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The pessimist complains about the wind;

The optimist expects it to change;

The realist adjusts the sails.

William Arthur Ward





Abstract

Access to an inexpensive and reliable supply of energy is critical for the suc-
cess of modern civilisation. Since the beginning of the Industrial Revolution
in the mid 18th century, fossil fuels have enabled great advances across many
aspects of society, which have increased the standard of living for many. Un-
fortunately, dwindling supplies and greenhouse gas emissions resulting from
their use means that the continued utilisation of these fuels—particularly for
electricity generation and transportation—is simply not sustainable.

Present-day electricity systems are built around the premise that generation
is flexible and controllable, while load—generally speaking—is not. This leads
to dispatch models where generation is scheduled to meet load, plus some
additional capacity to accommodate forecast errors and potential equipment
failure. Many renewable generation technologies, such as wind and solar pho-
tovoltaics, are non-dispatchable and cannot be scheduled to produce electricity
on-demand. Successfully utilising these energy sources therefore requires flex-
ibility in other parts of the system.

Electric Vehicles (EVs) produce no tailpipe emissions, and can be charged
at any location with an electricity supply; at home, work, supermarket, or
dedicated charging facilities. Because driving times tend to coincide with ex-
isting peak electricity demand, EV charging will occur at times of already high
electricity demand if not controlled. Fortunately, there is substantial flexibil-
ity over the timing of charging, which can be exploited to minimise adverse
impacts on electricity grids. Additional benefits are realised when energy is al-
lowed to flow from the vehicle’s battery back into the electricity grid; a concept
known as vehicle-to-grid (V2G).

Through the development of a simulation based on future energy scenarios
in New Zealand, the research presented in this thesis evaluates the extent to
which the flexibility of EV charging may be exploited to support high lev-
els of non-dispatchable renewable electricity generation. Several EV charging
strategies are introduced and evaluated across a range of metrics with wind
penetration levels ranging between 10% and 50% on an annual energy ba-
sis. With a V2G-enabled fleet consisting of one million vehicles (25% of New
Zealand’s projected light vehicle fleet size in 2030), it is found that EV charg-
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ing is sufficiently flexible to the extent that electricity generation does not
need to follow daily variations in load. The EV fleet is capable of meeting
the power and ramping requirements of the electricity grid, in addition to its
own transportation needs, so long as sufficient energy is generated within a
few days of its consumption. Such flexibility is expected to greatly assist the
future expansion of non-dispatchable renewable electricity generation in New
Zealand.
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1Introduction

Anthropogenic climate change has been a major point of discussion in recent
years, with predictions of catastrophic and widespread consequences if drastic
measures are not taken to reduce Greenhouse Gas (GHG) emissions in the
near future (IPCC, 2014a). The negative effects of climate change have been
known for some time, and many countries have committed to reducing GHG
emissions with the signing of the Kyoto Protocol in 1997 (United Nations,
1998), and the later signing of the Paris Agreement (United Nations, 2015).

The majority of GHG emissions worldwide arise from the transportation, elec-
tricity generation, and agricultural industries (IPCC, 2013), all of which are
crucial for modern society. Although there have been attempts to reduce the
environmental impacts resulting from agriculture, it is considered difficult and
costly to achieve significant reductions of GHG emissions. Hence, the trans-
portation and electricity generation industries have been identified as having
the most potential to assist with meeting GHG emission targets (IPCC, 2014b).

Fossil fuels have satisfied global energy demands for over a century, but in
addition to GHG emissions resulting from their use, there are also concerns
about dwindling supplies and political instability in hydrocarbon-exporting
countries (Yergin, 2006; Umbach, 2010). In 2012, fossil fuels provided 86.5%
of the global primary energy requirements, with the remainder (13.5%) com-
ing from renewable sources (IPCC, 2014b). Many countries aim to be more
self-reliant with respect to energy, in order to become more resilient against
volatile international markets (Umbach, 2010). Renewable energy sources have
received a lot of attention for meeting these needs, as their many advantages
include inexpensive (or free) fuel, an inherently secure indigenous supply of
primary energy, and low lifetime environmental impacts (Jacobson, 2009).

While renewable energy sources offer great potential for addressing climate
change and energy security concerns, these sources introduce challenges of
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Chapter 1 Introduction

their own. In an electricity system, generation must closely match load at
all times. Traditionally, this balance is maintained by controlling the output
of generators to meet the instantaneous load, with minor contributions from
demand-side measures to reduce load during peak times (Boyle, 2007). In
effect, this assumes that generation can be easily controlled, while load is
considered to be largely inflexible.

Many of the “new” renewable energy sources, for example wind and solar Pho-
tovoltaics (PV), are non-dispatchable. That is, they cannot generate electricity
on-demand, and in many cases their output cannot be predicted far in advance.
Nuclear power is also seen as a promising technology for meeting future energy
needs, but although its output is reliable and predictable, it is not responsive
to changes in load and therefore also requires flexibility elsewhere in the elec-
tricity grid in order to maintain balance (MacKay, 2009). Because of these
characteristics, any large-scale deployment of renewable generation will require
additional measures that challenge the traditional balancing mechanisms used
by electricity system operators (Ancell, Abbott, Palmer, Tinkley and Sama-
rasinghe, 2005). The three options available for achieving this include the use
of highly-dispatchable “backup” generation capacity, energy storage systems,
and/or Demand-Side Management (DSM).

Another technology expected to play a major role in reducing global GHG
emissions is the Electric Vehicle (EV) (Mason, Page and Williamson, 2010a;
Vivid Economics and Energy Centre and University of Auckland Business
School, 2012; MacKay, 2009). These vehicles may be partially or fully pow-
ered by electricity, in the case of Plug-in Hybrid Electric Vehicles (PHEVs)
and Battery Electric Vehicles (BEVs) respectively, which have the advantage
of greatly reduced GHG emissions and energy requirements compared to con-
ventional Internal Combustion Engine Vehicles (ICEVs) (Duvall, Knipping and
Alexander, 2007).

In order to avoid overloading electricity networks during peak load periods, it
is widely accepted that the charging of electric vehicles must be controlled in
some manner (Clover, 2013; Putrus, Suwanapingkarl, Johnston, Bentley and
Narayana, 2009; Shortt and O’Malley, 2014). However, there is considerable
potential to exploit the flexibility of EV charging to not only minimise the load
impacts of the vehicles themselves, but to also share the burden of keeping
electricity generation and load in balance and hence ease the integration of
non-dispatchable generation.

2
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1.1 Research Questions

With the widespread deployment of EVs and non-dispatchable electricity gen-
eration, traditional characteristics of generation and load will change. Gener-
ators will become less able to produce electricity on-demand, while load will
become more flexible and able to adapt to changes in supply. This suggests that
some or all of the responsibility for maintaining the balance between genera-
tion and load could move away from the traditional generation-side approach
(i.e. generating electricity when it is needed), and towards the demand-side
(i.e. using electricity when it is available).

Kempton and Letendre (1997) identified the potential for utilising the dis-
tributed electricity storage capacity of an EV fleet by allowing bidirectional
energy flows between a vehicle’s battery and the electricity grid; this is known
as Vehicle-to-Grid (V2G). V2G enables the use of an EV fleet to buffer the
variability of non-dispatchable generation, and to reduce peak load by storing
off-peak energy close to where it will ultimately be consumed.

These observations give rise to the question of how to best manage the charging
and/or V2G capabilities of a large EV fleet, particularly in an environment
with a high penetration of non-dispatchable electricity generation.

The fundamental research question to be addressed in this thesis is:

To what extent can the flexibility of charging electric
vehicles be exploited to support the integration of non-
dispatchable electricity generation in New Zealand?

To answer this broad question, several more specific questions need to be
addressed:

1. What are the potential energy demands and usage patterns of an elec-
trified light vehicle fleet?

2. What are the generation characteristics of existing and proposed wind
farms?

3. What are the necessary parameters of an energy storage system for
buffering variability in high wind generation environments?

4. What EV charging strategies are effective, and how successfully can their
adoption support the expansion of both renewable electricity generation
and EVs?
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1.2 Methodology

The research questions are largely aimed at future scenarios, which require
substantial investment in new infrastructure as well as public acceptance of new
technologies. Because EVs have not yet been deployed in significant numbers,
performing real experiments at the scale required is not feasible. Instead,
computer simulation becomes the de facto tool for exploring such questions.

Given the unique combination of low population density, plentiful renewable
energy resources, geographic isolation, and one of the highest per-capita private
vehicle ownership rates in the world, New Zealand offers an ideal setting for
a case study involving large-scale wind penetration and EV deployment. The
research is thus based on future energy scenarios relating to New Zealand,
however the techniques used in this work may be applied to other parts of the
world where suitable data exist.

There are many important engineering and economic challenges that must
be addressed before the simulated scenarios can be implemented in the real
world, including the deployment of ubiquitous smart grid technology, support
for bidirectional power flows in distribution networks, and the adoption of suit-
able market structures. These issues are not addressed in this research; rather,
the focus is on evaluating the potential performance of high-level strategies for
managing variability in large-scale non-dispatchable generation, and coordi-
nating the charging of a large number of EVs.

1.3 Thesis Structure

Chapter 2 outlines the general context of the research, including the primary
motivations and a summary of the technologies expected to play an important
role in the transition away from fossil fuels. It presents the argument that
increasing the proportion of non-dispatchable generation and EVs is an essen-
tial step towards reducing fossil fuel dependence, and hence it is important to
address the challenges presented by these technologies.

Chapter 3 provides an overview of studies related to the integration of non-
dispatchable electricity generation, and the various approaches used to coordi-
nate the charging of large numbers of EVs which may include V2G capabilities.

Chapter 4 describes the simulation software developed during the course of
the research, including the data and models used to simulate future energy
scenarios in New Zealand.
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Chapter 5 explores the variability characteristics of wind generation and elec-
tricity load in New Zealand, and establishes the necessary performance require-
ments of a dedicated energy storage system which is capable of maintaining
balance between generation and load at varying levels of wind penetration.

Chapter 6 introduces the definition of an EV charging strategy, and outlines
the information that can be used to influence charging decisions. It then
describes a selection of charging strategies, and identifies a number of key
metrics for evaluating the performance of any given strategy.

Chapter 7 presents the results obtained from simulating a range of future
energy scenarios in New Zealand.

Chapter 8 revisits the research questions, draws conclusions about the pri-
mary findings, and identifies directions for future work.

1.4 Contributions

The research presented in this thesis makes the following original contributions:

• A review of GHG sources and technologies for reducing emissions, par-
ticularly in the New Zealand context.

• A review of New Zealand’s energy consumption, the present electricity
and transportation industries, and future direction these industries are
likely to take with respect to the government’s energy strategy.

• A review of literature concerning the integration of non-dispatchable re-
newable electricity generation into electricity grids, and charging ap-
proaches for electric vehicles.

• An agent-based simulation framework for evaluating the relative effec-
tiveness of electric vehicle charging strategies across a range of metrics.

• The introduction of several decentralised smart charging strategies for
electric vehicles, with an evaluation of their performance.

• The identification of issues related to using an electric vehicle fleet for in-
creasing the utilisation of non-dispatchable electricity generation sources,
and a discussion of directions that future work could take.
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2Background

As a small and isolated country in the South Pacific with a population of ap-
proximately 4.4 million (Statistics New Zealand, 2011) and high private vehicle
ownership, New Zealand offers an ideal case study for a future energy scenario
consisting of a large proportion of non-dispatchable renewable generation and
widespread electric vehicle deployment.

The total primary energy supply in New Zealand was 38.2% renewable in
2013, the third highest percentage in the OECD behind Norway and Iceland
(Ministry of Business, Innovation and Employment, 2014). A primary reason
for this figure is the high proportion of electricity generated from renewable
sources, which totalled 75% in 2013 (Ministry of Business, Innovation and
Employment, 2014); a figure that the government wants to increase to 90% by
2025 provided that security of supply is not compromised (Ministry of Eco-
nomic Development, 2011). New Zealand has significant untapped renewable
resources, including over 100 TW h per year of wind potential (Kelly, 2011);
more than twice New Zealand’s annual electricity consumption in 2013 (Min-
istry of Business, Innovation and Employment, 2014).

On the other hand, New Zealand’s primary source of energy in the transporta-
tion sector is largely derived from imported oil, leaving the country vulnerable
to international disruptions to supplies (Ministry of Economic Development,
2011). Road transport is responsible for 37.6% of the national energy use an-
nually, and contributes 16% to the country’s GHG emissions (Ministry for the
Environment, 2014). The electrification of transport is seen as an important
step to reducing GHG emissions in New Zealand and around the world (Vivid
Economics and Energy Centre and University of Auckland Business School,
2012).

While New Zealand’s impact on global GHG emissions is minimal, the lessons
learnt here are relevant worldwide. The energy and environmental challenges
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are definitely not unique to New Zealand, as many countries around the world
face similar challenges. It is therefore important to understand not only how
these challenges relate to New Zealand, but also how a case study in New
Zealand relates to the rest of the world. Pure Advantage (2012) states that
New Zealand could, as part of its Green Growth strategy, “develop new clean-
tech export niches by anticipating what will be in demand as other countries
evolve their economies. This includes exporting replicable solutions (knowl-
edge, technology, products and services) developed by addressing challenges in
our own back yard.”

This chapter describes the motivation and context for the research presented in
this thesis, by identifying the issues to be addressed, the technologies that are
expected to contribute to a future with a secure energy supply and minimal
GHG emissions, and how the planned research fits into the New Zealand’s
energy strategy.

2.1 Greenhouse Gas Emissions

The latest Assessment Report from the Intergovernmental Panel on Climate
Change (IPCC) highlights a wide range of risks associated with climate change,
including insecurity of food supplies, damage from extreme weather events,
and insufficient access to drinking water (IPCC, 2014a). Furthermore, it is
extremely likely that human activity is the primary driver of climate change
through the emission of GHGs (IPCC, 2013). Even if GHG emissions are
stopped immediately, the impacts of climate change will continue to be felt for
many centuries (IPCC, 2013).

While some climate change is inevitable, it is possible to minimise risk through
a substantial reduction of GHG emissions. This will require a wide range of
changes to both technologies and human behaviour, to be outlined in section
2.1.2 (IPCC, 2014b).

2.1.1 Sources

As shown in figure 2.1, the world’s largest emitter of GHGs was China in
2011, followed by the United States, European Union and India, with the
fastest growth of emissions occurring in developing countries (IPCC, 2014b).
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Figure 2.1: GHG emissions of top 20 countries in 2011 (WRI, 2014). New
Zealand would be ranked 85th, with total emissions of 53 MtCO2e.
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Figure 2.2: GHG emissions per capita by country in 2011 (WRI, 2014). New
Zealand highlighted in 39th place.

9



Chapter 2 Background

As a relatively small country, New Zealand is not considered to be a large
contributor to overall emissions, ranking at 85th place in 2011.

On a per-capita basis (figure 2.2), New Zealand ranks in 39th place, or roughly
average for an OECD nation. However, the composition of those emissions
is rather different. Figure 2.3 shows the breakdown of GHG emissions by
industry for the world, OECD, and New Zealand.

Worldwide, the major source of GHG emissions are related to energy, pri-
marily from electricity generation and transportation industries. In 2010, the
energy supply sector emissions amounted to 35% of global GHG emissions,
and without mitigation the emissions from this sector are expected to increase
(IPCC, 2014b). Road transport is also a significant source of emissions, at
10.2% (IPCC, 2014b). OECD countries tend to have a higher proportion of
emissions from transportation, with a relatively smaller proportion from agri-
culture and manufacturing compared to world averages.

New Zealand, on the other hand, has a much smaller proportion of GHG emis-
sions from the electricity sector, which is a consequence of its high proportion
of renewable generation. Instead, agriculture is the predominant source of
GHGs—46.1% in 2011—mainly in the form of methane from ruminant diges-
tion. The emissions from dairy cattle and sheep in New Zealand have been
identified as the largest key category in 2011, with emissions from the energy
sector coming in second at 42.2%, including 16% from road transportation—of
which 63% was from the light private vehicle fleet (Ministry for the Environ-
ment, 2014; Concept Consulting Group Ltd, 2012).
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Figure 2.3: GHG emissions by industry (WRI, 2014).
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2.1.2 Mitigation

The IPCC (2014b) states that the necessary “deep cuts in emissions will require
a diverse portfolio of policies, institutions, and technologies as well as changes
in human behaviour and consumption patterns”, with high evidence and high
agreement among researchers. The report goes on to say that what is most
appropriate will vary by country, but almost universally the decarbonisation of
electricity supplies will be an important aspect towards minimising GHG emis-
sions, as will the electrification of transportation and heating/cooling (IPCC,
2014b).

Approaches to mitigating GHG emissions fall into four main categories: the
move towards low-carbon energy sources, increased energy efficiency (includ-
ing conservation), the use of carbon sinks, and climate engineering. These
categories cover fundamental changes in technologies and human behaviour.
The question of which approaches are most effective remains uncertain (IPCC,
2014b).

Since the majority of GHG emissions in New Zealand are from the agricultural
sector, and electricity generation is largely from renewable sources already, mit-
igation of emissions will be costly—no technology currently exists to address
methane emissions from agriculture (Pure Advantage, 2012).

Housing standards in New Zealand are seen as a problem; poor insulation leads
to increased use of heating, or cold indoor temperatures that can potentially
lead to health problems. This has led the government to subsidise retrofitting
older houses with better insulation, and introduce stricter regulations for new
buildings (Pure Advantage, 2012). In addition, New Zealand has the third
highest rate of car ownership in the world, with Pure Advantage (2012) citing
low fuel excise taxes and inadequate public transport infrastructure as pri-
mary reasons for this—only 2.5%1 of all trips were made by public transport
(Ministry of Transport, 2011).

“Renewable energy technologies appear to hold great promise,
but like all major sources of energy they also come with
an array of concerns. Many renewable sources of elec-
tricity are variable and intermittent, which can make
them difficult to integrate into electric grids at scale.”

IPCC (2014b)

1Includes work-related travel, but excludes travel as a “professional driver” (involving
the transport of goods or people) while driving—for example—a courier, taxi, or bus.
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Road transportation contributes significantly towards New Zealand’s GHG
profile; moving towards alternative fuels such as locally-produced biofuel and
electricity may play a significant role in reducing overall emissions (Pure Ad-
vantage, 2012). It has been noted that, unless powered by renewable electricity,
the widespread deployment of EVs will merely shift emissions from the tailpipe
to power stations (MacKay, 2009). This concern is unfounded, however; even
when the most emissive form of generation is used (i.e. traditional coal), total
emissions would still be lower than from a fleet of ICEVs (Duvall et al., 2007).
Shifting emissions from many small internal combustion engines to few large
electricity generation plants also enables the use of Carbon Capture and Stor-
age (CCS) technologies, which wouldn’t otherwise be feasible (Gibbins and
Chalmers, 2008).

2.2 Energy

Inexpensive and reliable access to energy is an essential part of a strong econ-
omy (Yergin, 2006). Since the invention of the steam engine in 1781, the
majority of energy has been derived from fossil fuels—mainly coal and oil (In-
ternational Energy Agency, 2014)—with renewable sources contributing 13.5%
of the planet’s total primary energy supply in 2012 (IPCC, 2014b).

While the problem of global climate change is inextricably related to the con-
sumption of fossil fuels, there are other important challenges too: limited
energy reserves, political instability in major oil-exporting countries, vulnera-
bility to international price shocks, and non-GHG pollution (Yergin, 2006; Min-
istry of Economic Development, 2011). Such concerns have led to increased
interest in moving away from traditional fossil fuels and towards renewable
energy sources and other alternatives such as nuclear, biofuels, and coal with
CCS, aka “sustainable coal” (Ministry of Economic Development, 2011; IPCC,
2014b; MacKay, 2009).

2.2.1 Primary Supply

Globally, renewable energy contributes 21% towards electricity generation, and
only 13.5%2 of the total primary energy supply in 2012—the remainder made
up of oil (31.4%), coal (29%), natural gas (21.3%), and nuclear (4.8%) in 2012
(International Energy Agency, 2014). Wind and solar PV deployments are

2When nuclear is classified as non-renewable

12



2.2 Energy

0%

5%

10%

15%

20%

25%

30%

35%

40%

World OECD New Zealand

Figure 2.4: Primary energy supply in 2012. Data sourced from the IEA.

rapidly expanding, with significant potential to increase the penetration of
renewables. However, these sources—being variable in nature—are likely to
increase costs of ensuring a reliable electricity supply at high penetration levels
(IPCC, 2014b).

Figure 2.4 shows the total primary energy supply for the world, OECD, and
New Zealand. The values quoted in this figure are the sum of local production
and imports, less exports. It is important to note that these values do not take
into account the level of “usable energy”; that is, this figure does not show the
useful energy obtained from each source. For example, New Zealand’s high
proportion of geothermal energy does not reflect the fact that only around
15% is transformed into electricity (the rest is lost as heat), while 100% of hy-
droelectric generation is deemed to be usable (Ministry of Business, Innovation
and Employment, 2014).

New Zealand is on par with the OECD average for the proportion of energy
from oil, which is mainly attributed to transportation. A substantial propor-
tion of New Zealand’s electricity is derived from hydroelectric and geothermal
sources, at around 57% and 16% of total electricity generation in 2014, re-
spectively (Ministry of Business, Innovation and Employment, 2014). There
are currently no nuclear power stations in New Zealand due to the country’s
nuclear-free stance.
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Figure 2.5: Energy end use in 2012, as millions of tonnes of oil equivalent.
Data sourced from the IEA.
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2.2.2 End Use

Figure 2.5 shows the use of energy by type and sector, for the world, OECD,
and New Zealand. The electricity portion of these charts are not directly
comparable, since the primary energy source used in electricity generation
varies in composition by category.

Transportation makes up a significant portion of energy consumption, almost
exclusively from fossil fuels—namely oil. Within the transportation sector,
the energy for road transport powered by oil amounts to 71.4%, 84.4%, and
90.1% of all transport energy needs for the world, OECD, and New Zealand,
respectively.

Energy consumption in the industrial sector is comprised of a variety of sources;
New Zealand’s proportion of renewable energy exceeds both world and OECD
averages. In New Zealand, the largest industries by energy consumption in-
clude non-ferrous metals (electricity) and wood/wood products (biofuels and
waste).

The “other” category includes residential and commercial consumption, as
well as agriculture. Globally, the residential sector is responsible for 66.5%
of the “other” category, and 23.1% of overall consumption, followed by com-
merce/public services at 23.1% of the category and 8.0% overall. In New
Zealand, with the residential sector is responsible for 42.9% of the category
(11.4% overall), while commerce/public services follows at 33.8% of the cate-
gory and 9.0% overall.

These figures show that, around the world, transportation is responsible for
a significant portion of fossil fuel consumption. In New Zealand, 81% of an-
nual oil consumption is used in the transportation sector, totalling 60% of the
country’s overall consumption of energy from non-renewable sources in 2013
(Ministry of Business, Innovation and Employment, 2014).

2.2.3 Energy Security

Maintaining a secure supply of energy is a priority for ensuring economic stabil-
ity and prosperity (Ministry of Economic Development, 2011); many countries
aim to reduce their vulnerability to energy security threats by increasing in-
digenous production of fossil fuels, and diversifying primary energy sources
(Yergin, 2006).

Renewable energy is naturally resistant to these concerns. Fuel is abundant
and cheap (or free), and in most cases is produced domestically. However,
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because of the non-dispatchable nature of many of the new renewable energy
sources, it is likely to be expensive for these sources to completely replace
existing generation infrastructure (Concept Consulting Group Ltd, 2012).

In electricity generation, what constitutes a secure supply depends on the
timescale in question. In the short term, maintaining supply relies on having
sufficient infrastructure in place to accommodate changes in the power imbal-
ance between generation and load, for example the loss of a generating unit
or an unexpected increase/decrease in load. This is referred to as ramping,
and is managed through a combination of spinning reserves and interruptible
load. On a slightly longer timescale, the primary concern is having sufficient
generation capacity available to cover instantaneous load. In the long term
(months to years), the concern is of having sufficient energy available to meet
all demand. A regular threat to New Zealand’s energy security is that of “dry
years”, where inflows into hydroelectric lakes are lower than usual and hence
the energy available is limited.

Many forms of renewable electricity generation do not contribute to security
of supply over short time scales, as their output cannot respond to changes in
load, nor can their output be relied upon to be available when needed. Because
of this, an additional megawatt of wind generation will not simply replace a
megawatt of dispatchable fossil-fuelled generation. Non-dispatchable genera-
tion sources do, however, contribute to energy security over the long term.
The amount of energy expected from these sources over a long time periods
is very predictable, while short-term availability is not. This is in contrast
with fossil-fuelled generation where short-term output is controllable (there-
fore predictable), while long-term fuel availability is not. Variable renewable
generation sources can thus be thought of as a source of energy over long time
periods, rather than a short-term source of power (Boyle, 2007).

Electric vehicles have considerable potential to improve energy security in New
Zealand, by reducing the country’s exposure to volatile oil markets and instead
using electricity produced locally from renewable sources (Concept Consulting
Group Ltd, 2012). If the charging of EVs is carefully managed—especially
when V2G is considered—these vehicles may also contribute to the security of
electricity supplies by using their storage capacity to buffer short term vari-
ability in electricity generation and load.

A review by Jacobson (2009) concluded that a combination of wind generation
EVs held the most promise across a range of categories related to climate
change, pollution, and energy security.
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2.3 Renewable Energy Technologies

Renewable energy is obtained from sources that are continually replenished by
nature, includeing solar PV, wind, hydroelectricity, biomass, geothermal, and
tidal generation (Ellabban, Abu-Rub and Blaabjerg, 2014). While renewable
energy has been used in its various forms for many millennia, today it only
plays a minor role in the world’s energy supply (section 2.2). In future, the
use of renewable energy is expected to expand dramatically; most prominently
in electricity generation, heating, and transportation.

This section provides an overview of the main technologies that are expected
to play a role in future energy scenarios.

2.3.1 Electricity Generation

Electricity is considered to be a high grade of energy; that is to say, it has
valuable properties such as being readily convertible into other forms of en-
ergy (e.g. heat, light, motion) and transmitted quickly over long distances.

Table 2.1: Current and technical potential for renewable electricity generation.

Technology Cost World (PW h yr−1) NZ (TW h yr−1)
($NZD/MW h) Potential Current Potential Current

Solar PV 570–2490† <3000 0.0114 ? 0.0
CSP 303‡ 1.05–7.8 0.0004 ? 0.0
Wind 60–120† 410 0.173 127.37 2.19
Geothermal 60‡ 0.57–1.21 0.0576 11.98 6.79
Hydroelectric 79–126* <16.5 2.840 34.6 24.09
Marine 450–520† 4.58 0.0005664 2.91§ 0.0
Nuclear 94–130† <4.1–122 2.630 N/A 0.0
Coal-CCS 184‡ <11 0.0 ? 0.0

World data: Jacobson (2009)
NZ data: Kelly (2011); Ministry of Business, Innovation and Employment
(2014)
* Kelly (2011)
† IPENZ (2010)
‡ U.S. Energy Information Administration (2014), using 1 USD = 0.80 NZD
§ Power Projects Limited (2008)
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Low grade energy, such as heat, lacks these properties (MacKay, 2009). Of
course, conversion between high-grade and low-grade energy is possible, with
inevitable losses during the conversion process. For this reason, renewable elec-
tricity generation is likely to be more important than other forms of renewable
energy, for example solar-thermal and biofuels (Jacobson, 2009).

