
Working Paper Series
ISSN 1177-777X

Digital Libraries on an iPod: beyond the client-server model

David Bainbridge & Steve Jones & Sam McIntosh & Matt Jones

Working Paper: 06/2007
October 24, 2007

c©David Bainbridge & Steve Jones & Sam McIntosh & Matt Jones
Department of Computer Science

The University of Waikato
Private Bag 3105

Hamilton, New Zealand

Digital Libraries on an iPod: beyond the client-server model

David Bainbridge, Steve Jones, Sam McIntosh
Department of Computer Science

University of Waikato
Hamilton, NZ

{davidb,stevej,sjm64}@cs.waikato.ac.nz

Matt Jones
Department of Computer Science

University of Swansea
Swansea, UK

m.jones@swan.ac.uk

ABSTRACT
This paper describes an experimental system that en-
hanced an iPod with digital library capabilities. Using the
open source digital library software Greenstone as a base,
this paper more specifically maps out the technical steps
necessary to achieve this, along with an account of our
subsequent experimentation. This included command-line
usage of Greenstone’s basic runtime system on the device,
augmenting the iPod’s main interactive menu-driven ap-
plication to include searching and hierarchical browsing
of digital library collections stored locally, and a selec-
tion of “launcher” applications for target documents such
as text files, images and audio. Media rich applications
for digital stories and collaging were also developed. We
also configured the iPod to run as a web server to provide
digital library content to others over a network, effectively
turning the traditional mobile client-server upsidedown.

Keywords: Mobile Digital Libraries, Open Source,
Multimedia.

1 Introduction
Digital Libraries are increasingly commonplace resources
we turn to for authoritative information. Starting first in
the scholarly world, their public profile has increased sig-
nificantly through initiatives at national libraries—such
as the US Library of Congress” American Memory—
and other egalitarian organisations, such as the Internet
Archive. Access is predominantly (nearly exclusively)
through the web, with the assumption that the user is
working from a desktop machine.

Some research has been conducted with mobile de-
vices in a digital libraries context, e.g. [1, 4, 5]. Typical
usage sees a device such as a PDA with wireless network-
ing, connecting to a central DL server through a web-
based interface tailored for a small screen. We charac-

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee pro-
vided that copies are not made or distributed for profit or com-
mercial advantage and that copies bear this notice and the full
citation on the first page.

c©2007 University of Waikato

terise this work as additive: fitting into the existing web-
based client-server model. This is largely due to most cat-
egories of mobile device being currently “lightweight” on
storage capacity, necessitating such a client-server model.

As with all things digital, continued technological de-
velopment of mobile devices means the equipment goes
faster and has more capacity as each year passes. In
the case of mobile digital libraries development, however,
there is a danger that the dominance of the client-server
model encapsulated in existing DL software for main-
stream use means that alternative modes of access might
be overlooked. In this paper we report on our experimen-
tation with going beyond this form of interaction; in par-
ticular we look at what happens when mobile devices have
large-scale storage capabilities.

Our work is based on iPod-Linux1 and Greenstone [6].
The former allows us to subvert a conventional iPod so we
can compile and run software (written in C and C++) on
it, namely the latter: Greenstone. Greenstone is a soft-
ware toolkit that encapsulates over a decade of digital li-
brary research at the University of Waikato, home to three
of the four authors of this paper. Downloaded hundreds
of times a day, one of its key adopters is the UN, who use
it to deliver full searchable content on humanitarian aid
to developed countries on CD-ROM that can be run on
“legacy” computers going back to Windows 3.1. Conse-
quently Greenstone has a small execution footprint which
lends itself well to the project in hand, in addition to the
authors’ familiarity with its code base. For this project
its client-server model is picked apart and reshaped as
needed.

The structure of the paper is as follows. First we pro-
vide details of the software foundation upon which the
work was built, and a basic command-line test that turned
out to be trickier to get working than one would have
liked. The groundwork established, we discuss various
types of digital library development on an iPod: an in-
teractive menu applications with rudimentary “launcher”
applications for text, image and audio; richer media pre-
sentations through the collaging of images and digital sto-
ries; and—turning the mobile client-server movdel on its
head—running the iPod as a web server. We conclude
with a summary of our findings.

