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Göteborg, Sweden
fabian@chalmers.se

January 30, 2013

Abstract

This working paper describes a framework forcompositional nonblocking verificationof reac-
tive systems modelled asextended finite-state machines. Thenonblockingproperty can capture the
absence of livelocks and deadlocks in concurrent systems. Compositional verification is shown
in previous work to be effective to verify this property for largediscrete event systems. Here,
these results are applied to extended finite-state machinescommunicating via shared memory.
The model to be verified is composed gradually, simplifying components throughabstractionat
each step, whileconflict equivalenceguarantees that the final verification result is the same as it
would have been for the non-abstracted model. The working paper concludes with an example
showing the potential of compositional verification to achieve substantial state-space reduction.

1 Introduction

Reactive systems are typically safety-critical, where failures can result inhuge financial losses, or
even human fatalities. Thus, logical correctness is a crucial property ofmost reactive systems, and
formal verification is an important part of guaranteeing logical correctness. In the field ofmodel
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checking[3], various methods have been developed to verify reactive systems ofincreasing size and
complexity, most notablysymbolic model checking[17] andabstraction[7].

Formal verification requires a formal model, andfinite-state machines (FSM)[12] are widely used
in the literature to represent reactive systems. FSMs describe the dynamic behaviour of a reactive
system bystates, where certain conditions hold, andtransitionsbetween these states that change
the conditions. For systems with data dependency, it is natural to extend FSMs with variables that
represent data. This results inextended finite-state machines (EFSM), which have been similarly
defined by several researchers [5,6,21,23].

An important aspect of correctness is the absence oflivelocksanddeadlocks. FSMs (and EFSMs)
allow certain states to be designated asterminalstates. Thenonblockingproperty [20] requires that
the system should from any reachable state always be able to reach some terminal state. This property
is used in supervisory control theory of discrete events systems [20] to capture the absence of livelocks
and deadlocks.

Expressed in CTL [3], nonblocking can be written asAGEF terminal state. In [7], for the
purpose of abstraction in model checking,∀CTL∗ is defined as a subset of CTL where only universal
path quantification is allowed. If a given∀CTL∗ property is satisfied by all components of a system,
the property is also satisfied by the composed system. However, nonblocking cannot be expressed
in ∀CTL∗, which makes it impossible to use many standard abstraction techniques for nonblocking
verification.

Compositionalmethods [9] exploit the compositional structure of a system, i.e., the fact that the
system is made up of several FSMs interacting with each other. Abstraction isused to remove states
and transitions that are superfluous for the purpose of verification of the property at hand. While com-
positional methods have shown impressive results for FSMs [9,19], theiradaptation to EFSMs is still
in its infancy. Transforming an EFSM to a FSM [14,21] makes it possible to apply the algorithms for
FSMs to an EFSM model. However, the transformation has the drawback of significantly increasing
the number of transitions in the system, or losing the compositional structure.

This working paper generalises the compositional verification method [9] to be applicable directly
to reactive systems modelled as EFSMs.Partial unfoldingis proposed to remove a variable from the
system, andsymbolic observation equivalenceis introduced to be applied to EFSMs directly without
the need for transforming EFSMs to FSMs. Furthermore, another abstraction method, called the
Active Events Rule[9], is extended in the framework of EFSMs, and has great potential to abstract
systems while preserving the nonblocking property.

The remainder of the working paper is structured as follows. Sect. 2 introduces extended fi-
nite state machines, and section 3 gives an example of a concurrent program modelled by EFSMs.
Next, section 4 describes the process of converting EFSMs to FSMs, andsection 5 presents some
experiments with FSM-based compositional verification applied to the example from section 3. Then
section 6 presents different ways of computing abstractions that can be applied directly on EFSMs,
and section 7 demonstrates compositional abstraction-based verification onEFSMs, using the same
example. Finally, section 8 adds some concluding remarks. Formal proofs of all technical results are
in the appendix.
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2 Extended Finite-State Machines

In this working paper, reactive systems are modelled asextended finite-state machines (EFSM)that
synchronise in interleaving semantics and communicate via shared memory. Extended finite-state
machines are similar to conventional finite-state machines (FSM) [12], but augmented withupdates
associated to the transitions [5,6,21]. Updates are formulas over bounded discrete variables.

A variablev is an entity associated with a finitedomaindom(v) and aninitial valuev◦ ∈ dom(v).
A second set of variables, callednext-state variablesand denoted byV ′ = { v′ | v ∈ V } with
dom(v′) = dom(v), is used to describe how variables are updated.

An updateis a formula using variables fromV ∪V ′. For example, letx be a variable with domain
dom(x) = {0, . . . , 5}. An updatex′ = x+1 changes the variablex by adding1 to its current value, if
it currently is less than5. Otherwise (ifx = 5) the transition is disabled and no updates are performed.
Another possibility is to write the formulax′ = min(5, x + 1), in which case the transition remains
enabled whenx = 5. The updatex = 3 disables a transition unlessx = 3 in the current state, and
leaves the value ofx in the next state,x′, unchanged. Differently, the updatex′ = 3 is always enabled,
and the value ofx in the next state is forced to be3. The set of all update formulas using variables in
V or V ′ is denoted byΠV .

Definition 1 An Extended Finite-State Machine (EFSM)is a tupleE = 〈V, Q,→ , Q◦, Qω〉, whereV
is a finite set of variables,Q is a finite set oflocations, → ⊆ Q×ΠV ×Q is theconditional transition
relation, Q◦ ⊆ Q is the set ofinitial locations, andQω ⊆ Q is the set ofterminal locations.

The expressionx
p
→ y denotes the presence of a transition inE, from locationx to locationy with

updatep ∈ ΠV . On the occurrence of such a transition, the EFSM changes its location from x to y
while updating its variables in accordance withp; variables that do not occur as next-state variables
in p remain unchanged.

Usually, reactive systems are modelled as several components interacting with each other. An
EFSM systemis a collection of interacting EFSMs,

E = {E1, . . . , En} . (1)

The behaviour of such a system is expressed usinginterleavingsemantics [3].

Definition 2 Given two EFSMsE = 〈VE , QE ,→E , Q◦
E , Qω

E〉 andF = 〈VF , QF ,→F , Q◦
F , Qω

F 〉 the
compositionof E andF is

E ‖ F = 〈VE ∪ VF , QE × QF ,→, Q◦
E × Q◦

F , Qω
E × Qω

F 〉 , (2)

where

• (xE , xF )
pE→ (yE , xF ) if xE

pE→E yE ;

• (xE , xF )
pF→ (xE , yF ) if xF

pF→F yF .
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do
s0 : x0 = random number;

source: s1 : await c0 = 0;
s2 : c0 = x0;

loop
‖

do
q0 : await ck−1 > 0;
q1 : xk = ck−1;
q2 : ck−1 = 0;

sievek: q3 : if xk = pk ∨ xk mod pk 6= 0 then
q5 : await ck = 0;
q6 : ck = xk;

end
loop

‖
do

r0 : await cn > 0;
sink: r1 : print cn;

cn = 0;
loop

Algorithm 1: Distributed Sieve of Eratosthenes.

3 Example

This section shows how a concurrent program can be modelled using EFSMs. The same example
is used throughout the working paper to explain different approachesto compositional nonblocking
verification.

Algorithm 1 shows a distributed version of theSieve of Eratosthenesfor generating prime num-
bers. The system consists of two processessource and sink, plus a variable number of sieve pro-
cessessievek. The source generates numbersx0 from a finite set (program locations0) and sends
them to the first sieve processsieve1 using the shared variablec0 (s1 ands2). There aren sieve pro-
cesses for the firstn prime numbersp1, . . . , pn. Thek-th sieve processsievek, upon receiving a new
numberxk throughck−1 (q0 andq1), tests whether the number is equal to or divisible by its prime
numberpk (q3). If the received number is different from and divisible bypk, it is discarded, otherwise
it is sent to the next sieve processsievek+1 using the shared variableck (q5 andq6). Numbers that pass
throughn sieve processes are received by thesink (r0), which prints them before releasing the shared
variablecn (r1).

Figure 1 shows an EFSM model of this system. Initial locations are marked with an incoming
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Figure 1: EFSM model of Distributed Sieve of Eratosthenes.

arrow, and terminal locations are shaded in the figure. Each process is modelled by an EFSM, with
updates representing the atomic statements in the algorithm. For example, updatec0 = 0 in EFSM
source corresponds to program locations1 in Algorithm 1: it checks whetherc0 is equal to zero and
does not change any variable values. The updatex′

0 = x′
0 assigns a new number tox0 from its domain,

regardless of its previous value.
The model is parametrised by the numbern of sieve processes, and the maximum numberm

generated by the source. The variable set of the system isvars(E) = {x0, . . . , xn, c1, . . . , cn}, and all
variables have the same domain0, . . . , m. The range of feasible values form depends on the number
of sieve processes. For example, forn = 3 there are three sieve processes for the first three primes 2,
3, and 5. Then the smallest number incorrectly classified as a prime is 49, som should not be greater
than 48.

4 Unfolding Semantics

This section gives a semantics of extended finite-state machines in terms of ordinary finite-state ma-
chines (FSM) interacting in lock-step synchronisation. Sect. 4.1 defines the FSM model used, and
section 4.2 defines concepts needed to convert variables to states. Thensection 4.3 describes the
process of converting EFSMs to FSMs.

4.1 Finite-State Machines

Finite-state machines interact usingevents, which are taken from a finite alphabetΣ. In addition, the
silent eventτ /∈ Σ is used. It is not included in the alphabetΣ unless explicitly mentioned using the
notationΣτ = Σ∪{τ}. Further,Σ∗ is the set of all finite traces of events fromΣ, including theempty
traceε. The concatenation of two tracess, t ∈ Σ∗ is written asst. A traces ∈ Σ∗ is called aprefixof
t ∈ Σ∗, writtens ⊑ t, if t = su for someu ∈ Σ∗.

Definition 3 A finite-state machine (FSM)is a tupleG = 〈ΣG, Q,→, Q◦, Qω〉, whereΣG ⊆ Σ is a
finite set of events, called theevent alphabetof G, Q is a finite set ofstates,→ ⊆ Q×(ΣG∪{τ})×Q

5



is thestate transition relation, Q◦ ⊆ Q is the set ofinitial states, andQω ⊆ Q is the set ofterminal
states.

The transition relation is written in infix notationx
σ
→ y, and is extended to events not in the event

alphabet by lettingx
σ
→ x for all σ ∈ Σ \ ΣG. It is further extended to traces inΣ∗

τ by x
ε
→ x for

all x ∈ Q, andx
sσ
→ z if x

s
→ y andy

σ
→ z for somey ∈ Q. The transition relation is also defined

for state setsX, Y ⊆ Q, for exampleX
s
→ y meansx

s
→ y for somex ∈ X, andG

s
→ x stands for

Q◦ s
→ x.
Unlike EFSMs, the FSMs considered here interact using lock-step synchronisation [11]. The

composition of FSMs can only execute an event if all synchronised FSMs are in a state enabling that
event. An FSM always enables any event not in its alphabet.

Definition 4 Let G1 = 〈Σ1, Q1,→1, Q
◦
1, Q

ω
1 〉 andG2 = 〈Σ2, Q2,→2, Q

◦
2, Q

ω
2 〉 be two FSMs. The

synchronous compositionof G1 andG2 is

G1 ‖ G2 = 〈Σ1 ∪ Σ2, Q1 × Q2,→, Q◦
1 × Q◦

2, Q
ω
1 × Qω

2 〉 , (3)

where

• (x1, x2)
σ
→ (y1, y2) if σ 6= τ andx1

σ
→1 y1 andx2

σ
→2 y2;

• (x1, x2)
τ
→ (y1, x2) if x1

τ
→1 y1;

• (x1, x2)
τ
→ (x1, y2) if x2

τ
→2 y2.

