Separation of variables on n-dimensional Riemannian manifolds.
l. The n-sphere S, and Euclidean n-space AR,

E. G. Kainins

Mathematics Department, University of Waikato, Hamilton, New Zealand

W. Miller, Jr.

School of Mathematics, University of Minnesota, Minneapolis, Minnesota 55455
(Received 4 February 1985; accepted for publication 12 March 1986)

The following problem is solved: What are all the “different” separable coordinate systems for the
Laplace-Beltrami eigenvalue equation on the n-sphere S, and Euclidean n-space R, and how are
they constructed? This is achieved through a combination of differential geometric and group
theoretic methods. A graphical procedure for construction of these systems is developed that
generalizes Vilenkin’s construction of polyspherical coordinates. The significance of these results
for exactly soluble dynamical systems on these manifolds is pointed out. The results are also of
importance for the analysis of the special functions appearing in the separable solutions of the
Laplace-Beltrami eigenvalue equation on these manifolds.

I. INTRODUCTION

In this paper we find all separable coordinate systems on
the real n-sphere S, and Euclidean n-space for the Hamil-
ton—Jacobi equation

H=g's,S,=E, S,= —a*i. , i=1,.,N, D
ox'
and the Helmholtz equation

A, -—-—‘——‘?—.(&g"f‘?—“’-.) —ay,
J§ axt axt

i,j=1,.,n, g=det(g;). (I1)

There are several reasons why this is an important problem.

(1) The list of 11 coordinate systems in R, that provide
aseparation of variables for these equations are well known.’
Their value in the solution of boundary value problems is
unquestioned. More recently there has been an interest in
separation of variables on the spheres S, and S, (see Refs. 2
and 3). In the case of S; the relationship with the hydrogen
atom has been extensively studied.* More recently the im-
portance of separable coordinate systems on .S, has been
discussed® for dynamical symmetries in a spherical geome-
try. It is also of interest to study classical and quantum me-
chanics on S, and R, as a means for finding exactly soluble
dynamical systems interacting under a suitable potential so
as to admit solution via a separation of variables.

(2) On the mathematical side the solution of the prob-
lem we solve here gives the basic results necessary for a com-
plete analysis of the special functions that are solutions of
(II) via a separation of variables on S,, and R ,. In doing so
all the separable solutions can be characterized in terms of
symmetric second-order elements in the enveloping algebra
of the corresponding symmetry group. This provides the ba-
sis for an all-embracing theory of such solutions and a syste-
matic treatment of relations amongst these solutions. For an
introduction to these methods we refer to Miller’s book.® In
solving this problem we also extend Vilenkin’s work, which
dealt with a restricted class of separable solutions.’

We should also note at this point the articles of Luc-
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quaud,®'® which give a discussion of spherical harmonics on

SO(n) via an elegant tensorial approach. For some of the
crucial results concerning separation of variables we refer
the reader to the papers of Levi-Civita,'! Eisenhart,'? and
Benenti.'* Referring now to equations (I) and (II) we
should, of course, mention that these equations are ex-
pressed in an arbitrary coordinate system in terms of which
the infinitesmal distance on the underlying manifold is

ds’ =g, dx'dx’, i,j=1,.,n. (L.
[Formulas (I), (II), and (1.1) use the summation convec-
tion on indices i, j.] Separation of variables for (I) is under-
stood to mean that there is a coordinate system {x’} for
which it is possible to find a solution § = S(x;4,,...,4,) of
(I) such that

S=3 8@ hyid,)

i=1

(1.2)

and det(d2S/9x' 0A;)nx, #0, i€, S is a complete inte-
gral.!* This type of variable separation is additive.

Separation of variables for (II) is normally understood
in the product sense,'’ i.e., the coordinates {x} should be
such that there is a soluton of (II) depending on n param-
eters ¢y,...,¢, of the form

W= I W (Ficpntn)- (13)

i=1

In this article we determine all coordinate systems that pro-
vide additive separation for (I) and product separation for
(I1) for the following Riemannian manifolds: (i) the real n-
sphere S, and (ii) real Euclidean n-space R,. We also de-
scribe a graphical procedure for constructing these coordi-
nates, which includes Vilenkin’s description of polyspherical
coordinates as a special case.

We recall a few basic facts about variable separation.
For a positive definite Riemannian space a separable coordi-
nate system {x'} for (I) can always be chosen'®!” such that
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the contravariant metric tensor is

(gij) = [ﬂq—o] . (1.4)
0 |g”
The functions H ;- ? and g*# have the form
ao=2, gr =3 47" Ly (1.5)
¢ 3 P

where ® = det(®,, (x*)). The variables x* are such that
g%/0x* = 0, for all i, j.
A typical separable solution takes the form

S= ES‘, (x*) + Eca x°.

The choice of ignorable variables x* is not unique; we would
get a similar system if we defined new coordinates x” by
x¥ = agx®, x* = x°, where det(aj)+#0. We say that two
such coordinate systems are equivalent and will not distin-
guish between them.

The standard form (1.4) will be central to our argu-
ments. If a coordinate system is separable for (II), it is auto-
matically separable for (I). A separable system {x‘} for (I)
separates (II) if and only if

Rab =0, a#b,

where R;; is the Ricci tensor expressed in these coordinates.
In particular, for orthogonal coordinates, (I) and (II) sepa-
rate in the same systems.

A. The n-sphere S,

This space is most readily realized in terms of n + 1 real
“standard” coordinates (s,,...,5, , ; JER, , |, which satisfy

£ttt =1 (1.6)
The infinitesimal distance is given by
ds® =dsi + - +ds% . (1.7)

The n-sphere admits the group SO(n + 1) of isometries.
The algebra so(n + 1) is realized on the cotangent bundle of
R, . by the Killing vectors

I;=s, Ps, — Sj Psyp i#j. (1.8)

We recall in the normal correspondence, dS /dx' = p, and L
is a Killing vector if L is linear in the p,’s and {H,L} =0
where { , } is the Poisson bracket. It is then seen that the
ignorable coordinates x“ of a given separable coordinate sys-
tem are such that p, is a Killing vector. The Lie algebra
so(n + 1) also can be realized by means of linear differential
operators, with the identification p; —d /ds;. The symmetry
operator },j =35,(d/0s; —5;0/0s;) satisfies [A, ,},-,] =0,
where [ , ] is the commutator bracket and A, is the opera-
tor (II) on S,. We note that the two realizations of
so(n + 1) directly relate to the SO(n + 1)-invariant equa-
tions (I) and (II). For equation (I) the algebra is realized as
the set of all Killing vectors L that are in involution with H,
i.e.,, {H,L} = 0. For equation (II) the algebra is realized by
|

all first-order linear differential operators . that commute
with A, . The #-sphere as a Riemannian manifold is a space
of constant curvature — 1 and is completely characterized
by the Riemann curvature tensor conditions'®

Rhijk = (&nx 85 — 8nj & )»
in any coordinate system.

(1.9)

B. Euclidean n-space R,

Here, a point is given by 7 real (Cartesian) coordinates
(y1s.--+ ¥, ) and the infinitesimal distance is

ds* =dy} + - + dy2, (1.10)

where R, admits the isometry group E(n) =T, ® SO(n).
This is the semidirect product of the n-dimensional Abelian
group of translations 7, and SO(#n). On the cotangent bun-
dle of R, the Lie algebra # (n) has a realization by Killing
vectors:

M;=y.p,—¥ by Pr=p,,
i#j. (L.1D)

The corresponding realization in terms of symmetry op-
erators can be obtained by the correspondence p,—d /dy;.
Euclidean n-space is characterized by the Riemann curva-
ture tensor condition R, =0 in any coordinate system.

