Working Paper Series
ISSN 1177-777X

GRAPH-RAT
COMBINING DATA SOURCES IN
MUSIC RECOMMENDATION SYSTEMS

Daniel McEnnis & David Bainbridge

Working Paper: 07/2008
July 28, 2008

(©Daniel McEnnis & David Bainbridge
Department of Computer Science
The University of Waikato
Private Bag 3105
Hamilton, New Zealand

GRAPH-RAT: COMBINING DATA SOURCES
IN MUSIC RECOMMENDATION SYSTEMS

Daniel McEnnis & David Bainbridge
University of Waikato, Hamilton, New Zealand
dm75,davidb@cs.waikato.ac.nz

July 28, 2008

Abstract

The complexity of music recommendation systems has increased rapidly
in recent years, drawing upon different sources of information: content
analysis, web-mining, social tagging, etc. Unfortunately, the tools to
scientifically evaluate such integrated systems are not readily available;
nor are the base algorithms available. This article describes Graph-RAT
(Graph-based Relational Analysis Toolkit), an open source toolkit that
provides a framework for developing and evaluating novel hybrid systems.
While this toolkit is designed for music recommendation, it has appli-
cations outside its discipline as well. An experiment—indicative of the
sort of procedure that can be configured using the toolkit—is provided to
illustrate its usefulness.

1 Introduction

A trend in music recommendation systems research is to work with private data
sets, custom algorithms, and incompatible evaluation metrics. This is neither a
new issue nor a problem restricted to music recommendation research. It is an
affliction that cuts across the whole field of music information retrieval, fueled
by concerns of copyright infringement [6]. Comparisons between new music rec-
ommender systems and standard ‘workhorse’ algorithms are typically difficult
to reproduce and standard evaluation metrics for music recommendation are
not well defined. Furthermore, the need to start from scratch discourages re-
searchers from building innovative context-aware and culturally-aware systems
since these features require a sophisticated toolbox of algorithms before this
kind of development can begin.

In this paper we describe an open source toolkit that helps alleviate some
of these concerns, and—through a suite of algorithms covering data acquisition,
content analysis, collaborative filtering, clustering, and evaluation algorithms—
provides a significant boost to researchers new to the field. The techniques are
drawn from several disciplines, including measurements from Social Network

Analysis (prestige and centrality [7]) in addition to computer-science staples
such as machine learning. In Section 2 we review existing music recommenda-
tion systems, which leads to a set of requirements for the toolbox. Next we
describe the implemented toolkit, starting with the fundamental structures de-
vised for the toolkit (Section 3), followed by the suite of algorithms provided
(Section 4) grouped by category. The utility objects supporting these algo-
rithms (and which are available for other algorithms to use) are described next
(Section 5). In Section 6 we provide details of an an experiment that compares
different recommendation algorithms that illustrates of the sort of evaluation
that can be setup and run using the software. We conclude with a summary of
the paper.

2 Related work

Generally, music recommendation systems have used either content-based anal-
ysis or collaborative filtering analysis for generating playlists. In addition, a
few systems have used user-supplied metadata and web-based data to augment
content-based approaches.

Logan [11] uses a purely content-based approach, producing playlists either
directly from similarity measures between songs, or similarity measures of a
set of songs. Pauws [18] utilizes a more formal definition of constraints based
on content-based features to generate playlists. Pampalk et al. [16] also uses
content-based analysis but the playlists are altered by users skipping songs.
Pampalk and Gasser [14] extend this system by replacing skipping behavior
with explicit user ratings. Pandora! is an example of a commercial content-
based recommendation system based on hand-crafted musical descriptions in its
database based on an analogy of DNA. Tiemann et al. [20] produced a hybrid
system which uses iterative classifications to tag music for recommendation.

Two of Chen and Chen’s [3] recommendation algorithms utilize purely content-
based approaches. Another of Chen and Chen’s algorithms, also described in
[3], utilizes a pure collaborative filtering approach. Crossen [4] utilizes user
recommendations to determine the music to play in a shared space, filtering
hand-picked genre classifications of music. Yoshii et al. [21] provide a hybrid
approach where content-based analysis and collaborative filtering are calculated
separately and then later integrated. Yoshii et al. extended this in [22] with genre
preferences and ability to provide recommendations for new users. Anglade et
al. [1] produced a peer-to-peer recommender that clustered users with simi-
lar tastes and streamed music from these cluster’s shared musical collection.
Last.FM? uses collaborative filtering based on watching users’ listening habits
directly with modifications made through explicit negative and positive ratings.

