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Abstract 

The volumes of climatological data are rapidly growing due to development 

of new acquisition platforms and advances in data storage technologies. Such 

advances provide new challenging problems for data analysis methods. As a result, 

there is an increasing interest in application and development of new machine 

learning and data mining methods in climatological data analysis. 

This dissertation contributes to the field of data analysis by evaluation of 

selected methods and developing new techniques with application to hydro-

climatological datasets.   

It is shown that data pre-processing with the decimated wavelet discrete 

transform can cause false predictive accuracy in regression machine learning 

algorithms. A general result is obtained that a decimated wavelet discrete transform 

based on a pyramidal algorithm requires utilizing some future values of the time 

series concerned. When the discrete wavelet transform is utilized as a pre-

processing step for forecasting the time series, the necessary independence of 

calibration and validation data is compromised. This in turn translates into over-

optimistic forecasting accuracy or even giving the illusion of forecasting skill when 

there in none. The obtained result is general and has wide implications in any 

discipline where the discrete wavelet transform is utilised in forecasting 

frameworks. 

In addition, a general framework for creating simple predictive models is 

presented, based on LASSO regularised regression. The method is illustrated for 

time series modelling with external event forcing but the approach has general 

applicability. 

As a contribution to association discovery, two tests of bivariate association 

are developed. The first method is designed for detecting threshold-like associations 

in a scatter plot with particular reference to testing the significance of the extent of 

a data-sparse region within a scatter plot. The second method is a more general test 

of non-random associations. Both methods utilise significance testing based on 

randomizations.  
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Finally, LASSO regularized regression is investigated as a tool for 

discovering informative large scale climatogical predictors of local hydrological 

processes. A cross-validation scheme is proposed, which is related to practical 

forecasts of the next time interval to come, while at the same time maximising use 

of available information. The proposed methodology was applied to a case study 

predicting next-season river discharges in the Upper Waitaki River in New Zealand. 

The proposed forecasting methodology and cross-validation frameworks are 

applicable for similar hydroclimatological forecasting situations.  The physical 

aspect of this part of the study included discovering the influence of the Interdecadal 

Pacific Oscillation on winter discharges in the upper Waitaki catchment.   
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Chapter 1 Introduction 

1.1 Background  

We are privileged to witness first-hand a revolution in the digital era.  There 

is a rapid rise of new observation-measurement platforms1, such as satellites, 

UAVs, which carry range of sensors capable of capturing many different varieties 

of data. Advances in technology, in the same time, are bringing increased 

computational power and storage capacity. Higher resolution capture and sensing 

of data and rapid dissemination of this complex information-rich data is facilitated 

by networks such as Internet. The potential benefits of these data for science and 

society are enormous.  

However managing and drawing inferences from this flood of data brings its 

own special problems. Climatological data especially poses a number of challenges. 

It spans the multiple dimensions of time, space and numerous input channels of 

information. In other words, it is characterised by high dimensionality (Figure 1-1).  

However, time series of continuous reliable direct measurements are relatively short 

in contrast to the high-dimensional nature of the data.2 Drawing inferences from 

such data is conceptually akin to trying to solve a system of n linear equations and 

p unknown variables, where p>n, as in the case here. This is known to be impossible 

without further constraints. Thus variable selection and new well-motivated models 

tailored to this setting turn out to be crucial for meaningful inference.  

 

                                                 

1 The launch of the first artificial satellite Спутник-1 (Sputnik-1) was a start of 

new technological era in Earth observations.  

2 Exceptions are long-term time series of proxy point-based indirect 

measurements, such as coral growth rings, sediment cores, ice cores, tree rings, etc. [26] 
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Figure 1-1 High-dimensionality of climatological data. X, Y corresponds to 

spatial dimensions, Z represents additional dimensions such as elevation, channels 

of information, etc. X, Y, Z varies with time. 

We see that the growing volumes of climatological data, while welcomed, 

provide challenging problems for data analysis methods and as a result, there is an 

increasing interest in application and development of new machine learning (ML) 

and data mining methods in climatological data analysis [1]. Application of ML 

methods is by no means new in the field of environmental data analysis generally, 

one of the earliest examples of ML applications to environmental data can be found 

in [2], where models for wave amplitude prediction were examined. Research in 

prediction and analysis of climate data started long before ML methods were 

introduced, see for example [3].    

 What is new is the resolution of the modern data, speed of acquisition, 

storage capacity and new tools and techniques for making the most of these. Hsieh 

[4] provides a general review of ML methods in environmental sciences.  Reviews 

of applications of one of the ML methods, neural networks, in hydrology can be 

found in [5] and [6].  
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The terms “machine learning”, “data mining” ,“data-driven methods”, 

“artificial intelligence” and “statistical learning” are often used interchangeably in  

the current literature on environmental data analysis [1], [7]–[9]. It is impossible to 

define a clear separating boundary and we will not attempt to do so. For the 

interested reader,  further information can be found in [10] where one view on 

concepts of statistical analysis and thinking related to ML is presented.  

Taking into account the constant interaction between disciplines, it is 

probably inevitable that some terminology imported from one scientific field to 

another is lost in translation. For example the term “cross-validation”, which is a 

method of estimating prediction error ([11], [12])  has been used  in the hydrological 

literature as a synonym for validation subsample [13]. Such variable use of 

terminology could be not only confusing but raises concerns of correct estimation 

of prediction accuracy in the ML models.  

Looking further at interaction between ML and hydrology, a certain research 

trend appears to be emerging, characterised in the hydrological literature by 

multiple attempts to compare different ML techniques on hydrological datasets 

[14]–[20].  By no means, this research trend describes whole variability of 

applications of ML in hydrological literature. Similar developments might also exist 

in other environmental science subfields not considered here. It worth reference to 

Hsheh [4], who noted  “a word of caution is needed” when different ML methods 

are compared on a specific dataset, where a bias towards reporting positive results 

might skew the analysis.  Efron, in his commentary to [10] also stated that “New 

methods always look better than old ones. Neural nets are better than logistic 

regression, support vector machines are better than neural nets, etc. In fact it is very 

difficult to run an honest simulation comparison, and easy to inadvertently cheat by 

choosing favorable examples, or by not putting as much effort into optimizing the 

dull old standard as the exciting new challenger”. 

It appears, however, that the climatological literature expresses different 

trends with relation to ML methods, for example, clustering analysis, network 

methods, downscaling [1], [21]–[24].  

Going back to hydrology, it seems that an interesting avenue could well be 

presented for Occam’s principle for application to model simplification. There is an 
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existing preference towards large multi-purpose over-parameterised hydrological 

models. And although these can provide realistic simulations of nature, it is hard to 

determine the effect of different parameters on the output.  Reduction in model 

complexity could certainly be explored further and in part of this thesis we analyse 

several data-driven approaches for this purpose.  

An interesting intersection is present between hydrology, climatology and 

ML. Utilising large scale spatial-temporal climatological information in 

hydrological forecasts could be viewed as a high-dimensional regression problem 

[25].  Exploring ML methods for feature selection and dimensionality reduction 

forms a remaining part of this thesis.  

1.2 Research questions  

The overall objective of this thesis is to contribute to the field of data analysis 

by evaluation of selected methods and developing new techniques with application 

to hydro-climatological datasets.   

From the above motivation, the following specific research questions 

emerged: 

 Are machine learning regression methods incorporating decimated wavelet 

transform really a gain in predictive accuracy? 

 How might Occam’s razor principle be applied to time series modelling 

where data is driven by external event forcing? 

 How might general non-random association in bivariate data sets be 

detected more simply?  

 How to address the “curse of dimensionality” when high-dimensional 

climatological data is incorporated into hydro-climatological prediction? 

The corresponding research objectives addressed in this thesis are: 

1. Determine if data pre-processing with the decimated wavelet discrete 

transform could give false predictive accuracy in regression ML 

algorithms. 

2. Investigate a specific regularised regression method as a tool for 

formalised simplification of time series models generally. 
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3. Develop a new and simple test of general non-random association in 

bivariate data.  

4. Investigate a specific regularised regression method in seasonal 

streamflow forecasting problem 

1.3 Structure of the thesis 

The structure of this thesis reflects the structure of climatological data and 

consequently progresses along the number of dimensions of climatological datasets 

in consideration (Figure 1-1).  

In ML terminology, this thesis considers a specific subfield of ML of 

regression supervised ML (Chapter 2 and Chapter 4).  The thesis also addresses a 

problem of dimension reduction in high dimensional data through filter and 

embedded methods (Chapter 3 and Chapter 4). 

The thesis consists of five chapters, including this introduction. Chapter two 

evaluates methods applicable to univariate problems – time series analysis, 

forecasting and modelling; Chapter 3 introduces methods of bivariate data analysis 

and Chapter 4 addresses a problem of multivariate high-dimensional analysis.  

Chapter 5 provides conclusion statements and directions for further research.  

Each of the three main chapters consists of two parts which are written in 

journal publication style, as much of the content has been either published or 

submitted for publication. An exception is the second part of Chapter 2 which 

contains a contribution to the second research question.   

With respect to chapter content: 

Chapter 2 addresses two problems of analysis and prediction of time series. 

The first part provides a critical analysis on the use of wavelet transform coupled 

with prediction methods in various fields of study. The common misconception of 

discrete wavelet transform improving the forecasting ability is addressed. The 

second part introduces the use of the linear LASSO as a mechanism for creating 

simple time series models for application where a time series is dominated by 

external impulses such as individual rainfall events influencing river discharge 

Chapter 3 introduces two methods of bivariate data analysis based on 

randomization methods. The first part describes a significance test of a threshold 
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effect. The second part provides a method of detecting a general bivariate non-

random association.  

Chapter 4: The first part illustrate the usefulness of the specific instance of 

LASSO regularized regression as both an exploratory and predictive tool in 

seasonal streamflow forecasting based on high-dimensional raw climatological 

data. Its utility is demonstrated with a case study of predicting lake inflows in the 

Waitaki river catchment, New Zealand. The second part of the chapter provides a 

detailed study of the influence of a particular climatic index – the Interdecadal 

Pacific Oscillation on winter inflows in the Waitaki catchment.  

Chapter 5 provides conclusions and directions for further research. 
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Chapter 2  Critical review of two selected 

aspects of hydro-climatological time-series 

forecasting and modelling 
 

2.1 Introduction 
 

The chapter is concerned with two particular approaches to hydro-

climatological time-series forecasting and modelling.  

The first part of this chapter carries out a critical review of the decimated 

wavelet transform in time series forecasting, which has gained much recent 

attention, particularly in hydrology [1]. A number of studies suggest there is a gain 

in predictive accuracy for machine learning forecasting frameworks utilizing 

wavelet data-preprocessing, in contrast to the counterparts where no pre-processing 

has been applied [2]–[10] . This apparent gain in accuracy is investigated here, 

motivated by the fact that there appears no possible mechanism for such 

improvements.  

The second part of this chapter addresses a more general issue of 

hydrological time series modelling where data is driven by external event forcing. 

Specifically, it has long been recognized that many hydrological models are overly 

complex for a given application to data and many suggestions have been made 

toward avoiding needless model complexity. The approach adopted here to building 

simpler models incorporates a formalized method of model simplification. Firstly, 

an initial model is constructed as a highly over-parameterised linear model subject 

to linear constraints. This model is then subject to automated forced simplification 

as part of the calibration process, so the final linear model is as simple as possible 

while still giving reasonable match to the calibration time series concerned. The 

goal here is that by avoiding over-fitting in calibration the simpler model will 

perform better for prediction purposes.  The first part of this chapter is presently 

under review. The second part of this chapter has been published [11]. 

 References: 
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“Applications of hybrid wavelet–Artificial Intelligence models in 
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2.2 Potential for error in wavelet-based forecasts 
 

Abstract 

Time series forecasts which incorporate the decimated wavelet transform are 

exposed to a subtle error which can have significant impact. The error arises if data 

pre-processing is applied initially to an entire data set, a situation which may occur 

frequently. This apparently innocuous step results in validation data indicating 

higher levels of model forecasting ability than is actually the case.  The problem 

arises from the model calibration phase having the unintended effect of being able 

to incorporate future data values, thereby obtaining information about the validation 

set without the user being aware.  We suggest that this effect may have resulted in 

forecasts in many fields being reported with overstated accuracy, even for situations 

where there may be no forecasting ability. Some selected examples illustrate the 

exaggerated forecasting accuracy. There would appear to be a case for review of 

many previous forecasts which incorporate wavelets as part of the forecasting 

process.  

