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Abstract. This paper proposes to improve compositional nonblocking verifica-

tion through the use of always enabled and selfloop-only events. Compositional

verification involves abstraction to simplify parts of a system during verification.

Normally, this abstraction is based on the set of events not used in the remain-

der of the system, i.e., in the part of the system not being simplified. Here, it is

proposed to exploit more knowledge about the system and abstract events even

though they are used in the remainder of the system. Abstraction rules from previ-

ous work are generalised, and experimental results demonstrate the applicability

of the resulting algorithm to verify several industrial-scale discrete event system

models, while achieving better state-space reduction than before.

1 Introduction

The nonblocking property is a weak liveness property commonly used in supervisory

control theory of discrete event systems to express the absence of livelocks or dead-

locks [6, 22]. This is a crucial property of safety-critical control systems, and with the

increasing size and complexity of these systems, there is an increasing need to verify

the nonblocking property automatically. The standard method to check whether a sys-

tem is nonblocking involves the explicit composition of all the automata involved, and

is limited by the well-known state-space explosion problem. Symbolic model checking

has been used successfully to reduce the amount of memory required by representing

the state space symbolically rather than enumerating it explicitly [2].

Compositional verification [10, 27] is an effective alternative that can be used in-

dependently of or in combination with symbolic methods. Compositional verification

works by simplifying individual automata of a large synchronous composition, gradu-

ally reducing the state space of the system and allowing much larger systems to be ver-

ified in the end. When applied to the nonblocking property, compositional verification

requires very specific abstraction methods [9, 17]. A suitable theory is laid out in [18],

where it is argued that abstractions used in nonblocking verification should preserve

a process-algebraic equivalence called conflict equivalence. Various abstraction rules

preserving conflict equivalence have been proposed and implemented [9, 17, 20, 25].

Conflict equivalence is the most general process equivalence for use in composi-

tional nonblocking verification [18]. If a part of a system is replaced by a conflict equiv-

alent abstraction, the nonblocking property is guaranteed to be preserved independently

of the other system components. While this is easy to understand and implement, more



simplification is possible by considering the other system components. This paper pro-

poses simplification rules that take into account that certain events are always enabled

or only selfloops in the rest of the system, and shows how this additional information

can achieve further state-space reduction.

In the following, Section 2 introduces the background of nondeterministic automata,

the nonblocking property, and conflict equivalence. Next, Section 3 describes compo-

sitional verification and always enabled and selfloop-only events. Section 4 presents

simplification rules that exploit such events, and Section 5 shows how these events are

found algorithmically. Afterwards, Section 6 presents the experimental results, and Sec-

tion 7 adds concluding remarks. Further details and formal proofs of technical results

can be found in [21].

2 Preliminaries

2.1 Events and Languages

Event sequences and languages are a simple means to describe discrete system be-

haviours [6, 22]. Their basic building blocks are events, which are taken from a finite

alphabet A. In addition, two special events are used, the silent event τ and the termi-

nation event ω . These are never included in an alphabet A unless mentioned explicitly

using notation such as Aτ = A∪{τ}, Aω = A∪{ω}, and Aτ ,ω = A∪{τ ,ω}.

A∗ denotes the set of all finite traces of the form σ1σ2 · · ·σn of events from A,

including the empty trace ε . The concatenation of two traces s, t ∈ A∗ is written as st.

A subset L ⊆ A∗ is called a language. The natural projection P : A∗
τ ,ω → A∗

ω is the

operation that deletes all silent (τ) events from traces.

2.2 Nondeterministic Automata

System behaviours are modelled using finite automata. Typically, system models are

deterministic, but abstraction may result in nondeterminism.

Definition 1. A (nondeterministic) finite automaton is a tuple G= 〈A,Q,→,Q◦〉 where

A is a finite set of events, Q is a finite set of states, → ⊆ Q ×Aτ ,ω ×Q is the state

transition relation, and Q◦ ⊆ Q is the set of initial states.

The transition relation is written in infix notation x
σ
→ y, and is extended to traces

s ∈ A∗
τ ,ω in the standard way. For state sets X ,Y ⊆ Q, the notation X

s
→ Y means x

s
→ y

for some x ∈ X and y ∈ Y , and X
s
→ y means x

s
→ y for some x ∈ X . Also, X

s
→ for a

state or state set X denotes the existence of a state y ∈ Q such that X
s
→ y.

The termination event ω /∈ A denotes completion of a task and does not appear

anywhere else but to mark such completions. It is required that states reached by ω

do not have any outgoing transitions, i.e., if x
ω
→ y then there does not exist σ ∈ Aτ ,ω

such that y
σ
→. This ensures that the termination event, if it occurs, is always the final

event of any trace. The traditional set of terminal states is Qω = {x ∈ Q | x
ω
→} in this

notation. For graphical simplicity, states in Qω are shown shaded in the figures of this

paper instead of explicitly showing ω-transitions.



