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Abstract: Polycyclic Aromatic Hydrocarbons (PAHs) are compoundsifbin the environment
that can be harmful to humans. They are typically formed duadomplete combustion and as
such remain after burning coal, oil, petrol, diesel, wooniidehold waste and so forth. Testing
laboratories routinely screen soil and water samples tékoem potentially contaminated sites for
PAHs using Gas Chromatography Mass Spectrometry (GC-MS3CAMS device produces a
chromatogram which is processed by an analyst to deterrhmedncentrations of PAH com-
pounds of interest. In this paper we investigate the apipdicaf data mining techniques to PAH
chromatograms in order to provide reliable prediction ahpound concentrations. A workflow
engine with an easy-to-use graphical user interface iseahéart of processing the data. This
engine allows a domain expert to set up workflows that cantleadata, preprocess it in parallel
in various ways and convert it into data suitable for dataimgimnoolkits. The generated output can
then be evaluated using different data mining techniguegetermine the impact of preprocessing
steps on the performance of the generated models and fangithe best approach. Encourag-
ing results for predicting PAH compound concentrationgeims of correlation coefficients and
root-mean-squared error are demonstrated.
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1 INTRODUCTION

Chromatographic (often referred tolaghenated) techniques, typically using gas or liquid chro-
matography coupled with mass spectrometry (GC-MS, LC-MB)w an analyst to detect a vast
array of compounds in a sample. Such techniques have wigladpise in environmental appli-
cations (Rrez-Paén et al. [2004], Christensen and Tomasi [2007] and Hupp.¢2@08]). For
some problems, such as detection of PABsked samples containing known compound con-
centrations are processed to establish a calibratimmlard. By knowing how much of each
compound is injected into the sample in the calibrationddadh it is possible to determine the re-
lationship between that amount and the amount appearingeochromatogram. Chromatograms
of soil and water samples are processed to determine veetatthe spiked sample, how much of
each of the PAH compounds is present in the sample.

In processing a chromatogram an analyst typically usesdl@ning methodology. They use
software to work through the data using their knowledge axmkrence to locate peaks that
represent potential PAH compound concentrations. Oncaddcthey ensure that the peak has
been defined correctly, adjusting it if necessary with theuse and using a software package to
perform numeric integration to determine the area undepdlad. This area is then multiplied by a
scaling factor determined from the calibration standamditiermine the compound concentration.

The aim of this paper is to demonstrate that data mining igadles, namely preprocessing and
learning algorithms, can be used to augment this methogetbgre are several instances in the
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literature of the use of such techniques in environmentaliegtions (Wu et al. [2008], Chau and
Muttil [2007] and Wu and Chau [2006]). By employing supeeddearning we aim to determine
the compound concentrations by learning the relationshtéen the calibration standard and
the sample chromatograms labelled by the analyst, andatkisnto predict the PAH compound
concentrations of unanalysed chromatograms.

The remainder of this paper is organised in the following wagction 2 discusses PAH chro-

matograms and the type of preprocessing that is neededntéhese into data instances suitable
for supervised learning. The complexity of this step ndlyrsuggests a flow-based approach.
This general process and the specific process adopted fé*AtHechromatograms analysed in

this paper are described in Section 3. The experiments dMhedata are described in Section 4
and results are discussed in Section 5. Conclusions anefwrk are presented in Section 6.

2 PAH CHROMATOGRAMS

In gas chromatography a sample is injected into a heatedeeifor example, a long glass capil-
lary tube. Due to the different chemical properties in thmgi, the time of flight of the sample
passing through the column is different (and known) foredéht compounds. The time taken
by a compound to pass through the column is called the retetithe, and compounds are said
to elute from the column. At the end of the column a detectothis case a mass spectrome-
ter (mass-spec), ionises, accelerates, deflects and sl#tecteparated ionised compounds. The
important action here is the detection of molecular fragimesing their mass to charge ratio.

