Working Paper Series
ISSN 1177-777X

PARTIAL UNFOLDING FOR COMPOSITIONAL NONBLOCKING
VERIFICATION OF EXTENDED FINITE-STATE MACHINES

Sahar Mohajerani, Robi Malik, Martin Fabian

Working Paper: 01/2013
January 30, 2013

(©Sahar Mohajerani, Robi Malik, Martin Fabian

Department of Computer Science
The University of Waikato
Private Bag 3105
Hamilton, 3240
New Zealand

PARTIAL UNFOLDING FOR COMPOSITIONAL
NONBLOCKING VERIFICATION OF EXTENDED
FINITE-STATE MACHINES

Sahar Mohajerani Robi Malik
Department of Signals and Systems Department of Computer Science
Chalmers University of Technology The University of Waikato
Goteborg, Sweden Hamilton, New Zealand
nohaj era@hal ners. se r obi @wai kat 0. ac. nz

Martin Fabian
Department of Signals and Systems
Chalmers University of Technology

Goteborg, Sweden
f abi an@hal ners. se

January 30, 2013

Abstract

This working paper describes a framework dompositional nonblocking verificatiai reac-
tive systems modelled axtended finite-state machind$ienonblockingproperty can capture the
absence of livelocks and deadlocks in concurrent systeromp@sitional verification is shown
in previous work to be effective to verify this property fargediscrete event systemsiere,
these results are applied to extended finite-state mackomasunicating via shared memory.
The model to be verified is composed gradually, simplifyiognponents throughbstractionat
each step, whileonflict equivalencguarantees that the final verification result is the same as it
would have been for the non-abstracted model. The workipgmpeoncludes with an example
showing the potential of compositional verification to @& substantial state-space reduction.

1 Introduction

Reactive systems are typically safety-critical, where failures can restitge financial losses, or
even human fatalities. Thus, logical correctness is a crucial propernyosf reactive systems, and
formal verification is an important part of guaranteeing logical correstndn the field ofmodel

checking[3], various methods have been developed to verify reactive systemerefising size and
complexity, most notablgymbolic model checkif@7] andabstraction[7].

Formal verification requires a formal model, dirdte-state machines (FSN1)2] are widely used
in the literature to represent reactive systems. FSMs describe the dynahaicicur of a reactive
system bystates where certain conditions hold, archnsitionsbetween these states that change
the conditions. For systems with data dependency, it is natural to extend W8Mvariables that
represent data. This results @xtended finite-state machines (EFSMhich have been similarly
defined by several researchers [5, 6,21, 23].

An important aspect of correctness is the absentigeibcksanddeadlocks FSMs (and EFSMSs)
allow certain states to be designatedesninal states. Thaonblockingproperty [20] requires that
the system should from any reachable state always be able to reach sminaltetate. This property
is used in supervisory control theory of discrete events systems [28ptare the absence of livelocks
and deadlocks.

Expressed in CTL [3], nonblocking can be written A& EF terminal_state. In [7], for the
purpose of abstraction in model checkiv@ TL* is defined as a subset of CTL where only universal
path quantification is allowed. If a giverCTL* property is satisfied by all components of a system,
the property is also satisfied by the composed system. However, nonlgakmmot be expressed
in YCTL*, which makes it impossible to use many standard abstraction techniquesfocking
verification.

Compositionalmethods [9] exploit the compositional structure of a system, i.e., the fact that th
system is made up of several FSMs interacting with each other. Abstractisedsto remove states
and transitions that are superfluous for the purpose of verificatioregfrthperty at hand. While com-
positional methods have shown impressive results for FSMs [9, 19],ataptation to EFSMs is still
in its infancy. Transforming an EFSM to a FSM [14, 21] makes it possible pbyape algorithms for
FSMs to an EFSM model. However, the transformation has the drawbadjnificantly increasing
the number of transitions in the system, or losing the compositional structure.

This working paper generalises the compositional verification method [&pplicable directly
to reactive systems modelled as EFSMartial unfoldingis proposed to remove a variable from the
system, angymbolic observation equivalenissintroduced to be applied to EFSMs directly without
the need for transforming EFSMs to FSMs. Furthermore, another afistraethod, called the
Active Events Rulf9], is extended in the framework of EFSMs, and has great potentialdivaai
systems while preserving the nonblocking property.

The remainder of the working paper is structured as follows. Sect. 2 itesdextended fi-
nite state machines, and section 3 gives an example of a concurrerampragydelled by EFSMs.
Next, section 4 describes the process of converting EFSMs to FSMsseation 5 presents some
experiments with FSM-based compositional verification applied to the exanoptesiection 3. Then
section 6 presents different ways of computing abstractions that cappliechdirectly on EFSMs,
and section 7 demonstrates compositional abstraction-based verificatElRSMs, using the same
example. Finally, section 8 adds some concluding remarks. Formal prioaifd@chnical results are
in the appendix.

2 Extended Finite-State Machines

In this working paper, reactive systems are modelleexdsnded finite-state machines (EFShBt
synchronise in interleaving semantics and communicate via shared memory.dé&tktémte-state
machines are similar to conventional finite-state machines (FSM) [12], lmented withupdates
associated to the transitions [5, 6, 21]. Updates are formulas over &édulistrete variables.

A variablewv is an entity associated with a finti®maindom (v) and arinitial valuev® € dom(v).
A second set of variables, callewxt-state variableand denoted by’ = {v' | v € V } with
dom(v") = dom(v), is used to describe how variables are updated.

An updateis a formula using variables frofii U V. For example, let be a variable with domain
dom(z) = {0,...,5}. Anupdater’ = z+ 1 changes the variableby addingl to its current value, if
it currently is less thaf. Otherwise (ifx = 5) the transition is disabled and no updates are performed.
Another possibility is to write the formula’ = min(5, z 4 1), in which case the transition remains
enabled when: = 5. The updater = 3 disables a transition unless= 3 in the current state, and
leaves the value af in the next statey’, unchanged. Differently, the update= 3 is always enabled,
and the value of in the next state is forced to I3e The set of all update formulas using variables in
V or V' is denoted by, .

Definition 1 An Extended Finite-State Machine (EFSMa tupleE = (V, @, —, Q°, Q“), wherel/
is a finite set of variableg) is a finite set ofocations — C @ x 11y x @ is theconditional transition
relation, Q° C @ is the set ofnitial locations and@Q“ C @ is the set oterminal locations

The expressior 2> y denotes the presence of a transitiotirfrom locationz to locationy with
updatep € IIy. On the occurrence of such a transition, the EFSM changes its locationfto y
while updating its variables in accordance wjthvariables that do not occur as next-state variables
in p remain unchanged.

Usually, reactive systems are modelled as several components interaitingash other. An
EFSM systerns a collection of interacting EFSMs,

E={FE1,...,E,}. 1)
The behaviour of such a system is expressed ustegleavingsemantics [3].

Definition 2 Given two EFSMsE = (V, Qp, — 5, Q%, Q%) andF = (Vi, Qp, — 5, Q%, Q%) the
compositiorof £ andF' is

E|F=(VygUVpQpxQp,—,Q% x Q% Qx X QF) , (2)
where
o (zp,2r) B (yg, o) if o BE ys;

o (zp,xp) L (g, yr) if o ZBp yp.

do
sp : xo = random number;

source: s1: await ¢ = 0;
S9 i Co = Xq,
loop
do

qo : await cp_1 > 0;
q1: T = Cp—1,
G2 : cp—1=0;

sievey: q3 : if z) = pr V 2, mod pg # 0 then
g5 : await ¢, = 0;
46 : Ck = Tk,
end
loop
| o
ro : await ¢, > 0;
sink: ry: printcg;
cn, = 0;
loop

Algorithm 1: Distributed Sieve of Eratosthenes.

3 Example

This section shows how a concurrent program can be modelled usingl&£FBhe same example
is used throughout the working paper to explain different approachesmpositional nonblocking
verification.

Algorithm 1 shows a distributed version of t&geve of Eratosthender generating prime num-
bers. The system consists of two processesce andsink, plus a variable number of sieve pro-
cessesieve,. Thesource generates numbers) from a finite set (program locatiosy) and sends
them to the first sieve procesigve; using the shared variablg (s; andssy). There aren sieve pro-
cesses for the first prime numbersy, ..., p,. Thek-th sieve processieve;, upon receiving a new
numberz;, throughe,_1 (g0 andqq), tests whether the number is equal to or divisible by its prime
numberpy, (¢3). If the received number is different from and divisibley it is discarded, otherwise
it is sent to the next sieve proceseve; 1 using the shared variablg (¢5 andgg). Numbers that pass
throughn sieve processes are received byding (rg), which prints them before releasing the shared
variablec,, (r1).

Figure 1 shows an EFSM model of this system. Initial locations are marked withcaming

4

source sievey, sink
S0 q1 To
Cr = 0
To = Zo ¢, =0 cn >0
cy = To S1 T = Ck—1
T1
Co = 0

q2

Figure 1: EFSM model of Distributed Sieve of Eratosthenes.

arrow, and terminal locations are shaded in the figure. Each process &ladooy an EFSM, with
updates representing the atomic statements in the algorithm. For example, egpeatein EFSM
source corresponds to program locatien in Algorithm 1: it checks whethet; is equal to zero and
does not change any variable values. The update z{, assigns a new number tg from its domain,
regardless of its previous value.

The model is parametrised by the numbeof sieve processes, and the maximum numiber
generated by the source. The variable set of the systemd&£) = {zo,...,2n,c1,...,c,}, and all
variables have the same domain. ., m. The range of feasible values for depends on the number
of sieve processes. For example, foe= 3 there are three sieve processes for the first three primes 2,
3, and 5. Then the smallest number incorrectly classified as a prime is 49skould not be greater
than 48.

4 Unfolding Semantics

This section gives a semantics of extended finite-state machines in termsnafrgrithite-state ma-
chines (FSM) interacting in lock-step synchronisation. Sect. 4.1 defieeBSM model used, and
section 4.2 defines concepts needed to convert variables to states.sddtiem 4.3 describes the
process of converting EFSMs to FSMs.