4.2 Variables and Valuations

The state space of an EFSM system is not only determined by its locations, butalso by its variables
and their possible values.

For an updatep ∈ ΠV , the termvars(p) denotes the set of all variables that occur inp, andvars′(p)
denotes the set of all variables modified byp. For example, ifp ≡ x′ = y + 1 thenvars(p) = {x, y},
andvars′(p) = {x}. When a transitionx

p
→ y occurs, the variables invars′(p) may change as

specified by the updatep, whereas all other variables remain unchanged. An updatep with vars′(p) =
∅ is called apure guard. Its execution leaves all variables unchanged.

Given an EFSME = 〈V, Q,→ , Q◦, Qω〉, its set of variables isvars(E) = V , and the variable
set of an EFSM systemE is vars(E) =

⋃

E∈E vars(E).
Given a setV = {v1, . . . , vn} of variables, its domaindom(V ) = dom(v1) × · · · × dom(vn)

determines all possible combinations of variable values, and thus the set of possible system states. An
element ofdom(V ) is denoted bȳv = (v̄0, . . . , v̄n) with v̄i ∈ dom(vi).

The elements̄v ∈ dom(V ) are also considered asvaluations:

p(v̄) ∈ {true, false} (4)
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U(sink)
r0

r1

(sink; 0; 0)
(sink; 1; 0)
(sink; 2; 0)

(sink; 1; 1)
(sink; 2; 2)

U(sink) (sink; 0; 0)

(sink; 1; 0) (sink; 2; 0)

(sink; 1) (sink; 2)

(sieven; 0, 0; 0)

(sieven; 2, 0; 0)(sieven; 1, 0; 0)

(sieven; 1, 1; 1)

(sieven; 0, 2; 2)

(sieven; 0, 1; 1)

(sieven; 1, 2; 2)

(sieven; 2, 1; 1)
(sieven; 2, 2; 2)

(sieven; 0)
0

1 2

Figure 2: Unfolding ofsink in Sieve of Eratosthenes example.

denotes the truth value of updatep ∈ ΠV when the variable values are given byv̄. For v̄ ∈ dom(V ),
the value of the variablevi ∈ V in v̄ is denoted bȳv[vi]. The set of variables assigned by a valuationv̄
is denoted byvars(v̄). Theempty valuationwith vars(v̄) = ∅ is also denoted̄v = ∅. For two sets of
variablesW ⊆ V , the valuation̄v : V → D is said to be anextensionof w̄ : W → D, written w̄ ≤ v̄,
if w̄[w] = v̄[w] for eachw ∈ W .

4.3 Converting EFSMs to FSMs

The straightforward method [3] to convert an EFSM to an FSM creates a single FSM with states for
each combination of a location and variable values. While this works well for symbolic state space
exploration, the compositional verification method [9] pursued here demands acompositionalmodel
consisting of several FSMs. Therefore, the method proposed in the following preserves the composi-
tional structure of an EFSM system by creating one FSM for each EFSM and for each variable.

An EFSM is converted to an FSM, which uses the EFSM locations as states andhas the same
transitions, except that they are labelled with events instead of updates. Each valuation that satisfies
the update is represented by its own event.

Definition 5 Let E = 〈V, Q,→ , Q◦, Qω〉 be an EFSM. Theunfolded FSMof E is U(E) = 〈ΣE , Q,
→U , Q◦, Qω〉 where,

• ΣE = { (E; v̂; ŵ) | x
p
→ y, v̂ ∈ dom(vars(p)), ŵ ∈ dom(vars′(p)) };

• x
(E;v̂;ŵ)
−−−−−→U y if there exists a transitionx

p
→ y in E such thatv̂ ∈ dom (vars(p)), ŵ ∈

dom(vars′(p)), andp(v̂, ŵ) = true.

An EFSM updatep is replaced by FSM events(E; v̂; ŵ) for all valuationsv̂ defined over the
variables ofp andŵ defined over the next-state variables ofp, such that̂v andŵ together satisfyp.
Note thatvars(ŵ) ⊆ vars(v̂) due to the definition ofvars(p) andvars′(p). Pure guards produce
events(E; v̂; ∅), which are simply written as(E; v̂) in the following.
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Example 1 Consider EFSMsink in the Sieve of Eratosthenes example shown in figure 1, assuming
m = 2, i.e., dom(cn) = {0, 1, 2}, and c◦n = 0. The updatecn > 0 in sink results in the un-
folded eventsΣ1

sink
= {(sink; 1), (sink; 2)}, and updatec′n = 0 results in eventsΣ1

sink
= {(sink; 0; 0),

(sink; 1; 0), (sink; 2; 0)}. Thus, the unfolded event set ofsink isΣ
sink

= Σ1
sink

∪Σ2
sink

, and the unfolded
FSMU(sink) is shown in figure 2 to the left.

The state space of an EFSM system is not only determined by its locations, butalso by its vari-
ables. Therefore a second set of FSMs, calledvariable FSMs, is used to keep track of the variable
values and ensure the correct sequencing of the transitions in the unfolded FSM system.

Definition 6 Let E = {E1, . . . , En} be an EFSM system. Thevariable FSMof v ∈ vars(E) is
UE(v) = 〈Σv, dom(v),→v, {v̄

◦}, dom(v)〉 where,

• Σv = { (Ei; v̂; ŵ) ∈ ΣEi
| v ∈ vars(v̂) };

• v̂[v]
(Ei;v̂;ŵ)
−−−−−→v v̂[v] if v ∈ vars(v̂) \ vars(ŵ);

• v̂[v]
(Ei;v̂;ŵ)
−−−−−→v ŵ[v] if v ∈ vars(ŵ).

Example 2 Consider the variablecn in the Sieve of Eratosthenes example. It occurs insink and
sieven, so these EFSMs determine the event alphabet ofUE(cn). First, all transitions insink men-
tion cn, so the full alphabetΣsink from example 1 is included. Next,sieven contains two updates
associated withcn. The updatecn = 0 produces one unfolded eventΣ1

cn
= {(sieven; 0)}. Further,

the updatec′n = xn with vars(c′n = xn) = {cn, xn} andvars′(c′n = xn) = {cn} produces events of
the form(sieven; cn, xn; cn). Again assumingdom(cn) = dom(xn) = {0, 1, 2}, these are:

Σ2
cn

= { (sieven; 0, 0; 0), (sieven; 0, 1; 1), (sieven; 0, 2; 2),
(sieven; 1, 0; 0), (sieven; 1, 1; 1), (sieven; 1, 2; 2),
(sieven; 2, 0; 0), (sieven; 2, 1; 1), (sieven; 2, 2; 2) } .

(5)

This givesΣcn = Σ
sink

∪ Σ1
cn

∪ Σ2
cn

and the variable FSMUE(cn) as shown in figure 2 to the right.

The variable FSMs are defined in the context of an EFSM system, as they depend on all EFSMs
using the variable. The overall behaviour of an EFSM system is obtained by applying the unfolding
method to all its EFSMs and variables.

Definition 7 Let E = {E1, . . . , En} be an EFSM system. Theunfoldingof E is the FSM

U(E) =
n
∥

∥

i = 1

U(Ei) ‖
∥

∥

v ∈ vars(E)

UE(v) . (6)
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5 Compositional Nonblocking Verification

This working paper concerns verification of thenonblockingproperty used in supervisory control
theory of discrete event systems [20], which can capture the absence of livelocks and deadlocks. A
system is nonblocking if it is possible to reach a terminal state from every reachable state. For finite-
state systems, nonblocking is equivalent to termination under an implicitstrong fairnessassumption
stating that “whenever a transition can occur infinitely often, it occurs infinitely often” [2].

Definition 8 [20] An FSM G = 〈Σ, Q,→, Q◦, Qω〉 is nonblockingif, for every s ∈ Σ∗
τ and every

x ∈ Q such thatG
s
→ x, there existst ∈ Σ∗

τ such thatx
t
→ Qω.

Definition 9 An EFSM systemE is nonblocking if the unfoldingU(E) is nonblocking. An EFSME
is nonblocking if the EFSM system{E} is nonblocking.

The straightforward approach to check whether a system

P1 ‖ P2 ‖ · · · ‖ Pn (7)

is nonblocking is to explicitly construct the synchronous composition and check for each reachable
state whether it is possible to reach a terminal state. This can be done using CTL model checking,
and models of substantial size can be analysed if the state space is represented symbolically [17].
Yet, the technique remains limited by the amount of memory available to store representations of the
synchronous composition.

In an attempt to alleviate this state-space explosion problem,compositionalverification [9] seeks
to rewrite individual system components and, for example, replaceP1 in (7) by a simplerabstrac-
tion P ′

1, to analyse the simpler system

P ′
1 ‖ P2 ‖ · · · ‖ Pn (8)

Several abstraction methods that preserve the nonblocking property are known [9, 15, 22]. Based on
these methods, compositional verification algorithms [9,22] repeatedly simplifysystem components,
compose subsystems and simplify them again, until the system is simple enough to be verified directly.
These methods have been developed and used successfully to verify several large FSM models [9].

To assess the applicability of compositional verification for EFSM models with datadependency,
the Distributed Sieve of Eratosthenes has been modelled and verified using the Discrete Event Systems
toolSupremica[1]. Supremica converts the EFSM model to a collection of unfolded FSMs [14], which
are then verified using an implementation of the compositional nonblocking algorithm [9].

Table 1 shows the results of these experiments for different prime number sieves, wheren is the
number of sieve processes, andm is the largest number generated by the source. The table shows
in each case the number of events and transitions in the unfolded FSM model, and the number of
reachable states in its synchronous composition; it furthermore shows the number of states of the
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Table 1: Experimental Results for Distributed Sieve of Eratosthenes.
n m Events Transitions State space Peak Time Memory
2 24 144 10,460 7.59·107 27 0.22 s 90.4 MB
3 48 369 53,345 3.45·1013 51 0.81 s 147.7 MB
4 120 1,122 404,504 1.18·1020 123 3.04 s 260.3 MB
5 168 1,899 958,193 171 7.47 s 331.0 MB
6 288 3,804 3,288,972 291 37.67 s 532.4 MB

largest FSM encountered during compositional verification (Peak), andthe approximate runtime and
memory usage of compositional verification. The experiments were run on a standard laptop computer
using a single core 2.4 GHz CPU.

Supremica successfully verifies the Distributed Sieve of Eratosthenes to benonblocking for of to
n = 6 sieve processes. It has also been attempted using Supremica to verify the model symbolically
with BDDs [17], but this was unsuccessful forn ≥ 5 sieve processes, so the number of reachable
states is not known for the larger models.

This experiment suggests that compositional verification is a promising approach to verify large
EFSM systems, with the peak number of states only growing proportionally to theparameterm.
However, the number of events in the unfolded FSM model grows withnm, and the number of
transitions grows withnm2. At n = 6, the construction of the unfolded FSM model already takes
substantially longer than its verification. To avoid the construction of a growing FSM model, the
following section proposes an alternative approach to perform compositional verification directly on
the EFSMs.

6 Abstraction Methods

Compositional verification repeats two basic operations while verifying a system: either individual
components are simplified or, if this is not possible, two or more components are composed. Sect.
6.1 and 6.2 below describe the method of composition and the related method of unfolding local
variables, then section 6.3 introduces the principle of simplification, and section 6.4 and 6.5 propose
two methods to simplify EFSMs.

