
A Distributed Directory Service for Greenstone

George Buchanan, Annika Hinze
Department of Computer Science, University of Waikato

{g.buchanan, a.hinze}@cs.waikato.ac.nz

Abstract

Greenstone is a software for creating and maintaining distributed digital library
collections. It provides a sophisticated federation mechanism for the collections.
In order to support alerting notification about changes in the distributed collections,
we propose a distributed directory service for the management of the distributed
Greenstone installations. The Greenstone directory service (GDS) acts on top of
the distributed Greenstone structure for the management of collections. This pa-
per describes both, the initial distributed Greenstone structure and the distributed
directory service.

1 Introduction

Greenstone is a software for creating and maintaining distributed, federated digital
library collections. Notifying users about changes in collections is a much sought-after
design feature, called alerting. This document gives the technical details about how
the distributed structure of Greenstone servers can cooperate to allow for alerting over
federated collections. We assume that the reader is familiar with basic techniques of
alerting (publish/subscribe systems), for an introduction see, e.g., [3].

The implementation of the alerting-related communication for the distributed digi-
tal library software faces several challenges:

1. Network fragmentation and dynamic: The Greenstone network is highly frag-
mented; most servers are solitary installations with only a few references to other
servers. References to other servers can be lost once a collection is restructured,
i.e., the Greenstone network structure is not stable.

2. Unified single access point: Users interacting with Greenstone servers want to
be notified about changes in (potentially distributed) collections residing at dif-
ferent hosts (i.e. federated collections) but they need a single unified interface
for defining profiles. That is, users should not be forced to redefine their profile
at several servers in order to avoid false negatives.

3. Dangling profiles: After a profile has been deleted, users no longer want to be
notified about the respective events. Therefore, no profile information should be
stored in a server that could be unreachable, leading to false positives.

1

We propose a design and an implementation of a Distributed Directory Service struc-
ture that supports alerting in Greenstone: the Greenstone Directory Service (GDS).
Using the Greenstone network and the GDS, alerting over distributed servers and fed-
erated collections can be implemented. This paper serves three purposes: (1) it gives
details about the structure of the distributed Greenstone network, (2) it introduces the
Greenstone Directory Service, and (3) it describes the functionality of an alerting ser-
vice for Greenstone using both the network and the directory service.

The remainder of the paper is structured as follows: Section 2 describes the concep-
tual and implementation details of how a distributed Greenstone installation manages
federated collections of electronic documents. Section 3 introduces the design and
implementation of the distributed Greenstone Directory Service. In this section, we
also describe the concept of distributed alerting over federated Greenstone collections.
Section 4 summarises the paper and indicates future work.

2 Distributed Greenstone: Managing federated collec-
tions in a Digital Library

In order to fully explain the mechanisms of distributed alerting in Greenstone, it is nec-
essary to have detailed insight into the nature of Greenstone’s management of federated
collections.

2.1 Distributed Greenstone: Conceptual Level

This section explains the concept of a distributed Greenstone managing federated col-
lections. The section follows a bottom up approach: first, simple collections on a single
host are explained and then the more complex structure of distributed collections over
several hosts is shown.

Simple Collections on a Single Host. A typical simple Greenstone digital library
installation may be structured as shown in Figure 1. For a given computer, we refer to
the local Greenstone software installation asGreenstone server(see the solid circle in
Figure 1). The computer with the server installation in referred to asGreenstone host.
Each host can manage severalcollections(hollow circles in Figure 1). A collection
consists of a number documents (e.g., articles, music files); the document set is de-
picted as a square (shown here with example document files) . A user can gain access
to the collections offered by a host via a receptionist (hached circles in Figure 1). A re-
ceptionist can give access to several Greenstone hosts. The receptionist, in cooperation
with the hosts, presents the user with a simple access point to the collections offered
by several hosts where the underlying storage and distribution structure is transparent
to the user.