We note that the study of variable separation will give a
complete enumeration of the scope and extent of special
function identities available in these spaces. In addition, ex-
actly which special functions appear can be determined. The
problem of separation of variables on S, is also intimately
related to the separation of variables problem on CP(#n),"* n-
dimensional complex projective space.

i, jk=1,..n,

Il. SEPARATION OF VARIABLESON S,

The following is a crucial result in the classification of
separable coordinate systems on .S, .

Theorem: Let {x} be a coordinate system on S, for
which the Hamilton-Jacobi equation admits a separation of
variables. Then, by passing to an equivalent system of co-
ordinates if necessary, we have g¥ = §YH ;= 2, i.e., separation
of variables occurs only in orthogonal coordinates. Further-
more, in terms of the standard coordinates on the sphere
8150058, 4 15 the ignorable variables can be chosen such that

Pa, =l Po, =Duses Do, =Dog 412442 (2.1

where the number of ignorable variables is g.

Proof: This is based on the general block-diagonal
expression of the canonical form of the contravariant metric
tensor for a separable coordinate system. It is well known?®
that any element of the symmetry algebra so(n + 1) of S, is
conjugate to an element of the form

L=1,+bl34+ - +b,1,,_,,,. (2.2)

If this element corresponds to the ignorable variable ¢, i.e.,
L =p, , then by local Lie theory the standard coordinates
on the #-sphere can be taken as

(S1seesSn 4 1) = (o1 cOS(@) + Wy) P, sin(a; + wy),p, cos(b, + w,),

p2 Sin(bZal + wZ)""’pv cos(bval + wv)pv Sil'l(bvtzl + wv)r92v+ 1 ,...,Sn +1 )’
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where p? + - +p2 + 55,1 + = + 52, = 1. The infinitesimal distance then has the form

ds® = dp} + - +dp? + p} (da, + dwy)? + - +p} (b, da, + dw,)* +ds;, | + -~ +ds, . (24)

If there is only one ignorable variable then the coordinate system must be orthogonal and this is only possible if b, = -- = b,

=0, i.€.,p,, =1, Indeed, the requirement that the contravariant metric have the form (1.4) (orthogonal in this case) is that

—dw,= 3 & 21 b, du, 2.5)
=2p

Since the differentials dp;, dw, ( j>2), must be independent and the only condition on p} is

ZP. 2u+|+ +Sz+1=l’

i=1
the condition dw} = Oimplies b; = 0,j = 2,...,v, and dw, = 0. We can then take the constant w, = 0 by suitably redefining .
The theorem is proven in this case.

Now suppose there are ¢ > 1 ignorable variables. The Killing vectors p,, , i = 1,...,¢, must form an involutive set. It follows
from the spectral theorem for commuting skew-adjoint matrices that for each i, p, has a representation of the form

P, =biln+b5L+ +biv‘IZv,-—l,2v,’ (2.6)
for i = 2,..,q. In fact we can assume

N
Po,=hi 12+ 3 bily_ 12, i=1..4 2.7

I>q
The projective coordinates on the sphere then have the form

(S1peeesSp 1) = (p, cos(a; + w,)p, sin(a, + wy),....p, cos(a, + w,)p, sin(a, +w,),

g (&
Pqg+1 cos(z byiaa +wq+l) » Pg+1 Sln(.zlbq+lai +wq+l) N

i=1

g
PN sin(z bva; + wN) SN 4+ 1oeeesSn 4 1) . : (2.8)

i=1

We now make the crucial requirement that the ignorable variables a;, i = 1,...,q, are part of a separable coordinate system. If
we compute the covariant metric, it should be in block-diagonal form with respect to the two classes of variables. Just as in the
case ¢ = 1, this is only possible if b; =0, i = 1,...4, ] =¢q + 1,...,.N and dw, =0, 1<i<q. We can therefore assume that
L, =1L, =1,,..,L, =1I,,_,,,; theignorable coordinates a, then can always be chosen such that w; = 0, 1<i<g, and the
system is orthogonal. Q.E.D.

This theorem enables us to bring to bear Eisenhart’s'? results on orthogonal systems of the Stiickel type. Our problem
reduces to the enumeration of all orthogonal separable coordinate systems. We use an inductive procedure such that given all
separable systems for S;, j < #, we can give the rules for construction of all systems on S,,.

If {x'} is an orthogonal coordinate system with infinitesimal distance ds* = 2"_ , H >(dx’)?, then the conditions that the
space be of constant curvature — 1, i.e., that we are dealing with .S, , are

(i) R =0, i#h#k. (2.9)
Eisenhart'? showed that in order for orthogonal separation to occur on any #-dimensional Riemannian manifold the contra-
variant metric g = §YH ;~ ? must be in Stickel form and that the necessary and sufficient conditions for this are

a? a a a d a d
——1lo H-—-——lo H?—logH?+ —logH? log H? + logH?—1log H: =0, 2.10
PR o Y A i~ el S bl mia (210)

for j# k. He then went further to show that these conditions, together with the equations (2.9) (ii), are equivalent to the
equations
d a J

5;10gHza—a—logH2 - a——logm;"—log H? - TlogHzailogH =0, ijk pairwise distinct. (2.11)

It follows that the metric for a separable system can be written in the form
=H!=X,[](0; +0;), i=1...n, (2.12)
j#i
where X, o; are functions of x’ at most. The conditions (2.9) (i) are then equivalent to

0504 (Op + o) — 0,04 (0 + 0y ) — 01,05 (0 + 0;) =0, 1, j,k distinct, (2.13)
1723 J. Math. Phys., Vol. 27, No. 7, July 1986 E. G. Kalnins and W. Miller, Jr. 1723

Downloaded 30 Oct 2008 to 130.217.76.77. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/ijmp/copyright.jsp



where oy, =

(9, k)0, etc. We now study various possibilities for the functions o;. If all the functions o;; are such that o, #0

then Eisenhart has shown that the metric coefficients have the form

=H?=XiH(a'i —0;)
JFEI

(2.14)

where o; = 0, (x’) and o] #0. This metric will be the basic building block on which we can formulate our inductive construc-
tion. Without loss of generality we can redefine variables {x'} in such a way that o, = x’, i.e,,

H}=X ][] &' —=x).
j#i
The conditions (2.9) (/) then amount to

. -1 —_— 2 1 —1 1\ [
J_ 5l - = —_— e [ ——
[III;e, == )] [(x"——xj)2 (X,) * (x' — x7) (X,) ]

+ , L - _a
151 X () — x) (' — x DT, L, (xF — x9)

These equations have the solution

(1/X)"+D L 4(n+ 1)1=0, i=1,.,n (2.17)
ie.,
1 4y S e = A,
A; I=0
The function f(x) can also be written
n4+1
fix)y=—4 H (x—¢). (2.18)

i=1

There are two requirements to determine which metrics of
this type occur on S, : (1) the metric must be positive defi-
nite and (2) the variables x’ should vary in such a way that
they correspond to a coordinate patch that is compact.
There is a unique solution to these requirements: the x', e,
should satisfy

e <xt<e,< - <, <x" <, . (2.19)
These are elliptic coordinates on the n-sphere S, . They can
be related to the coordinates {s; } via

Im_, (x'—
£= _':_'_(__e)_ j=1.n+1.