6.1 Partial Composition

Compositionis the simplest step in compositional verification. It is always possible to replace some
components of an EFSM system by their composition. This operation does notreduce the state space,
but it is necessary when all other means of simplification have been exhausted. The following result,
albeit technical, follows directly from the definitions. The unfolded FSMs before and after partial
composition are not only equivalent with respect to nonblocking, but identical up to renaming of
events. The proof can be found in Appendix A.
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Proposition 1 Let E = {E1, . . . , En} be an EFSM system, andF = {E1 ‖ E2, E3, . . . , En}. Then
U(E) is nonblocking if and only ifU(F) is nonblocking.

6.2 Partial Unfolding

Similar to partial composition, partial unfolding is the process of removing a variable from an EFSM
and expanding its values into locations.

Definition 10 Let E = 〈V, Q,→ , Q◦, Qω〉 be an EFSM, and letz ∈ V . The result ofpartially
unfoldingz in E is the EFSME \ z = 〈V, Q × dom(z),→−z, Q

◦ × {z̄◦}, Qω × dom(z)〉 where

(x, a)
∃z∃z′(p∧z=a∧z′=b)
−−−−−−−−−−−−→−z (y, b) (9)

for all a, b ∈ dom(z) such thatx
p
→ y, and such thatz /∈ vars′(p) impliesa = b.

A variable is calledlocal in an EFSM system, if it appears in only one component. Local variables
can be removed by partial unfolding, as they are not needed for interaction with any other component.
The following result confirms that partial unfolding of a local variable preserves the nonblocking
property of an EFSM system. The proof is similar to that of proposition 1 and shows that the unfolded
FSMs ofE1 andE1 \ z are identical up to renaming of events. It can be found in Appendix B.

Proposition 2 Let E = {E1, . . . , En} be an EFSM system,z ∈ vars(E1) \
⋃n

i=2 vars(Ei), and
F = {E1 \ z, E2, . . . , En}. ThenU(E) is nonblocking if and only ifU(F) is nonblocking.

Partial unfolding removes local variables at the price of an increase in thenumber of locations.
Its application may be deferred in favour of other methods. On the other hand, partial unfolding often
simplifies or removes some updates, making it possible to apply the abstraction methods following
below, which reduce the state space.

6.3 Conflict Equivalence

Compositional reasoning is based on the idea of replacing a componentPk in a larger system (7)
by an equivalent componentP ′

k. The best known equivalence to support compositional nonblocking
verification of FSMs isconflict equivalence[16]. In the following, this concept is extended to EFSMs.

The idea of conflict equivalence is derived from process-algebraictesting theory [8], which de-
fines equivalences relating processes based on the results oftests. Two processes are considered as
equivalent if the responses of all tests are equal. Here, a test’s resultis the observation whether or not
it is nonblocking in composition with the process under test. The following definition is generalised
for arbitrarycomponents, which can be either FSMs or EFSMs.

Definition 11 [16] Two componentsP1 andP2 areconflict equivalent, written P1 ≃conf P2, if for
any componentT , it holds thatP1 ‖ T is nonblocking if and only ifP2 ‖ T is nonblocking.
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Conflict equivalence guarantees that, if a componentPk is replaced by a conflict equivalent ab-
stractionP ′

k, the abstraction will produce the same verification result, in combination with every
possible “remainder of the system”,T , as would the original componentPk. The following result
confirms that conflict equivalent components of an EFSM system can be replaced without affecting
the nonblocking property. This is the key property of conflict equivalence, which follows from its
congruence properties [16]. The proof is given in Appendix C.

Proposition 3 Let E = {E1, . . . , En} andF = {F1, E2, . . . , En} be EFSM systems such that
E1 ≃conf F1. ThenU(E) is nonblocking if and only ifU(F) is nonblocking.

6.4 Symbolic Observation Equivalence

Bisimulationand observation equivalence[18] are standard examples of branching equivalences.
They are known to preserve all temporal logic properties [4], including nonblocking. Observation
equivalence alone is responsible for a substantial state-space reduction in compositional nonblocking
verification of FSMs [9]. Both bisimulation and observation equivalence have been generalised for
value-passing processes [10,13]. In this section, observation equivalence is extended to be applicable
for EFSMs, andsymbolic observation equivalenceis proposed.

The most basic branching equivalence isbisimulation, which keeps track of the complete branch-
ing of process behaviour.

Definition 12 Let E = 〈V, QE ,→E , Q◦
E , Qω

E〉 andF = 〈V, QF ,→F , Q◦
F , Qω

F 〉 be two EFSMs. A
relation≈ ⊆ QE × QF is called asymbolic bisimulationbetweenE andF if the following holds for
all xE ∈ QE andxF ∈ QF such thatxE ≈ xF :

• if xE
pE→E yE , then there existsyF ∈ QF such thatxF

pF→F yF andpE logically impliespF

andyE ≈ yF ;

• if xF
pF→F yF , then there existsyE ∈ QE such thatxE

pE→E yE andpF logically impliespE

andyE ≈ yF ;

• xE ∈ Qω
E if and only if xF ∈ Qω

2 .

E andF aresymbolically bisimilar, writtenE ≈ F , if there exists a symbolic bisimulation≈ between
E andF such that, for eachx◦

E ∈ Q◦
F there existsx◦

F ∈ Q◦
F such thatx◦

E ≈ x◦
F , and vice versa.

While symbolic bisimulation as defined implies conflict equivalence, the definition isrestrictive
as it requires syntactically equivalent updates for locations to be equivalent. For FSMs, observation
equivalence is the natural extension of bisimulation. In observation equivalence, the transition rela-
tion→ is replaced by its extension⇒ to allow for silent transitions before or after an event occurrence.
To extend this idea for EFSMs, the first step is to define the extended transitionrelation⇒ for EFSMs.

Definition 13 Let E = 〈V, Q,→ , Q◦, Qω〉 be an EFSM.

12



• Forx, y ∈ Q andv̄ ∈ dom(vars(E)), the relationx
v̄
⇒ y denotes the existence of a path

x = x0
p1

→ x1
p2

→ · · ·
pn
→ xn = y , (10)

such thatvars′(pi) = ∅ andpi(v̄) = true for each1 ≤ i ≤ n.

• For x, y ∈ Q and v̄, w̄ ∈ dom(vars(E)), the relationx
v̄,w̄
=⇒ y means that there exist states

x1, y1 ∈ Q such that
x

v̄
⇒ x1

p
→ y1

w̄
⇒ y , (11)

wherep(v̄, w̄) = true andw̄|vars(E)\vars′(p) ≤ v̄.

• Forx ∈ Q, the relationE ⇒ x denotes the existence ofx◦ ∈ Q◦ such thatx◦ v̄◦

⇒ x.

The notationx
v̄
⇒ y means that it is possible for an EFSM to move from locationx to y while the

variables remain constant atv̄, andx
v̄,w̄
=⇒ y means that it is possible to move fromx to y with a single

change of variable values from̄v to w̄. The conditionw̄|vars(E)\vars′(p) ≤ v̄ ensures that variables not
affected by the updatep remain unchanged. With this symbolic definition of the extended transition
relation, symbolic observation equivalence is defined as follows.

Definition 14 Let E = 〈V, QE ,→E , Q◦
E , Qω

E〉 andF = 〈V, QF ,→F , Q◦
F , Qω

F 〉 be two EFSMs. A
relation∼ ⊆ QE×QF is called asymbolic observation equivalencebetweenE andF if the following
holds for allxE ∈ QE andxF ∈ QF such thatxE ∼ xF :

• if xE
v̄,w̄
=⇒E yE , then there existsyF ∈ QF such thatxF

v̄,w̄
=⇒F yF andyE ∼ yF ;

• if xF
v̄,w̄
=⇒F yF , then there existsyE ∈ QE such thatxE

v̄,w̄
=⇒E yE andyE ∼ yF ;

• xE
v̄
⇒E Qω

E if and only if xF
v̄
⇒F Qω

F .

E andF aresymbolically observation equivalent, written E ∼ F , if there exists a symbolic obser-

vation equivalence∼ betweenE andF such that, for eachx◦
E ∈ QE such thatE

v̄◦

⇒ x◦
E there exists

x◦
F ∈ QF such thatF

v̄◦

⇒ x◦
F andx◦

E ∼ x◦
F , and vice versa.

Two locations are symbolically observation equivalent, if they can reach equivalent successors
by means of the extended transition relation⇒. Symbolic observation equivalence is closely related
to observation equivalence of the unfolded FSMs, which is known to imply conflict equivalence [9].
The following result, with proof in Appendix D, confirms that symbolically observation equivalent
EFSMs are conflict equivalent. In combination with proposition 3, it is clear that components in an
EFSM system can be replaced by symbolically observation equivalent abstractions without affecting
the nonblocking property of the system.

Proposition 4 Let E1 andF1 be two EFSMs. IfE1 ∼ F1 thenE1 ≃conf F1.
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6.5 Active Events Rule

While observation equivalence reduces the size of FSMs significantly andis easy to implement, it is
not the best possible equivalence for nonblocking verification [16]. Several abstraction rules preserv-
ing conflict equivalence of FSMs are known [9,15] that extend beyond observation equivalence. This
section extends one of these rules, namely theActive Events Rule[9], to EFSMs.

The Active Events Rule for FSMs allows to merge states with the same sets of enabled events,
provided they are alsoincoming equivalent.

Definition 15 Let E = 〈V, Q,→ , Q◦, Qω〉 be an EFSM. Theincoming equivalencerelation∼inc ⊆
Q × Q of E is defined such thaty1 ∼inc y2 if

• E ⇒ y1 if and only if E ⇒ y2;

• for all x ∈ Q and all v̄, w̄ ∈ dom(vars(E)), it holds thatx
v̄,w̄
=⇒ y1 with v̄ 6= w̄ or x 6= y1

impliesx
v̄,w̄
=⇒ y2, and vice versa.

Two incoming equivalent locations have exactly the same incoming transitions withequivalent
updates and equal source locations. Unlike with FSMs, selfloopsx

v̄
⇒ x are excluded, because by

definition 13,x
v̄
⇒ x holds for every locationx, and including them would require all incoming

equivalent locations to be linked to each other.

Definition 16 Let E = 〈V, Q,→ , Q◦, Qω〉 be an EFSM. Theactive events equivalencerelation
∼act ⊆ Q × Q of E is defined such thatx1 ∼act x2 if

• for all v̄, w̄ ∈ dom(vars(E)), it holds thatx1
v̄,w̄
=⇒ y1 for somey1 ∈ Q such that̄v 6= w̄ or

x1 6= y1, if and only if x2
v̄,w̄
=⇒ y2 for somey2 ∈ Q such that̄v 6= w̄ or x2 6= y2;

• for all v̄ ∈ dom(vars(E)) it holds thatx1
v̄
⇒ Qω if and only if x2

v̄
⇒ Qω.

Two locations are active events equivalent if they have exactly the same outgoing transitions, in-
dependently of their target locations. Selfloops are only considered if they are considered in incoming
equivalence. Based on these concepts, theActive Events Ruleis defined in the same way as for FSMs
and says that, two locations that are both incoming and active events equivalent are conflict equivalent
and can be merged.

The idea is that, for conflict equivalence only the traces leading to terminal states are relevant. If
two states are reached in exactly the same way and have exactly the same transitions enabled, then
the nondeterministic choice between these two states can be deferred by onestep and the states can
be merged. Technically, this is done by the standard construction of a quotient automaton [3]. Prop. 5
describes the Active Events Rule formally, and the proof can be found in Appendix E.
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Figure 3: Example of Active Events Rule.