Table 2.1 shows the different types of renewable electricity generation, includ-
ing the annual energy currently derived from these sources and the technical
potential. The current world renewable electricity production relates to 2005
(except wind and solar PV—2007). For reference, the global electricity genera-
tion that year was 18.24 PW h (Jacobson, 2009). New Zealand figures relate to
the year 2012, and total generation that year was 42.9 TW h. It must be noted
that the numbers presented in this table vary widely in terms of accuracy and
relevance; the numbers for established technologies such as hydroelectric and
nuclear are considered to be reliable, compared to emerging technologies (e.g.
marine, coal with CCS) which are more speculative in nature. It is clear, how-
ever, that significant untapped potential exists in variable generation sources,
namely solar, wind, and to a lesser extent, marine.

Solar

Solar electricity generation comes in two forms; PV, which converts sunlight
directly into electricity, and Concentrated Solar Power (CSP), which uses mir-
rors to concentrate solar radiation and generate heat as an intermediate step.
There is a great deal of solar energy available, significantly exceeding global
electricity requirements (Jacobson, 2009); however, as with many renewable
energy resources, the availability of power is not controllable. Solar PV deploy-
ment has increased dramatically in recent years, but its current contribution
to electricity supplies worldwide remains minimal.

Solar PV converts sunlight directly to electricity, with no inherent storage.
The electrical output from PV varies on a daily cycle, peaking at solar noon,
and is affected by local weather conditions. The other form of generation,
CSP, uses solar energy to heat a fluid that, in turn, drives a heat engine to
generate electricity. Because of inherent thermal energy storage in this system,
CSP generators can produce electricity at night (Jacobson, 2009).

In New Zealand, current levels of solar electricity generation are minimal. Al-
though New Zealand’s potential is similar or better than many other countries,
solar is not expected to be economically viable before at least 2020 except in
niche markets such as off-grid installations (IT Power Australia Pty Ltd and
Southern Perspectives Ltd, 2009).
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Wind

Harnessing energy from wind is not a new phenomenon, but the use of wind
turbines to generate electricity is a much more recent development. The first
grid-scale wind turbine was built in 1931; a 100 kW machine that operated
reliably for 11 years (Hau and von Renouard, 2013, pp. 31-32). In New
Zealand, the first large wind turbine was installed near Wellington in 1993.
This turbine is rated at 250 kW, and operates with a capacity factor of up to
50% (Power Projects Limited, 2008; Mason, Page and Williamson, 2010b).

The use of wind turbines for electricity generation is considered to be a rel-
atively mature technology, with costs being economically competitive with
other sources of electricity. Since a significant majority of wind energy poten-
tial remains untapped in New Zealand and around the world, the proportion
of total primary energy derived from wind is expected to increase dramatically
in coming years (Jacobson, 2009; Kelly, 2011).

The output from wind farms can vary significantly over short time periods,
creating stability problems in electricity grids with high levels of wind pene-
tration. Managing this variability is an active area of research, to which this
thesis also contributes.

Geothermal

Geothermal power plants utilise naturally heated water and steam from be-
neath Earth’s surface to generate electricity. Except for binary systems, some
of the geothermal fluid—which contains water vapour, CO2, NO, SO2, and
H2S—is released into the atmosphere, while approximately 70% is reinjected
back into the ground (Jacobson, 2009). Binary plants use a closed system
that returns all geothermal fluid back underground, making their emissions
negligible (Jacobson, 2009).

Because geothermal energy is not affected by weather conditions or time of
day, it is well suited to providing consistent base-load electricity with capacity
factors approaching 100%, but load-following is also possible (Jacobson, 2009).

New Zealand is considered to be a leader in geothermal electricity generation,
having installed the world’s first generation plant (Wairakei) in 1958, and in
2010 had derived 17% of its electricity supply from geothermal sources (Vivid
Economics and Energy Centre and University of Auckland Business School,
2012). Geothermal generation is expected to expand in New Zealand by 2025
(Ministry of Economic Development, 2011).

19



Chapter 2 Background

Hydroelectric

Of all renewable electricity sources, hydroelectric generation is currently the
most widely deployed, supplying 17.4% of global electricity in 2005 (Jacobson,
2009). The majority of hydroelectric generation extracts energy from water
falling from an artificial lake, created by flooding an area of land upstream of
a dam, while the other variety of hydroelectric generation—run-of-the-river—
does not use a dam or flood upstream land.

Hydroelectric generation (excluding run-of-the-river) is well suited to provid-
ing peak power by storing water behind the dam during off-peak hours, and
releasing it when needed. In addition, base generation is usually provided in
order to maintain minimum river flows. New Zealand’s hydroelectric system
provides up to 4.4 TW h of storage capacity, which is sufficient for approxi-
mately 34 days of electricity demand in winter (Mason et al., 2010b). While
often seen as a dispatchable source of electricity, hydroelectric availability is
limited by rainfall. Low inflows into hydroelectric lakes over long periods (“dry
years”) have created electricity shortages in New Zealand on several occasions
(Mason et al., 2010b).

Because hydroelectric generation is well established, opportunities for new de-
velopments are likely to be expensive and face opposition (Mason et al., 2010b).

Marine

Marine electricity generation extracts energy from the motion of water in
oceans, caused by tides or waves. Tidal generation provides a predictable but
intermittent output that coincides with tidal currents, using turbines mounted
underwater, while wave generation utilises floating devices to convert the rise
and fall of waves into electricity, offering a less predictable output than tidal
generation (Jacobson, 2009). Currently, marine electricity generation is a mi-
nor source of energy with limited potential compared to other renewable op-
tions.

Nuclear

The question of whether nuclear energy is renewable or not is subject to debate
(MacKay, 2009), but it is included here for completeness. Globally, nuclear
generation provides slightly less energy than hydroelectric, and is the only
other major source of energy among arguably renewable options at present.
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Since nuclear generation is dispatchable with a consistent and predictable out-
put, it is likely to remain an important source of energy around the world.
However, it is unlikely to form part of New Zealand’s future electricity sys-
tem because of the country’s nuclear-free stance, availability of less expensive
alternatives, safety concerns, among other issues (IPENZ, 2010).

Coal with CCS

Classifying coal-fired generation as renewable is questionable, but due to the
importance of coal in today’s energy systems, it is likely to remain in use for
some time (MacKay, 2009). The introduction of CCS is expected to allow
the continued use of coal-fired generation, while also meeting GHG reduction
targets (IPCC, 2014b).

Coal electricity generation plants with CCS utilise additional equipment to
capture CO2 from the emissions stream, and inject it underground for per-
manent storage. A review by Page, Mason and Williamson (2008) states that
coal (with CCS) is, at best, a transitional technology to deliver electricity while
other renewable sources are developed. The review concludes that CCS will
not help New Zealand meet its GHG reduction targets, and is therefore not
relevant to the country’s future energy needs.

Summary

There are a range of renewable electricity generation technologies, most of
which are variable and non-dispatchable in nature. Solar electricity generation
is rapidly expanding in some countries, but is not expected to be economically
viable in New Zealand for some years. Instead, wind and geothermal generation
plants are expected to make up the majority of new developments in New
Zealand.

2.3.2 Biofuels

Biofuels are derived from organic matter—such as corn or waste from forestry—
that can exist in solid, liquid, and gaseous forms (Jacobson, 2009). Applica-
tions can include electricity generation in thermal plants, liquid fuels for use
in transportation, or direct use in heating applications.

As discussed in section 2.2, road transportation uses a significant proportion
of total primary energy, and is responsible for the majority of global oil con-
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sumption. The use of biofuels to replace oil has been suggested as one solution
to both energy security concerns and GHG emissions, but is not seen as a
suitable long-term solution; biofuel crops compete with food crops, generate
non-GHG emissions when burned, and may have negative impacts on the land
used for growing (Jacobson, 2009).

While the production of biofuels represents an economic opportunity for New
Zealand, investment in biofuels for passenger vehicles is only likely to amount
to 14% of total investment, with the remainder going towards electric and hy-
brid vehicles (Vivid Economics and Energy Centre and University of Auckland
Business School, 2012).

2.4 Electric Vehicle Technology

Electric vehicles have significant potential to reduce both GHG emissions and
reliance on energy from fossil fuel sources, and are expected to play an impor-
tant role in meeting future transportation needs (Mason et al., 2010a; Duvall
et al., 2007; Vivid Economics and Energy Centre and University of Auckland
Business School, 2012). Currently, electric vehicles have not met mainstream
acceptance because of high capital costs, long “refuelling” periods and limited
range relative to ICEVs, and concerns about electricity infrastructure require-
ments (Clover, 2013; Putrus et al., 2009). This section explores the current
state of EV technology, trends, and concerns.

2.4.1 Emissions

Tailpipe emissions from EVs are zero, effectively making these vehicles a very
clean form of transportation. However, emissions do occur elsewhere as a result
of EV use—including from electricity generation used for charging, and energy
used for the manufacture and disposal of the vehicle.

While some have raised questions about the net effect of charging electric
vehicles from fossil-fuelled electricity generation (MacKay, 2009), overall emis-
sions are lower than ICEVs even when using the most CO2 intensive source
of electricity; coal without CCS (Duvall et al., 2007). A study based on the
electricity system in the United States (Samaras and Meisterling, 2008) found
that the life cycle GHG emissions from the use of PHEVs is slightly lower per
kilometre than that of conventional vehicles, even with carbon-intensive elec-
tricity generation. When low-carbon generation is used, a reduction of 60% is
expected.
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There are other advantages of concentrating emissions to large centralised elec-
tricity generators, such as enabling the use of CCS technologies that are infea-
sible to use in many small, mobile CO2 sources (Hadley and Tsvetkova, 2009),
and moving non-GHG emissions away from populated areas (Kintner-Meyer,
2007).

2.4.2 Energy Storage

Many of the criticisms of EVs can be directly attributed to their energy storage
system, such as high purchase cost, long recharging periods, and limited range.
Because of this, much research has focussed on different methods of efficiently
storing energy for mobile use. Storage systems for EVs fall into four main
categories; batteries, ultracapacitors, hydrogen fuel cells, and hybrid systems.

Table 2.2 shows the main present-day energy storage technologies for electric
vehicles. Batteries, primarily lithium-based chemistries, are the dominant form
of storage device, while hydrogen fuel cells are not yet commercially competi-
tive, costing around five times an equivalent ICEV (Khaligh and Li, 2010).

Batteries currently have the highest specific energy of the storage technologies,
and are well suited to storing bulk energy for transportation use. However,
they suffer degradation through repeated charging and discharging cycles, and
have limited power handling ability. Ultracapacitors offer complementary ad-
vantages, with much higher power handling ability and very low degradation
with repeated charge/discharge cycles, but have a very low energy storage
capacity.

Table 2.2: Comparison of EV energy storage technologies.
Roundtrip

Technology W h kg−1† W kg−1† Efficiency† Lifespan‡
Battery 35 to 175 407 to 1044 0.87 to 0.96 1000 cycles
Ultracapacitor 4.2 to 12 981 to 2569 0.94 to 0.99 10–12 years
Hydrogen 40*‡ - 0.17 to 0.25§ 10k–40k hours

* Excluding container and fuel cell

† Burke and Miller (2011)
‡ Khaligh and Li (2010)
§ Yilanci, Dincer and Ozturk (2009)
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2.4.3 Charging Considerations

The best method for charging electric vehicles remains an open question, with
different approaches offering varying degrees of convenience, charging times,
driving range, and infrastructure requirements. The main proposals are dis-
cussed below.

Domestic Charging

EVs may be charged at residential settings, with a 5 kW connection being fea-
sible in New Zealand homes, or 2 kW with no modification to existing wiring,
provided that not all households charge vehicles at the same time. It is ex-
pected that 85% of all charging requirements can be met during overnight hours
at homes, while the other 15% of charging will occur sporadically throughout
the day (Duncan, Halliburton, Heffernan, Hardie, Watson and Coates, 2010).

It is widely agreed that domestic charging will need to be controlled, because
otherwise peak charging demand will coincide with existing electricity peak
demand, resulting in severe strain on generation, transmission, and distribution
infrastructure (Clover, 2013; Putrus et al., 2009; Shortt and O’Malley, 2014;
Aunedi, Woolf, Bilton and Strbac, 2014).

While domestic charging is convenient for most vehicle travel, it is not well
suited to longer trips away from home or cases where a fast charge is required.

Public Charging Stations

Public charging stations utilise high power connections to minimise the time
spent charging an EV, which is important for enabling multi-stage journeys
that exceed the range of a single battery charge. The nature of fast charging
stations will require high power on-demand—likely during daytime hours—
leaving little opportunity to control charging rates. However, since the ma-
jority of vehicles don’t travel long distances on any given day (Ministry of
Transport, 2011), the demand for fast charging is not likely to be significant
if other, less imperative charging methods are available. A case study in Lon-
don during 2013–2014 confirmed that on average, only a minority of the total
energy consumed by an EV was sourced via public charging stations (Aunedi
et al., 2014).

Botsford and Szczepanek (2009) notes the psychological benefits of having a
fast charging infrastructure available. Following the deployment of a single fast
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charger in a Tokyo Electric Power Company service area, EV drivers began
venturing farther from their base—even though the fast charger was not well
utilised. The knowledge that they could quickly charge their vehicles during
the day, if necessary, meant that drivers were more willing to return home
with a lower State of Charge (SOC) than they would otherwise be comfortable
with.

Battery Swap

Battery swapping combines the advantages of fast “refuelling” times for EVs,
and the flexibility of charging batteries off-line when low-cost electricity is
available. Because of the weight of typical EV batteries, swapping stations
must necessarily use robots to perform the swapping. For this to be feasible,
EV batteries must be standardised and easily accessible across a range of
vehicle manufacturers and models (Mak, Rong and Shen, 2013).

Hydrogen

EVs powered by hydrogen fuel cells have promised significant potential, in-
cluding zero tailpipe GHG emissions and fast refuelling times. Hydrogen can
produced by electrolysis of water using off-peak electricity, either in large cen-
tralised facilities or on-site at refuelling stations, which can then be stored for
later use in mobile or stationary applications.

The system-level efficiency for hydrogen-powered EVs is much lower than for
BEVs, at only 26% vs 72% respectively (Page and Krumdieck, 2009). In
addition, the synthesis and distribution of hydrogen will require substantial
infrastructure, a further barrier to widespread adoption of hydrogen as an
energy storage medium for EVs.

Plug-in Hybrid

PHEVs offer a compromise between ICEVs and BEVs, including a traditional
gasoline or diesel engine, electric motor, and small battery. Since most vehicles
travel a short distance in a typical day (Ministry of Transport, 2011), the bulk
of travel can be done using electrical energy. For longer trips, or situations
where fast refuelling is needed, the vehicle can instead use its combustion
engine for propulsion. Typical all-electric range for PHEVs are expected to be
between 30 and 100 kilometres (Hadley and Tsvetkova, 2009).
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There are two forms of hybrid vehicle; series and parallel. Series hybrid-electric
vehicles (also known as “range-extended electric vehicles”) utilise a solely elec-
tric drivetrain, with an internal combustion engine configured as a generator
to charge the vehicle’s battery while driving, and thus extending its range. In
a parallel hybrid-electric vehicle, both the internal combustion engine and the
electric motor have a direct connection to the wheels.

2.5 New Zealand’s Electricity Sector

New Zealand’s electricity sector is dominated by a small number of companies;
5 major generation companies (contributing a combined 92% of annual produc-
tion), 29 distribution companies, eight major electricity retailers (Ministry of
Business, Innovation and Employment, 2014), and one national transmission
network which is operated by state-owned enterprise Transpower.

The transmission network is comprised of two synchronous AC grids—one on
each major island—which are connected via a 350 kV HVDC cable. Energy
flows primarily from generation in the South Island to population centres in
the North Island, except when hydroelectric resources in the South Island need
to be conserved during dry periods (Transpower, 2014).

2.5.1 Generation

New Zealand’s electricity network had 9.6 GW of installed generation capacity
in December 2014, which produced 42.2 TW h over the calendar year. This
is illustrated by source in Figure 2.6. Renewable sources contributed 75% of
this energy (Ministry of Business, Innovation and Employment, 2014), a figure
that the government wishes to increase to 90% by 2025 provided that security
of supply can be maintained (Ministry of Economic Development, 2011).

A large proportion of the current generation fleet is hydroelectric (55%), pri-
marily based in the South Island, while the proportions of both geothermal and
wind generation have been increasing in recent years—comprising 10.1% and
6.6% of installed capacity, respectively, in December 2014 (Ministry of Busi-
ness, Innovation and Employment, 2014). Looking forwards, geothermal and
wind generation are being touted as having the most potential to assist meet-
ing the 90% renewable electricity goal (Ministry of Economic Development,
2011).
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Figure 2.6: New Zealand generation and installed capacity by source in 2014.
Data from the Ministry of Business, Innovation and Employment
(2014).

Because of New Zealand’s reliance on hydroelectricity, periods of low rainfall
have the potential to cause electricity shortages (Nair, Naik, Chakrabarti and
Goodwin, 2012). While new wind generation is expected to help preserve
water and reduce the impact of dry periods, Bull (2010) has shown a potential
correlation between periods with low rainfall and periods with low average
wind speeds, implying that dry years may also be calm years. As a result,
Bull recommends reducing the assumed ability for wind energy to displace
hydroelectric energy by 10%, to avoid compromising security of supply.

The majority (98%) of electricity generated during the 2014 calendar year
was from large generators with a capacity in excess of 10 MW (Ministry of
Business, Innovation and Employment, 2014). Similar to most other countries,
the current deployment of Distributed Generation (DG)—small generators on
the order of 10 kW—is limited. The widespread deployment of DG will require
significant changes in existing infrastructure to support bidirectional energy
flows while maintaining protection mechanisms and power quality (Nair and
Zhang, 2009), but distribution network operators have already begun to make
these changes (Puljic, 2013).
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Figure 2.7: Typical New Zealand load profiles in summer and winter. Data
from Transpower (2013).
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2.5.2 Load

The total energy consumption for the 2014 calendar was 39.2 TW h, after ac-
counting for transmission and distribution losses. This corresponds to an av-
erage load of 4.5 GW over the course of the year. Figure 2.7 shows typical
weekly demand curves for the country’s load centres, illustrating the differ-
ence between load characteristics in summer and winter. Morning and evening
peaks are clearly pronounced during winter, as a result of increased heating
and lighting load compared to that during the summer months. While the
population of the Southland region is less than 100 000 people, its electricity
demand is substantial because of a large aluminium smelter3.

As shown in figure 2.8, growth in annual consumption has been flat since
2006 across the residential and commercial sectors, while a slight decrease
in industrial consumption has been largely cancelled by an increase from the
agricultural sector. Despite observing no significant change in demand for
eight years, Transpower (2014) expects growth to resume at a rate of 1.2% per
year until 2029.

In addition to an increase in overall electricity consumed, concern has been
raised that peak load will grow more rapidly than average load (Strbac, Pud-
jianto, Djapic, Aunedi, Stanojevic, Castro, Ortega, Telfar, Tucker, Corney and
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Figure 2.8: New Zealand annual electricity consumption by sector. Data from
Ministry of Business, Innovation and Employment (2014).

3The Tiwai Point Aluminium Smelter is responsible for approximately 17% of New
Zealand’s electricity consumption (Bertram and Clover, 2010)

29



Chapter 2 Background

Mcdonald, 2012). This is because the primary drivers of new load—namely
heat pumps and EVs—will likely draw electricity from the grid at times of al-
ready high demand in mornings and evenings if not controlled. This increased
peak-to-average ratio will be costly to accommodate in the existing electricity
system, and hence there is a strong case for the deployment of “smart grid”
technology to assist with demand management (Strbac et al., 2012).

2.5.3 Storage

As of 2015, New Zealand does not have any large-scale electricity storage sys-
tems beyond the inherent storage capacity in the hydroelectric system. The
maximum capacity for all hydro lakes combined is approximately 4.2 TW h, of
which the vast majority (85%) is in the South Island (Opus International Con-
sultants Limited, 2010). Only Lakes Taupo and Waikaremoana are situated
in the North Island.

Figure 2.9 shows the daily storage levels of all major lakes over the 20-year
period between 1990 and 2010, calculated as a function of the minimum and
maximum permitted water levels, and the efficiency of all downstream genera-
tion. During the same period, aggregate inflows into the hydroelectric system
averaged approximately 2.1 TW h per month, with a range from 0.984 TW h
to 5.34 TW h (Opus International Consultants Limited, 2011).
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Figure 2.9: New Zealand’s hydroelectric energy storage, 1990–2010. Data from
Opus International Consultants Limited (2010).
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Bardsley (2005) has proposed that the storage potential could be significantly
improved with the addition of a Pumped Hydroelectric Storage (PHES) scheme
in the Onslow-Manorburn depression in the South Island, which could add an
additional storage capacity of up to 10.2 TW h. This scheme is intended to
provide long-term storage on a seasonal to multi-year basis to enhance energy
security during dry years.

2.5.4 Scheduling and Dispatch

New Zealand operates a security constrained economic dispatch system for
ensuring that generation meets load at all times. Ancell (2007) summarises
the process as follows:

• Generators submit energy and reserves offers for the day ahead.

• Purchasers submit load bids.

• The System Operator runs processes to produce schedules of cleared
generation (energy and reserves) required to meet the forecast load.

• Generators and Purchasers can revise their offers and bids until two hours
before dispatch.

Bids are specified to cover a half-hour trading period, while dispatch actions oc-
cur at five-minute intervals. In addition to ensuring that scheduled generation
is sufficient to meet forecast load, reserves are included to provide redundant
generation in the event of an unexpected outage. The magnitude of reserve
generation is dictated by the largest unit on the grid, which is 300 MW in
the North Island, and 130 MW in the South Island (Ancell, 2007). Frequency
keeping is another important aspect of maintaining balance, and is tendered
outside the energy and reserves market (Nair et al., 2012). Current require-
ments for frequency keeping include band of ±50 MW and an ability to change
output at a rate of 10 MW min−1 (Ancell et al., 2005).

There is some concern that the current approach to managing the dispatch
and frequency-keeping process is not sufficient to support variable generation
sources; for example, Ancell et al. (2005) identifies that with 800 MW of wind
capacity, generation output could change at rates in excess of 40 MW min−1—
much greater than the minimum rate required of frequency keeping stations.
Because bids are required to be finalised two hours before the time of dis-
patch, errors in wind generation forecast may be significant enough to exceed
the ±50 MW frequency-keeping band; expanding this band to ±75 MW would
likely add costs of $2M per month (Ancell et al., 2005).
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2.6 New Zealand’s Vehicle Fleet

Similar to many OECD countries, the dominant form of transportation in
New Zealand is the light passenger vehicle (OECD, 2013). The country ranks
highest in the OECD for vehicle ownership per capita, at 82 vehicles per 100
inhabitants, and fourth in terms of passenger vehicles per capita, at 64 vehicles
per 100 inhabitants (OECD, 2013). As mentioned previously in this chapter,
transportation is responsible for a sizeable proportion of non-agricultural GHG
emissions, and the majority (81%) of oil consumption in New Zealand (Ministry
of Business, Innovation and Employment, 2014)).

Within the transportation sector, the light private fleet is the largest con-
sumer of petrol (94%), and a smaller amount of diesel (18%), while also being
responsible for 64.8% of transport-related GHG emissions (Ministry of Trans-
port, 2014). Thus, moving the light private vehicle fleet from oil-based fuel to
electricity would have significant potential to address both energy and GHG
concerns in New Zealand.

2.6.1 Composition

New Zealand had 2.7 million light passenger vehicles in 2013, which contributed
77% of all road distance travelled during the year prior, while light commercial
vehicles contributed a further 15% of total distance travelled. The remaining
8% of travel was by motorcycle, heavy truck (over 3500 kg), and bus (Ministry
of Transport, 2014).

The average age of light vehicles in the fleet is has been gradually increasing
since 2000, from 11.75 years to 13.25 years in 2013, with the average age of
vehicles leaving the fleet being 20 years for petrol vehicles and 18 years for
diesel. Average fuel efficiencies and GHG emissions per km have improved be-
tween 2005 and 2013, from 9.58 l/100km to 7.97 l/100km and from 220 g km−1

to 183 g km−1, respectively (Ministry of Transport, 2014).

EV penetration in New Zealand is currently very low, with only 108 vehicles
registered for road use in December 2013, while PHEV penetration was higher
at 764 vehicles (Ministry of Transport, 2014).
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Figure 2.10: New Zealand’s vehicle fleet in 2012 (Ministry of Transport, 2014).

2.6.2 Vehicle Use

A household travel survey (Ministry of Transport, 2011) conducted between
2007 and 2010 indicates that driving is the most prevalent form of transporta-
tion in New Zealand, occupying two-thirds of travel time, while travelling as
a passenger, walking, cycling, public transport, and motorcycling make up
the remaining third. On average, private vehicles are in use for 3.3% of the
time, and the average distance driven per day is 28 km spread over three trips.
Males drive 12 000 km per year on average, while females drive 8000 km. The
majority of trips (66%) did not carry any passengers.

Of all road travel, the light private vehicle fleet is responsible for the majority of
both aggregate distance travelled, and GHG emissions as shown in figure 2.10.
This tends to suggest that reductions to GHG emissions from this mode of
transportation will have significant potential to reduce GHG emissions across
all road transportation in New Zealand.

33



Chapter 2 Background

2.6.3 Predicted Uptake of Electric Vehicles

For EVs to be beneficial to reducing the consumption of fossil fuels and emission
of GHGs at a national level, they must be deployed in sufficient numbers.
A study by Clover (2013) evaluates the expected uptake of electric vehicles
between 2012 and 2030, including the split between general purpose EVs, city
EVs (those with limited range and/or top speed), PHEVs, and ICEVs. By
2030, the number of EVs in New Zealand is estimated to range between 1.4
and 1.8 million, with 54% to 61% of those being PHEVs.

Clover (2013) also notes that general-purpose EVs would be the least popular
type of EVs, comprising a maximum of 20.2% of the electric fleet in 2030 if
battery prices were to drop significantly from current levels. Primary reasons
for this choice being unpopular include high purchase cost and limited driving
range. The study does not, however, investigate potential V2G revenue as a
way to offset high battery costs. While not conclusive, several studies indicate
that these revenues may be significant (Han and Han, 2013; Kempton and
Tomić, 2005a), and from a grid perspective, the net cost of providing energy to
a V2G-enabled vehicle fleet could potentially be negative (Concept Consulting
Group Ltd, 2012).

2.7 New Zealand’s Energy Strategy

New Zealand’s energy strategy (Ministry of Economic Development, 2011)
specifies the goal to “Make the most of our energy potential”, which is divided
into four priorities and subdivided into 12 areas of focus, as shown in figure
2.11. Many of these focus areas are closely related; in particular, increas-
ing the proportion of renewable electricity generation and moving towards an
electrified vehicle fleet covers all four priorities.