(2.20)
I, (e; —¢)

These systems are the basic building blocks for separable
coordinate systems on real spheres. To complete the analysis
of possible orthogonal separable systems we need to consider
the case when some of the o;; functions are constants. If o,
= g, (const), Eisenhart has shown that there are four possi-
bilities:

(i) o,=aq,

i O = Qyis

O =8ixs Oy =8y

(i) o;=ay o;=a;
Oy == Ay, O =0y,
(iii) o;=a; ox=ay,

T =%  Oj = 4k

O =005 Op =0y;0;5
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(2.15)
. -1 -2 —_ ’
il B e A )
—xJ) (x/ —x) \X,
(2.16)
r
(iv) o;=a; oy=ay,
Oji =339 Ojx = 8u0j»
a;a,; — aya; =0, (2.21)

where o; is a function of x/ only and /, j,k are pairwise dis-
tinct. If we fix / and j, then, for k values corresponding to
cases (1)-(iii), o, = a,. Toexamine how the inductive pro-
cess works let us take oy, = ay, for/ =k + 1,...,n and }; #0
for j = 2,...,k. Then we have

Cr- = a- Cnl = a,lcrh CrU = a”‘”’

ana; —aya, =0, forl=k+1,...n, j=2,.k
Assummg that @, #0 for I = k + 1,...,n, j = 2,....k, we find
the metric coefficients have the form

H}= XzH(U'.-j +aji)][ ﬁ
!

(a; + alial)] )

J#EE =k+1
i=1,..k, (2.22)
1< j<k
H?=XI II (Ulm +0’m,), 1=k+ 1,...,”. (2.23)
m#l
m>:1]

Let us assume that no further functions o¢;,0,, are con-
stants. Then using the results of Eisenhart we can take the
metric coefficients as

H?= X,H(xi—xj)]( ﬁ 01),
1=K+ 1

Ji

Hi= [X, (x —x'")] . (2.24)
m;él

The conditions R, = — HiH 7} are equivalent to (2.16)

and (2.17) with i = k + 1,...,n and n—k = n'. Putting

H= [X,, I & =)
Ji
the conditions R, = H}H?and R, = — H

i 2H ? are equi-
valent to

H,-_ZH,-"ZRW,-+( H a,)

{=k+1

[ ;“411, (,) +1]=0’

E. G. Kainins and W. Miller, Jr. 1724
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2 ’

g; g o;
2———( —|—
g; ] (]

a 1
X|—logH?+H? ¥ ————| = —4H},
[ax’ B I,.;:Hf,,(x’—x"‘) !
(2.26)
where R, is the Riemann curvature tensor for the Rieman-
nian manifold  with  infinitesimal  distance

ds* = T¥_  H?*(dx")>. These equations are satisfied if and
only if

—=—4 ] &'—fu) I=k+1,..,n (227)
Xl m=1
and o, = (x' —f,, ka1 Y (fiok —fu—k+1)> where we

takef; < f, < ++ <f,_ . The remaining condition then is
Ry, = —HZI-!2 so that
1 k41 .
—_= —4 H (x'—¢). (2.28)
X, o i=1
The coordinates on S, can be taken as
(Sl,...,s,, +1 ) = (ulvl,.--,ulvk+ l,uz,.-.,un_k+ 1 ), (2.29)
where
k+1 n—k+1
vi=1, ut=1,
i=1 I=1
and
oc_ . (x'—=f
v = '/ (2.30)
M., (fi —f)
i = - Mimke =) (2.31)
Hn;ém (en —e, )
The infinitesimal distance has the form
nn_ { _
dsf,=dsf[ Tmk1 (X —=fookt1) ]+ds§,
m#n—k+l(fm —.fn—k-i-l)
(2.32)
where
1 & [ I, (x' —x) ] i
= - | (dx"? 2.33
4 ; H}‘*,‘(x —-¢) ( ( )
_ —1 rm;él(x 132
- ;H [n:.t’:“ ] (@
m=k+1,.n j=1..k (2.34)

The choice of embedding of the sphere S, in the n-sphere S,
given by (2.29) is not, of course, unique. It is here we meet
the second concept involved in regarding two choices of co-
ordinates (sy,...,5,, ;) as giving “equivalent” coordinate
systems. Clearly we could subject the coordinates {s;} to an
arbitrary SO(n + 1) group action. The infinitesimal dis-
tance would remain unchanged in the process. We regard the
new set of coordinates (s{,...,s,,,) as equivalent to the
original set. This is just the mathematical formulation of the
geometric identification of coordinate systems that differ
only by an isometry. This aspect of equivalence is obviously
group related. If the Riemannian manifold had no isometry
group it would not be relevant.

Now suppose one of the constants a; = 0 for some fixed

1725 J. Math. Phys., Vol. 27, No. 7, July 1986

! and j. Then from the relations

a“aﬂ - au a” = 0, (2.35)

we have a;, =0 and consequently a,, =0, for i = I,...,k.
This implies that o, does not appear in H?,i = 1,...,k.

Referring to the curvature equation R, = — H?H?
we see that it cannot be satisfied if o, = ¢,0, = 0 as this
would imply — 4H } = 0. Thus a, #0 for each /, j. Recall
here that we have assumed that none of the functions o
(i,j=1,...k, i#)), oy, (Im=k+1,.,n,1%m) is a con-
stant. Let us now push this process one step further: Let
Okyrs =0ryy for s=p+1.,n and o}, ,,#0 for
s =k + 1,...,p. Then applying the same arguments as pre-
viously, we see that the metric coefficients H?
I =k + 1,...,n, can be brought to the form

=X, [ II (a,m+0,,,,)][ 11

(als + aslas )] ’

mytl s=p+1
Lk + 1<i<p
(2.36)
-
m=x[ I (a,,+a,,)]. (2.37)
s#
r-.r>p-: 1
Here the indices run over the ranges
by fyoe =1k, Im,...=k+1,..p, (2.38)

sLi,...=p+ 1,...n.

We follow this convention unless otherwise stated. If none of
the remaining o,,’s are constants there are two cases to con-
sider:

(i) a,/ay=a,/a,,
fors=p+1,..n i=1l..k I=k+1,..p.
Then the infinitesimal distance has the form

dsz=( ] )dwz
t=p+1

+ 35X

X NI (0w +a,u)] (dxh)?,  (2.39)

t=p+1 ukt
where
P k
dw2=( a) X, (o +a,~)] (dx')?
ls[[-u ! igl jl;Im v , )

P
+ X[ [H (alm +aml)] (dxl)z- (2-40)
I=k+1 m#£l

The form dw? corresponds to the choice of metric coeffi-
cients with / =k + 1,...p <n. If we impose the conditions
Ry = —H2H?, then we see that for
ab=1,.kk+1,.,p the conditions are identical with
(2.16). Hence

1 k+1

Z— —4 II (x'—e), i=1,..k, (2.41)
1 —k+ !
—_—= n (x —fa) I=k+1,.p (242)
X[ m=1
and
(xl_j;—k-b-l)
o= sy I=k+1,.,p. (2.43)
U Uk ~fomks)
E. G. Kalnins and W. Miller, Jr. 1725
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The remaining conditions

Rmut = = Hsz
and
Rmat = —HZH,Z (a = l,...,p)
also imply
1 n—p+1
~ =" II &—8&) s=p+1l..n (244)
s t=1
and
‘—
3 (x gn—p+l) , t=p+ 1,..m.