Definition 17 Let E = 〈V, Q,→ , Q◦, Qω〉 be an EFSM, and let∼ ⊆ Q × Q be an equivalence
relation. Thequotient EFSMof E modulo∼ is E/∼ = 〈V, Q/∼,→/∼, Q̃◦, Q̃ω〉, where

→/∼ = { ([x], p, [y]) | x
p
→ y } ; (12)

Q̃◦ = { [x] | x ∈ Q◦ } ; (13)

Q̃ω = { [x] | x ∈ Qω } . (14)

Here, [x] = {x ∈ Q | x′ ∼ x } denotes theequivalence classof x ∈ Q with respect to∼, and
Q/∼ = { [x] | x ∈ Q } is the set of equivalence classes modulo∼.

Proposition 5 Let E1 = 〈V, Q,→ , Q◦, Qω〉 be an EFSM, and let∼ ⊆ Q×Q be an equivalence rela-
tion such that∼ ⊆ ∼inc ∩∼act, where∼inc and∼act are the incoming and active events equivalences
of E1. ThenE1 ≃conf E1/∼.

Example 3 Consider EFSME in figure 3, and assumex◦ = y◦ = 0. Given thatq0
x<2
=⇒ q0 by

definition 13, locationsq0 andq1 are both reached from the initial locationq0 whenx < 2, and this
establishesq0 ∼inc q1. Furthermore, both locationsq0 andq1 have outgoing non-selfloop transitions
with updatesy′ = x + 1 andx < 2, which shows thatq0 ∼act q1. By the Active Events Rule, these
locations are conflict equivalent and can be merged, resulting inẼ in figure 3. Yet,q0 andq1 are not
observation equivalent as the transitionsy′ = x + 1 from q0 andq1 lead to different locations that are
not equivalent.

7 Example Revisited

In this section, the compositional verification procedure is applied to the Sieveof Eratosthenes in-
troduced in section 3. For illustration, the number of sieve processes is setto n = 2, and while the
resultant sieve can recognise prime numbers up to 24, the range is restricted to m = 7. The system
consists of four EFSMssource, sieve1, sieve2, andsink, shown in figure 1, and its unfolded state space
has 2,385,179 reachable states.

None of the EFSMs in figure 1 can be simplified using either observation equivalence or active
events, but some variables are local and can be partially unfolded. Unfolding x0 in source results in
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Figure 4: Abstractions ofsource in Sieve of Eratosthenes example.
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the 24-location EFSMU1(source) shown in figure 4. For graphical clarity, the figure uses agroup
nodeto combine the locations(q0, i) for 0 ≤ i ≤ 7: each transition out of the box stands for eight
different transitions with the same update and target location, one transition from each location in the
group. Clearly, the locations(q0, i) in the group all have exactly the same outgoing transitions, so they
are bisimilar and can be merged into a single locationq0. This results in the abstractionU2(source),
also shown in figure 4. Locations(q1, i) for 0 ≤ i ≤ 7 in U2(source) are incoming equivalent, as they
all have the same incoming transition from locationq0 with updatetrue, and active events equivalent,
as they all have only one outgoing transition with updatec0 = 0. These locations can be merged using
the Active Events Rule, resulting in the 10-location EFSMU3(source) in figure 4.

Next, the variablex1 is local insieve1, and its unfolding results in a 49-location EFSMU1(sieve1),
shown in figure 5. Observation equivalence simplifies this to an 18-location EFSM U2(sieve1), also
shown in figure 5. Similarly, partial unfolding ofx2 in sieve2 and observation equivalence result in a
21-location EFSMU2(sieve2). Thesink EFSM cannot be simplified.

At this point, the system model consists of four EFSMsU3(source), U2(sieve1), U2(sieve2),
and sink, and three variablesc0, c1, and c2. The number of reachable states in the unfolding is
now 100,712. For compositional verification to proceed, some components need to be composed.
After composingU2(sieve1) andU3(source), variablec0 becomes local and can be unfolded. The
resultant EFSM has 292 locations, and can be abstracted to 126 locations using observation equiva-
lence, and further to 7 locations using the Active Events Rule. The resultant EFSMU(S1) is shown in
figure 5. It is very similar toU3(source) in figure 4. The difference is that only the numbers 1, 2, 3, 5,
and 7 are sent to the next stage of the pipeline, as 0, 4, and 6 are filtered out by the first sieve process.

Next,U(S1) andU2(sieve2) are composed, resulting inc1 becoming a local variable. By unfold-
ing c1, a 207-location EFSM is obtained, which again is simplified to a 7 location EFSMU(S2) using
observation equivalence and the Active Events Rule.U(S2) is the same asU(S1) except thatc1 is
replaced byc2. The abstraction of the initial segment of the pipeline does not change, as the first
non-prime filtered out bysieve2 is 9, but the source only produces numbers up tom = 7.

Now the system consists only of the EFSMsU(S2) andsink, and the variablec2. Composition
and unfolding results in a 27-state FSM, which is verified to be nonblocking.This is enough to
conclude that the original system is nonblocking. Thus, a 2,385,179-statesystem has been verified
to be nonblocking, and the largest component constructed in the processhad 292 locations. The
constructed abstractions only increase with the maximum numberm produced by thesource, not with
the numbern of sieve processes, showing that the method scales well as the parametersincrease.

8 Conclusions

A framework for compositional nonblocking verification of reactive systems modelled as extended
finite state machines (EFSM) is presented. The method is based on a generalisation of results about
conflict equivalence for finite-state machines. State-space explosion is mitigated by gradually com-
posing the components of a large system, and simplifying the intermediate results using the abstraction
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Figure 5: Abstractions ofsieve1 in Sieve of Eratosthenes example.
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methods of symbolic observation equivalence and the Active Events Rule. The approach is demon-
strated to scale well for an example of concurrent software.

Future work includes generalising other conflict-preserving abstractionrules, known to work well
for FSMs, and adding them to the framework [9, 15]. Further, the method can likely be improved
by combining it with known methods for variable abstraction and symbolic reasoning [3]. It is also
possible to support event-based EFSM synchronisation, as it is alreadyused in the underlying theory
of conflict equivalence [16]. In addition, extension of the method for supervisor synthesis [20] for
EFSMs is interesting.
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Appendix

This appendix contains the proofs of the propositions given in section 6. Most results about conflict
equivalence of EFSM systems are proved by obtaining an unfolded FSM and using similar proofs
about conflict equivalence of FSMs [9].

A Proof of Proposition 1

Prop. 1 concerns the relationship between synchronous composition of EFSMs and unfolding. In the
following proof, it is shown that the results of unfolding before and aftersynchronous composition
are identical up a renaming of the events.

Proposition 1 Let E = {E1, . . . , En} be an EFSM system, andF = {E1 ‖ E2, E3, . . . , En}. Then
U(E) is nonblocking if and only ifU(F) is nonblocking.

Proof. It is shown in the following that the unfoldingsU(E) andU(F) are identical up to a renaming
of events, which is enough to show thatU(E) is nonblocking if and only ifU(F) is nonblocking.
More precisely, it is shown thatU(F) = ρ(U(E)) whereρ : ΣE → ΣF replaces events as follows,

ρ((Ei; v̂; ŵ)) = ρ(Ei; v̂; ŵ) =

{

(E1 ‖ E2; v̂; ŵ), if i = 1 or i = 2;

(Ei; v̂; ŵ), otherwise.
(15)

By definition 2, the EFSM systemsE andF have the same variables associated with their update
functions, so it holds thatvars(E) = vars(F), andρ(U(E)) andU(F) have the same states, initial
states, and marked states. It remains to be shown that they also have the sametransitions. Write
E = ‖n

i=1U(Ei) andF = U(E1 ‖ E2) ‖ ‖
n
i=3U(Ei).

First, let

(x1, . . . , xn, v̄)
(Ek;v̂;ŵ)
−−−−−→ (y1, . . . , yn, w̄) (16)

in U(E). Then it follows that(x1, . . . , xn)
(Ek;v̂;ŵ)
−−−−−→ (y1, . . . , yn) in E, which means thatxk

(Ek;v̂;ŵ)
−−−−−→

yk in U(Ek) andxi = yi for eachi 6= k. It follows that there exists a transitionxk
p
→ yk with

p(v̂, ŵ) = true in Ek. If k = 1 or k = 2, then either(x1, x2)
p
→ (y1, x2) or (x1, x2)

p
→ (x1, y2)

in E1 ‖ E2 by definition 2, and thus in both cases(x1, . . . , xn)
(E1‖E2;v̂;ŵ)
−−−−−−−−→ (y1, . . . , yn) in F . If

3 ≤ k ≤ n, it follows directly fromxk
p
→ yk that (x1, . . . , xn)

(Ek;v̂;ŵ)
−−−−−→ (y1, . . . , yn) in F . This
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shows that(x1, . . . , xn)
ρ(Ek;v̂;ŵ)
−−−−−−→ (y1, . . . , yn) in F . From (16) it also follows that̄v

(Ek;v̂;ŵ)
−−−−−→

w̄ in ‖v∈vars(E)UE(v) and thusv̄
ρ(Ek;v̂;ŵ)
−−−−−−→ w̄ in ‖v∈vars(F)UF (v) by definition 6. It follows that

(x1, . . . , xn, v̄)
ρ(Ek;v̂;ŵ)
−−−−−−→ (y1, . . . , yn, w̄) in U(F).

Conversely, let

(x1, . . . , xn, v̄)
(G;v̂;ŵ)
−−−−−→ (y1, . . . , yn, w̄) (17)

in U(F), whereG ∈ F . Then(x1, . . . , xn)
(G;v̂;ŵ)
−−−−−→ (y1, . . . , yn) in F . Consider two cases.

• If G = E1 ‖ E2, then (x1, x2)
(E1‖E2;v̂;ŵ)
−−−−−−−−→ (y1, y2) in U(E1 ‖ E2) andxi = yi for each

3 ≤ i ≤ n. The former means(x1, x2)
p
→ (y1, y2) in E1 ‖ E2 with p(v̂, ŵ) = true, which by

definition 2 impliesx1
p
→ y1 in E1 andx2 = y2, or x1 = y1 andx2

p
→ y2 in E2. It follows

that (x1, . . . , xn)
(Ek;v̂;ŵ)
−−−−−→ (y1, . . . , yn) in E, with k = 1 or k = 2, and thusρ(Ek; v̂; ŵ) =

(E1 ‖ E2; v̂; ŵ) = (G; v̂; ŵ).

• If G = Ek for some3 ≤ k ≤ n, thenxk
(Ek;v̂;ŵ)
−−−−−→ yk in U(Ek) and(x1, x2) = (y1, y2) and

xi = yi for each3 ≤ i ≤ n with i 6= k. This shows(x1, . . . , xn)
(Ek;v̂;ŵ)
−−−−−→ (y1, . . . , yn) in E,

andρ(Ek; v̂; ŵ) = (Ek; v̂; ŵ) = (G; v̂; ŵ).

From (17), it also follows that̄v
(G;v̂;ŵ)
−−−−−→ w̄ in ‖v∈vars(F)UF (v), and thereforēv

(Ek;v̂;ŵ)
−−−−−→ w̄ in

‖v∈vars(E)UE(v) by definition 6, whereρ(Ek; v̂; ŵ) = (G; v̂; ŵ). Then (x1, . . . , xn, v̄)
(Ek;v̂;ŵ)
−−−−−→

(y1, . . . , yn, w̄) in U(E), and therefore(x1, . . . , xn, v̄)
ρ(Ek;v̂;ŵ)
−−−−−−→ (y1, . . . , yn, w̄) in ρ(U(E)). 2

B Proof of Proposition 2

As conflict equivalence is preserved under bisimulation, the key step to prove proposition 2 is to
show that the result of partial unfolding is bisimilar to the original. This is done inlemma 8. Before
that, lemma 7 shows that the nonblocking property of EFSM systems is preserved when replacing
subsystems by conflict equivalent subsystems.