Much of the Energy Strategy is based on the assumptions that have been
presented earlier in this chapter, namely that a) GHGs will become increasingly
factored into world markets, b) technological advances will continue in the
electricity and transportation sectors, and c) the price of oil will continue to
rise and become more volatile.

Perhaps the most important target specified in the Energy Strategy is a 90%
renewable electricity system by 2025, providing that security of supply is not
compromised. This is expected to be achieved through a combination of new
wind farms and geothermal generation plants.
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Figure 2.11: New Zealand’s energy goals. Reproduced from the New Zealand
Energy Strategy document (Ministry of Economic Development,
2011).

35



Chapter 2 Background

The following subsections provide an overview of the energy strategy, including
the relevance to this research. Unless stated otherwise, claims made in this
section relate specifically to the energy strategy document published by the
Ministry of Economic Development (2011).

2.7.1 Develop Resources

The first priority in the Energy Strategy is to develop resources, including
petroleum/mineral fuel, renewable energy, and new “green” technologies.

The development of indigenous petroleum and coal does not contribute to
the reduction of fossil fuel consumption or GHG emissions, but is seen as
important because of its contribution to energy security and reduced exposure
to the volatility of international markets; fossil fuels will continue to be an
indispensable part of New Zealand’s primary energy supply for the foreseeable
future.

The second and third focus areas are of more relevance to the research in this
thesis—to develop renewable energy sources, and to embrace new technologies.
Renewable electricity generation is seen as the main priority, although other
technologies are also included such as direct use of geothermal energy, pro-
duction of biofuels, and technologies that may not exist yet. The government
will provide support for the adoption of renewable energy, through market
incentives and removal of unnecessary regulatory barriers.

The renewable energy sources expected to have the most impact in coming
years are wind and geothermal, although a diverse range of other technologies—
for example tidal and solar—are expected to contribute to a secure supply by
reducing reliance on a single technology.

The Energy Strategy supports new technologies, such as using electric vehicle
batteries for grid-scale energy storage, as well as a number of other energy
storage and “smart grid” technologies if shown to be commercially viable.
Specifically, the government is in support of research and development in these
areas to determine whether they have any relevance in New Zealand’s energy
future.

The development of renewable resources, including the storage and so-called
“smart grid” technologies necessary to support their integration into the elec-
tricity grid, is seen as vital part of meeting the 90% renewable electricity target
by 2025.
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2.7.2 Secure and Affordable Energy

Secure and affordable access to energy is considered to be vital in supporting
economic growth and well-being. New Zealand relies on imported oil for half
of its primary energy supply, and almost all transportation requirements. This
leaves the country vulnerable to volatile international oil markets. Beyond in-
creasing indigenous oil production, the diversification of fuel for transportation
and increasing the efficiency of vehicles will help to ensure a secure, affordable
energy supply.

A reliable electricity system is defined as having enough generation capacity
to supply peak load, having a diversity of sources to provide enough energy in
the long term (taking into account variability in, for example, hydro inflows
and wind), and having infrastructure in place to deliver electricity from the
source to the end user with minimal losses. The Energy Strategy also includes
a provision for demand-side technologies such as distributed generation and
demand-side load management systems.

Since EVs can be charged from a range of primary energy sources, and are much
more efficient than ICEVs, they potentially offer a significant contribution
towards a secure and affordable energy supply in New Zealand. Being a net
consumer of energy, EVs cannot contribute directly towards energy security
goals; however, the flexibility offered by smart charging and V2G could enable
better utilisation of non-dispatchable electricity sources that would otherwise
be difficult to accommodate.

2.7.3 Efficient Use of Energy

The third Energy Strategy priority is the efficient use of energy. This priority
is targeted across a range of areas, for example providing better information
to consumers about different options for purchasing various forms of energy,
using smart meters and other technologies to help identify inefficient energy
use, or offering programmes that encourage better home insulation.

Transportation has been identified as an area with significant potential to
improve efficiency, including better public transport, the promotion of walking
and cycling in urban areas, and encouragement to increase the uptake of fuel-
efficient vehicles. The strategy also states that the government will support
the entry of alternative transport fuels into the national fleet, including EVs.
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2.7.4 Environmental Responsibility

The final priority is environmental responsibility, which covers GHG emissions,
non-GHG emissions, fresh water management, and an improved consenting
process under the Resource Management Act 1991.

Within the energy sector, GHG emissions are dominated by transport (44%)
and electricity generation (19%). The government has a target of reducing
GHG emissions across all sectors to 50% below 1990 levels by 2050, and is
willing to commit to between 10% and 20% below 1990 levels by 2020. Steps
towards achieving these targets include the New Zealand Emissions Trading
Scheme (NZ ETS), and support for greater investment in renewable energy,
efficiency, and conservation.

2.8 Smart Grid

The concept of a “Smart Grid” relates to the fusion of traditional electricity
transmission networks, and ubiquitous communication networks that together
form a large distributed computing platform (Farhangi, 2010; Amin and Wol-
lenberg, 2005). This will enable faster reaction to electrical faults, fine-grained
monitoring of network performance, and advanced energy flow management
as the electrical network topology moves away from the traditional model of
few large dispatchable generators and a large number of “dumb” consumers,
to one with many small non-dispatchable generators, “smart” consumers that
can react to changing supply conditions, and large-scale distributed energy
storage devices (Farhangi, 2010). At a fundamental level, the smart grid will
be the enabling technology for making the most efficient use of existing infras-
tructure, and reducing the investment needed to meet future electricity needs
(Farhangi, 2010).

While the exact form of the smart grid is not yet clear, Farhangi (2010) suggests
a layered approach similar to that used in the current internet. At the lower
levels, sensors, actuators and communication links will be ubiquitous, while
upper levels will be responsible for implementing features such as managing
distributed generation, storage, and Demand-Response (DR). Ultimately, the
smart grid would be a network of interconnected microgrids without the cen-
tralised control that is a feature of traditional electricity grids. Similarly, Amin
and Wollenberg (2005) envisions the smart grid being comprised of many inde-
pendent “agents”, each containing sensors to measure information about their
own state, and having communication links with other agents to share state
information and cooperate as a distributed computing platform.
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Ramchurn, Vytelingum, Rogers and Jennings (2012) state that the smart grid
will be radically different from current electricity grids, and support bidi-
rectional flows of both data and energy between all parties so that variable
generation may be incorporated at scale. In addition to the technical and
engineering challenges, the smart grid is expected to interact with end users
directly through user interfaces, and indirectly through the application of ma-
chine learning techniques to analyse behavioural patterns. The data collected
through this interaction will be used to optimise grid operations to ensure that
all energy demands are met (Ramchurn et al., 2012).

2.9 Cyber Security

With the increasing utilisation of networked computers in the smart grid and
smart vehicles, it is essential to ensure that these systems are secure against
cyber attacks.

McDaniel and McLaughlin (2009) identify a number of risks associated with
attacks on smart meters, ranging from gaining the ability to manipulate elec-
tricity usage data and hence enabling the theft of energy, through to launching
distributed denial-of-service attacks and disabling a critical component of the
smart grid. Since utilities will rely on smart meters to collect information such
as available capacity and potential problems in the network, and to control
load during times of peak demand, these types of attacks have the potential
to disrupt or physically harm critical infrastructure at a local or national level
(McDaniel and McLaughlin, 2009).

The parallel roll-out of smart vehicle technology also exposes similar risks.
Newer vehicles are equipped with increasingly sophisticated systems to enhance
safety and efficiency, for example the ability to share warnings about dangerous
road conditions with other vehicles. Abuse of this technology has the potential
to cause a wide range of problems, including disruption of traffic flows by falsely
advertising dangerous road conditions (Raya, Papadimitratos and Hubaux,
2006), remote locking of vehicles until a ransom is paid, theft by remotely
unlocking a vehicle, and at the extreme end of the scale, sabotage by remotely
instructing a vehicle to aggressively apply brakes to induce a loss of control
(Zhang, Antunes and Aggarwal, 2014).

Zhang et al. (2014) suggest that traditional approaches for protecting against
malware is impractical to implement within vehicles because of limited on-
board processing power and the long lifespan of vehicles compared to tra-
ditional computers. They propose that communication traffic with a vehicle
should be routed through cloud computing resources, where it will be analysed
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for the presence of malware. For attack vectors other than wireless commu-
nication, for example removable media connected to a vehicle’s entertainment
system, a limited form of local analysis can be performed; if anything suspi-
cious is found, it should be uploaded to the cloud for further analysis (Zhang
et al., 2014). This approach may also be relevant to help secure smart grid
infrastructure to protect against tampering with smart meters through their
wireless interfaces or local infrared communication ports.

Although the security aspects related to the smart grid and vehicle systems
are not a focus in this thesis, it is acknowledged that these issues exist, and
that maintaining a high level of security is vital to ensure the acceptance and
success of smart grid and smart vehicle technology.

2.10 Social Barriers

A lot of research into the adoption of EVs and smart grid technologies tends
to focus on the technical aspects related to their use, although their social
acceptance is crucially important if these technologies are to be successful (So-
vacool and Hirsh, 2009). Barriers to adoption may include opposition to new
and unproven technologies caused by a poor understanding of the performance
characteristics of electric vehicles (Sovacool and Hirsh, 2009) to concerns re-
lated to the privacy and security risks created as a result of large-scale data
collection of electricity demand and vehicle travel (McDaniel and McLaughlin,
2009; Simmhan, Kumbhare, Cao and Prasanna, 2011b).

The extensive collection and analysis of data is fundamental to the operation of
a smart grid, to allow accurate load forecasting, respond to disturbances, and
provide detailed information to consumers (Simmhan et al., 2011b). Unfortu-
nately, there is significant potential for this information to be used (or mis-
used) for purposes other than the reliable supply of electricity. For example,
non-intrusive load monitoring by smart meters can reveal detailed behavioural
patterns about occupants of a household such as the times the home is oc-
cupied, whether a stove or microwave is used for cooking, how often clothes
are washed, when a TV is being watched, and sleeping patterns (Cavoukian,
Polonetsky and Wolf, 2010; McLaughlin, McDaniel and Aiello, 2011; McDaniel
and McLaughlin, 2009). This information could prove to be commercially valu-
able for purposes such as targeted advertising (Cavoukian et al., 2010).

EVs and other mobile appliances may consume electricity at multiple locations
such as home, work, or public charging stations. This may expose snapshots of
the vehicle’s location for the purposes of billing and controlling charging rates,
and hence reveal personal information that could be exploited for purposes

40



2.11 Summary

other than delivering energy to the vehicle (Cavoukian et al., 2010). Privacy
issues related to vehicle use are not unique to EVs and smart grid—some insur-
ance companies offer a discount in exchange for recording driving habits with
a GPS logger. To preserve privacy, this record might contain only speed/dis-
tance data without location; however, it may be possible to recover location
information by combining the distance record with publicly-available mapping
data, and hence reconstruct the movements of the vehicle (Gao, Firner, Sug-
rim, Kaiser-Pendergrast, Yang and Lindqvist, 2014).

The widespread collection and analysis of data is a fundamental part of smart
grids and smart transportation systems in the future. This proliferation of
data must be carefully managed to protect the privacy of those involved;
Cavoukian et al. (2010) argues that privacy should be built into the smart
grid. These issues are beyond the scope of the research presented in this the-
sis, but are nonetheless important to consider. Assumptions are made in later
chapters about the willingness of consumers to participate in smart grid and
V2G schemes, to make data available for commercial use, and to adapt driv-
ing/charging behaviours that may differ substantially from today’s patterns.

2.11 Summary

There is little doubt that most, if not all, countries will move towards re-
ducing their GHG emissions, as well as their dependence on fossil fuels. The
widespread deployment of non-dispatchable renewable electricity generation
and EVs is thought to be critical in meeting these goals; however, the success
of these technologies will require significant flexibility in the operation of elec-
tricity grids. Strategies for managing this flexibility are therefore an important
area of research.

This chapter has provided motivation for a case study involving the widespread
deployment of EV and wind generation in New Zealand, including an overview
of the characteristics of the major technologies likely to be involved in a fu-
ture energy scenario. The following chapter discusses research related to the
widespread deployment of EVs and non-dispatchable electricity generation,
and establishes the course of research to be discussed in the remainder of this
thesis.
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Two of the technologies expected to have the most impact in reducing GHG
emissions and fossil fuels dependence are Electric Vehicles (EVs) and renewable
electricity generation; wind turbines in particular. The widespread deployment
of these technologies will challenge the traditional operation of electricity grids,
by introducing greater uncertainty and short-term variability in electricity gen-
eration, while also necessitating the coordination of EV charging to prevent
overloading electrical transmission and distribution infrastructure.

Managing variability and peak load in electricity systems is not a new chal-
lenge; however, when faced with a high proportion of non-dispatchable gen-
eration and a large number of synchronised high-power loads (e.g. EVs),
continuing to manage variability by utilising highly dispatchable generation
will become prohibitively expensive (Chardon, Almén, Lewis, Stromback and
Château, 2008). Alternative approaches, such as DR and storage, are therefore
of increasing interest.

This chapter provides a review of studies related to the large-scale integration
of renewable electricity generation, the impacts of EV charging on electricity
infrastructure, and strategies for managing and controlling the charging of
large numbers of EVs.

3.1 Integration of Non-dispatchable Generation

The management of variability is an essential element in any electricity system;
a fundamental requirement being to maintain the balance between generation
and load at all times. Over short periods (seconds to minutes), generators must
be able to quickly ramp their output up or down to match changes in load,
while over the mid term (minutes to hours) generators must provide sufficient
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power to cover load. Over longer periods (months to years), generators must
be able to deliver sufficient energy to cover total demand. Maintaining this
balance is usually achieved by adjusting the mechanical inputs to generators
in response to any observed mismatch between generation and load (Backhaus
and Chertkov, 2013). This approach becomes less feasible with high levels
of non-dispatchable generation, which has led to many studies searching for
flexibility in other parts of the system.

With renewable generation, the effects of variability are seen across a wide
range of time scales. For example, power output from solar PV can rapidly
change in response to passing cloud, while nightfall will reduce its power gener-
ation capacity to zero. In addition, sunlight hours in temperate areas vary on
a seasonal basis, resulting in more energy production during summer months,
and less during winter. On the other hand, hydroelectric generation (with
reservoir) can provide fast ramping and reliable power output in the short to
mid term, but may suffer from long-term energy shortages during extended pe-
riods of low rainfall (Suomalainen, Pritchard, Sharp, Yuan and Zakeri, 2015;
Mason et al., 2010b). In that situation, other more expensive energy sources
must be used to preserve water in the hydro system (Suomalainen et al., 2015).

When the penetration of wind generation in an electricity system is low, its
variability is dominated by natural variations in load and therefore can be ac-
commodated using traditional methods without much difficulty (DeCarolis and
Keith, 2005). Depending on the particular electricity system, additional mea-
sures become necessary to maintain short-term balance when non-dispatchable
generation exceeds 10 to 20%. This is not to say, however, that a small amount
of non-dispatchable generation has no additional balancing costs associated
with it, nor that exceeding the aforementioned threshold will cause a rapid in-
crease in costs. DeCarolis and Keith (2005) argues that while a small amount
of wind generation can be accommodated without increased balancing require-
ments, it comes at a cost of reduced reliability. Furthermore, the variability
introduced by wind will increase in proportion to the wind penetration level,
and hence the balancing costs will scale linearly with the amount of wind
generation in the system (DeCarolis and Keith, 2005).

A discussion of techniques that may be used for managing variability in an
electricity system—namely load-following generation, demand-response, and
energy storage—is included in the following sections.
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3.1.1 Load-following Generation

Since present-day electricity grids manage variability primarily on the sup-
ply side, many studies related to renewable generation integration focus on
increasing supply-side flexibility to compensate for the variable output of non-
dispatchable generation sources. The costs of providing this compensation
are tightly related to the existing flexibility in a particular electricity system;
for example, electricity systems with high levels of inflexible nuclear and coal
generation will face higher costs than systems that are dominated by more flex-
ible sources such as hydroelectricity (Strbac, Aunedi, Pudjianto, Teng, Djapic,
Druce, Carmel and Borkowski, 2015).

The effort required to accommodate a new non-dispatchable generation re-
source largely depends on its output characteristics, particularly in relation
to other generation sources, and also to load. When planning a new wind
generation sites, for example, it is beneficial to choose a site with an expected
output profile that is negatively correlated with the generation profiles of other
sources, and positively correlated with load (Suomalainen et al., 2015).

Inflows into existing hydroelectric generation systems in New Zealand are dom-
inated by spring/summer snow melt in the South Island, and winter rainfall
in the North Island. Because the South Island hydro system is much larger in
terms of storage and power capacity, and because demand is generally higher
in winter, it is beneficial for new non-dispatchable generation to have a com-
plementary output profile in order to maintain an energy balance at a seasonal
level (Suomalainen et al., 2015). By investigating the correlations between his-
torical hydroelectric lake levels, wind speed, electricity prices, and electricity
load, Suomalainen et al. (2015) found that the best suited wind farm sites are
likely to be in Southland, since average wind speeds there are high when hydro-
electric lake levels are low. Unfortunately, Southland is a considerable distance
from New Zealand’s main load centres in the North Island (Suomalainen et al.,
2015).

Ideal sites for renewable electricity generation are often far from load centres
for other reasons as well. For example, wind farms are most effective in windy
areas, solar PV performs best when located in areas with plentiful sunlight,
and hydroelectric generation (including PHES) is constrained to sites with
suitable geography. This necessitates long transmission distances, resulting
in increased losses, congestion, and power quality issues—particularly during
times of high load (Suomalainen et al., 2015; Klimstra, 2014; Abeyratne, 2007;
Strbac et al., 2015).
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Distributed Generation (DG) is often said to offer the advantages of reduced
transmission and distribution losses, as well as lower peak net demand, by the
simple observation that this form of generation is located physically close to
the point of consumption (Nair and Jing, 2013). However, local weather condi-
tions can strongly influence all local generators simultaneously, which can cause
power quality issues. Klimstra (2014) explains that when local generators are
producing a significant amount of power, other more expensive dispatchable
generators will be forced offline. As a result, the remaining generators with
load-following capability will likely be far from the point of consumption. This
will negatively influence local power quality and security of supply, and also
increase transmission losses. Alternatively, DG can be curtailed so that lo-
cal dispatchable generation can continue to operate, but this approach—by
definition—results in significant energy spillage (Strbac et al., 2015; Liu, Hu,
Lund and Chen, 2013).

At times when DG is producing very little output, sufficient generation ca-
pacity must be available elsewhere in the system to cover load. This could
be local dispatchable generation, or geographically distant non-dispatchable
generation that is currently experiencing more favourable weather conditions.
As an example, distributed solar PV will not generate electricity during New
Zealand’s highest load periods—typically winter evenings when space heat-
ing, cooking, and lighting loads are present (Transpower, 2013). This suggests
that non-dispatchable DG, on its own, does little to reduce peak loads (Miller,
Hwang, Lemon, Read and Wood, 2015).

Fripp (2011) investigates GHG emissions from natural gas generation when
used to back up the uncertainty introduced by large-scale wind deployment,
using historical wind speed data to estimate the level of dispatchable spinning
and non-spinning reserves needed to accommodate short-term forecasting er-
rors in wind generation in the United States. With wind farms spread over
an area with a diameter of more than 500 km, it was found that the use of
natural gas for accommodating errors in wind forecasts would undo about 6%
of the GHG savings expected from the use of wind generation. This study
assumes a simplified power system with an installed capacity of dispatchable
generation equal to at least that of wind generation, and only includes GHG
emissions resulting from accommodating errors in wind forecasts—it does not
include emissions from dispatchable generation scheduled when wind forecasts
are insufficient to cover load. It also does not address the energy lost when
wind generation exceeds load, which will become significant at high wind pen-
etration levels (Franco and Salza, 2011). In any case, the use of natural gas
to balance fluctuations in wind output is likely to be expensive and should be
avoided as much as possible (Franco and Salza, 2011).
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3.1.2 Demand Response

Demand-Response (DR) is described as the ability to “...shift demand from one
moment in time to another without noticeably affecting the quality of service”
(Tindemans, Trovato and Strbac, 2015), which effectively allows some appli-
ances to act as virtual energy storage devices. The primary goal of DR is to
adapt demand to match supply conditions, for example by reducing load dur-
ing peak demand periods (peak shaving), smoothing load profiles to reduce the
need to start and stop generation units (Simmhan, Aman, Cao, Giakkoupis,
Kumbhare, Zhou, Paul, Fern, Sharma and Prasanna, 2011a), and providing
reserve services for covering unexpected losses in generation capacity (Tinde-
mans et al., 2015). Appliances that are well suited to providing DR services
include those which have inherent energy storage, such as heating/cooling ap-
pliances and EVs, or which provide flexibility over the timing of their use, for
example dishwashers and clothes driers.

A recent study by Tindemans et al. (2015) explored the potential for thermo-
static appliances to act as primary and secondary reserves in power systems.
The study involved simulating up to 100 000 refrigerators, each of which im-
plemented a distributed algorithm for controlling aggregate load in response to
a trigger—for example, a particular time of day, or an under-frequency event.
The temperature of any individual appliance was not allowed to stray beyond
a typical deadband, meaning the expected quality of service provided by the
refrigerators was never compromised. Under these conditions, the aggregate
refrigeration load was able to drop to 50% within 10 seconds of observing a
trigger condition, and remain at 75% of nominal load for up to 30 minutes.
Earlier work has demonstrated similar findings (Kupzog, 2008), while local
studies have shown that up to 50 MW of regulation potential may be provided
by grid-aware thermostatic appliances in New Zealand (Alzaanin, 2014; Strbac
et al., 2012).

DR has the potential to significantly offset energy costs; for example, Aikema
and Simmonds (2012) has shown that data centres in the United States can
participate in the regulation and operating reserve markets by dynamically
modifying server workloads in response to electricity supply conditions, in-
cluding the ability to temporarily suspend a proportion of servers during grid
contingencies. While data centre operators must still pay for energy consumed
by the facility, payments received for offering such flexibility can reduce net
energy costs to zero with only a minor decrease in data centre performance
(Aikema and Simmonds, 2012).

New Zealand currently has a wide deployment of ripple control for water heat-
ing, an elementary form of DR, and in recent years many electricity distribution
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and retail companies have begun rolling out smart meters to consumers. These
meters have the potential to support more sophisticated DR options in future,
including fine-grained control of anticipated loads such as EVs, heat pumps,
and smart appliances (Strbac et al., 2012; Puljic, 2013).

3.1.3 Energy Storage

While both DR and load-following generation both offer a substantial contri-
bution towards maintaining balance in an electricity system, those approaches
alone are not sufficient when a high proportion of non-dispatchable electric-
ity generation is considered (Strbac et al., 2012). Energy storage is therefore
necessary to absorb surplus generation from non-dispatchable sources, and to
cover generation shortages during periods of high demand and/or low genera-
tion output (Black and Strbac, 2006).

Storage within an electricity system may take a number of different forms,
from large-scale centralised storage facilities such as Pumped Hydroelectric
Storage (PHES), to highly-distributed storage units deployed in residential
homes (Apperley, Monigatti and Suppers, 2015) or even integrated into small
appliances; for example, batteries in laptop computers (Morisawa, 2007).

In addition to topology considerations, storage systems are required to hold
energy over a wide range of time scales to compensate for variability in gen-
eration and load; from near-instantaneous fluctuations in power imbalance,
through to seasonal and multi-year variations in energy supply and demand
(Mason, Page and Williamson, 2013). These requirements determine the nec-
essary performance metrics of the storage systems in question, in terms of
responsiveness to changes in power, absolute power input and output, and
total energy storage capacity. In the present-day electricity system in New
Zealand, for example, very rapid changes in generation and load—time scales
up to several seconds—are smoothed by the inertia of rotating machinery such
as generators and turbines, which is extremely responsive but has very little
energy storage capacity. Much slower changes—measured in months to years—
are often smoothed by water stored in hydroelectric lakes, which have a very
large energy storage capacity, but a slow response time.

Centralised Storage

Storage in New Zealand is currently dominated by the combined 4.2 TW h
capacity of its hydroelectric reservoirs, with no PHES capability. The en-
ergy contained in these reservoirs must operate within a number of constraints
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including minimum and maximum allowable lake levels, river flow rates, gen-
eration and transmission capacity—all of which may vary with time (Opus
International Consultants Limited, 2010). In addition, much of the storage
capacity is required to buffer the variable inflows into the hydroelectric system
itself from rainfall and snow melt, so the effective storage capacity available for
other purposes, such as facilitating the integration of non-dispatchable gener-
ation sources, will be less than the aggregate capacity of the lakes.

Studies by Mason et al. (2010a,b) have investigated the potential for 100%
renewable electricity generation in New Zealand, exploiting the existing hydro-
electric storage capacity. Models used in these studies were based on historical
generation, load, hydro inflow, and wind speed time-series data, combined
with parameters such as generation capacity by plant type and permissible
lake storage levels. All hydroelectric systems were aggregated into a single
virtual reservoir, with its behaviour dictated by historical observations of peak
power output and ramping rates. After replacing fossil fuel generation with
new renewable generation, it was found that increased wind penetration would
result in larger and more frequent power deficits, and increased hydro spillage.

A later study by Mason et al. (2013) aimed to minimise energy spillage by pre-
emptively switching off geothermal generation when spillage was expected, and
mitigated power deficits using a 1.5 GW PHES scheme with a storage capacity
of 368 GW h and a utilisation factor of only 0.76%. The authors conclude that
a 100% renewable electricity system could provide a secure electricity supply
over the 6-year study period, but suggest that alternative methods to address
power deficits should be considered.

While centralised energy storage has been shown to provide sufficient energy
and power capabilities to support a 100% renewable electricity system in New
Zealand, the transmission and distribution network impacts are less clear. For
reasons discussed in section 3.1.1, centralised storage is likely to be located
far from load centres, and hence suffer from congestion in the transmission
network during peak load periods.

Distributed Storage

The use of distributed storage can reduce peak loading of transmission and dis-
tribution infrastructure by placing energy storage appliances physically close
to load. These appliances are typically modular and scalable, which include
large units on the order of several hundred1 kW h for installation within dis-
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tribution networks, and smaller units on the order of ones2 to tens3 of kW h
for installation in residential and commercial buildings.

Since peak loading is typically a short-lived phenomena, occurring twice daily
and lasting up to several hours (Transpower, 2013), distributed storage ca-
pacity does not need to be particularly large to realise its benefits. Indeed,
it has been noted that present-day distributed storage technologies become
prohibitively expensive when energy must be held for more than a few days,
and are therefore not appropriate for seasonal balancing (Klimstra, 2014, pp.
120).

Studies related to distributed storage typically investigate its applications in
conjunction with distributed generation. For example, a study by Mason
(2015) estimated the storage requirements for small islanded electricity sys-
tems in six locations across New Zealand, using a simulation approach over
a one-year period. This study utilised hourly electricity load, solar insola-
tion and wind speed data, and simulated an energy storage system with a
round-trip efficiency of 81%. Generation was sized such that annual energy
production matched annual load, plus an additional allowance to compensate
for storage losses. It was found that solar PV required up to three times more
storage capacity than wind generation—approximately four months of average
load—to maintain balance over the study period. This is mainly attributed to
higher demand over winter, and higher solar PV output during summer. Wind
generation was observed to be more stable than solar PV over the simulated
year, although considerable short-term variability was also present.

