
Specifying Collaborative Software: A Proposal

Steve Reeves
Department of Computer Science

University of Waikato
Hamilton

NEW ZEALAND
stever@waikato. ac. nz

Abstract
The aim of this paper is to illustrate how formal spec-

‘ifications for collaborative interactive systems might be
written. It presents a new modelling paradigm for cer-
tain systems. It also shows how formal software engi-
neering approaches can be useful. Specifically we choose
to specify a simple collaborative editor. This example
serves two purposes: it shows how clear and simple a
formal specification can be and it provides a basis for
making observations about the requirements for a spec-
ification language where the target is CSCW systems.
The specification of the system has three parts: the se-
mantics of the system; the syntax of the system; the
semantics of the collaborative aspects of the system.

1 Introduction
The aim of this paper is to recount our exploration for
a way of writing formal specifications for collaborative
interactive systems-one outcome of this exploration
has been a three-part framework which serves to char-
acterize such systems and which we propose as a useful
model.

Computer supported collaborative work (CSCW)
has all of the complications, subtleties and problems
of any interactive system plus the added interest of
having to deal with the fact that people are collabo-
rating. All this gives us the opportunity to cover many
conventional problems with specifying systems but also
allows us to suggest some extensions.

In order to illustrate our proposal we use as an ex-
ample a simple collaborative editor. As should be clear,
the languages we use and the framework within which
we work can be used on many different problems with
far greater complexity than the one we have chosen as
a vehicle in this paper. However, the editor is compli-
cated enough to allow us to show all the aspects of the
framework and languages we are proposing while at the

same time not being so complicated as to obscure the
more general points we are making.

The work described here is, as will quickly become
apparent, closely based on the work of Hussey and Car-
rington in 131. To set the scene (and to allow the current
paper to be reasonably self-contained) we need to re-
iterate some of the points made in the introduction to
[31.

A specification describes what a system provides for
its users but has nothing to say about how these provi-
sions are implemented, which is the task of the design
and implementation phases of development. This is be-
cause the job of a specification is to make as clear as
possible what a system does, which requires the free-
dom to pitch the description at a level of abstraction
which most closely fits a natural way of thinking about
the system. It avoids forcing our thinking too early
into the straight-jacket of a language developed for
the instruction of a machine. In particular, as Hussey
and Carrington say, “a user-interface specification does
not describe the perceptual (visual/audio) aspects of
user interfaces because such a description represents
design.” We are interested in formal specification for
many reasons, all of which have been extensively de-
bated. We will not rehearse those debates here: suffice
to say that the reasons include precision and lack of
ambiguity, conciseness, a basis for contractual agree-
ments between client and provider, a basis for build-
ing confidence in correctness and robustness (especially
important for safety- and security-critical systems), a
basis for various tools for supporting the development
process (animators, proof assistants, editors, language
checkers) and, finally, as basis for correct and complete
document and on-line help.

In the next section we introduce the example sys-
tem that we will use as a running example throughout
the paper which, though simple, does exhibit enough of
the typical attributes of a CSCW system to allow us to
show the need for the methods we are proposing. Since

52
O-8186-8828-9/98 $10.00 0 1998 IEEE

the language we will be using is an adaptation of Z
itself called Object-Z (see (6]), which is not very com-
monly known, we will also spend some time explaining
the specification in detail.

The specification of a system, as we propose it, has
three parts: the semantics of the system; the syntax of
the system; the semantics of the collaborative aspects
of the system.

The first two of these follow Foley and van Dam’s
own three-part model of an interface implementation
as adapted by Hussey and Carrington. The semantic
aspect of a specification associates an abstract mean-
ing with syntax; the syntactic aspect defines valid se-
quences of user-interaction with the system. The third
aspect (which is not part of specification) is lexical: it
describes the mouse movements and clicks, keyboard
presses and how the system is presented to the user.
Defining the lexical aspect of a system is a design ac-
tivity since it involves deciding on and describing how
the system looks to the user. This section and section
three consider the semantic and syntactic aspects of
our example system.