Lemma 7 Let E = {E1, . . . , En} andF = {F1, E2, . . . , En} be EFSM systems such thatvars(E) \
vars(E1) = vars(F) \ vars(F1) and

(U(E1) ‖
∥

∥

v ∈ vars(E1)

UE(v)) \ ΣE1
≃conf (U(F1) ‖

∥

∥

v ∈ vars(F1)

UF (v)) \ ΣF1
. (18)

ThenU(E) is nonblocking if and only ifU(F) is nonblocking.
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Proof. Note that

U(E) = U(E1) ‖ · · · ‖ U(En) ‖
∥

∥

v ∈ vars(E)

UE(v)

= U(E1) ‖
∥

∥

v ∈ vars(E1)

UE(v) ‖ U(E2) ‖ · · · ‖ U(En) ‖
∥

∥

v ∈ vars(E) \ vars(E1)

UE(v) . (19)

As the events inΣE1
do not appear inU(E2) ‖ · · · ‖U(En) ‖

∥

∥

v∈vars(E)\vars(E1)
UE(v), the above (19)

is nonblocking if and only if

(U(E1) ‖
∥

∥

v ∈ vars(E1)

UE(v)) \ ΣE1
‖ U(E2) ‖ · · · ‖ U(En) ‖

∥

∥

v ∈ vars(E) \ vars(E1)

UE(v) (20)

is nonblocking. Given (18) and noting thatvars(E) \ vars(E1) = vars(F) \ vars(F1), it follows from
the definition of conflict equivalence (definition 11) that (20) is nonblocking if and only if

(U(F1) ‖
∥

∥

v ∈ vars(F1)

UF (v)) \ ΣF1
‖ U(E2) ‖ · · · ‖ U(En) ‖

∥

∥

v ∈ vars(F) \ vars(F1)

UF (v) (21)

is nonblocking. As the events inΣF1
do not appear in the FSMsU(E2), . . . , U(En), or UF (v) with

v ∈ vars(F) \ vars(F1), the above (21) is nonblocking if and only if

U(F1) ‖
∥

∥

v ∈ vars(F1)

UF (v)) ‖ U(E2) ‖ · · · ‖ U(En) ‖
∥

∥

v ∈ vars(F) \ vars(F1)

UF (v) =

U(F1) ‖ U(E2) ‖ · · · ‖ U(En) ‖
∥

∥

v ∈ vars(F)

UF (v) = U(F) (22)

is nonblocking. 2

Instead of showing that conflict equivalence is preserved under partial unfolding, lemma 8 below
shows that the unfolded EFSM systems before and after partial unfoldingare bisimilar FSMs, accord-
ing to the following definition 18. Further, definition 19 provides notation to relate the valuations
before and after partial unfolding to each other.

Definition 18 Let G = 〈ΣG, QG,→G, Q◦
G, Qω

G〉 andH = 〈ΣH , QH ,→H , Q◦
H , Qω

H〉 be two FSMs.
A relation ≈ ⊆ QG × QH is called abisimulation equivalencerelation betweenG andH if the
following holds for allxG ∈ QG andxH ∈ QH such thatxG ≈ xH :

• if xG
σ
→G yG for someσ ∈ Στ , then there existsyH ∈ QH such thatxH

σ
→H yH andyG ≈ yH ;

• if xH
σ
→H yH for someσ ∈ Στ , then there existsyG ∈ QG such thatxG

σ
→G yG andyG ≈ yH ;

• xG ∈ Qω
G if and only if xH ∈ Qω

H ;
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G andH arebisimilar, writtenG ≈ H, if there exists a bisimulation equivalence relation≈ between
G andH such that, for eachx◦

G ∈ Q◦
G there existsx◦

H ∈ Q◦
H such thatx◦

G ≈ x◦
H , and vice versa.

Definition 19 Let v̄ : V → D be a valuation. Therestrictionv̄|W : W → D of v̄ to W ⊆ V is defined
by

v̄|W [v] = v̄[v] for all v ∈ W . (23)

For a variablev0 anda0 ∈ dom(v0), theextension̄v ⊕{v0 7→ a0} : V ∪ {v0} → D ∪ {a0} is defined
by

v̄ ⊕ {v0 7→ a0}[v] =

{

a0, if v = v0 ;

v̄[v], otherwise.
(24)

Lemma 8 Let E = {E1, . . . , En} be an EFSM system, letz ∈ vars(E1) \
⋃n

i=2 vars(Ei), and let
F = {E1 \ z, E2, . . . , En}. Then

(U(E1) ‖
∥

∥

v ∈ vars(E1)

UE(v)) \ ΣE1
≈ (U(E1 \ z) ‖

∥

∥

v ∈ vars(E1 \ z)

UF (v)) \ ΣE1\z . (25)

Proof. Let F1 = E1 \ z andFi = Ei for 2 ≤ i ≤ n. Write E1 = 〈V, Q,→ , Q◦, Qω〉, E =
U(E1) ‖

∥

∥

v∈vars(E1)
UE(v) andF = U(E1 \ z) ‖

∥

∥

v∈vars(F1)
UF (v), andΣE = ΣE1

andΣF = ΣF1
,

andW = vars(E1 \ z) = vars(E1) \ {z}. The states ofE have the form(x, v̄), and the states
of F have the form((x, a), v̌), wherex ∈ Q, v̄ ∈ dom(vars(E1)), v̌ ∈ dom(W ), anda ∈ dom(z).
Consider the relation≈U between the states ofE andF , defined by

(x, v̄) ≈U ((y, a), v̌) if and only if x = y andv̄ = v̌ ⊕ {z 7→ a} . (26)

It is to be shown that≈U is a bisimulation betweenE \ ΣE andF \ ΣF .
First, let(x, v̄) ≈U ((x, a), v̌) and(x, v̄)

σ
→ (y, w̄) in E \ΣE . The former implies̄v = v̌ ⊕ {z 7→

a} and thus̄v[z] = a. Let b = w̄[z] andw̌ = w̄|W . Also, as(x, v̄)
σ
→ (y, w̄) in E \ ΣE , there exists a

transition(x, v̄)
(Ek;v̂;ŵ)
−−−−−→ (y, w̄) in E. Consider two cases.

• If k = 1, then(Ek; v̂; ŵ) = (E1; v̂; ŵ) ∈ ΣE and thusσ = τ . Sincex
(E1;v̂;ŵ)
−−−−−→ y in U(E1),

it holds thatx
p
→ y in E1 such thatp(v̂, ŵ) = true. If z ∈ vars(p) thenz ∈ vars(v̂) and

v̂[z] = v̄[z] = a, and if z ∈ vars′(p) thenz ∈ vars(ŵ) and ŵ[z] = w̄[z] = b. It follows
that(∃z∃z′(p ∧ z = a ∧ z′ = b))(v̂|W , ŵ|W ) = true. By definition 10 there exists a transition

(x, a)
∃z∃z′(p∧z=a∧z′=b)
−−−−−−−−−−−−→ (y, b) in E1\z, which implies(x, a)

(E1\z;v̂|W ;ŵ|W )
−−−−−−−−−−→ (y, b) in U(E1\

z).

• If 2 ≤ k ≤ n, then the eventσ = (Ek; v̂; ŵ) is not in the alphabet ofU(E1) or U(E1 \ z).

It follows from x
(Ek;v̂;ŵ)
−−−−−→ y in U(E1) that x = y. Sincez is a local variable toE1, it
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does not appear inEk with 2 ≤ k ≤ n, so by definition 6 the event(Ek; v̂; ŵ) is not in the

alphabet ofUE(z). As a = v̄[z]
(Ek;v̂;ŵ)
−−−−−→ w̄[z] = b in UE(z), it follows thata = b. Also

z /∈ vars(v̂) ∪ vars(ŵ) by definition 5, and thus(Ek; v̂; ŵ) = (Ek; v̂|W ; ŵ|W ). It follows that

(x, a)
(Ek;v̂|W ;ŵ|W )
−−−−−−−−−→ (x, a) = (y, b) in U(E1 \ z).

In both cases, it has been shown that(x, a)
(Fk;v̂|W ;ŵ|W )
−−−−−−−−→ (y, b) in U(E1 \z) where(Fk; v̂|W ; ŵ|W ) =

(E1 \ z; v̂|W ; ŵ|W ) or (Fk; v̂|W ; ŵ|W ) = (Ek; v̂|W ; ŵ|W ). Further,̄v
(Ek;v̂;ŵ)
−−−−−→ w̄ in ‖v∈vars(E1)UE(v)

and thus it holds thaťv
(Ek;v̂;ŵ)
−−−−−→ w̌ in ‖v∈vars(E1)\{z}

UE(v), which implies v̌
(Fk;v̂|W ;ŵ|W )
−−−−−−−−→ w̌

in ‖v∈vars(E1\z)UF (v). This shows that((x, a), v̌)
(Fk;v̂|W ;ŵ|W )
−−−−−−−−→ ((y, b), w̌) in F , and therefore

((x, a), v̌)
σ
→ ((y, b), w̌) in F \ ΣF , with (y, w̄) ≈U ((y, b), w̌).

Conversely, assume that(x, v̄) ≈U ((x, a), v̌) and ((x, a), v̌)
σ
→ ((y, b), w̌) in F \ ΣF . The

former impliesv̄ = v̌⊕{z 7→ a} and thus̄v[z] = a, and the latter implies the existence of a transition

((x, a), v̌)
(Fk;v̂;ŵ)
−−−−−→ ((y, b), w̌) in F . Consider two cases.

• If k = 1, then(Fk; v̂; ŵ) = (E1 \ z; v̂; ŵ) ∈ ΣF and thusσ = τ . Sincex
(E1\z;v̂;ŵ)
−−−−−−−→ y

in U(E1 \ z), there is a transition(x, a)
∃z∃z′(p∧z=a∧z′=b)
−−−−−−−−−−−−→ (y, b) in E1 \ z with x

p
→ y in E1,

and(∃z∃z′(p ∧ z = a ∧ z′ = b))(v̂, ŵ) = true, and ifz /∈ vars′(p) thena = b. Let

ˆ̂v =

{

v̂ ⊕ {z 7→ a}, if z ∈ vars(p);

v̂, otherwise;
ˆ̂w =

{

ŵ ⊕ {z 7→ b}, if z ∈ vars′(p);

ŵ, otherwise.
(27)

Then it follows thatp(ˆ̂v, ˆ̂w) = true, and thereforex1
(E1,ˆ̂v, ˆ̂w)
−−−−−→ y1 in U(E1).

If z ∈ vars(v̂) \ vars(ŵ), thenz ∈ vars(p) \ vars′(p), andˆ̂v[z] = a by construction (27), and

a = b asz /∈ vars′(p); it follows thata
(E1,ˆ̂v, ˆ̂w)
−−−−−→ a = b in UE(z) by definition 6. Ifz ∈ vars(ŵ),

thenz ∈ vars′(p), andˆ̂v[z] = a and ˆ̂w[z] = b by construction (27); it follows thata
(E1,ˆ̂v, ˆ̂w)
−−−−−→ b

in UE(z) by definition 6. Otherwisez /∈ vars(v̂) = vars(p) ⊇ vars′(p) in which case the event
(Ek, ˆ̂v, ˆ̂w) = (Ek; v̂; ŵ) is not in the alphabet ofUE(z), anda = b asz /∈ vars′(p); it again

follows thata
(E1,ˆ̂v, ˆ̂w)
−−−−−→ a = b in UE(z).