Hierarchic Collections on a Single Host. Collections can contain sub-collections.
This concept is explained in Figure 2: We abstract here from the detailed view on the
data sets (as presented in Figure 1) and subsequently refer to them simply by using

2

Host

� � �
� � �
� � �

� � �
� � �
� � �

data set b for collection B

data set a for collection A

b

a

A B C

Greenstone server installation

c

Greenstone receptionist

collections

data set c for collection C

Figure 1: Conceptual structure of a simple Greenstone installation with single host

squares. Figure 2(a) shows two independent collectionsA andB on a single host.
Configurations and data sets are distinct and independent. Figure 2(b) shows a collec-
tion A that combines two data sets into a single collection: data seta and data setb.
collectionB is not publicly available. Both data setsa andb are represented by col-
lectionA and the users are not aware of there being two distinct data sets. Figure 2(c)
shows a virtual collection: collectionA consists only of the sub-collectionB without
an own data seta; A is called avirtual collection. Again, users are not aware of collec-
tion B but regard data setb as the content of collectionA. Figure 2(d) shows again a
collectionA with a sub-collectionB (as in Figure 2(b)); this time collectionB is also
visible to the user as the independent collectionB. The data setb serves as (sub)data
set forA and as data set forB. BothA andB are publicly available.

Collections that are not publicly available such as collectionB in the constellation
shown in Figure 2(b) are referred to asprivate collections, whereas collections that can
be directly accessed by the users are calledpublic collections.

Distributed Collections over Multiple Hosts. The receptionist does not have to re-
side on the same computer as any of the servers it presents. Subsequently, we abstract
from the receptionists’ locations and specific users (see Figure 3). For simplicity, we

3

� � �
� � �
� � �

� � �
� � �
� � �

Host

Greenstone
receptionist

Greenstone
server
installation

collections

A

a

B

b

(a) Independent collec-
tions A and B

a

� � �
� � �
� � �

� � �
� � �
� � �

Host

Greenstone
receptionist

Greenstone
server
installation

collectionsA

B

b

(b) collection A with
sub-collection B

� � �
� � �
� � �

� � �
� � �
� � �

Host

Greenstone
receptionist

Greenstone
server
installation

collectionsA

B

b

(c) Virtual collectionA

� � �
� � �
� � �

� � �
� � �
� � �

Host

Greenstone
receptionist

Greenstone
server
installation

collectionsA

B

b

a

(d) collection A
with sub-collection
B, and independent
collectionB

Figure 2:Conceptual structures of single host installations using various collection hi-
erarchies

also abstract from the concrete document sets (shown as squares in Figure 2) that are
represented by collections and sub-collections. Here in Figure 3, the hierarchical rela-
tionship between the collections is shown by arrows between the collections (depicted
as hollow circles).

A Greenstone host can be presented by several receptionists to users, giving ac-
cess to the same, overlapping, or distinct sets of collections. Conceptually, the host
presents a certain view1 on the set of offered collections: That is, a server can present
a certain virtual set of collections through one receptionist and a different virtual set
through another receptionist. See Figure 3 for an illustration of the concept of views
as virtual collections. Collections can consist of several sub-collections as introduced
in Figure 2. These can be distributed over several Greenstone hosts. A single (sub-
)collection always resides entirely on one host. The distribution of sub-collections is
transparent to the users: a sub-collection is presented as being part of a collection re-
gardless of the actual location of the data. A collection cannot be accessed without
its sub-collections; sub-collections are accessible without their super-collections (i.e.,
they can be public collections in their own right as shown in Figure 2(d)). For the
distributed case, this is illustrated for (sub-)collectionsC, D andE in Figure 3: col-
lectionD can be accessed without collectionC (in collectionHamilton.D) but never
without its sub-collectionE (collectionHamilton.C andHamilton.D). Note that
the collection name always refers to the entry point collection (e.g., to collectionD
in Hamilton.D consisting ofD andE). Collections can also be created as virtual
collections consisting of remote sub-collections only (similar to the local constellation
shown in Figure 2(c)): The local collection is empty and refers to one or more remote
sub-collections.

1We use the term ’view’ here in the database sense of abstracting from the concrete storage presenting
a certain access format to some clients and a different one to others. This can be done, e.g., for reasons of
convenience or security.

4

Coll London.F

Coll Hamilton.A

Coll HAmilton.B

Coll Hamilton.C

Coll Hamilton D

Coll Hamilton.B

Coll Hamilton.C

Coll London.E

Coll London.G

E

F

G

A B C

D

E

G

E F G

C E

D E

B

A

C D E

B
D

� � �
� � �
� � �

� � �
� � �
� � �

� � �
� � �
� � �

� � �
� � �
� � �

Host Hamilton Host London

I II

Figure 3:Conceptual structure of federated Greenstone collections residing on several
Greenstone hosts

Federated Collections. The concept of federated collections is adopted from feder-
ated databases [4]: Federated databases and database systems are a classes of heteroge-
neous databases and database systems that are joined in order to meet certain organiza-
tional requirements and because they require their respective application specificities,
integrity constraints, and security requirements to be upheld. Similar concepts apply to
federated collections: they are heterogeneous collections that are joined under a single
entry point to meet certain requirements. Greenstone is the digital library software that
provides the management of the data storage, retrieval, and access. For more details on
the concepts of Greenstone see, e.g., [1, 10, 11].

