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Abstract. A Bayesian network model was developed to assess the combined influence of
nutrient conditions and climate on the occurrence of cyanobacterial blooms within lakes of
diverse hydrology and nutrient supply. Physicochemical, biological, and meteorological
observations were collated from 20 lakes located at different latitudes and characterized by a
range of sizes and trophic states. Using these data, we built a Bayesian network to (1) analyze
the sensitivity of cyanobacterial bloom development to different environmental factors and (2)
determine the probability that cyanobacterial blooms would occur. Blooms were classified in
three categories of hazard (low, moderate, and high) based on cell abundances. The most
important factors determining cyanobacterial bloom occurrence were water temperature,
nutrient availability, and the ratio of mixing depth to euphotic depth. The probability of
cyanobacterial blooms was evaluated under different combinations of total phosphorus and
water temperature. The Bayesian network was then applied to quantify the probability of
blooms under a future climate warming scenario. The probability of the ‘‘high hazardous’’
category of cyanobacterial blooms increased 5% in response to either an increase in water
temperature of 0.88C (initial water temperature above 248C) or an increase in total
phosphorus from 0.01 mg/L to 0.02 mg/L. Mesotrophic lakes were particularly vulnerable
to warming. Reducing nutrient concentrations counteracts the increased cyanobacterial risk
associated with higher temperatures.

Key words: Bayesian network; climate change; cyanobacterial blooms; multiple systems; nutrients; risk
assessment; uncertainty.

INTRODUCTION

Cyanobacteria present a health risk through the

production of toxins that degrade ecosystem services

including water supply for irrigation, consumption, and

recreation (Carpenter et al. 2011). These impacts and the

need for removal of toxins and taste and odor-causing

compounds from cyanobacteria in drinking water have

high economic costs (Dodds et al. 2009). The geograph-

ical distribution of some bloom-forming cyanobacteria

is increasing (Fristachi et al. 2009, Winter et al. 2011)

and species historically observed in subtropical systems

(e.g., Cylindrospermopsis raciborskii ) have recently

invaded mid-latitude regions (Ryan et al. 2003, Briand

et al. 2004, Sinha et al. 2012) and become more widely

distributed. These changes have been attributed to an

increase in water temperature and degree of stratifica-

tion, to adaptation of phytoplankton, to new environ-

mental conditions, or to nutrient enrichment leading to

eutrophication (Paerl and Huisman 2008, Conley et al.

2009). However, it remains unclear how individual or

cumulative impacts of changes in temperature, nutrients,

global connectivity or other factors affect the growth of

cyanobacteria (Hallegraeff 1993, Jöhnk et al. 2008,

Brookes and Carey 2011, Huber et al. 2012).

Teasing out the relative importance of these drivers at

a global scale and estimating the probability of

cyanobacteria occurrence under different environmental
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conditions using a simplified statistical framework

would be extremely useful to enhance our understanding

of bloom forming processes and support water manage-

ment decisions to control cyanobacterial blooms under

warmer conditions. Several works analyzed the statisti-

cal relationship between nutrient availability and cya-

nobacterial incidence including research on a large

variety of European lakes (Carvalho et al. 2011, 2013,

Dolman et al. 2012), although these studies have not

explored the interaction with changing temperatures.

This problem has been more frequently assessed at a

site-specific scale (Carvalho and Kirika 2003, Arhondit-

sis et al. 2007, Elliott and May 2008), but not at a global

scale due to challenges related to a lack of data covering

broad gradients of nutrients and temperature as well as a

lack of a comprehensive analytical framework. Covering

a broad range of conditions will allow a straight forward

application of the statistical model to different systems

where information is too limited to develop other

detailed models as deterministic or process-based ones.

Additionally, calibrating models with data from lakes

that span a broad latitudinal range and cover a broad

range of nutrient conditions should result in models that

are more widely applicable than those calibrated to a

single lake.

Bayesian networks represent a useful framework to

address the latter calibration problem because they can

integrate multiple sources of information to estimate

model parameter values and because they account for

result uncertainty, thereby avoiding reliance on a single

deterministic outcome that does not reflect the inherent

natural ecosystem variability (Arhonditsis et al. 2007).

Bayesian networks are graphically based and so are

easier to understand than many modelling tools, they

are a powerful communication instrument representing

uncertainties and they can be easily updated as data or

knowledge become available.