To support silent events, another transition relation ⇒⊆ Q×A∗
ω ×Q is introduced,

where x
s
⇒ y denotes the existence of a trace t ∈ A∗

τ ,ω such that P(t) = s and x
t
→ y. That

is, x
s
→ y denotes a path with exactly the events in s, while x

s
⇒ y denotes a path with

an arbitrary number of τ events shuffled with the events of s. Notations such as X
s
⇒ Y

and x
s
⇒ are defined analogously to →.

Definition 2. Let G = 〈AG,QG,→G,Q
◦
G〉 and H = 〈AH ,QH ,→H ,Q

◦
H〉 be two auto-

mata. The synchronous composition of G and H is

G‖H = 〈AG ∪AH ,QG ×QH ,→,Q◦
H ×Q◦

H〉 , (1)

where

– (xG,xH)
σ
→ (yG,yH) if σ ∈ (AG ∩AH)∪{ω}, xG

σ
→G yG, and xH

σ
→H yH ;

– (xG,xH)
σ
→ (yG,xH) if σ ∈ (AG \AH)∪{τ} and xG

σ
→G yG;

– (xG,xH)
σ
→ (xG,yH) if σ ∈ (AH \AG)∪{τ} and xH

σ
→H yH .

Automata are synchronised using lock-step synchronisation [12]. Shared events (in-

cluding ω) must be executed by all automata synchronously, while other events (includ-

ing τ) are executed independently.

2.3 The Nonblocking Property

The key liveness property in supervisory control theory is the nonblocking property. An

automaton is nonblocking if, from every reachable state, a terminal state can be reached;

otherwise it is blocking. When more than one automaton is involved, it also is common

to use the terms nonconflicting and conflicting.

Definition 3. [18] An automaton G = 〈A,Q,→,Q◦〉 is nonblocking if, for every state

x ∈ Q and every trace s ∈ A∗ such that Q◦ s
⇒ x, there exists a trace t ∈ A∗ such that x

tω
⇒.

Two automata G and H are nonconflicting if G‖H is nonblocking.

To reason about conflicts in a compositional way, the notion of conflict equivalence

is developed in [18]. According to process-algebraic testing theory, two automata are

considered as equivalent if they both respond in the same way to tests [7]. For con-

flict equivalence, a test is an arbitrary automaton, and the response is the observation

whether the test composed with the automaton in question is nonblocking or not.

Definition 4. [18] Two automata G and H are conflict equivalent, written G ≃conf H,

if, for any automaton T , G‖T is nonblocking if and only if H ‖T is nonblocking.

3 Compositional Verification

When verifying whether a composed system of automata

G1 ‖G2 ‖ · · · ‖Gn , (2)



is nonblocking, compositional methods [9,17] avoid building the full synchronous com-

position immediately. Instead, individual automata Gi are simplified and replaced by

smaller conflict equivalent automata Hi ≃conf Gi. If no simplification is possible, a sub-

system of automata (G j) j∈J is selected and replaced by its synchronous composition,

which then may be simplified.

The soundness of this approach is justified by the congruence properties [18] of

conflict equivalence. For example, if G1 in (2) is replaced by H1 ≃conf G1, then by

considering T = G2 ‖ · · · ‖Gn in Def. 4, it follows that the abstracted system H1 ‖T =
H1 ‖G2 ‖ · · · ‖Gn is nonblocking if and only if the original system (2) is.

Previous approaches for compositional nonblocking verification [9, 17] are based

on local events. A component G1 in a system such as (2) typically contains some events

that appear only in G1 and not in the remainder T = G2 ‖ · · · ‖Gn of the system. These

events are called local and are abstracted using hiding, i.e., they are replaced by the

silent event τ . Conflict equivalence uses τ as a placeholder for events not used else-

where, and in this setting is the coarsest conflict-preserving abstraction [18].

Yet, in practice, the remainder T = G2 ‖· · ·‖Gn is known. This paper proposes ways

to use additional information about T to inform the simplification of G1 and produce

better abstractions. In addition to using the τ events, it can be examined how other

events are used by T . There are two kinds of events that are easy to detect: always

enabled events and self loop-only events.

Definition 5. Let G = 〈A,Q,→,Q◦〉 be an automaton. An event σ ∈ A is always en-

abled in G, if for every state x ∈ Q it holds that x
σ
⇒.

An event is always enabled in an automaton if it can be executed from every state—

possibly after some silent events. If during compositional verification, an event is found

to be always enabled in every automaton except the one being simplified, this event has

similar properties to a silent event. Several abstraction methods that exploit silent events

to simplify automata can be generalised to exploit always enabled events also.

Definition 6. Let G = 〈A,Q,→,Q◦〉 be an automaton. An event σ ∈ A is selfloop-only

in G, if for every transition x
σ
→ y it holds that x = y.

Selfloops are transitions that have the same start and end states. An event is selfloop-

only if it only appears on selfloop transitions. As the presence of selfloops does not

affect the nonblocking property, the knowledge that an event is selfloop-only can help

to simplify the system beyond standard conflict equivalence. In the following definition,

conflict equivalence is generalised by considering sets E and S of events that are always

enabled or selfloop-only in the rest of the system, i.e., in the test T .