Pauws and Eggen [17] produced a systems that generates playlists from a
single song using clustering songs similar in audio content but defines these
playlists by learning from what songs the user removed. Other approaches have

Thttp:/ /www.pandora.com
2http://www.last.fm

supplemented the traditional pure content-based approaches with web-derived
context. Celma et al. [2] constructs networks of artists derived from targeted
web searches to provide recommendations for users based on their Friend Of
A Friend (FOAF) profiles. Sandvold et al. [19] extended this with tagging and
content-based analysis. Pampalk and Goto [15] extended Sandvold et al.’s work
by combining three similarity metrics.

2.1 Requirements

In order to address the concerns raised in the introduction, and factoring in
related prior work, a toolkit for analysis is required similar in structure to the
GATE toolkit for natural language processing [5].

Requirement i. This toolkit should be scriptable so that different algorithms
can share the same data set and evaluation metrics without requiring a
recompilation of the underlying system.

Requirement ii. The toolkit should have both machine readable and human
readable descriptions of the algorithms it contains.

Requirement iii. The toolkit should be executable from a graphical user inter-
face, through the command-line, and through embedding.

Requirement iv. This toolkit should provide a set of data acquisition algorithms
for publicly available sources of social music context such as LiveJournal.

Requirement v. The toolkit must also provide implementations of the standard
recommendation algorithms currently in use.

Requirement vi. The toolkit should provide sets of algorithms for clustering
data and provide mechanisms so that algorithms can be run over arbi-
trarily nested subsets of the original data (making culturally-aware and
context-sensitive recommendations easier to implement).

A review of existing graph toolkits [12] reached the conclusion that, while some
parts of some of the toolkits matched these requirements, none of them provided
a good match for all the requirements. Consequently implementation of a new
toolkit, Graph-RAT, was undertaken—tempered, as much as possible, with the
reuse of sub-systems from related open source software.

3 Toolkit Structure

Graph-RAT is written in Java and utilizes a blackboard structure [9] for analysis—
the data is kept separate from the algorithms that act upon it. A scheduler
loads the different algorithms and execute them against the data structure.
Graph-RAT also incorporates a number of utility structures such as a custom
webcrawler and reusable core objects. Each algorithm produces graphs, paths,
actors, links, or properties. These terms are best explained in context below.

3.1 Data Structure

Graph-RAT’s data structure is a graph. KEach graph consists of actors and
the links between them. In addition, graphs have globally unique ids and can
contain sub-graphs. These sub-graphs are strict subsets of the actors and links
of the parent with arbitrary nesting. Actors, links, and graphs can contain
properties. Actors have a mode (such as “Artist” or “User”) with unique ids
within the mode. Links are likewise unique using a combination of link type,
source, and destination actors.

Properties are pieces of data attached to a particular graph, actor, or link.
Properties are multi-valued with immutable values and again are uniquely iden-
tified with the object they are paired with. Values can be Java objects of any
class. Loading properties to and from XML is accomplished by the use of custom
functions stored in a property registry by Java class type.

3.2 Algorithms

Algorithms in Graph-RAT are executable objects (byte-compiled Java class files)
that provide a type of operation performed against a graph. These algorithms
contain metadata listing all parameters, inputs, and outputs. Each parameter
contains the class of the object that the parameter uses, the name, and the key-
word associated with this parameter. All algorithms include input and output
descriptors that list all actors, links, graphs, and properties that the algorithm
reads and produces. Combined with immutable property values, this provides
the blackboard book-keeping as described by Jensen [9] in addition to design
requirement (requirement i). Each algorithm must be re-executable as it could
be executed any number of times over any number of graphs depending on the
scheduler algorithm used. This is not difficult to achieve in practice.

3.3 Scheduler

The scheduler loads all data acquisition and algorithm modules and executes
each algorithm against the main graph section or one of its sub-graphs. The
scheduler is responsible for deciding which algorithms execute and against which
data source. This permits applications, for example, to perform automated
segmentation of users into culturally-homogeneous sub-groups and then execute
algorithms against each segment in turn. Schedulers can be non-deterministic;
the default one provided is deterministic.