1See www.ipod-linux.org for more details.

2 Software foundation
Most mobile devices—PDAs, phones and the like—are
“lightweight” on storage capabilities. A device that coun-
ters this trend in the iPod (with, in 2007, 80 GBytes the
norm), which allows for the intriguing possibility of run-
ning a self-contained mobile digital library.

Imagine being able to carry around a digital library in
your pocket! Full, finger tip access to millions of items:
text, image, audio, video, wherever you are. Really, wher-
ever you are: no need to be within a wireless hotspot, mess
around with ISP registration, or waiting for rich-media
content to be transferred to your device, as necessitated
by the mobile client-server model and the accompanying
rapid depletion of your battery power that goes with all
that communication.

Take the UN CD-ROMs on humanitarian aid that
have been developed so far: there are over 40 of them.
Given the full-text indexing with compression technology
Greenstone utilises, all could be fitted on to one iPod. Al-
ternatively, if literacy rates of end-users was of concern,
the digital material could be audio or video based—over
1,000 hours of audio or 100 hours of video comfortably
fit on to one 80 GByte iPod. If an village’s information
centre has a local area network, then why not allow the
iPod to be connected to that and run a web server? This
would allow those on the network shared access to the re-
source [2]. You wouldn’t even have to do this with the
latest, top of the range but pricey iPod model as there is
a buoyant market in second-hand iPods. Even Apple sell
reconditioned older models through their website for con-
siderably less.

To explore such possibilities, we have combined iPod-
Linux and the Greenstone Digital Library software. We
provide general details about these two components, be-
fore explaining the experimental work we undertook.

2.1 iPod-Linux

iPod-Linux (www.ipodlinux.org) is an open source
project, launched in 2004, with the aim of porting Linux
to the various generations of iPod. Based on a default
installation—which is achieved through a simple “Wiz-
ard” style graphical interface—a user’s iPod-Linux ex-
perience is interacting with a top-level application called
Podzilla, which serves as a substitute for the Apple iPod
interactive menu application. Traversing a hierarchy of
menus, many of the same features are available: for ex-
ample, launching MP3 files (playlists artist lists, etc. ac-
cessed from the iTunes Database on the iPod) and having
them play in the background while the user accesses fur-
ther functions is clearly the most desirable of these.

Of course, in addition to this, one of the points of the
project is that you can run other things as well. Podzilla
is designed around a module architecture and thus highly
configurable. Some of the example modules include
games such as Mastermind and Space Invaders, utilities
such as a calculator and colour picker; even the first-
person shoot-em-up game Doom has been ported! Ap-
plications don’t even need to be dressed up as a module,
as one of Podzilla’s applications is a file browser, which
can be used to launch any such addition to the file system.

Figure 1: A second generation iPod booting up in Linux

The system of modules installed is highly configurable:
the graphical installer also servers as an updater. The de-
vice can also be booted up in “Disk mode” a files copied
across or updated that way.

The work is based around uClinux—a minimalistic
distribution of Linux tailored for micro-controllers with-
out Memory Management Units (MMUs)—and success-
ful ports for 1st, 2nd, and 3rd generation iPods have al-
ready been achieved. Figure 1 shows a picture of a 2nd
generation iPod booting up in Linux. For more recent
iPods (4th, 5th, photo, video, nano) the core operating
system functionality is provided, however kernel mod-
ules for interacting with devices are less developed; two
omissions of note are audio in (recording) and network
communication (Firewire/USB). As a result, these models
are not (currently) officially supported by the project, but
in practical terms following the well-documented installa-
tion procedures is as straightforward for these models as
for the supported ones. At the time of writing, 2nd gener-
ation nano does not run Linux at all.

Fundamentally, to set up an iPod to run Linux one
reformats its harddrive. This step is not as drastic as it
first might appear, as the installation instructions take you
through a procedure that partitions the drive such that the
device becomes dual-boot if desired. It is therefore possi-
ble to retain your existing iPod data (music, photos and so
forth), although it is strongly recommended by the devel-
opers that a copy of such personal data be taken prior to
installation. It is even possible for the Linux side of things
to be able to access this data file area, such as the iTunes
Database.