Our third aspect of the specification is required in
order to say what awareness users should have of, or
how they should be informed about, each other and the
system. This is a new requirement that comes from
the fact that we are dealing with collaborative systems
in which users need to be aware of one another. In
particular they need to be aware of each other via the
medium of the system and it is this mutual awareness
via the system that the third part of the specification
has to describe. This is considered in section four.

In section five we consider how the methods de-
scribed could be made fully formal.

The view that we take of work in software engineer-
ing in general (which should include HCI) and on user-
interfaces in particular follows very closely that pro-
pounded in [7], especially where the author says “By
means of formality, and abstraction in particular, we
can focus on and reason about the subtleties and de-
tails of using computers. Without formality it would
be far too easy to get lost in the intricacies of particular
implementations.” (page vi).

2 A Shared Text-editor
Imagine that our task is to write a formal specification
for a shared-text editor. We choose to present the so-
lution to this task in the conventional way for Z-style
specifications by giving the formal parts of the specifi-
cation followed by informal descriptions.

In order not to make the problem harder than it
needs to be to make our points (and in order to fit into

the space available) we have to make several simplifying
assumptions, as will become apparent.

First, there is a basic type that everything is built
on

[Char]

which introduces the set Char which contains all the
characters that a user will need when writing their doc-
uments. There is another basic type which allows us
to talk about the users:

[People]

introduces the set People, which is no further defined
since we do not need to know about any properties of
people for this specification.

The editor itself is a system which people (from
People) can join as users. Once they are users they
can participate in the editing of the shared document.
All users are aware at any time of the contents of the
document; in other words there are no restraints on
merely viewing the document. However, to insert or
delete text, or to even place a cursor in the text, a user
needs to lock a paragraph (which we take as the atom
out of which a document is composed: clearly alter-
native decisions could have been made about this) to
protect it from similar, simultaneous use by other users.
The text is a sequence of characters of type Char.

Having introduced the basic sets and given an infor-
mal description of the editor we can now turn to the
main part of the formal specification.

The idea of a paragraph of text is captured in a class
which contains all the expected state and functions for
modelling a paragraph of text, as shown in Figure 1.
(This part of our example is based on the text editor
given in chapter 18 of Diller [2]).

The state of an object in the class Paragraph is given
by two sequences of characters, one representing all the
text to the left of the current cursor position and the
other representing everything to the right.

When an object in this class is created the initial-
ization operation INIT is performed, which in this case
makes sure that the paragraph is empty of text since (>
denotes the empty sequence. Note that each paragraph
has a cursor and it is this feature that allows several
users to edit the document at once. This class has six
operations defined in it, each defined by a schema. Tak-
ing the schema for InsertLeft as an example: A(left)
indicates that the only state variable changed by the
operation is left; char? : Char declares the local (to this
operation) variable char? to be of type Char; the ? in-
dicates, by convention, that this is an input variable;
below the dividing line is the predicate part containing

53

_ Pamgraph

left, right : seq CHAR

_ INIT
left = ()
right = ()

_ insert-left
A(left)char? : Char

left’ = left* < char? >

Figure 1: The Paragmph class

logical statements which have to be true of this oper-
ation, so in this case left’ = left r\ (char?) indicates
that the value of the state variable left after the oper-
ation (denoted by the fact that the variable is primed)
is equal to the value of left before the operation with
char? appended to its right-hand end. Recall that left
is a sequence of characters.

Having specified the class of paragraphs we have to
look at how these are assembled to make a document
that is to be edited and also how the fact that there
may be several people editing the document at once
can be modelled. In fact, an editor will be modelled by
putting together both these components.

We choose to view a document simply as a sequence
of objects from the class Pamgmph. So, each para-
graph of the document being edited will have within it
the text being edited and the current cursor position
(modelled by the object’s state) and the person editing
that paragraph will be able to perform the operations
associated with the object.

The editor needs to model not only the document
being edited but also the interaction that each user is
making with the document. In this example we choose
to do this by allowing each user to lock a paragraph, as
long as no other user has locked it, and restricting users

to doing operations involving the cursor to paragraphs
they have locked.