3.4 Entry Points

Graph-RAT provides three different mechanisms for interacting with the toolkit.
Applications can be constructed with XML and executed from the command
line. Applications can also be constructed dynamically in a GUI. Finally, Graph-
RAT can be embedded in another Java application through a well defined API.
Together this satisfies requirements (ii) and (iii).

4 Algorithms

In all following descriptions, N is the number of users, L is the number of links,
and A is the number of artists.

4.1 Data Acquisition Algorithms

Graph-RAT provides a number of parsing tools for acquiring data from a num-
ber of sources. Each of these sources provides information that is useful for
constructing music recommendations.

Crawl Live Journal. Retrieves from the LiveJournal website? a network of
on-line users in FOAF (Friend of a Friend) format. Each profile contains
information about the person, such as geographical location and lists of
interests as well as a list of people this person knows. This acquisition
module spiders from an initial list of user names and downloads them to
a directory (requirement iv).

Crawl LastFM. Spiders LastFM web services - a website that collects social
networking, tag, and playcount information on artists and songs. Each
profile contains information about what has been tagged, what tags were
used, personal information about the person, what artists and songs have
been listened to, and how often they are listened to.

File Reader. Reads LiveJournal FOAF pages into a graph from a local direc-
tory. This might include ‘dangling’ links to actors outside of the set of
pages downloaded. The FileReader2 variant uses a two pass system to
remove dangling links from the data set.

Read Audio Files. Reads a directory of music, using jAudio to transform
these music files into a feature vector which is then transformed into Weka
Instances. This acquisition module also creates an actor for each file and
attaches the Weka Instance to this actor as a property.

Read LastFM Profile. Reads a tar file containing the directory created by
CrawlLastFM. This is about an order of magnitude faster than reading
the files from the file system.

Read MemGraph XML. Restores from disk a previously serialized Mem-
Graph object. Usually the fastest way to load a graph.

4.2 Machine Learning Algorithms

Machine learning algorithms provide a means for predicting what new music
a person will like. Graph-RAT’s machine learning algorithms transform links

Shttp:/ /www.livejournal.com

between users and artists into artist vectors and then uses Weka? to make the
predictions.

There are two varieties: single instance uses Weka to generate a model for
every artist predicting whether a given artist is recommended for a particular
user; and multi instance uses Weka to train a model for every artist using the
artist vector of friends but not the user to recommend music. The latter is
of interest for comparing global learning against the same information as local
recommendation. For either variety the classifier that is used is supplied as a
parameter.

4.3 Collaborative Filtering Algorithms

Graph-RAT provides three different collaborative filtering algorithms that are
executed over all actors of a given mode (requirement v). All three work by
transforming links between users and artists into an artist vector before per-
forming calculations.

User to User. This performs nearest neighbor comparisons such that all users
with a similarity measure larger than the threshold to a given user recom-
mend their artist vector to the user. This is an O(N?) algorithm in time
and O(L) algorithm in space.

Item to Item. This calculates the artist to artist correlations and then recom-
mends artists for each user as the sum of all correlations for artists in the
user’s artist vector. This algorithm is O(AL) in time and O(L) in space.

Associative Mining. This calculates whether a given artist is significantly
more or less likely to be present, conditional on another artist compared
with all occurrences of the artist. The recommendation for an artist is the
sum of all correlated artists for a given artist present in the user vector.
This algorithm is O(A%L) with space O(A’!) or O(L) where A’ is the
largest number of artist with significant deviations for any artist in the
set.

4.4 Prestige Algorithms

Prestige is the degree of the influence of an actor within a graph. The algorithms
implemented in Graph-RAT are as follows (requirement v):

Degree. The in-degree (number of incoming links) is degree prestige, normal-
ized by the maximum possible in-degree (all actors linking to this actor)
so that the value is between 0 and 1. Similarly out-degree (the number
of outgoing links) is degree centrality. This is an O(V) algorithm in both
space and time [7].