2.2 Distributed Greenstone: Implementation Level

This section describes the implementation level of Greenstone’s collection manage-
ment. Following the bottom-up approach from the previous subsection, we start with
the implementation of collections on a single host and subsequently explain the more
complex structure of federated collections residing on multiple hosts.

Hierarchic Collections on a Single Host. For each collection, the structure of the
collection and its sub-collections is described in aconfiguration file(see Figure 4).
A configuration file refers to a collection’s data set. Independent collections have in-
dependent configuration files and data sets: In Figure 4(a), collectionA is defined
in configuration file A, which refers to data seta, and collectionB is defined in
configuration file B, which refers to data setb. In Figure 4(b), the collectionB
is defined inconfiguration file B. collectionA consist of the data seta and the
sub-collectionB: configuration file A refers toa and the configuration file of the

5

A

ba

Host

Greenstone
receptionist

Greenstone
server
installation

collections

B

� � �
� � �
� � �

� � �
� � �
� � �

config config

(a) Independent collec-
tions A and B

b

a

A

receptionist

Greenstone
server
installation

collections

B

� � �
� � �
� � �

� � �
� � �
� � �

Host

Greenstone

config

config

(b) Collection with
sub-collection (A and
B)

b

A

Greenstone
receptionist

Greenstone
server
installation

collections

B

� � �
� � �
� � �

� � �
� � �
� � �

Host

config

config

(c) Virtual collectionA

b

a

A

receptionist

Greenstone
server
installation

collections

B

� � �
� � �
� � �

� � �
� � �
� � �

Host

Greenstone

config

config

(d) collection with sub-
collection (A and B)
and independent collec-
tion B

Figure 4:Implementation details of single host installations using various collection
hierarchies

sub-collectionB. Virtual collections have no primary data set – only one or more sub-
collections, such as in Figure 4(c): collectionA (defined inconfiguration file A)
consists only of the sub-collectionB (defined inconfiguration file B and the cor-
responding data setb. Collections can be private or public. This is defined in the
collection’s configuration file: The configuration files for collectionsB in Figures 4(b)
and 4(d) are different.

Distributed Collections over Multiple Hosts. The implementation of distributed
collections over several hosts is very similar to the non-distributed case, using config-
uration files for the collections (see Figure 5). The collectionHamilton.A is formed
by the configuration file forA and the data seta (squarea in Figure 5).

Here, we will explain in detail the implementation of the data access to distributed
collections. Users access collection data via the receptionist’s interface. The recep-
tionist talks to the respective servers via the SOAP-based Greenstone protocol. The
receptionist issues a request for collection data towards the Greenstone host where the
collection resides that the user wants to access. Collections do not have direct access
to other collections. Therefore, a collection itself consists only of its data set and con-
figuration file. It possesses no software and cannot be executed. Without being run
by a server, a collection is therefore unable to access its sub-collections. Only servers
can interact with each other and access collections using the SOAP-based Greenstone
protocol.

For example, to allow a user access to collectionHamilton.A, the receptionist
issues a request towards the server on hostHamilton (see left side of Figure 3). The
server installation onHamilton then accesses the configuration file for collectionA
and follows the links provided there for the location of the data seta. The Greenstone
server accesses the data seta and sends a response back to the receptionist, which in
turn displays the data to the user.

6

� � �
� � �
� � �

� � �
� � �
� � �

c

g

a b f

ed

 C B A D F GE

Host London

config config config

GS protocol

GS protocol

config

Host Hamilton

configconfigconfig

Figure 5:Implementation details of federated Greenstone collections residing on sev-
eral Greenstone hosts

To allow a user access to collectionHamilton.C, the receptionist issues a request
towards the server on hostHamilton (see middle of Figure 5). The server installation
onHamilton then accesses the configuration file for collectionC and follows the links
provided there for the location of the data setc and the link to the sub-collectionD.
The data of Sub-collectionD is accessed via reading the configuration file forD first
and then accessing the data setd. The Greenstone server accesses the data setsc andd
and sends back a response containing data from both data sets to the receptionist, which
then in turn displays the data to the user. The user is not aware of the sub-collection
structure withinC.