4.1 Finite-State Machines

Finite-state machines interact usiegentswhich are taken from a finite alphab®t In addition, the
silent eventr ¢ ¥ is used. It is not included in the alphabB&unless explicitly mentioned using the
notation:, = X U {7}. Further X" is the set of all finite traces of events fraf) including theempty
tracee. The concatenation of two traces € >* is written asst. A traces € 3* is called aprefixof

t € X*, writtens C ¢, if t = su for someu € X*.

Definition 3 A finite-state machine (FSM3 a tupleG = (3¢, Q, —,Q°,Q¥), whereXs C Yisa
finite set of events, called tlewent alphabedf G, @ is a finite set obtates — C Q x (XqU{7}) xQ

5

is thestate transition relationQ° C @ is the set ofnitial states andQ“ C @ is the set oterminal
states

The transition relation is written in infix notatian-> y, and is extended to events not in the event
alphabet by letting: % z forall ¢ € X\ S¢. Itis further extended to traces ¥ by 2 = x for
allz € Q,andz 2 zif + > yandy = z for somey € Q. The transition relation is also defined
for state sets(,Y C Q, for exampleX = y meanst - y for somez € X, andG - z stands for
Q° > .

Unlike EFSMs, the FSMs considered here interact using lock-step gymishtion [11]. The
composition of FSMs can only execute an event if all synchronised F$is a state enabling that
event. An FSM always enables any event not in its alphabet.

Definition 4 Let G = (£,,Q,, —1,Q5, QYY) andGy = (X5, Q5, —4, @5, Q4) be two FSMs. The
synchronous compositiaf G; andGs is

G1|| G2 = (21 U5, Q1 X Q2,—,Q7 x Q3,QF X Q3) , (3)
where
o (x1,12) = (y1,42) if 0 # 7 andzy %1 y1 andzy = yo;
o (z1,m2) = (y1,2) if 21 1 yu;

o (x1,292) 5 (21, y2) if 22 ;2 Y2.

4.2 Variables and Valuations

The state space of an EFSM system is not only determined by its locatioredsbuiy its variables
and their possible values.

For an updatg < IIy, the termvars(p) denotes the set of all variables that occus,iandvars’(p)
denotes the set of all variables modifiedjbyFor example, ip = 2’ = y + 1 thenvars(p) = {x, y},
andvars'(p) = {x}. When a transition: = y occurs, the variables inars’(p) may change as
specified by the update whereas all other variables remain unchanged. An updatth vars'(p) =
() is called apure guard Its execution leaves all variables unchanged.

Given an EFSME = (V,Q, —,Q°, Q%), its set of variables isars(E) = V, and the variable
set of an EFSM systediis vars(&) = (e vars(E).

Given a setl” = {vq,...,v,} of variables, its domaidom(V) = dom(v;) x --- x dom(vy,)
determines all possible combinations of variable values, and thus the sesiible system states. An
element oidom(V') is denoted by = (v, . .., v,) with v; € dom(v;).

The element$ € dom(V') are also considered &aluations

p(v) € {true, false} 4)

0 sieve,; 0

U (sink) U (sink) sink;O;Og
gsieven; 0,0;0)

sink; 0; 0 -
e k;1;1
sink; 1; 0 Es[n 15! ; sieve,,; 1,0;0 ieve,;2,0;0
%sink;2;0§ sink; 2;2 Esink;hob) (sieven; 0,2; 2 Ei?ﬁ‘ﬁ?’é’;o& +0)
. (sieve,;0,1;1)
(e 1A (iegeni 1. %2)_ b~ (sink;2)
sieven; 2,2;2)

(sieven;2,1;1)

Figure 2: Unfolding okink in Sieve of Eratosthenes example.

denotes the truth value of update= 11y, when the variable values are givenfyForv € dom(V),
the value of the variable; € V' in v is denoted by [v;]. The set of variables assigned by a valuation
is denoted byars(v). Theempty valuatiorwith vars(v) =) is also denote@ = (). For two sets of
variablesi¥ C V, the valuatiorv: V — D is said to be aextensiorof w: W — D, writtenw < v,

if wjw] = v[w] for eachw € W.

4.3 Converting EFSMs to FSMs

The straightforward method [3] to convert an EFSM to an FSM createggedi®M with states for
each combination of a location and variable values. While this works wellyfmbslic state space
exploration, the compositional verification method [9] pursued here desrecmmpositionalmodel
consisting of several FSMs. Therefore, the method proposed in thevfiofreserves the composi-
tional structure of an EFSM system by creating one FSM for each EF$Moarach variable.

An EFSM is converted to an FSM, which uses the EFSM locations as statdwarttie same
transitions, except that they are labelled with events instead of updatels.v&laation that satisfies
the update is represented by its own event.

Definition 5 Let £ = (V,Q,—,Q°, Q*) be an EFSM. Thenfolded FSMf E'isU (F) = (Xg, Q,
—U> QO7 Qw> Where’

o Xp={(E;o;0) |z 2y, 0 dom(vars(p)), w € dom(vars'(p)) };
o MU y if there exists a transition = y in E such thati € dom (vars(p)), 0 €
dom(vars'(p)), andp(d, w) = true.

An EFSM updatep is replaced by FSM eventd’; v;w) for all valuationso defined over the
variables ofp and« defined over the next-state variablesppsuch thaty and«w together satisfy.
Note thatvars(w) C vars(d) due to the definition ofars(p) andvars’(p). Pure guards produce
events(E; v; (), which are simply written a6F’; ©) in the following.

Example 1 Consider EFSMink in the Sieve of Eratosthenes example shown in figure 1, assuming
m = 2, i.e.,dom(c,) = {0,1,2}, andc;, = 0. The update:,, > 0 in sink results in the un-
folded eventsol, |, = {(sink; 1), (sink; 2)}, and update/, = 0 results in eventZ., , = {(sink;0;0),

(sink; 1;0), (sink; 2;0)}. Thus, the unfolded event setsfkis X, = ¥ USZ | and the unfolded
FSM U (sink) is shown in figure 2 to the left.

The state space of an EFSM system is not only determined by its locatioredsbuiy its vari-
ables. Therefore a second set of FSMs, calledable FSMs is used to keep track of the variable
values and ensure the correct sequencing of the transitions in the eshfe8M system.

Definition 6 Let& = {E,,..., E,} be an EFSM system. Theariable FSMof v € vars(€) is
Ug(v) = (Ey, dom(v), —,, {v°}, dom(v)) where,

o ¥, ={(Ej0;w) € Xp, | v e vars() |

E;;050)

o O[v] (» O[v] if v € vars(0) \ vars(w);

° ’lA) [U] (El ;ﬁﬂb)

v W] if v € vars(w).

Example 2 Consider the variable,, in the Sieve of Eratosthenes example. It occursinik and
sieve,, SO these EFSMs determine the event alphabéfsgt,,). First, all transitions irsink men-
tion ¢,, so the full alphabekLs;, from example 1 is included. Nextjeve, contains two updates
associated with:,,. The update, = 0 produces one unfolded everi{ = {(sieve,;0)}. Further,
the update’, = z,, with vars(c), = z,,) = {¢p, x,} andvars'(c, = x,,) = {c¢,} produces events of
the form(sieve,; ¢y, p;). Again assuminglom(c,) = dom(z,,) = {0, 1,2}, these are:

22 = {(sieve,;0,0;0), (sieve,; 0, 1; 1), (sieve,; 0,2;2), (5)
(sievey,; 1,0;0), (sieve,; 1,1 1), (sievey; 1,2; 2),
(sieve,; 2,0;0), (sievey,; 2,1;1), (sieve,;2,2;2) }.

This givesY,, = ¥, UX! UX2 and the variable FSNV¢(c,,) as shown in figure 2 to the right.

The variable FSMs are defined in the context of an EFSM system, as thepdien all EFSMs
using the variable. The overall behaviour of an EFSM system is obtainegiying the unfolding
method to all its EFSMs and variables.

Definition 7 Let& = {E4, ..., E,} be an EFSM system. Thenfoldingof £ is the FSM

UE) = |UE) || || Uetw). 6)

i=1 v € vars(E)

5 Compositional Nonblocking Verification

This working paper concerns verification of thenblockingproperty used in supervisory control
theory of discrete event systems [20], which can capture the abséficelacks and deadlocks. A
system is nonblocking if it is possible to reach a terminal state from evechabée state. For finite-
state systems, nonblocking is equivalent to termination under an imgtiicitg fairnessassumption
stating that “whenever a transition can occur infinitely often, it occursitefinoften” [2].

Definition 8 [20] An FSMG = (¥, Q, —,Q°, Q%) is nonblockingif, for every s € 3% and every
x € Q such thaG' % z, there exists € X* such that: Loow.

Definition 9 An EFSM systen€ is nonblocking if the unfoldind/(€) is nonblocking. An EFSME
is nonblocking if the EFSM systed¥'} is nonblocking.

The straightforward approach to check whether a system
P[Py Py ()

is nonblocking is to explicitly construct the synchronous composition andkcfoe each reachable
state whether it is possible to reach a terminal state. This can be done uding@iel checking,
and models of substantial size can be analysed if the state space is megmesembolically [17].
Yet, the technique remains limited by the amount of memory available to storeeatatsns of the
synchronous composition.

In an attempt to alleviate this state-space explosion probtempositionalerification [9] seeks
to rewrite individual system components and, for example, repface (7) by a simplerabstrac-
tion P/, to analyse the simpler system

PPyl Py (8)

Several abstraction methods that preserve the nonblocking properpnaewn [9, 15, 22]. Based on
these methods, compositional verification algorithms [9, 22] repeatedly sinsgktgm components,
compose subsystems and simplify them again, until the system is simple enoegletified directly.
These methods have been developed and used successfully to weeifgl $&rge FSM models [9].

To assess the applicability of compositional verification for EFSM models withdigtandency,
the Distributed Sieve of Eratosthenes has been modelled and verified wesDigthete Event Systems
tool Supremicdl]. Supremica converts the EFSM model to a collection of unfolded FSMs\ihich
are then verified using an implementation of the compaositional nonblockingthlgd©].