A Bayesian network (BN) consists of a combination

of graphical links and statistical correlations among the

most important variables in the studied system. Vari-

ables are represented as nodes and unidirectional

dependence relationships are developed between one

variable and another. BNs use probabilistic rather than

deterministic expressions to describe the relationship

among variables. Each arrow that links a ‘‘parent’’ node

to a ‘‘child’’ node represents a conditional probability

distribution that describes the likelihood of each value of

the child node given the combination of values of the

parent nodes (Borsuk et al. 2004, Hamilton et al. 2007).

BNs use the network structure to calculate the

probability that certain events will occur and how these

probabilities will change given subsequent observations

or management interventions. Bayesian models provide

a useful framework for analyzing alternative scenarios

of system change (Bromley et al. 2005, Quinn et al.

2013).

Bayesian statistical inference has been shown to assist

in parameter estimation and hypothesis testing, espe-

cially in the field of environmental decision-making

(Ellison 1996). Moreover, it has been recognized as a

useful framework for ecological modelling and resource

management, particularly in representing population

variability and supporting decision-making processes

(Reckhow 1999, Bromley et al. 2005, McCann et al.

2006, Quinn et al. 2013). Further details on Bayesian

statistical inference for ecological research are presented

by Haenni et al. (2011) and Ellison (1996).

Few examples exist of the application of BNs to study

eutrophication and, in particular, cyanobacterial bloom

development. To predict site-specific algal blooms

statistical models such as neural networks have been

used extensively (Maier et al. 1998, Lee et al. 2003,

Muttil and Chau 2006) or, in other cases, Bayesian

statistical knowledge has been combined with determin-

istic models (Arhonditsis et al. 2006, 2007). Two

examples of where Bayesian analysis was applied to

cyanobacterial bloom development are for Lyngbya sp.

in Deception Bay and Moreton Bay, Queensland,

Australia (Hamilton et al. 2005, 2007). These examples

showed the utility of BNs to incorporate different

sources of information and to analyze the risk of

cyanobacterial bloom occurrence. The most influential

factors for bloom development in these systems were

identified to be water temperature, nutrient, and light

availability (Hamilton et al. 2007). However, while BN

models are useful at a particular site to better

understand localized impacts of climate change and

eutrophication, there is a need for models that can be

conditioned on ecosystem data from a wide range of

climatic and geomorphic contexts to apply to lakes

where only limited data is available. Furthermore a

model developed with a broad range of temperature and

nutrient inputs will enable extrapolation through time to

predict cyanobacterial risk with temperature or nutrient

changes. These estimations will provide a general

understanding of how changes in temperature and in

nutrient availability interact and will allow estimating

how much nutrients should be reduced to counteract the

effects of warming.

Our study utilizes data from 20 lakes located at

different latitudes to address this gap and demonstrates

the application and utility of Bayesian models for

cyanobacterial bloom predictions across a broad geo-

graphic range. The main objectives of this study were to

(1) determine which environmental factors were the

most important explaining variation in the abundance of

cyanobacteria observed in multiple lakes and reservoirs;

(2) analyze the significance of interactions among

contributing environmental factors; and (3) test BNs

to estimate how changes in environmental conditions

may alter the probability of cyanobacterial bloom

development, in order to support informed water

management decisions. To achieve these aims, BNs

structures were built starting from a conceptual model

of the possible drivers controlling cyanobacterial

blooms. Then, they were populated using the broad
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range of environmental conditions found in 20 lakes, in

order to identify the most important drivers. A previous

analysis of the 20-lake database, also included here, was

essential to identify the range of variation of the

environmental factors and check for correlations among

predictor variables.

METHODS

The limnological data collected were from 20 lakes

(see Plate 1) with areas ranging from 0.7 to 7010 km2.

They spanned broad gradients in latitude, lake mor-

phometry, nutrient concentrations, water temperature,

and degree of water column mixing (Table 1). With this

data, we first determined the range of variability in

each property as well as the most important drivers of

cyanobacterial blooms and the covariation among

these drivers. We then built a Bayesian network model

that predicted the probability of cyanobacterial blooms

including uncertainty in model output.

Lake database assemblage

A database was compiled from data available within

the Global Lake Ecological Observatory Network

(GLEON) and from databases provided by other

collaborators (see Acknowledgments). Table 1 provides

a list of the lakes, a summary of their characteristics and

the periods of data availability. The following variables

were included: cyanobacterial abundance (cells/mL),

total phosphorus (TP, mg/L), total nitrogen (TN, mg/

L), water temperature at surface (8C), air temperature

(8C), photosynthetically active radiation (PAR, W/m2),

wind speed (m/s), mixing depth (m), euphotic depth (m),

ratio between mixing and euphotic depth, maximum

lake depth (m), and latitude (degrees). The mixing depth

(zmix) was defined as the depth of the surface mixed

layer, the portion of the water column influenced by

wind and convective cooling where both temperature

and density are vertically homogeneous (Read et al.