Introduction 

Wavelet-based forecasts are now an established element of time series 

prediction in a number of disciplines, including such disparate subject areas as 

environment (Wang & Ding, 2004; Liu et al., 2014; Belayneh et al., 2014;  Nourani 

et al., 2014; Kim et al., 2014), finance (Kriechbaumer et al. 2014; Jin & Kim, 2015; 

Yousefi et al., 2005), electricity load (Conejo et al., 2005 (a,b);  Benaouda et al., 

2006) and the nuclear industry (Upadhyaya et al., 2014). In essence, the wavelet 

approach seeks to discover sufficient structure in a time series to enable a degree of 

self-forecasting in the absence of external information. This would apply, for 

example, if there were cyclic components in the data. 

On the other hand, concerns have been raised over the actual accuracy and 

general utility of wavelet forecasting, particularly for time series lacking evident 

structure (Beriro et al.,2012; Zhang et al., 2015). We revisit here the basics of 

wavelet-based forecasting in the light of some of the concerns raised. We then 

outline a mechanism by which wavelet forecasts can be inadvertently formulated 

from an incorrect methodology. This error will yield either false forecast accuracy 

or give an illusion of time series self-forecasting capability when in fact there is 

none. We suggest that the error could be sufficiently widespread over many 
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disciplines to the extent that many published wavelet-related forecast 

methodologies are at the very least in need of clarification. 

 

Forecasting with the discrete wavelet transform 

The error arises with application of the discrete wavelet transform (DWT), 

which is a widely-used pre-processing technique that decomposes a time series into 

a set of approximation coefficients and detailed coefficients (Misiti et al., 2007; 

Walker, 1999). The decimated DWT is incorporated in widely-used packages such 

as the Matlab wavelet toolbox and the Python PyWavelets library. 

There are two standard mechanisms described in the literature by which 

these wavelet components are translated into forecasts of the time series (Murtagh 

et al., 2004). The first approach extrapolates each wavelet component into the future 

and the forecast is achieved as the sum of the extrapolations (Kriechbaumer et al. 

2014; Yousefi et al., 2005). The alternative method uses the components as 

independent predictors of a forecasting model such as an artificial neural network 

or support vector machine (Belayneh et al., 2014; Nourani et al., 2014). 

In both approaches there is a necessity for complete independence of 

calibration (determining parameters) and validation (checking forecast accuracy), 

as holds for any data-based model evaluation procedure (Hastie et al., 2001, pp. 

245-247). Of course, no investigator in the environmental sciences or elsewhere 

would knowingly allow dependency when evaluating any type of forecasting 

model. However, dependency can be introduced in subtle ways which may even 

pass undetected through a journal review process (García-Serrano & Frankignoul, 

2014). In the case of wavelet-related forecasting the dependency is introduced 

through the apparently innocuous step of data pre-processing being undertaken 

prior to partitioning the time series concerned into the different segments needed 

for model calibration and validation.  

In many publications of wavelet forecasts there is in fact no confirmatory 

statement that pre-processing did not take place prior to calibration / validation data 

partitioning. That is, the possibility cannot be excluded that there was incorrect 

ordering of data pre-processing and partitioning the data into validation and 

calibration sets. We cannot of course prove that this is the case. However, by 

illustrating how the error can occur and referencing a few telling examples we make 
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the argument that false wavelet forecasting accuracy has the potential to be 

widespread over many subject areas. 

Source of error 

It is perhaps not widely appreciated how the simple exercise of an initial 

pre-processing of an entire time series will always invalidate any subsequent 

evaluation of wavelet forecasting accuracy on the validation data. We therefore 

provide (Supplementary material) a general result that if a decimated DWT is used 

for pre-processing a time series then this generates the unavoidable requirement of 

knowing the values of future data when constructing the series of approximation 

and detailed coefficients. The degree of extension into the future increases with the 

resolution level of the wavelet transform, regardless of the chosen wavelet filter. Of 

course, in real-world forecasts the future values are unknown by definition, so 

future values used in validation give illusionary accuracy.  

In this light, it is unfortunate that some published work may have given 

credibility to false forecasting accuracy. For example, in the context of forecasting 

metal prices it was noted that wavelet data pre-processing before calibration / 

validation partitioning supposedly gave much improved forecast accuracy 

(Kriechbaumer et al. 2014). In fact, this result is most easily explained by the pre-

processing creating a lack of independence between the calibration and validation 

sets.  

The issue concerning the evident need to obtain future values has been noted 

at times in the literature.  A specific wavelet forecasting algorithm has been 

proposed which avoids use of future values (Benaouda et al., 2006, Murtagh et al., 

2004). In a hydrological application it was somewhat unrealistically suggested that 

prior independent estimates of the future values be obtained, which of course would 

negate the need for forecasts (Zhang et al., 2015). However, the potential impact of 

future values yielding false validation accuracy appears to have been largely 

unrecognized, as evidenced by many publications failing to clarify whether data 

pre-processing was carried out before or after data partitioning into calibration and 

validation sets. 

Examples 

We conclude with three examples which demonstrate how incorrect 

application of the decimated discrete wavelet transform may lead to erroneous 
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forecasts. The first is a very simple illustrative forecasting model applied to 

synthetic data. The other two examples consider published work from the literature. 

For the first example we use the Haar discrete wavelet (Walker, 1999) and 

make forecasts using wavelet components as predictors. We seek one step ahead 

forecasting of any arbitrary time series  1 100, ,X x x . 

Now apply the decimated discrete wavelet decomposition of the entire time 

series X using the Haar discrete wavelet. Just one level of smoothing is employed 

in this case, giving decomposition into two time series of wavelet coefficients a and 

d, which are respectively approximation coefficients and detailed coefficients. The 

coefficients corresponding to the odd and even members of the time series are 

respectively: 

 
 

 
2 1 2 1 2 2 1 2 1 2 1

2 2 1 2 2 2 2

2,

2,

k k k k k k

k k k k k k

a x x d x a

a x x d x a

    



   

   
  (2.1) 

where k = 1,2,...,50. 

It is evident from Eq. (2.1) that the next time step is required in order to 

calculate the coefficients 2 1, 2 1k ka d    for the odd-numbered elements of the time 

series. It is therefore possible to make a forecast from the expression: 

 1i i ix a d     (2.2) 

which uses d and a as predictors, resulting in half the values in the time series 

being forecast with perfect accuracy. This would apply even if X was a sequence of 

random numbers.  

It follows that if pre-processing via Eq. (2.1) was carried out on any arbitrary 

data sequence prior to calibration / validation partitioning, then every second 

validation data point would be perfectly predicted from Eq.  (2.2). 
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This effect is illustrated in Figure 2-1, showing results of forecasting with 

pre-processing prior to calibration / validation partitioning. The data comprises a 

sequence of 100 random variables generated from the standard normal distribution. 

The first 50 values were used for calibration and Eq. (2.2) was used to forecast one 

step ahead for the other 50 points in turn, giving perfect forecasting of every second 

point and complete forecast failure for all other points. The net combination of 

perfect success and failure here gives an illusionary correlation of R = 0.58. 

 

Figure 2-1 Wavelet forecast of a sequence X of 50 random variables from the 

standard normal distribution (see text for description). 

Of course, if plots like Figure 2-1 were to appear in wavelet-related forecasts 

then the error would be immediately apparent. However, more complex forecasting 

models are applied in practice so the effect of using future values will not be evident 

as unusual patterns in the scatter plots. 

We next consider a frequently-cited hydrology publication by Wang & Ding 

(2004), which includes an example of wavelet forecasting of flood discharges of 

the Yangtze River. Our concern here is that there appears to be a number of flood 

peaks where the timing of the peak is forecast correctly up to three days in advance 
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(Figs 4 and 5 of that paper). If this is the case then it strains credibility that a river 

time series by itself contains sufficient information to forecast the times of its own 

future discharge peaks.  

 The authors do not clarify whether pre-processing was undertaken before 

or after data partitioning, so the possibility is open that the accuracy of forecasting 

some peak timings is the reflection of the future data effect.  

We now illustrate how such evident accuracy might come about, while also 

fully recognising that this is not necessarily indicative of the analysis of Wang & 

Ding (2004). Consider the hydrograph-like synthetic time series of Figure 2-2 

where the peaks are all even-numbered members of the data sequence. Using the 

Haar DWT as in the previous example, the peak magnitudes and timings are 

predicted perfectly. This perfect prediction would not have been evident if the time 

series had been constructed instead with peaks being odd-numbered elements of the 

data sequence. 

Figure 2-2 Wavelet forecast of a hydrograph-like synthetic time series (see text 

for description). 

Finally, we consider another frequently-cited paper, in this case concerned 

with wavelet-based forecasting of future crude oil prices (Yousefi et al., 2005). 
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Given the nature of the data the forecasts appear surprisingly accurate. However, 

credibility is strained here also, in this case by the authors’ own observation that 

their forecast accuracy does not diminish as the forecasting time horizon is 

increased.

 

Figure 2-3 Wavelet-based forecasts of oil prices for a 4-month horizon: A) DWT 

applied to the entire time series prior to splitting into calibration and validation 

portions; B) DWT applied after splitting into calibration and validation. 
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As a check, we applied a wavelet transform to the whole data time series of 

oil prices and used the methodology of Yousefi et al. (2005), which gave forecasts 

that were of a similar level of high accuracy as reported  (Figure 2-3a). However, 

the accuracy was considerably reduced when the exercise was repeated using 

wavelet pre-processing subsequent to the data calibration / validation partition 

(Figure 2-3b).  In fact, the forecast accuracy was then no improvement over the 

reference forecasting methodology used by the authors. Therefore, the use of 

wavelet methods in this case adds nothing to the forecasts because the apparent 

accuracy improvement was an artefact of incorporating future values in the 

methodology. 

Figure 2-4 Frequency distribution of correlation coefficients R obtained from 

wavelet forecasting applied to 100 simulated time series oil prices, using both 

correct and incorrect application of DWT. Note the shift toward positive R for 

incorrect applications (see text for description). 

 

In order to further demonstrate how DWT can yield false forecasting 

accuracy in this case, we randomly re-ordered the oil price time series 100 times. 

For each randomisation we calculated forecast values using both of the two 
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approaches described above. In each case correlation coefficient values were 

calculated as a measure of the respective forecast accuracies.  

Obviously a randomised time series can have no self-predictive property and 

it would be expected that the frequency distribution of correlation coefficients 

would centre at zero. This is indeed the case for the correct application of the DWT 

with data pre-processing carried out before partitioning into calibration and 

validation sets (Figure 2-4). However, the correlation coefficients are shifted 

toward positive values if pre-processing is carried out first. This apparent predictive 

ability is clearly incorrect because there is no predictive possibility in this case.  

Conclusion 

 

         For wavelet-based time series forecasting we have showed that the simple act 

of applying the decimated DWT for data pre-processing will always lead to an 

unintended dependency between the calibration and validation procedures. This 

then leads to illusionary forecast accuracy as measured against validation data. 

While we cannot quantify from the literature as to the extent of this error, its 

potential impact means that published wavelet-related forecasting methodologies 

may be under something of a cloud. We suggest it should be a requirement that all 

future publications incorporating wavelet forecasts make a clear statement 

confirming that any data pre-processing was not carried out before calibration / 

validation partitioning. 

 

Supplementary material 

 

The discrete wavelet transform pyramidal algorithm in time series 

forecasting:  requirement for future values 

 

We demonstrate here that future values of an input time series must be 

utilized for the calculation of wavelet components for the decimated discrete 

wavelet transform. This has particular relevance because it opens the possibility for 

erroneous forecasting accuracy on a validation data set. This false accuracy will 

arise whenever wavelet pre-processing is applied to the whole time series prior to 

splitting the data into calibration and validation subsets.  
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The decimated discrete wavelet transform is widely applied in wavelet-

based time series forecasting and is based on the pyramidal algorithm (Mallat, 

1989).  The transform is carried out in two parts: decomposition and reconstruction 

(Figure 2-5).The decomposition component transforms the original time series into 

sets of approximation and detailed coefficients, each with several levels of 

resolution. The reconstruction component serves to re-create the original time series 

from these coefficient sets. 

 

The decimated discrete wavelet transform based on the pyramidal algorithm 

leads to a sparse representation of the original time series in such a way that if a 

time series X  has 2k  data points then its approximation and detailed coefficients at 

resolution level  j have 2k j  data points, where  1, ,j k .  However, in order to 

use these approximation and detailed coefficients in time series forecasting their 

interpolated versions are required. These versions contain the same number of data 

points as the original time series.  The interpolation is achieved through the 

reconstruction component of the pyramidal algorithm. 