(gt-—p —8n—-pat
These coordinates on .S, can then be constructed in a stan-
dard way:

(S1peesSn 11 ) = (U0 Wyer 4 0 Wy, 4 1,8 Vgseeny
Uy ket 1582seestly _p 1 1)s (2.45)
where
k+1 p—k+1
i=1 =1

and on each of the spheres defined by the u;, v;, and w,
coordinates, elliptic coordinates are chosen, i.e.,

—II*  (x7—e;
Bt 070 k1, (246)
nj;;' (e, —¢)
— P q
po Tk S k],
nmaél(fm _fl)
(2.47)
. q_
u= G pr1 (¥ g,)’ st=1,.,n—p+1.
ns#t(gs”_gt)
(2.48)
Now

(i) a,/a,+#a./a,.

In this case 0, = a,, for I = k + 1,...,p, as follows from Ei-
senhart’s cases (2.21) (i)-(2.21) (iv). The infinitesimal dis-
tance has the form

ds2=( f[ a,)dwf+( ﬁ (a,+a))da)§

=p+1 =p+1
+ X,.[ II (au,+a,u)] (dx")?, a0,
t=p+1 uFt
upp+1
(2.49)
where
k
dol = ¥ X, [H (o, +aﬂ)] dx")?, (2.50)
i=1 joti
o
P
do} = Y X, [ (Oim +a,,,,)] (dx")2.
l=k+1 msl
k+ 1<m<p

(2.51)

The conditions that this metric correspond to S, require that
we have the same functions X, as in the previous case and

1726 J. Math. Phys., Vol. 27, No. 7, July 1986

now
t_ r___
0, =—E=8) | 5 yg-_ =8
(8 _pi1—81) (8—pt2 —82)
(2.52)
Here we have adopted the convention
8n_pr141 =8 fork+ 1<I<p. (2.53)

Consequently the infinitesimal distance has the form
7, (% —gx)] dor?
I, (g —81)
[H:'=p+ 1 (X' —g2)
Hu;é t (gu - gZ)

a=|

-+

] dw?

_l_ i [nu#t.ptl<u<n(xt—xu)] (dx‘)z.
4 . H::p+l(x’—g“)
(2.54)

A standard choice of coordinates on S, for this infinite-
simal distance can be taken as

(SpyeeesSp 4 1) = (U010t Vg o 1 U W,y
Uy 4 s Uzseesldy _p k1 )s (2.55)

with »;, v;, and w, coordinates as in (2.45). This procedure
can be iterated without difficulty to find all separable coordi-
nate systems on S, . If we do this we obtain an infinitesimal
distance of the form

ds* = i [2 (H{)’(dx")z}[ H (a,+a,)]
=1 LieN, N,
+ Z (H}’+')2(dxj)2,
jENp+l
a,#a,, ifI#J. (2.56)

Here {N,,..,N, , , } is a partition of the integers 1,...,n into
mutually exclusive sets ¥,, i.e., N,AN, = @. It follows from
Eisenhart’s types (2.21) (i)-(2.21) (iv) that (3, )H " =0
ifj ¢ N,. The curvature conditions can now be written down.
The conditions Ry, = — H?H (i# j) are equivalent to the
equations

RF+V = — (HIY)YHEY)?, ijeN,,,,
(H)"XH) R

ijji

+ H (O'k +a1)]

KeN, ,

(2.57)

x[L s arpem-2_ +1]
4 5., ! (01 + @,)?

i,jeN,,

5 oy ( o] )2
(o, +ay) o, +a;
o] [a
—— )| 1og(H ¥+ V)2
((a,+a,)) a1 B

1
+(H(p+l))2
! ’;I (H'("p+l))2(x1__xm)

meN, .,

= —4HP*D), N,,,,

il
e

(2.58)

(2.59)
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1 o’ — 1
(HFE*™? (0, +a)) (0, +ay) .
(2.60)

Here we have used the notation R {j}, to refer to the curva-
ture tensor of the Riemannian manifold with infinitesimal
distance

1
415;

p+1

do} =Y (H®)*(dx')2 (2.61)
Ie Ny
These equations have the solutions
My (X—e)
(0,+a )] = e , (2.62)
[’e;pl»,- 1 1 nmeNPH(e,,, —e;)
—1 [Mne mty (X7 —x')
(H‘1’+1)2= 1 Ny 4y (m3]) , IEN+1,
4 M7t (xl—e,) ?
(2.63)
R 'full) I (ngl!))z(Hj(I))z,
I=1,.p+1, ijeN, (2.64)

wheren, ., =dim N, _ ,. The infinitesimal distance can al-
ways be written in the form
ae = 3 dof [________m; o) ]
I=1 nm#l(em '—el)

n, . o xd

_1_ [Eff_’.(i__).c_)_] (dx")?, (2.65)
4 S (X —e))

where each dwy is the infinitesimal distance of a S, . The
coordinates on each S, are again separable. Clearly we must
have the constraint =f_, p, + n; = n. Using this infinitesi-
mal distance we can construct all separable coordinate sys-
tems inductively. The basic building blocks of separable co-
ordinate systems are the elliptic coordinates on spheres of
various dimensions. We will prescribe a graphical procedure
for obtaining admissible coordinate systems, essentially giv-
ing the admissible embeddings of spheres inside spheres,
which are allowed so as to correspond to separable coordi-
nates.

IIl. THE CONSTRUCTION OF SEPARABLE
COORDINATE SYSTEMSON S,

As we have seen in the previous section the basic build-
ing blocks of separable coordinate systems on S, are the p-
sphere elliptic coordinates
n’l’sl(xl"“ej)' Ly
Pslz-n .(e._e) » yA s2=1,
J#i\E1 4] Jj=1

3.1

p=LlL.n j=lL.p+1
Two important examples of these coordinates are
1_ 1__
() p=1: & =£.’i_e_l)_, 52 =Q‘_e21,
(e;—ey) (e, —e,)
(3.2)

where ;52 + 52 =1, ¢, <x! <e,; and
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(x' —e)(x*—¢))

(e;—e)(e;—¢) ’
_ (K —e)(x*—e)

2S§ (e;—e;))(e;—e)) ’

2= (x! —e;)(x* —¢;) ’
(es—ey)(e; —e,)
where ;57 4,52 + .57 = 1, ¢, <x' <, <x? <o,
We will develop a graphical calculus for calculating ad-
missible coordinate systems. We represent elliptical coordi-
nates on S, by the “irreducible” block

[elleal ........ [en +ﬂ .

Each separable coordinate system will be associated with a
directed tree graph. Consider, for example, the sphere S,.
There are two possibilities.

(1) The first possibility is the irreducible block
. Most treatments of elliptic coordinates on S, cor-
respond to the choicee, =0,e, = 1,e; =a > 1. Thisisjusta
reflection of the fact that for Jacobi elliptic coordinates the
variables x' and ¢, always can be subjected to the transforma-
tion

(i) p=2: 5 =

(3.3)

3.4)

x"'=ax'+b, ¢ =ae +b,
(3.5)

Thus we can always choose ¢, =0 and e, = 1. [Note in
particular that can always be replaced by [0I1l. Put-
ting x'=cos’@ we recover 5, =cos@, 5,=sing
(0<@<2m).]

(ii) The second system is the usual choice of spherical
coordinates

i=1.,n j=1l.,n+1

(3.6)

This system can be considered as the result of attaching a
circle to a circle and is the prototype for the construction of
more complicated systems. The graph

s, =sinfcosp, s,=sinfsing, s;=cosb.