• If 2 ≤ k ≤ n, then the eventσ = (Fk; v̂; ŵ) = (Ek; v̂; ŵ) is not in the alphabet ofE1 or U(E1).

Then letˆ̂v = v̂ and ˆ̂w = ŵ andb = a. It follows from x
(Ek;ˆ̂v; ˆ̂w)
−−−−−→ y in U(E1) thatx = y, and

thusx
(Ek,ˆ̂v, ˆ̂w)
−−−−−→ x = y in U(E1).

Furthermore, sincez is local to E1, it does not appear inEk with 2 ≤ k ≤ n, and thus

z /∈ vars(v̂) ∪ vars(ŵ) = vars(ˆ̂v) ∪ vars( ˆ̂w). It follows thata
(Ek,ˆ̂v, ˆ̂w)
−−−−−→ a = b in UE(z).
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Let w̄ = w̌⊕{z 7→ b}. In both cases, it has been shown that(x, a)
(E1,ˆ̂v, ˆ̂w)
−−−−−→ (y, b) in U(Ek) ‖UE(z),

with v̂ ≤ ˆ̂v ≤ v̄ andŵ ≤ ˆ̂w ≤ w̄. Furthermore, note thaťv
(Fk;v̂;ŵ)
−−−−−→ w̌ in ‖v∈vars(E1\z)UF (v), which

implies v̌
(Ek,ˆ̂v, ˆ̂w)
−−−−−→ w̌ in ‖v∈vars(E1)\{z}

UE(v). Then it follows that(x, v̄)
(Ek,ˆ̂v, ˆ̂w)
−−−−−→ (y, w̄) in E, and

hence(x, v̄)
σ
→ (y, w̄) in E \ ΣE , with (y, w̄) ≈U ((y, b), w̌).

As the FSMsE andF by construction have got exactly the same initial and marked states, it
follows thatE \ ΣE ≈ F \ ΣF . 2

Proposition 2 Let E = {E1, . . . , En} be an EFSM system,z ∈ vars(E1) \
⋃n

i=2 vars(Ei), and
F = {E1 \ z, E2, . . . , En}. ThenU(E) is nonblocking if and only ifU(F) is nonblocking.

Proof. By lemma 8, it holds that

(U(E1) ‖
∥

∥

v ∈ vars(E1)

UE(v)) \ ΣE1
≈ (U(E1 \ z) ‖

∥

∥

v ∈ vars(E1 \ z)

UF (v)) \ ΣE1\z . (28)

As bisimulation of ordinary FSMs implies conflict equivalence [9], it follows that the above FSMs (28)
are conflict equivalent. Furthermore, note thatvars(E) \ vars(E1) = vars(F) \ vars(E1 \ z) as the
variablez is local toE1 and does not appear in any EFSMEi with 2 ≤ i ≤ n. Then it follows from
lemma 7 thatU(E) is nonblocking if and only ifU(F) is nonblocking. 2

C Proof of Proposition 3

Before proving the key result about conflict equivalence in proposition 3, the following lemma 10
establishes a relationship between conflict equivalence of EFSMs and unfolded FSMs.

Definition 20 Let G = 〈ΣG, Q,→, Q◦, Qω〉 be an FSM andΥ ⊆ ΣG. The result ofhiding Υ
from G, written G \ Υ, is the FSM obtained fromG by replacing each transitionx

σ
→ y such that

σ ∈ Υ by x
τ
→ y, and removing all events inΥ from ΣG.

Lemma 10 Two EFSMsE1 andF1 are conflict equivalent, if and only if the following holds for all
EFSM systemsE = {E1, . . . , En} andF = {F1, E2, . . . , En}:

(U(E1) ‖
∥

∥

v ∈ vars(E1)

UE(v)) \ ΣE1
≃conf (U(F1) ‖

∥

∥

v ∈ vars(F1)

UF (v)) \ ΣF1
. (29)

Proof. Assume thatE1 ≃conf F1. Furthermore, letE = {E1, . . . , En} andF = {F1, E2, . . . , En}
with E1, F1 /∈ {E2, . . . , En}, and letT = 〈ΣT , QT ,→T , Q◦

T , Qω
T 〉 be an FSM such that

(

(U(E1) ‖
∥

∥

v ∈ vars(E1)

UE(v)
)

\ ΣE1
) ‖ T (30)
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is nonblocking. LetΥ = ΣT \ (ΣE2
∪· · ·∪ΣEn

), and construct an EFSMET such thatU(ET )\Υ =

T \Υ: this EFSM can be constructed asET = 〈vars(E1), QT ,→E , Q◦
T , Qω

T 〉 wherex
v=v̂∧v′=ŵ
−−−−−−−→E y

for all transitionsx
(Ei;v̂;ŵ)
−−−−−→T y with 2 ≤ i ≤ n andx

true
−−→E y for all transitionsx

σ
→T y with

σ ∈ Υ. Then

U({E1, ET }) \ Υ =
(

U(E1) ‖ U(ET ) ‖
∥

∥

v ∈ vars(E1)

UE(v))
)

\ Υ

=
(

U(E1) ‖
∥

∥

v ∈ vars(E1)

UE(v))
)

‖ (U(ET ) \ Υ)

=
(

U(E1) ‖
∥

∥

v ∈ vars(E1)

UE(v))
)

‖ (T \ Υ) (31)

is nonblocking because (30) is nonblocking. ThenU({E1, ET }) is also nonblocking, and asE1 ≃conf

F1 it follows thatU({F1, ET }) is nonblocking. Then

U({F1, ET }) \ Υ =
(

U(F1) ‖ U(ET ) ‖
∥

∥

v ∈ vars(F1)

UE(v))
)

\ Υ

=
(

U(F1) ‖
∥

∥

v ∈ vars(F1)

UE(v))
)

‖ (U(ET ) \ Υ)

=
(

U(F1) ‖
∥

∥

v ∈ vars(F1)

UE(v))
)

‖ (T \ Υ) (32)

is also nonblocking, and thus((U(F1) ‖
∥

∥

v∈vars(F1)
UE(v)) \ ΣF1

) ‖ T is nonblocking. AsT was
chosen arbitrarily, it follows that the FSMs (29) are conflict equivalent.

Conversely assume that (29) holds, and letET be an EFSM such thatE1 ‖ ET is nonblocking,
i.e., U({E1, ET }) is nonblocking. ThenU(E1) ‖ U(ET ) ‖

∥

∥

v∈vars(E1)
UE(v) is nonblocking, and

asU(ET ) does not use any events inΣE1
, it follows that ((U(E1) ‖ ‖

∥

∥

v∈vars(E1)
UE(v)) \ ΣE1

) ‖

U(ET ) = (U(E1) ‖ U(ET ) ‖
∥

∥

v∈vars(E1)
UE(v)) \ ΣE1

is nonblocking. Then by (29), it follows

that ((U(F1) ‖
∥

∥

v∈vars(F1)
UE(v)) \ ΣF1

) ‖ U(ET ) = (U(F1) ‖ U(ET ) ‖
∥

∥

v∈vars(F1)
UE(v)) \ ΣF1

is nonblocking, and thusF1 ‖ ET is nonblocking. AsET was chosen arbitrarily, it follows that
E1 ≃conf F1. 2

Proposition 3 Let E = {E1, . . . , En} andF = {F1, E2, . . . , En} be EFSM systems such that
E1 ≃conf F1. ThenU(E) is nonblocking if and only ifU(F) is nonblocking.

Proof. As E1 ≃conf F1, it follows by lemma 10 that (29) holds. Then the claim follows by lemma 7.
2
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D Proof of Proposition 4

To prove proposition 4, the key step is to show that the unfolded EFSMs arealso observation equiv-
alent. This is done below in lemma 13. Before that lemma 12 establishes an auxiliaryresult needed
for lemma 13 and lemma 16.

Lemma 12 Let E = {E1, . . . , En}, and letE = U(E1) ‖ ‖v∈vars(E1)UE(v).

(i) If (x, v̄)
(E1;v̂;ŵ)
−−−−−→ (y, w̄) in E, thenx

v̄,w̄
=⇒ y in E1.

(ii) If x
v̄,w̄
=⇒ y in E1, then(x, v̄)

ε
⇒ (y, w̄) in E \ ΣE1

.

Proof.

(i) It follows from (x, v̄)
(E1;v̂;ŵ)
−−−−−→ (y, w̄) that x

(E1;v̂;ŵ)
−−−−−→ y in U(E1) and v̄

(E1;v̂;ŵ)
−−−−−→ w̄ in

‖v∈vars(E1)UE(v). The former implies by definition 5 thatx
p
→ y with p(v̂, ŵ) = true in E1

with vars(v̂) = vars(p) andvars(ŵ) = vars′(p), and the latter implies by definition 6 thatv̂ ≤
v̄ andŵ ≤ w̄ andw̄|vars(E1)\vars′(p) = w̄|vars(E1)\vars(ŵ) ≤ v̄. Then it follows by definition 13

thatx
v̄,w̄
=⇒ y in E1.

(ii) It is first shown that ifx
v̄
⇒ y in E1, then(x, v̄)

ε
⇒ (y, v̄) in E \ΣE1

. By definition 13 it follows

from x
v̄
⇒ y thatx = x0

p1

→ · · ·
pm
→ xm = y in E1, wherevars′(pj) = ∅ andpj(v̄) = true for

1 ≤ j ≤ m. By definition 5, this meansx = x0
(E1;v̂1;∅)
−−−−−→ · · ·

(E1;v̂m;∅)
−−−−−−→ xm = y in U(E1)

with v̂j ≤ v̄ for 1 ≤ j ≤ m. And by definition 6, for eachv ∈ vars(E1) such that the event

(E1; v̂j ; ∅) is in the alphabet ofUE(v), it holds thatv ∈ vars(v̂j) and v̄[v] = v̂j [v]
(E1;v̂j ;∅)
−−−−−→

v̂j [v] = v̄[v]. This means̄v
(E1;v̂1;∅)
−−−−−→ · · ·

(E1;v̂m;∅)
−−−−−−→ v̄ in ‖v∈vars(E1)

UE(v). As furthermore

(E1; v̂j ; ∅) ∈ ΣE1
, this is enough to show(x, v̄)

ε
⇒ (y, v̄) in E \ ΣE1

.

Now it is shown that the above implies that, ifx
v̄,w̄
=⇒ y in E1, then(x, v̄)

ε
⇒ (y, w̄) in E \

ΣE1
. By definition 13 it follows fromx

v̄,w̄
=⇒ y that x

v̄
⇒ x1

p
→ y1

w̄
⇒ y with p(v̄, w̄) =

true and w̄|vars(E)\vars′(p) ≤ v̄. By definition 5, this meansx1
(E1;v̂;ŵ)
−−−−−→ y1 in U(E1) with

vars(v̂) = vars(p) andvars(ŵ) = vars′(p) and v̂ ≤ v̄ andŵ ≤ w̄. And by definition 6, for
eachv ∈ vars(E1) such that the event(E1; v̂; ŵ) is in the alphabet ofUE(v), there are two

possibilities: eitherv ∈ vars(v̂) \ vars(ŵ) = vars(p) \ vars′(p) and v̄[v] = v̂[v]
(E1;v̂;ŵ)
−−−−−→

v̂[v] = w̄|vars(E)\vars′(p)[v] = w̄[v], or v ∈ vars(ŵ) and v̄[v] = v̂[v]
(E1;v̂;ŵ)
−−−−−→ ŵ[v] = w̄[v].