We now consider in detail how the reconstruction phase of the pyramidal 

algorithm leads to interpolated time series of approximation and detailed 

coefficients which require utilization of future data points of X.  

For the sake of simplicity, consider a process for obtaining an interpolated 

series of approximation coefficients from a time series  1 2, , , NX x x x , where

2kN   and there is one level of decomposition j=1.  Let Aj denote a series of 

Figure 2-5 The pyramidal algorithm of the discrete wavelet transform: a) 

decomposition phase; b) reconstruction phase; Aj are approximation coefficients at 

level j; Dj are detailed coefficients at level j; F  and F* denote  convolution with a 

low-pass filter, G and G* denote convolution with a high-pass filter; ↓2 and ↑2 

represents respectively dyadic downsampling and dyadic upsampling, and + 

indicates summation of the two series. 
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approximation coefficients at level of decomposition j, and Ao denotes the input 

time series X.  

The following process applies also for obtaining a series of detailed 

coefficients by utilizing a high-pass filter G in place of a low-pass filter F. The 

process of obtaining an interpolated series of approximation coefficients consists of 

two parts based on decomposition and reconstruction stages of the pyramidal 

algorithm.  We now describe these two stages.   

 Decomposition stage: The first step of a decomposition stage of a 

pyramidal algorithm is the convolution of an input time series X with a low-pass 

filter F. The convolution operation of a finite sequence  1 2, , , NX x x x   with 

finite filter  1 2, , , MF f f f   is defined as:  

  
*

1

[ ] [ 1] [ ]
M

c

m

X X F n X n m F m


       (2.3) 

where      *1, , , m= 1, , , min ,n N M M M n  .    

As can been seen from Eq.(2.3), there are no future data points of X required 

in order to calculate an n-th element of a cX  sequence.  An n-th element of the cX  

sequence utilizes at most n-M+1 past data points of X.  

The next step of a decomposition stage is a dyadic downsampling, defined 

as keeping only every second element of the original sequence, yielding a series of 

approximation coefficients: 

 1 [ ] [2 ],  1, , 2d cA X n X n n N   , which gives: 

 1 2 2 4 2, , ,d d c d c d c

N NX x x x x x x     

The length of the downsampled sequence dX  is evidently half of that of the 

convoluted sequence cX  and the n-th element of the dX sequence corresponds to 

the 2*n-th element of the sequence cX .  

Reconstruction stage: In order to obtain a series of approximation 

coefficients with the same number of elements N as the original time series, the 

reconstruction procedure is utilized with dyadic upsampling of 𝑋𝑑  and then 

convolution with a reconstruction low-pass filter F*.  This procedure is similar to 
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the reconstruction phase of the pyramidal algorithm (Figure 2-5) where a series of 

detailed coefficients Dj are assumed to be a sequence of zeros.   

The dyadic upsampling of a sequence consists of inserting zeros at every 

even index, so dyadic upsampling of the sequence  2 4, , ,d c c c

NX x x x  will lead to 

 2 4,0, ,0, , ,0u c c c

NX x x x .  Then the convolution is applied to 𝑋𝑢  according the  

Eq. (2.3), which gives a series of approximation coefficients: 

    1 2, , ,u

NR X G r r r     (2.4) 

  

 where R is an interpolated version of sequence 1A and has the same number 

of data points N  as the original time series X.  

We now show how future data points of X must be used in order to calculate 

data points of the sequence R.  

From the convolution definition in Eq. (2.3) it can be seen that an element 

1

c

kx   is required in order to calculate the value of an odd data point rk, k={1,3,..,N-

1}. However, an element 1

c

kx   in turn requires a data point xk+1 of the input time 

series 𝑋.  Therefore, for every odd data point of the interpolated sequence R there 

are always future data values of X required from one time step ahead. This effect 

is independent of the length or values of the utilized wavelet filter.   

Thus far, only one level of decomposition of wavelet transform has been 

considered.  We now show that the same necessity for future data points of X holds 

for every level of decomposition.  

Let there be some value of   j >1 levels of decomposition applied to the time 

series  1 2, , , NX x x x . The data points of the resulting downsampled time series 

are obtained as:       1 22 2 2 2
, , ,j j j

d d d d

NN
X x t x x t x x t x


      

where 
2

( )j

d

k k
x t x


  indicates that the data point

2 jk
x


 of the input time series 

X is required in order to calculate the element d

kx .  
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In order to obtain the same number of elements N as in the input time series 

X, the same number of levels j of the reconstruction phase are required. Applying 

upsampling and deconvolution j times will lead to  1 2, , , NR r r r , where

     
1 2 1 2

, 1,2, , 2j j

j

k k
r t x k N

   
  , where t(*) denotes that the future data point 

2 jk
x


 is required in order to calculate the element 

 1 2 1jk
r

  
.  

In summary, the reconstruction phase of the pyramidal algorithm is applied 

in order to obtain the detailed or approximation coefficient series R on j levels of 

decomposition with the same number of data points as in the original time series X.  

This leads to the first element of the block of 2𝑗 data points in R being calculated 

using the last element of the corresponding block of data points of X (Figure 2-6). 

As with the case of  j=1 considered previously, this holds regardless of data values 

or size of the wavelet filters applied.  

Therefore, applying a decimated discrete wavelet transform based on the 

pyramidal algorithm prior to splitting the approximation and detailed coefficients 

into calibration and validation parts must lead to an overoptimistic goodness-of-fit 

for a wavelet-based forecasting method as measured on validation data. 

 

Figure 2-6 Propagation of future values by the discrete wavelet transform based 

on the pyramidal algorithm with j levels of decomposition/reconstruction. Every 

first element of the blocks of 2j data points of the reconstructed time series R is 

calculated using the last element of the corresponding block of 2j data points of 

the input time series X. 
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2.3 Toward creating simpler hydrological models: A LASSO 

subset selection approach 
 

The remainder of this chapter is concerned with proposing a framework for 

constructing no-more-complex-than-necessary event-forced time series models 

with particular reference to hydrology. Algorithmic simplification as part of this 

process is achieved through use of the LASSO (Least Absolute Shrinkage and 

Selection Operator).  The approach first constructs a flexible but deliberately over-

parameterised linear model, defined by a large number of linear expressions subject 

to linear constraints. The model fitting process and model simplification are then 

carried out concurrently, with fitting using any suitable linear method such as least 

absolute deviations. During the calibration fitting the original over-parameterised 

model is formally forced to a simpler model no more complex than required for 

application to the calibration data concerned. Unlike the usual model calibration 

process, the model after calibration is different and simpler. 

There is of course an apparent contradiction in carrying out linear modelling 

of nonlinear hydrological processes. However, a case is made that constrained 

linear modelling of the type considered here can be formulated to be as “nonlinear” 

as necessary, through the use of linear combinations of nonlinear basis functions. 

A basis function can be defined as an element of a particular basis for a function 

space. For example, a quadratic polynomial comprises the basis functions 1, x, and 

x2 and the expression 21a b x c x      is a linear combination of basis functions. 

A requirement before the simplification process is the creation of the initial 

linear model for the nonlinear situation under study. That is, the entire model must 

be specified as a sequence of linear constraints, with fitting to data being a linear 

programming (LP) minimisation of absolute deviations or similar linear measure. 

Achieving accurate linear approximation of a nonlinear process is not 

necessarily a trivial task and a full review of all mechanisms by which it might be 

achieved is beyond the scope of this study. However, a sense of the type of 

formulation required is illustrated in this section with respect to creating a linear 

approximation for a general nonlinear time series model.  
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The nonlinear conceptual time series model is familiar and not necessarily 

specific to hydrology: events occur at points in time and each event marks the 

initiation of a continuous non-negative nonlinear response which may be of 

arbitrary form but eventually declines to zero with increasing time. The responses 

may change from one event to the next depending on event magnitude and the 

current state of the system. The event responses sum together, producing the model 

time series output for some recording point. Variations of this approach have long 

been used in the context of rainfall-runoff modelling where the current state of a 

catchment influences the nature of runoff responses from rainfall events, with the 

individual event responses summing to give model discharge, possibly 

superimposed on a constant baseflow. 

A conversion of this conceptual model to a linear approximation model is 

demonstrated by first considering a single event and its response. Defining this 

event to occur at time t =  , the magnitude of the response at any subsequent time 

t is expressed as a weighted finite mixture of L pre-selected non-negative nonlinear 

functions g(t), all with origin at time  : 

 
1

( , ) ( ) ( ),
L

i i

i

f t Z Z g t t  


    (2.5) 

 

The   ( )i Z  terms in Eq. (2.5) are non-negative weighting expressions 

which give greater or lesser emphasis to individual gi(t) functions. The particular 

set of g(t) functions chosen by the modeller would be representative of a range of 

possible event responses for the physical process under consideration. For example, 

in the case of a rainfall-runoff model this could be a number of different hydrograph 

forms characteristic of the catchment type and size. The choice of g(t) functions 

will inevitably include some which will not in fact be helpful for a given application 

to data. However, these redundant functions will be eliminated later in the 

simplification process. A greater number of g(t) functions would be chosen for a 

model intended for more general use. This will result in a greater number of g(t) 

eliminations during the subsequent simplification when applied to data. 
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The   ( )i Z  terms in Eq. (2.5) are linear combinations of a set of M 

independent variables Z whose magnitude may have influence on the system at 

event time  : 

 
1

( ) , 0, 0
M

i i j j i j j

j

Z a Z a Z  


     (2.6) 

The avoidance of negative ( )i Z  terms ensures Eq. (2.5) cannot yield a 

negative prediction for the positive-valued response process concerned. 

 Eq. (2.6) defines the ith of the L weighting expressions in Eq. (2.5) and is a 

linear combination of the same set of independent variables Z. However, the 

weighting coefficients aij differ in value from one weighting expression to the next. 

The initial choice of the M independent causal variables represents a physical 

working hypothesis and it may happen that most are later eliminated in the linear 

LASSO simplification process. 

In summary, the nonlinear response following a single event is modelled as 

a positive-valued weighted mixture of pre-chosen nonlinear g(t) functions, with 

their associated weights being linear combinations of M independent causal 

variables. As noted earlier, pre-chosen functions like g(t) are referred to as basis 

functions (Bishop, 2006, p.138) and when used as weighted mixtures can 

approximate many different nonlinear functions when L is sufficiently large. 

With respect now to multiple events, the events are defined to occur at 

respective times [1], [2], [3] …, with the same set of g(t) functions and Z 

variables operative for each [i].  However, the respective weights (Z) for each of 

the g(t) will differ from one event to the next because the magnitudes of the Z 

variables change with time.  

The model time series output at any given time t is the sum of the responses 

from all previous events up to that time. Defining t = 0 as the start of the time series, 

at some subsequent time t there will have been K(t) previous events which occurred 

at times [1], [2] ...[K] .  Therefore, at time t the model-generated value h(t,Z) can 

be written: 

  
( )

0 [ ]

1

( , ) ,
K t

n

n

h t Z f t Z


    (2.7) 
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where [ ]nZ  denotes the magnitudes of the independent variables at the time 

of the n-th event. The constant 𝜔0 may be set to zero depending on the context. For 

example, a non-zero value might represent some constant baseflow in a rainfall-

runoff model. 

As an aside, if an event can be thought of as the input of a set of particles 

into a store and the response is the time-varying rate of exit of those particles from 

the store, then at any time t the model-defined mean residence time T(t,Z) of 

particles (derived from all the prior events) exiting the store is given by the weighted 

average of the previous event times: 

    
( ) ( )

[ ] [ ]

1 1

( , ) [ ] , / ,
K t K t

n n

n n

T t Z n f t Z f t Z 
 

    (2.8) 

 

Eq. (2.8) could have application, for example, in considering the age of 

water exiting from a catchment. 

Having expressed the conceptual model as a linear approximation, it remains 

to set out the coefficients as an LP minimisation matrix. The coefficients are all 

constrained to be non-negative to avoid negative h(t,Z) values and the minimisation 

is with respect to least absolute deviations. 