To address the large storage requirements for integrating distributed genera-
tion, the grid-lite concept (Apperley et al., 2015) includes a lightweight con-
nection to a wider electricity grid to provide any balancing needs that cannot
be met by local storage. In contrast to net-zero energy balance systems, grid-
lite imposes a power limit on the grid connection which is typically much less
than the peak demand of the building. Experiments by Apperley et al. (2015)
focussed on a single residential household, with solar PV sized to provide net-
zero energy balance over a one-year study period. Local storage capacity was
sized to hold 24 hours of average load, while the grid connection was limited
to approximately 20% of peak load. The study found that even without a
predictive control system, violations of the grid connection limit were rare.

Although distributed storage is not suitable for long-term balancing, its ap-
plication for smoothing short-term variability is compelling. Rasmussen, An-
dresen and Greiner (2012), for example, found that adding efficient short-term
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storage to a system with inefficient long-term storage greatly improved the
efficiency of the overall system.

3.1.4 Discussion

Maintaining balance between electricity generation and load is not a new
challenge, but it is expected to become progressively more difficult as non-
dispatchable generation and high-powered synchronised loads such as EVs be-
come more prevalent. Large dispatchable generators have traditionally been
responsible for maintaining this balance, but DR and storage technologies are
expected to play an increasingly important role in future.

New non-dispatchable generation technologies and sites should be chosen such
that their output profiles are positively correlated with load, and negatively
correlated with other non-dispatchable generation, so that long-term storage
requirements are minimised. As a result, it is likely that new generation will
be a considerable distance from load centres, resulting in long transmission
distances and constraints during high load periods. Distributed generation
technologies such as solar PV typically do not reduce peak load, since their
output is often poorly correlated with load.

By exploiting the flexibility of some electrical loads, DR technologies have
significant potential to compensate for the short-term variability introduced
by non-dispatchable generation sources, at a relatively low cost. However, DR
has limited ability to provide flexibility over the longer term.

To address the shortcomings of load-following generation and DR technologies,
both long and short term storage are likely to be necessary. While large cen-
tralised reservoirs are well suited to providing long-term energy storage, they
are likely to be situated in remote locations and hence limited in their ability
to balance short-term variability and mitigate transmission constraints during
peak load periods. Distributed storage offers the complementary advantage of
being well-placed for covering short-term peaks in demand, but present-day
technology becomes prohibitively expensive when energy must be stored for
more than a few days.

A grid-lite approach supports a combination of centralised and distributed
storage to be used together, in order to realise the benefits of each; large
energy storage capacity for long-term energy balancing, and highly-responsive
short-term storage for smoothing peak load and variability of non-dispatchable
generation. Since this combination places short-term storage physically close
to load, transmission and distribution constraints are minimised.
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To summarise, many of the studies related to non-dispatchable renewable elec-
tricity generation use a simulation approach, based on historical data where
available. Primary research themes are based on predictions that electric-
ity generation will become more variable in future as more non-dispatchable
sources are introduced, while load will become more flexible through the further
adoption of DR technologies. Storage is also expected to become increasingly
important, with large centralised facilities providing long-term energy storage,
and small distributed storage appliances performing short-term balancing in
order to minimise transmission and distribution constraints.

3.2 Electric Vehicle Charging Strategies

With a significant proportion of EVs deployed in an electricity system, there
is strong agreement among researchers that their charging must be coordi-
nated or controlled in some manner (Aunedi et al., 2014; Clement, Haesen
and Driesen, 2009; Clover, 2013; De Hoog, Thomas, Muenzel, Jayasuriya, Alp-
can, Brazil and Mareels, 2013; González Vayá, Galus, Waraich and Andersson,
2012; González Vayá and Andersson, 2012; Habib, Kamran and Rashid, 2015;
Lopes, Soares and Almeida, 2009; Putrus et al., 2009; Schuller, Flath and
Gottwalt, 2015; Waraich, Galus, Dobler, Balmer, Andersson and Axhausen,
2013). Without coordination, EV charging is likely to occur during times of
already high electricity load, and hence require excessive investment in addi-
tional generation, transmission, and distribution infrastructure.

While there is little doubt that widespread adoption of EVs necessitates the
use of strategies to coordinate their charging, the ultimate form that these
strategies will take remains an open question (Waraich et al., 2013). A charg-
ing strategy must ensure that EV drivers are able to use their vehicles when
needed, while also minimising adverse impacts on electrical infrastructure—
particularly during peak load periods. Such strategies could range from simple
timer-based approaches that begin charging vehicles at a particular time of day,
to more complex strategies that continuously adapt charging rates in response
to observed changes in generation and load.

Studies have found that with appropriate charging strategies, EVs are not a
significant burden on electricity systems; in fact, their presence offers signif-
icant benefits such as increasing baseload utilisation (Shortt and O’Malley,
2009, 2014), increasing direct use of non-dispatchable renewable generation
(Franco and Salza, 2011), and enabling a higher proportion of renewable gen-
eration than would otherwise be feasible (Schuller et al., 2015). The benefits
are further realised when energy is permitted to flow from vehicles back into
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the electricity grid, which effectively allows an EV fleet to function as a dis-
tributed energy resource. This concept, known as Vehicle-to-Grid (V2G), was
first introduced by Kempton and Letendre (1997).

Tuttle and Baldick (2012) predicts that the charging behaviours of EVs will
evolve over time, starting with a simple charge-only approach and developing
to a point where large numbers of EVs coordinate their charging to minimise
stress on infrastructure and maximise the utilisation of renewable generation
sources.

This section provides an overview of research related to EV charging strategies.
These strategies have been categorised into three broad classes: simple, which
do not consider grid state; smart, which optimise charging rates according
electricity supply and demand; and bidirectional, which are smart charging
strategies that additionally allow energy to be retrieved from EV batteries for
grid balancing purposes.

3.2.1 Simulation Approaches

EV driving patterns are expected to be substantially the same as traditional
ICEV driving patterns, and therefore models derived from existing mobility
surveys can be used to simulate EV movements (Kristoffersen, Capion and
Meibom, 2011; Nunes, Farias and Brito, 2015; Schuller et al., 2015). Based
on this assumption, and considering efficiencies of current-generation EVs, the
resulting increase in annual electricity demand is expected to be minimal in
many countries—typically around 8 to 19% with 60 to 100% electrification of
the light vehicle fleet (Duncan et al., 2010; Nunes et al., 2015).

Duncan et al. (2010) calculates that each EV in New Zealand will require
approximately 2.1 MW h of electricity per year, or 6 kW h per day. The bat-
tery capacity of a present-day EV is typically much greater than its average
daily energy consumption, which suggests that charging load can be largely
decoupled from driving patterns if regular charging opportunities are available.

Studies of EV charging strategies often use an agent-based simulation using
EV behaviour and electrical models, combined with historical electricity gener-
ation and load data where available (Carvalho, Sousa and Ventim Neves, 2013;
Waraich et al., 2013; Alvaro, Gonzalez, Fraile-Ardanuy, Knapen and Janssens,
2013). This approach allows the performance of charging strategies to be eval-
uated and compared across a range of parameters, such as peak charging load,
utilisation of non-dispatchable renewable generation, and battery degradation
where bidirectional energy flows are permitted.
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3.2.2 Simple Charging Strategies

First generation EVs are likely to support only simple charging strategies,
which typically assume that electricity is available on-demand but may also
include the ability to utilise off-peak electricity during preset charging windows
(Tuttle and Baldick, 2012). Because electricity demand varies predictably on a
diurnal cycle, a simple timer-based approach can increase off-peak utilisation
of generation and transmission infrastructure with minimal investment in new
smart grid technologies.

The simplest possible charging strategy is often referred to as “dumb”, “as
fast as possible”, “uncontrolled”, or “greedy”. An EV using this strategy will
begin charging at its fastest possible rate immediately after being connected
to a charger. Studies have found that the charging load profile created by
this strategy tends to align with existing high-load periods, which is most pro-
nounced during evenings (Waraich et al., 2013; Shortt and O’Malley, 2009).
While only a small proportion of charging activity occurs overnight when elec-
tricity load is typically lowest, the use of chargers at multiple locations during
the day—for example at home, work, and other commercial areas—can reduce
the evening charging peak by approximately 30% (Weiller, 2011).

Overnight charging strategies attempt to improve the load profile by moving
the bulk of EV charging load into off-peak periods, either by following a fixed
schedule, or by reacting to coarse pricing signals. These strategies typically
require that each EV is fully charged by the start of the next day, with supple-
mentary charging used during daytime hours where necessary (Waraich et al.,
2013; Alvaro et al., 2013; Mason, 2014).

Pricing signals can potentially synchronise the onset of EV charging load,
where a significant number of vehicles begin charging at the beginning of a
low tariff period. This rapid onset may cause a peak which is twice that seen
with uncontrolled charging, which emphasises that charging strategies must
not synchronise the behaviour of large numbers of vehicles (Waraich et al.,
2013; Alvaro et al., 2013).

Carvalho et al. (2013) investigates the effects of a fixed overnight charging
strategy on wind penetration levels that can be accommodated in the Por-
tuguese electricity system, with a maximum of 1% curtailment on an annual
energy basis. The start of the charging period is normally distributed around
22:00 each night, with a standard deviation of 1 h and a charging power of
3.3 kW. This study found that wind penetration is restricted to 21% with no
EVs present in the system, rising to 40% with full electrification of the light
vehicle fleet, following an almost-linear relationship between these variables.
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3.2.3 Smart Charging Strategies

Second generation EVs are expected to adopt charging strategies that coor-
dinate the charging behaviour of large numbers of vehicles, allowing the ag-
gregate charging load to closely follow the availability of renewable electricity
generation while avoiding peak load periods (Tuttle and Baldick, 2012). In
addition, these vehicles may participate in the ancillary services market to
provide functionality such as limited up/down regulation to generate revenue
for EV owners (Tuttle and Baldick, 2012). The charging strategies that en-
able these behaviours rely on smart grid technologies to provide the necessary
information and control capabilities.

Smart charging strategies fall into two broad categories: centralised, whereby
charging actions are dictated by a central authority that optimises charging
load across a large number of EVs, and decentralised, where each EV acts as
an autonomous agent and performs charging decisions independently based on
aggregate information shared between agents.

The flexibility afforded by these charging strategies relies on EVs being grid-
connected for much longer than is strictly necessary to meet transportation
requirements. Waraich et al. (2013) proposes financial incentives for EV owners
to leave their vehicles connected to the grid for as long as possible, while also
rewarding the accurate prediction of the upcoming use of the vehicle so that
charging can be planned accordingly. Kristoffersen et al. (2011) assumes that
all EVs will be grid-connected while not in use, while Nunes et al. (2015) uses a
more conservative estimate that 70% of parked cars will be grid connected. The
former assumption will tend to overestimate the flexibility offered by an EV
fleet, but is nonetheless useful in establishing an upper bound of EV availability
and hence the potential merits of smart charging strategies.

Centralised Smart Charging

Centralised charging involves the use of an aggregator or charging service
provider to calculate individual charging schedules for a large number of EVs,
such that the aggregate charging load closely follows a desired profile. These
schedules must obey a number of constraints, including those associated with
individual vehicles such as driving patterns and maximum charging rates, and
those related to transmission and distribution capabilities.

The optimisation goal varies among studies, including the desire to minimise
EV charging costs (Kristoffersen et al., 2011), to minimise energy spillage from
non-dispatchable generation sources (Nunes et al., 2015), and to follow load
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profiles specified by other participants in the electricity market, such as retail-
ers, to avoid overloading transmission and distribution networks (Sundstrom
and Binding, 2012). Regardless of how the goal is specified, a common theme
is to meet the energy needs of each EV at the lowest overall cost, and within
the physical constraints of the electricity system.

All smart charging strategies utilise knowledge about when a particular EV
will be connected to the grid, and its energy requirements. This information
may be specified by vehicle owners (Waraich et al., 2013), or predicted by the
charging service provider based on the full historical trip data obtained from
all participating EVs, which does raise privacy concerns (see section 2.10).
Once the energy requirements and grid connection schedules for each EV are
known, charging strategies may attempt to meet those requirements precisely
(Sundstrom and Binding, 2012), or aim to fully charge all EVs by the following
morning (Kristoffersen et al., 2011; Waraich et al., 2013).

Charging schedules are typically planned in advance, and optimised over a
24-hour period divided into fixed charging slots of 15 minutes (Sundstrom and
Binding, 2012) to one hour (Kristoffersen et al., 2011). Schuller et al. (2015)
uses an optimisation horizon of both 24 hours and one week, finding that the
longer horizon resulted in greater utilisation of non-dispatchable generation,
assuming that travel and generation forecasts over this period are accurate.
This approach is not conducive to changes in EV energy and/or timing re-
quirements between the planning and execution of charging schedules; any
deviation from the original plan will almost certainly result in a suboptimal
load profile. Sundstrom and Binding (2012) suggests rerunning the optimisa-
tion process in light of revised requirements, but it is unknown whether this
will be practical.

Centralised charging strategies are effective at integrating EVs into electricity
systems with little overall impact; Kristoffersen et al. (2011), for example,
found that peak load did not increase with 25% electrification of Denmark’s
light vehicle fleet, while average and minimum load increased by 5% and 10%
respectively. In the same scenario, approximately 74% of charging occurred at
night while non-EV load is typically at its lowest.

When a significant level of solar PV is considered as part of the generation
mix, Nunes et al. (2015) has shown that EV charging primarily occurs during
daytime hours. With 100% electrification of the light vehicle fleet in Portu-
gal, smart charging enables solar PV penetration of up to 34% at less than
1% curtailment; without any EVs in the system, curtailment rises to 3% at
only 25% solar PV penetration (Nunes et al., 2015). Assuming that the solar
panels are installed locally, daytime charging will not increase peak loading of
transmission and distribution networks.
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The strategies described in this section have been shown to be effective at
minimising charging costs, however the approach of scheduling EV charging
over a fixed future period of time does limit the ability for an EV fleet to com-
pensate for errors in generation forecasts and unexpected electricity outages
in real time. While the schedules calculated by an aggregator or charging ser-
vice provider might be effective based on the assumptions and forecasts used
in the calculation, real-world performance in the presence of deviations from
these predictions is likely to be suboptimal. The centralised nature of these
strategies may also face opposition by customers who do not want to lose con-
trol of when their EV is able to charge, owing to the real or perceived loss
of spontaneity imposed by the aggregator once charging schedules have been
finalised (Ma, Callaway and Hiskens, 2010).

Decentralised Smart Charging

Decentralised charging does not rely on a centralised authority to calculate
optimal charging schedules; instead, all vehicles perform charging decisions
independently with the goal of meeting their own transportation needs at the
lowest cost (Ma et al., 2010; Ahn, Li and Peng, 2011). The decentralised
approach is expected to be more acceptable to customers than centralised
charging, since they retain full control of their vehicle’s charging behaviour.

While simple price-based charging strategies may create unintended load peaks
during low tariff periods (section 3.2.2), decentralised smart charging strate-
gies require that each EV coordinate its charging schedule with other grid-
connected vehicles such that the aggregate EV load profile approaches a global
optimum (Ma et al., 2010; Ahn et al., 2011). Indeed, Ma et al. (2010) demon-
strates that a Nash equilibrium exists, so an EV acting in its own self interest
tends to also act in the best interests of the entire EV fleet.

Ma et al. (2010) uses an iterative approach to negotiate charging schedules,
whereby each grid-connected EV proposes a charging profile based on adver-
tised electricity prices for a future 24-hour period, which it then submits to
an aggregator. The aggregator uses this information to recalculate its elec-
tricity load forecast, and then broadcasts updated electricity prices to all grid-
connected vehicles. Each vehicle may choose to update its charging schedule in
light of this new information, and this process repeats until no further changes
are needed.

The iterative negotiation technique used by Ma et al. (2010) has several bene-
fits for EV owners over centralised strategies, including the privacy advantage
gained by not requiring driving patterns to be shared with a third party, and
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the retention of control by allowing charging to occur at suboptimal times of
day—albeit at a higher cost to the vehicle owner—in the interest of conve-
nience. While this study does not simulate driving behaviours, it found that
charging activity occurred exclusively during overnight hours when it could
reasonably be assumed that a majority of vehicles would be at home.

Ahn et al. (2011) evaluates the potential for EVs to participate in grid fre-
quency regulation in addition to the load shifting goal of the studies mentioned
previously. The proposed charging strategy involves optimising aggregate grid
load over a 24-hour period, broken into 10-minute blocks, which is negotiated
in a decentralised manner. Rather than an iterative approach, Ahn et al.
(2011) requires each EV to calculate its own charging profile based on its pro-
portional contribution to the collective energy requirements of the EV fleet.
The aggregator is responsible for collecting this information, including fore-
casts of generation and non-EV load, and distributing it to all EVs. Charging
power calculations are configured such that vehicles with a lower SOC or a
shorter time to departure are charged at a higher rate than other vehicles, in
order to ensure that charging targets are met.

Each EV simulated in Ahn et al. (2011) also implements frequency droop
control, which operates on a much shorter time scale than load shifting—
10 seconds and 10 minutes respectively. A participating EV will increase or
reduce its scheduled charging power in response to an observed deviation from
nominal grid frequency; the magnitude of this response is determined by the
total number of grid-connected vehicles, which is broadcast by the aggregator
at regular intervals. Frequency regulation offered in this manner is a net-
zero energy service, so it does not impact the load shifting performance of
the charging strategy, nor does it increase battery degradation. However, this
service can only be offered while the vehicle is charging, which generally occurs
during low-demand periods.

Ahn et al. (2011) concludes that the decentralised approach described in the
study achieves near-optimal performance—within 0.1% of a centralised linear
programming solution—while also reducing reliance on frequency regulation
units by 75% with an EV penetration of 25%.

Hybrid Smart Charging

Tindemans et al. (2015) discusses a DR technique that combines aspects of
both centralised and decentralised control, whereby a centralised authority
provides DR-capable appliances with a target hourly or daily response pro-
file, but allows those appliances to perform short-term decisions autonomously
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based on global signals such as grid frequency. This reduces the necessity of
reliable and low-latency communications networks while retaining the benefits
of centralised control, and could easily be adapted to control EV charging.

3.2.4 Bidirectional Charging Strategies

The smart charging strategies discussed thus far have addressed several impor-
tant aspects related to the integration of EVs into electricity systems, which
exploit the inherent flexibility of their charging to minimise peak load, max-
imise the utilisation of off-peak electricity generation, and optionally provide
a frequency regulation service during charging. These strategies require that
energy flows exclusively from grid to vehicle, which limits the potential of
utilising EV batteries as a distributed energy resource.

Third and subsequent generations of EV are expected to support bidirectional
charging strategies, which allow energy to be retrieved from an EV battery for
use outside of the vehicle (Tuttle and Baldick, 2012). Several variants of this
concept exist, which differ by scope and level of coordination required. The
simplest such strategy is known as Vehicle-to-Home (V2H), where a single ve-
hicle provides load shifting and/or backup power to a single household, but
requires that the net load of the home does not become negative. Vehicle-to-
Premises (V2P) involves multiple vehicles working together to provide similar
services to a commercial premises, again requiring that net load does not be-
come negative. Vehicle-to-Grid (V2G), on the other hand, allows energy from
an EV battery to flow beyond the home or premises through a net-metered
grid connection, and hence offers more flexibility than both V2H and V2P
(Tuttle and Baldick, 2012).

The cost of adding bidirectional energy capability to an EV may be negligible,
since the same power electronics that deliver energy to the vehicle’s motor can
also be used to deliver energy back into the home, premises, or grid (Kempton,
Udo, Huber, Komara, Letendre, Baker, Brunner and Pearre, 2008; Botsford
and Szczepanek, 2009). Similarly, the cost of distribution network upgrades to
support bidirectional energy flows should not be attributed entirely to V2G,
since this same equipment is necessary to support DG; indeed, its deployment
has already begun (section 2.5.1). Likewise, the communications infrastructure
necessary for coordinating a large-scale V2G deployment is also needed for
unidirectional smart charging, and therefore no additional communications
investment is required.

Many researchers have rejected the concept of bidirectional charging strategies
on the basis of high incremental costs, primarily attributed to EV battery
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degradation when using present-day technologies (Weiller, 2011; Kristoffersen
et al., 2011), while others have found substantial benefits for their use in high-
value applications such as operating reserves, frequency regulation, and peak
shaving (Kempton and Letendre, 1997; Kiviluoma and Meibom, 2011; Han
and Han, 2013; van der Kam and van Sark, 2015).

While studies typically assume that battery degradation is solely a function
of energy throughput, Ribberink, Darcovich and Pincet (2015) demonstrates
that degradation depends on a range of parameters including time since man-
ufacture, charging and discharging currents, and the SOC around which the
charging/discharging activity occurs. This study concludes that shallow bat-
tery cycling near a medium SOC at a low to moderate power level is best in
terms of degradation, and that the negative impacts of bidirectional charging
are similar to that of aggressive driving habits and thus are not prohibitive to
its deployment.

Vehicle to Home

V2H is a system that uses an EV battery to reduce household energy costs,
which is primarily achieved by reducing peak load of the home and/or increas-
ing self-consumption of locally-generated electricity. Its main advantage over
more complex V2G systems is that it can be deployed without changes to the
infrastructure and business models used in the wider electrical grid (Haines,
McGordon, Jennings and Butcher, 2009).

Haines et al. (2009) presents a V2H study comprising a single house and EV,
with the goal of limiting the peak net load of the house/vehicle system. The
EV has a 26.5 kW h battery with a charging power of 3 kW and round-trip
efficiency of 81%, while the home has a peak load of 10 kW and an average
load of 420 W. This study assumes that the EV is only charged at home, and
requires that its battery SOC at the end of the day is not less than it was at
the beginning, in order to ensure that the V2H strategy is sustainable over
multiple days.

The V2H strategy used in Haines et al. (2009) is very similar to that of grid-lite
(section 3.1.3); a power limit is set for the grid connection, and V2H is used
to cover any household load in excess of that limit where possible. The study
found that V2H implemented in this manner successfully reduced peak load
to 3262 W when the EV was used for a 30 mile round trip commute, and the
power limit was set to 300 W excluding EV charging load. In this scenario,
less than 1% of the vehicle’s SOC was used for peak shaving since those peaks
were short-lived. The study also found that V2H was not appropriate when
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the EV was used for an 80 mile commute, but noted that these distances are
rare.

Since the charging strategy used in Haines et al. (2009) bases decisions solely
on measured household load, its performance from a wider grid perspective is
unlikely to be optimal. The authors note that the EV would charge oppor-
tunistically during evening hours when local demand drops below the thresh-
old, even though wider electricity load is typically highest during this period.
Other V2H studies avoid this problem by instead responding to pricing signals,
which minimises the total energy costs of the home while also reducing load
during high-tariff periods (Nakada, Nakano and Akizuki, 2015).

Vehicle to Premises

V2P expands on the V2H concept by utilising multiple vehicles connected to
a commercial building, which may be owned by a number of different parties.
Like V2H, the primary goals of V2P include minimising total energy costs
through decreasing peak load and/or increasing self-consumption of locally-
generated electricity.

Gamallo and Fraile-Ardanuy (2012) introduces the concept of a “Stochastic
Aggregated Battery (SAB)”, which adds an additional control layer between
the vehicles and building. This layer is responsible for coordinating the charg-
ing and discharging of individual vehicles, and presents a single virtual bat-
tery to the building’s energy management system. Naturally, the character-
istics of the virtual battery—such as total storage capacity, SOC, and power
capability—will vary over time as vehicles arrive and depart from the system.
Each EV owner can specify acceptable charging/discharging prices, minimum
and maximum allowable SOC, and connection times, which the SAB uses to
distribute power demands among all connected vehicles to achieve the lowest
overall energy cost. This system was evaluated via simulation, based on a real
70-worker office building in Madrid and seven heterogeneous present-day EVs.
The results indicate that the SAB is capable of reducing overall energy costs
to the building while also delivering a small profit to individual EV owners.

A later study by van der Kam and van Sark (2015) investigates the applica-
tion of V2P within a microgrid containing an office building, three households,
two EVs, a 31 kWp solar PV installation, and an export-capable connection
to a wider electricity grid. A centralised control approach is used, with the
aim of increasing self-consumption of locally-generated electricity by issuing
V2P dispatch instructions in realtime. Electricity sources and loads are priori-
tised depending on availability: uncontrollable load is first met by PV, then
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V2P, and finally by the grid when necessary. Similarly, any PV output that
exceeds uncontrollable load will first be used for charging EVs, and any re-
maining excess will be exported to the grid. The simulation found that the
self-consumption of 49% without V2P could reach 62 to 87% with V2P, while
EV energy throughput could increase by up to 400%.

Vehicle to Grid

First introduced by Kempton and Letendre (1997), V2G provides a superset
of functionality beyond V2H and V2P by allowing energy to flow from a home
or premises into the wider electricity grid. While the V2G concept was intro-
duced prior to both V2H and V2P, its widespread deployment is unlikely to
precede those systems (Tuttle and Baldick, 2012). This is primarily attributed
to the greater need for coordination between multiple parties, who may have
conflicting needs. Research suggests that V2G will find the most value in the
regulation and spinning reserve markets, where payments are received for avail-
ability and total energy throughput is low; the costs of providing these services
are therefore likely to be minimal (Kempton and Tomić, 2005b; Kiviluoma and
Meibom, 2011). Another application of V2G is peak shaving, applied across a
wider area than V2H and V2P, which may be cost effective at up to one hour
per day (Zhuk, Zeigarnik, Buzoverov, Sheindlin and Kucherov, 2015).

The benefits arising from V2G apply to the wider electricity market, while its
costs are bourne primarily by vehicle owners—both in terms of travel incon-
venience and battery degradation—so suitable economic and business models
must be developed. Kempton and Tomić (2005b) suggests that an electricity
retailer could purchase V2G power directly from its customers, or alternatively
a third party could offer free battery replacements to EV owners in exchange
for V2G services.

The value of V2G is dependent on the vehicle’s location within the distribu-
tion network, and is higher in areas with capacity constraints (Kempton and
Letendre, 1997). V2G-capable vehicles in constrained areas of distribution
networks can potentially reduce peak load, and also serve as a form of energy
conveyance that operates in parallel with traditional distribution lines, for ex-
ample by charging at work and later injecting that energy at home to cover
evening load (Waraich et al., 2013).

Studies have found that the effectiveness of V2G depends on vehicles being con-
nected to the grid for substantially longer than is strictly needed for charging
purposes; for example, Mason (2014) found that using V2G to cover evening
peak load in a residential area was counterproductive when only overnight
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charging was available. This emphasises the importance of having charging
facilities in multiple locations, such as home and work.

Vehicle to Vehicle

Vehicle-to-Vehicle (V2V) describes the concept where energy from one EV
flows into the battery of another, which would typically occur when the energy
requirements of the latter are more urgent than that of the former (Alvaro,
Gonzalez, Gamallo, Fraile-Ardanuy and Knapen, 2014). While V2V energy
flows are likely to occur with any V2P or V2G charging strategy, Alvaro et al.
(2014) introduces a peer-to-peer energy exchange market where vehicles can
directly negotiate and transfer energy between one another, independently of
a wider electric grid. This is motivated by the observation that 80% of vehicles
can exceed their own energy needs from a low-cost overnight charge, while the
remaining 20% must be charged at a higher cost during the day to meet travel
requirements.

