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Abstract 

 
Destination choice models with individual-specific taste variation have become the 

presumptive analytical approach in applied nonmarket valuation. Under the usual 

specification, tastes are represented by coefficients of site attributes that enter utility, 

and the distribution of these coefficients is estimated. The distribution of willingness-

to-pay (WTP) for site attributes is then derived from the estimated distribution of 

coefficients. Though conceptually appealing this procedure often results in untenable 

distributions of willingness to pay. An alternative procedure is to estimate the 

distribution of willingness to pay directly, through a re-parameterization of the model. 

We compare hierarchical Bayes and maximum simulated likelihood estimates under 

both approaches, using data on site choice in the Alps. We find that models 

parameterized in terms of WTP provide more reasonable estimates for the distribution 

of WTP, and also fit the data better than models parameterized in terms of attribute 

coefficients. This approach to parameterizing utility is hence deemed promising for 

applied nonmarket valuation. 
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1 Introduction

Nonmarket values of qualitative changes in sites for outdoor recreation are often investigated by
estimating random utility models (RUMs) of site selection (Bockstael et al. 1987, Morey et al.
1993). Most recent applications address the issue of unobservedtaste heterogeneity by using
continuous (Train 1998, 1999) or finite mixing (Provencher et al. 2002, Scarpa & Thiene 2005)
of individual taste distributions by means of panel mixed logit models. Such approaches are
shown to produce more informative and realistic estimates of nonmarket values than models
without taste heterogeneity and are now part of the state of practice in the profession. However,
models with conveniently tractable distributions for taste coefficients, such as the normal and the
log-normal, often obtain estimates that imply counter-intuitive distributions ofWTP. This is due
to the fact that the analytical expression forWTPinvolves a ratio where the denominator is the
cost coefficient. Values of the denominator that are close tozero (which are possible under most
standard distributions such as the lognormal) cause the ratio to be exceedingly large, such that
the derived distribution ofWTPobtains an untenably long upper tail. The mean and variance of
the skewed distribution are both raised artificially by these implausibly large values.

One solution is to assume that the cost coefficient is constant and not random (e.g.
Revelt & Train 1998, Goett et al. 2000, Layton & Brown 2000, Morey & Rossmann 2003).
This restriction allows the distributions of willingness to pay (WTP) to be calculated easily
from the distributions of the non-price coefficients, sincethe two distributions take the same
form. For example, if the coefficient of an attribute is distributed normally, thenWTPfor that
attribute, which is the attribute’s coefficient divided by the price coefficient, is also normally
distributed. The mean and standard deviation ofWTP is simply the mean and standard devia-
tion of the attribute coefficient scaled by the inverse of the(fixed) price coefficient. The fixed
cost coefficient restriction also facilitates estimation.For example,Ruud(1996) suggests that
a model specification with all random coefficients can be empirically unidentified, especially
in datasets with few observed choices for each decision-maker (short panels). However, this
restriction is counter-intuitive as there are very good theoretical and common-sense reasons
as to why response to costs should vary across respondents according to factors that can be
independent of observed socio-economic covariates.

Train & Weeks(2005) note on the topic that assuming a fixed price coefficient implies that
the standard deviation of unobserved utility (i.e. the scale parameter) is the same for all observa-
tions. On the other hand, it is important to recognize that the scale parameter can, and in many
situations clearly does, vary randomly over observations.Estimation practices that ignore such
source of variation may lead to erroneous interpretation and policy conclusions. For example,
in the context of destination choice modeling, if the travelcost coefficient is constrained to be
fixed when in fact scale varies over observations, then the variation in scale will be erroneously
attributed to variation inWTPfor site attributes.

Another solution is to re-parameterize the model such that the parameters are theWTPfor
each attribute rather than the utility coefficient of each attribute. That is, instead of the usual
approach of parameterizing the model in ‘preference space’(i.e., coefficients in the utility), the
model is parameterized in ‘WTPspace’. This alternative procedure has recently been utilized
to represent taste heterogeneity byTrain & Weeks(2005) andSonnier et al.(2007). However,
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the idea of specifying utility in theWTPspace is not new. For example, the readers familiar
with the analysis of discrete-choice contingent valuationdata may recall the so-calledvaria-
tion function orexpenditurefunction approach suggested inCameron & James(1987) and in
Cameron(1988), which as discussed in some more detail byMcConnell(1995) in some cases
boils down to a simple re-parameterization of the RUM model proposed byHanemann(1984,
1989).

Train & Weeks(2005) and Sonnier et al.(2007) extended the approach by Cameron and
James to multinomial choice models with random tastes, where distributional assumptions and
restrictions can be placed on the coefficients of theWTP’s. They point out that the two ap-
proaches are formally equivalent because any distributionof coefficients translates into some
derivable distribution ofWTP’s, and vice-versa. However, the appeal of the approach is that it
allows the analyst to specify and estimate the distributions of WTPdirectly, rather than deriv-
ing them indirectly from distributions of coefficients in the utility function. To researchers in
nonmarket valuation this is an important advantage.

