−→ · · ·
σn→ (xn, xn

T ). This just shifts one event

from θi to ηi, so we have ηi+1 ◦ θi+1 = ηi ◦ θi.
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1. ηi+1 ◦θi+1 = ηi ◦θi contains exactly all the events of t by inductive

assumption.

2. θi+1 is a path in G||T as θi is a path in G||T by assumption and

θi+1 was obtained by simply removing one event from θi.

3. ηi+1 is a path in H||T as ηi is a path in H||T by inductive assump-

tion and it has been shown that (xi, xi
T )

σi+1

−−→ (xi+1, xi+1
T ) exists in

H||T .

4. The final state of θi+1 is the same as the final state of θi, which is

reachable silently from (xn, xn
T ) by inductive assumption.

5. |θi+1| = |θi| − 1 = n− i− 1 = n− (i+ 1)

• (σi+1 ∈ ΣT \ (Σ1 ∪ Σ2)) ∨ (σi+1 = τ ∧ xi
T 6= xi+1

T ). In this case the

transition belongs to the test T and as such will still exist in H||T , as

such the choices for ηi+1 and θi+1 are the same as above. Let ηi+1 =

ηi ◦ (x
i, xi

T )
σi+1

−−→ (xi+1, xi+1
T ) and θ = (xi+1, xi+1

T )
σi+2

−−→ · · ·
σn→ (xn, xn

T ).

1. ηi+1 ◦θi+1 = ηi ◦θi contains exactly all the events of t by inductive

assumption.

2. θi+1 is a path in G||T as θi is a path in G||T by assumption and

θi+1 was achieved by simply removing one event from θi.

3. ηi+1 is a path in H||T as ηi is a path in H||T by inductive assump-

tion and it has been shown that (xi, xi
T )

σi+1

−−→ (xi+1, xi+1
T ) exists in

H||T .

4. The final state of θi+1 is the same as the final state of θi, which is

reachable silently from (xn, xn
T ) by inductive assumption.

5. |θi+1| = |θi| − 1 = n− i− 1 = n− (i+ 1)

• x1
τ
→, x2

τ
→, σi+1 = τ and xi

1 6= xi+1
1 . Let j > i be the smallest index

such that j = n or σj+1 6= τ or xj
1 = xj+1

1 . Here we have one or more

silent transitions from A1, depending on the event that follows this

sequence of τ gives rise to the following cases:
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– σj+1 ∈ Σ1, then we have the path (xi
1, x

i
2, x

i
T )

τ=σi+1

−−−−→ (xi+1
1 , xi+1

2 , xi
T )

τ=σi+2

−−−−→ · · ·
τ=σj

−−−→ (xj
1, x

j
2, x

j
T )

σj+1

−−→ (xj+1
1 , xj+1

2 , xi
T ). Since σj+1 ∈

Σ1 and (xj
1, x

j
2, x

j
T )

σj+1

−−→ (xj+1
1 , xj+1

2 , xi
T ) this means that xi

2

σj+1

−−→

xj+1
2 as the events from Σ1 that preceded σj+1 do not affect xi

2.

We also have xi
1

τ+

→ xj
1

σj+1

−−→ xj+1
1 , which means that (xi, xi

T )
σj+1

−−→

(xj+1, xj+1
T ) exists inH||T by rule 5. Now let ηi+1 = ηi◦(x

i, xi
T )

σj+1

−−→

(xj+1, xj+1
T ) and θi+1 = (xj+1, xj+1

T )
σj+2

−−→ · · ·
σn

→ (xn, xn
T ). This has

removed all of the τ transitions between σi and σj+1and has left

the path otherwise unaltered.

1. ηi+1 ◦ θi+1 contains exactly the events of ηi ◦ θi, minus the

removed τ events. Since ηi ◦ θi contained only the events of t

by inductive assumption, it holds that ηi+1 ◦ θi+1 also does.

2. θi+1 is a path in G||T as θi is a path in G||T by assumption

and θi+1 was achieved by just removing transitions from θi.

3. ηi+1 is a path in H||T as ηi is a path in H||T by inductive as-

sumption and it has been shown that (xi, xi
T )

σj+1

−−→ (xj+1, xj+1
T

exists in H||T .

4. The final state of θi+1 is the same as the final state of θi, which

is reachable silently from (xn, xn
T ) by inductive assumption.