Definition 7. Let G and H be two automata, and let E and S be two sets of events. G

and H are conflict equivalent with respect to E and S, written G ≃E,S H, if for every

automaton T such that E is a set of always enabled events in T and S is a set of selfloop-

only events in T, it holds that G‖T is nonblocking if and only if H ‖T is nonblocking.

Clearly, standard conflict equivalence implies conflict equivalence with respect to

E and S, as the latter considers fewer tests T . Yet, both equivalences have the same

useful properties for compositional nonblocking verification. The following results are

immediate from the definition.
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Fig. 1. Two automata G and H such that G ≃{η}, /0 H but not G ≃conf H.

Proposition 1. Let G and H be two automata.

(i) G ≃conf H if and only if G ≃ /0, /0 H.

(ii) If E ⊆ E′ and S ⊆ S′ then G ≃E,S H implies G ≃E′,S′ H.

Proposition 2. Let G1, . . . ,Gn and H1 be automata such that G1 ≃E,S H1, where E and S

are sets of events that respectively are always enabled and selfloop-only for G2‖· · ·‖Gn.

Then G1 ‖ · · · ‖Gn is nonblocking if and only if H1 ‖G2 ‖ · · · ‖Gn is nonblocking.

Prop. 1 confirms that conflict equivalence with respect to E and S is coarser than

standard conflict equivalence and considers more automata as equivalent. Thus, the

modified equivalence has the potential to achieve better abstraction. At the same time,

Prop. 2 shows that the modified equivalence can be used in the same way as standard

conflict equivalence to replace automata in compositional verification, provided that

suitable event sets E and S can be determined.

Example 1. Automata G and H in Fig. 1 are not conflict equivalent as demonstrated

by the test automaton T . On the one hand, G ‖ T is blocking because the state (1,0)
is reachable by τ from the initial state (0,0), and (1,0) is a deadlock state, because G

disables event α in state 1 and T disables events β and η in state 0. On the other hand,

H ‖T is nonblocking.

Note that η is not always enabled in T since 0
η
⇒T does not hold. In composition

with a test T that has η always enabled, G will be able to continue from state 1, and H

will be able to continue from state 01. It follows from Prop. 4 below that G ≃{η}, /0 H.

4 Simplification Rules

To exploit conflict equivalence in compositional verification, it is necessary to algorith-

mically compute a conflict equivalent abstraction of a given automaton. Several abstrac-

tion rules are known for standard conflict equivalence [9, 17]. This section generalises

some of these and proposes four computationally feasible rules to simplify automata

under the assumption of always enabled and selfloop-only events. Before that, Subsec-

tion 4.1 introduces general terminology to describe all abstractions.

4.1 Automaton Abstraction

A common method to simplify an automaton is to construct its quotient modulo an

equivalence relation. The following definitions are standard.



An equivalence relation is a binary relation that is reflexive, symmetric and transi-

tive. Given an equivalence relation ∼ on a set Q, the equivalence class of x ∈ Q with

respect to ∼, denoted [x], is defined as [x] = {x′ ∈ Q | x′ ∼ x}. An equivalence relation

on a set Q partitions Q into the set Q/∼= { [x] | x ∈ Q} of its equivalence classes.

Definition 8. Let G = 〈A,Q,→,Q◦〉 be an automaton, and let ∼⊆ Q×Q be an equiv-

alence relation. The quotient automaton G/∼ of G with respect to ∼ is G/∼ = 〈A,

Q/∼ ,→/∼ , Q̃◦〉, where Q̃◦ = { [x◦] | x◦ ∈ Q◦ } and →/∼= {([x],σ , [y]) | x
σ
→ y}.

When constructing a quotient automaton, classes of equivalent states in the original

automaton are combined or merged into a single state. A common equivalence relation

to construct quotient automata is observation equivalence or weak bisimulation [19].

Definition 9. [19] Let G = 〈A,Q,→,Q◦〉 be an automaton. A relation ≈ ⊆ Q ×Q is

an observation equivalence relation on G if, for all states x1,x2 ∈ Q such that x1 ≈ x2

and all traces s ∈ A∗
ω the following conditions hold:

(i) if x1
s
⇒ y1 for some y1 ∈ Q, then there exists y2 ∈ Q such that y1 ≈ y2 and x2

s
⇒ y2;

(ii) if x2
s
⇒ y2 for some y2 ∈ Q, then there exists y1 ∈ Q such that y1 ≈ y2 and x1

s
⇒ y1.

Two states are observation equivalent if they have got exactly the same sequences

of enabled events, leading to equivalent successor states. Observation equivalence is

a well-known equivalence with efficient algorithms that preserves all temporal logic

properties [5]. In particular, an observation equivalent abstraction is conflict equivalent

to the original automaton.

Proposition 3. [17] Let G be an automaton, and let ≈ be an observation equivalence

relation on G. Then G ≃conf G/≈.

A special case of observation equivalence-based abstraction is τ-loop removal. If

two states are mutually connected by sequences of τ-transitions, it follows from Def. 9

that these states are observation equivalent, so by Prop. 3 they can be merged preserving

conflict equivalence. This simple abstraction results in a τ-loop free automaton, i.e., an

automaton that does not contain any proper cycles of τ-transitions.