To allow a user access to collectionHamilton.D, the receptionist issues a request
towards the server on hostHamilton (see centre of Figure 5). The server installation
on Hamilton then accesses the configuration file for collectionD and follows the
link provided there for the location of the data setd. TheHamilton server accesses
the data setd. The server also learns about the existence of sub-collectionE on host
London. The Greenstone serverHamilton sends a request toLondon asking for the
data in collectionE. For the communication between servers, the Greenstone protocol
is used. London accessesLondon.E’s configuration file and subsequently the data
sete. London’s response is to send the data ofe back toHamilton. TheHamilton
server has now access to the data setsd ande; it sends a response containingd ande
back to the receptionist, which in turn displays the data to the user. The user is unaware
of the distributed sub-collection structure withinD.

7

Coll London.G

Coll London.E

Coll Hamilton D

Coll Hamilton.C

Coll Hamilton.A

Coll Hamilton.C

Coll Hamilton.B

Coll Hamilton.B

Coll London.F

b f

ed

 C B A

� � �
� � �
� � �

� � �
� � �
� � �

 D F GE

� � �
� � �
� � �

� � �
� � �
� � �

c

g

a

config config

Hamilton
Server:

London.G

Collections:
London.E
London.F

config config configconfig

Host Hamilton Host London

lists of available collections

configuration files

config

Server:

Collections:
Hamilton.B
Hamilton.C

I II

Figure 6:Implementation details of federated Greenstone collections residing on sev-
eral Greenstone hosts accessed via several receptionists

Multiple Receptionists and Collection Registration. We distinguish between pri-
vate and public collections. Typically, a private collection cannot be accessed as an
independent collection but only as sub-collection of another collection.2 Thus, private
collections are not directly registered with receptionists. A collection’s configuration
file defines whether the collection is private or public. Public collections can be regis-
tered with more than one receptionists.

A receptionist can learn about collections in two ways: registration by server or
registration by collection.

Registration by server: Typically, a receptionist learns about the existence of Green-
stone servers/hosts, rather than about single collections. A Greenstone adminis-
trator registers a host with a certain receptionist. All public collections on this
host are automatically known to, and registered with, the receptionist. A recep-
tionist re-scans the list of public collections for all its registered hosts when it is
restarted. When a new collection on a registered Greenstone host is created, the
receptionists learns about it the next time it is restarted.

Registration by collection: A receptionist can learn about the existence of single col-
lections. This method only works if the host that the collection resides on is not

2One exception to this occurs for collections that are work in progress: While a librarian builds a collec-
tion or for test purposes, a collection might not yet be registered with a receptionist. Thus, the collection is
currently private. At a later point in time it might become a public collection.

8

registered with the receptionist. The collection administrator registers the new
collection with the receptionist by entering it into the receptionist’s collection
list. The receptionist does not automatically learn about new collections on the
same host. On restart, the receptionist scans all registered collections. Currently,
registration by collection is being implemented for Greenstone 3 (it was already
in place for Greenstone 2)

The same collection can be registered at several receptionists. Similarly, the same
sub-collection can appear in several collections and as independent public collection
at different receptionists or the same receptionist. Each receptionist can handle sev-
eral hosts and additionally a list of registered collections from different hosts. If on
startup a collection is not available (e.g., due to deletion or unavailability of the host
or other technical issues), the user will not see this collection in their interface. For
each receptionist, both the list of collections and the list of hosts are held together in
the configuration file. In the example in Figure 6, the receptionist on the left hand side,
receptionist I, has no registered hosts but a list of registered collections (Hamilton.B
andHamilton.C) as shown in the configuration file for the receptionist. For the re-
ceptionist II on the right hand side, the Greenstone serverHamilton and has been
registered and the single collectionsLondon.E, London.F , andLondon.G have been
registered. At the startup of a receptionist, the list of available collections is compiled
for each Greenstone server registered with it. (shown as the three lists in the centre of
Figure 6).

3 Distributed Alerting: Greenstone Directory Service

This section introduces the design and implementation of the distributed Greenstone
Directory Service in Section 3.1. We also describe the concept of distributed alerting
over federated Greenstone collections in Sections 3.2 and 3.3.

3.1 Greenstone Directory Service

The Greenstone Directory Service is a distributed directory service. The concept of
a directory service for group communication in distributed applications and virtual
file systems is well established [5, 8]. Recently, it has also been introduced on the
application level for asynchronous communication between changing participants in a
mobile environment, e.g., for mobile agents [7]3.