As can be appreciated in a project where the full tech-
nical details of the device have not been disclosed, mess-

ing around with components at this level can have its
hitches, although in our experience this is extremely rare.
Apple provides software (initially a separate program, but
now a feature of iTunes) capable of returning an iPod to
its factory settings. So if things do get too badly scram-
bled, then there is a straightforward procedure to reformat
the device as an Apple-only software “pure” iPod, upon
which the installation procedure for Linux can be redone.

In the early days of the iPod-Linux project, reconfig-
uring an iPod to run Linux required the use of a series of
command-line utilities. This has, for the main part, been
replaced with a GUI-based installer that provides a layer
of abstraction from this (as mentioned above). Done in the
form of a wizard, clicking through the sequence of ques-
tions leaving values at their default will quickly yield an
iPod running Linux for you to explore.

Considered in more detail, the information garnered
by the installer controls whether the device is dual-
bootable or not, which operating system is the default (if
dual bootable), whether you want a copy of apple’s oper-
ating system partition to be taken first (useful for restora-
tion purposes, although not essential) and which software
modules for the main graphical application, Podzilla, are
to be installed. The command-line approach affords better
control over setup, however unless you have especially un-
usual needs, the graphical installer is normally sufficient.
Even if your needs include changing the version of the
kernel used or having a new module (that was not previ-
ously an option in the installer) included, modest editing
of a configuration file for the installer is all that is needed.

2.2 Development environment

Developing software to run on iPod-Linux requires a
cross-compiler that is run on a desktop machine (the host),
and then the generated executables are copied across to the
iPod (the target). When development of the iPod applica-
tion (or Podzilla module) is completed, the executables
would ultimately be bundled together and included as part
of the installer.

Development is most straightforward on a Unix-
based host machine: precompiled binaries for the cross-
compiler are available for Mac and Linux, for instance,
and these operating systems can access natively the Linux
partition on the iPod making it easy to adjust and update
the installation with freshly compiled code.

Things are a little more convoluted when using Win-
dows as the host but still workable. First, for the cross-
compiler to work Cygwin2 (a Unix-like environment)
needs to be installed—precompiled binaries are available,
however this port of the compiler is not as considered
as reliable as the others. In our experience, the Win-
dows cross-compiler worked fine compiling Greenstone
and other application code, but failed to successfully com-
pile the kernel. On Mac and Linux platforms all worked
without a problem. Second, updating the iPod is more te-
dious under Windows because the host cannot natively ac-
cess the iPod’s Linux partition. We found LTools (Linux
Tools) helped mitigate the latter somewhat by providing
Windows command-line utilities and a graphical interface

2See www.cygwin.com for more details.

for manipulating a Unix (ext2 and ext3) formatted parti-
tion [7].

2.3 Greenstone

Greenstone is an open source digital library toolkit [6].
Used out of the box it provides the ability to create col-
lections of digital content, to display the content in a web
browser and to access and search the collections that have
been built. Through UNESCO sponsorship the software
is fully documented in English, French, Spanish, and Rus-
sian; in addition, its web interface has been translated into
over 40 languages through volunteer efforts.

Countless digital libraries have been built with Green-
stone since its public release on SourceForge in 2000:
from historic newspapers to books on humanitarian aid;
from eclectic multimedia content on pop-artists to curated
first editions of works by Chopin; from scientific institu-
tional repositories to personal collections of photos and
other document formats. All manner of topics are cov-
ered: the black abolitionist movement, bridge construc-
tion, flora and fauna, the history of the Indian working
class, medical artwork, and shipping statistics are just a
random selection.

A wide variety of formats are accommodated, includ-
ing HTML, PDF, OpenOffice, Word, PowerPoint, and Ex-
cel document formats; MARC, Refer, Dublin Core, LOM
(Learning Object Metadata) and BibTeX metadata for-
mats; as well as a variety of image, audio, and video for-
mats. Greenstone also supports numerous standards in-
cluding OAI-PMH (Open Archives Initiative Protocol for
Metadata Harvesting), Z39.50 and METS (Metadata En-
coding and Transmission Standard) to assist interoperabil-
ity. Export options include Fedora, DSpace and MARC.
See the web-site www.greenstone.org for more details.