All this is modelled by an object in the class Editor,
shown in Figure 2.

Note that the fact that a user may have several para-
graphs locked at once is specified very precisely and
concisely by the type of locked-by. Since the type given
is of a partial function with no further constraints it
means that not every paragraph has some locking user
associated with it (partiality) and that each paragraph
has at most one locking user (functionality). The only
paragraphs that can be locked are those that appear
in the document (domlocked-by G ranparas) and the
only people who can lock paragraphs in the document
are users (ran locked-by C users). The initial state of
the editor is one where there are no locked paragraphs.

A paragraph can be taken by a user only if it is not
already locked (para? E (ran paras) - (dom locked-by))
and then the locked-by function is updated so that
it now records the paragraph as being locked by the
user (locked-by = locked-by U pam? ++ user?). A para-
graph can only be dropped by the user who locked it
(Pam? I+ user? E lockedby).

54

_ Editor

users : IF People
pams : seq Pamgraphs
locked-by : Paragmph -c) People

dam locked-by E ran paras
ran locked-by C users

INIT
locked-by = PI

users’ = users U {user?}
Drop
A(locked_by)
user? : People
pam? : Pamgmph

{para? H user?} E locked-by
locked-by’ =

locked-by - {para? c) user?}

I

_ Take
A(locked_by)
user? : People
para? : Pamgraph

pam? E (ran pams)-
(dom locked-by)

locked-by’ =
locked-by U {Pam? I+ user?}

UserLeave 62 AnyUser l Leave
CursorLeft G AssociatedUser l selected_pam?.cursor_left
CursorRight 2 AssociatedUser l selected_para?,cursor_right
InsertLeft G AssociatedUser l selected_para?.insert-left
InsertRight S AssociatedUser l selected_pam?.insert-right
DeleteLeft P AssociatedUser l selected_pam?.delete_left
DeleteRight e AssociatedUser l selected_pam?.delete_right

Figure 2: The Editor class

55

3 Dialogue
The above specification defines the semantics of the
system. It says what the meaning of the operations
performable by the system are in terms of their effect
on the state.

The next thing we have to do is to specify what in-
teractions with the system are possible in terms of what
sequences of operations can be requested by the user
when they are using the system. That is, we now have
to deal with the syntax of the system. As in [3] we use
CSP definitions to specify what sequences of operations
count as allowable interactions with the system. First
the alphabet of the editor, that is the set of allowable
requests for operations to be performed, is defined as

o EDITOR =
{New User, UserLeave,
Take, Drop,
CursorLeft, CursorRight,
DeleteLeft, DeleteRight,
InsertLeft, InsertRight}

Note that the operations which are part of objects from
the class Paragraph are not allowed operations as far
as a user is concerned.

Next, we have to specify what sequences of opera-
tions the user can properly request of the system. We
do this by defining a process EDITOR which specifies
the interactions allowed at the outer level, that is with
the editor as a whole.

EDITOR = NewUser + EDIT

This means that the only operation a user can re-
quest when they first use the editor is NewUser. Hav-
ing successfully completed that operation, the system
then behaves as the process EDIT:

EDIT = Take + EDITPARA
1 Leave

Here the user has a choice: they can request a Take
operation and if the operation completes successfully
the system will behaves as the process EDITPARA;
or they can request the Leave operation and if that
completes successfully there are no further editor oper-
ations that they can carry out.

EDITPARA = x : { CursorLeft, CursorRight}
+ EDITPARA

1 EDITTEXT
1 Drop + EDIT

Here there is a choice: either the user can do one of
CursorLeft or CursorRight or they can proceed directly

with the process EDITTEXT or they can do Drop and
the system behaves as the process EDIT.