When implemented as a V2P strategy, V2V enables fast charging during peak
load periods without substantially increasing the building’s net load, assuming
that other EVs are capable of supplying energy at a lower cost than the grid.
Alvaro et al. (2014) found that this system achieved a 40% reduction in the
cost of daytime charging for energy buyers, while also achieving a modest profit
for sellers.

3.2.5 Discussion

Charging strategies, whether simple or smart, must ensure that sufficient en-
ergy is delivered to EVs in a timely manner, in order to avoid compromising the
mobility of their drivers. Uncontrolled charging is the best approach to achieve
this goal, but is not feasibile to deploy on a large scale. Simple approaches—
such as overnight or dual-tariff charging—are able to mitigate the negative
effects of uncontrolled charging to some extent, without requiring substantial
changes to grid operations.

Smart charging strategies enable fine-grained control over the aggregate charg-
ing load profile of an EV fleet, and can be implemented in a centralised or de-
centralised fashion; the latter ensures that EV owners retain control over their
vehicle’s charging behaviour, and is therefore more likely to be accepted by con-
sumers. These charging strategies also enable EVs to participate in electricity
regulation markets, which assists the integration of non-dispatchable renew-
able electricity generation. However, these strategies are dependent on com-
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munication networks connecting vehicles and coordination facilities—typically
known as aggregators—which is a potential barrier to their adoption. The
benefits of smart charging can be extended by allowing bidirectional energy
flows between EVs and the grid, which enable increased self-consumption of
locally-generated electricity, reduced peak loads, extended EV participation in
operating reserves and regulation markets, and lower overall electricity prices.

Regardless of which charging strategy is employed, there are many benefits of
providing charging facilities at multiple locations and leaving EVs connected to
the grid whenever possible. Long connection times enable greater flexibility for
smart charging strategies, resulting in better charging schedules than would be
possible with reduced connection times. Uncontrolled charging also benefits
from extended connection times by spreading individual EV charging loads
over a longer period, and hence reducing the aggregate charging load of the
fleet. EV owners should therefore be encouraged to connect their vehicles to
chargers as often as possible.

3.3 Trip Prediction and User Interfaces

Smart charging strategies, whether unidirectional or bidirectional, require knowl-
edge of when a vehicle will be used next, and how far it must travel, so that
charging targets can be met in a grid-friendly fashion. This knowledge is likely
to be derived from a combination of assumptions, learnt travel patterns, and
direct input from the driver. The balance between these information sources
represents a trade-off between the vehicle’s ability to complete unplanned trips,
driver convenience, the level of flexibility offered to the grid, and charging costs.

A framework for calculating charging targets could be described as follows:

1. Unplanned trips will always be shorter than a preset distance.

2. Regular commuting patterns are expected to continue into the future.

3. Any trips longer than the preset minimum range (point 1), and are not
part of a regular commuting pattern (point 2), will be specified in advance
by the driver.

From this information, a charging strategy can: a) calculate the minimum
battery SOC to be maintained at all times; b) automatically accommodate
regular driving patterns without violating the minimum allowable SOC; and
c) accommodate longer non-routine trips when given sufficient advance notice.
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Drivers will be able to tune the above parameters according to preferences and
travel requirements (Kempton and Letendre, 1997); for example, a rural driver
might specify a longer minimum range for unplanned trips than a city driver,
while someone who favours convenience over charging costs might simply set
the minimum range to the full capacity of the vehicle and hence nullify the
benefits of smart charging. Alternatively, Kempton and Tomić (2005b) sug-
gests that suitable values could be learnt by collecting a few weeks of trip data
while employing a greedy charging strategy, before migrating to a smart charg-
ing strategy once typical trip distances and patterns have been established.

A driver must inform their vehicle of any non-routine travel, since this cannot
be predicted from past behaviours. The user interface for doing so could
range from a simple “override” button that would instruct the vehicle to use a
greedy charging for the following 24-hour period (Kempton and Tomić, 2005b),
through to user interfaces that allow precise trip distances and departure times
to be specified (Kempton and Letendre, 1997; Monigatti, Apperley and Rogers,
2014). The latter option allows the use of smart charging to prepare the vehicle
for a long trip, and therefore allows that trip to be completed at a potentially
lower cost than a simple override button.

3.4 Summary

Future electricity systems are likely to include a higher proportion of non-
dispatchable generation, flexible load, and distributed energy resources than
present-day systems, and will likely operate in an increasingly decentralised
fashion. New non-dispatchable generation is most economically competitive
when built at scale and located in areas where their fuel sources are abundant,
such as windy mountain ranges for wind farms or areas with plentiful sunlight
for solar PV, while energy storage is most effective when situated near the point
of consumption in order to minimise transmission constraints. However, the
cost of distributed energy storage is prohibitive when energy must be stored
for more than a few days, so bulk energy storage for seasonal balancing must
be performed by large centralised facilities such as hydroelectric lakes. This
architecture mirrors recent developments in edge computing; urgent energy
demands are serviced by local storage, while longer-term energy and storage
requirements are serviced indirectly by large centralised facilities that benefit
from economies of scale.

To accommodate a large-scale deployment of EVs, electrical infrastructure
must necessarily incorporate mechanisms to control charging behaviour. Be-
cause of the significant energy storage capacity of EVs, these control mecha-
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nisms allow an EV fleet to function as both a flexible load and a distributed
energy resource at a very low capacity cost compared to dedicated energy
storage facilities, although incremental costs are expected to be higher. Stud-
ies that explore the implications of smart charging strategies typically use an
agent-based simulation approach, with models based on a combination of his-
torical data and and travel surveys.

This chapter has presented an overview of research related to the integration of
non-dispatchable electricity generation and EV charging strategies, which will
be built upon in the following chapters in order to evaluate the implications
of these technologies in a New Zealand context.
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Previous chapters have provided the motivation and context for the research,
and established the need for simulation tools to assist with the exploration of
future electricity and transportation scenarios.

This chapter begins by establishing the requirements for the simulation soft-
ware, and follows with a description of the software structure. Subsequent
sections describe the statistical models, data sources, and the implementation
details of the software.

4.1 Overview

In a future energy scenario with high penetration of non-dispatchable electric-
ity generation and EVs, it is essential to ensure that the system maintains an
acceptable standard of reliability. A simulation approach has been chosen to
evaluate a wide range of scenarios, and explore the interactions between elec-
tricity generation, load, and the requirements of an EV fleet. This will allow
comparisons between different EV charging strategies across a range of met-
rics, including how much—if any—dispatchable generation capacity is required
to ensure that electricity demand is met at all times.

Chapter 3 has established the case for the implementation of V2G, and thus
it is important to evaluate the benefits of bidirectional power flows in a New
Zealand context. With increasing levels of non-dispatchable generation and
flexible load, it is inevitable that some responsibility for maintaining real-time
balance between generation and load will shift to the demand side.

The simulation therefore must be able to simulate many important aspects
of New Zealand’s electricity and transportation sectors, along with a num-
ber of different EV charging strategies, to evaluate how effectively renewable
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energy sources can replace existing dispatchable generation while continuing
to meet present electricity consumption patterns as well as the new demands
introduced by an electrified vehicle fleet.

4.2 Requirements

To establish the requirements of the simulation, let’s begin by revisiting the
primary research questions.

1. What are the potential energy demands and usage patterns of an elec-
trified light vehicle fleet?

2. What are the generation characteristics of existing and proposed wind
farms?

3. What are the necessary parameters of an energy storage system for
buffering variability in high wind generation environments?

4. What EV charging strategies are effective, and how successfully can their
adoption support the expansion of both renewable electricity generation
and EVs?

Answering these questions requires a few features in the simulation software.
Firstly, a range of input parameters need to be taken into account, including
data related to electricity generation and load, vehicle fleet size, and models
for the behaviour and electrical characteristics of an EV. The simulation must
take these inputs, and produce output in a form that is useful for further
analysis; for example, the instantaneous energy balance once all generation and
load sources are considered, including the EV fleet, over the entire simulation
period. The details of inputs, outputs, and models used in the simulation are
described in the following sections, while an overall data flow representation is
shown in figure 4.1.

4.2.1 Inputs

Several models are required to address the first research question. Firstly, a
model of an EV is needed for the simulation, with representative characteris-
tics such as battery capacity, maximum charging rate, and energy efficiency.
In addition, a behavioural model is necessary to accurately simulate the usage
patterns of the vehicle. These models together establish the energy require-
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Figure 4.1: Simulation data flows.

ments for an individual vehicle, including both the amount of energy needed
and the times of day where opportunities for charging are available. The final
model needed for the first research question is that of the adoption rates of
EVs to establish a likely fleet size in a future (simulated) year.

The second research question requires an accurate model of large-scale non-
dispatchable renewable generation, for which this thesis focusses on wind1.
Real wind speed data for current and potential future wind farm sites are
readily available, which include variability over a range of time scales from
short-term (minutes) to seasonal variations—both of which are relevant to the
research. The final input to the simulation is wind penetration, which specifies
the energy to be generated from wind farms over the simulation period as a
fraction of total generation.

4.2.2 Outputs

The purpose of the simulation is to evaluate the energy requirements of an
EV fleet, and the performance characteristics for a range of charging strate-
gies. Thus, the output of the simulation needs to enable the analysis of these
characteristics.

The simulation itself should perform basic summary calculations during and at
the termination of a scenario run, for example the total energy consumed from
peak generation sources over the year for the scenario under test; however,
the bulk of the detailed analysis is to be performed after a simulation run
has completed, using the resulting time series data. An example is shown in
figure 4.1. These data are to be output for every simulation tick, including
the instantaneous power for all loads and generation sources, the aggregate

1In many countries, including New Zealand, wind is predicted to be the fastest growing
source of renewable energy
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capacity and stored energy of the EV fleet, and the vehicle movements that
occurred during the last tick window: total number of arrivals and departures,
aggregate distance travelled, and total time the EV fleet spent travelling.

The output described above must necessarily be aggregated for all EVs in the
simulated fleet, since recording the individual state of a large number of EVs
over the simulation period will result in an extremely large volume of data.
However, it may be useful to evaluate the performance of a charging strategy
from the perspective of an individual vehicle, such as average state-of-charge.
In this case, additional probes may be included during a simulation run, which
will add another output column describing the values seen by the probe. This
is useful for reviewing the charging decisions made by a particular strategy in
the context of a single EVs.

An in-depth discussion of charging strategies is included in chapter 6.

4.2.3 Computational Performance

The challenge of maintaining power balance in the short term and also evalu-
ating the performance of electric vehicle charging strategies over the long term
requires the simulation software to run at fine time scales over a significant
period of time, and effectively manage a realistic number of EVs. For the pur-
poses of this research, the requirement is set at one million vehicles over the
course of one year, at five-minute resolution. This allows sufficient detail to
investigate future energy scenarios in New Zealand.

Since a primary goal of the simulation is to enable the exploration of various
scenarios, the simulation software must maintain a modular design to allow
the easy addition of different models, for example new types of generation, DR
technologies, and energy storage devices other than EVs. These models may
be implemented in any way necessary, subject to the computation efficiency
requirements stated above, but must have a well-defined “connection” to the
electricity grid in terms of energy and information flows. These requirements
are described fully in section 4.3.

The final two research questions may be addressed by comparing a potentially
large number of simulated scenarios with different parameters, so for perfor-
mance reasons it is useful to be able to simulate each scenario in parallel.

70



4.3 Software Structure

 

   

Wind 

Generation 

Base 

Generation 

Peak 

Generation 

Grid 
Bulk 

Load 

Vehicle 

Fleet 

Energy used 

for transport 

Figure 4.2: Simulation energy flows.

4.3 Software Structure

The current form of the simulation software is aimed at investigating the
system-wide implications of the introduction of EVs and expansion of renew-
able generation, and therefore grid topology constraints have been left to future
work.

Figure 4.2 provides a general overview of simulated energy flows within soft-
ware. On the left are generation sources that only deliver power into the grid,
while the loads on the right only consume power. The vehicle fleet allows en-
ergy flows in both directions. The components of this model, and the data on
which they are based, are described in the following sections.

For the purposes of this research, the “grid” refers to a single-point connection
between generation sources and loads, since grid topology considerations are
not presently taken into account.

The simulated generation consists of a fixed base level with seasonal variation,
plus variable wind and peak generation (see section 4.5). This is similar to the
approach used by Inage (2010), but differs in that wind generation is based
on real wind-speed data rather than a statistical model. The only generation
source that varies in response to changes in load is peak generation.

The EV fleet is given priority for maintaining the balance between generation
and load, while peak generation fills in any shortfall that cannot be met by
the fleet. This approach covers scenarios that may or may not include V2G
capability; without V2G, peak generation is always used to cover generation
shortages. Similarly, any surplus of generation is first offered to the EV fleet,
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Figure 4.3: Simulated energy balance with V2G for both deficit and surplus
situations.

and any energy that cannot be stored or consumed is counted as spillage, as
shown in figure 4.3.

While it is useful to illustrate the differences between peak generation and
spillage—and between V2G and EV charging—each can be seen as analogous.
For example, a negative peak generation requirement is identical to spillage,
while a negative EV charging rate is the same as V2G. Peak generation and
spillage cannot occur at the same time, but it is possible for the EV fleet to be
both a source of electricity and a consumer at the same time. This happens
during generation shortages when some vehicles urgently need charging for
an upcoming trip, while others have surplus energy available; details to be
described in section 6.3.

4.3.1 Tick Interval

Five minutes has been chosen as the simulation tick interval for the experiments
presented in this research, since it represents the highest temporal resolution
available in the input datasets. However, it is possible to dynamically change
the tick interval during the course of a simulation run if, for example, extra
resolution is required around some exceptional event such as a major generation
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outage. This approach allows detailed investigation of such events, without
sacrificing performance during other time periods within a simulation run.

Linear interpolation is used to calculate intermediate values for datasets that
don’t match the chosen tick interval, and vehicles are allowed to arrive and
depart at any time including between simulation ticks. When a vehicle is
scheduled to depart between ticks, the energy transferred to/from the EVs
battery is calculated as the fraction of the tick interval in which the vehicle
was connected to the grid, multiplied the charging/discharging power selected
by the vehicle’s charging strategy. Similarly, since power is chosen only at the
beginning of each tick interval, it is quite possible that an EV battery will
charge beyond its full capacity, or be depleted below its minimum allowable
level, by the time the next charging decision is made. To correct this, a check
is performed to detect when this will happen, and the requested power level
will be scaled by an amount that will prevent the issue.

4.3.2 State Information

The state information maintained by the simulation can be divided into two
categories—global information that is accessible anywhere within the simula-
tion, and the internal state of individual models. The variables that represent
simulation state are listed in tables 4.1 (the grid state) and 4.2 (the state of
an individual EV).

Table 4.1: Variables representing grid state.
Symbol Explanation Unit
st Current simulation date and time timestamp
t Simulation tick number -
ε Tick interval timespan
B Base generation W
L Bulk load W
W Wind generation W
EAV Energy available in the EV fleet J
ER Energy required to fully charge the EV fleet J
LEV Imperative EV charging load W
S Surplus generation W
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Global State

The first group of global information (table 4.1) refers to the state of the
simulation itself, namely the simulated date and time, tick number, and tick
interval. These are initialised at the beginning of a simulation run, and nor-
mally increase monotonically throughout the scenario run.

The second group of global information is based on the aggregate state of the
models within. For example, base generation is the combined power output of
all base generation models, while surplus generation is the total generation less
the total load. These values are aggregated and recorded on each tick, but are
not available to models until the following tick. This means that all grid-state
information will be five minutes old by the time it is available to the EV fleet,
and hence mismatches in generation and load are inevitable even when the EV
fleet is capable of providing perfect balance. A shorter tick interval will reduce
the potential mismatch, assuming that load and generation changes are less
over shorter periods.

The rationale behind delaying the availability of information is to reflect a
real implementation. The process of collecting, aggregating, and disseminat-
ing these values in a real smart grid will not be instantaneous, and hence the
entities within the smart grid must necessarily base any calculations on infor-
mation that has been delayed. In a real implementation, it may be possible to
combine this aggregate information with real-time measurements of grid fre-
quency in order to have a more up-to-date estimate of global state, and hence
the real-time requirement for this class of information is eased (Kupzog, 2008).

Internal State

Certain models within the simulation are required to maintain their own in-
ternal state, the most significant example being the EV model. The upper
section of table 4.2 shows the variables contained within the EV model that
specify the parameters set at the start of the simulation, for example battery
capacity, maximum charging and discharging rates, and efficiency. These do
not change over the course of a scenario run.

The dynamic variables within the EV model are shown in the lower section
of table 4.2. The current state of charge is updated on each tick, which is
calculated from the tick duration and the charging/discharging power that
was chosen on the previous tick using the vehicle’s selected charging strategy.
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Table 4.2: Variables representing individual EV state.
Symbol Explanation Unit
QMAX Maximum battery capacity J
QMIN Minimum allowable state of charge J
PMAX Maximum charge power W
PMIN Minimum charge (i.e. discharge) power W
η Battery-to-wheel efficiency J m−1

q Current state of charge J
p Current charge/discharge power W
Q1 Battery charge required by time T1 J
T1 Time of next departure of an EV timestamp
D1 Distance of the next trip m
V1 Average speed of the next trip m s−1

The variables related to the upcoming use of the vehicle, most importantly the
charging target specified by Q1 and T1, are updated when a vehicle returns
from a trip and do not change until completing the following trip. Further
details of the EV model are discussed in section 4.7, while the operation of
charging strategies is discussed in chapter 6.

The wind generation model does not maintain any internal state, since its
power output is simply a function of instantaneous wind speed. Similarly, the
base generation model only follows seasonal averages and is not influenced by
other factors. In future, other generation models may keep track of internal
state, for example the amount of water stored in hydroelectric lakes.

Aggregation

On each simulation tick, all simulation models first update their state, and
then global state variables are recalculated. Each model is queried for its
latest state, which is added to the relevant global state variables.

The calculation of the energy available within the EV fleet, EAVt , is shown
in equation 4.1. This is the sum across all EVs connected to the grid, based
on how much energy each vehicle currently has stored in excess to its own
requirements. The result is the amount of energy that is available for grid
management purposes.

On the other hand, equation 4.2 shows the calculation for the unused capacity
within the batteries of all grid-connected EVs; that is, the amount of energy
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that the EV fleet is able to store. This capacity is available for providing down
regulation.

Imperative EV charging load, shown in equation 4.3, is simply the aggregate
power draw by all grid-connected EVs that are in the imperative charging
mode, i.e. charging that must be considered as inflexible load. A full descrip-
tion of EV charging modes is included in section 6.3.

Finally, the calculation of surplus generation is the sum of all generation
sources (base and wind), less electricity demand of both the bulk load model
(section 6.3) and the aggregate imperative charging demands of the EV fleet.
This value is negative when load exceeds demand.

EAVt =
n∑

i=1
qi −max {QMINi

, Q1i
− PMAX × (T1i

− st)} (4.1)

ERt =
n∑

i=1
QMAXi

− qi (4.2)

LEVt =
n∑

i=1
pi,∀ev ∈ Imperative (4.3)

St = Bt +Wt − (Lt + LEVt) (4.4)

4.3.3 Initial Setup

At the beginning of the simulation, the state is typically unsettled; the entire
EV fleet might have empty batteries, for example. This is addressed by running
the simulation for a (simulated) day before the intended start time, allowing
state to settle down, which is a similar approach to that used by Dallinger,
Krampe and Wietschel (2011) and De Hoog et al. (2013).

This approach was chosen, rather than simply specifying a typical SOC for each
EV, since what is “typical” varies between charging strategies. Some strategies
tend to maintain battery SOC near full capacity, while others maintain a
much lower level. If the initial value was incorrect, all EVs will simultaneously
attempt to rectify the situation, which will create demands on the grid and
generation that are not realistic. By running the simulation for a period before
the intended start time, these extreme values are not recorded and hence do
not influence the results.
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Figure 4.4: Simulation SOC start-up behaviour for two distinct charging
strategies.

The start-up period is shown in figure 4.4, for two distinct charging strategies;
slow charge, and greedy. These strategies will be described in more detail in
chapter 6; they represent the extreme cases where slow maintains a minimal
SOC while greedy attempts to maintain this level at close to a full charge.
The example shows the aggregate stored energy in fleet of a million EVs, each
with a 15 kW h battery. The state settles down well within the 1-day start-up
period.

4.4 Generic Models

Many of the models within the simulation share similar characteristics. For
example, electricity load and wind speed both consist of time series data,
while several models associated with vehicle behaviour rely on the sampling of
probability distributions. The generic model classes are described here, while
specific details of each model are included in upcoming sections.

4.4.1 Entity

For the purposes of simulation, an entity refers to anything that connects to the
grid. This provides a standard interface for any model that generates, stores,
or consumes electricity. An entity only supports three functions: connecting to
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the grid, disconnecting from the grid, and retrieving the instantaneous power
of that entity.

The value of instantaneous power returned by an entity is typically specified
by its underlying model. A positive value indicates that energy is flowing from
the entity into the grid, while a negative value indicates the reverse.

4.4.2 Replay Model

The replay model is an abstract subclass of entity, and provides a means of
reading time-series data from CSV files. This data is then stored in memory in
a form that supports efficient lookups by timestamp at each simulation tick—
essentially “replaying” the data during the simulation period. If no entry exists
at a given timestamp, the replay model is responsible for interpolating between
the nearest two data points.

The replay model does not parse the input files itself, since it is often useful
for underlying models to customise this if necessary. For example, modelling a
wind farm requires converting raw data (wind speed) into a meaningful form
for the model (power output). Thus, the replay model asks the underlying
model to parse each line from a file into a timestamp-value pair, which it then
stores ready for lookup.

When instantaneous power is retrieved from the replay model, it simply looks
up the appropriate value—interpolating where necessary—and returns it. Un-
derlying models can override this behaviour if necessary, for example in models
that must maintain internal state.

4.4.3 Probability Distribution Model

The distribution model provides a standard way of reading a cumulative distri-
bution function from file, and allowing efficient sampling of that distribution
during a simulation run. This model is structured in a similar way to the
replay model, where the underlying model is required to parse each line from
the input file.

Once the probability distribution is stored in memory, the distribution model
allows efficient random sampling of that distribution. This model is primarily
used for generating non-uniform random numbers, for example when producing
trip distances for vehicle travel.
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4.5 Electricity Generation

For the purposes of testing the performance of charging strategies (to be in-
troduced in chapter 6), models of electricity generation are required. One of
the metrics being tested in this research is how well each charging strategy
performs at maintaining balance between electricity generation and load. To
assist with this analysis, an extreme generation scenario is considered that
consists only of base and wind generation, neither of which attempt to follow
the variability of load. Peak generation is only called upon when load exceeds
the sum of base and wind generation, and after the contributions from V2G
are considered, if available.

4.5.1 Base Generation

Base generation provides a consistent power output to meet the energy needs
of consumers. These generators are typically efficient, but do not respond to
rapid changes in load. Therefore, they are well suited for running constantly
over long time periods.

In the simulation, the base generation model provides a consistent power out-
put that only varies over a seasonal time scale. At any particular instant, the
power output of the model, Bt, is specified as the average load over a three-
month window, less the expected contribution from wind energy. The ratio
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Figure 4.5: Simulated annual generation profile at 30% wind penetration.
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between base and wind generation is determined by the wind penetration level,
which is a simulation input. For example, at a 30% level of wind penetration,
base generation output is set to the power level required to contribute the
remaining 70% of energy consumed. This is illustrated in figure 4.5.

In a real electricity system, there are a variety of base generation sources such
as hydro, geothermal, coal and nuclear, each with different characteristics in
terms of responsiveness to changes in load, energy storage capability, and fuel
costs. The system operator must dispatch generation appropriately to ensure
an acceptable balance between maintaining a secure electricity supply and cost.

As discussed in section 3.1.4, large-scale centralised storage is expected to
be utilised for seasonal balancing of generation and load, while distributed
storage will be used for short-term balancing since it is ideally situated close
to load centres. The model described here serves as an approximation of such
a system, assuming that base generation will be dispatched to follow average—
rather than instantaneous—load. An evaluation of the full interaction between
centralised and distributed energy storage has been left to future work.

4.5.2 Wind Generation

As described in section 2.5.1, wind energy is predicted to comprise a significant
proportion of New Zealand’s future generation portfolio. It is therefore vital
to model the potential output of current and future wind farms, driven by real
wind speed data.

The resolution and time period covered by the data is critical, since different
time scales present different challenges for a system operator. Over short time
periods, change in power output (“ramping”) is the most significant concern
for maintaining frequency stability, while over the mid term the absolute power
output must be sufficient to cover demand. Over seasonal time scales, the total
energy output is most important—especially so in countries like New Zealand,
which are adversely affected by “dry years” because of a significant reliance on
hydroelectricity.

A synthetic wind speed dataset for 15 current and potential wind farm sites in
New Zealand is available, as described by Turner, Zheng, Gordon, Uddstrom,
Tait, Pearson, De Vos, Sterk, Carey-Smith and Moore (2009). This dataset
consists of time series wind speed data at 10-minute intervals over several years;
however, for commercial reasons the wind speeds for each site are disguised
either by normalisation, or by not revealing mast heights or co-ordinates. For
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the purpose of simulation, this is not a major concern since the variation in
wind speed is more important than its absolute value.

The relationship between wind speed and power output is approximately lin-
ear once factors such as turbine characteristics and farm layout are taken into
account (Bull, 2010; Jacobson, 2009). To map wind speed to a power output,
the speed at which the wind farm produces its full output must first be calcu-
lated. According to the New Zealand Wind Energy Association (2011), New
Zealand wind farms have an average capacity factor of 40%. Since the average
synthetic wind speed for 2007 was 9.44 m s−1, the nameplate power output will
be achieved at wind speeds of approximately 23 ms−1 or above. The formula
to map wind speed to power output is therefore:

Wt = wind speed[t]× capacity factor
average wind speed × nameplate capacity (4.5)

Since the current incarnation of the simulation does not include issues related
to grid topology, data for all 15 wind farm sites are averaged to create one
large virtual wind farm. Wind speed data for the year 2007 were used, since
this is the most recent complete year in the dataset.

The nameplate capacity of the simulated wind farm is set according to average
load and the wind penetration level being tested, as specified in equation 4.6.

nameplate capacity = average load× wind penetration
capacity factor (4.6)

4.5.3 Peak Generation and Spillage

The peak generation model is ultimately responsible for maintaining the bal-
ance between generation and load, after the contributions of the EV fleet are
considered. It is the only model that has access to the real-time state of the
grid, and simply sets its output to the level necessary to bring the power im-
balance to zero. This power level—which may be negative at times of excess
generation—is written to the output file directly at each simulation tick. Peak
generation can therefore be considered as an output of the simulation rather
than a model within it.

Peak generation and spillage are shown graphically in figure 4.6. With no as-
sistance from the EV fleet, the burden of maintaining balance is entirely placed
upon peak generators. If—by coincidence—the grid is perfectly balanced, the
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Figure 4.6: Example of peak generation and spillage.

peak generation requirement is zero. For all other times, either the input from
peak generators is required, or spillage is recorded.