An end-user’s experience of Greenstone is through a
web interface, such as the one shown in Figure 2, taken
from the Human Info NGO’s Humanity Development Li-
brary.3 Documents in this collection can be searched by
chapter title, in addition to full text searching by chapter
or entire document. Alternatively, users might choose to
browse alphabetically by title, or hierarchically by sub-
ject or organisation. In Figure 2(a) the user has searched
within chapters for the word “environment” with a ranked
listed of matches displayed; in Figure 2(b) the user is
viewing the document that results from selecting the sec-
ond matching item: Chapter 3 of Teaching conservation
in developing nations.

Figure 3 shows the Greenstone Librarian Interface
(GLI), a graphical application for creating and maintain-
ing collections such as the Humanity Development Li-
brary. Through a system of tabbed panels accessed along
the top of the interface, the digital librarian decides what
files to include in the collection, what metadata is manu-
ally assigned (in addition to that automatically extracted
by Greenstone from the source files), the collection’s
searching and browsing capabilities, and the customisa-
tion of presentation details.

3www.nzdl.org/hdl

(a) Greenstone Collection interface (b) Greenstone Librarian Interface

Figure 2: Screenshots of Greenstone readers’ interface.

Figure 3: Screenshot of the Greenstone Librarian Interface

3 Software development and
experimentation

Our development and exploration of digital library ca-
pabilities on an iPod can be divided into five areas:
command-line test, interactive applications, collaging,
digital stories and web server. We review each of these
in turn.

3.1 Command Line Test

To immerse ourselves in the world of software develop-
ment for iPod-Linux, the first goal we set ourselves was
to compile runtime Greenstone (C++ code) such that is
could be run from the command-line. Executing the com-
piled program—either through the file browser provided
by Podzilla, or by adding it into the boot-up script—would
not be particularly useful for a user of the iPod per se;
Greenstone runtime is a CGI program and the result of
running it is to generate raw HTML as its output.

There was little problem compiling the software. The
cross-compiler available for the iPod is based around

gcc/g++, a compiler that has regularly been used to com-
pile the digital library project for over a decade. We were,
however, surprised by the results of running the com-
piled program which instantly resulted in a segmentation
fault the moment any printing or file input/output was at-
tempted. Some of the issues we found documented on the
ipod-linux.org site, the others we had to resolve from first
principles.

First the well documented issues. There are in fact two
cross-compilers in use for iPod-Linux: gcc/g++ 2.95 and
3.4.4. The former, which is a fairly old incarnation of the
compiler by today’s standards, is required to compile the
version of the Linux kernel used; the latter is used mostly
for applications for the iPod. It is well documented that
the 2.95 version of the cross-compiler does not implement
C++ IO terribly well, hence the moment Greenstone—
which exclusively uses C++ IO mechanisms over C—
does any file IO, it ends with a segmentation fault. We
wrote several small test programs to confirm this.

Moving to using 3.4.4 solved the file IO issue, how-
ever a new complication was that now it was any printing

to the screen (standard out and error using the C++ ob-
jects cout and cerr) that led to immediate segmentation
fault.4 Perversely, file IO was now working perfectly and
printing to the screen using C syntax (printf) was fine.
Again a series of small test programs were devised to shed
light on the problem, and led to the following conclusion.

Not many developers for iPod-Linux have been using
C++ and its possible the problem of using cout/cerr
syntax has not come to light if those that are coding C++
sure using C-level printf/fprintf syntax. The sit-
uation is quite likely, as cout/cerr is generally con-
sidered more verbose that the C approach. The C++
standard explicitly allows for freely mixing the two ap-
proaches with the same body of code, and while the C
method is more arcane, once mastered is a more concise
and faster way to achieve results making it an attractive
choice. In the Greenstone codebase, full and consistent
exploitation of the object oriented paradigm are embodies
in its design, which is why cout/cerr syntax is used
exclusively throughout the code.