EDITTEXT = x : (DeleteLeft, DeleteRight,
InsertLeft, InsertRight} +
EDITPARA

Here the user can do one of the text-changing oper-
ations and then proceed with the process EDITPARA.
So, the syntactic specification explicitly defines what
sequences of interactions may be possible. For exam-
ple, note that a user cannot alter the state of a para-
graph until they have locked it. In fact, this could have
been inferred from the semantics of the system since the
operation InsertLeft, for example,

InsertLeft 2 AssociatedUser l
selected_para?. insert-left

requires that the operation AssociatedUser is carried
out and that is only possible if the user has locked the
selected paragraph, which is enforced by the predicate
part of AssociatedUser. Equally, the explicit fact that
UserLeave is available to any user who has no para-
graphs locked is implicit in the definition

UserLeave E AnyUser l Leave

However, there is certainly no harm in this redun-
dancy. Indeed, it is likely that we can make a definite
virtue of it since the interactions are made explicit in
the syntax and so are more easily seen to have been
provided by the system. The fact that they have been
correctly reflected in the (perhaps more complicated
and more subtle) semantics of the system can then be
checked and proved to hold, given suitable proof sup-
port.

Note that the fact we are specifying means, as ever,
that we want to say what a user can do by way of
interacting with the system, but not how they will do
it. As long as the designer, when deciding how a user
shall interact with a system-for example with a mouse
and menus, via typed text on a command line, using
a toolbar etc.-satisfies the constraints put in place by
the specifier, they are free to use whatever mechanisms
they feel will be most useful or suitable.

4 Global Collaborative Proper-
ties

The specification above certainly describes the func-
tions of the system and the allowable interactions.
However, there is still something missing: we have not

56

yet said anything about how the fact that this is a col-
laborative system, possibly with several users, should
affect the specification. For example, we have not said
what other users should be informed of when a new
user joins the collaboration. Neither have we said what
other users should be informed of when a user locks a
paragraph, for example.

Many of these sorts of conditions on collaboration
could be coded into the semantics in much that same
way as many of the constraints on allowable interac-
tion were. However, for the same reasons that we pre-
fer to explicitly specify the allowable interactions using
the methods of the previous section, we also prefer to
specify the collaborative aspects of the system explic-
itly. Again, this promotes clarity, may introduce some
redundancy (so providing checks that things that are
required have actually been specified) and also gives
us two formal statements whose correctness relative to
one another we might wish to prove. All of these facts
serve to encourage specifiers to think about the system
they are describing and make checks that everything is
as it should be.

The language we use to specify these global proper-
ties of the system is an agent-action logic as described
in [4]. For example, assuming that we have a predicate
present where present(x) is true if and only if person
x : People is present as a user of the editor (which is
another way of saying x E users within an object in
the class Editor) then we could write

t/x : People l (present(x) W
V y : People l informed(y, x))

which specifies that some user is present if and only if
all other users are informed of their presence. Also, the
fact that all users should be informed of the contents
of the document can be specified by

Vx : People l V p : Paragraph l
present(x) w informed(x, p.left r\ p.right)

In general we will want to write statements of the
form

S (P e [a, 4Q)
where S is some signature or declaration of variables

and their types, P is some precondition, a is some op-
eration, a is some agent which performs the operation
a and Q is some postcondition. The intended meaning
is that for each of the variables in S, if P is true then
whenever a is successfully completed by Q then Q will
be true. Here is an example of this form: if a user locks
a paragraph we probably want all users to be informed
of that fact and vice versa:

V x, y : People l V p : Paragraph l present(x)
ti [Take(x,p),x]informed(y,lockedby(p) = x)

This means that if t is some user then whenever the
operation Take is successfully carried out by them on
some paragraph p then every user will be informed that
p is locked by x.

In order to make these sentences easier to read we
introduce some two-dimensional structure to them (like
the structure we see in 2 and Object-Z). The example
above becomes

2, y : People
p : Paragraph

signature

1 present(x) precondition
I

1 Take(x,p) 1 x

informed(y,
locked-by(p) = x)

postcondition

We see that again we are able to write very abstract
specifications which are also completely precise and un-
ambiguous. Here is another example:

2, y : People
p : Paragraph

present(x)

DmP(xlP) I x

informed(y, 1 locked-by(p) = x)

which specifies that whenever some user drops a
paragraph everyone is informed that the paragraph is
no longer locked by them.