2011). In this work, given that not all lakes had

continuous water column temperature profiles and

mostly discrete samples were available (e.g., every 1

m), the mixing depth was calculated as the layer at which

the vertical temperature gradient was ,0.28C/m. The

first sampling depth at which this gradient was exceeded

was considered to be the mixing depth. Temperature

differences were calculated every 1 m starting from 1 m

depth, in order to determine the seasonal thermocline

location (rather than the diurnal thermocline). The

euphotic depth (zeu) was defined as the depth at which

the light intensity was 1% of that immediately below the

water surface (Grobbelaar and Stegmann 1976) and was

calculated from Secchi depth measurements as zeu ¼
a(Secchi depth)b where a ¼ 4.1865 and b ¼ 0.73,

following (Martin and McCutcheon 1999). Chemical

TABLE 1. Characteristics of the 20 lakes included in the database for the development of the statistical model.

Ref no. Lake name Location Latitude
Area
(km2)

MD
(m) KCC�

Trophic
state Data�

1 Myponga South Australia, AU 3582401300 S 2.5 43.9 Csb ME 2007–2012 (216)
2 Annie Florida, USA 2781202500 N 0.34 20 Cfa O 2008–2009 (21)
3 Meiliang (Taihu) Jiangsu, China 3183205800 N 2338 2.6 Cfa E 2008–2010 (33)
4 Soyang South Korea 3283202400 N 63.9 85 Dwa O 2010–2011 (33)
5 Mendota Wisconsin, USA 4785902400 N 39.4 25.3 Dfa E 1995–2008 (91)
6 Monona Wisconsin, USA 43840900 N 13.3 22.6 Dfa E 1995–2009 (4)
7 Erken Sweden 598510 N 23.7 21 Dfb M 2010 (19)
8 Feeagh Ireland 5385605000 N 3.9 45 Cfb O 2008–2010 (15)
9 Tegel Germany 528350000 N 3.1 16 Dfb E 1987–2006 (227)
10 Rotorua New Zealand 38’0401600 S 79.0 40 Cfb E 2003–2011 (19)
11 Harp Ontario, Canada 4582204800 N 0.7 37.5 Dfb O 2011 (13)
12 Thomson Victoria, AU 3784104900 S 22.8 165.7 Cfb O 2007–2011 (40)
13 Upper Yarra Victoria, AU 378410000 S 5.5 81.35 Cfb O 2005–2012 (63)
14 Yan Yean Victoria, AU 3785905300 S 5.4 3 Cfb E 2004–2012 (61)
15 Tarago Victoria, AU 3783302200 S 3.4 21.7 Cfb O 2004–2012 (75)
16 Advancetown (Hinze dam) Queensland, AU 28830000 S 207 43 Cfa ME 1999–2011 (53)
17 Little Nerang Queensland, AU 288803800 S 35.2 30 Cfa ME 1999–2011 (69)
18 Samsonvale (North Pine) Queensland, AU 2781601900 S 348 35 Cfa E 1997–2011 (271)
19 Somerset Queensland, AU 278605000 S 1340 35 Cfa E 1997–2011 (147)
20 Wivenhoe Queensland, AU 2782303800 S 7020 38 Cfa E 1997–2011 (144)

Notes: Mean (with SD in parentheses) are shown for all the physical, chemical, biological variables included in the database.
Variables are MD, maximum depth; KCC, Köppen climate classification; PAR, photosynthetically active radiation; WS, wind
speed; WT, water temperature; zmix : zeu, ratio between mixing depth and euphotic depth; TN, total nitrogen, TP, total phosphorus;
CyanoHazard, cyanobacterial bloom hazard, based on cyanobacterial abundance. Abbreviations are ME, meso-eutrophic; O,
oligotrophic; E, eutrophic; M, mesotrophic; AirT, air temperature; AU, Australia; na, not available.