Table 1 shows the results of these experiments for different prime nunevesswhere: is the
number of sieve processes, amdis the largest number generated by the source. The table shows
in each case the number of events and transitions in the unfolded FSM moddeéheanumber of
reachable states in its synchronous composition; it furthermore showsithieen of states of the

Table 1: Experimental Results for Distributed Sieve of Eratosthenes.

n m | Events Transitions State space Peak Time Memory

2 24 144 10,460 7.5907 27 0.22s 90.4MB
3 48 369 53,345 3.450% 51 0.81s 147.7MB
4 120| 1,122 404,504 1.180%° | 123 3.04s 260.3MB
5 168| 1,899 958,193 171 7.47s 331.0MB
6 288| 3,804 3,288,972 291 37.67s 532.4MB

largest FSM encountered during compositional verification (Peak)trendpproximate runtime and
memory usage of compositional verification. The experiments were runtandesd laptop computer
using a single core 2.4 GHz CPU.

Supremica successfully verifies the Distributed Sieve of Eratosthenesitinbéocking for of to
n = 6 sieve processes. It has also been attempted using Supremica to verifydékesyrabolically
with BDDs [17], but this was unsuccessful far > 5 sieve processes, so the number of reachable
states is not known for the larger models.

This experiment suggests that compositional verification is a promising agpto verify large
EFSM systems, with the peak number of states only growing proportionally tpatemetenm.
However, the number of events in the unfolded FSM model grows with and the number of
transitions grows witmm?2. At n = 6, the construction of the unfolded FSM model already takes
substantially longer than its verification. To avoid the construction of a ggWwiaM model, the
following section proposes an alternative approach to perform compualitierification directly on
the EFSMs.

6 Abstraction Methods

Compositional verification repeats two basic operations while verifying gesyseither individual
components are simplified or, if this is not possible, two or more component®amneosed. Sect.
6.1 and 6.2 below describe the method of composition and the related methoéblafinghlocal
variables, then section 6.3 introduces the principle of simplification, and se&doand 6.5 propose
two methods to simplify EFSMs.

6.1 Partial Composition

Compositionis the simplest step in compositional verification. It is always possible to reglame
components of an EFSM system by their composition. This operation doesduzie the state space,
but it is necessary when all other means of simplification have been @égbad$e following result,
albeit technical, follows directly from the definitions. The unfolded FSM®itgeand after partial
composition are not only equivalent with respect to nonblocking, buttickrup to renaming of
events. The proof can be found in Appendix A.

10

Proposition 1 Let& = {E1,..., E,} be an EFSM system, anfl = {E; || E, Es, ..., E,}. Then
U (&) is nonblocking if and only it/ (F) is nonblocking.

6.2 Partial Unfolding

Similar to partial composition, partial unfolding is the process of removingiabi@from an EFSM
and expanding its values into locations.

Definition 10 Let £ = (V,Q,—,Q°, Q) be an EFSM, and let € V. The result ofpartially
unfoldingz in E'isthe EFSME \ z = (V,Q x dom(z), —_.,Q° x {z°}, Q¥ x dom(z)) where

3232 (pAz=aNz'=b)

(x,a) — (y,0) 9)
for all a, b € dom(z) such that: % y, and such that ¢ vars’(p) impliesa = b.

A variable is calledocal in an EFSM system, if it appears in only one component. Local variables
can be removed by partial unfolding, as they are not needed for itiaradgth any other component.
The following result confirms that partial unfolding of a local variablespreges the nonblocking
property of an EFSM system. The proof is similar to that of proposition 1 ho@s that the unfolded
FSMs of E; andE; \ z are identical up to renaming of events. It can be found in Appendix B.

Proposition2 Let& = {Ei,..., E,} be an EFSM systemy € vars(E1) \ U;_, vars(E;), and
F ={E1\ z,Es,...,E,}. ThenU (&) is nonblocking if and only i/ (F) is nonblocking.

Partial unfolding removes local variables at the price of an increase inuimder of locations.
Its application may be deferred in favour of other methods. On the othel; partial unfolding often
simplifies or removes some updates, making it possible to apply the abstractioodsmé&iowing
below, which reduce the state space.

6.3 Conflict Equivalence

Compositional reasoning is based on the idea of replacing a compépenta larger system (7)

by an equivalent compone,. The best known equivalence to support compositional nonblocking

verification of FSMs igonflict equivalencgl6]. In the following, this concept is extended to EFSMs.
The idea of conflict equivalence is derived from process-algelesiing theory [8], which de-

fines equivalences relating processes based on the restdist®fTwo processes are considered as

equivalent if the responses of all tests are equal. Here, a test'siethdtobservation whether or not

it is nonblocking in composition with the process under test. The following idiefins generalised

for arbitrarycomponentswhich can be either FSMs or EFSMs.

Definition 11 [16] Two components®; and P, areconflict equivalentwritten P; ~.ons Ps, if for
any component’, it holds thatP, || T' is nonblocking if and only if? || 7" is nonblocking.

11

Conflict equivalence guarantees that, if a comporignis replaced by a conflict equivalent ab-
stractionP,g, the abstraction will produce the same verification result, in combination witty eve
possible “remainder of the systendl’, as would the original compone®,. The following result
confirms that conflict equivalent components of an EFSM system caegdb&ced without affecting
the nonblocking property. This is the key property of conflict equivadenvhich follows from its
congruence properties [16]. The proof is given in Appendix C.

Proposition3 Let& = {F,,...,E,} andF = {F\, Es,...,E,} be EFSM systems such that
E1 ~cont F1. ThenU () is nonblocking if and only it/ (F) is nonblocking.

6.4 Symbolic Observation Equivalence

Bisimulation and observation equivalencfl8] are standard examples of branching equivalences.
They are known to preserve all temporal logic properties [4], includimigbfocking. Observation
equivalence alone is responsible for a substantial state-space redna@mmpositional nonblocking
verification of FSMs [9]. Both bisimulation and observation equivalenae leeen generalised for
value-passing processes [10, 13]. In this section, observationadepiie is extended to be applicable
for EFSMs, andymbolic observation equivaleniseproposed.

The most basic branching equivalencéisimulation which keeps track of the complete branch-
ing of process behaviour.

Definition 12 LetE = (V,Qp, — 5, Q% Q%) andF = (V,Qp, — 5, Q%, Q%) be two EFSMs. A
relation~ C Qg x Q is called asymbolic bisimulatiofetweenF and F' if the following holds for
allzg € Qg andzp € Qp suchthattg =~ xzp:

o if 25 2 yp, then there existsy € Qp such thatry 25 yr andpg logically impliespy
andyg ~ yr;
o if up XEp yr, then there existgr € Qg such thatrg PE yE andpg logically impliespg
andyg ~ yr;
e zpcQyifandonlyifzr € Q.
E andF aresymbolically bisimilaywritten E' ~ F, if there exists a symbolic bisimulatiea between
E andF such that, for eachy, € Q% there existsy. € Q% such thatry, ~ x%, and vice versa.

While symbolic bisimulation as defined implies conflict equivalence, the definitiogsisictive
as it requires syntactically equivalent updates for locations to be dgoiva-or FSMs, observation
equivalence is the natural extension of bisimulation. In observation @guite, the transition rela-
tion — is replaced by its extensies to allow for silent transitions before or after an event occurrence.
To extend this idea for EFSMs, the first step is to define the extended tramsitition=- for EFSMs.

Definition 13 Let £ = (V,Q,—,Q°, Q*) be an EFSM.

12

e Forz,y € Q andv € dom(vars(E)), the relationz = y denotes the existence of a path
z=x0 B o B Ba, =y, (10)
such thatwars'(p;) =) andp; (o) = true for eachl < i < n.

v,w

e Forz,y € Q andv,w € dom(vars(F)), the relationz == y means that there exist states
x1,y1 € Q such that

1=

30 Sy By, (11)

Wherep(z_), ’u_)) = true andu_]|vars(E)\VarS/(p) <.

e Forzx € (Q, the relationE’ = x denotes the existence of € ° such that:° Z .

The notation: = y means that it is possible for an EFSM to move from locatido y while the

variables remain constant@tandz == y means that it is possible to move frao y with a single
change of variable values fromto w. The condition yar(g)\vars'(p) < ¥ €NSUres that variables not
affected by the update remain unchanged. With this symbolic definition of the extended transition
relation, symbolic observation equivalence is defined as follows.

Definition 14 Let E = (V,Qp, — g, Q%, Q%) andF = (V,Qp, — p, Q%, Q%) be two EFSMs. A
relation~ C Qg x Qr is called asymbolic observation equivalenbetweent andF' if the following
holds for allzg € Qg andxr € QpF such thattg ~ zp:

o if 2p =2 5 yp, then there existsr € Qp such thatep == 5 yp andyp ~ yr;
o if 25 =21 yp, then there existgy € Qp such thatry == 5 yx andyg ~ yr;
o 15 25 Q% ifandonly if vy %5 Q4.

FE and F' aresymbolically observation equivalenrritten £ ~ F, if there exists a symbolic obser-
vation equivalence- betweenF and F such that, for each$, € Qg such that = x5, there exists
r% € Qp such thatt” N ry andxy, ~ %, and vice versa.

Two locations are symbolically observation equivalent, if they can reaalvagnt successors
by means of the extended transition relatien Symbolic observation equivalence is closely related
to observation equivalence of the unfolded FSMs, which is known to impiflicoequivalence [9].
The following result, with proof in Appendix D, confirms that symbolically alvs¢ion equivalent
EFSMs are conflict equivalent. In combination with proposition 3, it is clear ¢tbmponents in an
EFSM system can be replaced by symbolically observation equivaletnaetiisns without affecting
the nonblocking property of the system.

Proposition 4 Let £, andF; be two EFSMs. IfE; ~ I} thenEy ~¢on¢ Fi.

13

6.5 Active Events Rule

While observation equivalence reduces the size of FSMs significantlisaaby to implement, it is
not the best possible equivalence for nonblocking verification [18}e&l abstraction rules preserv-
ing conflict equivalence of FSMs are known [9, 15] that extend béydservation equivalence. This
section extends one of these rules, namelyAbiive Events Rul@®], to EFSMs.

The Active Events Rule for FSMs allows to merge states with the same setshié@rents,
provided they are alsmcoming equivalent

Definition 15 Let £ = (V,Q, —, Q°, Q) be an EFSM. Théncoming equivalenceelation~;,. C
Q x Q of Fis defined such thaft; ~inc y2 if

e F =y ifandonlyif £ = ys;

o forallz € Q and allo, w € dom(vars(E)), it holds thatr =% y; with o # @ or z # 1
impliesz == v, and vice versa.