Therefore,(x, v̄)
(E1;v̂;ŵ)
−−−−−→ (y, w̄) in E. Given the above result aboutx

v̄
⇒ x1 andy1

w̄
⇒ y, and

noting that(E1; v̂; ŵ) ∈ ΣE1
, it follows that(x, v̄)

ε
⇒ (y, w̄) in E \ ΣE1

. 2
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The following lemma 13 relates EFSM observation equivalence to observationequivalence of
ordinary FSMs. As observation equivalence of FSMs implies conflict equivalence [9], this is enough to
prove proposition 4. The proofs are based on the following definition of FSM observation equivalence.

Definition 21 Let G = 〈ΣG, Q,→, Q◦, Qω〉 be an FSM. Forx, y ∈ Q ands ∈ Σ∗, the relation

x
s
⇒ y denotes the existence of a tracet ∈ Σ∗

τ such thats = P (t) andx
t
→ y. Here,P : Σ∗

τ → Σ∗ is
thenatural projectionthat removes allτ events from a traces ∈ Σ∗

τ .

In words,x
s
→ y denotes a path from statex to statey with exactlythe events ins, while x

s
⇒ y

denotes a path with an arbitrary number of silent eventsτ shuffled with the events ofs. The notation
is applied to state sets,X

s
⇒ y, and to FSMs,G

s
⇒ x, analogously to→.

Definition 22 Let G = 〈ΣG, QG,→G, Q◦
G, Qω

G〉 andH = 〈ΣH , QH ,→H , Q◦
H , Qω

H〉 be two FSMs.
A relation∼ ⊆ QG × QH is called anobservation equivalencerelation betweenG andH if the
following holds for allxG ∈ QG andxH ∈ QH such thatxG ∼ xH :

• if xG
σ
→G yG for someσ ∈ Στ , then there existsyH ∈ QH such thatxH

P (σ)
=⇒H yH and

yG ∼ yH ;

• if xH
σ
→H yH for someσ ∈ Στ , then there existsyG ∈ QG such thatxG

P (σ)
=⇒G yG and

yG ∼ yH ;

• if xG ∈ Qω
G thenxH

ε
⇒H Qω

H ;

• if xH ∈ Qω
H thenxG

ε
⇒G Qω

G.

G and H are observation equivalent, written G ∼ H, if there exists an observation equivalence
relation∼ betweenG andH such that, for eachx◦

G ∈ Q◦
G there existsx◦

H ∈ Q◦
H such thatx◦

G ∼ x◦
H ,

and vice versa.

Lemma 13 Let E = {E1, . . . , En} be an EFSM system and letF1 be an EFSM such thatvars(E1) =
vars(F1) andE1 ∼ F1, and letF = {F1, E2, . . . , El}. Then

(U(E1) ‖
∥

∥

v ∈ vars(E1)

UE(v)) \ ΣE1
∼ (U(F1) ‖

∥

∥

v ∈ vars(F1)

UF (v)) \ ΣF1
. (33)

Proof. Let E = U(E1) ‖
∥

∥

v∈vars(E1)
UE(v) andF = U(F1) ‖

∥

∥

v∈vars(F1)
UF (v), andΣE = ΣE1

andΣF = ΣF1
. As E1 ∼ F1, there exists an observation equivalence relation∼ betweenE1 andF1.

Consider the relation∼U between the states ofE andF , defined by

(xE , v̄E) ∼U (xF , v̄F ) if and only if xE ∼ xF andv̄E = v̄F . (34)
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Note thatv̄E andv̄F are defined over the same variables asvars(E1) = vars(F1). It is to be shown
that∼U is an observation equivalence betweenE \ ΣE andF \ ΣF .

Assume(xE , v̄E) ∼U (xF , v̄F ), i.e.,xE ∼ xF andv̄E = v̄F = v̄.

Firstly, let (xE , v̄)
ζ
→ (yE , w̄) in E \ ΣE , whereζ = τ or ζ = (Ek; v̂; ŵ) with 2 ≤ k ≤ n. It is

to be shown that there exists a stateyF in F1 such that(xF , v̄)
P (ζ)
=⇒ (yF , w̄) in F \ ΣF andyE ∼ yF .

Consider two cases.

(i) ζ = τ . In this case, there exists(E1; v̂; ŵ) ∈ ΣE such that(xE , v̄)
(E1;v̂;ŵ)
−−−−−→ (yE , w̄) in E.

By lemma 12 (i), it follows thatxE
v̄,w̄
=⇒ yE in E1. As xE ∼ xF , there exists a stateyF in F1

such thatxF
v̄,w̄
=⇒ yF in F1 andyE ∼ yF . By lemma 12 (ii), it follows that(xF , v̄)

ε
⇒ (yF , w̄)

in F \ ΣF , with P (ζ) = ε andyE ∼ yF .

(ii) ζ = (Ek; v̂; ŵ) with 2 ≤ k ≤ n. In this case,ζ is not in the alphabet ofU(E1) or U(F1),

so let yF = xE . It follows from xE
ζ
→ yE that xE = yE , andxF

ζ
→ xF ∼ xE = yF

in U(F1). As alsov̄
ζ
→ w̄ in ‖v∈vars(E1)UE(v) = ‖v∈vars(F1)UF (v), this is enough to show

(xF , v̄)
ζ
⇒ (yF , w̄) in F \ ΣF with yE ∼ yF .

Secondly, let(xE , v̄) ∈ Qω
E\ΣE

. It is to be shown that(xF , v̄)
ε
⇒ Qω

F\ΣF
. Clearly,xE ∈ Qω

E1
and

thusxE
v̄
⇒ xE ∈ Qω

E1
in E1 by definition 13. AsxE ∼ xF , it follows hatxF

v̄
⇒ xω

F ∈ Qω
F1

for some

stateyF of F1, which by lemma 12 (ii) implies(xF , v̄)
ε
⇒ (xω

F , v̄) ∈ Qω
F1
×dom(vars(F1)) = Qω

F\ΣF
.

Thirdly, assume(x◦
E , v̄◦) is an initial state ofE\ΣE . It is to be shown thatQ◦

F\ΣF

ε
⇒ (xF , v̄◦) for

some statexF of F1. Clearly,x◦
E ∈ Q◦

E1
, andx◦

E
v̄◦

⇒ x◦
E in E1 by definition 13. As∼ is an observation

equivalence relation betweenE1 andF1, there exists a statexF of F1 such thatQ◦
F1

v̄◦

⇒ xF in F1.

That is,x◦
F

v̄◦

⇒ xF for somex◦
F ∈ Q◦

F1
. By lemma 12 (ii), it follows that(x◦

F , v̄◦)
ε
⇒ (xF , v̄◦) in

F \ ΣF , where(x◦
F , v̄◦) ∈ Q◦

F\ΣF
. 2

Proposition 4 Let E1 andF1 be two EFSMs. IfE1 ∼ F1 thenE1 ≃conf F1.

Proof. By lemma 13, it holds that

(U(E1) ‖
∥

∥

v ∈ vars(E1)

UE(v)) \ ΣE1
∼ (U(F1) ‖

∥

∥

v ∈ vars(F1)

UF (v)) \ ΣF1
. (35)

As observation equivalence of ordinary FSMs implies conflict equivalence [9], it follows that the
above FSMs (35) are conflict equivalent. Then it follows from lemma 10 that E1 ≃conf F1. 2
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E Proof of Proposition 5

Before proving that conflict equivalence is preserved by the Active Events Rule, lemma 15 shows that
every path in the unfolded FSM of an EFSM also occurs in the unfolded FSMof every abstraction
obtained by FSM quotient. Furthermore, lemma 16 guarantees that under the additional assumption
of incoming equivalence, a converse of lemma 15 also holds.

Lemma 15 Let E = {E1, . . . , En}, let ∼ be an equivalence relation on the location set ofE1, and
let F = {E1/∼, E2, . . . , En}. If (x, v̄)

s
⇒ (y, w̄) in (U(E1) ‖ ‖v∈vars(E1)UE(v)) \ ΣE1

for some

s ∈ (ΣE \ ΣE1
)∗, then([x], v̄)

s
⇒ ([y], w̄) in (U(E1/∼) ‖ ‖v∈vars(E1)UF (v)) \ ΣE1/∼.

Proof.
Write E = U(E1)‖‖v∈vars(E1)UE(v) andF = U(E1/∼)‖‖v∈vars(E1/∼)UF (v), and lets ∈ (ΣE \

ΣE1
)∗ such that(x, v̄)

s
⇒ (y, w̄) in E \ ΣE1

. Then there existss′ = (F1; v̂1; ŵ1) · · · (Fm; v̂m; ŵm) ∈
Σ∗
E such thatP (s′) = s and

(x, v̄) = (x0, v̄0)
(F1;v̂1;ŵ1)
−−−−−−→ (x1, v̄1)

(F2;v̂2;ŵ2)
−−−−−−→ · · ·

(Fm;v̂m;ŵm)
−−−−−−−−→ (xm, v̄m) = (y, w̄) (36)

in E. Here, the natural projectionP : Σ∗ → (ΣE \ΣE1
)∗ erases events inΣE1

andΣE1/∼ from traces.

Consider a transition(xi−1, v̄i−1)
(Fi;v̂i;ŵi)
−−−−−−→ (xi, v̄i) on the path (36). IfFi 6= E1, then the event

(Fi; v̂i; ŵi) is neither in the alphabet ofU(E1) nor ofU(E1/∼), and givenvars(E1) = vars(E1/∼) it

follows immediately that the transition([xi−1], v̄i−1)
(Fi;v̂i;ŵi)
−−−−−−→ ([xi], v̄i) is in F . OtherwiseFi = E1,

which means(xi−1, v̄i−1)
(E1;v̂i;ŵi)
−−−−−−→ (xi, v̄i). By definition 5 it holds thatxi−1

p
→ xi in E1 with

p(v̄i, w̄i) = true. This implies[xi−1]
p
→ [xi] in E1/∼, and[xi−1]

(E1/∼;v̂i;ŵi)
−−−−−−−−→ [xi] in U(E1/∼)

by definition 5. Sincēvi−1
(E1;v̂i;ŵi)
−−−−−−→ v̄i in ‖v∈vars(E1)UE(v) andvars(E1) = vars(E1/∼), thus

v̄i−1
(E1/∼;v̂i;ŵi)
−−−−−−−−→ v̄i in ‖v∈vars(E1/∼)UF (v). This implies that([xi−1], v̄i−1)

(E1/∼;v̂i;ŵi)
−−−−−−−−→ ([xi], v̄i)

in F . As this has been shown for all1 ≤ i ≤ n, the path

([x], v̄) = ([x0], v̄0)
(F ′

1
;v̂

1
;ŵ

1
)

−−−−−−→ ([x1], v̄1)
(F ′

2
;v̂

2
;ŵ

2
)

−−−−−−→ · · ·

(F ′
m;v̂m;ŵm)

−−−−−−−−→ ([xm], v̄m) = ([y], w̄) (37)

is in F , whereF ′
i = E1/∼ or F ′

i = Ek for some2 ≤ k ≤ n. It follows that([x], v̄)
s
⇒ ([y], w̄) in

F \ ΣE1/∼. 2

Lemma 16 LetE = {E1, . . . , En}, let∼ be an equivalence relation on the location set ofE1 such that
∼ ⊆ ∼inc, and letF = {E1/∼, . . . , E2, En}. If (x̃, v̄)

s
⇒ (ỹ, w̄) in (U(E1/∼) ‖ ‖v∈vars(E1)UF (v)) \
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ΣE1/∼ for somes ∈ (ΣE \ ΣE1/∼)∗, then for ally ∈ ỹ there existsx ∈ x̃ such that(x, v̄)
s
⇒ (y, w̄)

in (U(E1) ‖ ‖v∈vars(E1)UE(v)) \ ΣE1
.