3.7
is taken to correspond to the choice of coordinates
g8
(e; —ey)
1 2 __
& = (ud) (pt) = E =€) (£ =) (3.8)

(e,—e) (L—f)
(x' —e,) (x* = 1)
(ey—e) (fi—f)'
e <x'<e, fi<x’<f

Clearly, choosing angle variables on the S,’s, the choice of
spherical coordinates corresponds to the graph

jof1 |
[0} 1]

5= (u3)(3) =

(3.9)

Only the square of origin of the arrow is of importance for a
given arrow connecting two irreducible blocks, not the tar-
get square. The general branching law for an arrow connect-
ing two irreducible blocks is readily given:
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(3.10)

We should also note here that because of the availability of
transformations of the type (3.5) some graphs that look dif-
ferent do in fact correspond to the same coordinate system.
Indeed, consider graphs of type

1] 1.1
e |% e:l

(3.11a)
(o2 ],
2l 212
1 °2le3 (3.11b)
ong
31.31.3
elleQ €3 (3.11¢)
[o]1] .

These graphs correspond to Lamé® rotational coordinates on
the sphere S,. There are, however, only two distinct such
coordinate systems. In fact, if the coordinates x’ and e/
(i=12,j=1,2,3) are subjected to the transformation

X' —x' =y,

e—>—e =€, a>—e=¢,

(3.12)
e—>—e} = e,

we see that the (3.11a) and (3.11c) correspond to the same
type of coordinates. Graphs that are related in this way can
be recognized by the feature that if the branch below a given
irreducible block ‘ is obtained from that of an-
other graph by reflection about a vertical at the center of the
corresponding e} - e, block, then the two graphs are equi-
valent. (We are assuming, of course, that all other features of
the graphs are identical.) Graphs that are essentially the
same can be related by several transformations of the type
(3.5) and the situation gets more complicated, e.g.,

1.1 1l
&3l |%

1.1 11111
i ‘1‘2]53]

e

1
1

S

1
f1

(3.13)

If the two irreducible blocks of S, and S, occur as indicated
in (3.10), as part of some larger graph, this means that the
elliptic coordinates ,u,,...,,4, , ; and ,Vy,...,,0, , , Of these
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blocks must occur in the combinations

Wy =, UpesW; = (,4;) (01500

Wippi1 = (nui)(pvp+l)’ Witpr2 =nlipi1sens

w (3.14)

Pr+n+1 =nun+l‘

Arrows may emanate from different squares (e,’s) of the
same block but cannot be directed at the same block. With
these rules we may construct graphs corresponding to all
separable coordinate systems on S,,. For n = 3, we have the
following possibilities>*:

(1) Jacobi elliptic coordinates,  (3.15)
(2) (a) () [o[ila] Lamé rotational
Tol1] [0]1] coordinates, (3.16)
(3) Lamé subgroup reduction, (3.17)
[ O[1]e ]
(4) [ spherical coordinates, (3.18)
L Of1]
[0 1]
(5) [0]1 ] cylindrical coordinates. (3.19)
10/ 01}

The formation of more complicated graphs is now clear.
Thus,

%) %

y [Om
B1AE

is a coordinate system on S with coordinates
st=Gu)? 5 = (u) ()3,
55 = (u3) ()% sk = Gua)*(33)3,
55 = (242)°(00)?% 55 = (13)*(wy)?,
57 = (343)%(;w,)>

Vilenkin’ has studied polyspherical coordinates on S, and
developed a graphical technique for constructing them. For
example, he considers the coordinates on S:

(3.20)

(3.21)

xo = COS ¢3 COs ¢2 cos ¢71,
x03 = Sin ¢3,

Xgz = COS @5 Sin @, €OS @y,

Xy = COS @3 COS @, Sint @, COS P, COS P, (3.22)
Xg21 = COS @; 8in @, sin @5,
Xg12 = COS @ COS @, 8in @, sin @,
Xo11 = COS @3 COS @, Sin @, COS @y, sin @,
and represents these coordinates by the graph
E. G. Kalnins and W. Miller, Jr. 1728
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For him, spherical coordinates on S,,
Xy = COS @y,

Xo1 =Siﬂ¢’1 COS¢“, (3-23)

Xo11 = Sin @, sin @y,
correspond to the graph

XO%

01
P11

*o11 .
Vilenkin denotes coordinates of rank r by x,; ..; and in the
example of (3.22) arranges coordinates in the order

X011%012:%021:%01:X02:X 03X 0 (3.24)
i.e., coordinates of higher rank precede those of lower rank
while coordinates of equal rank are ordered lexicographical-
ly. Coordinates of the form x,, .. ., are called subordi-
nate to the coordinate x,; .. Further, the coordinate
X, ...}, essen tially precedes the coordmate X0, i, if m>s, and
Jx =iy for 1<k<s — 1 and j; <i;. The coordinate x,, ...; es-
sentially follows x,;, ..., . To extract coordinates on S, from
this notation let x,, ...; be a vertex of nonzero rank. A rota-
tion g(@) by the angle Q=@ .. inthe (X .; _ Xoi..; )
plane is then associated with this vertex. In this way Vilenkin
constructs graphs representing the various possible polys-
pherical coordinates on S,. In our notation his coordinate
system (3.22) is represented by the graph

From these considerations we see that Vilenkin’s polyspheri-
cal coordinates are the special case of separable coordinates
on S, consisting of those graphs that contain only the irredu-
cible blocks of type [©I1].

IV. PROPERTIES OF SEPARABLE SYSTEMSIN S,

Here we make more precise our graphic techniques
through a prescription for writing down the standard co-
ordinates 5;, i = 1,...,n + 1, on S, in terms of the separable
coordinates. A given standard coordinate coming from a
given graph consists of a product of » factors, which we de-
note x;' % = (, u;) - (, 4, ). This is obtained by tracing
the complete length of a branch of a given tree graph, i.e.,

1729 J. Math. Phys., Vol. 27, No. 7, July 1986

el el .o el
1 34 Py
2 2 2
1 3 P
4
"
r T r
el...ejr...epr

We can then set up an ordenng < for the products x j'

We say thatx{,‘ ’,’, <xQ o, if Py = Qy,jy = iypesP, = Q,,J,
<l P, #0411 Js #E;. Thenif we arrange the products
in increasing order, say x,,....x, , ;, we can identify this or-
dered n-tuple with 5,,...,5, | . For the example (3.21) given
above, the choice of coordinates corresponds to this order-
ing.