Two incoming equivalent locations have exactly the same incoming transitionsegiikialent
updates and equal source locations. Unlike with FSMs, selflaops z are excluded, because by

definition 13,z = x holds for every location:, and including them would require all incoming
equivalent locations to be linked to each other.

Definition 16 Let £ = (V,Q,—,Q°,Q¥) be an EFSM. Thective events equivalencelation
~act € Q x Q of E is defined such that; ~, . xs if

o for all v,w € dom(vars(£)), it holds thatz; L yp for somey; € @ such thatv # w or

z1 % y1, if and only if zo == y, for someys € Q such that # w or x5 # yo;
e forall o € dom(vars(E)) it holds thatz; = Q« if and only if zy = Q.

Two locations are active events equivalent if they have exactly the satgeilogl transitions, in-
dependently of their target locations. Selfloops are only consideredyifitesconsidered in incoming
equivalence. Based on these conceptsAittere Events Rulis defined in the same way as for FSMs
and says that, two locations that are both incoming and active eventslegtisuee conflict equivalent
and can be merged.

The idea is that, for conflict equivalence only the traces leading to terntataksare relevant. If
two states are reached in exactly the same way and have exactly the sartiertisaesabled, then
the nondeterministic choice between these two states can be deferred $tgpraad the states can
be merged. Technically, this is done by the standard construction of a guetiimmaton [3]. Prop. 5
describes the Active Events Rule formally, and the proof can be foungpeAdix E.

14

es]!

T <2 qo1
qo T <2
qi
’ ’ y/:I'f‘l ’
Yy =z+1 y=z+1 y=z+1
q2 q3 q2 q3
¥ =y =y

Figure 3: Example of Active Events Rule.

Definition 17 Let & = (V,Q,—,Q°,Q*) be an EFSM, and let C Q x @ be an equivalence
relation. Thequotient EFSMof E modulo~ is E/~ = (V,Q /~, — /~, Q% Q¥), where

—/~={(zl,p,) |z By} (12)
Q°={[a] |z €Q}; (13)
Q“={[z]|lz€Q"}. (14)

Here,[z] = {z € @ | 2/ ~ z } denotes theequivalence classf z € @ with respect to~, and
Q/~={[z] | x € Q } is the set of equivalence classes modulo

Proposition 5 Let £y = (V,Q, —,Q°,Q“) be an EFSM, and let C @ x @) be an equivalence rela-
tion such thate C ~j,c N ~,et, Where~i,. and~,.; are the incoming and active events equivalences
of F1. ThenEq ~cont El/N

Example 3 Consider EFSME in figure 3, and assume® = 3° = 0. Given thatq =2 qo by
definition 13, locationg, and¢; are both reached from the initial locatign whenz < 2, and this
establishegy ~inc g1. Furthermore, both locationg andg; have outgoing non-selfloop transitions
with updates/ = = + 1 andx < 2, which shows thaty ~..; q1. By the Active Events Rule, these
locations are conflict equivalent and can be merged, resultidgimfigure 3. Yet,qo andg; are not
observation equivalent as the transitighs= = + 1 from ¢y andgq; lead to different locations that are
not equivalent.

7 Example Revisited

In this section, the compositional verification procedure is applied to the $felzeatosthenes in-
troduced in section 3. For illustration, the number of sieve processestisset 2, and while the
resultant sieve can recognise prime numbers up to 24, the range is rddtiote= 7. The system
consists of four EFSMsource, sievey, sieves, andsink, shown in figure 1, and its unfolded state space
has 2,385,179 reachable states.

None of the EFSMs in figure 1 can be simplified using either observatiowagace or active
events, but some variables are local and can be partially unfoldedldihtfa: in source results in

15

Ui (source)

(q0,0) (q0,1) (q0,2) (q0,3) (q0,4) (q0,5) (qo, 6) (q0,7)
b ? ? ? ? ? ? ?

true true true true true true true true
(e — [a\] [ap) <t 0 e ~
I (q1,0) 1l (q1,1) 1l (q1,2) 1 (q1,3) 1l (q1,4) | (q1,5) | (q1,6) 1 (q1,7)
~® - ~® - - - - -

c2 =0 c2 =0 c2 =0 c2 =0 c2 =0 c2 =0 c2=0 c2 =0

(g2,0) (g2,1) (92,2) (g2:3) (q2,4) (92, 5) (g2, 6) (q2,7)

Us(source)

(q2,0) €0 =0 (q1,0)
O O

co=0

Figure 4: Abstractions afource in Sieve of Eratosthenes example.

16

the 24-location EFSMJ, (source) shown in figure 4. For graphical clarity, the figure usegr@up
nodeto combine the location§yy, i) for 0 < i < 7: each transition out of the box stands for eight
different transitions with the same update and target location, one transiiorefach location in the
group. Clearly, the locationgo, 7) in the group all have exactly the same outgoing transitions, so they
are bisimilar and can be merged into a single locatipnThis results in the abstractidi; (source),

also shown in figure 4. Locatiorig,, ¢) for 0 < i < 7in Uz (source) are incoming equivalent, as they
all have the same incoming transition from locatigrwith updatetrue, and active events equivalent,
as they all have only one outgoing transition with updgte- 0. These locations can be merged using
the Active Events Rule, resulting in the 10-location EFS8Msource) in figure 4.

Next, the variable; is local insieve;, and its unfolding results in a 49-location EFSM(sieve;),
shown in figure 5. Observation equivalence simplifies this to an 18-locat@WVH/;(sieve;), also
shown in figure 5. Similarly, partial unfolding af, in sieve, and observation equivalence result in a
21-location EFSMU;(sieves). Thesink EFSM cannot be simplified.

At this point, the system model consists of four EFSMgsource), Us(sieve;), Ua(sieves),
andsink, and three variables,, ¢;, andcy. The number of reachable states in the unfolding is
now 100,712. For compositional verification to proceed, some componeadstodoe composed.
After composingUs(sieve;) and Us(source), variablecy becomes local and can be unfolded. The
resultant EFSM has 292 locations, and can be abstracted to 126 locatingbservation equiva-
lence, and further to 7 locations using the Active Events Rule. The resER8MU (.S;) is shown in
figure 5. Itis very similar td/s(source) in figure 4. The difference is that only the numbers 1, 2, 3, 5,
and 7 are sent to the next stage of the pipeline, as 0, 4, and 6 are filtériegl the first sieve process.

Next, U (S1) andUs(sieves) are composed, resulting in becoming a local variable. By unfold-
ing ¢1, @ 207-location EFSM is obtained, which again is simplified to a 7 location EF$84) using
observation equivalence and the Active Events RUI¢S,) is the same a&/(S;) except that; is
replaced bycs. The abstraction of the initial segment of the pipeline does not changeg dssth
non-prime filtered out byieves is 9, but the source only produces numbers umte: 7.

Now the system consists only of the EFSM$S,) andsink, and the variable;. Composition
and unfolding results in a 27-state FSM, which is verified to be nonblockifgs is enough to
conclude that the original system is nonblocking. Thus, a 2,385,179sststtem has been verified
to be nonblocking, and the largest component constructed in the prbads®92 locations. The
constructed abstractions only increase with the maximum numlpoduced by theource, not with
the numbem of sieve processes, showing that the method scales well as the paranetase.

8 Conclusions

A framework for compositional nonblocking verification of reactive sysenodelled as extended
finite state machines (EFSM) is presented. The method is based on a gatierab$ results about
conflict equivalence for finite-state machines. State-space explosion isitdiigy gradually com-
posing the components of a large system, and simplifying the intermediate ressudtshe abstraction

17

Ui (sieve;)

(90,0)
cop >0

(90, 1)
co >0

(g0,4)
co >0

‘ZO7

Co>0

|(5(q170)

(q1,1)

QO7
co >0
qu

[o(

(q0,3)
co >0
o

(ql, (q1,4

q17

Us(sievey)

Figure 5: Abstractions dfieve; in Sieve of Eratosthenes example.

co=0
(g2,0)
J
true CO - O
(g3,0) _
true ”
(q47 0) B

co=1
(g2, 1)
CO—O
(g3,1)

true

(qa, 1)

true

(g5,1)
—0

(g6,1

co =2
(92,2)
¢y =0
(g3,2)
true

(g5,2)
c1 =0
(g6,2)

[0 (
co=3 co =4
(g2,3) (g2, 4
06 =0 tue Co = 0

| Pla3,3) (g3,4)
|| true true
0 (aa,3) (q1,4)

true

(g5,3)
c1 =0
(g6,3)

oamo-m

co=2Veco=4Vcog=6

U(S1)

18

co=17
(q2,7)
¢y, =0
(g3,7)

true

(qa,7)

true

(g5,7)
c1 =0
(g6,7)

methods of symbolic observation equivalence and the Active Events Rhkeagproach is demon-
strated to scale well for an example of concurrent software.

Future work includes generalising other conflict-preserving abstraaties, known to work well
for FSMs, and adding them to the framework [9, 15]. Further, the methondikely be improved
by combining it with known methods for variable abstraction and symbolic réag¢3]. It is also
possible to support event-based EFSM synchronisation, as it is alusadyin the underlying theory
of conflict equivalence [16]. In addition, extension of the method fqgresusor synthesis [20] for
EFSMs is interesting.

References

[1] Knut Akesson, Martin Fabian, Hugo Flordal, and Robi Malik. Supremica—amyiated en-
vironment for verification, synthesis and simulation of discrete eventmgstén Proceedings
of the 8th International Workshop on Discrete Event Systems, WOBH®iges 384-385, Ann
Arbor, MI, USA, July 2006.

[2] A. Arnold. Finite Transitions Systems: Semantics of Communicating Systeresatice-Hall,
1994.

[3] Christel Baier and Joost-Pieter Katod®rinciples of Model CheckingMIT Press, 2008.

[4] Stephen D. Brookes and William C. Rounds. Behavioural equicalarlations induced by
programming logics. IProceedings of 16th International Colloquium on Automata, Languages,
and Programming, ICALP '83volume 154 olLNCS pages 97-108. Springer-Verlag, 1983.

[5] Y. Chen and F. Lin. Modeling of discrete event systems using finite statéhines with param-
eters. InProceedings of 2010 IEEE International Conference on Control Appiias (CCA)
pages 941-946, Anchorage, Alaska, USA, 2000.