� Köppen climate classification: Csb, temperate/mesothermal (dry summer, subtropical or mediterranean climate); Cfa,
temperate/mesothermal (humid subtropical climate ); Dwa, continental/microthermal (hot summer, continental climate); Dfa
(Dwa), continental/microthermal (hot summer, continental climate); Dfb, continental/microthermal (warm summer continental or
hemiboreal); Cfb, temperate/mesothermal (oceanic climate); Dfb, continental/microthermal (warm summer continental or
hemiboreal).

� Not all the years indicated are complete. Numbers in parentheses indicate the number of complete cases available for each lake
when considering three variables: cyanobacteria abundance, water temperature, and TP.
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and biological variables were generally measured less

frequently than physical variables: cyanobacteria abun-

dance was available monthly, or weekly (in 19 lakes), or

twice weekly (Myponga Reservoir). Samples represented

depth integrated epilimnetic concentrations.

To account for the fact that conditions preceding

bloom development (e.g., resource depletion, turbu-

lence, fluctuating light) strongly influence bloom occur-

rence (Reynolds 2006, Hamilton et al. 2009), a one-week

time lag was selected between biological and environ-

mental variables for data aggregation. The choice of this

time lag is justified by the fact that in most of the lakes

considered, cyanobacterial bloom development occurred

over a few days and that several authors have recognized

that ;5–15 days is a time scale on which a phytoplank-

ton group may become dominant (Reynolds et al. 1993,

Maier et al. 1998, Gallina et al. 2011). Average values of

meteorological variables (air temperature, radiation,

and wind speed) were calculated for seven days prior

to the sampling of cyanobacterial abundance. Water

chemistry data were available on the same day as

cyanobacteria were sampled. For water column physical

variables (e.g., mixing depth and surface water temper-

ature) a seven-day average was calculated when water

temperature data were monitored remotely, otherwise a

single value was considered when cyanobacteria were

sampled seven days beforehand.

Soluble reactive phosphorus, total nitrogen, and

nitrate concentrations were available only for a few of

the lakes, so total phosphorus was selected as the

nutrient determining cyanobacterial abundance. Using

TP is in line with phosphorus being the limiting nutrient

in the majority of situations; furthermore it reflects

capacity to support phytoplankton biomass to a greater

degree than soluble reactive phosphorus (Hudson et al.

2000). No consideration was given to the ratio of TN:TP

as this has been shown to be more influential on

cyanobacterial species composition rather than total

cyanobacterial biomass (Fujimoto et al. 1997, Levine

and Schindler 1999, Downing et al. 2001, Nalewajko

and Murphy 2001).

Lake database analysis

A multivariate analysis was used to identify the most

important variables explaining ecological differences

between lakes. Lakes were grouped depending on their

similarities and the main explanatory variables were

identified. First, three variables, available for all the

lakes and for all sampling days, were considered: surface

water temperature, total phosphorus concentration, and

cyanobacterial abundance. The same analysis was then

repeated with three additional variables: mixing depth,

latitude, and maximum lake depth. Averages of the

variables during the summer period were used (October–

April for the Southern Hemisphere and May–September

for the Northern). Phytoplankton data were standard-

ized by dividing observed cyanobacteria density by the

maximum cyanobacteria density over the summer

period. As recommended for abundance and biomass

data, a dissimilarity matrix was first built on the basis of

the Bray-Curtis dissimilarity measures (Clarke and

Gorley 2006). Then, a redundancy analysis (RDA) was

applied, which is a constrained ordination where the

axes are forced to be linear combinations of the

variables (Clarke 1993). As an outcome of the RDA,

lakes were spatially grouped, and the main explanatory

variables were determined visually and statistically. The

analysis was conducted with the software Primer-E

(Clarke and Gorley 2006). Relationships between

phosphorus, temperature, and cyanobacteria in the

database were further analyzed generating histograms.

TABLE 1. Extended.

AirT
(8C)

PAR
(W/m2)

WS
(m/s)

WT
(8C) zmix : zeu

TN
(mg/L)

TP
(mg/L)

CyanoHazard
(cells/mL)