Comparisons of estimates obtained from the two parameterizations on an identical dataset
have already been investigated using stated preference (SP) data. Train and Weeks compared
the estimates of the two approaches and the impliedWTP for attributes related to cars with
different fuel (fossil, hybrid and electric).Sonnier et al.(2007) investigate the same issues in
the context of stated preference data for car brand choice and photographic cameras. Both
results use hierarchical Bayes (HB) estimators and find similar results. In particular, they found
that the specifications in the preference space fit their databetter but produce less reasonable
distributions ofWTPthan specifications in theWTPspace.1

We apply these concepts to revealed-preference (RP) data, the first such application to our
knowledge. In order to ensure that results are not dependenton the estimation method, we es-
timate our models by both HB and maximum simulated likelihood (MSL). To our knowledge,
this is the first application of MSL to random coefficient models in WTPspace. We find, like
Train & Weeks(2005) andSonnier et al.(2007), that models inWTPprovide far more reason-
able distributions ofWTP than models in preference space. However, unlikeTrain & Weeks
(2005) andSonnier et al.(2007), we find that the models inWTPspace also fit the data better
than the models in preference space. This improved fit ariseswith both HB and MSL estima-
tion. Our findings indicate that, with our RP data, there is notradeoff between goodness of fit
and reasonableness of results: the model inWTPspace outperforms on both criteria.

2 Specification

In this section we start with the conventional specificationof utility in the preference space,
and describe the implications for correlation of utility coefficients and impliedWTPs. We then

1Importantly for the practice of RUM estimation, Train and Weeks emphasize how assuming independence
across utility coefficients in the presence of a scale parameter which varies across visitors implies dependence (cor-
relation) across impliedWTPdistributions, and vice-versa. This issue may escape the attention of analysts, and it
is worth bearing in mind for its consequences in interpretation of results, because in general neither marginalWTPs
for attributes nor their taste intensities are independently distributed, and hence correlation matrices should be
estimated whenever the data allow it, regardless of the choice of utility specification.
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reparameterize the model inWTPspace and discuss the implications. Throughout, the notation
and language is adapted for our application to Alpine site choice.

Day trippers are indexed byn, destination sites byj, and choice situations byt. To ease the
illustration, we specify utility as separable in price,p, and a vector of non-price attributes,x:

Unjt = −αnpnjt + θ′nxnjt + ǫnjt (1)

whereαn andθn vary randomly over day visitors andǫnjt is Gumbel distributed. The variance
of ǫnjt is visitor-specific:V ar(ǫnjt) = µ2

n(π
2/6), whereµn is the scale parameter for day visitor

n. Since utility is ordinal one can divide equation (1) by the scale parameter to obtain its scale-
free equivalent. This division does not affect behavior andyet it results in a new error term that
has the same variance for all decision-makers:

Unjt = −(αn/µn)pnjt + (θn/µn)
′xnjt + εnjt (2)

whereεnjt is i.i.d. type-one extreme value, with constant varianceπ2/6. The utility coefficients
are defined asλn = (αn/µn) andcn = (θn/µn), such that utility may be written:

Unjt = −λnpnjt + c′nxnjt + εnjt (3)

Note that ifµn varies randomly, then the utility coefficients are correlated, sinceµn enters the
denominator of each coefficient. Specifying the utility coefficients to be independent implicitly
constrainsµn to be constant. If the scale parameter varies andαn andθn are fixed, then the utility
coefficients vary withperfectcorrelation. If the utility coefficients have correlation less than
unity, thenαn andθn are necessarily varying in addition to, or instead of, the scale parameter.
Finally, even ifµn does not vary over visitors (e.g., the standard deviation inunobserved factors
over sites and trips is the same for all visitors), utility coefficients can be correlated simply due
to correlations among tastes for various attributes.

The specification in equation (3) parameterizes utility in ‘preference space’. The implied
WTPfor a site attribute is the ratio of the attribute’s coefficient to the price coefficient:wn =
cn/λn = θn/αn. Using this definition, utility can be rewritten as

Unjt = −λnpnjt + (λnwn)′xnjt + εnjt, (4)

which we name ‘utility inWTPspace’, whileSonnier et al.(2007) called it the ‘surplus model’.
In a context in which scale can vary over people—such as in ouralpine destination choice—this
specification is very useful for distinguishingWTPvariation (i.e. the distributional features of
wn) from variation in scale. To what extent this distinction affects the derived welfare estimates
remains an empirical question, and one of the objectives of our investigation. We note that,
although any coefficient can be used as the base that incorporates scale, the reason to focus
on the travel cost coefficient in this case is that the scale-free terms can be directly interpreted
as WTPs, which are easy to rationalize. This utility specificationis distinctive for another
reason as it gives a nonlinear-in-the-parameter utility function, which poses some computational
challenges in the context of MSL estimation (and is probablythe reason MSL has not been
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previously used for models inWTPspace. In contrast, nonlinearity is readily accommodated in
HB estimation.

The utility expressions are behaviorally equivalent and any distribution ofλn andcn in (3)
implies a distribution ofλn andwn in (4), and vice-versa. The general practice in nonmar-
ket valuation and elsewhere has been to specify distributions in preference space, estimate the
parameters of those distributions, and derive the distributions of WTP from these estimated
distributions in preference space (Train 1998). While fully general in theory, this practice is
usually limited in implementation by the use of computationally convenient distributions for
utility coefficients. However, empirically tractable distributions for coefficients do not neces-
sarily imply convenient, or reasonable, distributions forWTP, and vice-versa. For example,
if the travel cost coefficient is distributed log-normal andthe coefficients of site attributes are
normal, thenWTPis the ratio of a normal term to a log-normal term. Similarly,in (4), normal
distributions forWTPand a log-normal for the (negative of) travel cost coefficient imply that
the utility coefficients are the product of a log-normal variate and a normal one:λn × wn.