Following from Eq.(2.7), the matrix will have U rows (with each row 

corresponding here to a unit of time) and L  M +2U columns, with one additional 

column with all values set to 1.0 if 𝜔0 is permitted to have an unknown nonzero 

value.  The 2U columns here are the utility fitting variables required for least 

absolute deviations regression, two per data observation, and are not part of the 

model (Bloomfield and Steiger, 1983, ch. 6). As far as the model parameters are 

concerned, 𝜔0would be an unknown to be solved for, along with the L  M 

unknown a coefficients. All the unknowns are constrained to be non-negative in the 

LP solution, as required by the specification of Eq. (2.5) and Eq. (2.6). 

The number of matrix rows U will generally be less than the original number 

of rows in the time series concerned. This is because the user must define the first 

row in the matrix corresponding to a t large enough to avoid any response effects 

which may be still present from events prior to the start of the time series at t = 0. 
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The LP matrix does not define a linear model with M independent Z 

variables corresponding to the independent X variables of a standard linear 

regression. The Z variables do not influence the model in a direct linear way, but 

indirectly through the intermediary of determining the weight magnitudes via the 

time-varying weighted linear combinations of the L different nonlinear g(t) 

functions. It may happen that the Z variables are themselves outputs from pre-

chosen nonlinear expressions. The L  M variables here might be better termed 

pseudo variables because they combine the effect of different g(t) functions as 

opposed to physical variables. 

This type of initial model with numerous g(t) functions will inevitably result 

in many superfluous parameters and there is no suggestion that such models should 

be applied directly in practice. Instead, they are only a means to an end and serve 

as the necessary preliminary stage before initiating the subsequent linear LASSO 

simplification to produce models for application. 

The LASSO (Least Absolute Shrinkage and Selection Operator) was 

introduced by Tibshirani, 1996 as a means of eliminating less informative variables 

in least squares multiple linear regression. It has been applied in many fields but 

has only relatively recently been introduced into the hydroclimatic literature 

(Hammami et al., 2012). To our knowledge, the present study is the first application 

of the LASSO in the more general context of model simplification rather than 

simply selection of a subset of informative independent variables in linear 

regression. 

Briefly, the LASSO concept maintains the linear regression approach of 

seeking to match a linear function to a data set, but with the additional aspect of 

some degree of forcing of the parameters toward zero. Scaling is required prior to 

avoid preferential elimination of parameters because of units of measurement. A 

user-specified positive parameter    defines the relative partitioning between 

optimising the parameter values toward data matching or forcing the parameters to 

zero. A large value of    will cause all parameters to be set to zero while a small    

will not have any simplifying effect. See also Hammami et al., (2012), Wheeler  

(2009), and Tibshirani (2011). 
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The deleted variables will be those whose elimination has least effect on 

fitting the linear regression model to data while all parameters are being forced 

toward zero. Deletion might arise, for example, if a variable has weak explanatory 

power. Alternatively, some variables may be highly correlated so that when one is 

eliminated to zero another can take its place. 

The nonzero parameters remaining after a LASSO process will have values 

biased toward zero. This can be offset with a subsequent standard linear regression 

with the independent variables now being just that surviving subset. The parameter 

values from the second regression will usually have larger absolute values and the 

model will better fit the data because the biasing effect will be at least partly 

removed. 

 However, the least-squares LASSO has a disadvantage for model 

simplification purposes. Specifically, linear constraints cannot be included without 

transforming the fit procedure into a quadratic optimisation exercise, which may be 

slow to run for large problems and will not necessarily yield a global minimum.  

There is particular advantage in being able to incorporate linear constraints 

into models, both as part of the model description and because the constraints may 

result in many parameters never becoming part of the model. Such model 

improvement from inclusion of constraints has previously was noted, for example, 

by  Gharari, et al. (2014).  

The constraints here might be as simple as avoiding negative discharge in a 

hydrological model or could be a more complex constraint set to approximate some 

physical process.  

We therefore utilise here the linear LASSO (Wang, et al., 2006) as the 

LASSO version most suited to model simplification. This permits linear constraints 

while still giving a single optimal global solution for calibration fitting with 

specified  . In addition, the linear LASSO can be applied when there are more 

parameters than data points. 

The LASSO simplification is achieved by way of the positive LASSO 

simplification parameter . The role of  is discussed in more detail in Chapter 4 

but for the purposes of model simplification it is sufficient to note that as  increases 

more of the model parameters are forced to zero, resulting in a simpler model. It is 
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then of interest to check whether the simpler model avoids over-fitting issues and 

leads to improved prediction on independent data. 

By the way of illustration, the results of calibration with simplification of a 

linear rainfall-runoff model are given here. Further details can be found in (Bardsley 

et al, 2015). The initial linear model in this case comprises a multi-component 

weighted finite mixture distribution, with each distribution being a pre-calculated 

nonlinear form, thus avoiding the use of nonlinear parameters. 

This model was used with calibration / simplification with respect to the 

short time series shown in Figure 2-7. The partition of the time series into 

calibration and evaluation data sets was such that the calibration data set had less 

data range than the evaluation set, providing a more difficult challenge for the 

simplified version of the model. 

As it happened, just the constraint of non-negative discharge (no force of 

simplification) is itself sufficient to reduce the initial 163-parameter linear model 

to just 13 parameters while still maintaining  = 0. However, even 13 parameters 

evidently is still too many, as seen by poor matching to the evaluation data set to 

the right of Fig 2-7.  In particular there is considerable error in predicting the 

magnitude of the large flood peak in the evaluation set. 

Figure 2-8 gives the corresponding time series for the best evaluation data 

match where the forced simplification reduced the model to 6 parameters and  the 

model remained constant over the  range  0.9    2.0. It is of interest that this 

simpler model apparently gives a reasonable estimate of the 12.8 m3s-1 peak 

discharge around hour 500, despite the peak discharge of the calibration data being 

much lower (6 m3s-1). This simplified model comprises three g(t) functions and six 

parameters, with one of the six being a non-zero baseflow constant.  
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Figure 2-8 Model fitting (6 parameters) to calibration data after previous linear 

LASSO simplification with (0.9    2.0), giving the best match to evaluation 

data. 

Figure 2-7 Model calibration fitting ( = 0, 13 nonzero parameters) prior to simplification. 

The calibration data is for the first 400 hours, with the last 200 hours being used for 

evaluation. 
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2.4 Conclusions 
 

The first part of this chapter demonstrated the general result of the 

requirement for an impossible forecasting situation such that future values of an 

input time series must be known for all forecast methodology which uses 

calculation of wavelet components for the decimated discrete wavelet transform 

based on the pyramidal algorithm. The need for future data values in fact increases 

with the resolution level of the wavelet transform, regardless of the chosen wavelet 

filter. It was also shown that if pre-processing of time series with the decimated 

wavelet transform is performed prior to data separation into calibration and 

validation portions then there will always be dependency between the calibration 

and validation parts, preventing the necessary independence of the two data subsets. 

Illusionary and over-optimistic forecasting accuracy is the inevitable consequence 

of such dependency, regardless of the forecasting machine learning method of 

choice. This also has implications on the veracity of published forecasts in 

economics and other disciplines.  

The second part of the chapter provided a general time series modelling 

simplification framework, being in principle applicable over many fields of 

nonlinear hydrology and in other subject areas of environmental science as well. 

This development is still in its early stages, but the most likely first extensions of 

the method might be toward creating simpler distributed hydrological models where 

the most sensitive spatial locations governing the output process will be 

preferentially selected from the simplification. This could result in considerable 

reduction in the spatial input information required by such models while also 

avoiding overfitting.  
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Chapter 3 Associations in bivariate data: a 

randomization approach 

3.1 Introduction 

Testing of association between two variables is a useful step of data analysis 

and also as screening method to reduce dimensionality when there is a large number 

of possible predictor variables. In the field of machine learning such dimension 

reduction techniques are referred to as filter methods. In the context of 

environmental data analysis, filter methods are particularly useful in identifying 

informative predictors in forecasting models, for example in determining which 

atmospheric-oceanic circulation modes may influence local hydrological processes.  

This chapter introduces two methods of significance testing for the 

associations in bivariate data, utilising environmental data examples. The first part 

of the chapter introduces a significance test for the specific case where there is an 

apparent data-sparse zone in a scatterplot. Such data sparsity might represent some 

environmental threshold effect which operates to reduce the frequency of values 

over that portion of the scatterplot. The second part test constitutes a generalisation 

of the approach presented in the first part and introduces a simple non-parametric 

test of significance of general associations between two variables. 

The first part has been published in Hydrology and Earth Systems Sciences 

[1] and the second part is currently under review. 

Reference: 

[1] V. V Vetrova and W. E. Bardsley, “Technical note: A significance test for 

data-sparse zones in scatter plots,” Hydrol. Earth Syst. Sci, vol. 16, pp. 

1255–1257, 2012. 
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3.2 A significance test for data-sparse zones in scatter plots 

Abstract 

Data-sparse zones in scatter plots of hydrological variables can be of interest 

in various contexts. For example, a well-defined data-sparse zone may indicate 

inhibition of one variable by another. It is of interest therefore to determine whether 

data-sparse regions in scatter plots are of sufficient extent to be beyond random 

chance. We consider the specific situation of data-sparse regions defined by a linear 

internal boundary within a scatter plot defined over a rectangular region. An Excel 

VBA macro is provided for carrying out a randomisation-based significance test of 

the data-sparse region, taking into account both the within-region number of data 

points and the extent of the region. Example applications are given with respect to 

a rainfall time series from Israel and also to validation scatter plots from a seasonal 

forecasting model for lake inflows in New Zealand. 

Introduction 

A visual examination of hydrological scatter plots is a useful first step 

toward considering possible relationships between variables, or for evaluation of 

the worth of hydrological forecasting models via validation plots of observed and 

predicted values. It is intuitive that we tend to focus on regions in scatter plots with 

greatest data density as this suggests the highest degree of association and worth 

the most effort in further refinements – see, for example, Green and Finlay (2008). 

However, a sufficiently extensive data-sparse zone in a scatter plot can be of interest 

also as this may suggest that for a specific magnitude range one variable might 

restrict the other.  

For hydrological variables, the transition between data-sparse and data-

dense fields in scatter plots will most likely be a poorly-defined boundary which 

can be thought of as a stochastic frontier, for which a range of estimation techniques 

are available (Hall and Simar, 2002; Florens and Simar, 2005; Delaigle and Gijbels, 

2006; Kumbhakar et al., 2007).  Our focus here is not on boundary estimation as 

such, but rather on providing a significance test against the null hypothesis that a 

data-sparse zone in a scatter plot has arisen by random chance. Specifically, the 

purpose of this analysis is to provide a practical significance test for the size of the 

area of an observed data-sparse region with a linear internal boundary in a scatter 
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plot within the specific rectangular region which just encompasses all the data 

points. The test requires no assumptions concerning the data. For convenience, the 

data-sparse area is taken to mean its proportion of the rectangle area. Given that 

there are 𝑚 data points within the data-sparse area ∆(𝑚), the null hypothesis is that 

a data-sparse region at least as large and containing m data points could have arisen 

by random chance. Rejection of the null hypothesis does not imply any specific 

alternative with respect to correlation between the variables, but simply indicates 

that the data-sparse region is confirmed large enough so as to be unlikely to have 

arisen by chance. The approach adopted here represents a generalisation of an 

earlier test described by Bardsley et al. (1999) which was restricted in practical 

application because it required the data-sparse region to contain no data points at 

all (m = 0).  

The nature of a data-sparse (as opposed to no-data) region is illustrated with 

respect to the scatter plot in Figure 3-1. The pattern of data points suggests a 

possible linear rising trend in an upper boundary for October rainfalls at a site in 

Israel over the period 1951–1987, but with an unusually wet month in October 1986 

as an outlier. The m = 0 requirement of the original 1999 test required a somewhat 

unrealistic location of a boundary as being above the outlier (Bardsley et al., 1999, 

Fig. 3a). A better approach is to deem “data sparse” in this particular case as 

permitting a single point within the data-sparse region (m = 1) which now gives a 

better linear boundary location just above the other data points (Figure 3-1). 

  



39 

 

 

The test  

Following Bardsley et al. (1999), the significance test of the present paper is 

based on a standard randomisation approach. That is, the x-coordinates of the data 

points are randomly reassigned, giving rise to a different pattern of points in the 

scatter plot in the rectangular region. For example, if the x-axis represented yearly 

values, then this would amount to a random reordering of years. After a given 

random reordering of x-coordinates, a check is made in the algorithm whether the 

largest upper-left region (with linear internal boundary) containing m data points is 

larger than the upper-left data-sparse area in the original scatter plot.  