3.1.1 Directory Service

A distributed directory service organizes access to a set of content servers by provid-
ing a logical network of directory servers. It acts as an authority that can securely
authenticate resources and manage identities and relationships between them.

3Moreau follows a formal approach in their design

9

stratum 1

stratum 2

stratum 2

stratum 3

stratum 3

stratum 3

stratum 2

4

6

7

Hamilton
London

1

2

3

5

Figure 7:Concept of the Greenstone Directory Service: The arrows indicate GDS con-
nections both between GDS servers and GS servers, which are the client of
the GDS, and internally between GDS servers. The dashed line indicates the
original fragmented GS network.

A directory service maps the names of network resources to their respective net-
work addresses. Each resource on the network is considered as an object on the di-
rectory server. Information about a particular resource is stored as attributes of that
object. Information within objects can be made secure so that only users with the
available permissions are able to access it.

A directory service defines the namespace for the network. A namespace is a set
of rules that determine how network resources are named and identified. The rules
specify that the names be unique and unambiguous. In LDAP, such a name, called as
distinguished name (DN) is used to refer to a collection of attributes which make up a
directory entry.

3.1.2 Greenstone Directory Service: Concept

The conceptual organization of the Greenstone Directory Service is depicted in Fig-
ure 7. Currently, on each Greenstone host runs only one Greenstone server. The fig-
ure shows a realistic scenario of Greenstone servers running on disconnected hosts.
Most Greenstone servers are stand-alone installations. If a server holds distributed
sub-collections, it holds a direct reference to one or more other Greenstone servers (see
description of communication using the Greenstone protocol in Section 2.2). These
references and connections are depicted in Figure 7 with dashed lines. We see, for ex-
ample, the connection between theHamilton server and theLondon server that has
been described earlier.

Each Greenstone server is registered at exactly one service node on the distributed

10

stratum 3

stratum 3

stratum 2

stratum 1

Stockholm

GDS parent:

GS clients:

GDS parent:
GDS server 3

GS clients:

GDS children:

GDS parent:
GDS server 3

GDS parent:

Berlin

GDS children:
GDS server 3

GDS server 5

GDS children:
GDS server 1
GDS server 4

GS clients:

GDS children:

GS clients:
Chicago
Paris
Moscow

5

1

3

4

Hamilton

Paris

Stockholm

Berlin

Chicago Moscow

Figure 8:Implementation of a GDS server network (fragment): servers maintain link
list for parents, children, and clients

Greenstone Directory Service (GDS). Each service installation is depicted as shaded
square with an identifying number. Each GDS installation resides on a certain stratum.
The concept of strata is adopted from the Network Time Protocol (NTP) [6]. A GDS
primary server, also called ofstratum1, is a computer equipped with a GDS software.
A GDS Primary Server has access to all Greenstone servers within the network, fol-
lowing the tree towards the leaves. Other computers, atstratum2, equipped with GDS
software, have similar access to all Greenstone servers in their sub-trees. They have
to query the primary server to obtain access to other branches of the tree. The GDS
serves as an analog to the Domain Name Service, where Greenstone servers can be ac-
cessed by their network-internal name without the requesting service having to know
the actual address or location of the service.

In order to distribute messages to all Greenstone servers, a Greenstone server for-
wards the message to its GDS server. The message is distributed upwards within the
tree and downwards to all tree leaves.

3.1.3 Greenstone Directory Service: Implementation

The GDS service is implemented as a tree structure of auxiliary GDS servers (shown
as squares in Figure 7). A GDS server consists of a Java application that runs on a host
computer, and at present any computer can host only one GDS server. Host computers
for GDS servers may or may not be also host computers for Greenstone servers.

Greenstone servers that provide standard Greenstone features connect onto the

11

GDS service by registering at a single GDS server. The Greenstone servers register
with GDS servers in order to be identified in the Greenstone network. By use of the
GDS, the Greenstone servers may forward messages to other Greenstone servers on the
same GDS network. A list of initial GDS servers is available to the GS servers4. The
initially contacted server could recommend a list of GDS servers nearby the GS server.
This will be part of future work. Each GDS server holds alink list of both local GDS
servers (child servers in the tree) as well as local GS servers. An example is shown
in Figure 8. In the figure, we show the fragment of a network: Each GDS server’s list
contains references to its parent within the GDS network, its children and its GS clients
(GS servers). As this example illustrates, the servers on each stratum can maintain links
to GS clients, not only the tree leaves (see GS serverStockholm being linked as client
to GDSserver5). Thus, the GDS tree is a doubly-linked tree. GDS servers could also
cache information, e.g., about GS clients registered at all servers lower down in the
hierarchy or about all GS client servers in the network. However, at present a specific
a caching strategy is not implemented but planned for future extensions.