Peak generators are required to be highly responsive and dispatchable, since
they must match their output against load for the grid to remain in balance. In
many countries, these generators typically burn fossil fuels and are less efficient
than base generators (Black and Strbac, 2006), leading to a goal of minimising
their use. Furthermore, the provision of back-up capacity to cover intermit-
tency in wind and other renewables constitutes a significant inefficiency in
overall grid system design. In the New Zealand situation, peak generation is
itself commonly derived from renewable sources—principally hydroelectric—
however it remains an important goal to reduce the use of peak generation
where possible in order to ease transmission constraints, and to minimise
spillage by fully utilising wind generation when available.

4.6 Bulk Load

In the simulation, bulk load comprises all existing electricity demand, to pro-
vide a baseline for electricity consumption patterns over a range of time scales.
It is essential to model electricity consumption in order to see the interactions
between “normal” electricity consumption and the additional load introduced
by the electric vehicle fleet. This is achieved by “playing back” zone load data
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Figure 4.7: New Zealand weekly load curve in 2011.

for the year 20112, obtained from Transpower (2013), New Zealand’s transmis-
sion network operator.

The zone load dataset contains both real and reactive power for all grid exit
points in New Zealand at five-minute intervals. At this stage, the simulation
utilizes only the aggregate real power for the whole country, disregarding grid
topology.

Figure 4.7 shows the national load curve for 2011. All 52 weeks are shown,
coloured by season. During the winter, cooler temperatures and fewer sunlight
hours mean that the morning and evening peaks are higher and more pro-
nounced than in summer, where the daytime load is relatively flat. Although
demand follows a reasonably consistent pattern within seasons, the effects of
several unusual events are visible as faint traces outside the normal consump-
tion patterns. The exceptionally high winter load that is most pronounced
during the working week is the result of unusually cold weather in July and
August, while the unusually low demand events correspond to holiday periods,
including Christmas/New Year, ANZAC and Queen’s Birthday weekends, and
the day after the 2011 Rugby World Cup final.

2The data between 02:00 and 03:00 on April 3 were corrupt, likely due to a daylight
saving bug, and were hence removed. In addition, the data for 07:00 on April 20 was also
corrupt and hence removed. The interpolation built into the simulation will fill in the blanks.
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4.7 Vehicle Fleet

There are two main aspects to the vehicle model in the simulation; (i), the
vehicle behaviour model that determines the timing and energy use of trips
made by a vehicle, and (ii), the electrical model, which dictates charging and
discharging (V2G) rates when connected to the grid. Together, these models
establish both the energy consumed by the vehicle, and the times at which the
vehicle is available for charging.

4.7.1 Behaviour Model

An important part of the simulation is to accurately model the times of day
vehicles are in use, and how far they travel. These factors influence both
the energy requirements of the vehicles, and the times at which they may be
connected to the grid. The New Zealand Household Travel Survey (Ministry
of Transport, 2011) invited people from 4600 households to record all of their
travel over a two-day period; the results from this survey have been used to
build statistical models for vehicle behaviour.

In this research, “trip” refers to a single vehicle movement, between starting
the vehicle and stopping it, while a “journey” refers to travel between two
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Figure 4.8: Weekly distribution of vehicle trips, starting Sunday. Data from
Ministry of Transport (2011).
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Figure 4.9: Average trip distance by hour of week, starting Sunday. Data from
Ministry of Transport (2011).
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points, which may include multiple “trips”. For each vehicle in the simulation,
a sequence of upcoming trips is stored. The description of each trip includes
a time of departure, a distance to be travelled, and the average speed for that
trip. At the conclusion of a trip, the EV reconnects to the grid and will remain
connected until its next departure. All trips for the simulation period can be
generated at the beginning of a scenario run, or dynamically during runtime
to reduce memory requirements.

To generate the next trip’s time of departure, the cumulative distribution
function derived from figure 4.8 is sampled 22 times, since this is, on average,
the number of trips made each week (Ministry of Transport, 2011). The sample
that is immediately after the current simulation time is used as the time of
next departure, wrapping back to the start of the next week if necessary.

Once the departure time has been established, a mean trip distance is taken
from the distribution shown in figure 4.9, which is then modified to provide an
individual trip distance as follows: A random sample is taken from a distri-
bution of trip distance per day, which has been normalized to have a mean of
one, as shown in figure 4.10. The average trip distance from figure 4.9 is then
multiplied by this value and becomes the distance of the next trip.

Finally, the average speed for all trips is simply chosen to be 36 km h−1, a figure
obtained by the distribution of daily travel distance per vehicle (Ministry of
Transport, 2011).

If a trip is not possible, either because its distance is greater than the range
of the vehicle, or the charging strategy failed to adequately provide for it, the
vehicle will not depart. Instead, the failure is noted and the vehicle will remain
connected to the grid until the scheduled departure time of the following trip.

Table 4.3: Static vehicle characteristics.
Parameter Value Unit
Maximum battery capacity 50 kW h
Minimum allowable state of charge 1 kW h
Maximum charge power 5 kW
Minimum charge (i.e. discharge) power -5 kW
Battery-to-wheel efficiency 110 W h km−1

Grid-battery-grid Round Trip Efficiency 100 %
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4.7 Vehicle Fleet

4.7.2 Electrical Model

The electrical model of an EV includes parameters such as battery capacity,
maximum charging and V2G rates, upper and lower SOC limits, efficiency, and
perhaps most importantly, a charging controller that implements a particular
charging strategy (chapter 6).

The vehicle parameters chosen to be representative of a typical BEV are shown
in table 4.3, while charging and discharging rates are considered typical val-
ues for domestic electricity connections in New Zealand (Duncan et al., 2010;
Concept Consulting Group Ltd, 2012). These parameters are represented in
SI base units within the simulation, but are shown here in units that are more
commonly encountered when discussing EV characteristics. Table 4.2 more
formally describes these parameters.

The charging strategy implemented by an EV is responsible for choosing a
suitable charging (or V2G) rate to ensure that the energy requirements of the
EV are met. This is achieved using a decentralised charging model, whereby
each EV makes its own decisions about charging and V2G rates based on in-
formation from multiple sources, as illustrated in figure 4.11. Some parameters
are measured by the EV itself, while others are acquired from a communica-
tions network (section 4.3.2). A charging strategy is not required to utilise
all available information; for example, an unsophisticated strategy might be
to simply charge at the maximum allowable rate until a full SOC is reached,
while a smart strategy could make use of all information to provide ancillary
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Figure 4.11: EV electrical model.
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services to the grid. A full discussion of charging strategies is the focus of
chapter 6.

In the simulation, batteries are not modelled for a particular technology;
rather, they are treated as a simple “box of energy”. This decision was made on
the basis that the most common energy storage technology in coming years is
uncertain. Many technologies have potential—for example lithium ion batter-
ies, fuel cells, and super capacitors—which may be combined in hybrid systems
to exploit the advantages of each (Khaligh and Li, 2010). Although there are
differences in the behaviour of these different technologies, most notably SOC-
dependent charging rates and efficiency, these differences are not expected to
significantly affect results.

A grid-battery-grid round-trip efficiency of 100% is used, which differs from
typical values of between 80 to 90% seen in other V2G-related studies (Kristof-
fersen et al., 2011; Mason, 2014; Nunes et al., 2015). Energy losses resulting
from conversion processes are inevitable and important to consider—especially
in studies at the scale of a single vehicle or residential area—but doing so in
isolation will not accurately characterise the wider efficiency gains achieved
elsewhere in the system. Transmission and distribution network losses, for
example, average approximately 7% in New Zealand (Ministry of Business,
Innovation and Employment, 2014), and are influenced by many parameters
including net load and transmission distances (Nair and Zhang, 2009); similar
or greater losses are observed when partly-loaded thermal generation is used
to balance load (Kim, 2004). The complex interplay between these factors,
among others, is difficult to evaluate without accurate and detailed models for
all parts of the system. Instead, the assumption is made that V2G conversion
losses will be approximately offset by efficiency gains elsewhere in the system,
and hence the effective grid-battery-grid efficiency is set to 100%.

4.8 Simulation Operation

For each tick of the simulation, the state of the internal models is updated,
and all global state variables are recalculated. For electricity generation and
load models, changes in state can only occur at the time of a tick, while EVs
may depart on a trip—or arrive back from a trip—at any time.

The steps followed at each simulation tick can be summarised as follows:

1. For each vehicle that has departed since the previous tick, disconnect it
from the grid.
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2. For each vehicle that has returned from travelling since the previous tick,
update its battery state and reconnect it to the grid.

3. Update values for wind generation, base generation, and bulk load from
their respective models.

4. For each connected EV, recalculate its charging/discharging rate using
its chosen charging strategy.

5. Recalculate the global state of the grid, including power imbalance and
aggregate EV fleet metrics.

6. Record the current state of the simulation, including generation outputs,
load, vehicle arrivals and departures, the aggregate charge state of the
EV fleet, and other parameters.

This process begins shortly before the start of the simulation period (see section
4.3.3), and continues until the scenario run is complete.

4.9 Cluster Implementation

The analysis in this research compares large numbers of different scenarios to
evaluate the performance of charging strategies with varying levels of wind
penetration, EV fleet size, among other parameters. The simulation software
can run on a standard personal computer, but much greater performance can
be achieved by running many scenarios in parallel and analysing the output
once all scenario runs are complete. Hence, the software has been adapted to
run on Symphony3, a cluster computer at the University of Waikato.

Figure 4.12 shows the structure of a distributed simulation run containing
multiple scenarios. Each of the independent variables (e.g. charging strategy,
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Figure 4.12: Cluster Implementation.

3http://symphony.waikato.ac.nz/

89



Chapter 4 Simulation and Modelling

wind penetration, EV fleet size, EV battery size) are specified as discrete
values, and a script (the scenario generator) combines all possible combinations
of these variables to create a list of scenarios to be tested. This list is then
submitted to the cluster computer using the TORQUE Resource Manager4,
which dispatches each scenario run to a dedicated processor within the cluster.

After all scenario runs have completed, the run analyser combines the interme-
diate results from each run and generates the final results for further analysis.

4.10 Summary

In order to evaluate the implications of the widespread deployment of EVs
and wind generation in New Zealand, there are a number of capabilities that
a simulation needs to support. This chapter began by establishing those
requirements—namely the inputs, outputs, and performance—and then pre-
sented the software design and formulation of the models that will be used in
the case study.

The models for electricity generation, load, and vehicle travel each extend
generic models that process either time-series or probability distribution data
from the relevant files. Each simulated EV performs its own charging decisions
using information about its own state, the state of the grid, and aggregate state
of all other grid-connected vehicles.

4http://www.adaptivecomputing.com/products/open-source/torque/
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5
Balancing Variability

This chapter explores the variability of wind speed and electricity load, and
establishes the performance requirements for the hypothetical energy storage
system needed to keep the electricity grid in balance over a simulated year.
It does not intended to provide realistic figures for New Zealand’s electricity
system; rather, the intention is to establish best-case performance characteris-
tics of an ideal energy storage system under the constraints of the simulation
software and generation profile.
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Figure 5.1: Average weekly wind speed and electricity consumption. Data from
Turner et al. (2009) and Transpower (2013) respectively.
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Figure 5.2: Instantaneous wind speed vs electricity load, sampled at 10-minute
intervals over one year. Data from Turner et al. (2009) and Trans-
power (2013) respectively.

5.1 Variability of Load and Wind

The first aspect addresses the variability of the electricity load, wind speed, and
the temporal relationship between the two. If these quantities were perfectly
correlated, and assuming that the energy generated was equal to the energy
consumed throughout the year, then no energy storage would be required.

Figure 5.1 shows average weekly wind speed (line chart) overlaid onto the
weekly electricity consumption, from the beginning of January through to the
end of December. In terms of weekly load, more energy is delivered to con-
sumers over the winter months, while the weeks of lowest demand occurs over
the Christmas and New Year holiday period. The average wind speed, how-
ever, is higher during Autumn and Spring. The relationship between energy
consumption and average wind speed is not strong at this time scale, imply-
ing that storage is required to balance supply and demand over multi-week
periods.

The correlation between instantaneous wind speed and electricity is also very
weak, as shown in figure 5.2. This indicates that short-term energy storage is
very important if wind were used as the sole source of electricity generation.
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5.2 Storage Requirements

This section examines the performance required of the energy storage system
needed to supply New Zealand’s present-day electricity needs from the gen-
eration profile described in section 4.5; that is, an inflexible base generation
profile that follows seasonal trends in load, plus a fixed level of wind generation
that is scaled to meet the remainder of energy needs over the simulated year.

Three aspects of the storage system are considered: its total energy storage
capacity, maximum power input and output, and maximum ramp rate. These
factors are evaluated by their effects on the storage system’s ability to maintain
balance between generation and load, which is stated in terms of the demands
placed upon peak generation: total peak energy used and spilled, peak power
input and output, and maximum observed ramp rates.

As described in section 4.3.2, it is not possible to maintain a perfect balance
between generation and load at all times. Some level of peak generation and
spillage is to be expected, even with an ideal energy storage system.
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Figure 5.3: Ideal stored energy for 2011 (30% wind).
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Figure 5.4: Ideal storage power-duration curve for 2011 (30% wind).

5.2.1 Baseline Performance

This section evaluates the utilisation of an ideal energy storage system in
terms of total stored energy, and power input/output levels over the course
of a simulated year. An ideal system has infinite energy storage capacity, no
limits on power input/output, and unlimited ramp rates.

Figure 5.3 shows the total stored energy over the simulated year, with the
minimum observed level normalised to zero. The effects of higher-than-average
wind speed during autumn and spring are apparent, as is a steady decline in
stored energy over the course of winter when demand is higher. The maximum
observed capacity of 423 GW h implies that having a total storage system larger
than this is not likely to contribute any significant savings in peak generation
or spillage, although extra capacity will contribute towards increased energy
security.

The duration curve of power into and out of the energy storage system is
shown in figure 5.4. Overall, a connection capacity of ±3 GW between the
energy storage system and the grid is sufficient to prevent bottlenecks, and
a capacity of half that value (i.e. ±1.5 GW) is sufficient to provide for more
than 90% of the year.

Using this ideal energy storage system, the total energy requirement from
peak generation sources over the year was 134 GW h, or approximately 0.3%
of total demand. Because the generation has been sized to provide exactly the
amount of energy consumed over the year, energy spillage over the year is also
134 GW h.
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5.2.2 Energy

The first parameter to be evaluated is energy storage capacity. The simula-
tion was configured to run scenarios with storage capacity ranging from zero
to 1 TW h in 10 GW h steps, with the peak generation and energy spillage
recorded for each step. Figure 5.5 shows that with no storage available, both
peak generation and spillage are approximately 3 TW h per year, or 7% of total
demand.

When storage capacity is increased, the peak generation requirement and
spillage both decrease rapidly. Significant savings are realised with a capacity
of 100 GW h, which is approximately equivalent to the average daily consump-
tion of 119 GW h. As expected, additional capacity beyond approximately
400 GW h had negligible impact on peak generation and spillage.

5.2.3 Power

The second parameter of interest is the capacity of the connection between
the energy storage system and the electricity grid. Figure 5.6 shows that a
connection capacity of approximately ±1.5 GW reduces peak generation and
spillage considerably, and doubling that capacity achieves relatively little ben-
efit. This is to be expected, given the power-duration curve required of the
ideal energy storage system shown in figure 5.4.

Figure 5.5: Storage capacity vs peak generation and spillage (30% wind).
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Figure 5.6: Storage power I/O vs peak generation and spillage (30% wind).

It must be noted, however, that the ability to cover peak load is an essen-
tial requirement of an electricity grid. Therefore, although a higher capacity
grid connection achieves little benefit in terms of the energy used from other
generation sources, the additional capacity is still necessary.

Figure 5.7: Ramp rate vs peak generation and spillage (30% wind).
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5.2.4 Ramp Rate

The final parameter of interest is the ramp rate of the energy storage system;
that is, the rate at which the system can change its output power. Figure 5.7
suggests that a ramp rate of 20 MW min−1 is sufficient in an environment with
30% wind; approximately double the present frequency-keeping requirement
in New Zealand (section 2.5.4). In situations where the ramping ability of the
storage system is insufficient, peak generation or spillage must be employed to
maintain balance while the storage system responds.

The asymmetry between the peak generation requirement and spillage is a
consequence of load and generation characteristics. In situations where the
energy storage system must increase its output, the average rate required is
5.81 MW min−1, versus an average down ramping rate of 5.66 MW min−1.

5.3 Effects of Wind Penetration

This chapter thus far has evaluated the energy storage performance require-
ments with a fixed 30% wind penetration, with no short-term load-following
generation, and with New Zealand’s present-day electricity demand. This sec-
tion briefly looks at how the performance requirements change as a function
of wind penetration, from 0% to 100% in 10% steps.

Figure 5.8 shows how the three main storage system characteristics—energy
capacity, connection capacity, and ramp rates—vary as a function of wind
penetration. The total energy storage capacity (figure 5.8a) rises more than
five-fold as wind penetration increases from zero to 100%. On a seasonal basis,
periods of high wind generation and periods of high electricity demand do not
coincide. Therefore, energy must be stored in the interim, which may be several
months or more as indicated in figure 5.3. As a larger proportion of energy is
derived from wind, this effect is magnified and thus the total energy storage
requirements will increase.

Over shorter time scales on the order of a day, the grid connection capacity is
often the limiting factor of the energy storage system. Because wind generation
can be very low at times of high electricity load, the energy storage system
must be able to immediately make up the difference in order to prevent load
shedding. On the other hand, when wind output is high during times of low
demand, the energy storage system must be able to absorb the excess energy
to prevent spillage. Figure 5.8b shows that the peak power required of the
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Figure 5.8: Energy storage requirements by wind penetration.
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5.4 Summary

energy storage system roughly doubles as wind penetration increases from zero
to 100% for energy flows from the storage system to the grid, and increases
more than three-fold for energy flows from the grid to storage system.

Finally, although ramp rate requirements do increase as wind penetration in-
creases, figure 5.8c shows that this effect is not significant.

5.4 Summary

The correlation between wind speed and electricity load is poor, and thus
some form of energy storage is necessary to ensure that electricity generation
matches load at all times. This chapter has investigated three requirements of
such a storage system in terms of its energy capacity, grid connection capacity,
and ramping ability.

A small amount of peak generation and energy spillage is unavoidable—even
with an ideal energy storage system—because the simulation software does not
allow an energy storage system to respond instantly to changes in generation
and load. This effect is very small, however, at approximately 0.3% of total
electricity demand over the simulation period.

The level of peak generation and spillage is affected by the less-than-ideal char-
acteristics of the energy storage system, including its finite storage capacity,
limited grid connection capacity, and limited ramping ability.

Finally, the demands of all three characteristics increase as the proportion of
wind generation in the system increases.
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6Charging Strategies

This chapter introduces the charging strategies that will be evaluated in the
following chapter. It begins with the definition of an EV charging strategy,
and specifies the information that may be used to influence charging decisions.
Next, a number of charging strategies are described, some of which include sec-
ondary goals that go beyond simply charging the vehicle. Finally, the criteria
used to evaluate the performance of a charging strategy is discussed.

In this research, charging decisions are made by each individual vehicle whilst
connected to the grid, using information about the current state of electricity
generation, electricity load, and the aggregate state of other connected vehicles.
The primary purpose of an EV is to provide transportation, so it follows that
the primary goal of a charging strategy is to ensure that a sufficient SOC
is achieved prior to an EV departing on its next trip. Other goals, such as
providing ancillary services to the grid, are secondary.

6.1 Definition of a Charging Strategy

At an abstract level, the role of a charging strategy is to choose the rate at
which an EV draws electricity from the grid. This rate can be continuously
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Figure 6.1: Charging strategy block diagram.
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variable, and may be negative where bidirectional flows are supported. From
a simulation point of view, the charging strategy is responsible for answering
the following question at each simulation tick:

Given the current state of the grid, the state of the vehi-
cle’s battery, and plans for upcoming trips, what should
the vehicle’s power draw be during the next tick interval?

There are certain goals expected of a charging strategy, the most important
being that the EV achieves a sufficient state of charge by the time it is due
to depart on its next trip. One way to achieve this is to always answer “the
maximum rate possible” (the greedy strategy); however, this approach imposes
severe stress on electrical infrastructure, as explained in section 3.2.

Secondary goals for a charging strategy could include reducing charging rates
during times of high electricity demand, returning electricity back into the grid
to cover generation shortages, or providing load-matching services. For this to
be possible, the charging strategy will require access to information on which
to base its decision when setting the charging rate. The information is divided
into three main categories; the state of the grid, the state of the EV, and the
upcoming usage of the EV (see figure 6.1). This is described in more detail in
section 6.1.2.

6.1.1 Function

The primary aim of a charging strategy is to attain a SOC of at least the
charging target Q1 by the time of next departure T1, by choosing an appropri-
ate charging or discharging rate p at each simulation tick, based on the state
of the EV (see table 4.2 on page 75). The calculation of Q1 is explained in
section 6.2.

As shown in figure 6.2, an EV may have some residual stored energy (Q0)
when reconnected to the grid at time T0. Assuming that the primary goal
of meeting Q1 at time T1 will be achieved, the SOC must remain within the
shaded area at all times. This area is defined by maximum charging (PMAX)
and discharging (PMIN) rates, as well as the maximum (QMAX) and minimum
(QMIN) allowable SOC of the vehicle.

Each charging strategy is free to choose its path between T0 and T1, for which
it may utilise outside information in order to achieve a secondary goal, such
as minimising peak loads or supporting intermittent generation sources. A
charging strategy does not necessarily utilise all information available to it; for
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Figure 6.2: Function of a charging strategy. The vehicle should strive to meet
the charging target Q1 at the time of next departure T1. How this
is achieved is up to the charging strategy, but the SOC must remain
within the grey area.

example, the greedy approach simply specifies the maximum possible power
(PMAX) until the battery is fully charged.

Several charging strategies include the secondary goal of supporting the grid
whenever possible. Provided that the vehicle’s SOC will not stray outside the
predefined area, a charging strategy may choose to return energy to the grid
during generation shortages (up regulation, or V2G), or charge at a variable
rate in response to available generation (down regulation). If bidirectional
energy flows are not supported, the SOC cannot decrease while the vehicle is
connected to the grid.

6.1.2 Information for Decision Making

With few exceptions, charging strategies rely on information from three pri-
mary sources in order to make sensible charging decisions: the grid (current
generation, load, and aggregate state of the EV fleet), the vehicle (SOC, vehi-
cle efficiency), and the vehicle’s driver (upcoming trips). The variables made
available to an individual EV are shown in tables 4.1 and 4.2 on pages 73 and
75 respectively.
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Charging strategies do not necessarily make use of all available information; for
example, the basic strategies described in section 6.4.1 do not require any input
from the driver about upcoming trips. When more information is available, an
EV can offer more battery capacity for grid management purposes. However,
the trade-off is an increased chance that the EV won’t have a sufficient SOC
to complete a subsequent trip.

6.1.3 Prediction of Future Journeys

This chapter thus far has hinted that some charging strategies either require
information about upcoming usage of a vehicle, or perform better with access
to this information. Of course, this raises the question: where will information
about future use of a vehicle come from?

A number of approaches may be used, which fall into two main categories: have
the driver specify this information in advance, or attempt to learn typical usage
patterns for a particular driver based on past observations. A combination of
the two may prove best, since there will always be trips that are out of the
ordinary and do not lie within what is considered “normal”. A full discussion
of these approaches is included in section 3.3.

In this research, it is assumed that charging strategies have access to perfect in-
formation about upcoming trips. An evaluation of how the charging strategies
perform with less-than-perfect information has been left to future work.

6.2 Charging Targets

With the exception of traditional charging strategies, such as greedy, overnight,
and valley-fill (to be described in section 6.4.1), all charging strategies con-
sidered in this research aim to meet a charging target, Q1, by the time of the
vehicle’s next departure, T1. At the very least, Q1 should cover the require-
ments of the next trip. If this is not achieved, the vehicle might be unable to
complete the trip as planned.

It must be noted that charging targets specify the minimum state-of-charge
to be achieved by the time of next departure. A charging strategy may exceed
this amount, and the strategies that utilise surplus electricity generation are
likely to do so. In addition, Q1 is normally overestimated so that a failure
to meet it does not necessarily mean that the next trip cannot be completed.
If, however, the state-of-charge at time T1 is less than the energy that will be

104



6.2 Charging Targets

used during the trip, the simulation treats that trip as one which cannot be
completed, and hence a failure is recorded.

Three possible approaches to calculating Q1 are described below.

6.2.1 Full Charge

The most simple method is to aim for a full charge at the time of next depar-
ture, namely:

Q1 = QMAX (6.1)

By using this method—referred to as full-charge—a driver only has to specify
when the vehicle is needed next. One benefit of this method is that the battery
SOC, q, is likely to remain near full capacity on average, except where a driver
has indicated that the vehicle won’t be used for a long period of time. This
means that the vehicle is likely to be capable of completing unplanned trips.
However, this method does suffer from the potential to unnecessarily draw
energy from the grid at inopportune times.

6.2.2 Naïve

At the other end of the spectrum, Q1 can be set to cover only the energy
requirement of the next trip. This requires knowledge of when—and how far—
that trip will be. This naïve method leaves more battery capacity available
to support the grid, but is less tolerant of unplanned trips. It also fails to
allow for multiple trips that are separated by insufficient charging windows
(illustrated in figure 6.4), since the maximum charging power PMAX might be
insufficient to transfer the necessary energy within the time available.

The charging target calculation for this method is:

Q1 = min {D1.η.M,QMAX} (6.2)

where D1 is the distance of the next trip, η is the battery-to-wheel efficiency
of the vehicle, and M is a safety margin set to 1.2.
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1 for (i = Trips. Length - 1; i > 0; i--)
2 {
3 CurrentTrip = Trips[i];
4 PrevTrip = Trips[i - 1];
5
6 EnergyNeeded = CurrentTrip . Distance *

VehicleEfficiency ;
7
8 ChargePotential = ( CurrentTrip .Start -

PrevTrip . Finish ) * MaxPower ;
9

10 ResidualEnergy = MinEnergy [i] + EnergyNeeded -
ChargePotential ;

11
12 if ( ResidualEnergy < 0)
13 ResidualEnergy = 0;
14
15 MinEnergy [i -1] = ResidualEnergy ;
16 }

Figure 6.3: Look-ahead algorithm for calculating charging targets.

6.2.3 Look-Ahead

The third method, look-ahead, addresses the issue of multiple trips occurring
with limited intermediate charging windows. It requires a knowledge of a
sequence of upcoming trips, which may be difficult to obtain. However, in-
cluding this case allows for the evaluation of charging strategies when perfect
information is available.

The look-ahead method examines a sequence of upcoming trips rather than
only the next trip. In cases where insufficient time exists between trips to
charge for a second trip, the amount of the shortage will be added to the
charging target for the first trip. This ensures that, upon return from the first
trip, there will be sufficient charge remaining in the EV battery to allow the
charging target for the second trip to be met. The look-ahead period used in
the simulation is 10 trips, which corresponds to approximately three days.