Definition 10. Let G = 〈A,Q,→,Q◦〉 be an automaton. G is τ-loop free, if for every

path x
t
→ x with t ∈ {τ}∗ it holds that t = ε .

While τ-loop removal and observation equivalence are easy to compute and pro-

duce good abstractions, there are conflict equivalent automata that are not observation

equivalent. Several other relations are considered for conflict equivalence [9, 17].

Definition 11. [9] Let G = 〈A,Q,→,Q◦〉 be an automaton. The incoming equivalence

relation ∼inc ⊆ Q×Q is defined such that x ∼inc y if,

(i) Q◦ ε
⇒ x if and only if Q◦ ε

⇒ y;

(ii) for all states w ∈ Q and all events σ ∈ A it holds that w
σ
⇒ x if and only if w

σ
⇒ y.

Two states are incoming equivalent if they have got the same incoming transitions

from the exactly same source states. (This is different from reverse observation equiv-

alence, which accepts equivalent rather than identical states.) Incoming equivalence

alone is not enough for conflict-preserving abstraction. It is combined with other con-

ditions in the following.



4.2 Enabled Continuation Rule

The Enabled Continuation Rule is a generalisation of the Silent Continuation Rule [9],

which allows to merge incoming equivalent states in a τ-loop free automaton provided

they have both have an outgoing τ-transition. The reason for this is that, if a state has an

outgoing τ-transition, then the other outgoing transitions are “optional” [9] for a test that

is to be nonblocking with this automaton. Only continuations from states without further

τ-transitions must be present in the test. Using always enabled events, the condition on

τ-transitions can be relaxed: it also becomes possible to merge incoming equivalent

states if they have outgoing always enabled transitions instead of τ .

Rule 1 (Enabled Continuation Rule). In a τ-loop free automaton, two states that are

incoming equivalent and both have an outgoing always enabled or τ-transition are con-

flict equivalent and can be merged.

Example 2. Consider automaton G in Fig. 1 with E = {η}. States 0 and 1 are both

“initial” since they both can be reached silently from the initial state 0. This is enough

to satisfy ∼inc in this case, since neither state is reachable by any event other than τ .

Moreover, G has no τ-loops, state 0 has an outgoing τ-transition, and state 1 has an

outgoing always enabled event η . Thus, by the Enabled Continuation Rule, states 0

and 1 in G are conflict equivalent and can be merged into state 01 as shown in H.

Note that states 0 and 1 are not observation equivalent because 0
α
→ 2 while state 1

has no outgoing α-transition. The Silent Continuation Rule [9] also is not applicable

because state 1 has no outgoing τ-transition. Only with the additional information that

η is always enabled, it becomes possible to merge states 0 and 1.

Proposition 4. Let G = 〈A,Q,→G,Q
◦〉 be a τ-loop free automaton, let E ⊆ A, and let

∼⊆ Q×Q be an equivalence relation such that ∼⊆∼inc, and for all x,y ∈ Q such that

x ∼ y it holds that either x = y, or x
η1⇒ and y

η2⇒ for some events η1,η2 ∈ E∪{τ}. Then

G ≃E, /0 G/∼.

Prop. 4 confirms that the nonblocking property of the system is preserved under the

Enabled Continuation Rule, provided that E is a set of always enabled events for the

remainder of the system.

4.3 Only Silent Incoming Rule

The Only Silent Incoming Rule [9] is a combination of observation equivalence and the

Silent Continuation Rule. Since the Silent Continuation Rule has been generalised to

use always enabled events, the Only Silent Incoming Rule can as well.

The original Only Silent Incoming Rule [9] makes it possible to remove a state

with only τ-transitions incoming and merge it into its predecessors, provided that the

removed state has got at least one outgoing τ-transition. Again, the requirement for an

outgoing τ-transition can be relaxed to allow an always enabled transition also.

Rule 2 (Only Silent Incoming Rule). If a τ-loop free automaton has a state q with only

τ-transitions entering it, and an always enabled or τ-transition outgoing from state q,

then all transitions outgoing from q can can be copied to originate from the states with

τ-transitions to q. Afterwards, the τ-transitions to q can be removed.
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Example 3. In Fig. 2 it holds that G ≃{η}, /0 H. State 3 in G has only τ-transitions in-

coming and the always enabled event η outgoing. This state can be removed in two

steps. First, state 3 is split into two observation equivalent states 3a and 3b in G′, and

afterwards the Silent Continuation Rule is applied to merge these states into their in-

coming equivalent predecessors, resulting in H. Note that states 1, 2, and 3 are not

observation equivalent because of the β - and γ-transitions from states 1 and 2.

Proposition 5. Let G = 〈A,Q,→G,Q
◦〉 be a τ-loop free automaton, and let E ⊆ A. Let

q ∈ Q such that q
η
→G for some η ∈ E∪{τ}, and for each transition x

σ
→G q it holds

that σ = τ . Further, let H = 〈A,Q,→H ,Q
◦〉 with

→H = {(x,σ ,y) | x
σ
→G y and y 6= q} ∪ {(x,σ ,y) | x

τ
→G q

σ
→G y} . (3)

Then G ≃E, /0 H.