15.8 (5.1) 94.1 (46.8) 3.24 (1.4) 17.4 (3.7) 1.65 (1.07) 1.06 (0.15) 0.04 (0.03) 7297 (23633)
22.4 (4.4) 94.8 (21.51) 1.62 (0.41) 25.65 (4.6) 0.11 (0.11) 0.29 (0.06) 0.006 (0.0015) 0.47 (0.38)
16.43 (9.35) 181.5 (181.13) 3.5 (0.66) 16.84 (9.8) 0.76 (0.35) 3.06 (1.21) 0.115 (0.063) 58483 (88147)
13.4 (10.5) 258.7 (86.6) 1.08 (0.32) 16.7 (8.5) 3.49 (3.62) 1.43 (0.15) 0.0086 (0.0025) 1471 (4720)
12.5 (9.6) 86.38 (31.6) 3.9 (1.08) 15.7 (7.8) 0.89 (0.89) 1.04 (0.34) 0.081 (0.05) 140 263 (241 760)
11.3 (9.7) 83.2 (32.8) 3.4 (0.8) 16.8 (8.1) 1.11 (1.06) 1.14 (0.2) 0.09 (0.02) 201 174 (313 043)
12.7 (9.9) 84 (41.5) 3.6 (0.65) 17.1 (4.1) 0.70 (0.48) 0.68 (0.066) 0.027 (0.009) 5677 (7496)
9.8 (3.7) 17.8 (12.2) 5.0 (1.4) 10.7 (4.0) 4.8 (2.7) 0.20 (0.12) 0.008 (0.002) 68 (178)

na na na 14.2 (6.5) 1.3 (0.8) 5.2 (2.5) 0.056 (0.037) 11 701 (31 478)
12.6 (3.6) 280.5 (126) 3.3 (0.9) 15.9 (4.2) 2.0 (1) 0.47 (0.25) 0.032 (0.013) 5541 (8926)
10.9 (6.3) 73.4 (38.6) 1.5 (0.6) 13.5 (6.7) 0.33 (0.2) 0.23 (0.03) 0.005 (0.001) 0.16 (0.14)
13.2 (4.5) 153.8 (56.1) 4.1 (0.6) 15.1 (4.81) na 0.309 (0.069) 0.0045 (0.0029) 2671 (5212)
12.3 (4.05) 123.6 (52.5) 2.78 (0.38) 15.9 (4.84) na 0.2656 (0.0615) 0.0075 (0.0080) 2198 (3836)
15.15 (3.86) 138.85 (52.01) 3.38 (0.899) 17.116 (4.50) na 0.703 (0.44) 0.024 (0.0246) 14 870 (88 732)
14.55 (3.67) 108.26 (42.28) 1.53 (0.88) 17.97 (4.58) na 0.6064 (0.179) 0.0136 (0.0071) 4385 (7134)

na na na 22.4 (3.9) 1.1 (0.7) 0.33 (0.1) 0.019 (0.015) 12 447 (35 760)
na na na 21.1 (3.9) 0.7 (1) 0.30 (0.10) 0.021 (0.011) 8935 (29 347)
na na na 22.9 (3.8) 3.5 (2.3) 0.55 (0.1) 0.019 (0.09) 39 380 (80 569)
na na na 23.0 (4.3) 2.8 (2.9) 0.58 (0.18) 0.030 (0.036) 124 614 (155 407)

21 (3.8) 79 (24) 2.9 (0.6) 22.9 (3.9) 4.0 (4.1) 0.50 (0.10) 0.023 (0.019) 109 611 (107 471)
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Bayesian network

Model structure.—Guidelines were followed in the
creation and testing of the Bayesian ecological network

(Marcot et al. 2006, Pollino and Henderson 2010). First,

the objective of the model and its final node (cyano-
bacterial bloom development) were defined; second, a

conceptual model of possible drivers was generated

based on knowledge from the literature and on expert
knowledge; and third, model nodes and states were

established.

The probabilities of the marginal nodes and the
conditional probabilities between nodes (conditional

probability tables, CPTs) were populated using the

empirical data available from the 20 lakes. Once the
network structures were populated with data, their

prediction ability was tested for ability to predict

cyanobacterial abundance, followed by revision of the
states and variables to improve model fit. The BN was

constructed using the software Netica (Norsys Software

Corporation, Vancouver, British Columbia, Canada).
Details of the algorithms used by Netica to exact general

probabilistic interference can be found in Spiegelhalter

et al. (1993) and Jensen (1996). The model application
focused on the probability of cyanobacterial bloom

development as an endpoint. Hazard levels for cyano-

bacterial blooms were defined as low, when cyanobac-
teria abundance was �0.2 3 105 cells/mL; moderate,

between 0.2 3 105 and 1 3 105 cells/mL; and high, when

.1 3 105 cells/mL (Chorus and Bartram 1999). These
thresholds were used to define the three states of the

network endpoint node called ‘‘cyanobacterial hazard.’’