[6] Kwang Ting Cheng and A. S. Krishnakumar. Automatic functional testegation using the
extended finite state machine model. Rroceedings of 30th ACM/IEEE Design Automation
Conferencepages 86-91, Dallas, TX, USA, 1993.

[7] Dennis Dams, Orna Grumberg, and Rob Gerth. Abstract interpretafioeactive systems:
Abstractions preservingCTL*, 3CTL* and CTL". In E.-R. Olderog, editorProceedings of
IFIP WG2.1/WG2.2/WG2.3 Working Conference on Programming Conddpthpds and Cal-
culi (PROCOMET)IFIP Transactions. Elsevier Science Publisher (North-Holland), Anchsie,
The Netherlands, June 1994,

[8] R. De Nicolaand M. C. B. Hennessy. Testing equivalences fargssesTheoretical Computer
Science34(1-2):83-133, November 1984.

19

[9] Hugo Flordal and Robi Malik. Compositional verification in superwsoontrol. SIAM Journal
of Control and Optimizatiof48(3):1914-1938, 2009.

[10] Matthew Hennessy and Huimin Lin. Symbolic bisimulatioriheoretical Computer Science
138(2):353-389, 1995.

[11] C. A. R. Hoare.Communicating Sequential ProcessBsentice-Hall, 1985.

[12] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ulimdntroduction to Automata Theory,
Languages, and ComputatioAddison-Wesley, 2001.

[13] Hee-Hwan Kwak, Jin-Young Choi, Insup Lee, and Anna Philipp&ymbolic weak bisimu-
lation for value-passing calculi. Technical Report MS-CIS-98-22yéehsity of Pennsylvania,
Department of Computer and Information Science, 1998.

[14] Robi Malik, Martin Fabian, and Knubkesson. Modelling large-scale discrete-event systems
using modules, aliases, and extended finite-state automakrodeedings of 18th IFAC World
Congresspages 7000-7005, Milan, Italy, 2011.

[15] Robi Malik and Ryan Leduc. A compositional approach for verifygeneralised nonblocking.
In Proceedings of 7th International Conference on Control and Automat©8A '09, pages
448-453, Christchurch, New Zealand, December 2009.

[16] Robi Malik, David Streader, and Steve Reeves. Conflicts and f&tinge International Journal
of Foundations of Computer Sciende(4):797-813, 2006.

[17] K. L. McMillan. Symbolic Model Checkindluwer Academic Publishers, 1993.

[18] Robin Milner. Communication and concurrencyseries in Computer Science. Prentice-Hall,
1989.

[19] Sahar Mohajerani, Robi Malik, Simon Ware, and Martin Fabian. Onufee of observation
equivalence in synthesis abstraction.Pimceedings of the 3rd IFAC Workshop on Dependable
Control of Discrete Systems, DCDS 20pages 84-89, Saailwken, Germany, 2011.

[20] Peter J. G. Ramadge and W. Murray Wonham. The control of deserent systems?roceed-
ings of the IEEE77(1):81-98, January 1989.

[21] M. Skoldstam, K.Akesson, and M. Fabian. Modeling of discrete event systems using finite
automata with variables. IRroceedings of 46th IEEE Conference on Decision and Control,
CDC 07, pages 3387-3392, December 2007.

[22] Rong Su, Jan H. van Schuppen, Jacobus E. Rooda, and Alddafkamp. Nonconflict check
by using sequential automaton abstractions based on weak observaiiaiestce Automatica
46(6):968—-978, June 2010.

20

[23] VY. Yang and R. Gohari. Embedded supervisory control of diseegent systems. IRroceedings
of the 1st International Conference on Automation Science and Endgrige &@ASE 2005pages
410-415, Edmonton, Alberta, Canada, August 2005.

Appendix

This appendix contains the proofs of the propositions given in sectionddt Msults about conflict
equivalence of EFSM systems are proved by obtaining an unfolded FMising similar proofs
about conflict equivalence of FSMs [9].

A Proof of Proposition 1

Prop. 1 concerns the relationship between synchronous compositidgiSdfi&€and unfolding. In the
following proof, it is shown that the results of unfolding before and aftgrchronous composition
are identical up a renaming of the events.

Proposition 1 Let& = {Ey,..., E,} be an EFSM system, anl = {E, || E2, Es, ..., E,}. Then
U (€) is nonblocking if and only it/ (F) is nonblocking.

Proof. Itis shown in the following that the unfoldind$(&) andU (F) are identical up to a renaming
of events, which is enough to show tHa{€) is nonblocking if and only ifU (F) is nonblocking.
More precisely, it is shown thadf (F) = p(U(€)) wherep: ¥ — X replaces events as follows,

(Ey || Eo; 0510), ifi=1o0ri=2;

15
(E;; 0;w), otherwise (15)

p((Ei; 030)) = p(Ei; 05 0) = {
By definition 2, the EFSM system® and F have the same variables associated with their update
functions, so it holds thatars(£) = vars(F), andp(U(£)) andU (F) have the same states, initial

states, and marked states. It remains to be shown that they also have theasaitiens. Write
E=;L,U(E;) andF = U(Eq || Ba) || [l;iZU (E3).

First, let
(azl,...,xn,@)M(yl,...,yn,w) (16)
inU(E). Thenitfollows tha(zy, . .., z,) (Britid), (y1,--.,yn) In E, which means that;, Giitid),

yr In U(Ex) andz; = y; for eachi # k. It follows that there exists a transitiory, LR yi With

p(’f),l[)) = true in Ey. If Kk =1ork = 2, then Eithel'(fb'l,l'g) EN (yl,xg) or (:Ul,l'g) TN (ml,yg)
in E1 || E2 by definition 2, and thus in both caseés, ..., z,) 15| Baitih), (Y15 -y yn) In F.If
3 < k < n, it follows directly fromz, 2 y. that (z1, ..., 2,) (B i), (y1,...,yn) in F. This

21

p(Eg;050) (B ;050)
e e

(y1,...,yn) In F. From (16) it also follows that
o{Eyib5%) (U (v) by definition 6. It follows that

shows that(z1, ..., z,)

W N [, evars(syUse (v) and thusv w in ||

vevars
p(Ey;050)
w7

(.Tl,...,.’]l‘n,@) (ylw"vynaw) in U(f)
Conversely, let
G0 _
(:vl,...,a:n,f))Q(yl,...,yn,w) a7
inU(F), whereG € F. Then(zy,...,zy) (Gibid), (y1,...,yn) in F. Consider two cases.

o If G = || E>, then (ZL‘l,SUQ) M (yl,yg) in U(E1 || EQ) andx; = Yi for each

3 < i < n. The former meanéry, z2) = (y1,%2) in Ey || B2 with p(6, %) = true, which by
definition 2 impliesz; 2 vy in By andzy = ys, Or 21 = y; andzy 2 ys in Es. It follows
that (z1,...,z,) D) (Y1,...,yn) In E, with k = 1 or k = 2, and thusp(Ey; 0;w) =
(E1 || Bas 0;0) = (G;950).

o If G = E,, for some3 < k < n, thenx,, (E"—vw)> yr in U(Ey) and(x1,z2) = (y1,y2) and
x; = y; for each3 < i < n with i # k. This showgz,...,z,) M (Y1y. - Yn) N E,
andp(Ey; 0;0) = (Ey; 0;0) = (G; ;D).

_ . _ (Bgow) .

W N ||,y 7 Ur(v), and thereforey ——— w in

(Ep;050)

From (17), it also follows that (Gosb)

lvevars(e) Ue (v) by definition 6, wherep(Ey; ;@) = (G;0;w). Then (z1,...,zn,0)
Ey ;050 .
M>(y17---,yn,w) inp(U(E)). 0

(Y1, .- yn,w) INU(E), and thereforgz, ..., x,,v)

B Proof of Proposition 2

As conflict equivalence is preserved under bisimulation, the key stepoie groposition 2 is to
show that the result of partial unfolding is bisimilar to the original. This is dorlermma 8. Before
that, lemma 7 shows that the nonblocking property of EFSM systems is pedsehen replacing
subsystems by conflict equivalent subsystems.

Lemma?7 Leté = {Ey,...,E,} andF = {F|, Es, ..., E,} be EFSM systems such thatrs(E) \
vars(E,) = vars(F) \ vars(Fy) and

UE) I [T\ B, ~eont UF) || [|Ur(0)) \ r, - (18)

v € vars(E1) v € vars(F)

ThenU (€) is nonblocking if and only it/ (F) is nonblocking.

22

Proof. Note that

UE)=UE) - | UE) || || Ue(v)
v € vars(&)
=UE) || ||Uelw) | UE) |- I1U(ER) || || Ue(v (19)
v € vars(FE1) v E Vars(é') \Vars(El)
As the events ifC i, do not appear it/ (Ez) || - - - || U(E,) || ||v€vars(8)\varS(El) Ug(v), the above (19)
is nonblocking if and only if
UE) | |UeoN\Ze, || UE) |- 1 UE) || || Ue(v (20)
v € vars(E1) v E Vars(c‘)) \ vars(E1)

is nonblocking. Given (18) and noting thatrs(€) \ vars(E;) = vars(F) \ vars(Fy), it follows from
the definition of conflict equivalence (definition 11) that (20) is nonbileghf and only if

OE) N [U£)\Sr | UE) |- [UE) | || Ur(v) (21)
v € vars(FY) vEVars()\ vars(F1)

is nonblocking. As the events Xi, do not appear in the FSM$(E»), ..., U(E,), or Ux(v) with
v € vars(F) \ vars(F}), the above (21) is nonblocking if and only if

UE) || [[Ur() | UE) |- | UE) || || Ur(v)
v € vars(Fy) vaars()\vars(Fl)
UR) | UE) || -+ | U(En) || || Ur(v) = U(F) (22)
vaars(]:)
is nonblocking. O

Instead of showing that conflict equivalence is preserved undégapanfolding, lemma 8 below
shows that the unfolded EFSM systems before and after partial unfadgjsimilar FSMs, accord-
ing to the following definition 18. Further, definition 19 provides notation toteethe valuations
before and after partial unfolding to each other.