This random reordering of the x-coordinates is repeated many times, and the 

proportion of times p that the original data-sparse area is exceeded is calculated. 

This p value is the probability of obtaining a data-sparse area at least as large as 

observed in the original scatter plot, given that the null hypothesis is true. Therefore, 

if p is sufficiently small, say less than 0.05, then the size of the original data-sparse 

region ∆(𝑚) is deemed statistically significant. The number of random reorderings 

Figure 3-1 Scatter plot of October Rainfall values (1951–1987) at Berurim in 

southern Israel. Line shows the linear internal boundary of the largest possible data-

sparse region for m = 1 (see text for definitions).  
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needed for the required precision of p is determined from the binomial theorem in 

the usual way (see Appendix in [1]).  

A general VBA macro which is unrestricted as to the size of m is described 

in the Excel spreadsheet supplementary to [1]. The macro appears efficient in trial 

runs but inevitably will become slower for large numbers of points in the scatter 

plots coupled with large m. When the macro is applied to the indicated data-sparse 

region above the line in Figure 3-1 (m = 1), the resulting p value is obtained as p(1) 

= 0.001, which is a higher level of statistical significance then the value of p(0) = 

0.02 listed in Fig. 3a of Bardsley et al. (1999) for the case of m = 0. Of course, there 

is no general guarantee that higher levels of significance will be obtained for the 

test proposed here, as this is dependent on the data pattern of the scatter plot. 

Application to validation scatter plots  

Scatter plots most commonly serve as a graphical indication of some degree 

of association between two variables. In addition, scatter plots are often used in 

hydrology to give a graphical indication of how well some model fits a set of 

validation data. The ideal here is to have points scattered close to the 1:11 line and 

Bardsley and Purdie (2007) present an “invalidation test” as one means of testing 

departure from this situation. However, a validation scatter plot may indicate failure 

in the sense of poor 1:1 fitting but nonetheless still possess some degree of 

predictive ability as evident from the pattern of points. For example, the location of 

a data-sparse region in a validation scatter plot may suggest that low predicted 

values tend to be associated with low observed values, but increasingly large 

predicted values result in high or low magnitudes being as likely. 

                                                 

1 The 1:1 line corresponds to exact matching of observed and predicted values. 
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An illustration of this situation is given in Figure 3-2, which shows a 

validation data set with respect to a seasonal lake inflow forecasting model seeking 

to anticipate total autumn inflow from the standpoint of autumn in the previous 

year. The lakes concerned (Tekapo and Pukaki) are adjacent New Zealand hydro 

storage lakes and it is convenient to consider seasonal forecasts of the combined 

inflow volumes of both lakes. The forecasting model itself is further described in 

Chapter 4 but our interest here is that the validation scatter plot can be interpreted 

as the forecasts giving a low probability to high inflows when low lake inflows are 

forecast. However, at the same time high inflow forecasts may associate with high 

or low actual inflows. This lends itself to a data-sparse significance test (m = 0) 

which in fact indicates high significance of the sparse zone above the solid line with 

p(0) = 0.0004.  

Although an m = 0 test may appear sufficient here, there could be concern 

over robustness of the conclusion because of the small number of data points 

involved. The m > 0 test gives an empirical means of robustness checking because 

artificial data points can be inserted into the data-sparse zone and a check made to 

see if statistical significance is maintained. For example, inserting the single 

Figure 3-2 Validation plot for a model forecasting combined autumn river 

inflow volumes into Lakes Tekapo and Pukaki (New Zealand). 
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synthetic data point indicated in Figure 3-2 yields p(1) = 0.002, which is still highly 

significant. The forecasting model in this case should probably be robust therefore 

against a future real data point appearing in the sparse zone. Further synthetic data 

points could be inserted if required. The autumn forecasting model here is 

restrictive in that low forecast flows will tend to be below the solid line. However, 

forecast high flows in reality could be anywhere within the magnitude range. The 

forecasting value is with respect to a high probability that a forecast flow will not 

be in the data-sparse zone, as opposed to being near or far from the 1:1 line. 

 

This view of forecasting value is also illustrated in Figure 3-3 , showing in 

this case the validation results of a model for forecasting spring inflows into the two 

lakes, where the model is forecasting from the previous spring. The predictive 

model clearly fails in the sense of any 1:1 matching, but the hope might be that the 

indicated solid line approximates an upper bound to actual inflows when forecasts 

are in the range 1.20– 1.45 × 109 m3 . As with the autumn model, the validity of 

this upper bound is tested for significance via the macro with respect to the relative 

size of the upper left (m = 1) data-sparse empty corner. It happens in fact that the 

macro-derived p(1) value of 0.16 indicates the sparse zone size is no larger than 

expected from chance. The predictive model therefore fails not only in the 1:1 

Figure 3-3 Validation plot for a model forecasting combined spring river 

inflow volumes into Lakes Tekapo and Pukaki (New Zealand). 
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sense, but also in the sense of establishing the existence of an upper boundary which 

might permit an estimated upper bound to some forecast inflows. 

Discussion and conclusion  

There is an element of subjectivity introduced for the test considered here 

with m > 0, in that sometimes it will not be evident which value of m best defines a 

data-sparse region. Some trial and error process will most likely be required in such 

instances. With respect to further development, the test approach considered here 

should be amenable to generalisation such as allowing for curved inner boundaries 

and incorporating multiple dimensions. However, the randomisation algorithms 

may become complex and slow. As noted in Bardsley et al. (1999), there will be 

data situations where linear regression is the most appropriate analysis technique. 

In other situations where data-dense and data-sparse fields are separated by an 

approximate linear boundary, the test given here should find practical applications 

for both associations between variables and also for checking validation scatter 

plots under situations of restricted forecasting ability. 
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3.3 A simple nonparametric test of bivariate association for 

environmental data exploration 

 

Abstract 

A simple nonparametric test for general bivariate association is proposed on 

the basis that randomising the data of a scatter plot will tend to result in greater 

mean nearest neighbour distances if an association is present. The test is carried out 

by finding the proportion p of randomisations giving smaller mean nearest 

neighbour distances. A well-defined association (not necessarily linear) in the 

scatter plot will tend to produce values of p near zero, while minimal association 

plot will give larger p values. The test is based only on the data, requires no 

estimation of intermediary entities like joint or marginal distributions, and makes 

no assumption concerning the origin of the data. The test is not necessarily more 

powerful or optimal in any sense, but could still provide a useful tool for 

preliminary investigation of bivariate data sets such as might arise from a study of 

climatological relationships.  

 Introduction 

In seeking to construct an explanatory model for an environmental variable, 

it is common to have situations where there are a large number of available 

candidate variables which may or may not have causal association with that 

dependent variable. Also, there may be no certainty whether causal associations 

will always be linear. 

One approach for model construction in such situations is to develop 

procedures for selecting a subset of predictor variables which have some 

unspecified form of statistical association with the dependent variable. A dimension 

reduction method is usually applied to reduce redundancy to give minimal 

correlation between the selected variables. Examples of such studies in 

environmental applications include Quilty et al. (2016), Tran et al. (2015), Sharma 

and Mehrotra (2014), Hejazi and Cai (2009), and May et al. (2008). A methodology 

overview on variable selection in general is included in Huang and Zhu (2016). 
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There can be many forms of association (not necessarily all causal) and there 

may be merit in preliminary data exploration to give some first insight into possible 

causal associations. The simplest approach here is to carry out variable-by-variable 

checks for any form of bivariate association with the dependent variable. For linear 

associations this can be achieved by computing correlation coefficients but it is less 

clear as to choice of an appropriate bivariate index when there is possibility for 

undefined nonlinear associations. 

In the statistical literature there is an extensive history of general bivariate 

association measures, including both specific bivariate indices and bivariate indices 

as special cases of multivariate indices. Bivariate association measures to date 

include two-sample comparisons with respect to empirical distribution functions 

(Blum et al., 1961), empirical characteristic functions (Kankainen and Ushakov, 

1998), information measure (Linfoot, 1957; Kraskov et al., 2004; Sugiyama, 2011; 

Reshef et al., 2011), general nonlinear functional relations (Delicado and Smrekar, 

2009), rank-based methods (Kallenberg and Ledwina, 1999; Heller et al., 2013), 

bivariate copulas (Schweizer and Wolff, 1981), distance correlation (Szekely et al., 

2007), and continuous analysis of variance (Wang et al., 2015). Murrell et al. (2016) 

introduced a generalized coefficient of variation and Karvanen (2005) gives a 

resampling test of independence for application to data from two stationary time 

series. 

Many of these tests of bivariate association, though powerful, are not 

intuitive to the average user and often require nonparametric estimation of 

intermediary quantities such as joint or marginal probability distributions. We 

propose here a simple and intuitive nearest-neighbour test for detection of general 

bivariate associations. The test is truly nonparametric in the sense that only the data 

values are used, there is no estimation of intermediary entities, and no assumption 

is made about the mechanism of data generation.  

Nearest neighbours have been used previously for association measure in 

the context of a mutual information estimation (Kraskov et al., 2004). However, we 

believe our approach to be the first purely data-based use of the nearest neighbour 

as a test of bivariate association. 
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Our motivation derives from wishing to formulate a simple test of general 

bivariate association as a first step toward locating spatial regions which might have 

influence on variables of interest. For example, rainfall at a given location on land 

may be partly linked to sea surface temperatures over some nearby oceanic region.  

It might happen that the simplicity of the method results in its finding some 

application for detecting unspecified bivariate associations generally. However, 

there is no suggestion that the test is more powerful than others or has optimal 

properties in some sense.  In fact, our purpose in this brief communication is simply 

to introduce the index rather than carry out detailed comparisons with other indices 

on reference data sets. It could actually be argued that for data exploration purposes 

high test power may not be desirable because there are so many forms of possible 

bivariate association that there will inevitably be instances where detected 

associations are not suited to predictive models. 

Section 2 describes the test of bivariate association, Section 3 illustrates the 

nature of the test using synthetic examples, and Section 4 applies the method for 

preliminary identification of locations where atmospheric pressure influences 

westerly wind frequency on the west coast of the South Island of New Zealand. 

 

2. Test of bivariate association  

Following from Murrell et al. (2016) we note that randomisation will destroy 

any existing form of bivariate association and thus gives a useful reference base for 

no association. That is, for a given bivariate data set  , , ,X Y X R Y R  ,  there 

can be no association if the X values have been rearranged in random order. We 

next seek a non-specific test statistic of association which can be utilised with 

randomisation. We adopt the scatter plot mean nearest neighbour distance D   as an 

intuitive measure in this regard, and define p as a proportion of those scatter plots 

created from randomisations of X which have mean nearest neighbour distances less 

than D . If there is some form of association between X and Y then randomisation 

of X will tend to produce scatter plots with increased mean nearest neighbour 

values, resulting in smaller values of p. If p is sufficiently small, say p  0.05, then 

this can be taken as indicating some form of association of {X,Y}. 
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The effect of X-randomization is illustrated in Figure 3-4 and Figure 3-5, showing 

how a single randomization of X has varying degrees of disruption depending on 

the original extent of {X,Y} association. The well-defined circular pattern of  Figure 

3-4a is randomised to disorganised spatial scatter in Figure 3-4b, but the minimal 

{X,Y} association for the two clusters of Figure 3-4c is largely unchanged from a 

randomisation of X (Figure 3-4d). Similarly, the random scatter of points in Figure 

3-5a remains a random scatter after a randomisation (Figure 3-5b) and there should 

be minimal change in the mean nearest neighbour spacing.  

 

Figure 3-4 A single randomisation applied to a circle pattern (a,b) and to 

two clusters (c,d). 
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Figure 3-5 A single randomisation applied to a random scatter (a,b) and a 

random scatter with many points located at the arrowed location (c,d). 

Figure 3-5c illustrates how a randomisation may give rise to an apparent 

spatial pattern. Figure 3-5c is the same {X,Y} spatial pattern as Figure 3-5a except 

that 800 X,Y points have been added at one location (arrowed), all with X = 0.5, Y 

= 0.5. Randomisation with a single tight cluster of this type gives rise to a cross 

pattern like that shown in Figure 3-5d. The non-association would still be reflected 

in high p values, however, because outlying data points will tend to come together 

along the x = 0 or y =0 axes, giving mostly smaller mean nearest neighbour 

distances than D . 

Synthetic examples 

The use of p as a bivariate association test is illustrated in Figure 3-6 with 

four synthetic data sets of 200 values in varying forms of association of {X,Y}. The 
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D  value for each scatter plot was first calculated, followed by randomisations of 

the respective X values to obtain p values for the four plots. 