Ahttp: / /www. cs.waikato.ac.nz/ml/weka/

Closeness. The closeness prestige is a measure of the distance from any other
actor to this actor which is then normalized to be between 0 (Infinite dis-
tance to nodes) and 1 (all nodes are distance 1 away). Similarly closeness
centrality is a measure of the distance from this actor to every other ac-
tor. In the case of a disconnected graph, closeness is only calculated on
the component it is a member of. This algorithm is O(N?) in time and
O(N?) in space if paths are calculated separately, but O(N) in space if
the algorithm mixes shortest-path calculations while calculating closeness
[7].

Closeness; = N (1)

Z;V:l min distance(i, j)

where N is the total number of nodes. While this should be oo for graphs
that do not have paths between some nodes, in practice this is set to be
closeness within its component (largest connected sub-graph) instead.

Betweenness. The number of times this actor appears on the shortest path
between any two actors, normalized so that the value is between 0 (not on
any paths) and 1 (on every shortest path). Its time and space complexity
is exactly the same as for closeness.

YL Y i € Path(j k)
Betweenness; = NN—T) (2)

where N is the total number of nodes and Path(j, k) is the shortest path
between nodes j and k.

Page Rank. This algorithm calculates prestige for an actor based on the pres-
tige of the actors linking to it. The prestige value for each actor is the value
of the first eigenvector of the normalized link matrix with an additional
phantom node. The normalization is that the sum of outgoing links from
every actor is 1. For this phantom actor, every actor is connected to by
every other node with a weight of 15% (100% for those without outgoing
links) of all links from the actor and to all nodes equally. Directly cal-
culating the eigen-matrix, this is an O(N?) algorithm in space and time,
but an O(N) in time and O(L) in space using the power method [10]. The
O(N?) algorithm is useful because it also populates the eigen-matrix for
use in clustering algorithms.

HITS. This algorithms generates Hubs (points to a prestigious page) and Au-
thorities (is a prestigious page). The hubs are the first eigenvector of the
MM?T where M is the link matrix. The authorities are the values of the
first eigenvector of MT M. Space and time complexity as for Page Rank,
again with the O(N?) variant useful for clustering.

4.5 Clustering Algorithms

Clustering algorithms (requirement vi) act on all links of a graph.

Maximal Cliques. A clique is a fully connected sub-graph and a maximal
clique is any clique such that no clique exists that contains the maximal
clique as a strict subset. This algorithm finds all maximal cliques and
runs in O(Nlog(N)k!) where k is the maximum clique size in the graph.
For the evaluation work presented in Section 6, which processed a graph
where N=10000, k£ had an upper bound of 10.

Bipartite Clustering. This identifies all sub-graphs that have the property
that all elements are connected by at least 2 fully independent paths (i.e.
the paths share no common actor beyond the beginning and ending node).
The code is based on Jung2.

Strongly Connected Components. This identifies all strongly connected sub-
graphs within a graph. A sub-graph is strongly connected if Va,b € L,
a — b exists and b — a exists. Another variant is Weakly Connected
Components which is equivalent to strongly connected if links are bidi-
rectional.

Weka Classifier Clustering. This applies a Weka clustering algorithms that
provide a unique cluster ID to all items clustered. Which clustering algo-
rithm to use is specified by a parameter.

‘Weka Probabilistic Clustering. This utilizes a Weka clustering algorithm
that provide a probability distribution for each actor for which cluster it
belongs to. Again, the specific algorithm is specified by parameter.

Edge Betweenness Clustering. This algorithm performs hierarchical clus-
tering on a graph. Edges are removed in order of their betweenness score
until all actors are isolated. A variant—Norman-Girvan Edge Be-
tweenness Clustering [13]—recalculates betweenness before each link
removal.

4.6 Similarity Algorithms

These algorithms are utilized to create a pairwise distance metric between two
objects. All algorithms use the Strategy pattern to make the distance metric
a parameter (see Section 5). All are This is O(n?) invocations of the distance
metric.

Similarity By Link. This algorithm determines the similarity between two
actors of the same mode by comparing the links each possess (along some
relation) by outgoing, incoming, or all links. These links are loaded into a
DataVector (see Section 5) and actors compared pairwise using a distance
metric (see Section 5).

Similarity By Property. This algorithm determines the similarity between
two actors of the same mode using a property value as the source. They
are compared pairwise using a distance metric.