Definition 18 LetG = (Xq, Qq: — ¢, Qe QE) andH = (Xg, Qy, — . Q% Qf;) be two FSMs.
A relation~ C Q¢ x Qg is called abisimulation equivalenceelation betweerG and H if the
following holds for allz € Q¢ andxy € Qg such thateg ~ zy:

o if 2 5 yq forsomes € ¥, then there existgy € Qp suchthaty =g yy andye =~ yu;
o if zy Sy yy for somes € 3., then there existge € Q¢ such thateg = ¢ yo andyg ~ yu;

o vg cQgifandonlyifzy € QY

23

G and H arebisimilar, written G ~ H, if there exists a bisimulation equivalence relatiotetween
G andH such that, for eachy, € Q¢ there existxy; € Q such thatry, ~ x%;, and vice versa.

Definition 19 Letv: V — D be a valuation. Theestrictionvy: W — D of v to W C V is defined
by

Oy lv] = v[v] forallve W. (23)

For a variabley, anday € dom(vy), theextensiorv & {vy — ag}: VU {vo} — DU {ap} is defined
by
ag, Ifv=wy;

_ : (24)
o[v], otherwise.

0@ {vg — ag}v] = {

Lemma8 Let& = {E,...,E,} be an EFSM system, let € vars(E) \ U, vars(E;), and let
F = {El \Z,EQ,...,En} Then

UE) || |Ue)\Zp, ~ UEN2) || | Ur()\ Spys - (25)
v € vars(FE1) v € vars(F1 \ 2)

Proof. LetFy, = E; \ zandF;, = E;for2 < i < n. Write B, = (V,Q,—,Q°,Q%), E =
UED | |, evars i) Ue(v) @andF = U(EL\ 2) | [|, cyars(ryy UF(v), @ndSp = Sp, andSp = S,
andW = vars(E; \ z) = vars(Ep) \ {z}. The states o2 have the form(z,v), and the states
of F' have the form((x,a),), wherex € @, v € dom(vars(Ey)), v € dom(W), anda € dom(z).

Consider the relatiors;; between the states @ and F', defined by

(z,0) =~u ((y,a),v) ifandonlyif z=yando =0® {z— a}. (26)

It is to be shown thaty;; is a bisimulation betweeE \XgandF\ Xp.
First, let(z,) ~y ((x,a),?) and(z,v) = (y,w)in E\ Sg. The former implies =0 & {z —
a} and thusy[z] = a. Letb = w[z] andw = wyyy. Also, as(z, v) > (y,w) in E'\ S, there exists a

. Ey ;050
transition(z, 3) 2"\, (4. @) in E. Consider two cases.

o If k = 1, then(Ey; o;d) = (Ey;d;0) € S and thuss = 7. Sincez 2%, 4 in U(Ey),

it holds thatz % y in E; such thatp(t,w) = true. If z € vars(p) thenz € vars() and

0[z] = v[z] = a, and ifz € vars'(p) thenz € vars(w) andw[z] = w[z] = b. It follows

that(3232'(p Az = a A 2" = b)) (0w, W) = true. By definition 10 there exists a transition
232 (pAz=anz'= . L . E1\z;0)y;w .

(2, q) 2@ 0y in By 2, which implies(z,) n S by in U (B

e If 2 < k < n, then the eventr = (E}); 0;w) is not in the alphabet of/ (E;) or U(E, \ z).

(Ep;05w)
_—

It follows from z y in U(E;) thatz = y. Sincez is a local variable taFy, it

24

does not appear iy, with 2 < k < n, so by definition 6 the ever{tty; v;w) is not in the

alphabet ofUg(z). Asa = 7[z] (Bt w[z] = bin Ug(z), it follows thata = b. Also
z ¢ vars(v) U vars(w) by definition 5, and thu$Ey; 0;w) = (Ej; Oy ;). It follows that
Ep 01y ;0w i
(e,0) Y, (0) = (4, 0) inU(BL \ 2).
Fi 301y ;0 i
In both cases, it has been shown thata) M (y,0) InU(E1\ 2) where(Fy; Oy ; W) =

L A N, — (Britsd)
(Bv\ 25 0y dyw) OF (Fi; O b)) = (B Oy by). FUrtherd ——=— @ in ||, ¢ ar (s, Ue (v)

(Bg;030) (Fes0 w3 w)
7 - 5

and thus it holds that W iN [, evars(e)\ {23 Ue (v), which implies v

Fl 30y ;0
iN [evars(y\2)UF(v). This shows tha{(z, a),) Fsdywibiw)

((l‘, CL),?VJ) — ((ya b),ﬂ)) in F \) with (y’w) ~U ((y’ b),’LZ))
Conversely, assume that,7) ~y ((z,a),?) and ((z,a),7) % ((y,b),w) in F\ Sp. The
former impliesv = o @ {z — a} and thuss|z] = a, and the latter implies the existence of a transition

((r,a),) L
(E1\z;0;0)

o If k£ = 1, then(Fy;0;w) = (Eq \ z;0;w) € ¥ and thuse = 7. Sincex ————5 y

inU(FE4 \ z), there is a transitiof, a) 337 (pre=ans'=h) (y,b)in By \ zwithz 2 yin B,
and(3232'(pAz=a Az =0b))(0,%0) = true, and if z ¢ vars'(p) thena = b. Let

((y,b),w) in F, and therefore

((y,b),w) in F. Consider two cases.

(27)

(553
E»

_Jo@o{z—a}, if 2z vars(p);
B W, otherwise

Juwa{z— b}, if 2 € vars'(p);
o, otherwise B

Then it follows thaty(3, &) = true, and thereforer; =", . in U(Ey).

If 2 € vars(?) \ vars(w), thenz € vars(p) \ vars’(p), andd[z] = a by construction (27), and

a = basz ¢ vars'(p): it follows thata “Z2"). 4 = pin Ue(2) by definition 6. Ifz € vars(i),
thenz € vars'(p), andd[z] = a andid[z] = b by construction (27); it follows that 22>,

in Ug(z) by definition 6. Otherwise ¢ vars(?) = vars(p) 2 vars'(p) in which case the event
(Eg,0,%) = (Ey;0;) is not in the alphabet df¢(2), anda = b asz ¢ vars'(p); it again
follows thata 22", 4 = bin Ug(2).

o If 2 <k < n,thenthe event = (Fy; 0;w) = (Ex; 0; w) is notin the alphabet o, or U (E).

(Brstsd)

Then leto = ¢ andw = w andb = a. It follows from 2 —~"— y in U(E}) thatz = y, and
(Fi,b.10) x=yinU(E}).
Furthermore, since is local to E4, it does not appear i, with 2 < k < n, and thus

2 ¢ vars(d) U vars() = vars(0) U vars(w). It follows thata B, 0~ pin Ug(2).

thusz

25

2D, by in U(Eg) || U (2),

Letw = w @ {z — b}. In both cases, it has been shown thata)
S TIJ |n H’UEV&I‘S(El\Z)U}-(U)’ WhICh

. A Fi;050
with & < © (Fi10:0)

(Ek 7’67’&\))

impliest ———= @ iN ||, cyars(,)\ (1 Ue (v). Then it follows that(z, v
hence(z,7) % (y,w) in E\ g, with (y, @) =~y ((y,b),0).

As the FSMsE and F' by construction have got exactly the same initial and marked states, it
follows thatE' \ Xp ~ F'\ XF. O

v andw < w < w. Furthermore, note that

) Bt) in E, and

Proposition2 Let& = {Ei,..., E,} be an EFSM systemy; € vars(E;) \ U;_, vars(E;), and
F ={E1\ z,Es,...,E,}. ThenU (&) is nonblocking if and only i/ (F) is nonblocking.

Proof. By lemma 8, it holds that

UE) [V \ B, ~ UELN\2) || [|[UF(0)\ Sy - (28)

v € vars(F1) v € vars(Eq \ z)

As bisimulation of ordinary FSMs implies conflict equivalence [9], it followattthe above FSMs (28)
are conflict equivalent. Furthermore, note thats(&) \ vars(F1) = vars(F) \ vars(E; \ z) as the
variablez is local to £y and does not appear in any EFSM with 2 < i < n. Then it follows from
lemma 7 thatU (£) is nonblocking if and only it/ (F) is nonblocking. O

C Proof of Proposition 3

Before proving the key result about conflict equivalence in propesiiothe following lemma 10
establishes a relationship between conflict equivalence of EFSMs &oidech FSMs.

Definition 20 Let G = (¥q,Q,—,Q°, Q%) be an FSM andl' C Y. The result ofhiding T
from G, written G \ T, is the FSM obtained frond by replacing each transition = y such that
o € YT byz = 3, and removing all events iff from 2.

Lemma 10 Two EFSMsE, and F; are conflict equivalent, if and only if the following holds for all
EFSM system& = {F1,...,E,} andF = {F, Es,...,E,}:

OE) [T\ By ~eont (UF) || [|Ur(0))\ Zr, - (29)

v € vars(E1) v € vars(F1)

Proof. Assume that”; ~,,+ Fi. Furthermore, le€ = {F,,...,E,} andF = {F\, Es,...,E,}
with By, Fy ¢ {Es,...,E,}, and letl’ = (3., Qp, =4, Q%, Q%) be an FSM such that

(UE) | |Ue@) \Zp) I T (30)

v € vars(E7)

26

is nonblocking. Lef = X7\ (X, U---UXg,), and construct an EFS¥y such that/ (E7)\ T =

T\ Y: this EFSM can be constructed Bg = (vars(E1), Qp, — g, Q5, Q%) wherez /AL N

(Es;05w)
—_—

for all transitionsx r ywith2 < i < nandzx e, o y for all transitionsz %7 y with

o€ Y. Then

U{E1, Er)\ Y = (UE) |UED) || [|[Us))\ T

v € vars(E1)

= (UE) || | Ue()) | (U(ET)\T)

v € vars(E7)

= (U(EL) || ||Ue(o)) [(T\) (31)

v € vars(E1)

is nonblocking because (30) is nonblocking. TR&H E1, E1}) is also nonblocking, and &8 ~ ¢
F, it follows thatU ({ F1, E7}) is nonblocking. Then

U{FL, BErY\ T = (U(FR) | U(Br) | | Ue(w) \ Y

v € vars(Fy)

= (UE) | [|[Ue())) | U(Er)\T)

v € vars(F1)

= (U@E) | [|[Ue())) I (T\) (32)

v € vars(F1)

is also nonblocking, and thugU (F}) || Hv@ars(pl) Ug(v)) \) || T is nonblocking. AsT” was
chosen arbitrarily, it follows that the FSMs (29) are conflict equivalent.