 

Figure 3-6 The p test of bivariate association applied to various scatter patterns. 

Figure 3-6a shows an underlying linear association with random noise 

distributed about y = 0, with the association still being detected as a small value of 

p. Figure 3-6b and Figure 3-6d exhibit a roughly diamond pattern which would be 

disrupted by randomisation, creating small p values. Figure 3-6c suggests no 

evident association with no pattern of points amenable to randomisation disruption, 

resulting in the non-significant p value of 0.39.  
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During the randomisations a check was also made on the proportion of 

instances pR that the absolute value of the original Pearson correlation coefficient 

was exceeded. For Figure 3-6a-d the respective values were pR = <0.01, 0.03, 0.75 

and 0.88. For Figure 3-6d the difference between pR  and p reflects that the 

correlation coefficient is specific to detecting linear associations as opposed to 

general bivariate associations which are detected by the near-zero p values. 

Figure 3-6 also serves to emphasize that p is essentially an exploratory tool 

and should not be used in a mechanical way to select variables for input to 

explanatory models. Both Figure 3-6a and Figure 3-6d have small p values but if 

this were real data then Figure 3-6a would be the more interesting because the signal 

and noise are clearly different in this case and the latter might be amenable to 

removal after further work. 

Similarly, we applied p to one of the autocorrelation data-generation models 

used by Sharma (2000) to test a scheme for optimal predictor variable selection. 

Specifically, we applied the autocorrelation expression: Xt = 0.9Xt-1  + 0.866et and 

then tested  Xt  for association with Xt-1, Xt-2, .. Xt-15. As it happened all p values 

were less than 0.05 except for Xt-14  and Xt-15, again emphasising the exploratory 

nature of the bivariate p value rather than explicit selection of best input variables 

for prediction purposes. 

 Data application 

The variable Y of interest here is the percentage of days per month on the 

west coast of the South Island of New Zealand when the upper air wind direction is 

estimated as being between 216and 365, coupled with wind speed exceeding 5 

ms-1. Such wind conditions at this location are often associated with rain so the 

monthly frequency of such days is likely to be related to regional monthly 

precipitation. 

The X variables in this case are the monthly mean 700 hPa geopotential 

heights (metres) as referenced to a southern hemisphere 29 × 7 reanalysis data grid 

of point locations,  extending from the Indian Ocean on the west to the Atlantic 

Ocean to the east (Figure 3-7). The data was not adjusted for seasonal effects, which 

will contribute a component of noise to any associations. 
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All grid point locations which produced p values less than 0.01 are shown in Figure 

3-8. Interestingly, most of the plotted grid points are located along the two lines of 

latitude 25S and 55S, respectively to the north and south of New Zealand. 

 

 

Figure 3-7 Grid point locations for 700 hPa geopotential heights (see text for 

further description). 

 

Figure 3-8 Grid point locations for p < 0.01. Arrows denote scatter plots 

shown in Figure 3-9 and Figure 3-10. 

The down-arrow symbols of Figure 3-8 show the locations of the three latitude 25S 

statistically-significant grid point locations displayed as the three scatter plots of 

Figure 3-9a-c (from west to east respectively). The association in this case is 

evidently a tendency for Y to increase with X. For purposes of comparison Figure 
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3-9 also includes scatter plots and p values for the adjacent three grid points 

immediately to the north (Figure 3-9d-f).  The extent of the association is evidently 

sensitive to latitude because these grid points do not have significant p values and 

any linear correlation is minimal. 

 

Figure 3-9 Scatter plots for Figure 3-8 down-arrow grid points (a-c) and for the 

adjacent non-significant grid points immediately to the north (d-f). 
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Figure 3-10 Scatter plots for Figure 3-8 up-arrow grid points (a-c) and for the 

adjacent non-significant grid points immediately to the north (d-f). 

Figure 3-10 shows a similar situation for the three indicated significant grid 

points along latitude 55S (up arrow symbols on Figure 3-8). In this case, however, 

the three significant grid points all display negative associations (Figure 3-10a-c). 

There is again a sensitivity of the association to latitude, with the three adjacent grid 

points to the north having non-significant p values and minimal linear correlation 

(Figure 3-10d-f).   

The detected associations of X and Y  here are to be expected from the 

definition of Y, which incorporates a westerly wind component with respect to the 

west coast of New Zealand’s South Island. Low atmospheric pressure to the north 
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(lower 700 hPa geopotential elevations) would tend favour easterlies rather than 

westerlies over the South Island. Similarly, South Island easterlies would be 

favoured by high pressures further to the south, consistent with the negative 

association. What is perhaps more surprising is the strong latitudinal effect in 

constraining associations, suggesting that regions of influence in this case may be 

well defined. 

In fact, the associations and non-associations detected here could have been 

equally well identified just by a table of linear correlation coefficients. That is, the 

detected bivariate associations were all linear to a first approximation. However, 

the use of p here at least gives some degree of certainty that possible nonlinear 

associations at other grid locations were not overlooked. 

Regions of influence aside, it is inevitable that the use of a large number of 

grid points will result in spurious detections of general bivariate association in some 

form. For example, Figure 3-11 shows the scatterplot from the single point 

identified in the South Atlantic (Figure 3-8). Evidently the p significance in this 

case arises from an elliptical pattern in the scatter, somewhat similar in appearance 

to Figure 3-6b. 

Figure 3-11 Scatter plot for the significant South Atlantic grid point of Figure 3-8. 
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5. Conclusion 

A test of general bivariate association is proposed, based on the degree to 

which data randomisation induces an increase in scatterplot mean nearest neighbour 

distance. The simplicity of the test may also result in its finding use in other 

situations where there is interest in general bivariate associations and test power is 

not the first priority. However, further work is required for more detailed evaluation 

of the test properties over the many possibilities of bivariate associations and 

different sizes of data sets. 

The approach is in principle amenable to direct extension to testing N-variate 

general associations with reference to nearest neighbours in N-space. This is left an 

open possibility for now but our feeling is that the test is best suited to preliminary 

data exploration to exclude non-significant associations prior to the application of 

more sophisticated methods leading to explanatory model construction. 
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Conclusions 

The first part of this chapter provided a general method to test for 

significance of the size of a data-sparse region in a scatterplot. The second part 

presents a method for testing for general non-random associations between two 

variables. Both approaches can be utilised as filter methods to screen for 

informative bivariate relationships prior to application of a ML method. Both 

methods may be amenable to extension to the multivariate case, though this is left 

for further work.   
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Chapter 4 Incorporating large scale climatic-

oceanic data into hydro-climatological 

analysis and prediction 

 

4.1 Introduction 

This chapter examines an issue of incorporating large scale multivariate 

climatological data into prediction of local hydrological processes. This problem is 

viewed as a machine learning problem of regression where the number of predictors 

is larger than the number of observations.   

The first part of this chapter illustrates the usefulness of Lasso regularized 

regression as both an exploratory and predictive tool in seasonal streamflow 

forecasting based on high-dimensional raw climatological data. Its utility is 

demonstrated with a case study of predicting lake inflows in the Waitaki river 

catchment, New Zealand.  

The second part of this chapter provides a detailed case study of influence 

of a particular climatic index – Interdecadal Pacific oscillation on winter inflows in 

the Waitaki catchment.  

The first part of this chapter has been presented as a peer reviewed paper to 

the workshop on “Data science in food, energy and water” at the 22nd ACM 

SIGKDD conference on  knowledge discovery and data mining. The second part of 

this chapter was published in the New Zealand Journal of Hydrology [1]. 

Reference 

[1] Vetrova, V., and  Bardsley, E. 2015. An association between Waitaki 

River winter headwater flows and the Interdecadal Pacific Oscillation (IPO). 

Journal of Hydrology, NZ, 54, 2, 103–108  
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4.2 Finding spatial climate precursors of hydro-lake inflows: 

Waitaki catchment, New Zealand 

Abstract 

Predictability of river discharge is a topic of increasing practical importance. 

In this paper, we address a problem of seasonal forecasting of hydro-lake river 

inflows using large scale oceanic-climatic predictors. This forecasting problem is 

high-dimensional with small sample sizes. We highlight the usefulness of the 

regularized linear regression method Lasso as both a predictive and exploratory 

tool. This approach allows to explore relationships between large scale 

climatological processes and local hydrology.  A modified cross-validation 

procedure is proposed to maximize the available information in a forecasting 

model. We demonstrate the experimental results with a case study of seasonal lake 

inflow forecasting in the Waitaki catchment in New Zealand. 

Keywords 

high-dimensionality, regularized regression, cross-validation 

Introduction 

Seasonal and monthly forecasts of hydro-lake inflows are of significant 

value for management of power consumption and provision. However seasonal and 

monthly forecasting poses a challenge, especially in catchments with limited 

groundwater reservoir influence or relatively small basins which prevent 

forecasting by delayed flow. Additional climatological information can be utilized 

in forecasting models, for example when there is a lack of serial correlation between 

consecutive months and seasons [1-6]. Here we incorporate large-scale climatic 

information into predictive models to improve forecasting and also provide new 

insights into physical mechanisms regulating seasonal and monthly catchment 

precipitation. 

Large scale climate data is usually represented as gridded fields such as sea 

surface temperatures or geopotential heights [7-8]. Utilizing high-dimensional 

climate data in forecasting models requires some type of predictor selection 

procedure, because sample sizes are generally small.  Typically, climate data has 
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been utilized in streamflow predictive models by way of pre-defined climatological 

indices, such as the North-Atlantic Oscillation or Nino 3.4 indices [2,4].Correlation 

analysis has also been used to identify potential regions having the highest 

correlation with the river flows of a given basin [2,3]. Alternatively, PCA-based 

methods have also been used to reduce dimensions of climatological predictors 

[1,3,5].  

There has been considerable interest in the KDD1 community in spatial-

temporal mining of climate data [9-11]. Clustering methods for identifying climate 

regions were developed in [12].  

Correlation analysis can help identify linear relationships between 

individual climate predictors and river flows [2,3]. However correlation analysis 

cannot capture nonlinear relationships, for example, characterized by the strength 

of differences between two climatological predictors. Such relationships can arise, 

for example if the differences between two pressure centers contribute significantly 

to streamflow rather than values of pressure in two spatial locations individually 

[13]. These relationships can sometimes be identified when untransformed 

climatological data is used in predictive models. Untransformed data, however, 

brings back the issue of the high-dimensionality of predictor space versus the 

available sample size.  

One way in which the issues associated with untransformed data could be 

resolved is by simultaneously learning the predictor and fitting the model: 

regularized regression methods are one approach for doing this. Here we will use a 

Lasso-based regression model for this purpose. In our literature search we could 

find only one previous example of data-driven seasonal river flow forecasting 

utilizing regularized regression. However, that investigation used climatic indices 

rather than the more extensive raw climatological data [6]. Regularized regression 

methods were applied in [14] for precipitation analysis. However, in that paper only 

concurrent relationships were examined, whereas here we use time-lagged ocean-

climate predictors to predict future streamflow. 

                                                 

1 KDD – Knowledge discovery and data mining 
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This section aims to highlight some work in progress to illustrate the 

usefulness of Lasso regularized regression as both an exploratory and predictive 

tool in seasonal streamflow forecasting based on high-dimensional raw 

climatological data. Its utility is demonstrated with a case study of predicting lake 

inflows in the Waitaki river catchment, New Zealand. 

Our study focuses on two main aspects of river flow prediction. Firstly, we 

propose a modified cross-validation procedure in order to maximise available 

information in the forecasting model. Secondly, we discuss analysis of the selected 

spatial predictor variables.  

Background and data 

The Waitaki catchment in New Zealand was chosen as a case study for this 

paper. The Waitaki River contains a cascade of eight hydro power stations and 

produces about 40% of New Zealand electricity (Figure 4-1). River inflows to the 

Waitaki hydro lakes are subject to strong seasonal variation, with maximum 

discharge through September-February and minimum flows in March-August. This 

is in contrast with demand for electricity, which is highest in June-August (the NZ 

winter). This mismatch makes the problem of seasonal forecasting of hydro-lake 

inflows significant for hydro-scheme management. Similar problems exist in other 

countries with significant hydro-electric power component.   

 

Figure 4-1 Location of the Upper Waitaki catchment (rectangle), New 

Zealand 
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Previous studies have analysed global atmospheric circulation influences on 

hydrology of the Waitaki catchment [15,16]. There has been previous study on 

seasonal prediction of streamflow in the catchment where PCA was used to reduce 

the dimensionality of climate predictors [5]. 