Graph Similarity. This algorithm calculates the similarity between two sub-
graphs using a given property. Sub-graphs are chosen as siblings of the
current graph or via a regular expression match on ID’s of sub-graphs of
the current graph. The comparisons are performed using a distance metric
and stored on a property of each graph as a map between graph ID and a
double representing similarity.

4.7 Aggregator Algorithms

These algorithms take as input a collection of actors or graphs with properties
and summarize the given properties in a single Weka Instance.

Aggregate By Link. This algorithm collects all links of a given actor (by in-
coming, outgoing, or all links). For every link, the values of the given
property are aggregated by an aggregator function (see Section 5). Each
of the resultant properties are collected on the actor using another (po-
tentially different) aggregator function. This is O(V) invocations of the
inner aggregator function and O(N) invocations of the outer aggregator
function.

Aggregate On Actor. This algorithm collects all properties of a given actor
and creates a single property representing all this information. The values
of each property are aggregated, then the result is aggregated into a single
property. This is O(/V) invocations of both the inner and outer aggregator
functions.

Aggregate By Graph. This algorithm collects a given property over all ac-
tors, aggregating first over property values for each actor, then aggregating
over all actors into a single property on the graph. This is O(N) invoca-
tions of both the inner and outer aggregator functions.

4.8 Matrix Algorithms

These algorithms transform either graphs or a Colt matrix ® and creates a new
Colt matrix.

Distance Matrix. This algorithm calculates a distance matrix over all actors
of a given mode using the PathBase reusable core (see Section 5). This is
O(N?) in memory and time.

Principal Component Analysis. This algorithm calculates a transform ma-
trix for a distance matrix mapping it onto a lower-dimensional space,

5http://acs.lbl.gov/ hoschek/colt/

storing the resulting new vectors for each actor as a property. This is
O(N?) in memory and time.

Graph Triples Two algorithms are present for creating an array describing
the graph’s structure given a single relation as defined in social network
analysis. One algorithm treats all links as bidirectional. The other utilizes
directional links. Both are O(N D) in time where D is the average degree
of the graph and the maximum of O(D) and O(N) in space.

4.9 Evaluation Algorithms

Graph-RAT current provides seven evaluation metrics [8]. Some only work on
binary recommendations (present or not present) while others require stratified
recommendations. All algorithms provide evaluation for each user and average
and standard deviation for the data set.

Precision Recall FMeasure. This metric provides the three basic measures—
precision, recall, and F-measure—for binary results. It is utilized in the
experiment in Section 6.

Recommendation Error. This metric is the percentage of the binary rec-
ommendations that are not present in the ground truth compared to all
recommendations made.

ROC Area. This operates on ranked recommendations. The recommenda-
tions are separated into those that are present in the ground truth and
those not. The average percent of ground truth at each step is recorded
and the average of these percentages is the metric.

Half Life. Each predicted value in the ground truth is ordered from highest
score to lowest. Sequentially moving from highest predicted recommen-
dation, the score is added divided by an exponentially increasing penalty.
The result is a value between 0 and 1 where 0 contained nothing from the
recommendation list while 1 contained the entire recommended list from
highest score to lowest score.

Pearson’s Correlation. The correlation between the predicted scores of artists
and ground truth scores are calculated. This requires valued recommen-
dations. Note that , if a ranking algorithm is applied prior to calculating
this, this metric is equivalent to Spearmans’ p [8].

Kendall’s Tau. This provides another correlation metric that is based on the
number of correctly ordered pairs of recommendations.

Mean Error. This metric calculates three different error metrics based on
mean error between the expected recommendation value and the predicted
recommendation value.

10

4.10 Display Algorithms

Graph-RAT provides three different algorithms for displaying graphs. One pro-
vides display of a single mode (actor) and relation (link), another provides the
same view, but color codes the actors by a given property value. The third
displays the entire graph with each relation and mode in a different color. All
three utilize the Prefuse toolkit.

4.11 Other Algorithms

Beyond these established classes are algorithms that do not fit into a category.
These include graph property algorithms such as calculating basic properties of
a given relation on a graph as well as calculating path-based metrics. Others
calculate the distance between two properties on a single metric or define a new
property providing a ranking of actors by a given property.