A similar asymmetry exists for the placement of restrictions on patterns of correlations
(independence). In the travel cost site selection literature it is fairly common for researchers to
specify uncorrelated utility coefficients. However, this restriction implies that scale is constant,
as stated above, and moreover thatWTPis correlated in quite a particular way via the common
variation in the price coefficient. Researchers might not beaware of such implications of their
choice of specification, as few papers discuss its consequences. Symmetrically, specifications
assuming uncorrelatedWTPimply a pattern of correlation in utility coefficients that is difficult
to implement in preference space. We know of only one other application of travel cost RUMs
that assumes a random scale parameter, but in that case the authors do not explicitly address
correlation acrossWTPestimates (Breffle & Morey 2000).

The issue becomes: does the use of convenient distributionsand restrictions in preference
space orWTPspace result in more accurate and reasonable models? The answer is necessarily
situationally dependent, since the true distributions differ in different applications. However,
some insight into this issue can be obtained by comparing alternative specifications on a given
dataset under alternative estimators. Description of our data is the topic of the next section.

3 Data

3.1 Respondents data

The data for our estimates were collected with a survey administered to a sample of 858 mem-
bers of the local (Veneto Region) chapter of the CAI (ItalianAlpine Club), who reported on
their mountain visits for the year 1999. The total number of trips reported was 9,221, and some
descriptive statistics are reported in TableI. The most visited sites are Piccole Dolomiti, Asiago,
Lessini-Baldo, which are located in the pre-Alps, and Civetta, Pale S.Martino and Tre Cime,
all of which are in the Dolomites. Unsurprisingly the most frequently attended sites are those
closest to the urban centers located in the plains. The interviewers contacted the CAI members
at club meetings taking place in the municipalities of the Veneto region. The various parts of
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the questionnaire were explained to a group of respondents,and then each member of the group
filled out the questionnaire on their own. Respondents were asked questions about their moun-
taineering abilities and experience (i.e. when they started mountain recreation, whether they
attended mountaineering training courses, and the kind of activities they usually undertook at
the sites etc.). Importantly for this application they wereasked the total number of days out they
took to each of the 18 sites in the last twelve months. Finally, they provided the interviewers
with socio-economic information about themselves and their households.

Round-trip distance from own residence to each of the destinations in the choice set was
calculated using the software package “Strade d’Italia e d’Europa”. These data were used to
estimate the individual travel cost for each trip. Distancecosts were converted into monetary
values using a figure ofe0.35 per km, which was the car running cost at the time. Each reported
trip was a ‘day out’, as is customary for this generic form of local outdoor recreation. The eigh-
teen mountain destinations differ substantially from botha morphological and mountaineering
point of view, but they can provide both specialist and non-specialist outdoor recreation, and so
are all destinations for local visitors.

3.2 Site attribute data

Data on attributes of mountain destinations have mostly been provided by means of a Geo-
graphical Information System and some of them were coded according to the knowledge of
a panel of experts in local hiking features. Two broad geographically-determined groups can
be distinguished. Destinations 1-6 (TableI) belong to the Prealps, which are mountains with
gentler slopes and lower peaks separating the plane from theproper Alps. Because of their
distinct nature the Prealps are the final destination of manytrips with different recreational ob-
jectives from those trips taken to the Alps. Destinations 7-18 are in the Northeastern Alps, in
the mountain chain of the Dolomites, which is an extended rocky area mostly made of dolomite
rocks. This rare and distinguished rock type is geologically well-defined as it originates from
coral reefs. Mountains made of this rock are scenically quite attractive as they tend to show
orange-pink reflections at sunset.

Some of the recreational attributes describe the land use ofthe sites and some others provide
specific information about hiking by means of an index.Degree of difficultyis a score taking up
to 3 ordinal values and describing the degree of technical difficulty of trailing itineraries avail-
able at destination. That is, taking into account not only the total length of the trails network,
but also the average degree of adversity of the mountain environment at destination;Ferrata
is the number of trails equipped so as to allow visitors to secure themselves onto a safety rope
in the ascent towards hard-to-reach vantage points;Alpine sheltersis the number of equipped
alpine shelters accessible in the destination area.

The recreational attractiveness of a destination to days out visitors is also described on the
basis of the percent of total length of ‘easily’ walkable trails (% of Easy trails). These are those
requiring lower than average physical effort and are selected on the basis of a composite set of
measurements, such as width, incline and accessibility. Atthe other extreme of the spectrum we
use the percent of total length made-up of ‘hard’ walkable trails (% of Hard trails), which are
those requiring higher than average physical effort, and therefore degree of fitness. Percentages
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are worked out of the total existing trail network at destination. Finally, because the Prealps offer
an experience distinctively different from the Dolomites,the trips to the former are associated
with a alternative-specific constant.