Initialisation of global objects in C++ (as opposed to
primitive types such as int and float) is a tricky com-
ponent for a compiler to implement, due to the role con-
structors play in this, and the authors have had some ex-
perience with this failing to trigger correctly in previous
project work. A sample program was written (defining
a class, and instantiating an instance as a global objects)
that did indeed confirm there was a problem in the cross-
compiler in this regard. Extrapolating to cout/cerr,
these are, of course, global objects and if they have not
been properly initialised then it is not surprising that the
program has a segmentation fault when they are used for
printing. The hypothesis is consistent with what happens
with C++ file IO since this is done in terms of local vari-
ables declared and used within the program; it also ex-
plained why C-based IO syntax both to file and to the
screen embedded in C++ code worked unimpeded as they
do not require global object instantiation.

In terms of looking for a solution that would allow us
to run the Greenstone code on an iPod, we did not view re-
placing all cout/cerr lines with C equivalents as prac-
tical, or desirable as it would conflict with existing ob-
ject oriented programming aims. The solution that was
struck upon, after reading around the subject matter for
some time, was to use a part of the C++ standard that
governs the mixing of C and C++ IO. By default, these
two approaches are defined to be synchronised: a cout
in the code, followed by a printf, followed by a cout
again strictly preserves the order of printing. The standard
allows for this strict synchronisation to be relaxed with the
call:

ios::sync_with_stdio(false);

If put as the first line of the main() program, the out-
come of this—in terms of the problem we had—is that
cout and cerr are re-initialised as a result of calling
this—or rather, given the problem we had, these objects
were finally initialised correctly for the first time. With
this modification made, the command-line test of Green-
stone ran without fault.

4Presumably cin is affected too, however our tests did not
encompass this as it was not being used in the code being trialed.

3.2 Interactive Menu

The next step in developing Greenstone capabilities on an
iPod was to shift to an interactive mode of access. There
is a clear and direct mapping of the hierarchical browsing
capability in Greenstone (in a web browser) to the iPod
style of hierarchical menus.

To achieve this, we acquainted ourselves with the
developer’s guide for Podzilla and TTK (a GUI toolkit
loosely specially written for iPod-Linux) and set about de-
veloping a new module for the application that included
Greenstone browsing. The details of this are largely mun-
dane, however a few comments are worthy of remark.

The iPod Greenstone module works directly from
the files generated for a collection built on a host ma-
chine running a typical install of Greenstone (see Sec-
tionr̃efsec:greenstone). The iPod module needs to be in-
structed, through a configuration file in the Podzilla mod-
ules folder, where the home file area to Greenstone is on
the iPod, but once that is done the rest of the process in
automatic. The browsing implementation centres largely
around access to metadata information in a GDBM (Gnu’s
DataBase Manager) database. For each Greenstone col-
lection the module finds the collection’s name which is
then appended as a child menu item to the main Green-
stone menu item in Podzilla. After than, menu items are
created on the fly as the user traverses the hierarchy. This
contrasts with the first version of the software we wrote
that build the full hierarchy of menus when the Greenstone
module was initialised. Apart from this meaning Podzilla
took a lot longer to load up at the start, we also started to
experience out of memory errors depending on how many
other modules were part of the Podzilla configuration.

Document “launcher” applications were written for
for text, image and audio media types, so when a user
browsed to to a leaf node in a Greenstone hierarhcy,
an appropriate action could be triggered. Text and im-
age launcher applications made use of the TTK toolkit;
for audio, TTK was used in combination with access-
ing the Linux digital signal processing file-mapped device
/dev/dsp, enabling the user to play, pause, fast-forward
and rewind through an audio file.

In a subsequent phase of development, a search capa-
bility to the digital library on the iPod was added to round
out the features set provided. Here we came up against
issues relating to the minimal user interface of the iPod—
perfectly designed for selecting and playing audio: click-
wheel and five “push” buttons (play/pause, fast-forward to
end, rewind to beginning, menu and enter). Our task was
to decide how best to utilise this for text entry?

The iPod-Linux comes with various text entry wid-
gets: from a full range of characters displayed linearly
on the screen (a-z, 0-9, punctuation, etc.) and the click-
wheel used to scroll forward and backwards, through to
tapping out charters using Morse code. We felt we were
unlikely to come up with any significant innovation in this
area, and so allow the user to choose the form of text-entry
widget they prefer from the existing list (this is actually al-
ready a feature of Podzilla) and acquire the text for query
terms this way. Once acquired, initiating a query and dis-
playing the search results is straightforward.