5 Utility Objects

Web Crawler Graph-RAT provides three different web-crawlers—all available
through the Crawler interface. The FileReader crawler reads local filesys-
tems. The BaseCrawler provides single-threaded web crawling. The We-
bCrawler provides full multi-threaded crawling.

All crawlers utilize a unique structure for determining parsers which al-
lows for arbitrary parsers to be used on arbitrary pages. When submitting
a page to a crawler for parsing, for one also provides which set of parsers
are to be used for the given web site. Particularly for REST-based ser-
vices (such as LastFM’s services), this allows the flexibility to construct
the next page to spider dynamically based on the information in the cur-
rent document, deciding at runtime which set of parsers will parse the
submitted link. This makes spidering LastFM web services is possible.

DataVector DataVectors are an abstraction of an array of double values that
can be generated from a number of different sources. The primary advan-
tage is that algorithms can create data in any of a number of different data
structures and reuse the same utility functions for performing operations
against them.

Distance Functions These functions describe a suite of different methods for
calculating the distance between two vectors. The methods derived from
Wikipedia entries are: Manhattan, Euclidean, Chebyshev, and DotProd-
uct. Jaccard, Pearson, WeightedKLDistance, and Cosine distance are
adapted from distance methods provided by Anna Huang.

Aggregator Functions These functions define a number of methods for com-
bining a number of different Weka Instance objects. The Null and FirstItem
aggregators have no restrictions on the backing Attributes. The Sum,

11

Product, Max, Min, Mean, and Standard Deviation aggregators require
the Instances use the same backing Attributes. The Concatenate function
requires a disjoint set of Attributes over the Instance objects.

Path Base Core This component provides as a reusable module a set of Paths
calculated by Djikstra’s spanning tree algorithm. The module calculates
trees on a per-actor basis so memory use is kept at O(N). This algorithm
is guaranteed to produce accurate results only over non-negative links.

Actor Distance Matrix Core This component provides a 2D Colt matrix
representing the distance between all actors of a mode as defined by the
cost of the shortest path between two actors.

Link Betweenness This component provides link betweenness for each link
over a given relation.

Strongly Connected Components This component provides, if multiple com-
ponents exists in the graph over the given relation (by strong connected-
ness definition of components), sub-graphs describing these components.

6 Evaluation

To illustrate the usefulness of the toolkit an indicative experiment was un-
dertaken that compared the ability of four algorithms—Local Recommenda-
tion, Single and Multi Instance AdaBoost, and Dispersion—to predict musical
taste (like/dislike). Recall and precision (PrecisionRecallFMeasure) was used
to quantify results.

First a configuration was constructed to crawl LiveJournal using a seed list
of 50 LiveJournal users. This resulted in 10,000 FOAF files saved locally to disk.
This was done from the command line, but could have equally been performed
using the GUI. Next, the interest field of the FOAF descriptions was extracted
and set as properties of actors of mode user. Each of these properties was then
compared against a list of top 40 artist since 1999. For each artist found in a
FOAF a new actor of mode artist was created. Links were created between users
and artists. This was more convenient to do using the GUI, but as the models
of computation are equal it could also have been done from the command line.

To evaluate the selected algorithms, ground truth needed to be established.
This was set to be the original artist list for each user. Using a variant of leave
one out cross-validations each algorithm was run using RecallPrecisionFMeasure
to compute results, which are summarized in Table 1. AdaBoost had the best
recall while Local Recommendation had the best precision.

7 Conclusion

Graph-RAT provides a set of tools for constructing and evaluating music recom-
mendation systems which are also applicable for a number of other tasks as well.

12

Algorithm Precision Mean Precision Std Dev Recall Mean
Local Recommendation 0.020 65.8 0.061
Weka Ada Boost 0.015 344 0.382
Multi Instance Weka 0.0029 0.533 0.297
Dispersion 0.008 3.693 0.180

Table 1: Existing graph toolkits

A range of algorithms are provided that reflect the multi disciplinary nature of
the topic. As much as was possible, pre-existing open source software was re-
used: jAudio forms the basis for content analysis; Weka for machine learning;
Prefuse for the interactive graph visualizer.

Furthermore, Graph-RAT provides a blackboard framework that encourages
culturally-aware recommendations by making it easy for researchers to segment
data into culturally-homogenous groups—making the use of existing algorithms
no longer ethnocentric.