Conversely assume that (29) holds, andHgtbe an EFSM such thdf; || E7 is nonblocking,
i.e., U({E1, Er}) is nonblocking. Ther/(Ey) || U(Er) || HUEWS (1) Ue(v) is nonblocking, and

asU(Er) does not use any events Xy, , it follows that (U (E;) || || HUEVMS(EI) Us())\ Zg,) |l
U(Er) = (UE) | UET) | Hvevm () Ue(v)) \ B, is nonblocking. Then by (29), it follows
tha‘t((U(Fl ” H’l}EVaI‘S(Fl) ()) \ EFl) ” U(ET) = (U(Fl) || U(ET) ” Hvevars(Fl) Ug(?})) \ EFl

is nonblocking, and thug’ || E7 is nonblocking. AsEr was chosen arbitrarily, it follows that
Ey ~cont F1. O

Proposition3 Let& = {F,,...,E,} andF = {Fy, Es,...,FE,} be EFSM systems such that
Eq ~cont F1. ThenU () is nonblocking if and only it/ (F) is nonblocking.

Proof. As E ~conr F1, it follows by lemma 10 that (29) holds. Then the claim follows by lemma 7.
O

27

D Proof of Proposition 4

To prove proposition 4, the key step is to show that the unfolded EFSMaEsrebservation equiv-
alent. This is done below in lemma 13. Before that lemma 12 establishes an awedBatyneeded
for lemma 13 and lemma 16.

Lemma 12 Let& = {Ey, ..., En}, and letE = U(E) || lyevars(my)Ue (V)-

(B1;050)

() If (z,7)

(i) If 22 yin Ey, then(z,) = (y,w)in E\ Sp,.

(y,w) in E, thenz LY yin Ej.

Proof.

(i) It follows from (x,v) (y,w) that = yin U(E;) and v B0, 5 in

lvevars(er)Ue (v). The former implies by definition 5 that L,y with p(6,) = true in By
with vars(?) = vars(p) andvars(w) = vars'(p), and the latter implies by definition 6 that<
v andw < @ andw|yars(B,)\vars'(p) = Wivars(E;)\vars() < 0. Then it follows by definition 13

(En;05) (E1;0;0)
e e

thatr 2% yin Ey.

(ii) Itis first shown that ifz :> y in By, then(z,7) = (y,v) in E\ Xp,. By definition 13 it follows

fromz = y thatz = 29 & --- 2% 2, = y in By, wherevars'(p;) = 0 andp;(v) = true for

1 < j < m. By definition 5, this means = z, Evtnid), . Bt id) = yinU(E)
with 9; < v for1 < j < m. And by definition 6, for eachr € vars(F1) such that the event
(E1;0450)

(E1;05;0) is in the alphabet ob/s (v), it holds thatv € vars(v;) ando[v] = v;[v]

9;[v] = o[v]. This meang %0, . om0 loevars(zm) Us (v). As furthermore

(Ey;94;0) € S, this is enough to sho, 7) = (y,7) in E\ B, .

Now it is shown that the above implies that aif 2% y in By, then(z,7) = (y,w) in B\

Sp,. By definition 13 it follows fromz == y thatz = z; 2 3 = y with p(v, w) =
true andw|varS(E)\VarS/(p) < 7. By definition 5, this means; M) Y1 in U(El) with
vars(0) = vars(p) andvars(w) = vars’(p) andv < v andw < w. And by definition 6, for
eachv € vars(Fj) such that the even(tE;; o;w) is in the alphabet of/¢(v), there are two
possibilities: eithew € vars(d) \ vars() = vars(p) \ vars'(p) andafv] = o[o] 2152,

BED, o] = wlo].

Therefore(z, v w) in E. Given the above result about> z; andy; = y, and
noting that(E; 0;) € L, , it follows that(z, o) = (y,w) in B\ Xg,. O

’[)[U] = w|vars(E)\vars’(p)[] = w[] orv € Vars() andv[] = @[’U]
(E1;0;0)
v) —— (u;

28

The following lemma 13 relates EFSM observation equivalence to obseneqiamalence of
ordinary FSMs. As observation equivalence of FSMs implies confligatgnce [9], this is enough to
prove proposition 4. The proofs are based on the following definitiorsdd Bbservation equivalence.

Definition 21 LetG = (Xg,Q,—,Q°, Q%) be an FSM. Forr,y € @ ands € ¥*, the relation

x = y denotes the existence of a trace ¥* such thats = P(t) andx L, y. Here,P: YE— Y*is
thenatural projectionthat removes al events from a trace € 7.

In words,z = y denotes a path from stateto statey with exactlythe events irs, while z = y
denotes a path with an arbitrary number of silent evergbuffled with the events of. The notation
is applied to state set&, = y, and to FSMs(= z, analogously to-.

Definition 22 LetG = (Xq, Qq, — ¢, Qe QE) andH = (Xy, Qy, — . Q% Qf;) be two FSMs.
A relation~ C Q¢ x Qp is called anobservation equivalenceelation betweerz and H if the
following holds for allzg € Q¢ andxy € Qg such thateg ~ zy:

. o . P
o if ¢ —¢ yg for someos € X, then there existgy € Qg such thatry é@)H yg and
Yya ~ YH,

) . P
o if xy Sy yy for somes € X, then there existgs € Q¢ such thatrg é@g ye and
YG ~ YH,

o if 2 € Q¥ thenzy =y QY
o if 2y € Q% thenzg S¢ Q4.

G and H are observation equivalentwritten G ~ H, if there exists an observation equivalence
relation~ between’ and i such that, for eachy, € Q¢, there existsy; € Qf; such thatry, ~ x%;,
and vice versa.

Lemma 13 Let€ = {Ey,..., E,} be an EFSM system and |&t be an EFSM such thatrs(E;) =
vars(F1) andE; ~ Fy, and letF = {Fy, Es, ..., E;}. Then

UE) || |Ue()\Zp, ~ UEFE) || [|[Ur)\ B, - (33)

v € vars(E1) v € vars(Fy)

Proof. LetE = U(E) || HUEWS(EI) Us(v) andF = U(Fy) || HUEVarS(Fl) Ur(v), andXp = ¥g,
andXp = Xp,. As E; ~ F1, there exists an observation equivalence relatidmetweent; and ;.
Consider the relatior;; between the states @ and F', defined by

(.TE,T)E) ~U (.CCF,T)F) ifand only ifxp ~ xp andog = vp . (34)

29

Note thatvy andvr are defined over the same variablesas(FE,) = vars(Fy). Itis to be shown
that~; is an observation equivalence betwdeh Xy andF' \ Xp.

Assume(xE,@E) ~U (l‘F,Q_JF) i.e.,zgp ~ zr andvg = vp = 0.
Firstly, let(zg,v) = 5 (yg,w)in E\ Xp, where(= 7 or{ = (Ep;0;w) with2 < k < n. Itis
to be shown that there exists a statein F; such tha{xzy,v) = (O (yp) in £\ Xp andyg ~ yr.

Consider two cases.

(i) ¢ = 7. In this case, there existdy; 0;w) € ¥ such that(zg,) (Bufi), (yg,w) in E.

By lemma 12 (i), it follows thatrg == yp in Ey. Aszg ~ xp, there exists a statgr in Fy
such thatr == y in Fy andyg ~ yr. By lemma 12 (ii), it follows tha{zx, 0) = (yr, @)
in F'\ g, with P(¢) = ¢ andyg ~ yp.

(i) ¢ = (By;0;w) with 2 < k < n. In this case(is not in the alphabet o/ (E;) or U(F}),
so letyp = xp. It follows from zp 5, yp thatzp = yg, andxp S Tp ~ TR = Yp
in U(Fy). As alsov S @ in lvevars(E) U (V) = [lyevars(ry)Ur (v), this is enough to show
(xp,ﬁ) é (yF,) in F \ Y F with Yg ~ YF.

Secondly, letzg, v) € QE\EE. Itis to be shown thatzp, 7) = Q“F)’\zp- (Elearly,xE € Q%, and
thusz g 2 T € QF, in E; by definition 13. Astp ~ zp, it follows hatzy = % € QF, for some
stateyr of Iy, which by lemma 12 (ji) impliegx ¢, v) = (2%, 9) € QF, xdom(vars(F1)) = Q‘;\EF.

Thirdly, assuméz%,, v°) is an initial state oE\EE Itis to be shown tha@F\E = (zp,0°) for
some state r of Fy. Clearly,zg; € Q. , andzy N xy in Ep by definition 13. Asv is an observation
equivalence relation betwedry and F, there exists a statep of F; such thatQ"F1 LN rpin Fi.
That is,z % xp for somez}, € Q%,. By lemma 12 (ii), it follows thafz$,,v°) = (zp,v°) in
F\ Xp, where(z%,0°) € Q- O
Proposition 4 Let £, andF; be two EFSMs. IfE; ~ I thenEy ~¢on¢ Fi.

Proof. By lemma 13, it holds that

UE) || |Ue)\Zp, ~ UEFE) || |[Ur©)\ S, - (35)

v € vars(E1) v € vars(Fy)

As observation equivalence of ordinary FSMs implies conflict equieadB], it follows that the
above FSMs (35) are conflict equivalent. Then it follows from lemma 10£ha~ .¢ F. O

30

E Proof of Proposition 5

Before proving that conflict equivalence is preserved by the ActixenEs Rule, lemma 15 shows that
every path in the unfolded FSM of an EFSM also occurs in the unfolded &&&tery abstraction
obtained by FSM quotient. Furthermore, lemma 16 guarantees that undeldiliersal assumption
of incoming equivalence, a converse of lemma 15 also holds.