It is shown in [9] that the Only Silent Incoming Rule can be expressed as a com-

bination of observation equivalence and the Silent Continuation Rule as suggested in

Example 3. The same argument can be used to prove Prop. 5.

4.4 Limited Certain Conflicts Rule

If an automaton contains blocking states, i.e., states from where no state with an ω-

transition can be reached, then a lot of simplification is possible. Once a blocking state

is reached, all further transitions are irrelevant. Therefore, all blocking states can be

merged into a single state, and all their outgoing transitions can be deleted [16].

In fact, this rule does not only apply to blocking states. For example, consider state 3

in automaton G in Fig. 3. Despite the fact that state 3 is a terminal state, if this state is

ever reached, the composed system is necessarily blocking, as nothing can prevent it

from executing the silent transition 3
τ
→ 2 to the blocking state 2. State 3 is a state of

certain conflicts, and such states can be treated like blocking states for the purpose of

abstraction.

It is possible to calculate all states of certain conflicts, but the algorithm to do this

is exponential in the number of states of the automaton to be simplified [16]. To reduce

the complexity, the Limited Certain Conflicts Rule [9] approximates the set of certain

conflicts. If a state has a τ-transition to a blocking state, then the source state also

is a state of certain conflicts. This can be extended to include always enabled events,

because if an always enabled transition takes an automaton to a blocking state, then

nothing can disable this transition and the composed system is necessarily blocking.



Rule 3 (Limited Certain Conflicts Rule). If an automaton contains an always enabled

or τ-transition to a blocking state, then the source state of this transition is a state of

certain conflicts, and all its outgoing transitions can be deleted.

Example 4. Consider automaton G in Fig. 3 with E = {η}. States 1, 2, and 3 are

states of certain conflicts. State 2 is already blocking, and states 1 and 3 have a τ- or

an always enabled η-transition to the blocking state 2. All outgoing transitions from

these states are removed, including the ω-transitions from states 1 and 3. This results in

automaton H. Now state 3 is unreachable and can be removed, and states 1 and 2 can be

merged using observation equivalence to create H ′. It holds that G ≃{η}, /0 H ≃conf H ′.

Proposition 6. Let G = 〈A,Q,→G,Q
◦〉 be an automaton and E ⊆ A, let q ∈ Q be a

blocking state, and let p
η
→ q for some η ∈ E∪{τ}. Furthermore, let H = 〈A,Q,→H ,

Q◦〉 where →H = {(x,σ ,y) ∈→ | x 6= p}. Then G ≃E, /0 H.

Prop. 6 confirms that a state with a τ- or always enabled transitions to some other

blocking state can also be made blocking, by deleting all outgoing transitions (includ-

ing ω) from it. The Limited Certain Conflicts Rule should be applied repeatedly, as the

deletion of transitions may introduce new blocking states and thus new certain conflicts.

4.5 Selfloop Removal Rule

The final abstraction rule concerns selfloop-only events. To verify nonblocking, it is

enough to check if every state in the final synchronous composition of all automata can

reach a terminal state. Selfloops in the final synchronous composition have no effect

on the blocking nature of the system, since any path between two states still passes the

same states when all selfloops are removed from the path. So the final synchronous

composition is nonblocking if and only if it is nonblocking with all selfloops removed.

Based on this observation, if an event is known to be selfloop-only in all automata

except the one being simplified, then selfloops with that event can be added or removed

freely to the automaton being simplified.

Rule 4 (Selfloop Removal Rule). If an event λ is selfloop-only in all other automata,

then selfloop transitions q
λ
→ q can be added to or removed from any state q.

This rule can be used to remove selfloops and save memory, sometimes reducing

the amount of shared events or allowing other rules to be used. If an event only appears

on selfloops in all automata, then it can be removed entirely. Furthermore, the addition

of selfloops to certain states may also be beneficial.

Example 5. Fig. 4 shows a sequence of conflict-preserving changes to an automaton

containing the selfloop-only event λ . First, the λ -selfloop in G1 is removed to create G2.

In G2, states 0 and 1 are close to observation equivalent, as they both have a β -transition

to state 2; however 0 has a λ -transition to 1 and 1 does not. Yet, it is possible to add a

λ -selfloop to state 1 and create G3. Now states 0 and 1 are observation equivalent and

can be merged to create G4. Finally, the λ -selfloop in G4 is removed to create G5.
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Proposition 7. Let G = 〈A,Q,→G,Q
◦〉 and H = 〈A,Q,→H ,Q

◦〉 be automata with

→H =→G ∪{(q,λ ,q)} for some λ ∈ A. Then G ≃ /0,{λ} H.

Prop. 7 shows that the addition of a single selfloop preserves conflict equivalence.

It can be applied in reverse to remove selfloops, and it can be applied repeatedly to add

or remove several selfloops in an automaton or in the entire system.

The implementation in Section 6 uses selfloop removal whenever applicable to

delete as many selfloops as possible. In addition, observation equivalence has been

modified to assume the presence of selfloops for all selfloop-only events in all states,

so as to achieve the best possible state-space reduction.