5. |θi+1| = |θi| − (j − i) ≤ n− i− (j − i) = n− j ≤ n− (i+ 1)

since i < j and 0 ≤ i ≤ n.

– (σj+1 ∈ (Σ2 ∪ ΣT ) \ Σ1) ∨ (σj+1 = τ ∧ xj
T 6= xj+1

T ). Here σj+1 is

either a normal event from A2, a normal event from T , or a τ tran-

sition from T . We can observe the fact that σj+1 is independent of

each σk with i < k ≤ j and as such we have (xk, xk
T )

σj+1

−−→ (yk, ykT )

and (yk, ykT )
τ
→ (yk+1, yk+1

T ). This means that path (xi, xi
T )

σj+1

−−→

(yi, yiT )
σi+1

−−→ · · ·
σj−1

−−→ (yj−1, yj−1
T )

σj

→ (xj+1, xj+1
T ) exists in both

H||T and G||T , so let ηi+1 = ηi ◦ (xi, xi
T )

σj+1

−−→ (yi, yiT ) and

θi+1 = (yi, yiT )
σi+1

−−→ · · ·
σj−1

−−→ (yj−1, yj−1
T )

σj

→ (xj+1, xj+1
T )

σj+2

−−→

· · ·
σn→ (xn, xn

T ). Here we have moved the independent σ2 transi-

tion to the beginning of the θi path and transferred it to the end

of the ηi path. The θi+1 path then consists of two parts, a path
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j in length that is parallel to θi, and the rest of θi once the last

event of the parallel path appears on θi.

1. ηi+1 ◦ θi+1 contains exactly the events of ηi ◦ θi with just one

event moved to slightly earlier in sequence. Since ηi ◦ θi con-

tained only the events of t by inductive assumption, it holds

that ηi+1 ◦ θi+1 also does.

2. θi+1 is a path in G||T as it has been shown that (yi, yiT )
σi+1

−−→

· · ·
σk−2

−−−→ (yk−2, xk−2
T )

σk−1

−−−→ (xj+1, xj+1
T ) is a path in G||T and

(xj+1, xj+1
T )

σj+2

−−→ · · ·
σn→ (xn, xn

T ) is a part of θi which is a path

in G||T by inductive assumption.

3. ηi+1 is a path in H||T as ηi is a path in H||T by inductive

assumption and it has been shown that (xi, xi
T )

σj+1

−−→ (yi, yiT
exists in H||T .

4. The final state of θi+1 is the same as the final state of θi, which

is reachable silently from (xn, xn
T ) by inductive assumption.

5. |θi+1| = |θi| − 1 ≥ n− i− 1 = n− (i+ 1).

– σj+1 = τ ∧ xj
2 6= xj+1

2 , then similar to the previous case, σj+1

is independent of each σk with i < k ≤ j. This means that

(xi
1, x

i
2, x

i
T )

τ=σi+1

−−−−→ (xi+1
1 , xi

2, x
i
T )

τ=σj+1

−−−−→ (xi+1
1 , xj+1

2 xi
T )

τ=σi+2

−−−−→

(xi+2
1 , xj+1

2 , xi
T )

τ=σi+3

−−−−→ · · ·
τ=σj

−−−→ (xj+1
1 , xj+1

2 , xi
T = xj+1

T ) = (xj+1, xj+1
T )

exists in G||T . Notice here that we have xi
1

τ
→ xi+1

1 and xi
2

τ
→ xj+1

2

and as such using →H we have that (xi, xi
T ) = (xi

1, x
i
2, x

i
T )

τ
→

(xi+1
1 , xj+1

2 , xi
T ) = (yi+1, yi+1

T ) exists in H||T . Let ηi+1 = ηi ◦

(xi, xi
T )

τ
→ (yi+1, yi+1

T ) and θi+1 = (yi+1, yi+1
T )

σi+2

−−→ · · ·
σj−1

−−→

(yj−1, yj−1
T )

σj

→ (xj+1, xj+1
T )

σj+2

−−→ · · ·
σn→ (xn, xn

T ). Here we have moved the σj+1 transition to

the beginning of the θi path and used the fact that a τ transition

from →1 and a τ transition from →2 in succession are combined

into a single τ transition in H to create the τ transition at the

end of ηi+1, where the θi+1 construction works in the same way as

for the σj+1 ∈ Σ2 case.