We can use this language to explore the idea of speci-
fying policy issues too. For example, assume that there
is some part of the system which records messages from
users on different subjects. We model this by

[IDENT, MESSAGE]
messages : IDENT ++ seq MESSAGE

where IDENT contains the names of subjects about
which messages (from the set MESSAGE) are sent and
stored. Now we can specify operations TellMe and
DontTellMe thus:

57

x : People
i : IDENT
m : seq MESSAGE

m = messages(i)
informed(x, i)

TellMe 1 x

informed(x, m)

2 : People
i : IDENT
m : seq MESSAGE

m = messages(i)
informed(x, i)

DontTellMe(i) 1 x

1 informed(x, m)

Much more can be said about this style of specifying
operations that affect informedness, but we leave that
for another time since we now need to consider some
more general concerns.

5 Formal concerns
Though we can give a well-defined semantics to almost
all of the above, there is still a gap which makes it
informal and descriptive, i.e. we could not, for exam-
ple, do any proofs relating the sentences above to each
other. The reason for this is that we have not given
a formal definition of the predicate informed. This is
not to say, of course, that the framework we have pro-
posed and the languages we have used to illustrate the
examples above have no value-given that there are no
other frameworks currently proposed which have even
the level of formality we have made available (which
given the fact that the three components of our frame-
work are, as languages, independent means that should
we want to we can do formal reasoning in the syntac-
tic and semantic phases and also within the collabora-
tive phase in the absence of informed) we have at least
made progress there-but the fact that we have given
precisely defined languages means that we can imme-
diately benefit from the usual positive points within

formal methods of precision, conciseness and the pos-
sibility of a basis for prototyping by providing inter-
preters for the languages used above.

Even given the absence of a semantics for informed,
if we intend to use this language as part of the specifi-
cation of a system then this is not likely to cause prob-
lems. The designer will simply have to decide whether
their proposed step towards implementation does actu-
ally fulfill some informal notion of having informed a
user of the value concerned-we shall at least been able
to communicate this part of the specification precisely
and unambiguously.

Examples of how a given designer or implementor
may choose to define informed are:

informed(x, y), where x and y are users, is made
true by having a scrollbar for each user y appearing on
the desktop of user x;

informed(x, y), where x and y are users, is made
true by having a window appearing on the desktop of
user x showing explicitly (perhaps by the presence of a
name or a cartoon or photograph or a real-time video
image of them) that user y is using the editor;

informed(x, p), where x is a user and p some infor-
mation to be made available, is made true by having
a window appear on the desktop of user x which rep-
resents the information p-perhaps by displaying text
if p is textual or a diagram or a photograph if p i s
diagrammatic or pictorial.

We have to remember that the essence of the job of
the specifier is not to say which of these should be used
but that one of these (or some other means) should
be used to satisfy informed. The decision as to how
informed is satisfied is decided on by the designer since
that is part of the activity that takes place during the
design, and the designer must not have these design
decisions pre-empted by the specifier. As ever we have
to keep in mind that specification says what should
hold (i.e. that informed is true) and it is not until we
get to design that how something is made to hold is
decided on.

As we said above, if we want the language to be for-
mal, so that we can do proofs involving it, for example,
then we need to go further. One way we could make
progress is to develop some axioms for informedness,
or perhaps more generally ‘awareness’, so that the lan-
guage has a formal meaning.