At the time of this work, there were rumours of a fu-

ture iPod generation soon to be released with a touch sen-
sitive screen. This would solve many of the user interface
issues, however, such an iPod is yet to materialise and in
all likelihood it has now been eclipsed by the introduction
of the Mac iPhone.

3.3 Collaging

Collaging is a technique devised by Kerne [3] for use in
the more general environment of the web. In one exam-
ple of its use, a user keys in several web domains—say
mtv.com, archive.org/audio, and ceolas.org—presses go
and then observes a visualisation of images drawn from
crawling these web site concurrently. Images already in
the visualisation fade over time and as new images are re-
trieved from the various sites, they are added in to the vi-
sualisation on top of what is already there. If at any stage
a displayed image sparks some interest, the user can click
on it and have a new web browser open up displaying the
web page the image comes from.

Greenstone has utilised this idea based on collection
source documents. In addition to browse by title or au-
thor, a more serendipitous form of browsing—collaging—
is available. Based on images that are found in the source
documents, be they the source document themselves, such
as photos, or components of a larger work, such as artwork
or figures included in Word and PDF documents, these are
randomly shown over time, fading out as in Kerne’s work.
When a user click upon one, the relevant document the im-
age is from is shown, locating the view of the document
to be where that image appears.

In implementing a collage browser on the iPod, a view
of graphics capabilities under iPod-Linux was conducted.
A strong candidate that emerged from this was SDL. Writ-
ten in C, SDL stands for Simple DirectMedia Layer and
covers basic 2D graphics and sounds, through to fancier
things such as 3D graphics, and video. It is a popular
choice for many games. While the port to the iPod is
patchy, it is still a popular choice for Ipod-Linux devel-
oping in many of the games that had been ported to the
device, such as the afore mentioned Space Invaders. This
was then combined with TTK’s timer events, to allow im-
ages to be displayed at regular intervals.

The iPod collage version doesn’t implement alpha val-
ues, as this capability is not available in the SDL port. It
could be done in software, but this line of work was not
pursued due to concerns over efficiency. Instead of al-
pha values, we decided to frame the top most image, and
found this to be a satisfactory substitute based on overall
anecdotal feedback from those that tried the system.

The affordance of the iPod’s physical layout of but-
tons, designed for navigating and playing music, led to a
novel variation to the standard collaging technique. Acti-
vating “rewind” through the click-wheel in the iPod col-
lage was mapped to removing photos currently in the col-
lage sequence, in a first in first out manner (akin to a
stack operation). Activation “fast-forward” replaces the
images in order. Such a feature does not exist in Green-
stone’s main implementation, nor the original by Kerne.
To some extent, the ability in the iPod was introduced to
help compensate for the lose of direct point and click with

the mouse in the desktop versions, however in these ver-
sions it is still the case that sometimes a user clicks a spot
where an image of interest is just as a new image is added
that overlaps this region. The results is the new image be-
ing selected rather than the one intended, and worse it is
sometimes difficult to get to that image as more images
can overlap in the time it takes to recover from the initial
mistake. An interesting line of investigation would be to
evaluate the benefit of adding a comparable rewind and
fast-forward feature to these main versions.

3.4 Digital Stories

Digital Storytelling is a technique pioneered by the BBC.
In a format that is usually around 2 minutes long, a story
such as a personal narrative is presented through digi-
tal media. The media component is typically encapsu-
lated as video, and may involve a combination of music,
still images—often incorporating a slideshow/screensaver
feel with movement within the image through zoom and
panning—augmented with text, and source video clips.

As an example of an enriched media object, it was de-
cided to experiment with this form of artifact in a dig-
ital library context, and a proof of concept digital story
player undertaken. While video makes an excellent car-
rier for delivery, from the point of view of ingest into a
digital library, the item is a rather impoverished form of
information. Having a more structured item that still re-
tains what the logical components in the story are—such
as this image is shown at this point in time, and then grad-
ually panned in an north-east direction when this audio is
played—is far more worthwhile. Playback is also rather
trivial if being rendered as a single video option is pur-
sued in terms of development work on the device since
iPod-Linux already comes equipped with a video player
(iPod photo and video versions).

To develop a structured digital story capability, the fol-
lowing capabilities were used:

• SDL was again used to provide the basic image ma-
nipulation work.