4 Method

Revelt & Train(1998) derived the mixed logit specification in the context of repeated choices
by individuals with continuous taste distributions, the so-called panel mixed logit. In our alpine
destination choice context, visitorn faces a choice amongJ destination alternatives in each
of Tn trips taken over an outdoor season.J in our case is 18 while we have a maximum of
Tn =40 which represents a reasonable maximum number of days out over a year. We have an
unbalanced panel since the number of trips vary across individuals, hence the subscriptn.

To assure a negative price coefficient, we defineλn = − exp(vn), wherevn can be con-
sidered the latent random factor underlying the price coefficient. Letβn denote the random
terms entering utility, which arevn and cn for the model in preference space, (equation3),
and λn and wn for the model inWTP space, (equation4). Similarly, let utility be written
Unjt = Vnjt(βn) + εnjt, with Vnjt(βn) being defined by either equation (3) or (4), depending on
the parameterization.

Visitor n chooses destinationi in periodt if Unit > Unjt ∀j 6= i. Denote the visitor’s chosen
destination in choice occasiont asynt, the visitor’s sequence of choices over theTn choice
occasions asyn = 〈yn1, . . . , ynTn

〉. Conditional onβn, the probability of visitorn’s sequence of
choices is the product of standard logit formulas:

L(yn | βn) =
t=Tn∏
t=1

eVnyntt(βn)∑
j eVnjt(βn)

.

The unconditional probability is the integral ofL(yn | βn) over all values ofβn weighted by its
density:

Pn(yn) =

∫
L(yn | βn)g(βn)dβn. (5)

whereg(·) is the density ofβn which depends on parameters to be estimated. This unconditional
probability is called the mixed logit choice probability, since it is a product of logits mixed over
a density of random factors reflecting tastes.

4.1 Mixed logit estimation via hierarchical Bayes

Because MSL estimation of mixed logit models is well-documented (Train 2003, e.g.), in this
section we mostly focus on HB estimation. For the MSL estimation we just mention that to
deal with non-linearity ofVnit we used BIOGEME (Bierlaire 2002, 2003) and the algorithm
CFSQP (Lawrence et al. 1997) so as to avoid the problem of local optima. All MSL estimates
were obtained using 100 quasi-random draws via Latin-hypercube sampling (Hess et al. 2006).
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The Bayesian procedure for estimating the model with normally distributed coefficients
was developed byAllenby (1997) and implemented bySawtooth Software(1999). This es-
timation method was also applied byRigby & Burton (2006) to derive transforms that ad-
dress mass distribution at zero (indifference to attributes) of utility coefficients (notWTPco-
efficients) for choice over GM food products in the U.K. Related methods for probit models
were developed byAlbert & Chib (1993), McCulloch & Rossi(1994), Allenby & Rossi(1999).
Layton & Levine(2005) made a contribution in the context of sequential learning from previous
applications. A review of applications to marketing methods is found inRossi et al.(2005).

We specify the density ofβn to be normal with meanb and varianceΩ, denotedg(βn | b, Ω).
Although terminology differs over authors and fields,2 we callb andΩ ‘population parameters’
since they describe the distribution of visitor-levelβn’s in the population. With this usage, the
distributiong(βn | b, Ω) is interpreted as the actual distribution of tastes for the recreational
attributes of destination sites in the population of the regional branch of the Italian Alpine Club,
from which we drew the sample. Note that, given the expression above for the price coefficient,
the specification of normalβn implies that the price coefficient is lognormally distributed.

In Bayesian analysis, a prior distribution is specified for the parameters. We lack previous
information on the type of visitors in our sample3 and therefore specify the prior onb to be a
diffuse normal, denotedN(b | 0, Θ), which has zero mean and a sufficiently large varianceΘ
such that the density is essentially flat from a computational perspective. A normal prior onb
has a computational advantage since it provides a conditional posterior onb (i.e., conditional on
βn∀n andΩ) that is also normal and hence easy to draw from, while the large variance ensures
that the prior has minimal (effectively no) influence on the posterior, reflecting the absence of a-
priori knowledge, especially in the presence of large samples, such as in our case. The standard
diffuse prior onΩ is inverted Wishart with low degrees of freedom. This specification is also
computationally advantageous as it provides a conditionalposterior onΩ that is also Inverted
Wishart and hence easy to draw from. The conditional posterior onβn∀n , givenb andΩ, is

Λ(βn |, b, Ω) ∝
∏
n

L(yn | βn) · g(βn | b, Ω). (6)

Information about the posterior is obtained by taking drawsfrom the posterior and calcu-
lating relevant statistics, such as moments, over these draws. Draws from the joint posterior
are obtained by Gibbs sampling (Casella & George 1992). In particular, a draw is taken from
the conditional posterior of each parameter, given the previous draw of the other parameters.
The sequence of draws from the conditional posteriors converges, after a sufficient number of
iterations (called ‘burn-in’), to draws from the joint posterior. Technical information about the
algorithm can be found inTrain & Sonnier(2005) andTrain (2003).4

2In Bayesian applicationsb and Ω tend to be called hyper-parameters, with theβn’s themselves being the
parameters of interest. Sometimes, however, theβn’s are called nuisance parameters, to reflect the concept that
they are incorporated into the analysis to facilitate estimation ofb andΩ.

3The only other study we know of on the region isScarpa & Thiene(2005) and it focussed on rock-climbers
and not generic day-out visitors.