1. ηi+1 ◦ θi+1 contains exactly the events of ηi ◦ θi with just one
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less τ event. Since ηi ◦ θi contained only the events of t by

inductive assumption, it holds that ηi+1 ◦ θi+1 also does.

2. θi+1 is a path inG||T as it has been shown that (yi+1, yi+1
T )

σi+2

−−→

· · ·
σk→ (xj+1, xj+1

T ) is a path in G||T and (xj+1, xj+1
T )

σj+2

−−→

· · ·
σn→ (xn, xn

T ) is a part of θi which is a path in G||T by

inductive assumption.

3. ηi+1 is a path in H||T as ηi is a path in H||T by inductive

assumption and it has been shown that (xi, xi
T )

τ
→ (yi+1, yi+1

T

exists in H||T .

4. The final state of θi+1 is the same as the final state of θi, which

is reachable silently from (xn, xn
T ) by inductive assumption.

5. |θi+1| = |θi| − 2 ≤ n− i− 2 = n− (i+ 2) ≤ n− (i+ 1).

– j = n. Here all of the remaining transitions are silent transi-

tions from A1. Recall that xi
1

τ
→1 and xi

2
τ
→2. Let xi

2
τ
→2 xi

2
′
,

this means that the paths (xi
1, x

i
2, x

i
T )

σi+1

−−→ (xi+1
1 , xi

2, x
i
T )

σi+2

−−→

· · ·
σn→ (xn

1 , x
i
2, x

i
T )

τ
→ (xn

1 , x
i
2
′
, xi

T ) = (yn, ynT ) and (xi
1, x

i
2, x

i
T )

τ
→

(xi
1, x

i
2
′
, xi

T )
σi+1

−−→ (xi+1
1 , xi

2
′
, xi

T )
σi+2

−−→ · · ·
σn−1

−−−→ (xn−1
1 , xi

2
′
, xi

T )
σn→

(xn
1 , x

i
2
′
, xi

T ) = (yn, ynT ) exist in G||T . Accordingly using →H

we have that (xi
1, x

i
2, x

i
T )

τ
→ (xi+1

1 , xi
2
′
, xi

T ) = (yi+1, yi+1
T )

σi+2

−−→

(yi+1, yi+1
T )

σi+3

−−→ · · ·
σn→ (yn, ynT ) exists in H||T . Let ηi+1 = ηi ◦

(xi, xi
T )

τ
→ (yi+1, yi+1

T ) and θi+1 = (yi+1, yi+1
T )

σi+2

−−→ · · ·
σn→ (yn, ynT ).

Here we have constructed a parallel path to a state that is reach-

able from (xn, xn
T ) using a silent transition by using the fact that

a τ transition from →1 and a τ transition from →2 in succession

are combined into a single τ transition in H .

1. ηi+1 ◦ θi+1 contains exactly the events of ηi ◦ θi with just one

less τ event. Since ηi ◦ θi contained only the events of t by

inductive assumption, it holds that ηi+1 ◦ θi+1 also does.

2. θi+1 is a path inG||T as it has been shown that (yi+1, yi+1
T )

σi+2

−−→

· · ·
σn→ (yn, ynT ) is a path in G||T .

3. ηi+1 is a path in H||T as ηi is a path in H||T by inductive

assumption and it has been shown that (xi, xi
T )

τ
→ (yi+1, yi+1

T
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exists in H||T .

4. The final state of θi+1 has been shown to be reachable silently

from the final state of θi, which is reachable silently from

(xn, xn
T ) by inductive assumption.

5. |θi+1| = |θi| − 1 ≤ n− i− 1 = n− (i+ 1).

Since every possible case yields a path which satisfy conditions 1 . . . 5, when

i = n we will have |θi| = 0 and |ηi| = |ηi ◦ θi|, meaning that ηi is the entire

path. From condition 3 we know that this means the entire path is a path

in H||T , and from condition 4 we know that this path ends in a state that

is reachable silently from the original end state of t. With these conditions

satisfied then, we have our result.

Theorem 7. G ≃conf H

Proof. The claim is equivalent to saying that for any test T , if G||T is non-

blocking then so is H||T and vice versa.