Thus, both units work to produce a fine-grained identificati the components of the sample.
Having a mass spectrometer after gas chromatography isted$er some samples as they may
contain compounds that have the same retention time: tw@og tompounds may co-elute from
the column and the mass-spec must be used to differentexte tim this context, a chromatogram
is essentially a sequence of mass-spec scans over timeoftersviewed as a two-dimensional

plot of the total ion count of a scan against time. Figure 1 éheomatogram from a sample

that has been spiked with the sixteen PAH compounds of stteles calibration compounds.

These calibration compounds are spiked into all samplesaivk concentrations. Examples
of such calibration compounds are, Naphthalene-d8 andnByd&0. They are related to the
PAH compounds of interest but not expected to be presenteirsdii and water samples, their
role is purely to provide calibration. The calibration stard provides two essential pieces of
information. For each PAH and calibration compound it iffeegt the approximate retention time

and the peak area which leads to the concentration. The spassdata provides an additional
source of valuable information. Each compound has a massfaperprint. These fingerprints

can be used to distinguish co-eluting compounds when therfinigts differ.

Several transformation steps are needed in order to tunw@inograms into data instances suit-
able for supervised learning. The attribute-value repregimn used by learning systems is fun-
damental. Raw chromatograms do not naturally contain timesaimber of points both in terms
of the retention or the mass-spec dimensions. For the npegséémension we simply choose the
most abundant ion for the PAH compound we are modelling. fi@rétention time dimension we
extract from the chromatogram a window around the expeeteation time (from the calibration
chromatogram) for both the PAH and the calibration compsuwfdnterest. We then interpolate
the data in the window into equi-distant points. Thus, edtfibate is an equi-distant point in
time and each value is the ion count for the most abundantii@mdpy the mass-spec fingerprint.
This representation overcomes the additional problem isenia the mass-spec dimension.

This approach highlights a more general requirement fdopming and evaluating preprocessing
steps for complex noisy data. In order to accommodate thihawe developed a flow-based
processing system that is flexible enough to permit expetiation around preprocessing of data.
A flow establishes a documented template for a particulaliGijn removing ambiguity from
the process.
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Figure 1: Chromatogram containing the PAH compounds oféste The x-axis is retention time,
while the y-axis is total ion count

3 FLow

TheFlow is a workflow engine with a graphical editor, allowing a useexpress complex process
flows for transforming chromatograms into data suitabletti@ Machine Learning Workbench
WEKA (Witten and Frank [2005]). This enables the user to quiestablish different flows and

evaluate and compare the data that is generated at each step.

A flow is represented by a sequence of atomic actions, calibtats. Even though onlyi-to-1
relationships are allowed in a flow, spectahtrol actors allow the user to implement branch-
ing (1-to-n relationship) and piping (like the Unix commahée) and build complex, directed,
acyclic graphs (DAGs). See Figure 2 for an example flow.

The Flow uses a strict type system in order to ensure thatdatly is being exchanged that can
be processed. If an actor produces data (output produber),t specifies the type of data that it
produces, for example, textual data or chromatogram datetstes. If an actor accepts input data
(input consumer), then it specifies as well what type of dadadepts. Before a flow is executed,
the compatibility of all inputs and outputs is checked. Ghbll connections are satisfied will the
flow be run.

Each actor falls into one of the following categories. Aroathat does not generate nor consume
any data is called Singleton. These are normally used to set global system parameteractan
that generates data, but does not consume any is referredat8oarce. A Source is used, for
example, to retrieve chromatograms from a database. Czelyean actor that accepts data, but
does not generate any is calledSak. These are needed for data output, for example, saving
instances to a file. Most of the data preprocessing is acthieyeising alransformer actor.

Figure 3 shows the details of the flow used for generating &éte fibr the experiments described
in this paper. The individual steps are explained in detlibly:

e The first actor, theGlobal Actors singleton, allows the declaration of actors that can be
accessed from anywhere in the flow, providing a synchronizeshmon entry point. This
is useful for cases in which several sub-branches add thiirubto the same actor, for
example, @isplay actor.
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Figure 2: Flow layout with several branches.

e The next actor, th&lobal ChromatogramFilter, is anotheiSingleton setting the filter that is
applied to chromatograms when they are loaded from the dsgalin this case, rounding
the mass to charge ratios to full integers.