Figure 6.3 describes the look-ahead algorithm, which works backwards from
the final trip in the look-ahead sequence. At each step, the algorithm adds
the energy needed by the present trip and subtracts the charging potential
during the period following the end of the previous trip. Trips is an array of
future trips ordered by time of departure (earliest first), while MinEnergy
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is an array of values specifying the amount of energy required, excluding that
needed by the next trip, to successfully complete the whole sequence of trips.
If these values exceed the available battery capacity at any point, the vehicle
will be unable to complete the sequence as planned. MinEnergy is the same
length as the Trips array, with all values initialised to zero.

After running the algorithm, the first element in the MinEnergy array con-
tains the energy required in excess to that needed by the first trip in the
sequence, in order to successfully complete the full sequence of trips. Hence,
when using the look-ahead approach, Q1 is set to be the sum of energy required
for the first trip in the sequence, and the amount calculated in MinEnergy[0].

6.2.4 Summary

Figure 6.4 shows the behaviour of the three methods for calculating Q1. For
the purposes of illustration, the numbers are notional and no units are given.
The maximum charging rate is one unit of energy per unit of time, and the
energy consumption during trips is the same. The maximum battery capacity
is 6 units. Negative-sloping (shaded) sections of the graph are a result of
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Figure 6.4: Calculating charging targets for a sequence of three trips. Both
the full-charge and look-ahead methods meet the requirements for
the sequence, while the naïve method fails at time 7.
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the vehicle using energy during trips, while positive slopes illustrate charging
periods. Three trips are shown, starting at time 0, 5 and 7.

The lower line indicates the minimum energy necessary when planning only for
the next trip in the sequence (the naïve method), where each trip is allowed
to finish with an empty battery. The upper line indicates the maximum en-
ergy possible when aiming for a full charge at each departure (the full-charge
method). The dotted intermediate line indicates the minimum charge that
will allow the vehicle to complete all trips successfully, without exceeding the
maximum charge rate, as calculated using the look-ahead method.

When using the naïve method, the third trip would probably not be possible—
unless the charging strategy happened to utilise surplus generation—since the
charging rate required between time 6 and 7 is greater than the allowable
limit. The full-charge method does not reach its charging target for trips
two and three, but the trips are able to be completed because this method
overestimates energy required. At the end of the look-ahead period–three trips
in this example—the stored energy is allowed to reach zero.

6.3 Charging Modes

When connected to the grid, an EV can be in one of four modes that deter-
mine its charging behaviour. Table 6.1 shows the three boolean variables that
represent the state of the vehicle and grid, and the four boolean expressions
used to determine the charging mode.

F is true only when the EV is fully charged and cannot accept any more energy
from the grid, while P is true when the EV is capable of supplying energy back

Table 6.1: Variables used to determine charging mode.
Symbol Explanation
F The vehicle is fully charged
N The grid has a shortage of generation
P The vehicle is able to supply energy to the grid
Mode A Idle, when: (P ∧ F ) ∨ (F ∧N)
Mode B Flexible charging, when: P ∧ F ∧N
Mode C Imperative charging, when: P ∧ F
Mode D V2G, when: P ∧N
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to the grid without compromising its ability to meet charging targets. N is
true when grid load exceeds generation output.

In mode A, the net power into the EV will be zero; that is, there is no energy
flowing into or out from the vehicle. This occurs when there is a surplus of
generation but the battery is already full, or the battery is full but the vehicle
is unable to provide any energy back to the grid.

In mode B, there is a surplus of generation, the battery is not full, but the
vehicle is able to provide energy back to the grid. This last point refers to
the fact that the EV can provide energy back to the grid, implying that it
currently has more energy than the lower limit shown in figure 6.2. In this
mode, the rate of charging varies in response to the magnitude of the surplus
to ensure that total generation and load stay in balance.

In mode C, the EV draws energy from the grid regardless of other requirements.
This mode is selected when the vehicle must charge urgently in order to stay
within the limits shown in figure 6.2, or if the charging strategy does not
implement modes B or D.

In mode D, there is a shortage of generation, and the vehicle is able to provide
energy back to the grid. This is the V2G mode, where the power into the
vehicle becomes negative and hence energy flows from the EV back into the
grid. The power varies according to the magnitude of the shortage to ensure
that total generation and load stay in balance.

A given charging strategy will not necessarily support all four modes, but at
a minimum modes A and at least one of B or C are necessary.

6.4 Charging Strategies

This section describes the charging strategies that will be evaluated in chapter
7. These strategies are divided into three classes—traditional, target-based,
and smart.

The purpose of each strategy is described, including its modes of operation and
the information it requires to make charging decisions, while typical behaviours
are illustrated in figures 6.5, 6.6, and 6.7. In each figure, the range that each
charging strategy must remain within is indicated by black lines, which is
constrained by the maximum and minimum allowable charge levels (QMAX and
QMIN), as well as the maximum allowable charging and V2G power (PMAX

and PMIN).
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6.4.1 Traditional Charging Strategies

The traditional charging strategies are simple in their operation, and require
no notice of upcoming trips. Of the three strategies presented here, the first
two only support charging modes A and C, where the idle mode is selected
when the battery is full or outside the conditions imposed by the strategy (i.e.
daytime for overnight), and imperative charging is used otherwise. The third
strategy, valley-fill, supports mode B instead of mode C, since the charging
rate is based on aggregate grid load.

Since traditional charging strategies do not attempt to meet a charging target
(T1 and Q1), this is not shown in figure 6.5.

Greedy

This strategy is often referred to as uncontrolled charging. Once an EV is
connected to the grid, it will charge at its maximum rate in mode C until its
battery is full, at which point it will switch to idle mode (A), as shown in
figure 6.5a.

This strategy offers the best possible performance in terms of meeting the
energy requirements of the vehicle, but is generally accepted to be expensive
or infeasible to use on a large scale (Clover, 2013; Putrus et al., 2009; Shortt
and O’Malley, 2014).

Overnight

Vehicles using the overnight strategy will charge during the night, which is
defined as being between the hours of 01:00 and 07:00 in this research. Between
these hours, EVs charge in mode C at the minimum rate necessary to obtain a
full charge by the end of that period, as shown in figure 6.5b. Outside of this
period, the vehicle remains in mode A.

Valley Fill

Based on an idea similar to the overnight strategy, the valley-fill strategy
attempts to make use of surplus generation capacity during off-peak periods.
Rather than relying on time-of-day to signal when this occurs, valley-fill uses
the magnitude of all non-EV load, and charges when this drops below a set
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(a) greedy

(b) overnight

(c) valley-fill

Figure 6.5: Typical behaviours of traditional charging strategies. Charging
modes: A: Brown, B: Green, C: Red. The shaded area indicates
that electricity demand is below a preset threshold.
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threshold. This strategy has also been a focus of several studies, for example
Ma et al. (2010); Denholm and Short (2006).

An EV utilising this strategy will remain in mode A while electricity load is
above the preset threshold, and will enter mode B when load drops below it.
This is illustrated in figure 6.5c.

When in mode B, charging power is calculated using equation 6.3. Each vehicle
using the valley-fill strategy calculates its charging power so that the total load
is raised up to the threshold amount; in effect, “filling the valley”. Vehicles
with less stored energy will charge at a higher rate than those nearing a full
charge.

PINt = (threshold− Lt−1 − LEVt−1)× QMAX − qt

ERt−1

(6.3)

6.4.2 Target-based Charging Strategies

The next two charging strategies aim to reach the charging target Q1 by the
time of next departure T1, as described in section 6.2. The strategies presented
here only support modes A and C, and unlike the traditional charging strate-
gies, target-based strategies do not take into account time-of-day or grid state,
hence these factors are not shown in figure 6.6.

Lazy

Vehicles using the lazy charging strategy do not charge immediately when
connected to the grid, but instead wait in mode A as long as possible before
switching to mode C and charging at the maximum rate in order to meet the
charging target. This can be seen as a “just-in-time” approach, as shown in
figure 6.6a.

Slow

When connected to the grid, EVs using the slow charging strategy will charge in
mode C at the minimum rate needed to meet the charging target, illustrated
in figure 6.6b. This attempts to keep power demands low by spreading the
required energy transfer over the longest possible period of time.
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(a) lazy

(b) slow

Figure 6.6: Typical behaviours of target-based charging strategies. Charging
modes: A: Brown, C: Red.

6.4.3 Smart Charging Strategies

The “smart” charging strategies take into account the current state of the grid
when making charging decisions, and attempt to minimise their own impacts
on the grid while also providing ancillary services where possible. Of these,
only one—the co-op strategy—supports bidirectional energy flows.

Like the target-based charging strategies, smart charging strategies also aim
to meet a charging target. During times of surplus electricity generation,
indicated by the shaded area in figure 6.7, an EV using a smart charging
strategy will utilise mode B unless its battery is already fully charged. At all
other times, it is assumed that the grid has a shortage of generation and hence
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(a) lazy+

(b) slow+

(c) co-op

Figure 6.7: Typical behaviours of smart charging strategies. Charging modes:
A: Brown, B: Green, C: Red, D: Blue. The shaded area indicates
surplus generation.
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an EV will not charge unless it is necessary in order to meet the charging
target.

Lazy+

As an extension of the lazy charging strategy, lazy+ will charge during its
“waiting” period when surplus generation is available; that is, when total gen-
eration exceeds bulk load plus any imperative EV charging load. Mode B is
used if the vehicle is not already fully charged, which provides a “down” reg-
ulation service. Each vehicle calculates its own charging power based on the
aggregate state of the EV fleet; the calculation itself is described in section
6.5.1.

An EV waits as long as possible in the hope that surplus generation will
become available before its next departure. If this does not happen, however,
the vehicle will eventually switch to the imperative charging mode (C) in order
to meet its charging target. The example shown in figure 6.7a does not require
a last-minute imperative charge, since the target Q1 had already been met
during a generation surplus.

Slow+

The slow+ strategy follows a similar rationale to that used in lazy+. When
connected to the grid, an EV using this strategy will begin charging in mode
C at the minimum rate needed to meet its charging target, but will switch to
mode B and increase its charging rate when surplus generation is available, as
shown in figure 6.7b. Like lazy+, this also provides a “down” regulation service
during times of surplus generation, but avoids the possibility of a last-minute
spike in charging power before departing on a trip.

Co-op

The co-op charging strategy provides full V2G capability, supporting all four
charging modes. It operates in a similar manner to the lazy+ strategy, where
a last-minute imperative charge is used to ensure that an adequate SOC is
attained by the time of next departure, and a “down” regulation service is
provided during times of surplus generation.

The primary difference between co-op and lazy+ is the provision of “up” reg-
ulation during generation shortages (mode D). In this situation, a calculation
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is performed (section 6.5.2) where the charging power becomes negative, and
hence energy flows from the EV back into the grid.

The decision to enter V2G mode is based on whether enough time is available
to bring the battery back up to a sufficient level before the next departure, i.e.
the battery SOC will remain within the acceptable limits shown in figure 6.7c.
The calculation for the lower limit at time st is shown in equation 6.4.

qlower = max {QMIN , Q1 − PMAX × (T1 − (st+ ε)} (6.4)

If the present level of energy stored in the battery (q) exceeds qlower, then
the EV is able to contribute energy back to the grid. Because each vehicle
performs this calculation independently, it is possible for energy to flow from
one vehicle to another during generation shortages (i.e. V2V), when some EVs
charge in mode C while others discharge in mode D.

6.5 Calculation of Charging and V2G Power

Once a charging mode is selected, an appropriate charging (or V2G) power
must be calculated. Each EV performs this calculation independently, but
may utilise aggregate state information from other vehicles and/or generation
and load. In the simulation, these calculations are performed at each tick. The
symbols used in calculations are described in tables 4.1 and 4.2 on pages 73
and 75 respectively.

For mode A, the charging power is simply zero, while in mode C this is set to a
fixed rate according to the charging strategy—most commonly the maximum
charging rate, PMAX . Modes B and D are explained below.

6.5.1 Flexible Charging

For flexible charging (mode B), vehicles with a high SOC are charged at a
lower rate than those which are nearer to empty, according to equation 6.5.

PINt = St−1 ×
QMAX − qt

ERt−1

(6.5)

Notice that the grid-state values used in the calculation are from the previous
simulation tick, t − 1, while the vehicle state value is for the current time t.
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This reflects a real situation, where the process of aggregating and distributing
grid-state information is expected to take some time, while vehicle state can
be known instantaneously.

Also note that the equation may produce charging power levels well in excess
of the vehicle’s maximum charging power PMAX ; for example, consider the
case where only one vehicle is connected to the grid. This calculation will
attempt to absorb the entire generation surplus, which is unlikely to be a
realistic demand for a single EV. PIN must therefore be limited to PMAX .

6.5.2 Flexible Discharging

Following a similar approach as the calculation of charging power, the discharg-
ing power calculation (mode D) also aims to evenly distribute the aggregate
stored energy between vehicles. EVs that are near a full SOC are discharged
at a higher rate than those which are nearly empty, according to equation 6.6.

POUT t = St−1 ×
qt − qlower

EAVt−1

(6.6)

As above, the power level calculated by this equation must be limited to remain
within the capabilities of the vehicle and grid connection.

6.6 Performance Evaluation

When evaluating the overall performance of an EV charging strategy, there is
no simple way to conclude that one is “better” than another. In this research,
a number of factors are considered, some of which conflict with others. These
characteristics are outlined in table 6.2, and are described below in further
detail.

6.6.1 Peak Energy

Peak energy is defined as the total amount of energy consumed from peak
generation sources over the simulation period, in GW h. A goal is to minimise
this as much as possible, although some level of peak energy will certainly be
required (see section 5.2).
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Table 6.2: Evaluation metrics for charging strategy performance.
Parameter Unit
Peak Energy Required GW h
Spillage Energy GW h
Peak Power MW
Peak Ramp Rate MW min−1

Reserve Availability MW
Interruptible Load Availability MW
Information Requirements list
Failed Trip Departures % of total trips
Battery Degradation % of energy throughput for travel
Average Battery SOC % of full capacity

6.6.2 Spillage Energy

Spillage, also measured in GW h, refers to energy that could have been utilised,
but was not. This occurs when generation potential exceeds demand, and
no storage is available to store the excess; this energy is necessarily wasted.
Spillage can take many forms, including water flowing through a hydroelectric
spillway, curtailed energy in wind farms, or unused sunlight in solar instal-
lations. Again, a goal is to minimise this figure, although some spillage is
inevitable.

6.6.3 Peak Power

Peak power is the highest total load observed during the simulation period,
specified in MW. Since all infrastructure must be sized to cover the high-
est load, even if only for a short period, this metric must also be kept to a
minimum.

6.6.4 Ramp Rate

Ramp rate describes a rate of change in power, specified as MW min−1. High
ramp rates can be introduced by intermittent generation sources such as wind,
or widespread synchronised load behaviours. Sufficient load-following gener-
ation, demand response capacity, and/or energy storage must be available at
all times to compensate for these effects, so lower ramp rates are generally
preferred.
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In this research, ramp rate is specifically described as the rate of change in the
imbalance between generation and load, after the net contribution of EV fleet
has been taken into account.

6.6.5 Reserve Availability

To ensure a reliable electricity supply, spinning reserves are required to be
capable of covering the loss of the single largest generator or transmission line
in the grid, without shedding any non-interruptible load. Spinning reserves are
typically required to provide their specified power output for up to 30 minutes,
or until replacement reserves can be brought online.

In this research, reserve availability is defined as the V2G power output that
can be sustained for a 30 minute period by the EV fleet, specified in MW.

6.6.6 Interruptible Load Availability

Interruptible load is a similar concept to reserve availability, however it is
implemented as a reduction in load rather than a source of power. In this
research, interruptible load refers to the non-essential EV charging, specified
in MW, that may be safely interrupted for up to 30 minutes.

6.6.7 Information Requirements

The level of information required by a charging strategy varies from none
(in the case of greedy) to a wide range of information including near real-
time generation and load measurements, aggregate EV battery state, and a
sequence of upcoming trips for the vehicle (in the case of the look-ahead variant
of co-op). The effort required to obtain this information must be weighed
against the increases in performance that it provides, and hence is considered
when comparing the overall performance of charging strategies. See section
6.1.2 for further detail.

6.6.8 Failed Trip Departures

This is the number of trips that were scheduled to take place, but were not
possible due to an insufficient SOC at the scheduled time of departure. Obvi-
ously, it is in the driver’s best interest to keep this metric as low as possible,
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ideally zero. There are cases where this is not possible, for example when a
driver attempts to schedule a long trip that exceeds the range of the vehicle, or
a sequence of shorter trips that are separated by insufficient charging windows
(see figure 6.4). This metric is expressed as the percentage of failed trip de-
partures relative to the total number of trips scheduled during the simulation
period.

6.6.9 Battery Degradation

Bidirectional charging strategies often attract criticism owing to the resulting
acceleration of EV battery degradation. In this research, battery degradation is
expressed as the percentage of energy that was ultimately used for transporta-
tion, out of the total energy entering the battery; the remainder is assumed to
have been used for V2G purposes. Unless future battery technology proves to
be immune to cycling degradation, this metric should be maximised.

6.6.10 Average State-of-Charge

Charging strategies maintain battery SOC at different levels as a side-effect of
their operation. For example, the greedy strategy will tend to keep the SOC
near full capacity, while lazy will keep this level near the minimum.

The average SOC can be used to estimate the charging strategy’s ability to
accommodate unexpected or unplanned journeys; a higher average is preferable
in this regard. Battery degradation, however, is minimised around a medium
SOC with present-day battery technologies (Ribberink et al., 2015; van der
Kam and van Sark, 2015).

6.7 Summary

This chapter has introduced the role and responsibilities of a charging strategy,
described a number of charging strategies, and discussed the metrics to be
considered when comparing the performance of a charging strategy.

At a fundamental level, a charging strategy needs to continuously decide on
the appropriate power level that an EV should charge at, when provided with
information about the grid state, vehicle state, and upcoming usage of the
vehicle. The aim of the charging strategy is to ensure that all scheduled trips
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can be completed, by attaining a sufficient SOC by the time of departure,
while also minimising demands placed on electrical infrastructure.

The appropriate SOC to be reached at the time of departure can be calculated
in several ways. Firstly, the charging strategy could aim for a full charge by the
time of next departure. This will ensure that the vehicle can complete trips,
where possible, but only if the time of departure is accurate. Secondly, the
charging target could be set to the minimum necessary to complete the next
upcoming trip. Since the majority of trips are much shorter than the range
of a typical vehicle, this leaves more battery capacity available for grid man-
agement purposes. However, difficulties may arise when charging for multiple
trips without intermediate charging opportunities. The third method aims
to address this shortcoming by looking at a sequence of upcoming trips, and
ensuring that the whole sequence can be completed successfully by modifying
charging targets where necessary.

When an EV is connected to the grid, it may be in one of four charging modes:
idle, flexible charging, flexible discharging, or imperative charging. The mode
used will depend upon the state of the grid and vehicle, as well as the upcoming
trips that the vehicle must complete. The charging mode determines which
calculation is used for setting the charging power.

Charging strategies fall into three main classes: traditional, which don’t re-
quire significant smart grid infrastructure or interaction with a vehicle’s driver;
target-based, which attempt to minimise their grid demands by only charg-
ing for trips specified by a driver; and smart charging strategies, which rely
on information about grid state in order to perform optimally. Of the smart
charging strategies, only co-op supports the bidirectional energy flows that are
necessary for providing “up” regulation, while both lazy+ and slow+ support
“down” regulation when the vehicle is charging.

The calculation of charging power is performed independently by each vehicle,
which may utilise information such as the aggregate state of the grid and other
vehicles that are currently connected. These calculations aim to maintain
balance between total generation and load, while also establishing an even
distribution of energy stored among individual vehicles.

Finally, evaluating the performance of a charging strategy is not trivial; a
number of often-conflicting factors must be considered. These factors include
concerns for individual drivers, such as the number failed trips and battery
degradation, as well as concerns at a system level, such as peak generation
requirements and ramping rates.
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7Simulation Results

Previous chapters have described the simulation structure, the requirements of
an energy storage system for the New Zealand electricity grid, and introduced
a range of charging strategies for electric vehicles. This chapter presents an
evaluation of those charging strategies, using a fleet size of one million vehicles,
and with wind penetration ranging from 10% to 50% on an annual energy basis.

The responsibility for maintaining instantaneous balance between electricity
generation and load lies primarily with the EV fleet. In cases where the EV
fleet is unable to achieve this balance, excess energy is either spilled (when
generation exceeds load), or generated by highly-dispatchable peak generation.
There is no load-following generation, nor any energy storage, elsewhere in the
system. For the purposes of establishing best-case performance characteristics,
it is assumed that an EV will be connected to the grid at all times while not
travelling, and the effective EV charging/discharging efficiency is assumed to
be 100% for reasons discussed in section 4.7.2.

The generation model (section 4.5) is configured to provide exactly the energy
required by the bulk load model over the simulation period (section 4.6), plus
an additional 130 W average power allowance for each EV. The proportion of
wind generation to base generation is set according to the wind penetration
being evaluated.

Each performance metric (introduced in section 6.6) is presented separately
in the following sections, except where it makes more sense to discuss cer-
tain combinations of metrics in conjunction; for example, peak generation and
spillage.

Unless otherwise stated, the method used for calculating charging targets is
naïve for lazy, slow, lazy+ and slow+, while look-ahead is used for co-op (see
section 6.2).
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7.1 Peak Energy and Spillage

Figures 7.1 and 7.2 show the annual peak generation requirement and energy
spillage, respectively, for each charging strategy. It is important to reiterate
that an additional generation allowance of 130 W per EV is included for all
scenarios except No EVs.

Of particular interest is that using the greedy strategy greatly increases the
energy required from peak generation sources, while slightly decreasing energy
spillage due to the 130 W allowance per vehicle being slightly more than re-
quired. Similarly, using the overnight and valley-fill strategies—which don’t
take into account generation availability—do not decrease the peak generation
requirement; however, spillage is significantly reduced because these strategies
primarily utilise electricity during times of low demand. Because lazy operates
in a similar way to greedy, in that a fast charge is performed immediately before
using the EV (rather than afterwards), they exhibit similar peak generation
and spillage characteristics. The slow strategy reduces the peak generation
requirement somewhat, because it spreads the load over a longer period, but
has little impact on spillage.

The smart charging strategies show a reduction in both peak generation re-
quirements and spillage, suggesting that their energy needs can be almost en-
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Figure 7.1: Peak generation required for each charging strategy.
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Figure 7.2: Annual energy spillage for each charging strategy.

tirely met by non-dispatchable generation sources. Where V2G is supported
(the co-op strategy), these improvements are dramatic.

However, the overall peak generation and spillage characteristics do not give
the full picture of charging strategy performance. The imbalance-duration
curves1 for each charging strategy are shown in figure 7.3, when tested at a 30%
wind penetration. The power imbalance between generation and load is shown
on the vertical axis, while the horizontal axis shows the number of hours that
the imbalance was above the corresponding value during the simulated year.
The imbalance is specified as a generation surplus; that is, a positive value
indicates that there is more generation than load, which cannot be stored and
hence is counted as spillage. Similarly, a negative value indicates a shortage,
which must be met by peak generation sources.

Figure 7.3a shows that EVs utilising the overnight and valley-fill perform very
similarly over the course of the year, and both perform the bulk of their charg-
ing during times of surplus generation. Vehicles using the greedy strategy, on
the other hand, primarily charge during times of already high demand and
make little use of surplus generation when it is available.

The next figure, 7.3b, shows that the target-based strategies perform similarly
across the year. Both strategies cause an increase in the annual peak, and the
bulk of EV charging occurs during generation shortages. The lazy strategy is

1The duration curves presented in this chapter are a generalisation of load-duration
curves, which are commonly used in industry (Masters, 2013, pp. 44). These figures are
created by down-sampling the raw 5-minute simulation output to one-hourly averages, which
are then sorted in descending order and graphed.
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Figure 7.3: Grid imbalance-duration curves with 30% wind.
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7.2 Peak Power

slightly worse in this regard, due to its tendency to charge rapidly just before
vehicles are used, which coincides with times of high electricity demand.

The final figure, 7.3c, shows an improved situation over both traditional and
target-based charging strategies. Both lazy+ and slow+ perform identically,
since almost all (99.5%) charging occurs in mode B when a sufficiently large
battery is installed in each EV. Of particular interest is that both lazy+ and
slow+ perform the bulk of their charging during times of surplus generation,
keeping the grid in balance for around 1500 hours of the year. Once V2G is
introduced, in the co-op strategy, this figure increases significantly; the grid
is kept in balance for around 6000 hours of the year using only the EV fleet.
Most charging is done during times of surplus generation, while energy is fed
back into the grid during times of generation shortages.

7.2 Peak Power

The second performance metric to consider is peak power. This is the highest
total load observed during the simulation period, which dictates the level of
infrastructure needed to meet load and hence should be kept to a minimum.

As shown in figure 7.4, the greedy strategy substantially increases the peak
demand, and both target-based strategies also increase the peak by a smaller
amount. Those strategies that attempt to charge primarily during off-peak
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Figure 7.4: Peak power for each charging strategy.
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Figure 7.5: Load-duration curves with 30% wind.
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periods (overnight, valley-fill, lazy+, slow+) have minimal impact on peak
power, if any. Most interestingly, co-op increases the peak power at all wind
penetration levels, most significantly at 50%.

Figure 7.5 shows the load-duration curve for each charging strategy. The greedy
strategy clearly increases the load during higher load periods, while making
little use of off-peak energy. Both overnight and valley-fill show the opposite—
minimal impact during high load periods, while most charging occurs during
low load periods. The valley-fill strategy clearly shows the EV fleet charging
when load is below the 4 GW threshold, while overnight spreads the charging
load over a wider range of load levels.

Figure 7.5b show that the target-based strategies tend to concentrate charging
during mid-to-high load periods; slightly more pronounced with the lazy strat-
egy since the slow strategy tends to be less “peaky”. Unfortunately, neither of
these strategies make use of low load periods.

Finally, the power performance of the smart charging strategies is shown in
figure 7.5c. As mentioned in the previous section, both lazy+ and slow+
perform almost identically when a sufficiently large battery is installed in each
EV, since most charging occurs in mode B. This has the effect of utilising
electricity during low-demand periods. The co-op strategy shows a substantial
increase in off-peak power levels, while the aggregate EV charging load during
higher demand periods is negative at times. Unfortunately, this strategy does
not decrease the overall peak power level, as can be seen to the left of the
figure; in fact, the peak power level is increased, if only for a very short period
of time.

7.3 Ramp Rate

The third metric of charging strategy performance is ramp rates; that is, the
rate of change in the imbalance between electricity generation and load. Ide-
ally, this would be kept to a minimum since it is more difficult to compensate
for rapid changes in net load (Fripp, 2011; M.Annaswamy and Amin, 2013).

Figure 7.6 shows the maximum ramp rates observed during the simulation
period, in both the up and down directions. Ramping up (figure 7.6a) refers
to the highest rate of increase in load (or decrease in generation), while ramping
down (figure 7.6b) shows the reverse.
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Figure 7.6: Peak ramp rates with 30% wind.
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Figure 7.7: Ramp-duration curves with 30% wind.
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The primary observations of these two graphs is that ramp rates generally
increase with increasing wind penetration, and that the charging strategies
which utilise grid-state information (valley-fill, lazy+, slow+, co-op) introduce
greater ramp rates compared to the scenario where no EVs are present. During
times of generation shortage, when vehicles utilising the co-op strategy are
feeding energy back into the grid, eventually the batteries in those vehicles
become depleted. At this point, the EV fleet becomes incapable of providing
more energy to the grid, which suddenly introduces a large generation deficit
and hence a high upwards ramp rate.