First assume that G||T is nonblocking, we must show that ∀s, x, xT :

H||T
s
⇒ (x, xT ), ∃t : (x, xT )

tω
⇒ inH||T . Assume H||T

s
⇒ (x, xT ), by

Lemma 2 we then have G||T
Pτ (s)
=⇒ (x, xT ). It remains to be shown that

∃t : (x, xT )
t′ω
⇒ in H||T . Since we know that G||T is nonblocking, we know

that ∃t : (x, xT )
tω
→. Let tω = u. By Lemma 3 we know that there exists the

path u′ where (x, xT )
u′

⇒ in H||T and ∀σ : σ ∈ u ⇐⇒ σ ∈ u′. Since ω ∈ u

this implies that ω ∈ u′. We now have H||T
s
⇒ (x, xT )

u′

⇒, and since ω ∈ u′,

it follows that H||T is nonblocking.

Now assume that H||T is nonblocking and G||T
s
⇒ (x, xT ), we must

show that (x, xT )
tω
⇒ in G||T . By Lemma 3 we have H||T

s′

⇒ (y, yT ) with

(x, xT )
ε
⇒ (y, yT ) in G||T . Since H||T is nonblocking we have (y, yT )

tω
⇒ in

H||T . We then have by Lemma 2 that (y, yT )
tω
⇒ in G||T . Combined with

the previous result we then have (x, xT )
ε
⇒ (y, yT )

tω
⇒ in G||T , therefore G||T

in nonblocking.
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Since we have G||T nonblocking =⇒ H||T nonblocking and H||T non-

blocking =⇒ G||T nonblocking, we have our result that G ≃conf H .

4.3 Conclusions

At the time of writing this thesis a fully functional implementation of the

algorithms described in this chapter has not yet been realised. As such

we are unable to provide effective results with which to draw meaningful

conclusions from. Instead in this section we will offer conclusions based on

what is understood of the processes involved and how we would expect the

developments outlined in this chapter to impact them.

Since the silent continuation with independence rule is based on the silent

continuation rule, we should expect to see similar results from the two meth-

ods. The main difference with the new rule however is that it is performed

as the synchronous product is being created, rather than identifying con-

flict equivalent states in the component automata. This should mean that

using the silent continuation with independence rule allows for faster ver-

ification while achieving similar state-space reductions, as the time spent

identifying the conflict equivalent states in the component automata can be

avoided. There is obviously computational overhead involved in performing

this process as the synchronous process is being created however. Since the

only states of interest when performing this process are global states with

several τ enabled, and these states would be found during a regular syn-

chronous product builder anyway, then no extra time is spent searching for

these states. Finding the τ successors does amount to additional comuta-

tion, but this can be compared to the time spent searching the component

automata when using the original rule, while doing the search during the

synchronous composition creation is effetively performing the search on all

of the component automata at once.

It will be of great interest to see how the different abstractions compare,

and how the abstraction introduced in this chapter interacts with the other
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reduction rules for compositional verification that were not explicitly men-

tioned.
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Chapter 5

Conclusions

New partial order reduction model verifiers for nonblocking and controllabil-

ity that take advantage of several optimisations have been presented. It has

been shown that these verifiers perform substantially better than the previ-

ous offering given in [17], with run times significantly lower particularly when

verifying models with a large number of events. We have identified several

key areas where the partial order reduction method excels and struggles, and

this information should be able to be used to further optimise the process or

develop different implementations.

A new abstraction rule for compositional verification has also been de-

veloped. While there are not yet any experimental results to verify how

successful this abstraction will be, it has been shown that as the rule is ap-

plied during synchronous composition, it is in a position to take advantage

of the information awarded by several component automata at once, which

is not something that any other reduction rules are currently capable of.

Further work in these areas could include but are not limited to further

investigating how to best compute ample sets by expermenting with different

orderings of the events in the enabled event sets. Analysing specifically the

models that perform particularly well or that struggle to achieve reduction

where we might expect it, should give valuable insight into how to best

organise these event sets. Another improvement could be to combine the two
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methods discussed in this thesis, so that partial order reduction becomes a

part of the compositional verification process. As well as that other reduction

techniques could be used on combination with these methods such as using

symbolic model checking [14] together with compositional or partial order

reduction verification. Symbolic model checking with partial order reduction

[2] would involve iterpreting the independence relation so that it could be

expressed in OBDDs and then using that to determine a way to conduct a

search of a symbolic state space while under some restrictions imposed by

the independence relation.
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