e The ChromatogramldSupplier actor is theSource of this flow, querying the database for all
the database IDs of the chromatograms that fullfil the speti®quirements (time frame,
instrument, maximum number of IDs to be returned, etc.).s€hae then fed into the flow
one at a time.

e The Tee control actor is only used for informational purposes, mivfeedback to the user
of what chromatogram is currently being processed by dygmiga dialog containing the
IDs.

e TheChromatogramDbReader reads the actual chromatogram data associated with arcertai
identifier from a database and passes it on. This actor isrgid@ifansformer in this flow.

e The Branch control actor passes the chromatogram on to all the sulzbeanfor further
processing. The processing is done in parallel to take adgarof multi-core architectures.

e TheOutlier detector and th&ejector actors ensure that only chromatograms that have the
required targets (for example, the PAH compound Pyrene @ndaiibration compound
Pyrene-d10) are passed on. Rijector actors feed the rejection messages into the same
Display actor labeled "Rejection messages”, located beneati@Gtbleal Actors singleton,
using the special purpose siftobal Snk.

e Asthe set-up of a GC-MS instrument is subject to constam@have standardize the entire
chromatogram to a reference chromatogram withState filter.

e TheParalld filter generates a new, artificial chromatogram based on tyu¢-@istant win-
dows of the chromatogram. The first window is around the catibn compound peak, for
example Pyrene-d10, and the second around the target coohfou example Pyrene. For
each window, only the most abundant ion of that compoundasd.us

e The remaining three actorslakel nstance, Rename andlnstanceDumper turn the incoming
chromatograms into data suitable for evaluation within WEKA
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Figure 3: Flow layout showing details of the branch proaegByrene data.

4 EXPERIMENTS

Datasets containing each of the sixteen PAH compounds wediped from the flow described
in the previous section. The compounds, their keys in futaides and the number of instances
are given in Table 1. The numbers of chromatograms per contpearies partly because of the
rejection mechanisms defined in the flow and partly becausatmbers of tested compounds
are not evenly distributed. Table 2 contains the key for edgbrithm used in the experiments.

Table 1: Sixteen PAH compound datasets and sizes
Key Dataset Number of Instances

(a) Acenaphthene 1023
(b) Acenaphthylene 1091
(O] Anthracene 1196
(d) Benzo[a]anthracene 1252
(e) Benzo[a]pyrene 1141
® Benzol[b]fluoranthene 1211
(9) Benzo[ghi]perylene 1205
(h) Benzo[k]fluoranthene 1201
0] Chrysene 1284
0] Dibenzo[ah]anthracene 829
(k) Fluoranthene 1435
0] Fluorene 1121
(m) Indeno(123-cd)pyrene 1095
(n) Naphthalene 1828
(0) Phenanthrene 1625
(p) Pyrene 1586

As can be seen, a wide variety of methods was employed aciffsiedt learning paradigms
ranging from simple linear methods to more sophisticatedlimear techniques. All experiments
were conducted using 10x10 cross-validation with signifieatesting to 5% significance via the
corrected paired t-test (Nadeau and Bengio [2001]) as useldei WEKA Experimenter. All
methods were tested for significance against Gaussian $dexéMackay [1998]) which often
performs well across a range of application domains. Théaaistvary in complexity but were
all able to produce results on all datasets in reasonabée(time longest time taken for a single fold
was under one minute). None of the methods were optimisethé&r parameters, which could
make a significant difference to the results. The algorithmesall standard methods using default
parameters, and all available in WEKA: basic linear regomgsspartial least squares regression,
support vector machine regression using a radial basigifumkernel (Smola and Schoelkopf



Holmes et al. / Predicting PAH concentrations in soil and wate

Table 2: Key to Regression Methods used in Experiments

Key[  Regression Algorithm
1) Gaussian Processes (GP)
2 Linear Regression
3) Partial Least Squares Regression
4) Support Vector Machine with Radial Basis Function (RBF) kernel
(5) Model Trees (M5P)
(6) Locally Weighted Linear Regression

[1998]), locally weighted learning (Atkeson et al. [1996Bing linear regression to construct a
model from the fifty nearest instances to the test instance,naodel trees (Wang and Witten
[1997)).