5 Finding Always Enabled and Selfloop-only Events

While the simplification rules in Section 4 are straightforward extensions of known

rules for standard conflict equivalence [9], their application requires the knowledge

about always enabled and selfloop-only events. Assume the system (2) encountered

during compositional verification is

G1 ‖G2 ‖ · · · ‖Gn , (4)

and automaton G1 is to be simplified. Then it is necessary to know always enabled

and selfloop-only events in T = G2 ‖ · · · ‖Gn. For each component automaton Gi, such

events are easy to detect based on Def. 5 and 6. It also is a direct consequence of the

definitions that these properties carry over to the synchronous product.

Proposition 8. Let G1 and G2 be two automata. If an event σ is always enabled (or

selfloop-only) in G1 and G2, then σ is always enabled (or selfloop-only) in G1 ‖G2.

Given Prop. 8, an event can be considered as always enabled or selfloop-only if

it has this property for every automaton in (4) except the automaton being simplified.

When checking the individual automata, selfloop-only events are easily found by check-

ing whether an event in question only appears on selfloop transitions. For always en-

abled events, it is checked whether the event in question is enabled in every state, but

additional considerations can help to find more always enabled events.

Example 6. Consider automaton G in Fig. 5. It clearly holds that 0
η
→, and 1

τ
→ 0

η
→

and thus 1
η
⇒. Although η is not enabled in state ⊥, this state is a blocking state and the

set of enabled events for blocking states is irrelevant—it is known [16] that G is conflict

equivalent to G′. Then η can be considered as always enabled in G′ and thus also in G.
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Fig. 5. Finding an always enabled event.

By definition, an always enabled event η must be possible in every state of the envi-

ronment T , except for blocking states according to Example 6. However, this condition

is stronger than necessary, as η typically is not always possible in the automaton G

being simplified. This observation leads to conditionally always enabled events.

Definition 12. Let G = 〈A,QG,→G,Q
◦
G〉 and T = 〈A,QT ,→T ,Q

◦
T 〉 be two automata.

An event σ ∈ A is conditionally always enabled for G in T , if for all s ∈ A∗ such that

Q◦
G

sσ
⇒G and all states xT ∈ QT such that Q◦

T

s
⇒T xT , it holds that xT

σ
⇒T .

An event is conditionally always enabled if the environment T enables it in all states

where it is possible in the automaton G to be simplified. The following Prop. 9 shows

that the result of compositional nonblocking verification is also preserved with events

that are only conditionally always enabled.

Proposition 9. Let G, H, and T be automata, and let E and S be event sets such that

G ≃E,S H, and E is a set of conditionally always enabled events for G in T , and S is

a set of selfloop-only events for T . Then G ‖T is nonblocking if and only if H ‖T is

nonblocking.

Conditionally always enabled events can be used like general always enabled events,

but they are more difficult to find. To check the condition of Def. 12, it is necessary to

explore the state space of G‖T , which has the same complexity as a nonblocking check.

Yet, the condition is similar to controllability [6], which can often be verified quickly by

an incremental controllability check [4]. The incremental algorithm gradually composes

some of the automata of the system (4) until it can be ascertained whether or not a given

event is conditionally always enabled. In many cases, it gives a positive or negative

answer after composing only a few automata.

By running the incremental controllability check for a short time, some condition-

ally always enabled events can be found, while for others the status remains inconclu-

sive. Fortunately, it is not necessary to find all always enabled events. If the status of an

event is not known, it can be assumed that this event is not always enabled. The result of

nonblocking verification will still be correct, although it may not use the best possible

abstractions. It is enough to only consider events as always enabled or selfloop-only, if

this property can be established easily.

6 Experimental Results

The compositional nonblocking verification algorithm has been implemented in the

discrete event systems tool Waters/Supremica [1], which is freely available for down-

load [26]. The software is further developed from [17] to support always enabled and

selfloop-only events.



The new implementation has been applied to all models used for evaluation in [17]

with at least 5 ·108 reachable states. The test suite includes complex industrial models

and case studies from various application areas such as manufacturing systems, com-

munication protocols, and automotive electronics. The following list gives some details

about these models.

aip Model of the automated manufacturing system of the Atelier Inter-établissement

de Productique [3]. The tests consider two early versions (aip0) based on [14], and

a more detailed version (aip1) according to [24], which has been modified for a

parametrisable number of pallets.

profisafe PROFIsafe field bus protocol model [15]. The task considered here is to ver-

ify nonblocking of the communication partners and the network in input-slave con-

figuration with sequence numbers ranging up to 4, 5, and 6.

tbed Model of a toy railroad system [13] in three different designs.

tip3 Model of the interaction between a mobile client and event-based servers of a

Tourist Information System [11].

verriegel Car central locking system, originally from the KORSYS project [23].

6link Models of a cluster tool for wafer processing [28].

Compositional verification repeatedly chooses a small set of automata, composes

them, applies abstraction rules to the synchronous composition, and replaces the com-

posed automata with the result. This is repeated until the remaining automata are con-

sidered too large, or there are only two automata left. The last two automata are not

simplified, because it is easier to check the nonblocking property directly by explicitly

constructing and exploring the synchronous composition.