On the other hand, vehicles using any smart charging strategy will charge
during times of excess generation, essentially bringing total generation and load
into balance—a down regulation service. Once the batteries of these vehicles
reach full capacity, however, the EV fleet is no longer capable of providing this
service and hence a sudden generation surplus is created. Generation sources
on the grid must then be able to rapidly curtail their output to keep the grid
in balance.

When looking at the hourly averages for ramping rates, in figure 7.7, neither
the traditional and target-based charging strategies affect the duration curves
much. The smart charging strategies, however, show some interesting effects.
The co-op strategy keeps ramping rates to very low levels for around 6000
hours of the year, but the extreme cases are much worse than having no EVs
on the grid. Both lazy+ and slow+ don’t affect the upwards ramp rates much,
but down ramp rates are higher due to the effect explained earlier.

The discrepancy between the absolute ramping rates in figures 7.6 and 7.7 are
an artefact of down-sampling data when generating the duration curves; figure
7.6 shows the maximum observed 5-minute ramp rate during the simulation
period, while figure 7.7 shows hourly averages.

7.4 Reserve Availability

Operating reserves must be available at all times to cover unexpected events
in the grid, such as higher than normal load levels or the unexpected loss of a
generator/transmission line. Reserves are required to be available immediately,
and provide their specified power output for a period of 30 minutes, until
additional generation can be brought online. An EV fleet is only capable of
contributing to reserve availability when V2G is supported, so only the co-op
strategy is presented here.
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Figure 7.8: An example week showing spinning reserves offered by an EV fleet
using the co-op charging strategy at 30% wind penetration. Note
the net shortage of electricity up until the 12th.

Figure 7.8 shows an example week of reserve availability offered by the EV
fleet. This particular week was a period of low wind generation, and as a
result the aggregate SOC of the vehicle fleet decreased over the course of the
week. The blue line shows that the EV fleet can offer significant reserves for
the majority of the time, at between 4 GW and 5 GW for a half-hour period.
In New Zealand, this is sufficient to cover the simultaneous failure of nearly
all generators in the country.

The reserve availability, for the most part, is limited by the power capacity of
the connection between each EV and the grid. This is evident by the fact that
reserve availability is largely independent of the aggregate SOC, except where
the SOC reaches very low levels.

Overall, the EV fleet is capable of providing reserves in excess of 1 GW, suf-
ficient to cover the present reserve requirements in New Zealand, for 78% of
the year.

7.5 Interruptible Load Availability

Interruptible load is another form of operating reserve; however, instead of
being an offer to provide additional power to the grid, it is an offer to reduce
load. Like reserves, the time period is 30 minutes.
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Figure 7.9: Example week of interruptible load availability.
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7.6 Information Requirements

When the EV fleet offers interruptible load, each vehicle calculates how much
of its charging power it can cut without compromising its ability to meet
charging targets. If the vehicle is scheduled to depart within 30 minutes, no
interruptible load is offered; exceptions being greedy and valley-fill, since these
strategies do not have knowledge of upcoming trips. The overnight strategy
specifies that interruptible load is offered, on the condition that a full charge
is achievable by the end of the charging period.

This form of reserve can only be offered while the EV fleet is actively drawing
power from the grid; it is therefore limited to off-peak periods in the majority
of cases, which is a major disadvantage compared to other forms of reserves.
The cost of interrupting load is theoretically less expensive, since it does not
cause additional battery degradation in the way that V2G would. However,
this is not seen as an advantage because reserves are only used in unexpected
circumstances, and therefore the cost of being “available” in both cases is
essentially free.

Figure 7.9 shows the interruptible load availability for traditional and smart
charging strategies. Most of these, greedy being the notable exception, charge
primarily at night and therefore can only offer interruptible during night-time
hours. The co-op strategy offers substantial interruptible load levels for the
bulk of this particular weekend (12-13 March), where a large amount of wind
generation is available, demand is low, and the aggregate battery SOC is near
minimum.

An EV that supports V2G can offer both interruptible load and reserve avail-
ability at the same time; it is certainly possible for a vehicle to stop charging,
and begin feeding energy back into the grid.

7.6 Information Requirements

For each charging strategy, it is important to consider the information re-
quired to make charging decisions. This can range from nothing (in the case
of the greedy strategy) to comprehensive information about the state of the
grid, other connected vehicles, and the upcoming use of the vehicle (co-op
look-ahead).

These requirements are shown in table 7.1, and are divided into four main
categories. The first is time-of-day, which provide both a mechanism for
“timer-based” charging (overnight), while also enabling the calculation of how
much time is available before the vehicle’s next departure. The following two
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Table 7.1: Information required by each charging strategy.
Strategy Time L G C E A T D S
greedy - - - - - - - - -
overnight • - - - - - - - -
valley-fill - • - • • - - - -
lazy • - - - - - • • -
slow • - - - - - • • -
lazy+ • • • • • - • • -
slow+ • • • • • - • • -
co-op (naïve) • • • • • • • • -
co-op (full-charge) • • • • • • • - -
co-op (look-ahead) • • • • • • • • •

Symbols:
Description Unit

L Grid load, excluding flexible EV charging MW
G Total generation, excluding V2G MW
C Connected EV storage capacity GW h
E Aggregate energy in the EV fleet GW h
A Available energy in the EV fleet GW h
T Time of next departure time
D Distance of next trip km
S Sequence of upcoming trips array

classes of information must be obtained via communication networks (see sec-
tion 4.3.2): the grid state, consisting of near real-time load and generation,
and aggregate EV fleet state, consisting of the total storage capacity available,
total stored energy, and the energy that is available to feed back into the grid
once transportation requirements are taken into account. The final class of
information concerns the upcoming use of the vehicle; when it will be used
next, how long the next trip will be, and—in the case of co-op look-ahead—a
sequence of these parameters for a number of upcoming trips. This informa-
tion would be obtained through machine learning, and/or specification by the
driver of the vehicle (section 3.3).

It is difficult to make an objective comparison between charging strategies
concerning the level of information they require, since the relative difficulty of
obtaining each piece of information is not yet established; nor are they weighed
up against the benefits they enable. Such analysis is left to future work.
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7.7 Failed Trip Departures

7.7 Failed Trip Departures

During the course of the simulated year, approximately 1.1× 109 trips were
(or would be) made by the EV fleet of 1× 106 vehicles. A trip failure is noted
when an EV does not have a sufficient SOC to complete a scheduled trip at the
time of departure, which can be caused by the trip being beyond the range of
the vehicle, insufficient time available between trips to recharge, or the outright
failure of a charging strategy to attain a sufficient SOC on time. Apart from
installing a larger battery in an EV, nothing can be done for the first cause;
the other two are consequences of the charging strategy being used.

Figure 7.10 shows the number of failed trips for each charging strategy and
level of wind penetration. Noting the log scale, it is clear that some strategies
perform significantly worse than others; in particular, the valley-fill strategy
fails to provide for approximately 6% of all trips, while both lazy and slow fail
to provide for between 3% and 4% of all trips.

The poor performance of the valley-fill, lazy and slow strategies can be at-
tributed to several factors. First, the valley-fill does not attempt to reach any
charging targets, and only makes use electricity when total load is below a
set threshold. It is of utmost importance to set this threshold at a suitable
level to ensure enough energy is delivered to vehicles using this strategy. Both
lazy and slow only attempt to deliver enough energy for the very next trip,
implying that an EV finishes each trip with a depleted battery. This leaves the
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Figure 7.10: Number of failed trips for each charging strategy. Note log scale
on the vertical axis.
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vehicles vulnerable to having insufficient time to recharge before a subsequent
trip.

The co-op strategy performs significantly better, only failing to complete one in
2000 trips, while at the same time enabling the EV to provide ancillary services
to the grid. Meanwhile, both lazy+ and slow+ achieve excellent performance
rivalling that of greedy, in addition to providing a down-regulation service to
the grid while charging.

Vehicles using the overnight strategy also achieve excellent performance, since
they start each day with a full charge and only a small minority of drivers will
travel more than the range of the vehicle in a single day.

7.8 Battery Degradation

A common criticism of the V2G concept is the additional battery degradation
introduced by grid requirements, for batteries that typically have a limited
number of charge/discharge cycles (Han and Han, 2013). It is therefore impor-
tant to assess the significance of this degradation, including the proportion of
the battery’s charge/discharge cycles that were used for transportation verses
the proportion used for grid balancing purposes.

Figure 7.11 shows that most strategies attribute 100% of their energy through-
put to transportation, which is unsurprising considering that these strategies
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Figure 7.11: Proportion of battery energy throughput attributed to travel.
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greedy overnight valley-fill lazy slow

lazy+ slow+ co-op
naïve
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Figure 7.12: Battery wear heatmap for an individual EV.

do not support V2G. However, the three variants of the co-op strategy, which
differ in the calculation of their charging target (section 6.2), all show a sig-
nificant increase in throughput attributed to grid management. Interestingly,
both naïve and look-ahead achieve very similar results, while the full-charge
approach more than halves the energy throughput attributed to transporta-
tion.

This suggests that setting charging targets too high will increase battery degra-
dation, caused by increased imperative charging demands as vehicles try to
reach a full charge even when this is not necessary to satisfy transportation
requirements. This results in more energy flowing between vehicles during
times of generation shortages; i.e. vehicles charging in mode C (imperative
charging) will source a significant portion of their energy from other EVs that
are operating in mode D (V2G).

Figure 7.12 shows a heatmap visualisation of battery activity as a function
of its SOC; a full charge is at the top of the diagrams. When the battery
experiences a change in its SOC, that change is highlighted at the appropriate
levels. It shows, for example, that the battery of vehicles using the greedy
strategy will experience mostly shallow discharges near a full SOC, while the
lazy and slow strategies cause shallow cycling near minimum battery capacity.
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On the other hand, the three variants of the co-op strategy show increased
wear across the full range of the battery, with the majority of activity being
near minimum capacity (naïve and look-ahead). Since the full-charge method
attempts to reach—as the name suggests—a full charge, most of the activity
occurs near full capacity.

While not addressed in this research, analysing which regions of a battery’s
SOC see the most activity could prove to be important; for example, lithium
ion batteries exhibit higher rates of self-discharge at a higher SOC, may be-
come permanently damaged by remaining near its minimum SOC (Zimmer-
man, 2004), and experience the lowest capacity fading with activity around a
40% SOC (Ribberink et al., 2015). Additionally, hybrid energy storage sys-
tems consisting of both batteries and ultracapacitors (Khaligh and Li, 2010)
may greatly extend battery life when the majority of activity occurs over a
small SOC range.

7.9 Average State-of-Charge

The average SOC for the EV fleet over the simulated year is shown for each
charging strategy in figure 7.13. The greedy strategy maintains this level near
100%, which identifies the upper limit for any charging strategy. The lazy
strategy, on the other hand, will maintain a low average SOC because the
vehicle will only charge at the last minute, to the lowest SOC necessary to
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Figure 7.13: Average battery SOC for each charging strategy.
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Figure 7.14: Example week showing aggregate fleet SOC for each charging
strategy.
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complete a trip. The average SOC for lazy thus identifies the lower limit for
any charging strategy.

The overnight strategy maintains a high average SOC, since it aims for a full
charge at the beginning of each day, while valley-fill will only charge when grid
load is below a set threshold. Of course, a higher threshold will increase the
average SOC for vehicles using this strategy.

The smart charging strategies are the only ones to be affected by wind pen-
etration. Higher wind penetration levels create more variability in electricity
generation, which leads to greater fluctuations of aggregate stored energy as
the vehicles compensate for imbalances between generation and load. This
increased variability tends to push average SOC figures closer to 50%.

Figure 7.14 shows an example week of how the aggregate SOC varies in time.
This is the same week shown in figures 7.8 and 7.9, where average load ex-
ceeds generation up until the 12th. Noting that the total capacity for the EV
fleet is 50 GW h, this shows that the greedy strategy maintains very close to
a full charge; the grid-connected storage is mainly affected by vehicles discon-
necting in order to travel. Both overnight and valley-fill perform similarly,
with overnight slightly lagging behind valley-fill; this suggests that perhaps
the definition of “night” could be adjusted to begin earlier.

The target-based strategies, shown in figure 7.14b, maintain a very low SOC.
The lazy strategy in particular doesn’t show much variation in aggregate level,
because an individual vehicle will rapidly charge just before leaving on a trip, at
which point it disconnects from the grid. On the other hand, the slow strategy
requires an EV to charge over a much longer period of time and hence the
variation is apparent at grid scale. The highest SOC occurs at around 06:00
before the morning commute on weekdays, and just after 08:00 on weekends,
while troughs are observed around 19:00 on all days after the majority of EVs
return home with an empty battery.

The smart charging strategies shown in figure 7.14c show that the aggregate
SOC for both lazy+ and slow+ remains near full capacity, charging mainly
at night, while vehicles using the the co-op strategy gradually lose energy
during the day through V2G, and are unable to fully recover this energy at
night because insufficient energy is available. From just before the 11th, the
EV fleet is no longer able to offer V2G services, and do not charge beyond
what is necessary to cover transportation needs. Once wind energy is available
again, from the 12th onwards, the EVs collectively charge towards full capacity,
providing a down-regulation service where possible.
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7.10 Discussion

Figure 7.15 shows a summary of charging strategy behaviours in terms of
aggregate EV load vs grid imbalance. Note that the vertical axis is different
for smart charging strategies due to higher peak charging/discharging rates,
and only the co-op figure shows the lower two quadrants that represent V2G
energy flows.

In the ideal case, all EV charging would occur while surplus generation is
zero—i.e. total generation perfectly matches total load, including that of the
EV fleet. This can happen either by chance (unlikely), or be achieved by
actively controlling EV charging and/or V2G rates. The second most preferred
case is the upper-right quadrant, where the EV fleet is charging while surplus
generation is available. Spillage is occurring in this quadrant, but at least some
of this energy is being captured by the EV fleet. Some charging will inevitably
occur in the upper-left quadrant, during times of generation shortage. This
is not ideal, since this energy must be provided by highly-dispatchable peak
generation sources. The activity in this quadrant should ideally be kept to a
minimum.

Where V2G is supported (figure 7.15h), activity in the lower-left quadrant
shows that V2G is assisting with the generation shortage but it is not enough
to completely cover the shortfall. Any activity in the lower-right quadrant
should be avoided, as it does not make sense for the EV fleet to deliver power
into a grid that is already experiencing a surplus.

Of the traditional charging strategies, greedy shows that the majority of charg-
ing activity occurs in the upper-left quadrant, which is clearly not ideal. Both
the overnight and valley-fill strategies move a significant portion of this activ-
ity over to the right; however, these strategies do not provide any means to
balance generation and load. The distinct levels in figure 7.15b are a result
of vehicle usage patterns, with the upper level representing the higher Vehi-
cle Kilometers Travelled (VKT) on Fridays, the middle level includes Tuesday,
Wednesday, Thursday, and Saturday, while the lower level corresponds to lower
daily VKT on Sunday and Monday (Ministry of Transport, 2011).

The target-based strategies cause the bulk of EV charging to occur during
times of generation shortages, similar to the behaviour seen with greedy. Be-
cause slow spreads charging activity over long periods, there is always a min-
imum charging load present. The lazy strategy, on the other hand, causes
vehicles to sit idle for a large portion of time before charging at a high rate.
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(a) greedy (b) overnight

(c) valley-fill (d) lazy

(e) slow (f) lazy+

(g) slow+ (h) co-op

Figure 7.15: Summary of charging behaviours.
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7.11 Summary

Once smart charging is introduced, there is a clear shift towards charging while
the grid is in balance. Both lazy+ and slow+ perform the majority of charging
while the grid remains in balance, and a lesser portion of charging while spillage
is occurring. Very little activity occurs in the upper-left quadrant, which is
ideal.

Once V2G is considered (figure 7.15h), the bulk of activity is restricted to the
axes—vehicles are either charging/discharging while the grid remains in bal-
ance (vertical axis), or remaining idle while the grid is not in balance (horizon-
tal axis). The imperative charging load is apparent in the upper-left quadrant,
while almost no activity is present in the lower-right quadrant. The transi-
tion between charging modes can be seen as activity passes briefly through
the upper-right quadrant; this occurs when vehicles are charging to keep the
grid in balance, but transition to idle after reaching a full SOC. The opposite
effect occurs in the lower-left quadrant, i.e. vehicles that exhaust their surplus
stored energy while discharging into the grid will either become idle, or begin
imperative charging if necessary.

Table 7.2 shows a summary of the key performance metrics for all charging
strategies tested. The introduction of electric vehicles enable greater utili-
sation of wind generation capacity, regardless of the charging strategy used,
but the greatest gains are realised when using the smart charging strategies—
particularly when V2G is supported. Use of the co-op strategy reduces both
peak generation and spillage by a significant margin relative to the other sce-
narios. Unfortunately, peak power and ramping requirements are significantly
worse, even if only for a small number of hours over the year. This suggests
that care must be taken to avoid the conditions that give rise to poor charging
strategy performance.

7.11 Summary

This chapter has presented the results of simulating an EV fleet of one million
vehicles, across a range of charging strategies, and for wind penetration levels
ranging from 10% to 50%. Comparing the “performance” of charging strategies
is not trivial; a number of different factors must be considered, and evaluated
in terms of contributing towards a specific goal.

Smart charging strategies that do not support bidirectional energy flows are
able to reduce both the energy required from peak generation sources and
energy spillage when compared with uncontrolled (greedy) charging, however
most of the benefits can be realised with simple time-based (overnight) control.
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Table
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7.11 Summary

When V2G is considered, both peak energy and spillage are significantly re-
duced over any of the charge-only strategies. With V2G, the balance between
generation and load can be maintained solely by the EV fleet for the majority
of the simulation period, even when generation is highly variable with high
levels of wind penetration.

However, energy is only one factor to consider. The co-op strategy does not
address peak power concerns; in fact, peak load is actually increased when
using this strategy, at all tested levels of wind penetration. These peaks only
occur in a very small number of hours over the year, but since infrastructure
must be able to handle these peaks, this is still a major concern.

A similar problem exists with ramp rates. While the introduction of an EV
fleet using the co-op charging strategy does significantly reduce ramp rates for
the majority of the year, extreme cases are much worse than having no EV
fleet, and worse than if uncontrolled charging were used. Unidirectional smart
charging strategies also increase down ramping rates, and have a minimal (but
still noticeable) effect on up ramping rates.

Operating reserves can be offered by an EV fleet, as both a power source and as
interruptible load. The co-op strategy offers a significant level of power that
is well in excess of New Zealand’s present-day requirements, so long as the
aggregate stored energy remains above approximately 5 GW h. Interruptible
load can be offered by most charging strategies, which vary in both the power
levels offered and times of day available. Since most strategies tend to charge
during night-time hours, this is when the highest levels of interruptible load
are available. When charging, the EV fleet can likely cover a large portion of
New Zealand’s operating reserve requirements through interruptible load.

The information required to make charging decisions ranges widely among
charging strategies. In general, the best all-round performing strategies re-
quire the most comprehensive information, including near-realtime informa-
tion about generation, load, aggregate EV state, and upcoming vehicle use.
The simple greedy strategy, on the other hand, requires no information at all.

Keeping the number of failed trips to a minimum is of utmost importance to the
successful deployment of EVs. The greedy strategy offers the best performance
within the limitations of the vehicle’s operating parameters, but at the cost of
increasing demands placed on electricity networks. The use of smart charging
strategies can ease grid demands somewhat, without significantly increasing
the number of failed trips.

In terms of battery degradation in a V2G-enabled EV fleet, overestimating how
much energy will be needed to complete a trip (full-charge) will significantly
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increase battery degradation, compared to when more accurate estimates are
used (naïve, look-ahead). This suggests the importance of having accurate
foresight into the upcoming use of the vehicle. These results also suggest that
placing the primary burden of balancing generation and load on the EV fleet
causes significant wear on those vehicles’ batteries; less than half of the total
energy into the battery was ultimately used for transportation in all cases.

The average aggregate SOC of the EV fleet varies considerably across charging
strategies, from near full (greedy) to almost empty (lazy). A higher average
SOC means the vehicle is more likely to be able to complete unplanned trips,
but less able to provide down-regulation services to the grid.

In summary, this chapter has demonstrated that an EV fleet—coupled with
smart charging strategies—can offer significant flexibility for accommodating
non-dispatchable electricity generation, particularly when V2G is supported.
While the average case performance of these strategies is very good, the ex-
treme cases are often worse than if no EVs were present at all.
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8Summary and Conclusions

This thesis has evaluated the potential for smart charging strategies to assist
the growth of wind generation and electric vehicles in New Zealand.

Early chapters have explored the problem space, and have identified both
wind generation and electric vehicles as important technologies to help New
Zealand—among other countries—meet its obligations for reducing greenhouse
gas emissions, and reduce its dependence on fossil fuels. The widespread
adoption of wind generation and electric vehicles, however, brings an array
of concerns related to their management. Traditional approaches to managing
generation, transmission, and distribution become less feasible when dealing
with the increased volatility caused by non-dispatchable generation, and higher
peak loads introduced by EVs if their charging were to be uncontrolled.

There is significant flexibility in the timing of EV charging, which has inspired
research about optimising charging schedules to achieve specific goals. The
potential synergies between the flexibility of EV charging and the volatility in-
troduced by non-dispatchable generation have not gone unnoticed; two decades
ago, Kempton and Letendre (1997) introduced the concept of Vehicle-to-Grid
(V2G), which enables an EV fleet to function as a distributed energy resource.

The primary research question is thus asked:

To what extent can the flexibility of charging electric
vehicles be exploited to support the integration of non-
dispatchable electricity generation in New Zealand?

A review of the literature in chapter 3 has put forward the argument that a
future electricity system is likely to be more decentralised than today’s systems,
with an increasing proportion of flexible load, and a larger installed capacity of
non-dispatchable generation. This will lead to models where the demand-side
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will play a more active role in maintaining the balance between generation
and load. EVs in particular are well suited to providing short-term balancing
services, as they can operate as both a flexible load and a distributed energy
resource. Since vehicles are typically located close to load centres, they will not
cause transmission constraints when used to cover peak load. The management
of large numbers of EVs can be achieved using centralised or decentralised
means; the argument is put forward that the latter approach is preferable, and
is therefore adopted as the method of choice in this thesis.

Chapter 4 has described the development of simulation software used to ex-
plore the research question, including the data and statistical models used for
representing future New Zealand energy scenarios. Chapter 5 has explored
the necessary performance requirements of a theoretical energy storage system
used for managing the variability of generation and load in New Zealand, while
chapter 6 introduces decentralised EV charging strategies that aim to address
the primary research question.

Finally, the results are presented in chapter 7, which indicate that smart charg-
ing strategies—particularly when bidirectional energy flows are supported—
have significant potential to support the integration of non-dispatchable elec-
tricity generation in New Zealand.

8.1 Findings

Primary findings indicate that an EV fleet consisting of one million vehicles,
adopting a V2G-enabled smart charging strategy, and operating in the simu-
lated electricity environment at a wind penetration level of 30%, can:

• Reduce the utilisation of peak generation by more than 50%.

• Reduce energy spillage by 75%.

• Assume the full responsibility of maintaining balance between generation
and load for 70% of the year.

• Nullify net ramping rates for 70% of the year.

• Exceed New Zealand’s operating reserve requirements in excess of 78%
of the year.

• Allow generation and load profiles to be completely uncoupled, so long
as sufficient energy is generated within several days of its consumption.
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However, these benefits do not come without cost. Primary disadvantages
arising from the use of V2G-enabled smart charging strategies include:

• Increased EV battery degradation caused by a 150% increase in energy
throughput.

• Slightly increased peak load.

• Peak net ramping rates more than doubled.

• Vehicles required to be grid-connected as often as possible.

• Extensive information about the state of the grid and upcoming vehicle
usage is needed.

• The proportion of failed trips increases to approximately 1 in 2500.

These findings indicate that the average-case performance of smart charging
strategies is very good, while extreme cases tend to exacerbate the very prob-
lems that smart charging intends to solve. While the research presented in
this thesis evaluates charging strategy performance in isolation, and assumes
that no dispatchable generation or storage exists in the electricity system, this
is not intended to represent a realistic future energy scenario; rather, it estab-
lishes the potential benefits of smart charging when operating in a generation
environment with extreme variability.

The poor performance behaviours highlighted above occur when the EV fleet
is operating near its upper and lower SOC limits, which suggests that the
grid system operator should ensure that these limits are avoided through care-
ful management of dispatchable generation and large-scale centralised energy
storage facilities.

With a V2G-enabled EV fleet, it is no longer necessary for generation to pre-
cisely follow load, so long as the aggregate SOC of the EV fleet is maintained
at an acceptable level. This provides significant flexibility over the scheduling
of generation, and opens the possibility for new dispatch models that operate
on an energy (rather than power) basis. For example, instead of scheduling
generation to match load forecasts, generation could be scheduled to maintain
the aggregate SOC of the EV fleet at an acceptable level; the EV fleet will then
carry the responsibility for precisely following load in realtime. This model is
expected to be robust against forecasting errors in both generation and load,
without requiring excessive utilisation of non-EV regulation services.
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8.2 Limitations and Future Work

While the results presented in this thesis show promise regarding the applica-
tions of smart charging strategies for electric vehicles in New Zealand, there
remain many unsolved challenges. Of particular interest are the local and re-
gional effects of arising from the widespread adoption of electric vehicles and
non-dispatchable generation, as well as other related technologies including
distributed generation and storage.

In addition to wind generation, other sources of renewable electricity are also
expected become more common in future, including geothermal, rooftop solar
PV, and tidal generation; each of these will likely introduce unique spatial and
temporal variability that will need to be managed. Multiple energy storage
options also exist, ranging from distributed batteries deployed in homes, to
large-scale pumped hydroelectric storage facilities.

The simulation software can be readily extended to include models of these
technologies, assuming that suitable data are available. In addition to exploit-
ing the storage capacity of an EV fleet, the simulation could further evaluate
the balancing potential of other mechanisms such as domestic electricity load
management, and grid-lite systems. Accurate modelling of New Zealand’s ex-
isting hydroelectric systems is also important, including aspects such as the
variable nature of inflows, long-term storage potential, compliance with re-
source consent conditions, and its interactions with EV charging strategies.

In the wider context of renewable energy integration, it is clear that a silver
bullet does not exist. With a vast array of competing generation, storage, and
demand-side management technologies, and also conflicting priorities of the
many stakeholders involved, development of the best solutions is not merely a
technical challenge, but an economic one. The research presented in this thesis
has explored the potential benefits and drawbacks of smart charging strategies
for EVs based on the assumption that their owners are willing and able to
participate in such schemes. Future work must develop and evaluate suitable
economic models that consider the costs associated with various smart grid
technologies, and create economic dispatch models that minimise overall costs
while preserving consumer choice and maintaining a secure electricity supply.
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