Our work in (Holmes et al. [2009]) where a similar approactsagpplied to the suite of com-
pounds found in petroleum, inspired a second set of expetgremploying a transformation of
all data via the natural logarithm before applying each efrtiethods in Table 2. During testing,
exponentiation transforms the target value back once alggt prediction has been obtained.

5 RESULTS

The first pair of results in Tables 3 and 4 show the resultsdaretation coefficent (CC) and root-
mean-squared error (RMSE) respectively of applying thersthods to each dataset. The latter
pair of Tables 5 and 6 show CC and RMSE results for the log toamed data. In general, all
algorithms perform better using the log transformed versibthe data. Concentrating analysis
on Tables 5 and 6, Gaussian Processes are clearly the supettod. The lazy learning method
coupled with linear regression is almost as good, it is oiyngicantly worse forChrysene.
Generally, for both CC and RMSE the algorithms improve mgy¥iom left to right in each table.
Aside from support vector machines, where parameter tugsiogicial, the sophisticated methods
dominate the simple techniques. For the best methods, thelation coefficients are very high

Table 3: Correlation coefficients and standard deviatiamsafgorithms 2-6 against Gaussian
Processes

PAH €] 2 3 4) (5) (6)

(a) 0.960:0.04  0.794:0.24 0.9370.06 0.938:0.06 0.913:0.14 0.894:0.14
(b) 0.928+£0.12  0.747#0.41 0.872£0.18 0.918:0.08 0.878:0.15 0.764:0.34
(©) 0.965-0.03 0.892-0.06 ¢  0.940+0.04e  0.94610.04 0.945:0.10 0.956:0.04
(d) 0.990+0.01  0.949:0.04e¢  0.901+0.13e¢  0.973:£0.02e  0.900+0.20 0.882-0.28
(e) 0.971-0.02  0.834:0.22 0.934:0.04e  0.953+-0.03e  0.914£0.10 0.929:0.10
® 0.970+0.01 0.916£0.04e  0.935+-0.03e¢  0.958:0.03 0.9310.11 0.933:0.07
(9) 0.965:0.03  0.843:0.07e  0.898:0.05e¢  0.938:0.03e  0.958+-0.06 0.968:0.02
(h) 0.966£0.03  0.932:0.04e  0.941+0.03e¢  0.94%+-0.03e  0.937£0.08 0.926:0.14
(i) 0.974+0.02 0.92#40.05e¢  0.915+-0.10 0.952:0.04 e  0.955+0.06 0.908-0.14
(0] 0.901+0.10 0.668:-0.32e  0.750+0.12e¢  0.825+-0.11e  0.871£0.12 0.903:0.11
(k) 0.994+0.01  0.9150.17 0.981#0.01e 0.985-0.01e¢  0.989£0.01 0.96@:0.10
0] 0.940+-0.08  0.816:0.27 0.915:0.12 0.896:0.13 0.93#0.12 0.932:0.12
(m) 0.94G£0.06  0.75@0.13e  0.791+0.11e  0.844+-0.09e¢  0.888£0.17 0.913:0.09
(n) 0.989+0.01 0.963:0.03e  0.9770.02e¢ 0.97740.02e  0.988:0.01 0.9810.02
(o) 0.968+:0.04  0.8170.24 0.883t0.14e  0.943+0.07 0.923:0.15 0.8810.16
(p) 0.993:0.00 0.96@:0.05 0.981#0.02e¢ 0.986+0.01e¢  0.987+0.04 0.939:0.17

o, e statistically significant improvement or degradation

and their standard deviations are typically very low. Thidi¢cates that the correlation coefficients
are consistently high. The RMSE values in Tables 4 and 6 a@rasstable. In some cases the
average standard deviation is larger than the average étowever, these values are still quite
reasonable given the nature of the data. The data was obhfaome an archive and it has not been
possible to guarantee that all chromatograms have receeert labelling. Some of the data
will not have been used in practise because it did not meetrdadry quality control standards.

We have to, therefore, assume a degree of class noise. Itioaddn some of the samples the
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preprocessing may have failed to find a peak for the calimegtandard and this would lead to
large predicted target values. Such data would be re-agdipspractise but was considered here
as we have not attempted to distinguish such cases. Givea tiileumstances these results are
still extremely promising.