4For the HB models in preference space, we used the GAUSS code that is available on K. Train’s website at
http://elsa.berkeley.edu/ train/software.html. We adapted this code appropriately for the HB models inWTPspace.
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It is worth reminding the reader not familiar with Bayesian estimation that the Bernstein-
von Mises theorem states that, under quite unrestrictive conditions, the mean of the Bayesian
posterior of a parameter is a classical estimator that is asymptotically equivalent to the maxi-
mum likelihood estimator of the parameter. Similarly, the variance of the posterior distribution
is the asymptotic variance of this estimator. SeeTrain (2003) for an extended explanation with
citations. Hence, the results obtained by Bayesian procedures can be interpreted from a purely
classical perspective. In the tables below, results are presented in the way that is standard for
classical estimation, giving the estimate and standard error for each parameter. These statis-
tics are the mean and standard deviation, respectively, of the draws from the posterior for each
parameter.

5 Estimation results

5.1 Preference space

5.1.1 Model estimates

The HB estimates for models in the preference space (i.e., equation3) with uncorrelated coef-
ficients are reported in the top part of TableII , and estimates with correlated coefficients are
reported in the bottom part. Allowing for full correlation amongst coefficients increases the
log-likelihood simulated at the posterior means from –20,773.59 to –20,383.65. TableIII re-
ports similar estimates obtained by MSL, while the estimates of the Choleski matrix associated
with the correlated model are reported in TableIV. Again, allowing for correlation increases
the value of the simulated log-likelihood from –20,469.86 to –20,147.91.

In interpreting the figures in TablesII andIII , recall that the coefficient for travel cost is
log-normally distributed, such that the estimated mean andstandard deviation are the mean of
the latent normally distributed random factor underlying the travel cost coefficient. The other
coefficients were all normally distributed, such that theirmeans and standard deviations are
estimated directly. The estimated mean and standard deviation together determine the propor-
tion of the population implied to have coefficients of each sign; the implied share with negative
coefficients is reported in the last column of these two Tables.

The estimated means have the same signs and ordering of magnitudes across models (with
and without correlation) and estimators (HB and MSL). The signs are plausible considering
that the population of reference are the members of the Italian Alpine Club selecting days out
in the Alps. A negative mean is observed for the degree of technical difficulty. To tackle
technically difficult sites requires rigorous training andexperience, and it is expected that in
general visitors are not attracted by technically challenging destinations. The negative mean
for the number of ferrata seems reasonable when one bears in mind that the number of ferrata
is mostly a consequence of strategic access for the military, established during the World War
I period against invading Austrians, and not necessarily designed to facilitate tourist access to
such vantage points.

Destinations with many alpine shelters tend to be liked morethan those with few. Alpine
shelters are often themselves the destinations of days out in the Alps and offer opportunities to
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encounter other visitors and eat local specialities, as well as providing shelter for unexpected
bad weather. Everything else equal, one would be more inclined to plan a day out to a destina-
tion with shelters.

Sites with higher percent of easily walkable trails and hardwalkable trails are, on the av-
erage, both liked by visitors from the Alpine Club, but with large estimated taste variation.
Trail-walking is still the most popular activities in the Alps because it is cheap and attracts
visitors of all ages and abilities. These results indicate that visitors like destinations with easy
as well as more challenging trails and that there is considerable heterogeneity in visitors’ re-
sponse to trails’ features. For example, we note that the MSLestimate imply that nearly fifty
percent of the population do not like hard trails. Perhaps the nature of trails helps in sorting the
composition of the visiting party or the purpose of the recreational visit.

5.1.2 Implied WTP distributions

Using the estimates for the means of the latent normal variables and their variance-covariance
matrices, one can simulate the implied distribution ofWTP in the population of visitors. The
means, medians and standard deviations are given in TableVI . The implied distribution ofWTP
is highly skewed, as evidenced by the absolute values of the meanWTPbeing considerably
larger than those of the median for all attributes. Importantly, the estimates imply a fairly large
proportion of visitors have implausibly largeWTPfor certain attributes, such as the degree of
difficulty of excursions, the number of ferrata and the percentage of hard trails. For example,
the MSL model in preference space implies that ten percent ofvisitors areWTPovere20 to
avoid 1 extra level of difficulty, five percent areWTPmore thane3 to avoid a ferrata, and ten
percent are willing to pay overe30 to have 10% more difficult trails. Similarly implausible
results are reported in many applications in which the pricecoefficient is allowed to vary across
agents, and indeed it often motivates the assumption of a fixed travel cost coefficient.

The correlation matrices acrossWTPs obtained by simulating the population distribution of
the utility parameters according to these estimates are reported in the lower triangular part of
TableV, with the top part of the Table showing the HB estimates, and the bottom the MSL
ones. These estimates mostly concord in signs across estimators with only 2 out 15 correlations
being different. A large positive correlation is found betweenWTP for the number of Ferrata
at destination and the degree of difficulty, which is very plausible, and similarly plausible is the
strong negative correlation betweenWTPfor alpine shelters and the degree of difficulty.

5.2 WTP space

A salient feature of theWTPspace model is that estimated parameters are also the parameters
of the impliedWTPdistributions. These are therefore discussed jointly in the same subsection.