• Linux file-map device support was used for audio
(/dev/dsp).

• Timer events were used to control the synchronisa-
tion of the timeline between image display and audio
buffering.

• The TTK render text ability to augment frames with
textual content.

Stories at this stage are encoded as a data-structure (an
array of digital story events) compiled into an executable.
It would be a fairly straightforward matter to externalise
the events to a file that is read in at runtime.

3.5 Web Server

Many of the key elements to running an iPod as a web
server are around and (seemingly) tantalisingly close to
realisation, however there are no reports of anyone suc-
cessfully achieving this. There has been some discussion

(a) Selecting collage (b) 1st image (c) 2nd image (d) 3rd image

(e) Select topmost (f) Continue collaging (g) ... (h) ...

(i) Rewind back one im-
age

(j) Rewind back another (k) And another (l) And so on

Figure 4: Snapshot sequence of collaging on the iPod.

in the iPod-Linux forum on and off for a couple of years,
but ominously in one case the “ticket” opened on the site’s
TRAC5 system, requesting such a capability, was later
closed (shortly afterwards) by one of the developers with
the comment that they did not see any use for such a thing!

We can report there that we have indeed been success-
ful in running the iPod as a web-server, generating both
static content and running the Greenstone library CGI ex-
ecutable. There are quite a few hoops to jump through to
set this up, which limits its applicability at the moment.
We provide the details below. The open source nature of
iPod-Linux means that this limiting situation can be recti-
fied given time should this line of investigation be pursued
further.

Existing work on the iPod-Linux site explains how to
set up an iPod so you can Telnet into it. It relies on running
IP over Firewire, comes with several caveats, and is a line
of work carried out a couple of years ago and not actively
pursued. This was our starting point for the development
of a web server.

In theory IP over Firewire from a Linux host machine
should be straightforward, given the general design of
modules to the operating system. However, one of the
iPod caveats is that the Ethernet module written for the
iPod has a bug in it that requires a special Ethernet mod-
ule compiled up (eth1394) and installed on the host ma-
chine. A following caveat—and a fairly large one at that—
is that this new module does not work with Symmetric
Multi-Processing (SMP) and preemptible kernels, neces-
sitating a fairly conservative operating system configura-

5An open source system used in conjunction with the soft-
ware version control system SVN commonly used to keep track
of bugs and features requests.

tion, which requires system administrator rights. This is
still better than the situation for Windows and MacOS,
where the iPod-Linux developer site provides a descrip-
tion of how this should work using IP over Firewire but
then goes on to say it doesn’t and nobody knows why!

The necessary Linux host machine (a decommissioned
lab machine) was configured, but disappointing the spe-
cialised Ethernet module eth1394 did not function cor-
rectly. Indeed, the act of loading it caused the machine to
lock up and the machine could only be restarted by phys-
ically powering down and back up. As mentioned above,
the iPod work for IP over Firewire had not been actively
developed for at least a couple of years. Armed with an
iteratively developed smattering of print statements, many
power down/up cycles and a decent portion of patience (!)
the fault was eventually traced, and the one line fix nec-
essary added.6 At this point we were able to demonstrate
‘ping’ running successfully and Telnet into the iPod.

Having reviewed the options for a web server, we se-
lected Boa—an open source web server that is a popular
choice for embedded systems—as a basis for our imple-
mentation. The version distributed uses fork() in vari-
ous places, such as launching a CGI executable. This was
an issue as iPod-Linux does not implement this function
due to the uClinux base that assumes there is no memory
management unit to the device. Fortunately, uClinux does
implement vfork() a “lightweight” (or virtual) way of
forking a process. What it does is create a child process
and blocks the parent. What it relies upon is that the child
process does not do anything too sophisticated—either the

6The updated version of the device drive is available
through the web site associated with this EPSRC fellowship,
www.nzdl.org/epsrc-fellow-2007/.

child exits shortly after the fork or runs an exec com-
mand that effectively replaces the child process with a new
binary executable. The latter is perfect for what happens
when a CGI program is initiated through the web server.

Suitable modifications were made to the sections of
code involving fork(), along with changes relating the
setting of user and group id, given the impoverished state
of this information on the iPod. The modified version of
the Boa server is available through www.nzdl.org/epsrc-
fellow-2007/ipod.