Table 4: RMS error and standard deviations for algorithnésa2rainst Gaussian Processes

PAH €] (2 [€)] 4 ) 6)

(a) 21.94:11.34 59.2% 65.29 28.3& 13.130 25.44+ 9.69 33.94t 47.67 38.8¢ 29.18
(b) 28.83£23.73  112.18154.41 43.5% 28.010 36.00+:19.850 48.04t 41.59 103.1% 197.46
(c) 23.7#10.85 52.76 32.180 3164 9480 29.4H 9.72 36.46 87.62 26.2&c 10.88
(d) 43.49:23.08  106.26- 59.040  150.97:126.930 70.76+32.290  214.77602.90 408.76-1056.75
(e) 73.14£22.40  227.3%277.90 117.43 45.520 98.39+-30.900  143.25+130.36 118.93 110.34
® 143.674£50.78  266.34119.800  214.2G+ 63.360  175.24£70.37 202.13:150.56 217.5% 127.64
(9) 57.024.30 129.0¢ 32.780  104.55t 31.040 81.0%+25.340 65.56+ 31.46 62.0%¢ 28.96
(h) 56.71+20.31 86.5% 39.780 79.04 34.800 72.06+20.18 0 79.7% 56.81 79.9& 65.84
(0] 70.34+:22.61  137.96 83.790  127.64t 64.970 95.83£32.220 94.41+ 55.26 133.3%& 93.580
(0] 41.00+£22.19 107.8% 70.51o0  102.46t 81.970 59.65+24.74 0 47.60+ 25.41 46.0% 27.85
(k) 74.66£36.92  312.26-412.80 134.9% 56.390  113.40£58.930 99.60t+ 60.37 166.12 188.03
(0} 29.36+18.09 65.5F 61.91 49.4% 46.46 50.1221.36 0 40.52t 53.71 55.66 86.57
(m) 68.94-25.80 278.2%-247.790  144.67 57.390  121.7442.830  106.52-106.04 87.18& 43.28
(n) 55.63:20.54  104.5% 33.950 80.81t 25.650 80.53£28.97 0 57.81 27.27 83.24 62.67
(o) 71.68£39.42  434.5%997.05 156.98-113.580  101.15:£54.520  127.19£174.41 169.66- 165.44
(p) 64.24£21.54  142.44 74.800 98.3% 37.100 87.26+31.310 74.96+ 89.22 166.26 335.95

o, e statistically significant improvement or degradation

Table 5: Correlation coefficients and standard deviationsoly transform data for all algorithms
against Gaussian Processes

PAH (@) @) ®3) (4) ©)] (6)
(a) 0.971H0.04  0.9570.04 0.946:0.04 0.973:0.03 0.972:0.04 0.945:0.07
(b) 0.980+0.02  0.947#0.05e¢  0.97140.03 0.978:0.03 0.97@:0.04 0.938:0.09
(c) 0.986+0.01 0.963:0.03e  0.976:0.02e¢  0.976:£0.02e  0.982+0.02 0.979:0.02
(d) 0.996:0.00 0.988-0.01e  0.989+0.01e  0.9944+0.00 0.9930.01 0.995:-0.01
(e) 0.932£0.16  0.97@:0.02 0.972:0.01 0.9710.02 0.973:0.02 0.865:0.24
® 0.978+0.01 0.976:0.02e 0.9640.02e¢  0.967£0.02e 0.9674+0.02e¢  0.970+0.02
(9) 0.983-0.01  0.984:0.01 0.988:0.01 0.9870.01 0.988:0.01 0.987-0.01
(h) 0.975:0.01  0.969:0.02 0.969:0.02 0.9710.01 0.9730.01 0.957-0.03
() 0.981+0.01  0.97#0.02 0.978:0.01 0.978:0.02 0.9810.01 0.962:0.02 ¢
(0] 0.931£0.08  0.938:0.04 0.924£0.05 0.925:0.07 0.933:0.07 0.9530.03
(k) 0.997+0.00 0.986:0.01e¢ 0.985£0.01e 0.995+0.00e  0.994+-0.00e  0.995+0.01
0] 0.988+0.01  0.968:0.03e  0.966+-0.04 0.982£0.02 0.966:0.05 0.964:0.04
(m) 0.965:0.03  0.9510.04 0.943:0.06 0.949:0.06 0.96@:0.04 0.939:0.07
(n) 0.996+0.00  0.986:0.02 0.99@:0.01e  0.993+0.01 0.99#:0.00 0.995:0.00
(o) 0.969£0.04  0.92%0.11 0.969£0.04 0.9710.04 0.952:0.05 0.9190.14
(p) 0.995-0.00 0.993#0.01e  0.990+:0.01 0.993:0.00 0.994:£0.00 0.995-0.00