Having settled on a prescription for writing down the
coordinates corresponding to a given coordinate system on
S, , we can now discuss the separation equations for both the
Hamilton—Jacobi and Helmholtz equations. Let us first con-
sider the coordinates corresponding to the irreducible block

]‘1[ 92] ------ [e,,ﬂ].The Hamilton-Jacobi equation in these
coordinates is
2 1
H= . — P2=F, 4.1
"Zl (I . (x' —x%)]
where
nt a5
[ H (x'—¢) .
i=1 a

The separation equations are

n+1 .
[H (x'—e) | (3,5:)°

i=i

+ [E(x")"—‘ + 34 (x")""] =0. (4.2)
i=2

If we set E = A,, then the constants of the motion associated
with the separation parameters 4,,...,4, are

21

i>j

=¥ sin3,

i>j

ES”I,ZJ,

>

(second-order Casimir invariant),

(4.3)

where

S;j='l— e ey,

! o 3

and the summation extends over i,,...,i; %/, j and i, #i,, for

I #m. For the associated Helmholtz equation the eigenval-

ues of A, have the form o(o + n — 1) and the Helmholtz
equation becomes

igl [

57 1152 (7 5

i (x —X ox'
= —olc+n-1)Y, (4.4)
where
Zi=1] *'—ep.
i=1
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The separation equations are

P, — |7, —
" oxt ox'
n—-1 _ .
+ [a(a’+n —DH"+ z A;(xH ¥, =0.
j=2
! (4.5)

The identification 4, = o(¢ + n — 1) enables us to further
identify the symmetry operators whose eigenvalues are /l
with the expressions (4.3) where I;,—I; and [I nT 7] =
For an irreducible block appearing in an admissible graph
the generalizations of these equations can be computed read-
ily. Consider the block shown as part of a given graph:

-t

Then define d; (i = 1,...,p + 1) as follows: d; = 0, if there is
no arrow emanating downward from the block E}; other-
wise d, is a parameter.

From the form of the metric we see the variables x,...,x”
coming from this block satisfy an equation of the form

2 1 2

= [IL x'—xj)] !

II. ..(e. — e,
+3 [J(Le_f)] d,=E,. (4.6)
=1 LI (x/ —e;)
Using the relation
1

,>j(x —x7) [1 1(x—ek ]’

4.7)

where
T, = (=D [ & =),
> f
with i, j#1, we see that the separation equations have the
form
ej)dk

2 e UL L, (e —
[leI < %) (d ) kZl (x'—e)

+ [E,,(x")"- '+ 3 /L(x")"-’] =o.
1=2

(4.8)

(e;—e3)(e;—ey)

(e;—e)(e;—e

For the corresponding Helmholtz equation the situation is
somewhat more complicated. With each ,u,
(j=1l,..,p + 1) we associate an index k;, which is calculat-
ed as follows: If the irreducible block occurs as the rth step
down from the trunk of the graph and if we write out the S, in
terms of our coordinates then k; is the number of coordinates

for which x ,'_'_'f,'f,',’; (rth column) occurs. The Helmholtz

equation assumes the form

)

= [ (= x7) ] ; dx' dx'

J#r(e —¢)

tV= —og(oc+p— 1)V,
i=x[ ,_1(x’—e)] slotp=D

(4.9)
where

4 ; K —1
-¢), 2,= H (x'—e)”

ji=1

P, = ﬁ (x
j=1

t, =0ifk, =1and ¢, =j,(j, + k, — 1) if k; 7 1. The sepa-
ration equations become

Z: a ( a\l’z) [ 2 1L (e —¢)
’__._ 7,9, —+ SRR Oy
2, 9xt ' ox' M kgl (x' —e) *

) 2.
+[otw+p-nor=1+ $ a0 v -0
I=2
(4.10)
If we take the coordinates (3.21) and choose
H?= 1 (x'— ej)
1L . (e; — &)
2 I-I;l'i=3 (xi —f;)
W =77
Hmsél (fm —f;)

2 _
U =

’ ]= 112:31 i= 112)

1=1,2,34, =345,

(4.11)
, (x*—g,)

T e -
then the separation equations for the Hamilton-Jacobi equa-

tion are

ts=12, t#s,

o [fe-o] G
]~l g dxi

(x'—e,)

4
@ [T & —s|(5) + s+ + 45 =0, 1=345

m=1

2 2
Gi)y | I (x“—g,)](%) +d;=0;
s=1

d, +

: D g+ Ex+4,=0, i=12
(x'—e3)

(4.12)

and for the Helmholtz equation the corresponding separation equations are
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., (x—¢) d

3
: j = ] : i_ i__ )3(xi —e,)
W \/(x"——ez)’(x"—e,) dx’ ( 1131 F—g)x ~e }

(e; — e)(e;—e;)

e,)(e;—e)

dvy, )
dx’

+ [(e3 IGi+2) +

(x'—e5)

(x'—e3)

J32 +1(1+5)x+/1] v, =0 i=172;

4
(i) / fI (x' ~ £ )——(| / IT (x'=fm) )+[I(l+2)(x)2+/lzx +4:1¥, =0, 1=345 (413
m=1 m=
/ [ d¥
II x*—2» ( (x*—g,) )+12¢6—0
s=1 s=1

dx®
ds* =ds} + - + ds,.

Once we are given the coordinates and have computed
the associated separation equations for (I) and (II) we can
also compute the Killing tensors corresponding to the sepa-
ration constants: In (4.8) we put 4, = E,. Given ,u;, two
coordinates s;,s, are said to be connected 1f they both contain
»4;. The corresponding Killing tensors are then calculated
from the formulas (4.3) with I} replaced by 2, , I,
where the sum extends over all indices 7 connected to i and s
connected to j. The Killing tensors correspond to I *-type
operators of the next irreducible block of dimension m con-
nected further up the branch in question. For example, con-
sider the coordinates (3.21). The corresponding Killing ten-
SOrS are

L,=3 13,

i>j
5 s
LZ"'el(z I+ 7.)+ez(16+117)+93(21?j):
- J=2
L= Z' I, kl1=2345,
k>1

=(h+LMos + i+ + (L+fo

+ (L+ Mo + (L + )5 + (SH+f) 5,
(4.14)

Li=fifilds + N5 A% + 115
+Lofd 3 + L1 5,

Ly=1%,.

For the Hamilton-Jacobi equation these tensors have
the constant values

L1~E1’ Lz""lv L3~d2’

Li~A, Ls~A, Lg~d,,
and for the Helmholtz equation with I;—. 7 ,_the resulting

operators L, (i = 1,.. ,6)havethee1genva1uesL1~](]+5),
Ly~AyLy~I(1+2), L~y L~As, Le~j3.

V. SEPARATION OF VARIABLES ON A,

As was the case for S, all separable coordinate systems
in R, can be chosen to be orthogonal.

Theorem: Let {x'} be a coordinate system on R, for
which the Hamilton—Jacobi equation admits separation of
variables and let ¢ be the number of ignorable variables.
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l
Then it is always possible to choose an equivalent coordinate
system {x} such that g¥ = 6H 2, i.e., the coordinates are
orthogonal. Furthermore, the 1gnorable variables a,,...,a,
can always be taken such that

pa, = 112""9pap = IZp— 1L2p pap+l

=Lops1rPa, =P, .,

Proof: We use methods similar to those for S,,. Any ele-
ment of the algebra & (n) is conjugate to one of the two
forms

(1) L=Iy+by i+ b, Ly 15 +BPsyiys
where 8 = 0if n = 2v; and

(2) L'=P,.