5.2.1 Model estimates and impliedWTP distributions

In TableVII we report HB estimates of models parameterized inWTPspace, i.e., according
to equation (4). Estimates for the model without correlation are reportedin the top part of
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the table, while the one with full correlation is in the bottom part of the table. The simulated
log-likelihood is higher for the models inWTP space than in preference space: –20,470.89
versus –20,773.59 for uncorrelated terms, and –20,325.55 compared to –20,383.65 for models
with correlated terms. This result, which differs from the findings ofTrain & Weeks(2005)
andSonnier et al.(2007) on SP data, indicates that it is possible for models inWTPspace to
outperform models in preference space. A similar improvement is found for the MSL estimates
reported in TableVIII . The associated estimates for the CHoleski matrix are reported in Table
IX.

The MSL estimates imply smallerWTPvariation than the HB ones for all attributes, but
means have identical signs and very similar magnitudes. Models with correlation also uniformly
imply smallerWTPvariation in the population, with exclusion of the Prealps ASC in the MSL
model. Examining the upper triangular sections of TableV we note that estimated correlation
match perfectly in sign between the HB (upper part of the Table) and MSL estimates.

The estimated standard deviations ofWTPare uniformly lower for the models inWTPspace
than the models in preference space. For example, in the HB models with correlated terms, the
standard deviation ofWTP for Alpine shelters is 1.29 for the model in preference spaceand
0.51 for the model inWTPspace. However, the estimated means are not consistently higher or
lower under either parameterization: with correlated terms, the HB model inWTPspace gives
a higher mean than the model in preference space for three attributes and a lower mean for the
other three. The share of implausibly high values forWTPis far less with the models inWTP
space than with the models in preference space. For example,the correlated preference space
HB model implies that five percent of the population is willing to pay at leaste1.41 for one
percent increase in easy trails.5 In contrast, the correlated model inWTPspace implies a more
plausiblee0.60.

This point is visually described in figure1 obtained with the SM package in R
(Bowman & Azzalini 1997). Here we plot the kernel smoothing with cross-validated band-
width of a simulation of 100,000 draws from each model’sWTP for an extra alpine shelter at
destination. The densities implied by the models inWTPspace are much ‘tighter’ than those
implied by the models in preference space. As a result, the shares above implausibly high values
for WTPare much smaller for the models inWTPspace than those in preference space.

6 Policy implications and conclusions

This study investigated destination choices of an inherently diverse population of visitors to
alpine destinations in the North-East of Italy: those members of the local (Veneto) chapter of
the alpine club visiting the Alps for days out. Using a panel dataset of 858 respondents who
took a total of 9,221 day-out trips we estimateWTPdistributions for key site attributes using
models parameterized in preference space and inWTPspace. Because parameters enter non-
linearly in the model inWTPspace and the number of parameters is large when correlations

5The distribution ofŴTP was simulated with 100,000 draws from the distributions evaluated at the estimated
location and scale parameters.
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are allowed, previous studies used hierarchical Bayes estimation procedures, which are com-
putationally much faster than maximum simulated likelihood for models of this form. In this
study we contrast HB and MSL estimates and found them to be producing similar results, with
the latter implying smaller variation of taste and hence of values. However, we note that MSL
estimates are much more time consuming to derive. Even when iterations are started at the
convergence values of the HB procedure theWTPspace model with correlation took four days
to run using BIOGEME with the CFSQP algorithm in a 3GHz pc with2 G-bytes of RAM.
The equivalent HB model was estimated in GAUSS using 500,000draws for burn-in and a
further 200,000 after burn-in, of which every 50-th draw wasretained for averaging and run
overnight. The convergence of the sampler was evaluated both visually and formally using the
test suggested byGeweke(1992) andKoop(2003).

Our results confirm previous findings obtained byTrain & Weeks(2005) andSonnier et al.
(2007) that the models inWTPspace provide more reasonable estimates of the distribution of
WTPthan the models in preference space. However, unlike these previous studies, which used
stated preference data, we find that, on our revealed preference data, the specification inWTP
space statistically outperforms that in preference space.This means that practitioners need
not face a trade-off between plausibility ofWTPestimates and model fit to the data, as was
previously suggested.

Although the main objective of the paper is methodological,the estimation results from the
MSL model inWTPspace with correlated terms—which gives the most behaviorally plausible
results and also fits the data best—provide some interestingimplications. About 83 percent
of day visitors are estimated to dislike sites with high difficulty of tracking activities. Only
about 17 percent show a positiveWTPvalue for this attribute. Similarly, a large number of
ferrata at the site is attractive to only about 16 percent of the population of day-out visitors.
The presence of alpine shelters is preferred by the vast majority of visitors: only five percent of
visitors prefer sites without the shelters. For most members of the Italian Alpine Club, the site
becomes more attractive as the percent of trails that are classified as easily walkable and hard
walkable (as opposed to those with mixed classification) rises. Finally, visitors are found to be
willing to pay more to visit the Dolomites than the Prealps, which–given the popularity of these
sites–is a perhaps foregone conclusion, but is nevertheless confirmed by the negative sign of the
alternative specific constant for Prealps.
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Table I: Site-specific data.
Descriptive Statistics of Trips Attributes