We might start from work on ideas like knowledge
which are, probably, close to the idea of awareness.
However, trying to formalize knowledge has kindled
a whole hard, interesting and very active area of ar-
tificial intelligence where the debates are still raging.
A second approach is to argue that while awareness
has some things in common with knowledge, it is a

58

much less complex idea and perhaps starting from
scratch and trying to assemble (guided by naive work
on knowledge) might be successful. In work on log-
its of knowledge the logic S4 is sometimes held up
as a starting point since its axioms are few and sim-
ple and (attractively) appear to embody some aspects
of knowledge. One example axiom is Icnozus(z, a) *
I;nour.s(~, knozus(~, a)) where I and D range over agents
and predicates respectively. It is not hard to see ob-
jections to this axiom in the case of knowledge since it
states that everyone knows what it is that they know,
i.e. that we are all, in some sense, perfectly introspec-
tive. However, if we think about the awareness ver-
sion of it aware(x, a) + awore(E, uware(z, a)) then it
is arguable that this does capture some of the sense
of awareness. It is hard to see how you could not be
aware of something that you are aware of. One aspect
of the difference between knowledge and awareness is
that awareness is surely a conscious state while much
knowledge gets deeply buried.

This is not the place to take these ideas any
further-that is done in [5], however, where the inves-
tigation of possible logical frameworks is considered in
some detail. However, the conclusion that seems to be
emerging from this work is that the idea of awareness
has so few logical properties that a search for an ax-
iomatization (or other formalisation) of it is doomed to
failure.

6 Conclusions
We have introduced and described a three-part model
for specifying CSCW systems. The three parts spec-
ify: the allowable interactions a user may have with the
system, the system’s syntax; the meaning of the com-
ponents of these allowable interactions, the system’s se-
mantics; what the user should be made aware of when
they are using the system. The system we have de-
scribed here is quite simple, yet we have been able to
introduce and discuss many aspects of the specification
of a CSCW system.

We have, of course, taken a very naive view of a
collaborative editor. Work is currently in progress to
apply to the method outlined above to realistic de-
signs, drawing in particular on some of the excellent
work by such, amongst others, as Beaudouin-Lafon and
Karsenty [l] on usability aspects of collaborative edi-
tors.

Once a system has been specified we need to use the
formality of the specification to support activities like:
making sure (perhaps by proof) that the system has
the properties required of it; that operations which are
intended to fit together to form larger operations really

do fit properly (for example, are the assumed outputs
of one operation really what the next operation is ex-
pecting as input); using the formal specification as a
basis for complete and clear documentation; taking the
opportunity of having to describe the system precisely
(just as we do when coding it) to think it out properly
(but at an abstract level, so that the system is more
clearly seen).

A major point of this sort of work is to describe pre-
cisely what the system does without any unnecessary
constraints on the designer when they start to decide
how the system should do things. This can be a hard
distinction to grasp and it can be even harder to reflect
in our actions. However, if we are to have any hope of
precisely describing what complex systems do, we must
seek to retain the distinction.

Acknowledgements
I am grateful to Hugh Anderson, Lindsay Groves and
Ken Robinson for recent conversations which has made
the need to look more pragmatically at the idea of
awareness all the more clear and for their suggestions
that pursuing the more pragmatic ideas around in-
formedness are likely to be more fruitful.

References
PI

121

PI

[41

[51

[61

M. Beaudouin-Lafon and A. Karsenty. Transparency
and awareness in a real-time groupware system. In Pro-
ceedings of UIST’9.2. ACM Press, 1992.
A. Diller. Z:An Introduction to Formal Methods (2nd.
ed.). J. Wiley and Sons, 1994.
A. Hussey and D. Carrington. Using Object-Z to specify
a web browser interface. In Proceedings of OzCCHI’96.
IEEE Computer Press, 1996.
S. Reeves. Specifying and reasoning about CSCW. In
F. Bodart and J. Vanderdonckt, editors, Proceedings of
3rd. Eurographics Workshop DSV-IS’96, pages 366-383,
Berlin, 1996. Eurographics, Springer-Verlag.
S. Reeves. Formalizing awareness: A survey of some
possibilities. In M.D. Harrison and J.C. Torres, editors,
Proceedings of 4th. Eurographics Workshop DSV-IS’97,
pages 341-358. Eurographics, 1997.
G. Rose. Object-Z. In S. Stepney, R. Barden, and
D. Cooper, editors, Object Orientation in Z, Workshops
in Computing, pages 59-77. Springer-Verlag, 1992.

[7] H. Thimbleby. User Interface Design. ACM Press and
Addison-Wesley, 1990.

59