For this study, seasonal lake inflow volumes were provided by Meridian 

Energy Ltd as derived from water balancing using lake level differencing coupled 

with recorded outflows.  

Sea surface temperature data and 700hpa geopotential heights were used in 

this study as potential predictors [7,8]. The spatial extent was selected as 

(54°N,56°E)-(86°S,172°W) in order to allow for potential teleconnection influence 

of the North Pacific and Indian Oceans.  

Seasonal predictive models were analysed for the contrasting seasons of 

autumn (March, April and May) and spring (September, October, November). 

700hpa geopotential heights and sea surface temperatures of previous three months 

were used as predictors. 

Seasonal streamflow prediction using LASSO 

There are 1400 potential oceanic-climate predictors for each type of 

predictor variable and only 67 observations streamflow values, so regularization in 

the predictive regression models is essential.  

The regularized linear regression LASSO was chosen as a predictive model 

in this study: 

min
(𝛽0,𝛽)∈𝑅𝑝+1

1

2𝑁
∑(𝑦𝑖 − 𝛽0 − 𝑥𝑖

𝑇𝛽)2 + 𝜆‖𝛽‖1

𝑁

𝑖=1

 

where 𝑁 is the number of observations, 𝑥𝑖  is a 𝑃 × 1 vector of predictors, 

𝑦 is the  𝑁 × 1  vector of  dependent variables, 𝛽0 is the intercept term,  𝛽 is the 

𝑃 × 1 vector of regression coefficients, 𝜆 ≥ 0 is a regularization parameter. The 

parameter 𝜆 plays a trade-off role between model complexity and calibration 

accuracy.  Increasing 𝜆 forces some of the regression coefficients to zero and thus 

eliminates the corresponding predictors from the model.  
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Cross-validation framework 

In order to determine the optimal value of the regularization parameter 𝜆, a 

cross-validation procedure is normally used [17]. There has been previous research 

on modification of cross-validation methods in time series and in regularized 

regression models [18, 19]. However, cross-validation in the context of time series 

data in regularized regression poses additional challenges. 

 In the case of time series prediction, a typical k-fold cross-validation 

procedure might cause validation subsets to precede training subsets in time. 

However, in a practical setting of forecasting inflows, a predictive model is going 

to be used only to predict future values of time series. Also, evaluation of a model 

on a subset of past values might be affected by a change in large scale climatic 

phenomena2. This happened for example with circulation changes at the end of 

1970s related to Pacific decadal oscillation. We propose here a modified cross-

validation scheme (Algorithm 1) where cross-validation folds consists of one 

element immediately after the training fold.  

The proposed cross-validation procedure in Algorithm 1 (below) starts with 

reserving a first block of data as a training set. A LASSO model then is fitted on 

the training set. Some coefficients 𝛽𝑗  will be forced to zero in the fitted model, 

therefore corresponding predictors will be eliminated from the model. In order to 

avoid bias towards small values of coefficients 𝛽, a regression model is refitted on 

renewed set of predictors with 𝜆 set to 0. Finally, a prediction is made on the data 

point which follows the training set in order to select 𝜆.  

At a next step of a cross-validation, the training set size is increased by one 

data point, namely the next point in the time series. Therefore the training set is 

constantly growing and the validation fold always consist of the data point 

following the training data. 

The process described above is repeated for incremented values of the 

regularization parameter 𝜆. 

                                                 
2 In the area of data stream mining such changes are called “concept drift”. 
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Our proposed cross-validation resembles a likely practical implementation 

of the forecasting methodology when all information available to date is utilized in 

constructing the forecasting model.  

The R package glmnet was used to implement the models [20]. For the 

purpose of this study only Lasso models were analysed.  

 

Algorithm 1 

Input  

𝑍0 ∈ 𝑅𝑁×(𝑃+1) – Data matrix with rows (𝑥𝑖
𝑇 , 𝑦𝑖),  

K – number of the examples in the initial training set, i.e. the first K 

examples 

SetOfLambda∈ 𝑅𝐿 – an array of regularization parameter values 

Output 

𝑉𝑎𝑙𝑆𝑒𝑡 ∈ 𝑅𝐿×(𝑁−𝐾) – predicted values of the validation example, one 

row per each λ∈ SetOfLambda 

for each  λi  in SetOfLambda do 

for k from K to N-1 do 

𝑍𝑡 <- Z[1:k,:] # training set, consists of first k observations 
   

Model <- Fit the Lasso model on a training set Zt, with     

regularization parameter λi  

𝑍𝑡̃ <- Model with predictors with zero β coefficient eliminated 

from 𝑍𝑡 

λt <- 0 

Modelt<- Fit Lasso model on a training set 𝑍𝑡̃ with regularization 

parameter λt 

𝑉𝑎𝑙𝑆𝑒𝑡[i, N-k] <-Use Modelt to predict Yk+1 with observation Xk+1 

end for 

#There will be N-K predicted values for each λi  

Fi<-Calculated goodness-of-fit per each row of 𝑉𝑎𝑙𝑆𝑒𝑡[:,N-k] 

end for 

λmin <- select λ with minimum goodness-of-fit  

Fmin=min(Fi) 

Return λmin, 𝑉𝑎𝑙𝑆𝑒𝑡, Fmin 
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Predictor selection  

N-K regression models are generated for a single value of 𝜆 as result of 

algorithm 1. Each of the generated models might be formed by different set of 

spatial predictors due to the property of LASSO regression which eliminates 

correlated predictors, leaving only one such predictor in the model [19]. Therefore 

for different values of 𝜆 even if the same number of predictors appears in its model 

the predictors might be different. 

It is of interest to analyse stability of selected spatial predictors in order to 

compare it with the knowledge of climatological processes in the study area. For 

this purpose, all predictors with non-zero 𝛽 coefficients were extracted from each 

LASSO regression model fit in Algorithm 1. The location of extracted predictors 

are then plotted on a map. It is interesting to note that all selected predictors were 

having constant signs of regression coefficients across all the models.  

Results 

Separate regression models were applied, respectively using 700hpa 

geopotential heights and sea surface temperatures as predictors.  

In the case of 700hpa geopotential heights, maps of selected predictors show 

different centers of influence in different seasons. It appears that the locality of the 

Siberian high could have teleconnections linking Northern Hemisphere winter 

pressures with autumn inflows to the Waitaki lakes (Figure 4-2). This linkage could 

be modulated by a connection of the Siberian High and the East-Asian monsoon. 

Interestingly, none of geo-potential heights were selected in the Equatorial Pacific 

region. The atmospheric pressure locations north and south of New Zealand form a 

pressure gradient because corresponding regression coefficients are of opposite 

sign. This pressure gradient represents the westerly wind strength bringing ocean-

derived moisture to the Waitaki catchment. 

Clearly, if summer pressures are used as predictors it would be unexpected 

to see the same region of the winter Siberian High being selected from the models. 

Indeed, Figure 4-3 shows that spring inflows appear to have winter local and 

equatorial pressure influences. Somewhat unexpectedly, North America 

atmospheric pressures were consistently selected for both seasons. 
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The distributions of the selected sea surface temperatures appear to indicate 

a degree of spatial clustering, suggesting some ocean localities have more influence 

than others (Figure 4-4). 

In order to analyse fit of the regression models, scatterplots of observed 

versus predicted values of streamflow were constructed for varying values of λ. 

There is a suggestion in fact that predicted low flows eventuate, but predicted high 

flows could be associated with flows over the whole discharge range (Figure 4-5 

and Figure 4-6).  

However, there is need to apply a suitable measure for goodness-of-fit. If 

the standard MSE measure is utilized, it would not result in such models being 

preferably selected over others.  

  As an alternative predictability measure, a suitable approach is a test of the 

significance of the size of the near-empty space in the lower right of Figures 4-5 

and  4-6  [21]. The test is based on randomization procedure with the null hypothesis 

being that the near-empty region could have arisen by random chance. Applying 

the test to the respective lower right regions gave p-values of 0.002 and 0.06 for 

Figure 4-5 and Figure 4-6 respectively. Interestingly, the suggestion is that the 

lower flows have a higher degree of predictability from the models with a smaller  

number of parameters (Figure 4-5). The explanation as to why the lower flows 

should have higher predictability is left to further work. 

Figure 4-2 The selected 700hpa geopotential height locations for autumn forecasting 

models (March, April, May). Blue and red points denote negative and positive regression 

coefficients respectively. 
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Figure 4-3 The selected 700hpa geopotential height locations for spring forecasting 

models (September, October, November). Blue and red points denote negative and 

positive regression coefficients respectively.  

 

Figure 4-4 The selected February sea surface temperatures locations for autumn 

models (March, April, May). Blue and red points denote negative and positive 

regression coefficients respectively. 
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Figure 4-5 Predicted vs Observed inflow values for spring models (September, 

October, November), 700hpa geopotential heights are used as predictors. 

Multiplying the axis values by 86400 gives total seasonal inflow volumes in m3.  

Numbers next to data points represent number of selected predictors in the 

particular model.  
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Figure 4-6 Predicted vs Observed inflow values for spring models (September, 

October, November), 700hpa geopotential heights are used as predictors. 

Multiplying the axis values by 86400 gives total seasonal inflow volumes in m3.   

Numbers next to data points represent number of selected predictors in the 

particular model. 

 

Conclusions and future work 

In this paper, analysis was carried out of predictive models for seasonal river 

discharge in the headwaters of the Waitaki River, New Zealand. The models utilize 

regularized linear regression via the LASSO. Predictability is not consistent, 

however, perhaps due to the operation of threshold effects in the predictor variables. 

For example, predicted high inflows may be associated with actual inflows which 

could be high or low, while predicted low inflows translate to an absence of high 

inflows. Such zone predictability requires quantification with an alternative 

goodness of fit measure. In future work, we will adapt the approach used in [14] for 

the predictive task we have considered here. This looks to be a challenging problem: 

since we work with time series data and predictors with different time lags, it seems 

that some non-uniform time-dependent weighting may be required here rather than 

the hard thresholding used in [14]. There is also a need for an evaluation on a per 
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grid point basis of the nature of the associations between inflows and the spatial 

variable concerned. However, this is beyond the scope of the present thesis study. 

Since it is known that climatic phenomena change over time, it would also 

be of interest to explore changes in relationship between climate variables and local 

hydroclimatology using a sliding window approach. 
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4.3 An association between Waitaki River winter headwater flows 

and the Interdecadal Pacific Oscillation (IPO) 

 

Introduction 

Variations and trends in New Zealand temperatures and rainfall have been 

related to circulation changes in the southwest Pacific, with significant shifts in 

1950 and 1975 (Salinger and Mullan, 1999). Salinger et al. (2001) showed that 

climatic shifts over the southwest Pacific region within the periods 1922–1944, 

1946–1977 and 1978-1998 are linked to the different phases of the Interdecadal 

Pacific Oscillation (IPO). Particularly, they suggested that the IPO in the positive 

phase enhances teleconnections between the El-Nino Southern Oscillation (ENSO) 

and climate variability over New Zealand. Similarly, Ummenhofer et al. (2009) 

attributed changes in New Zealand summer precipitation during the period 1976-

2006 to changes in both ENSO and the Southern Annular Mode (SAM). 

We focus here on the specific instance of an apparent similarity between the 

IPO and winter discharge in the Waitaki headwaters, defined here as the combined 

inflow volumes into the hydro storage lakes Tekapo and Pukaki.  The question 

considered is why there should be inflow correlation with the IPO in winter but not 

in the other seasons. Previous work has not had an emphasis on seasonal differences 

but an IPO influence in the Southern Alps was reported as the change to a positive 

IPO phase around 1978 resulting in most Southern Alps headwater rivers shifting 

toward higher discharge magnitudes for both floods and low flows (McKerchar and 

Henderson, 2003).  