Degree of Ferratas Easy Shelters Hard
Destination sites Mean St. Dev. Visits Percent Difficulty Trails Trails
1. Vette Feltrine 0.7 1.5 642 7.0 3 3 0.61 25 0.07
2. P. Dolomiti-Pasubio 2.1 4 1808 19.6 1 4 0.54 13 0.17
3. Alpago-Cansiglio 0.5 1.7 414 4.5 3 4 0.86 10 0.08
4. Asiago 1.5 2.8 1318 14.3 1 0 1 13 0
5. Grappa 0.9 2.1 757 8.2 1 1 0.99 5 0.01
6. Baldo-Lessini 1.2 3.6 1045 11.3 1 2 0.76 18 0.02
7. Antelao 0.3 0.7 244 2.6 3 0 0.68 6 0.08
8. Pelmo 0.3 0.6 243 2.6 3 0 0.66 9 0.04
9. Cortina 0.3 0.8 220 2.4 2 22 0.53 32 0.11
10. Duranno-Cima Preti 0.1 0.3 44 0.5 3 0 0.33 4 0.09
11. Sorapis 0.1 0.5 128 1.4 3 4 0.36 9 0.23
12. Agner-Pale S.Lucano 0.1 0.5 112 1.2 3 2 0.51 7 0.14
13. Tamer-Bosconero 0.2 0.6 188 2.0 3 0 0.3 6 0.06
14. Marmarole 0.2 0.7 161 1.7 2 1 0.51 9 0.07
15. Tre Cime-Cadini 0.6 1.2 547 5.9 2 4 0.6 9 0.08
16. Civetta-Moiazza 0.7 1.3 561 6.1 2 4 0.34 16 0.11
17. Pale S.Martino 0.7 1.3 564 6.1 2 11 0.46 14 0.14
18. Marmolada 0.3 0.7 225 2.4 3 2 0.21 13 0.25
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Table II: HB estimates. Coefficients for preference space models

Prefer. parameters Statistics of posterior distribution
v̂ andĉ Mean St. err. St. dev. St. err.
v̂ –1.29 0.04 0.73 0.25
Degree of difficulty –0.76 0.04 0.72 0.24
Ferrata –0.12 0.01 0.09 0.03
% of easy trails 0.02 .002 0.06 .001
Alpine shelters 0.11 .005 0.08 .001
% of hard trails 0.09 0.01 0.10 0.03
Prealps ASC –1.54 0.10 1.28 0.46

Uncorrelated:lnL∗ at means of post. dist. –20,773.59
v̂ –1.22 0.05 0.88 0.28
Degree of difficulty –1.16 0.07 1.17 0.39
Ferrata –0.19 0.01 0.23 0.06
% of easy trails 0.04 .004 0.11 0.03
Alpine shelters 0.15 0.01 0.18 0.05
% of hard trails 0.14 0.01 0.19 0.06
Prealps ASC –2.74 0.16 2.84 0.94
With correlation:lnL∗ at means of post. dist. –20,383.65
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Table III: MSL estimates. Coefficients for preference spacemodels

Prefer. parameters
v̂ andĉ Mean St. err. St. dev. St. err.
v̂ –1.41 0.06 0.71 0.06
Degree of difficulty –0.51 0.04 0.48 0.06
Ferrata –0.07 0.01 0.02 0.01
% of easy trails 0.01 .001 0.01 .002
Alpine shelters 0.07 0.01 0.03 0.01
% of hard trails 0.05 .005 0.07 .005
Prealps ASC –0.98 0.11 0.98 0.09

Uncorrelated:lnL∗ at convergence –20,469.86
v̂ –1.43 0.07
Degree of difficulty –0.67 0.12 0.73
Ferrata –0.10 0.01 0.11
% of easy trails 0.01 .002 0.01
Alpine shelters 0.09 0.01 0.08
% of hard trails 0.07 0.01 1.95
Prealps ASC –1.62 0.25 0.07

With correlation:lnL∗ at convergence –20,147.91
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Table IV: Choleski matrix from MSL estimates in preference space

v̂ Degree of Ferrata % of easy Alpine % of hard Prealps
Parameters difficulty trails Shelters trails ASC
v̂ 0.92

(20.4)
Degree of diff. –0.19 0.70

(3.9) (19.7)
Ferrata –0.06 0.05 –0.08

(5.5) (6.5) (7.3)
% of easy trail 0.001 0.002 0.002 0.01

(0.4) (1.3) (1.0) (0.7)
Alpine shelters 0.06 –0.02 0.06 –0.001 –0.004

(8.1) (3.5) (9.6) (0.1) (0.7)
% of hard trail 0.01 –0.01 –0.02 0.001 –0.03 0.06

(2.8) (2.2) (2.0) (0.9) (6.1) (10.8)
Prealps ASC –1.29 0.92 –0.34 –0.07 –0.02 1.08 –0.01

(7.3) (8.2) (2.4) (0.5) (4.0) (14.8) (0.04)

(|z-values| in brackets)

Table V:WTPcorrelations

Site attributes HB estimates
Degree of diff. 1 0.60 –0.35 –0.40 –0.59 0.73
Ferrata 0.43 1 –0.30 –0.80 –0.42 0.61
% of easy trail –0.13 –0.12 1 0.04 0.68 –0.51
Alpine shelters –0.20 –0.48 0.04 1 0.27 –0.40
% of hard trail –0.32 –0.27 0.34 0.14 1 –0.46
Prealps ASC 0.63 0.48 –0.14 –0.38 –0.21 1