Finally, the toolkit also provides a number of standard algorithms for com-
paring different approaches to music recommendation which can be combined
in a Unix-shell style pipeline. Applications from this framework can be built in
XML, via a GUI, or embedded.

8 Acknowledgments

The author would like to thank the University of Waikato for its generous sup-
port through the its doctoral scholarship programme.

References

[1] A. Anglade, M. Tiemann, and F. Vignoli. Virtual communities for creating
shared music channels. Int. Cont. on Music Information Retrieval, pages
95-100, 2007.

[2] O. Celma, M. Ramirez, and P. Herrera. Getting music recommendations
and filtering newsfeeds from foaf descriptions. Int. Cont. on Music Infor-
mation Retrieval, 2005.

[3] H.-C. Chen and A. L. P. Chen. A music recommendation system based on
music data grouping and user interests. CIKM, pages 231-238, 2001.

[4] A. Crossen, J. Budzik, and K. J. Hammond. Flytrap: Intelligent group
music recommendation. TUI, 2002.

[6] H. Cunningham, D. Maynard, K. Bontcheva, and V. Tablan. GATE: A
framework and graphical development environment for robust NLP tools
and applications. In Proceedings of the 40th Anniversary Meeting of ACL,
2002.

13

Recall Std Dev
398.9

2242

1983

1308

[6]

J. Downie, J. Futrelle, and D. Tcheng. The international music information
retrieval systems evaluation laboratory: governance, access and security. In
Int. Conf. on Music Information Retrieval, pages 9-14, 2004.

L. C. Freeman. Centrality in social networks. Social Networks, 1:215-239,
1979.

J. L. Herlocker, J. A. Konstan, L. G. Terveen, and J. T. Riedl. Evalu-
ating collaborative filtering systems. ACM Transactions onj Information
Systems, 22(1):5-53, January 2004.

D. Jensen. Unique challenges of managing inductive knowledge. In Proc.
of the 1997 AAAI Spring Symposium on Al in Knowledge Management,
Stanford, March 1997.

A. N. Langville and C. D. Meyer. Deeper inside PageRank. Internet Math-
ematics, 1(3):335-380, 2003.

B. Logan. Music recommendation from song sets. Int. Cont. on Music
Information Retireval, 2004.

D. McEnnis. Towards a music recommendation system. In New Zealand
Computer Science Research Students Conference, 2008. To appear.

M. E. J. Newmann and M. Girvan. Finding and evaluating community
structure in networks. Physical Review E, 69, 2004.

E. Pampalk and M. Gasser. An implementation of a simple playlist gener-
ator based on audio simlarity measures and user feedback. Int. Cont. on
Music Information Retrieval, 2006.

E. Pampalk and M. Goto. Musicsun: A new approach to artist recommen-
dation. Int. Cont. on Music Information Retrieval, pages 101-104, 2007.

E. Pampalk, T. Pohle, and G. Widmer. Dynamic playlist generation based
on skipping behavior. Int. Cont. on Music Information Retrieval, 2005.

S. Pauws and B. Eggen. Pats: Realization and user evaluation of an auto-
matic playlist generator. Int. Cont. on Music Information Retrieval, 2002.

S. Pauws, W. Verhaegh, and M. Vossen. Fast generation of optimal music
playlist using local search. Int. Cont. on Music Information Retrieval, 2006.

V. Sandvold, T. Aussenac, O. Celma, and P. Herrera. Good vibrations:
Music discovery through personal musical concepts. Int. Cont. on Music
Information Retrieval, 2006.

M. Tiemann, S. Pauws, and F. Vignoli. Ensemble learning for hybrid music
recommendation. Int. Cont. on Music Information Retrieval, pages 179—
181, 2007.

14

[21]

K. Yoshii, M. Goto, K. Komatani, T. Ogata, and H. G. Okuno. Hybrid
collaborative and content-based music recommendation using probabilis-
tic model with latent user preferences. Int. Cont. on Music Information
Retrieval, 2006.

K. Yoshii, M. Goto, K. Komatani, T. Ogata, and H. G. Okuno. Improving
effeciency and scalability of model-based music recommender system based
on incremental training. Int. Cont. on Music Information Retrieval, pages
89-94, 2007.

15