o, e statistically significant improvement or degradation

6 CONCLUSIONSAND FUTURE WORK

This paper has presented a data mining approach to the pralbleredicting polycyclic aromatic
hydrocarbon concentrations in soil and water samples. |Reshow that a data mining approach is
feasible and well within experimental error bounds culgeptactised by trained analysts. While
some of the compounds were predicted more reliably thamgithene of the algorithms’ param-
eters were tuned to produce optimal performance. For stippctor machines this is particularly
important. Ensemble learning is another option in termsctofeting performance from the base
methods described here. The other major consideration é&h&h or not there exists another
transformation of the data that provides better perforraahan the natural logarithm.

It will be important to tackle more challenging tasks in theufe. While we have presented
promising results from a cross-validation study, it is esisé that the application is assessed
operationally alongside the current methodology. Coti@tacoefficient and root mean squared
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Table 6: RMS error and standard deviations for log transfdata for all algorithms against
Gaussian Processes

PAH (1) () ) 4) ©)] (6)

(a) 16.85- 12.93 22,49 10.21 29.3115.920 20.76+13.37 17.9812.63 2421 15.50

(b) 18.78+ 11.44 35.6& 25.050 24.93+13.89 18.94 9.18 21.74:14.30 35.5& 34.93

(c) 14.98 6.47 27.5% 13.750 21.45+ 7.470 18.85+ 7.840 16.40+ 6.75 18.02 9.20

(d) 29.36t 13.25 53.9% 24.380 54.95+29.27 0 34.26+15.69 35.3%20.00 31.8& 15.92

(e) 107.58:138.41 84.7& 26.51 88.2827.46 76.3&31.60 75.1%28.05 196.76-303.10

(U] 125.674 49.24 14554 58.11o0  152.15-63.640  151.16£65.230  154.83£62.260  147.6% 68.05

(9) 32.34 16.63 42.74 17.050 36.97+13.92 39.46:-15.93 34.62-14.83 35.96- 16.07

(h) 50.72+ 13.76 56.66- 19.87 59.74:18.72 53.96:15.95 52.6%17.14 74.64 45.38

(i) 62.32+ 22.00 69.5% 28.49 73.54:25.26 0 66.56+25.66 62.6£23.76 87.3& 36.000
[0) 35.35+ 20.72 35.9%¢ 16.07 44.99-30.11 37.8%21.71 38.54:25.30 36.3% 22.34

(k) 57.18+ 28.37  121.8% 70.060  135.2Gt81.490 74.71+36.89 0 84.61+41.58 0 75.34+ 48.76

(0] 15.49+ 6.86 26.6% 13.470 28.29+15.430 18.03+ 8.16 22.2%15.52 25.54 14.140
(m) 54.67H 26.43 65.06- 33.23 67.5%-35.23 62.99-32.96 58.03:30.10 80.7& 56.72

(n) 36.82 18.05 68.5% 37.720 62.7%427.810 47.23£21.62 30.3%12.33 40.9& 26.44

(o) 71.82t 39.34  212.0&341.78 81.6134.06 62.24:42.04 86.2844.47 153.72420.51

(p) 53.02+ 21.32 82.74 36.080 83.30+41.140 62.4%4-23.63 0 61.00+-24.61 57.5%¢ 25.83

o, e statistically significant improvement or degradation

error do provide useful feedback on the error of a predictfoom an operational perspective
confidence intervals associated with a prediction woulddbemely useful.
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