MSL estimates
Degree of diff. 1 0.80 –0.80 –0.66 –0.73 0.71
Ferrata 0.57 1 –0.52 –0.93 –0.46 0.83
% of easy trail 0.16 –0.07 1 0.41 0.68 –0.64
Alpine shelters –0.38 –0.97 0.11 1 0.33 –0.75
% of hard trail –0.21 –0.02 –0.04 0.02 1 –0.32
Prealps ASC 0.63 0.70 –0.01 –0.67 0.31 1

Upper triangular fromWTPspace
Lower triangular from preference space

18



Table VI: Statistics of simulatedWTPs from models in preference space ine.

Statistics Medians Means St. Dev.
Correlated No Yes No Yes No Yes
Estimator Simulated from HB estimates
Degree of difficulty –2.35 –3.04 –3.62 –4.52 5.44 8.77
Ferrata –0.39 –0.48 –0.58 –0.67 0.77 1.65
% of easy trails 0.06 0.09 0.11 0.18 0.35 0.84
Alpine shelters 0.34 0.36 0.51 0.40 0.65 1.29
% of hard trails 0.28 0.35 0.44 0.53 0.73 1.44
Prealps ASC –4.83 –6.93 –7.34 –7.87 10.07 19.52
Estimator Simulated from MSL estimates
Degree of difficulty –1.65 –2.08 –2.99 –3.12 6.49 7.10
Ferrata –0.21 –0.31 –0.40 –0.29 1.22 1.08
% of easy trails 0.03 0.05 0.06 0.09 0.79 0.16
Alpine shelters 0.22 0.26 0.42 0.21 1.42 0.83
% of hard trails 0.16 0.21 0.32 0.34 2.18 0.70
Prealps ASC –3.31 –4.72 –5.75 –2.67 10.10 20.77

Table VII: HB estimates forWTPspace models ine.

WTP Parameters Statistics of posterior distribution
v̂ andŵ Mean St. err. St. dev. St. err.
v̂ –1.41 0.04 0.74 0.24
Degree of difficulty –2.80 0.16 2.24 0.83
Ferrata –0.37 0.02 0.21 0.08
% of easy trails 0.07 0.01 0.09 0.03
Alpine shelters 0.35 0.01 0.17 0.06
% of hard trails 0.30 0.02 0.23 0.08
Prealps ASC –4.54 0.32 4.60 1.72

Uncorrelated:lnL∗ at means of post. dist. –20,470.89
v̂ –1.81 0.05 0.74 0.25
Degree of difficulty –5.59 0.34 5.87 2.25
Ferrata –0.60 0.05 0.74 0.28
% of easy trails 0.16 0.02 0.27 0.09
Alpine shelters 0.53 0.04 0.51 0.19
% of hard trails 0.56 0.05 0.70 0.26
Prealps ASC –7.37 0.78 13.78 5.13
With correlation:lnL∗ at means of post. dist. –20,325.55
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Table VIII: MSL estimates forWTPspace models ine.

WTP parameters
v̂ andŵ Mean St. err. St. dev. St. err.
v̂ –1.22 0.06 0.67 0.05
Degree of difficulty –1.99 0.20 2.19 0.33
Ferrata –0.31 0.03 0.06 0.04
% of easy trails 0.07 0.01 0.03 0.01
Alpine shelters 0.32 0.02 0.12 0.02
% of hard trails 0.28 0.03 0.16 0.01
Prealps ASC –4.39 0.46 3.97 0.39

Uncorrelated:lnL∗ –20,419.91
v̂ –1.16 0.04
Degree of difficulty –2.85 0.16 2.98
Ferrata –0.37 0.02 0.37
% of easy trails 0.10 0.01 0.08
Alpine shelters 0.36 0.02 0.23
% of hard trails 0.37 0.02 0.38
Prealps ASC –5.76 0.36 2.57

With correlation:lnL∗ –20,068.04
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Table IX: Choleski matrix from MSL estimates inWTPspace

v̂ Degree of Ferrata Easy Alpine Hard Prealps
Parameters difficulty trails Shelters trails ASC
v̂ –0.043

(21.5)
Degree of diff. 0.193 –2.977

(1.7) (19.4)
Ferrata 0.067 –0.291 0.220

(2.9) (11.1) (9.3)
% of easy trail –0.007 0.060 0.015 –0.043

(1.1) (7.5) (1.3) (12.5)
Alpine shelters –0.037 0.148 –0.149 –0.003 –0.081

(2.2) (8.8) (8.5) (0.3) (7.0)
% of hard trail 0.011 0.279 0.070 –0.038 0.024 –0.244

(0.5) (11.2) (2.2) (4.3) (2.1) (10.5)
Prealps ASC 2.520 –4.517 2.449 1.605 –0.014 –1.312 2.490

(7.9) (11.4) (7.2) (5.3) (1.6) (4.2) (14.2)

(|z-values| in brackets)
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Figure 1: Distributions ofWTPfor one additional alpine shelter at destination.

(a) Models with no correlation.

(b) Models with correlation.
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