Three BNs of differing complexity were generated using

three, four, and nine nodes. The BNs with different

number of nodes were developed to identify the most

important drivers affecting cyanobacterial hazard and to

evaluate networks ability to predict an alteration in

bloom development. The number of cases to generate

each BN, depending on data availability, was monitored

and specified. Thresholds and corresponding number of

states used for each node, both affecting the model

results, were established based on literature (e.g., total

phosphorous concentration thresholds for oligotrophic,

mesotrophic, and eutrophic systems), analysis of data

distribution, and knowledge achieved by running the

model and testing its predictive ability using different

states and different threshold values (Appendix).

Model evaluation and sensitivity analysis.—To assess

the predictive accuracy of different BNs, the network

was first generated using a subset of observed data

corresponding to 80% of the observations in the

database for each lake. The network was then tested

to evaluate how well the diagnosis matched observations

using the remaining 20% of observations. Due to the fact

that the network results are dependent on the cases used

to build it, the procedure was repeated three times,

randomly selecting data from the complete database. As

a result of the evaluation a percentage error rate was

determined which is the fraction of misclassified cases as

a proportion of the classifications made.

To determine which parts of the model most affected

the variable of interest (i.e., cyanobacterial bloom

hazard) a sensitivity analysis was undertaken on the

endpoint node. The sensitivity analysis generated nodal

values (percentages) that were compared between nodes

PLATE 1. Meiliang Bay, Lake Taihu, Jiangsu, China, one of the 20 lakes included in our study. Photo credit: Jianrong Ma.
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of the same network to establish which variable had the

greatest effect on the assigned bloom hazard value.

Scenarios.—After the model was evaluated, future

potential environmental scenarios were developed as

input to the BN. The scenarios included a trend of

warming of surface water temperature by 0.0378C/yr

(Schneider and Hook 2010), combined with different

ranges of phosphorus concentration (TP; e.g., low, TP

, 0.02 mg/L; medium, TP ¼ 0.02–0.10 mg/L; high, TP

�0.1 mg/L). Changes in the probability of cyanobacte-

rial bloom hazard (low, moderate, and high) were

calculated for each of the scenarios.

RESULTS

Lake database analysis

The dominant environmental variables that distin-

guished cyanobacterial abundance between lakes were

assessed by RDA (Fig. 1). Lakes 3, 5, 19, and 20 (refer

to Table 1) were characterized by high average

cyanobacteria abundance and were aligned with the

cyanobacteria axes (Fig. 1a). Lake 8 was characterized

by lower levels of total phosphorus with respect to the

other lakes; while lakes 2, 16, 17, 18, 19, and 20 were

characterized by high water temperatures. Adopting

three variables (Fig. 1a) yielded a higher proportion of

the fitted variation for both axes than including

additional variables, such as mixing depth, latitude,

and maximum depth (Fig. 1b, c). The fact that including

more variables did not improve the fit (dropping from

89.7% to 79.8%) suggests that water temperature and

total phosphorus, together with cyanobacterial abun-

dance, were the most important explanatory variables

describing variability between lakes. Latitude influenced

how lakes grouped together (Fig. 1b) but neither latitude

nor depth were more strongly related to cyanobacterial

abundance than total phosphorus and temperature. Fig.

1c shows the importance of zmix compared with the

other variables analyzed. However, water temperature

FIG. 1. Distance-based redundancy analysis (dbRDA) including (a) three variables, (b) five variables, and (c) six variables.
Each number represents one lake, as listed in Table 1; axes in the circle represent the different explanatory variables: Cya
(cyanobacterial abundance), WT (water temperature), TP (total phosphorus), Dep (maximum depth), Lat (latitude), zmix (mixing
depth).
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and total phosphorus were still the best descriptors of

cyanobacterial abundance (fit decreased to 71.8%).

Histograms were generated for the percentage of

cyanobacteria abundance corresponding to specific haz-

ard classes (low, moderate, and high; Chorus and

Bartram 1999) vs. total phosphorus and surface water

temperature (Fig. 2). The cases characterized by low,

moderate, and high hazard were, respectively, 52%, 28%,

and 20% in the 20 lakes. Fig. 2c shows, for example, that

at low total phosphorous (TP) concentrations the cases of

high hazard were more frequent if water temperatures

were high (.238C). Low cyanobacterial abundances

(classified in the low hazard category) occurred more

frequently at lower temperatures (,218C) (Fig. 2a).