Let {x’} be a separable system with ¢ = 1. It follows
from the block-diagonal form that this system must be or-
thogonal. Furthermore, without loss of generality we can
assume thatp, =L orp, =L’ Itis evident that the sec-
ond case can occur and is in accordance with the statement
of the theorem. For the first case we can always choose the
ignorable variable a, so that it is related to the Cartesian
coordinates ( y,,...,y,,) by
(Y1eebn)

= {p, cos(a, + w,), p, sin(a, + w,),...,

p, cos(b,a, +w,),
Pv sin(b, a; +w,),p, +ﬂal’y2v+2v"’yn)'
(5.1)
The infinitesimal metric then has the form

ds* = dp} + - +dp’ + p} (de; + dw,)?
+ o+ (b, da, + dw, ) + (dp, ., +Bda,)?
+ayy, 10+ Yl (5.2)
If there is only one ignorable variable the coordinate system
must be orthogonal and consequently

pidw,+ Y b p}dw; +Bdp,,, =0. (5.3)
j=2
This is possible only if b, = . =b, =8 =0 and dw, =0.
(By redefining @, we then can take w, = 0.) Therefore if we
have only one ignorable variable then p, = I,, or P,.
Now suppose we have ¢ Killing vectors p,, , i = 1,...,.
Then they must be of the form
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Li=Ih+ Y biLi_1u+ Y VYmPu

I>p m=2s+1

Ly=I54+ 2 bflzl— L+
I>p

n

S P

m=2s+1

Lp =12p—-],2p + E b’I,IZI—l,ZI + E 7’; Pm’
m=2s+1

I>p
n
—_ +1
Lp+1— Z 7’fn Pm’
m=2s+1
n
L= Y 7vaP.
m=2s+1

The condition {L,,L,} = 0 implies
bi?’ék—l =b§c 7/2k =0,

(5.4)

(5.5)

for i=1,.p, I=1,.,9, k=p+1,.,5. We are assuming that there is always one b} nonzero for each k and some i.
Thenyh, | = ¢4 =O0fork =p + 1,..,sand/ = 1,...,g. The Cartesian coordinates are

(Prseeesln) = (p, cos(a, +w,), p, sin(a, + wy),..., p, cos(a, + w, ), p, sin(a, + w,),

P P q q
Poi1 cos(z b, ,a +wp+l)""’ps sm(z bla, +w,), N Vaer 1@ F Wagy 1o Y, Vol +w,|).
=1 I=1

This set of candidate ignorable variables can take the neces-
sary block-diagonal form only if dw, =0, b} =0, for
i=1..,p and k=p+1,.,s. Also dw,=0, for
! =2s + 1,...,n. We can thus assume that w, = - = w, =0,
W, ., = =w, =0. This implies ¥, =0, for i =1,...,q,
m=2+gq—p+ 1,..,n, and we can also assume ¥, =0,
for i=1,..p and m=2s+1,.,25s+q—p+ 1. Conse-
quently we can take

L= 12""’Lp = IZp— 1,2p» (5.7)

Lp+ 1= PZs+ 1’“"Lq = P2:+q~p’
and there are no nonzero elements g*, 1<i < j<g, in the
metric. By a suitable E(#) motion we can always choose
s =p. All separable coordinates in R, must be orthogon-
al. QE.D.

To find all possible separable coordinate systems on R,
we proceed in analogy with what we have done for S,,. If we
choose orthogonal coordinates in which none of the o;; are
constant functions, then

H?:X [H (x’—x’)] (i= l’---rn)r

j#i

(5.8)

where, as usual,
ds’ =¥ Hi(dx)2
i=1
The conditions R; = 0 are equivalent to (2.16) in which

i
the right-hand side is zero. These conditions have the solu-

tion
(/X)"+Y =0 (i=1,.,n)

1732 J. Math. Phys., Vol. 27, No. 7, July 1986

I=1 =1

(5.6)

|
and

‘_X]‘_: Z al(xi)n—l=g(xi).
i I=0

Again we look for choices of g(x) that are compatible with a
positive definite metric. There are only two possibilities:

i) gx)= ﬁ (x —e;) (elliptic coordinates),
i=1

n

e <x'<e,< - <x""<e, <x%

(5.9)

n—1

(i) gx) =[] (x—e)

i=1

(parabolic coordinates),

n—1

<e,_;<x".

These metrics give coordinates in #» dimensions that are the
analog of elliptic and parabolic coordinates, familiar in Eu-
clidean spaces of dimension » = 2,3. To these systems we
may associate Cartesian coordinates by
m_,(x'—¢)

(i) ﬁ=02———, = 1,...,n,
! Hi;éj(ei—ej) J

x'<e,<x?<e,< - <X

ceR;
(5.10)
(i) yi=(/2)(xX'++x"+e,++e,_,),

m_,(x'—e_,)

Moyj_a(e;—e_y)

2

yi=—c y J=2,0.

These two systems are fundamental for generating all sep-
arable systems on R,. As an example of the relevance of
these systems we consider the case when some of the g
functions are constants. We first treat, as we did for S,, the
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case in which the metric coefficients have the form (2.22)
and (2.23). Then, as we have shown, these coefficients re-
duce to

Hi= X 1] (xi—xj)](

J#i
H?= [X, I (x'—x"')] .
msti

The conditions R, = 0 imply that the quadratic form

n
I 2),

(5.11)

ds'? = ; Hi3(dx'")?
is that of a flat space. The remaining nonzero conditions are

HH R

ifji
n n 1 0','"2
L) £ e )]
I=II:[+11 m=§+14H3,, 0y,
-
[24] g, (4]]

d 1
X|—logH?+ H? —-———-]=0, 5.13
[3x’ B ],,;sz,,(x’—x"‘) (3.13)

(5.12)

with R 4 asin (2.25). These equations are satisfied provided
R, = — H?H?and the function 3 = (Il}_, , , o;) is giv-
en as follows:

1 N

— = H (x™—¢), I=k+1,.,n, (5.14)
X] m=k+1

HN_ I_
3= r=pes (% e'"), for some m fixed, (5.15)

zI;ém (eI -~ €y )
where N = n,n — 1. The functions 1/X; are given by
1 k+1

= —4 xi—e!).
X; lel( 7)

The systems are related to Cartesian coordinates on R, ac-
cording to

(5.16)

(Y1seos Yr) = WSy, sWiSs 4 15 WaseeslW, _ i), (5.17)
where
k1 I (x—e
z sf:l and s}—_—_"_l(x—fi,
i=1 Hj,ei(e;_e;)
Hn ——_k m __
() w? =——’”—-ﬁ‘-——e')_, I=1,.,n—k;
I-[m;él (em - el)
nn—_k m __
i) woam=iOTe) ek,
I, . (e, —e)
(5.18)

1 n—k
wn—k =7( Z xm+el+“'+en—-k)'

m=1
There exists an additional possibility that could be discount-
ed for S,: 0, =a;, I =k + 1,...,n. This corresponds to the
case in which the infinitesimal distance can be written
ds* = dsi + ds?, (5.19)

where ds? is the infinitesimal distance for elliptic or parabol-
ic coordinates in R, and ds? is a similar infinitesimal dis-
tanceon R, _,. We can mimic the procedure adopted for S, .

1733 J. Math. Phys., Vol. 27, No. 7, July 1986

The only essential difference is that the infinitesimal distance
can be expressed, in general, as a sum of distances that can be
identified with Euclidean subspaces. This reflects the fact
that if { '}, i = 1,...,n,, and {27}, j = 1,...,n,, are separable
coordinate systems in Euclidean spaces R, and R, with
respective infinitesimal distances ds?, ds3, then the coordi-
nates { y.z’}, i = 1,...,n,, j = 1,...,n,, can be regarded as a
separable coordinate system on R,, , , with corresponding
infinitesimal distance ds* = ds7 + ds?. This is, of course, not
the case for S, . This property of Euclidean space coordinates
naturally extends to separable coordinate systems {xf, },
i=1,.,n,p=1,.0,onR, insuch a way that

ds’* =ds} + - + dsj,.