Each GDS server can perform the following actions:

1. Registering of other servers (on the next lower stratum)

2. Registering at another server (on the next higher stratum)

3. Register any number of GS servers

4. Unregister any of the above.

5. Messaging

6. Identify connected GS servers to the network

The registration of or at other servers (Actions 1 + 2) is in principle similar to the reg-
istration of Greenstone servers with the GDS (using the same protocol with a differing
message content). Here, we focus on the description of the registration of Greenstone
servers at the network (Action 3) and the un-registration of Greenstone clients from the
GDS (Action 4). These actions as well as the messaging and the client identification
are described in detail in the next paragraphs.

Register a GS server with the GDS (Action 3) Figure 9 demonstrates the registra-
tion of a Greenstone server at the GDS network. For clarity, we show only the link
list of GDSserver1; the other lists are iconized. In this example, the new Greenstone
server isHamilton (see Figure 9(a)). ServerHamilton sends its registration message
to GDSserver1 (see Figure 9(b)). The server stores the identity of theHamilton
server in its local list of Greenstone servers, linkingHamilton into the GDS network
(see Figure 9(c)). Note that a Greenstone server should only register with one GDS
server. GDS servers may cache some or all responses forwarded through them, and
some or all registrations held by other GDS servers on lower strata beneath them.

4Currently, we support an open GSD network for all servers. Several strategies are considered for future
work, e.g., initial connection only to the receptionist and all siblings under this receptionist, and explicit
exclusion from or inclusion into the GSD

12

stratum 3

stratum 2

stratum 1

stratum 3

stratum 3

...

......

......

......

......

GDS parent:
GDS server 3

GS clients:

GDS children:

1

2

3

4

5

Hamilton

(a) Step 1

stratum 3
stratum 3

stratum 1

stratum 2stratum 3

Hamilton

GDS protocol

1

2

3

4

5

(b) Step 2

stratum 1

stratum 2

stratum 3

stratum 3

stratum 3

Hamilton

......

......

......

......

GDS parent:
GDS server 3

GDS children:

GS clients:
...

4

5

Hamilton

1

2

3

(c) Step 3

Figure 9: Registering (adding) a GS server at the GDS

Unregister a GS server with the GDS (Action 4) Similarly, Figure 10 shows the
sameHamilton server un-registering itself from the GDS network (see Figure 10(a)).
A message is sent to the GDS server (see Figure 10(b)). In this case, the GDS server
not only removes the registration fromHamilton, but also passes a message through
the rest of the network cancelling this registration. This strategy avoids any prob-
lems should the registration ofHamilton have been cached anywhere else (see Fig-
ure 10(c)).

stratum 3

stratum 1

stratum 3

stratum 3

stratum 2

Hamilton

......

......

......

......

GDS parent:
GDS server 3

GS clients:

GDS children:

...

1

2

3

4

5

Hamilton

(a) Step 1

stratum 3

stratum 3
stratum 3

stratum 2

stratum 1

Hamilton

......

......

......

......

GDS parent:
GDS server 3

GDS children:

GS clients:
...

GDS protocol

1

2

3

4

5

Hamilton

(b) Step 2

stratum 1

stratum 2

stratum 3

stratum 3

stratum 3

GDS children:

......

GDS parent:

......

GDS server 3
......

......

GS clients:
...

3

4

5

Hamilton

GDS protocol

1

2

(c) Step 3

Figure 10: Un-registering (deleting) a GS server from the GDS

Messaging (Action 5) Every message is sent in an XML format across TCP/IP using
SOAP. A Greenstone server that wishes to send a message across the GDS network
initially sends the message to the GDS server at which it is registered. The GDS server
then takes control of how the message is sent across the GDS network. With only one
exception (which is described subsequently), messages sent into the GDS network do
not receive a response or acknowledgement. Messages within the GDS system may be
sent in one of three ways: Broadcast, point-to-point, multicast. At present, point-to-

13

point and multicast messaging are not implemented is not implemented since they are
not required in the current design of the alerting service.