Graphical results obtained representing the current

database suggest that the effect on cyanobacterial

abundance of interactions between nutrients and water

temperature (WT) is not additive, although few cases

with high TP were available in the data set. It is notable

that there appears to be a high dependence of cyano-

bacterial abundance on WT at lower TP concentrations.

The number of blooms classified as high hazard

changed with different combinations of WT and TP in

the lakes. Eighty-two per cent of the high hazard events

occurred when WT was between 208C and 308C and

about 60% of these occurred when TP was between 0.01

and 0.03 mg/L. This suggests that blooms classified as

high hazard are much less likely to occur if phosphorus

concentrations are low, i.e., TP , 0.01 mg/L. Moreover,

when TP was low, blooms were most likely to occur

when WT was high; however, as TP increases, cases of

hazardous blooms were still observed in the data base at

relatively low temperatures (WT , 158C).

Bayesian network results

Model structure.—Three different network structures

were adopted. A simplified network with three nodes

was used to analyze the relationship of cyanobacteria

abundance to total phosphorus and water temperature

(Fig. 3a). A network of four nodes was adopted to

analyze cyanobacteria sensitivity to additional environ-

mental factors, including mixing depth, euphotic depth,

meteorological conditions, or the depth and the location

of the lake (Fig. 3b). The most complex network

included nine nodes (Fig. 4): Cyanobacterial hazard

(CyanoHazard), total phosphorus (TP), surface water

temperature (WT), ratio between mixing depth and

euphotic depth (zmix : zeu), photosynthetically active

radiation (PAR), wind speed (WS), air temperature

(AirT), latitude, and maximum lake depth (depth).

Node definitions are given in Appendix: Table A2. The

analysis of scenarios was conducted with the three-node

network, including one additional state for each node

(Fig. 3c). Repeated simulations showed that the

probability distribution of the cyanobacteria hazard

was affected by the network structure: number states

and different thresholds were analyzed before proceed-

ing to the sensitivity analysis (Appendix).

Model evaluation and sensitivity analysis.—Sensitivity

analysis results conducted with the three-node net

showed that, given the available data, the cyanobacterial

hazard was more sensitive to WT than to TP; 20.3% and

0.12%, respectively. Using different case files (testing

files including 80% of data) the maximum value found

for sensitivity to TP was about 0.5%. To identify which

other variables could be important in controlling

cyanobacterial blooms, the sensitivity analysis was

repeated, including a new parent node and adopting a

four-node network (Fig. 3b). Variables that may directly

affect the growth of cyanobacteria (zmix, zeu, PAR,

zmix : zeu) were connected one-at-a-time to the end-point

node. Sensitivity values defined as percentage hazard

sensitivities are shown for each of the four-node

networks in Table 2. It was observed that zmix, zeu,

and zmix : zeu were factors to which cyanobacteria

abundance was more sensitive compared with PAR.

Finally, in testing the nine-node network (Fig. 4), the

error rates obtained varied between 17% and 22.6%.

Cyanobacteria sensitivity to the other nodes in the

network are listed in order of their importance: WT

(14.5%), AirT (5.91%), zmix : zeu (1.32%), TP (1.1%),

depth (0.35%), latitude (0.23%), PAR (0.11%), WS

(0.02%). Air temperature was also identified as an

important factor but this was likely due to correlation

with water temperature. Sensitivity values also indicated

that lake depth and location were not as important in

predictions of cyanobacterial abundance as TP and

zmix : zeu. It should be noted that this complex network

included a reduced number of observations (271

complete cases). Due to lack of meteorological data,

only 10 lakes were included: 1, 2, 3, 4, 5, 7, 8, 10, 11, 20,

and only a small number of cases were available for

shallow lakes.

Scenarios.—The three-node network allowed quanti-

fication of the probability of low, moderate, and high

cyanobacterial abundances given particular conditions

of WT and TP. The error rate of the network ranged

between 32% and 37% based on use of different test files.

Thus, using WT and TP the probability of making a

valid prediction of cyanobacterial hazard was about

60%.

The probability of high cyanobacteria abundance

increased with increasing TP concentrations as well as

increasing WT. When combining TP and WT, proba-

bilities varied, demonstrating an interaction rather than

an additive effect of these two factors (Table 3). At low

WT the probability of high hazardous blooms was low

and moderately hazardous abundances were more likely

to occur at higher TP concentrations. At intermediate

WT there was evidence of dependency on TP for high

hazardous blooms, while, when temperatures were

above 248C, high hazardous blooms would occur even

at low TP concentrations (Table 3). Moreover, at low

and intermediate TP, high hazardous blooms were more

likely to occur at higher WT (Table 3). The number of

cases with high TP concentration (e.g., .0.05 mg/L) in
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the 20-lake data base was insufficient to allow for a clear

identification of trends of hazardous event occurrences

corresponding to that condition.