Proof.
Write E = U(E1) ‖ ‖v∈vars(E1)UE(v) andF = U(E1/∼) ‖ ‖v∈vars(E1/∼)UF (v), and lets ∈

(ΣE \ ΣE1/∼)∗ such that(x̃, v̄)
s
⇒ (ỹ, w̄) in F \ ΣE1/∼. Then there existss′ ∈ Σ∗

F such that

P (s′) = s and(x̃, v̄)
s′
→ (ỹ, w̄) in F . Without loss of generality, this path does not contain any self-

loops labelled by events inΣE1/∼, and the natural projectionP : Σ∗ → (ΣE \ ΣE1
)∗ erases events in

ΣE1
andΣE1/∼ from traces. Lety ∈ ỹ. It is shown by induction on the length ofs′ that there exists

x ∈ x̃ such that(x, v̄)
P (s′)
=⇒ (y, w̄) in E \ ΣE1

.
If s′ = ε, this is clear withx = y andP (s′) = ε.

Now considers′ = (F0; v̂; ŵ)t such that(x̃, v̄)
(F0;v̂;ŵ)
−−−−−→ (z̃, v̄′)

t
→ (ỹ, w̄) in F , and assume by

inductive assumption that there existsz ∈ z̃ such that(z, v̄′)
P (t)
=⇒ (y, w̄) in E \ ΣE1

. Consider two
cases.

• If F0 = E1/∼, then(x̃, v̄)
(E1/∼;v̂;ŵ)
−−−−−−−→ (z̃, v̄′) in F . Thenx̃

(E1/∼;v̂;ŵ)
−−−−−−−→ z̃ in U(E1/∼), so

by definition 5 it holds that̃x
p
→ z̃ in E1/∼ with p(v̂, ŵ) = true. It follows that there exist

x ∈ x̃ andz′ ∈ z̃ such thatx
p
→ z′ in E1, which again by definition 5 means thatx

(E1;v̂;ŵ)
−−−−−→ z′

in U(E1). As vars(E1) = vars(E1/∼), it follows that(x, v̄)
(E1;v̂;ŵ)
−−−−−→ (z′, v̄′) in E. Then it

follows by lemma 12 (i) thatx
v̄,v̄′

=⇒ z′ in E1. As the path(x̃, v̄)
s′
→ (ỹ, w̄) does not contain

any selfloops labelled by events inΣE1/∼, it holds that̄v 6= v̄′ or x̃ 6= z̃, and the latter implies

x 6= z′. Therefore, asz ∼inc z′, it follows thatx
v̄,v̄′

=⇒ z in E1, which by lemma 12 (ii) implies

(x, v̄)
ε
⇒ (z, v̄′) in E \ ΣE1

. This shows that(z, v̄)
ε
⇒ (z, v̄′)

P (t)
=⇒ (y, w̄) in E \ ΣE1

, where
P (s) = P ((E1/∼; v̂; ŵ)t) = P (t).

• If F0 6= E1/∼, i.e., F0 = Ei for some2 ≤ i ≤ n, then the event(F0; v̂; ŵ) is neither in
the alphabet ofU(E1/∼) nor of U(E1), and it follows immediately thatz ∈ z̃ = x̃ and

z
(F0;v̂;ŵ)
−−−−−→ z. As furthermorēv′

(F0;v̂;ŵ)
−−−−−→ w̄ in ‖v∈vars(E1/∼)UF (v) = ‖v∈vars(E1)UE(v), it

follows that(z, v̄)
(F0;v̂;ŵ)
−−−−−→ (z, v̄′) in E. This shows that(z, v̄)

(F0;v̂;ŵ)
−−−−−→ (z, v̄′)

P (t)
=⇒ (y, w̄) in

E \ΣE1
, whereP (s) = P ((F0; v̂; ŵ)t) = (F0; v̂; ŵ)P (t), so the claim follows withx = z. 2

Proposition 5 Let E1 = 〈V, Q,→ , Q◦, Qω〉 be an EFSM, and let∼ ⊆ Q×Q be an equivalence rela-
tion such that∼ ⊆ ∼inc ∩∼act, where∼inc and∼act are the incoming and active events equivalences
of E1. ThenE1 ≃conf E1/∼.

Proof. Let E = {E1, . . . , En} andF = {E1/∼, E2, . . . , En}. Furthermore, writeE = U(E1) ‖
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‖v∈vars(E1)UE(v) andF = U(E1/∼)‖‖v∈vars(E1/∼)UF (v), andΣE = ΣE1
andΣF = ΣE1/∼. Using

lemma 10, it is enough to showE \ ΣE ≃conf F \ ΣF .
Let T such that(E \ ΣE) ‖ T is nonblocking, and assume(F \ ΣF ) ‖ T

s
⇒ (x̃, v̄, xT ). Then

F \ ΣF
s
⇒ (x̃, v̄). Let x ∈ x̃. As ∼ ⊆ ∼inc, it follows by lemma 16 thatE \ ΣE

s
⇒ (x, v̄).

Therefore,(E \ ΣE) ‖ T
s
⇒ (x, v̄, xT ). As (E \ ΣE) ‖ T is nonblocking, there exists a tracet such

that(E \ΣE) ‖ T
s
⇒ (x, v̄, xT )

t
⇒ (xω, w̄, xω

T ) with xω ∈ Qω
E1

, w̄ ∈ dom(vars(E1)), andxω
T ∈ Qω

T .

Therefore,(x, v̄)
t
⇒ (xω

E , w̄) in E\ΣE , and it follows by lemma 15 that(x̃, v̄) = ([x], v̄)
t
⇒ ([xω], w̄)

in F \ ΣF , where[xω] ∈ Qω
E1/∼ asxω ∈ Qω

E1
. Then it follows that

(F \ ΣF ) ‖ T
s
⇒ (x̃, v̄, xT )

t
⇒ ([xω], w̄, xω

T ) ∈ Qω
E1/∼ × dom(vars(E1/∼)) × Qω

T (38)

which means(F \ ΣF ) ‖ T is nonblocking.
Conversely, letT such that(F \ΣF ) ‖T is nonblocking, and assume(E \ΣE) ‖T

s
⇒ (x, v̄, xT ).

ThenE\ΣE
s
⇒ (x, v̄), and it follows by lemma 15 thatF \ΣF

s
⇒ ([x], v̄). Therefore,(F \ΣF )‖T

s
⇒

([x], v̄, xT ). As (F \ ΣF ) ‖ T is nonblocking, there exists a tracet such that(F \ ΣF ) ‖ T
s
⇒

([x], v̄, xT )
t
⇒ (x̃ω, v̄ω, xω

T ) with x̃ω ∈ Qω
E1/∼, v̄ω ∈ dom(vars(E1)), andxω

T ∈ Qω
T . Assume

without loss of generality that the path

([x], v̄, xT )
t
⇒ (x̃ω, v̄ω, xω

T ) (39)

does not contain any selfloops. Asx̃ω ∈ Qω
E1/∼, there existsxω ∈ x̃ω such thatxω ∈ Qω

E1
. Also

([x], v̄)
t
⇒ (x̃ω, v̄ω) in F \ ΣF , so by lemma 16, there existsx′ ∈ [x] such that(x′, v̄)

t
⇒ (xω, v̄ω)

in E \ ΣE . Then there exists a tracet′ such thatP (t′) = t and(x′, v̄)
t′
→ (x̃ω, v̄ω) in E, where the

natural projectionP : Σ∗ → (ΣE \ ΣE1
)∗ erases events inΣE1

andΣE1/∼ from traces. Letp ⊑ t′ be
the longest prefix oft′ such thatp ∈ (ΣE \ ΣE)∗, so thatt′ = pq with p ∈ (ΣE \ ΣE)∗ andq = ε or
the first event ofq is in ΣE . Then(x′, v̄)

p
→ (x′, v̄′)

q
→ (xω, v̄ω) in E for somev̄′ ∈ dom(vars(E1))

andxT
p
⇒ yT

q
⇒ xω

T for some stateyT of T . Consider two cases.

(i) If q = ε, thenx′ = xω ∈ Qω
E1

and yT
ε
⇒ xω

T . This impliesx′ v̄′

⇒ Qω
E1

and thusx
v̄′

⇒

yω ∈ Qω
E1

for someyω sincex ∼act x′. By lemma 12 (ii), it follows that(x, v̄′)
ε
⇒ (yω, v̄′)

in E \ ΣE . It follows that (E \ ΣE) ‖ T
s
⇒ (x, v̄, xT )

p
⇒ (x, v̄′, yT )

ε
⇒ (yω, v̄′, xω

T ) ∈
Qω

E1
× dom(vars(E1)) × Qω

T , i.e.,(E \ ΣE) ‖ T is nonblocking.

(ii) If the first event ofq is in ΣE , then letq = (E1; v̂; ŵ)r and(x′, v̄′)
(E1;v̂;ŵ)
−−−−−→ (y, w̄′)

r
→ (xω, v̄ω)

in E. It follows from (x′, v̄′)
(E1;v̂;ŵ)
−−−−−→ (y, w̄′) by lemma 12 (i) thatx′ v̄′,w̄′

=⇒ y in E1. As the
path (39) does not contain any selfloops, it holds thatv̄′ 6= w̄′ or x′ 6= y. Then, sincex ∼act x′,

it follows thatx
v̄′,w̄′

=⇒ y′ in E1 for some statey′ of E1, with v̄′ 6= w̄′ or x 6= y′. This implies
(x, v̄′)

ε
⇒ (y′, w̄′) in E \ ΣE by lemma 12 (ii), and thus(E \ ΣE) ‖ T

s
⇒ (x, v̄, xT )

p
⇒
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(x, v̄′, yT )
ε
⇒ (y′, w̄′, yT ). Then it follows by lemma 15 that(F \ ΣF ) ‖ T

sp
⇒ ([x], v̄′, yT )

ε
⇒

([y′], w̄′, yT ). As (F \ΣF ) ‖ T is nonblocking, there exists a traceu such that(F \ΣF ) ‖ T
sp
⇒

([y′], w̄′, yT )
u
⇒ (ỹω, w̄ω, yω

T ) with ỹω ∈ Qω
E1/∼, w̄ω ∈ dom(vars(E1)), andyω

T ∈ Qω
T . As

ỹω ∈ Qω
E1/∼, there existsyω ∈ ỹω such thatyω ∈ Qω

E1
. Also ([y′], w̄′)

u
⇒ (ỹω, w̄ω) in F \ ΣF ,

so by lemma 16, there existsy′′ ∈ [y′] such that(y′′, w̄′)
u
⇒ (yω, w̄ω) in E \ ΣE . Now recall

thatx
v̄′,w̄′

=⇒ y′ with v̄′ 6= w̄′ or x 6= y′. Therefore, it follows fromy′ ∼inc y′′ thatx
v̄′,w̄′

=⇒ y′′, and
thus(x, v̄′)

ε
⇒ (y′′, w̄′) in E \ΣE by lemma 12 (ii). This implies(E \ΣE)‖T

s
⇒ (x, v̄, xT )

p
⇒

(x, v̄′, yT )
ε
⇒ (y′′, w̄′, yT )

u
⇒ (ỹω, w̄ω, yω

T ) ∈ Qω
E1

× dom(vars(E1))×Qω
T , i.e.,(E \ΣE) ‖ T

is nonblocking. 2
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