For broadcast messages, each message will be forwarded to all Greenstone servers
on the GDS network, and from these to their registered Greenstone servers. The prin-
ciple is illustrated in Figure 11. The GDS server that first receives the message then
broadcasts it to all other Greenstone servers registered with it, GDS servers registered
with it, and the GDS server on the next higher stratum. Further GDS servers repeat this
pattern, forming a complete span of the GDS tree. If a given Greenstone server is not
presently available or active, any messages forwarded to it are simply dropped by its
GDS server – message sending is only ‘best-effort’.

stratum 1

stratum 2

stratum 2

stratum 3

stratum 3

stratum 3

stratum 2

5

6

7

Hamilton
London

GDS protocol

GDS protocol

1

2

3

4

Figure 11: Broadcasting a message

Call for participants in the GDS (Action 6) The one exception to the convention
of non-acknowledged messages is when a call is sent to the GDS network to return the
names of all Greenstone servers in the network. In this case, the originating server is
sending a query to the network, and expects a response. The call is distributed within
the GDS network; Figure 12(a) shows the communication for the case that no caching
is implemented.

A second exceptional property of this message is that no other Greenstone servers
receive a message (see Figure 12(b)), i.e., call and response are answered by the GDS
network without interacting with the Greenstone servers. As response, each GDS
server lists the servers registered at it. The response to this message will be received in
separate parts by the originating Greenstone server – i.e. the server requesting a list of
all servers.

3.2 Alerting for Solitary Collections

Users submit their profiles to a certain Greenstone server. The profiles reside at the
server that the user submitted the profile to. Event messages are created by servers;
they have to me filtered according to the user profiles. After filtering the local profiles,
the events are flooded to all servers using the GDS network. For event flooding of the
network, we use the broadcast facility of the GDS. This technique is inspired by the
event floodingas proposed by Carzaniga [2]. Its implementation significantly differs

14

stratum 1

stratum 2

stratum 2

stratum 3

stratum 3

stratum 3

stratum 2

6

7

Hamilton
London

GDS protocol

GDS protocol

1

2

3

4

5

(a) Step 1

stratum 1

stratum 2

stratum 2

stratum 3

stratum 3

stratum 3

stratum 2

6

7

Hamilton
London

GDS protocol

GDS protocol

1

2

3

4

5

(b) Step 2

Figure 12: Call for participants in the GDS

from their design as here we use the Greenstone Directory Service as communication
network and not the network formed by Greenstone servers. The reasons for this design
have been discussed in Section 1 (potentially disconnected network fragments and dan-
gling profiles). Each server filters the incoming events according to the local profiles
and notifies its clients accordingly.

Figure 13 shows a communication example. Greenstone servers have clients con-
nected that define profiles for the alerting service. The clients and their profiles are de-
picted as small circles connected to the servers. Let’s assume a new collection is formed
at theHamilton server. Subsequently, an event message is created byHamilton
server announcing the documents in the new collection. The message is forwarded
upwards in the GDS tree and downwards towards the leaves using the GDS protocol
(indicated in dotted arrows). We consider the client connected to theLondon server:
Their profile is stored at theLondon server. As soon as the event message arrives at
the server, it is filtered and a notification is send to the client.

In the case of solitary collections, i.e., without distributed sub-collections, the
server where the collection resides on issues the event message. The task is more
challenging once the collection also supports sub-collection on other servers.

3.3 Alerting for Distributed Sub-Collections

If a sub-collection that resides on a different server than the collection is rebuild, the
server where the collection resides on is not aware of the rebuilt sub-collection. For il-
lustration, see in Figure 14 the sub-collection ofHamilton.D with London.E. There-
fore, it cannot issue the event message. The server where the sub-collection resides on
is not ware of the (sub-) collection being part of another collection. It can therefore only
issue event messages regarding the (sub-) collection as an independent public collection
or part of a local collection – this case has been addressed in the previous paragraph.
Using this event message as a notification for the other server is not possible, because
the server might not be aware of the collection this (sub-)collection belongs to (in case
of different entry collections). The problem is even greater is the sub-collection is a
private sub-collection to a virtual collection. No event message would be issued in this

15

stratum 1

stratum 2

stratum 2

stratum 3

stratum 3

stratum 3

stratum 2

1

2

3

4

5

6

7

Hamilton
London

GDS protocol

GDS protocol

Figure 13:Concept of Alerting about collections on single hosts using the Greenstone
Directory Service

case.
We propose therefore the following hybrid design: In addition to client profiles, the

alerting service supports internal server profiles that observe changes in sub-collections.
The profiles are handled differently to the user profiles: they use theprofile forward-
ing approach. Server profiles are forwarded directly to the servers providing the sub-
collection. This communication uses the Greenstone server network and the GS proto-
col. Event messages are filtered close to the event publishers and the servers acting
as profile clients are notified directly without using the GDS. Considering our ex-
ample in Figure 14, we assume again that collectionD on serverHamilton has a
sub-collectionE on serverLondon (indicated by the conceptual link).Hamilton reg-
isters a profile atLondon, using the GS protocol communication network. On event
in London.E, London filters the event against the profiles and notifiesHamilton
about the event. AfterHamilton learns about the event, it can announce the event in
London.E as event from collectionHamilton.D using the GDS network as described
before.