Lemma 15 Let& = {E4,..., E,}, let~ be an equivalence relation on the location seEpf and
let F = {E1/~,Fo,...,E,}. If (z,9) 2 (y, @) in (U(E) || lvevars(er)Ue(v)) \ X, for some

s € (3¢ \ Xp,)* then([z],0) = ([yl, @) in (U(E/~) | oevars(e) UF @) \ S, /e
Proof.
Write £ = U(El) H Hv€varS(E'1)Ug (U) andr’ = U(‘El/N) H Hvaars(El/w) UJ:(U)' and lets € (25\

Y g,)* such thatz, v) = (y,w) in E\ Xg,. Then there exists’ = (Fy;01;101) - - - (Fyp; O W) €
¥% such thatP(s") = s and

) (Fy;0131) (1,51

(2, D) = (0, T))

(F’”L;’Z}'IIL;’LDTVL) —
e

(Tm, Um) = (y, 0) (36)
in E. Here, the natural projectioR: ¥* — (¥¢\ ¥,)* erases events Mg, andX g, /.. from traces.
Consider a transitioiz;_1, v;—1) (Fisbisthe) (z;,v;) on the path (36). If; # Ei, then the event
(F;; 035 w;) is neither in the alphabet &f(E7) nor of U (E1/~), and givervars(E;) = vars(E; /~) it
follows immediately that the transiticiz_1], 7;_1) —"", (1], %) is in F. OtherwiseF; = Ei,
UE2is®) 0 5). By definition 5 it holds thatr;_1 % z; in E with
(55, ;) = true. This implies[z;_1] % [z in E1/~, and[zi_1] X059, 100 in U (B, /~)

(E1;0;5w;) Ug(’l)) andvars(E1> = Va,I‘S(El/N), thus

which means(xi_l, 1_}1'_1)

by definition 5. Sincey;
(En [~;045104)

v; in Hvaars(El)

Vi1 ———— Ui IN [|, cqnrs(py sy U (v). This implies that([z;—1], vi—1) ([x4],0:)
in F. As this has been shown for dll< ¢ < n, the path
_ _ (FL;0p50) _\ (Fg095,)
(2], 8) = ([0, Bo) —= ([an], o) =22 -
(Fn 0y 505,) _ _

> ([2m], om) = ([y], w) (37)
isin F, whereF! = E,/~ or F/ = E, for some2 < k < n. It follows that([z],7) = ([y],w) in
F\Xg /. O
Lemma 16 Let€ = {FE1,..., E,}, let~ be an equivalence relation on the location sétp§uch that

~ C ~ine, and l6tF = {E1/~, ..., By, B} If (2,0) = (5,@) in (U(EL/~) || |yevars(z) UF () \

31

Yg, /~ forsomes € (X¢ \ X, /)%, then for ally € g there exists: € & such that(z, v) = (y,w)
i (U(E1) | lyevars(s) Ve () \ By -

Proof.
Write £ = U(El) H Hvaars(El)Ug(v) and ' = U(El/N) H Hvévars(El/N)U]:(U)' and lets €
(3¢ \ Bp, /)" such that(#, ©) = (7, w) in F\ g, .. Then there exists’ € X% such that

/

P(s') = sand(z,v) = (7,w) in F. Without loss of generality, this path does not contain any self-
loops labelled by events iy, .., and the natural projectioR: ¥* — (X¢ \ ¥,)" erases events in
Yg, andXg, /. from traces. Ley € g. Itis shown by induction on the length ef that there exists

x € & such thai(z, v) 2 (y,w)in E\ Xg,.
If s = ¢, thisis clear withc = y andP(s’) = «.
Now considers’ — (Fy; o; @)t such that#, o) 2%, (z,5) 4 (§,@) in F, and assume by
inductive assumption that there exists Z such that(z,7") oy (y,w) in E'\ Xg,. Consider two

cases.

(B1/~;050) (B1/~;0;0)
LS ARARLAY

o If Fy = Ey/~, then(z,0) (¢,7') in F. Thenz zZinU(E1/~), so
by definition 5 it holds that % Z in Ey/~ with p(0,w) = true. It follows that there exist
z € #andz’ € Z such that: 2 2’ in E;, which again by definition 5 means that 25,
in U(E)). Asvars(E,) = vars(Ey /~), it follows that (z,7) %%, (2! &/} in E. Then it

follows by lemma 12 (i) that: 2; Z'in Ey. As the path(z, v) LA (g, w) does not contain
any selfloops labelled by eventsiiy, .., it holds thatv # v’ or # # Z, and the latter implies

z # 2'. Therefore, as ~ine 2/, it follows thatz =% z in E;, which by lemma 12 (ji) implies

(z,9) = (2,7') in E'\ g,. This shows thafz,v) = (2, ') £ (y,) in E\ ¥g,, where

P(s) = P((E1/~; 0;0)t) = P(t).

o If Fy # Fy/~, i.e., Fy = E; for some2 < i < n, then the even{Fjy; v;w) is neither in
z

the alphabet of/(E;/~) nor of U(E;), and it follows immediately that € z = Z and
o), As furthermores’ 2%, 4 in loevars(zn /) UF () = llyevars(m)Ue (V) 1t

(Fo;03w) (Fo;0;w)
— —

follows that(z, v) (z,7") in E. This shows thatz, v) (2,7) 7y (y,w) in
E\Xg,,whereP(s) = P((Fo; 0;w)t) = (Fp; v;w)P(t), so the claim follows with: = z. O

Proposition 5 Let £ = (V,Q, —,Q°, Q) be an EFSM, and let C @ x () be an equivalence rela-
tion such thaty C ~j,c N ~act, Where~i,. and~,.; are the incoming and active events equivalences
of E1. ThenE ~conf El/N

Proof. Leté = {FEi,...,E,} andF = {E,/~, Es,..., E,}. Furthermore, writef = U(E}) ||

32

H’UEV&I‘S(El)Ug(U) andf’ = U(El/N) H Hvevars(El/N)U]:(v)’ andXp = e andXp = EEl/N' Using
lemma 10, it is enough to shoW \ X g ~cont F'\ X 5.

Let T such that(E \ ¥z) || T'is nonblocking, and assumé \ Xr) | T = (Z,v,2z7). Then
F\Xp = (%,9). Letz € . As~ C ~jy, it follows by lemma 16 that? \ L = (z,7).
Therefore(E \ Xg) || T = (z,0,z7). As (E \ Xg) || T is nonblocking, there exists a tratsuch
that(F\ Xg) || T = (2,0, 27) SN (z¥, w, x3) with 2¢ € Q% , w € dom(vars(F)), andzy € QF.
Therefore(z, v) 2N (2%, w) in E\ Xg, and it follows by lemma 15 th&t, v) = ([z],) 2N ([z¥],w)
in '\ Xp, where[z*] € @%, /. asz¥ € Qf, . Then it follows that

(F\Sp) | T2 (2.0,21) = (2], 9, 25) € Q%, /. x dom(vars(Ey/~)) x Q5 (38)

which meang F' \) || T' is nonblocking.

Conversely, lef” such tha{ F\ X) || T'is nonblocking, and assuni& \ z) | T = (2,9, z7).
ThenE\Xg = (z,9), and it follows by lemma 15 thdf\ ¥ = ([z],). Therefore(F\Xr)||T =
([x],,27). As (F \ ©r) || T is nonblocking, there exists a tra¢esuch that(F \ $z) || T =
([x], 0, z7) SN (z¥, 0%, x) with 2 € Qo V7 € dom(vars(Eq)), andz¥ € Q%. Assume
without loss of generality that the path

(2], 0, 27) = (3%, 0, 2%) (39)

does not contain any selfloops. A$ € le/w, there existse” € 2 such thatz” € Q% . Also

([x],v) L (z¥,v¥) in F'\ XF, so by lemma 16, there exist$ € [z] such that(z’, v) SN (x¥,0%)

in £\ Xg. Then there exists a tra¢esuch thatP(¢') = t and (', v) LA (z¥,7¥) in E, where the
natural projectionP: ¥* — (X¢ \ X,)* erases events g, andXy, ;.. from traces. Lep C ¢’ be
the longest prefix of such thap € (X¢ \ Xg)*, so that’ = pq with p € (3¢ \ Xp)* andg = € or

the first event of; is in Xz. Then(z/,7) & (2/,7') 2 (2, 7*) in E for somet’ € dom(vars(E}))

andzr £ yr = 2% for some statgy of 7. Consider two cases.

() If ¢ = e, thena’ = 2% € Q4 andy, = a%. This impliesz’ 2 Q%, and thuse %
y” € Q%, for somey® sincex ~,.; ’. By lemma 12 (ii), it follows tha{x, v') = (y°,v)
in £\ Sg. Itfollows that (E\ g) | T = (2,0,27) & (2,7,yr) = (y*,7,2%) €

5, X dom(vars(E1)) x QF,i.e.,(E\ Xg) || T'is nonblocking.

(ii) Ifthe first event ofy is in S, then lety = (E1; o; @)r and(/, @) 25 (4 @) 5 (2%, 5%)

in E. It follows from (2, ¢) {Bnt), (y,w") by lemma 12 (i) that’ LY y in Ey. As the

path (39) does not contain any selfloops, it holds tat @’ or 2’ # y. Then, sincer ~,.; 2/,

it follows thatz =% y' in Ey for some state/ of £y, with o’ # @' or x # 3. This implies

(2,7) = (y,@') in E\ g by lemma 12 (i), and thu$E \ Xg) | T = (z,0,27) &

33

(z,7,yr) = (v, @, yr). Then it follows by lemma 15 thdtF' \ z) | T = ([z], 7', yr) =

([y'], @', yr). As F\ ©p) || T is nonblocking, there exists a tragesuch tha(F \) || T 2
(Iy'], @', yr) = (y w®, y4) with g* € QF, jor W7 € dom(vars(Eq)), andyy € Q%. As
7 € Qf, . there existy” € §* such thay” € Q3 . Also ([y'],@") = (5, @) in F\ ©F,
so by lemma 16, there exisié < [y/] such thaty”, @') = (y*,w*) in E'\ . Now recall
thate 2% v "with o' # @’ or x # 3. Therefore, it follows fromy’ ~i,.. 3" thatz L y", and
thus(z, v’) = (y',@')in E\ g by lemma 12 (ji). Thisimplie$E\ Xg) | T = (¢, 7, 27) =
(z,7,y7r) = (', @', yr) = (g7, 0w, y7) € Qf, x dom(vars(Er)) x Qf, i.e.,(E\Xg) || T
is nonblocking. O

34