Data 

The IPO index used here is related to the Pacific Decadal Oscillation (PDO) 

index. The PDO has been defined as the leading principal component of North 

Pacific monthly sea surface temperature variability (Mantua et al., 1997).  During 

the positive phase of the PDO the sea surface temperatures (SST) anomalies over 

the North Pacific are negative while the SST anomalies over tropical Pacific are 

positive and vice versa. The IPO index describes the similar quasi-symmetrical 

oscillation over the whole Pacific basin and was shown to be essentially equivalent 

to the PDO in the North Pacific (Folland et al., 2002).   
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In the present study, the Waitaki lakes (Tekapo and Pukaki) inflow records 

were used subsequent to 1940 because earlier records contain large amounts of 

missing data (Purdie, 2010). The Hermitage station at Mount Cook is used as the 

source of surface observation of daily values of temperature and precipitation, taken 

as indicative of the headwater region. Daily temperature mid-ranges are used (mean 

of the daily maximum and minimum temperature) and we use “rain-day” to mean 

precipitation (rain or snow) exceeding 0 mm for the day. This will include days of 

trace precipitation but such data makes up less than 10% of rain-day records. The 

seasonal lake inflow volumes were provided by Meridian Energy Ltd and were 

derived from lake level differencing. 

 

Seasonal lake inflows and the IPO 

 Figure 4-7 shows an approximate similarity in the time variation of the 

annual smoothed IPO index and Waitaki lake inflows in winter, but not evidently 

apparent in the other seasons (Figure 4-8). There is always a degree of uncertainty 

in subjective comparisons of temporal variations derived from heavy smoothing but 

the winter post-1978 increase in inflows is consistent with the general increase in 

discharges in the Southern Alps reported by McKerchar and Henderson (2003). 
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Proposed climatic mechanism 

Taking the winter correlation of Figure 4-7 as real, it remains to establish a 

causal mechanism which also needs to explain the lack of association in the other 

seasons. 

It is suggested that the different seasonal responses of lake inflows to the 

IPO derive via the intermediary of different seasonal temperature responses to 

changes in the phase of the IPO. Taking the Hermitage recording site as broadly 

representative of local temperature variations, smoothed Hermitage winter 

temperatures follow roughly similar smoothed trends to the IPO over the period 

considered (Figure 4-9).  However, this correspondence of pattern is not evident in 

the other seasons (Figure 4-10). In a similar way, there is apparent temporal 

correlation with winter Hermitage temperatures and winter lake inflows (Figure 

4-11), but not in the other seasons (Figure 4-12). 

Figure 4-7 Smoothed annual Interdecadal Pacific Oscillation index values (dashed) and 

smoothed combined winter inflows for lakes Tekapo and Pukaki (solid line). Both plots are 

11-year running means. 
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Figure 4-8 Smoothed time series as in the winter plot of Figure 4-7, for the other 

three seasons: a), b), and c) are spring, summer, and autumn, respectively. The 

smoothed IPO values (dashed) are replotted for each season. 

In seeking a seasonally-variable link between temperature and precipitation 

leading to inflows, it is interesting to note a correlation between rain-day air 

temperature and precipitation at the Hermitage station. Taken over all seasons, 

below 10 C there is a strong association between Hermitage rain-day air 

temperatures and mean daily precipitation amounts (Figure 4-13). This association 

weakens at higher temperatures where there is in fact some degree of negative 

correlation.  
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Breaking down by seasons, the positive temperature association is 

particularly well reflected in winter because of the weighting toward greater 

frequencies of colder rain-day temperatures (Figure 4-14a). A winter rain-day 

temperature increase of 1 C equates to an increase in mean precipitation amount 

of about 2 mm. However, there appears no association between winter mean rain-

day temperature and rain-day frequency (Figure 4-15). The typically higher rain-

day temperatures in the other seasons are in the temperature regions of weaker 

precipitation-temperature associations of Figure 4-13, so the limited degree of 

association in the other seasons between temperature and precipitation is to be 

expected (Figure 4-14, b,c,d). Consequently outside of winter there is minimal 

association between temperature and Waitaki lake inflows, and hence between the 

IPO and Waitaki lake inflows. 

The actual mechanism linking winter temperature and rain-day precipitation 

is left open. One possibility is a greater frequency of moist winds from the north-

west, which may be the mechanism by which the IPO has an influence on 

temperature. In this regard Salinger et al. (2001) noted changes in wind patterns 

associated with the IPO. Kingston et al. (2014) also described associations between 

north-westerly flow and Waitaki inflows. However, that investigation did not find 

associations between inflows and larger climatic modes.  

Figure 4-9 Smoothed annual Interdecadal Pacific Oscillation index values (dashed) and 

smoothed winter averaged temperature at Hermitage station (11-year running means). 
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Figure 4-10 Smoothed annual Interdecadal Pacific Oscillation index values (dashed 

line - repeated) and smoothed mean seasonal temperatures at Hermitage station 

(solid lines). 
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The other open question is whether the apparent IPO correlation with winter 

temperatures actually translates to sufficient temperature variation to give a causal 

linkage between temperature and winter runoff in the headwater region (Figure 

4-11). One issue here is that there will be within-winter seasonal temperature 

variation and corresponding within-winter seasonal discharge variation, which will 

together tend to mask IPO-induced temperature linkages to discharge. Separating 

these components requires further work so the temperature-related IPO link to 

winter discharge remains a working hypothesis for now. 

The mechanism by which increased winter rain-day magnitudes and 

temperatures translate to increased winter inflows must involve some degree of 

interaction with the winter snow pack. Greater precipitation amounts at higher 

winter temperatures would imply an increased area of the lower elevations 

receiving precipitation as rain, possibly melting existing snow to add to the 

increased discharge arising from the greater rainfall magnitudes. 

Figure 4-11 Smoothed winter mean temperatures at Hermitage station (solid line) 

and smoothed winter lake inflows for lakes Tekapo and Pukaki combined (dashed 

line).  
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Figure 4-12 Smoothed seasonal mean temperatures at Hermitage station (solid 

line) and smoothed combined lake inflows, for spring summer and autumn. 
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Figure 4-13 Mean daily rainfall vs rain-day temperature at Hermitage station (all 

seasons). Time period is 1940-2008.  Bars denote 95% confidence intervals for the 

means. The means are all calculated for 2.5° temperature bins.  

 

Figure 4-14 Mean seasonal daily rainfall magnitude vs rain-day temperature at 

Hermitage station: a) Winter; b) Autumn; c) Summer; d) Spring. The greater width 

of error bars compared to Figure 4-12 is a reflection of the smaller amounts of data.  
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Figure 4-15 Winter rain-day frequencies exhibiting minimal correlation with 

winter rain-day temperatures (Mt Cook, 1940-2008) 

Discussion 

There is a climate change implication from the present regional study. Other 

things being equal, an increase in winter air temperature arising from climate 

change is likely to result in increased winter precipitation in the Waitaki 

headwaters. However, for the other seasons there may even be a possibility of 

decreased precipitation with a temperature increase and thus decreased river 

discharge.  

Further work is needed to investigate in more detail the suggested link, or 

lack of link, between the IPO and lake inflows for the various seasons. There is also 

a possibility to repeat this study in nearby regions which may have different 

hydroclimatic responses. For example, Taylor and Bardsley (2015) found spring 

IPO values of some use in summer headwater flow forecasting for the Clutha River 

system. On the other hand, forecasting winter inflows appears most promising for 

the upper Waitaki because winter temperatures and runoff amounts seem to be more 

influenced by Pacific atmospheric circulation patterns. 

Further work might also be directed toward expanding the somewhat 

arbitrary “winter” period of June, July and August. Colder conditions might also 

have a rainfall association in late autumn and early spring, which might be usefully 

aggregated as part of an expanded “winter” for the purposes of this type of study. 

There is also a need to seek longer data periods to confirm the conclusions here, as 

our data incorporated just a single major change of IPO phase. 
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Finally, we cannot completely rule out at the possibility of imperfect 

precipitation data playing a role in the results. There is a possibility of some hours 

delay of snow melt in a gauge until warmer temperatures allowed melting and 

“precipitation” only then to be recorded. This possibility may require further 

checking. 

Conclusion 

It is suggested as a working hypothesis that winter Waitaki headwater 

discharges have a causal linkage to the IPO via the IPO influencing winter rain-day 

temperatures. This is by way of a strong correlation between winter air temperatures 

and mean daily precipitation amount. The typically higher temperatures in the other 

seasons are in the temperature regions of weaker precipitation-temperature 

association which in turn contribute to limited inflow correlation. Consequently, 

the IPO association to Waitaki headwater discharge is confined to the winter season. 
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4.4 Conclusions 

First, a study of incorporating large scale climatic-oceanic predictors into a 

forecasting model of a local hydrological process was performed. The forecasting 

model was considered as a high-dimensional regression, where the number of 

predictors is larger than the number of observations.  The Lasso regularized 

regression method was investigated as a tool for informative predictor selection in 

this setting. A case study of season-ahead forecasting of inflows into the hydro-

power lakes in Waitaki catchment was investigated. A cross-validation method was 

proposed which simulates the likely practical situation of forecasting when all 

available information to date is utilised to construct the current forecasting model. 

Second, a study was undertaken of possible physical mechanisms for 

influence of the Interdecadal Pacific Osciallation on the winter inflows in the hydro-

power lakes in the Upper Waitaki catchment. 
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Chapter 5 Conclusions and further research 

In this thesis, results were presented on evaluating selected machine learning 

methods and developing new methods in the context of analysis of 

hydroclimatological datasets.   

As noted in the Introduction, this thesis aimed to address the following objectives: 

1. Determine if data pre-processing with the decimated wavelet discrete transform 

could give false predictive accuracy in regression ML algorithms. 

2. Investigate a specific regularised regression method as a tool for formalised 

simplification of time series models generally. 

3. Develop a new and simple test of general non-random association in bivariate 

data.  

4. Investigate a specific regularised regression method in seasonal streamflow 

forecasting problem. 

Chapter 2 addressed the first two objectives. Firstly, a general result was 

obtained that a decimated wavelet discrete transform based on a pyramidal 

algorithm requires future values of time series to be utilized. When the discrete 

wavelet transform is utilized as a pre-processing step for time series forecasting, the 

necessary independence of calibration and validation data is compromised. This in 

turn translates into over-optimistic forecasting accuracy. The obtained result is 

general and has wide implications in any discipline where discrete wavelet 

transform is utilised in forecasting frameworks.   Secondly, a general framework 

was presented of time series model construction where there is external event 

forcing. The framework is based on the LASSO regularized regression method, 

enabling simplification a deliberately over-parameterised initial model while 

preserving model capability.  

Chapter 3 addresses the third objective by way of two methods of detecting 

associations in bivariate data. The proposed methods are both based on a 

randomization approach. The first method aims to detect threshold-like associations 

while the second is concerned with detecting general non-random associations in 

bivariate datasets. The methods are both general and applicable in forecasting 

frameworks when screening of large number of potential predictors is needed. 
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Chapter 4 addresses the fourth objective by way of using LASSO regularized 

regression as a tool for discovering informative large scale climatogical predictors 

of local hydrological processes. A cross-validation scheme was proposed, which is 

closely related to likely practical forecasts while at the same time maximising use 

of available information. This chapter utilised a case study predicting seasonal  

inflows in the  Waitaki River catchment.  The second part of the chapter investigates 

the influence of the Interdecadal Pacific Oscillation on winter inflows in the 

Waitaki catchment. The forecasting methodology and cross-validation frameworks 

proposed in the first part of the chapter is applicable for similar hydroclimatological 

forecasting problems.  

Further research 

Further research directions of interest (by chapter) are:  

 Chapter 2 (part 1):  Only the decimated wavelet transform as a pre-

processing method was investigated as creating potential erroneous 

forecasting accuracy. However, similar issues arise in applying any 

other pre-processing method like empirical mode decomposition. It 

would be of interest to analyse wavelet neural networks as to whether 

a similar problem is present in that methodology as well.  

 Chapter 2 (part 2): The general framework of model simplification 

presented in this chapter can be extended in a setting with multiple 

sources of events. Furthermore, its application to groundwater 

modelling and simplification of existing distributed hydrological 

models could be investigated.  

 Chapter 3: The methods of general association detection presented 

here might be further extended to the multivariate case. Both 

methods could be applied for cluster search in climatological data, 

for example, as replacement of the correlation coefficient as a 

measure of similarity in climate networks. Further research into 

computationally optimizing the proposed methods would also be 

useful. 

 Chapter 4: It would be of interest to investigate the sliding window 

effect on selected predictors in the case study considered in this 
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chapter. Also, different LASSO methods such as sparse group 

LASSO and elastic nets could be added for comparison.  

 

 

 


	Title
	Abstract_final
	Acknoledgments
	Table_of_content
	Introduction_05_12_latest
	Chapter 2_5_12
	Chapter3_final_06_11
	Chapter_4_22_11
	Chapter_5_Conclusions_22_11_final