Thus, in a second step the events in sub-collections are announced as events within
the entry collection using the mechanism already described in the previous paragraph.

4 Summary & Future Work

This paper describes the technical details of distributed alerting in Greenstone: (1) the
methods to access federated and distributed collection in Greenstone (using the Green-
stone network), (2) the design and implementation of the Greenstone Directory Service
to connect the dynamic and fragmented network parts, and (3) distributed alerting using

16

stratum 1

stratum 2

stratum 3

stratum 3

stratum 3

stratum 2

stratum 2

1

2

3

4

5

6

7

Hamilton
London

GDS protocol

GDS protocol

conceptual sub−collection link

Hamilton London

D E

GS protocol

event(E)

profile(subsection E)

Figure 14:Concept of Alerting about distributed collections using the Greenstone Di-
rectory Service

both the Greenstone network and the Greenstone Directory Service.
We follow a hybrid approach to implementing the alerting service over open and

distributed Greenstone networks by:

1. combining communications in two different networks, i.e., using the Greenstone
network and the Greenstone Directory Service

2. using two communication protocols, the SOAP-based Greenstone protocol and
the XML-based GDS portocol

3. using a combination of two versions for identifying communication partners:
point to point communication with directly connected GS server (hosting dis-
tributed collections) and anonymous broadcast with the rest of the network con-
nected by the GDS (hosting federated collections).

4. using a combination of two different (opposite) filtering strategies (event flood-
ing in the GDS and profile forwarding in the GS network) for federated and
distributed collections

As future work, we plan to thoroughly evaluate the scalability of the alerting using
both the GDS and the GS network; so far, initial tests have been promising. Different
caching strategies for link information in the GDS will be evaluated. We also plan to
integrate a smooth transformation of Greenstone search queries into profiles and vice
versa in order to integrate the user experience of alerting service even more with typical
Greenstone interactions. MOre details about the profile language and the implementa-
tion of the local alerting functionality can be found in [9].

17

References

[1] David Bainbridge and Ian H. Witten. Greenstone digital library software: current
research. InJCDL ’04: Proceedings of the 4th ACM/IEEE-CS joint conference
on Digital libraries, pages 416–416. ACM Press, 2004.

[2] A. Carzaniga.Architectures for an Event Notification Service Scalable to Wide-
area Networks. PhD thesis, Politecnico di Milano, Milano, Italy, December 1998.

[3] A. Hinze. A-MEDIAS: Concept and Design of an Adaptive Integrating Event
Notification Service. PhD thesis, Freie Universität Berlin, July 2003.

[4] David K. Hsiao. Federated databases and systems: part i — a tutorial on their
data sharing.The VLDB Journal, 1(1):127–180, 1992.

[5] M. Frans Kaashoek, Andrew S. Tanenbaum, and Kees Verstoep. Using group
communication to implement a fault-tolerant directory service. InInternational
Conference on Distributed Computing Systems, pages 130–139, 1993.

[6] David L. Mills. Internet time synchronization: The network time protocol. In
Zhonghua Yang and T. Anthony Marsland (Eds.), Global States and Time in Dis-
tributed Systems, IEEE Computer Society Press. 1994.

[7] Luc Moreau. Distributed directory service and message routing for mobile agents.
Sci. Comput. Program., 39(2-3):249–272, 2001.

[8] B. Clifford Neuman. The prospero file system: A global file system based on the
virtual system model.Computing Systems, 5(4):407–432, 1992.

[9] A. Schweer. Alerting in greenstone 3. Master’s thesis, University of Dortmund,
Germany, 2005.

[10] Ian H. Witten and David Bainbridge.How to Build a Digital Library. Elsevier
Science Inc., 2002.

[11] Ian H. Witten, Stefan J. Boddie, David Bainbridge, and Rodger J. McNab. Green-
stone: a comprehensive open-source digital library software system. InDL ’00:
Proceedings of the fifth ACM conference on Digital libraries, pages 113–121.
ACM Press, 2000.

18