In general the infinitesimal distance can be written as a sum
of basic forms

Q
=Y ds, (5.20)
I=1
where
Al I | ALY S )
dst = —’*—‘—;]d 2+ dod. (5.21)
=2, M, e—eh | T4

Here the do? is the infinitesimal distance corresponding to
elliptic or parabolic coordinates for a flat space of dimension
N;. Also n,; <N, for elliptic coordinates with a strict inequa-
lity for parabolic coordinates.

The dw? is the infinitesimal distance of some separable
coordinate  system on the sphere S, and
n=232_,(N; +p;). To establish a graphic procedure for
construction of separable coordinates we need only analyze
one of the basic forms ds?. We should also mention here that
if N, = 1, then the basic form is written

ds; = v’ do* + du?. (5.21)
A basic form could in fact correspond to elliptic or parabolic
coordinates on Ry and no dw? terms. We associate this with
n; =0in (5.21).

For our construction we need only invent graphic repre-
sentations for elliptic and parabolic coordinates in R,, the
analog of the irreducible blocks on §,. We adopt the follow-
ing notation:

(1) elliptic coordinates < ®|--*-[%h >, n>1,

(2) parabolic coordinates , n»2.

It is clear that only elliptic coordinates exist in one dimen-
sion. The graphical representation of a basic form corre-
sponding to the infinitesimal distance ds? has the appearance

O LT o>
711

Attached to each leg descending from the top block is the
appropriate graph of the coordinate system on the S, giving
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TABLE I. Separable systems for R.

RGN DT 6D) Cartesian coordinates
2) % O cylindrical coordinates
3) < E ) elliptic cylindrical
L) ', parabolic cylindrical
5) QO spherical coordinates
[o[1]
[6[1]
6) @B prolate spheroidal
C]1]
7) N B oblate spheroidal
jo[1}
8) (1) parabolic coordinates
o [1]
9) paraboloidal coordinates
10} G DAY ellipsoidal coordinates
11) (1 conical coordinates
0] 1]a]

rise to the form dw?. The general graph corresponding to a
separable system then can be constructed as a sum of discon-
nected graphs for basic forms. We first illustrate this tech-
nique for the separable systems of R, (see Ref. 21) (see Ta-
ble I). As an additional nonstandard example, consider the

graph

which defines a coordinate system in Rs. The coordinates
can be chosen as

1 2
= | e ‘e')](gunz, =123,

(e, —ey)
1 2
yi — CZ [(x — 82) (x — e2) 0052 x5’ (522)
(e;—¢;)
1 2
yg =c? (x’ —e)(x —ez)] sin? x5,
(e, —ey)
where

3 =f)(x*=f)
(=S =)

1734 J. Math. Phys., Vol. 27, No. 7, July 1986

, I, j,k distinct.

(2“;)2 =

We can set up a natural ordering for separable systems
in R,,. For a given basic form we can suppose the natural
ordering of the e,’s in the leading irreducible block on the
ordering of the S, branches and then write down coordi-
nates in a standard way.

The ordering of the disconnected parts of the graph is
presumed already given. There are equivalences (relating
graphs of various coordinate systems) that we have already
discussed for the n-sphere and, of course, there is an addi-
tional equivalence corresponding to the permutation of dis-
connected parts of a given graph. The separation equations
can be readily computed also. For the elliptic and parabolic
coordinate blocks

(1) Cf Ty
) (5 Tean)

the Hamilton-Jacobi equation has the form

1 p2

H= S - - =E, (5.23)
f;‘ [T 2 (' —x)]

where

Ne oo as
P‘=[H (x’-—-ej) —8—;7,

j=1

with N, = n (elliptic coordinates) and N, =n — 1 (para-
bolic coordinates). The separation equations are

Ny
H (xi - ej)] (axis,')z

j=1

+[B@r=1+ 3 2,60 =0 (5:24)

j=2

If we identify E = A, the constants of the motion associated
with the separation parameters 4,,...,4, are

i =Pl +-+P,

n
3= 1+ 3 S P} (5.252)
i>j i=1
.y n . 2
dn= ZS?._zI?,- + ¢ 2 Su_1Pi
i>j i=1
where
i 1
SI = - Z e,l e,’
I i
and the sum is over i,,...,;; #i; and
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2I'I'=P%+"'+P3n
21;=C Z {Ilk,Pk}+02S1P%+ ECZS{Pz,
ji=2

k=2

A=Y S Pet + > I

K=2 i> ]2

+ES, P+ Y S4 P, (5.25b)

i=2

Ai=3 eS§{L, P} + Y Sir;

k=2 i>j»2

+8P+ 2 Y SiP},
i=2

A= Z Sk _ P+ E Si{—JI?j

k=2 i>j»2
2 2
+CS,,_1P1,

where the S/ have the same significance as for elliptic co-
ordinates and

For the corresponding Helmholtz equation the eigen-
values of A, are — k? (k real) and the Helmholtz equation
reads

5 ey (2] e

= [ (xf —x7)] ox' ax'

(5.26)

where 7, = IIJNE ; (x' — ¢;). The separation equations are

7 (@)

Ix ox'
n—1
[kz(x '+ 2 A;(x! )""] ¥, =0. (5.27)
ji=2

For a basic form such as ds? the separation equations for
the Hamilton—Jacobi equation have the form

le 2 ny
I oo (B 4 3 B,

=1 =1 (x'—e)

N,
Ny — Tk i
+ [E,(x') Ty PIRACH ™ ] =0, (528
where k, is the constant value of the Hamiltonian on the
sphere whose infinitesimal distance is dw?. For the Helm-

holtz equation the corresponding contribution of this basic

form is the equation
N’k l

i=1 [Hj?é,-(xi—xj)] 2, ox ax'!
[T (e —€)
5 [ j

JaEem )

ny
j—l

]ji(ji +p,— ¥ = "k}‘l’a

i=1

(x/—e)
(5.29)

where

1735 J. Math. Phys., Vol. 27, No. 7, July 1986

Nr N

@i= H(xi‘ek)’ Q‘_= H (xi_ek)dk—l’
k=1 .

pe +1, ifk=1..n,
k= {1, ifk=n, + 1,...N,,.
The separation equations are
ay

7 L(om

dx’

[ [”“‘(ek e)] Ui+ =D
(x' —ey)
Ny,
+ k) ! +Z/1(x)"‘ ']w,:o. (5.30)

In the example on R the separation equations for the
Hamilton—Jacobi equation are

2
[ o= (52) +42=2d ik, + Lamed
J=1 ! (x'—e,) (x'—e;)
+ k3% +A4,=0, i=1,2, (5.31)
and for the Helmholtz equation they are

H}=1(xi—ej) i
(x' —e)*(x' —e,) dx'

2 ) ) ' dvy,
I &' —e)(x'—e)*(x' —e,) ﬁ]

j=1
(e, —e) »
+ [—-—-—
(x'—ey) J
(e ez)

+ ]2(]2+1)+k2x'+/1]‘1’ =0. (5.32)

(x'—e,)
For the e]hpuc case the only new prescription required is
that P2 be replaced by £, P2, where the sum extends over all
induces r connected to /. Similar comments apply to expres-
sions of the form {/,,,P,}.
For our example the operators that describe separation
are

L1=I%2 +123 +I%3’

Ly=fiI% + % +fil %,

Ly=1%, (5.33)
5

L,=Y P}

i=1

3
Lg= z 4 +1%)

i=1
+[ey(P} + P +P3)+e(PF+P)].
The operator L, corresponds to the separation constant 4,.
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