A key aspect for a compositional verification algorithm is the way how automata

are selected to be composed. The implementation considered here follows a two-step

approach [9]. In the first step, some candidate sets of automata are formed, and in

the second a most promising candidate is selected. For each event σ in the model, a

candidate is formed consisting of all automata with σ in their alphabet. Among these

candidates, the candidate with the smallest estimated number of states after abstraction

is selected. The estimate is obtained by multiplying the product of the state numbers

of the automata forming the candidate with the ratio of the numbers of events in the

synchronous composition of the candidate after and before removing any local events.

This strategy is called MustL/MinS [9, 17].

After identification of a candidate, its automata are composed, and then a sequence

of abstraction rules is applied to simplify it. First, τ-loops (Def. 10) and observation

equivalent redundant transitions [8] are removed from the automaton. This is followed

by the Only Silent Incoming Rule (Prop. 5), the Only Silent Outgoing Rule [9], the

Limited Certain Conflicts Rule (Prop. 6), Observation Equivalence (Prop. 3), the Non-

α Determinisation Rule [17], the Active Events Rule [9], and the Silent Continuation

Rule (Prop. 4).

During simplification, all selfloops with selfloop-only events are deleted, and ob-

servation equivalence and the removal of observation equivalent redundant transitions

exploit selfloop-only events for further simplification. Furthermore, the Only Silent In-

coming Rule, the Limited Certain Conflicts Rule, and the Silent Continuation Rule
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Fig. 6. Final state numbers and runtimes for representative experiments.

take always enabled events into account. For the experiments, the detection of always

enabled events and selfloop-only events can be turned on and off separately, producing

four strategies None (no special events), SL (selfloop-only events), AE (always enabled

events), and SL/AE (selfloop-only and always enabled events).

The strategies AE and SL/AE consider events as always enabled if they are al-

ways enabled in every automaton except the one being simplified. Two further strategies

SL/AE 〈200〉 and SL/AE 〈1000〉 also search for events that are conditionally always

enabled (Def. 12). This is done using an incremental controllability check [4] that tries

to compose an increasing part of the model until it is known whether or not an event

is always enabled, or until a state limit of 200 or 1000 states is exceeded; in the latter

case, the check is abandoned and the event is assumed to be not always enabled.

The results of the experiments are shown in Table 1 and Fig. 6. The table shows for

each model the total number of reachable states in the synchronous composition (Size)

if known, and whether or not the model is nonblocking (Res). Then it shows for each

strategy, the number of states in the largest automaton encountered during abstraction

(Peak States), the number of states in the synchronous composition explored after ab-

straction (Final States), and the total verification time (Time). The best result in each

category is highlighted in bold in the table. Fig. 6 displays the final state numbers and

runtimes for six representative experiments graphically.

In some cases, compositional nonblocking verification terminates early, either be-

cause all reachable states of all automata are known to be terminal, or because some

automaton has no reachable terminal states left. In these cases, the final synchronous

composition is not constructed and the final states number is shown as 0 in the table.

All experiments are run on a standard desktop computer using a single core 3.3 GHz

CPU and 8 GB of RAM. The experiments are controlled by state limits. If during ab-



Table 1. Experimental results.

None SL AE

Peak Final Time Peak Final Time Peak Final Time
Model Size Res states states [s] states states [s] states states [s]

aip0aip 1.02 ·109 yes 1090 5 1.4 1090 5 1.4 1090 5 1.4

aip0tough 1.02 ·1010 no 96049 19781702 80.3 96049 16989754 47.3 96049 19781702 75.6

aip1efa〈3〉 6.88 ·108 yes 40290 1878708 13.1 40290 1878708 13.4 40290 1878708 13.3

aip1efa〈16〉 9.50 ·1012 no 65520 13799628 22.2 65520 13799628 22.2 65520 13799628 22.9

aip1efa〈24〉 1.83 ·1013 no 6384 13846773 18.4 6384 13846773 18.6 6384 13846773 18.7
profisafe i4 yes 74088 409 82.3
profisafe i5 yes 98304 57888 66.9

profisafe i6 yes 55296 148284 48.8

tbed ctct 3.94 ·1013 no 43825 0 14.5 43825 0 14.8 43825 0 16.6

tbed hisc 5.99 ·1012 yes 1757 33 2.7 1757 33 2.7 1705 33 2.8

tbed valid 3.01 ·1012 yes 50105 3839 9.5 50105 3580 9.6 50105 2722 10.7

tip3 2.27 ·1011 yes 6399 173 4.0 6399 173 4.1 12303 153 5.2

tip3 bad 5.25 ·1010 no 1176 14 1.0 1032 14 1.0 1176 0 1.1

verriegel3 9.68 ·108 yes 3303 2 2.0 3303 2 1.7 3349 2 1.8

verriegel3b 1.32 ·109 no 1764 0 1.2 1764 0 1.3 1795 0 1.2

verriegel4 4.59 ·1010 yes 2609 2 1.4 2609 2 1.5 2644 2 1.7

verriegel4b 6.26 ·1010 no 1764 0 1.4 1764 0 1.4 1795 0 1.4

6linka 2.45 ·1014 no 64 0 0.4 64 0 0.4 64 0 0.5

6linki 2.75 ·1014 no 61 0 0.3 61 0 0.3 61 0 0.3

6linkp 4.43 ·1014 no 32 0 0.3 32 0 0.3 32 0 0.3

6linkre 6.21 ·1013 no 118 12 0.5 118 12 0.5 106 0 0.5

SL/AE SL/AE 〈200〉 SL/AE 〈1000〉
Peak Final Time Peak Final Time Peak Final Time

Model Size Res states states [s] states states [s] states states [s]