4 Conclusions

In conclusion, a variety of digital library techniques have
been trialled and tested on an iPod installed to run Linux.
The open source Greenstone digital library software forms
the basis of the work, due to the authors’ familiarity with
the software, but moreover due to its suitability to the
task. Greenstone’s runtime is written in C++, unlike
other main contenders for open source DL projects which
are all in Java. To date, no work has been done on run-
ning Java applications on iPod-Linux, which would be a
significant hurdle to overcome.

The work undertaken was overall successful, achiev-
ing the goals set. A steep learning curve is inevitable when
moving to a new hardware platform for development, es-
pecially when the operating system being used has been
developed for a proprietary device that has not disclosed
its design. This was the case for us, and the issue of print-
ing to the screen using standard C++ classes was a par-
ticularly thorny issue that took considerable time to re-
solve. That said, after this was solved rapid progress was
made. The other key impediment encountered was get-
ting the Ethernet driver for the host Linux machine work-
ing, and here too—due to the open source orientation of
the implementation—we were able to analyse the problem
and to correct the defect.

The command-line test allowed us to confirm that the
bulk of the Greenstone runtime code ran successfully on
the mobile device, although its output (raw HTML) was
not particularly useful from a user’s perspective. The
lion’s share of the implementation time was spent devel-
oping an interactive hierarchical menu system that pro-
vided access to existing, pre-built Greenstone collections:
both searching and browsing were supported. Making a
particular Greenstone collection available on the iPod is a
simple matter of copying (in the iPod’s disk mode) the col-
lection’s index and configuration files (index and etc)
from the host machine (where typically the collection was
built) to the iPod.

Two media rich forms of delivery were also experi-
mented with, as proof of concepts: collaging and digital
stories. Running the iPod as a web server was also ac-
complished, however the list of requirements necessary
to make this work means its usefulness is emasculated.
This notwithstanding, all the other aspect of the project
achieved a high level of success.

References
[1] Thorsten Büring and Harald Reiterer. Zuiscat: query-

ing and visualizing information spaces on personal
digital assistants. In MobileHCI ’05: Proceed-
ings of the 7th international conference on Hu-
man computer interaction with mobile devices &
services, pages 129–136, New York, NY, USA,
2005. ACM Press. ISBN 1-59593-089-2. doi:
http://doi.acm.org/10.1145/1085777.1085799.

[2] Matt Jones, Will Harwood, George Buchanan, and
Mounia Lalmas. Storybank: an indian village
community digital library. In JCDL ’07: Pro-
ceedings of the 2007 conference on Digital li-
braries, pages 257–258, New York, NY, USA,
2007. ACM Press. ISBN 978-1-59593-644-8. doi:
http://doi.acm.org/10.1145/1255175.1255225.

[3] A. Kerne. CollageMachine: an interactive agent of
web recombination. Leonardo, 33(5):347–350, 2000.

[4] Gary Marsden, Robert Cherry, and Alan Haefele.
Small screen access to digital libraries. In CHI ’02:
CHI ’02 extended abstracts on Human factors in
computing systems, pages 786–787, New York, NY,
USA, 2002. ACM Press. ISBN 1-58113-454-1. doi:
http://doi.acm.org/10.1145/506443.506597.

[5] A. F. Smeaton, N. Murphy, N. E. O’Connor, S. Mar-
low, H. Lee, K. McDonald, P. Browne, and J. Ye.
The Fischlár digital video system: a digital library
of broadcast TV programmes. In JCDL ’01: Pro-
ceedings of the 1st ACM/IEEE-CS joint conference
on Digital libraries, pages 312–313, New York, NY,
USA, 2001. ACM Press. ISBN 1-58113-345-6. doi:
http://doi.acm.org/10.1145/379437.379696.

[6] Ian H. Witten and David Bainbridge. How to Build a
Digital Library. Elsevier Science Inc., 2002. ISBN
1558607900.

[7] Werner Zimmermann. LTOOLS - accessing
your Linux files from Windows 9x and Win-
dows NT. Linux Journal, November 2000. URL
http://www.linuxjournal.com/article/4138.