aip0aip 1.02 ·109 yes 1090 5 1.4 892 5 24.5 892 5 32.0

aip0tough 1.02 ·1010 no 96049 16989754 45.2 96049 16989754 47.7 96049 16989754 108.8

aip1efa〈3〉 6.88 ·108 yes 40290 1878708 13.5 32980 1726127 17.6 31960 1707905 40.9

aip1efa〈16〉 9.50 ·1012 no 65520 13799628 22.9 65520 13799628 28.6 65520 13799628 47.5

aip1efa〈24〉 1.83 ·1013 no 6384 13846773 19.2 5313 13846773 24.0 5292 13846773 41.9
profisafe i4 yes 49152 9864 61.6 49152 9864 638.4 49152 9864 2848.9
profisafe i5 yes 98304 12070 70.6 98304 12070 1152.7 98304 12070 2911.1
profisafe i6 yes 52224 628131 80.8 52224 628131 1835.0 52224 628131 4238.9

tbed ctct 3.94 ·1013 no 43825 0 16.4 43825 0 20.9 43825 0 43.7

tbed hisc 5.99 ·1012 yes 1705 33 3.0 1705 33 24.5 1705 138 81.5

tbed valid 3.01 ·1012 yes 50105 2621 10.7 50105 2621 15.0 50105 2621 30.7

tip3 2.27 ·1011 yes 12303 153 5.3 12303 153 6.7 12303 149 7.2

tip3 bad 5.25 ·1010 no 1096 0 1.1 1096 0 2.9 1096 0 3.8

verriegel3 9.68 ·108 yes 3349 2 1.5 2644 2 6.0 2644 2 9.6

verriegel3b 1.32 ·109 no 1795 0 1.3 1795 0 5.8 1795 0 8.3

verriegel4 4.59 ·1010 yes 2644 2 1.6 2644 2 8.6 2644 2 17.3

verriegel4b 6.26 ·1010 no 1795 0 1.4 1795 0 8.1 1795 0 13.6

6linka 2.45 ·1014 no 64 0 0.5 64 0 2.2 64 0 2.7

6linki 2.75 ·1014 no 61 0 0.3 61 0 1.7 61 0 2.0

6linkp 4.43 ·1014 no 32 0 0.3 32 0 1.6 32 0 2.0

6linkre 6.21 ·1013 no 106 0 0.5 106 0 2.3 106 0 2.8

straction the synchronous composition of a candidate has more than 100,000 states, it

is discarded and another candidate is chosen instead. The state limit for the final syn-

chronous composition after abstraction is 108 states. If this limit is exceeded, the run is

aborted and the corresponding table entries are left blank.

The experiments show that compositional verification can check the nonblocking

property of systems with up to 1014 states in a matter of seconds. The exploitation

of always enabled and selfloop-only events reduces the peak or final state numbers in

many cases. This is important as these numbers are the limiting factors in compositional

verification.



The runtimes tend to increase slightly when always enabled or selfloop-only events

are used, because the smaller state numbers are outweighed by the effort to find the

special events. The search has to be repeated after each abstraction step, because each

abstraction can produce new always enabled or selfloop-only events, and the cost in-

creases with the number of steps and events. Conditionally always enabled events can

produce better abstractions, but as shown in Fig. 6, it takes a lot of time to find them.

There are also cases where the state numbers increase with always enabled and

selfloop-only events. A decrease in the final state number after simplification can come

at the expense of increase in the peak state number during simplification. With more

powerful simplification algorithms, originally larger automata may fall under the state

limits. Also, different abstractions may trigger different candidate selections in follow-

ing steps, which are not always optimal, and in some cases, the merging of states may

prevent observation equivalence from becoming applicable in later steps.

Yet, the large PROFIsafe models [15] can only be verified compositionally with self-

loop-only events. By adding always enabled and selfloop-only events to the available

tools, it becomes possible to solve problems that are not solvable otherwise.

7 Conclusions

It has been shown how conflict-preserving abstraction can be enhanced by taking into

account additional information about the context in which an automaton to be abstracted

is used. Specifically, always enabled and selfloop-only events are easy to discover and

help to produce simpler abstractions. Experimental results demonstrate that these spe-

cial events can make it possible to verify the nonblocking property of more complex

discrete event systems. In future work, it is of interest whether the algorithms to detect

and use always enabled and selfloop-only events can be improved, and whether other

conflict-preserving abstraction methods can also be generalised.
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