To evaluate the effect of global warming trends, a

three-node network with additional states (Fig. 3c) was

employed. Increasing WT from state b (20–248C) to

state c (24–288C) increased the cyanobacterial high

hazardous bloom probability 22.6%. Modifying the TP

from state b (0.01–0.02 mg/L) to state c (0.02–0.03 mg/

L) increased high hazardous bloom probability about

4.6% (Table 4). Thus, a 5% increase in the probability of

cyanobacterial high hazardous blooms was obtained

either by increasing WT by 0.88C or increasing TP by

0.01 mg/L. When using the network to test scenarios, we

focused in particular on the change between oligotrophic

to mesotrophic conditions (TP from 0.01 to 0.02 mg/L),

but also included a state for eutrophic cases (TP . 0.03

mg/L; Fig. 3c). Changes in probabilities of moderate

and low hazardous events are given in Table 4. The

changes in probability of cyanobacterial high hazardous

blooms for eutrophic, mesotrophic, and oligotrophic

conditions, when WT was increased by 48C, were

respectively: 13.9%, 27.1%, and 5%, showing the high

vulnerability of mesotrophic systems to a change in

temperature.

DISCUSSION

Predicting and managing cyanobacteria risk presents

a major challenge for researchers and water resource

managers. A comprehensive understanding of the causal

factors leading to cyanobacterial blooms is lacking

(Oliver et al. 2012), which limits the ability to predict

cyanobacterial risk. Several different modelling ap-

proaches have been adopted to predict the magnitude

and timing of cyanobacterial blooms and Rigosi et al.

(2010) provide an extensive review of empirical and

deterministic approaches that include key ecosystem

variables and components of cyanobacterial physiology.

FIG. 2. Percentage of samples (cases) from all the lakes classified as (a) low, (b) moderate, and (c) high hazardous blooms based
on the cyanobacterial abundance (x) observed. Each bin represents a particular combination of the environmental conditions
observed (total phosphorus and water temperature).
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In the present study we adopted a novel approach using

a Bayesian network to identify casual factors for

cyanobacterial blooms and cyanobacterial risk over a

broad range of latitudes using a 20-lake database. The

network provided an estimate of the probability of

cyanobacteria occurring at particular magnitudes, cor-

responding to classes commonly used to define the level

of risk (Chorus and Bartram 1999), using empirical

relationships between cyanobacterial abundance and

key environmental parameters.

The Bayesian modelling revealed that three factors

contributed most to high cyanobacteria abundance

(given as a probability): surface water temperature

followed by total phosphorus and the ratio between

mixing depth and euphotic depth. The variable zmix : zeu
is used to express cyanobacteria light exposure within

FIG. 3. Bayesian network structure for assessing cyanobacteria abundance (cells/mL) represented as CyanoHazard. (a) Most
simplified network with only two parents (water temperature [WT] and total phosphorus [TP]); (b) one additional parent used in
the sensitivity analysis (mixing depth [zmix]); (c) network with four states used for testing scenarios; initial conditions (20 , WT �
248C and 0.01 , TP � 0.02 mg/L) are selected. Bars indicate probabilities (%) and values on the bottom of each node represent
means and SD. In panel b, the arrow indicates that the zmix node, when testing other network structures, was replaced alternatively
with different nodes (photosynthetically active radiation [PAR], euphotic depth [zeu], zmix : zeu).
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the surface mixed layer. Similar factors were identified as

dominant variables by Hamilton et al. (2007) when

applying Bayesian networks in Deception Bay (Queens-

land) to assess the risk of Lyngbya majuscula blooms. In

that case nutrients, water temperature, redox state of

bottom sediments, current velocity, and light were the

dominant variables. The statistically based artificial

neural network used in a study of the Murray River

(South Australia) identified water temperature and river

flow as the predominant controls on the magnitude and

duration of cyanobacteria growth (Maier et al. 1998).

Different cyanobacterial species have different light,

temperature, and nutrient requirements and may display

different physiological responses to these environmental

variables (Reynolds 1997, Carey et al. 2012, Oliver et al.

2012). Furthermore the risk associated with different

species may vary depending upon the type of toxin, or

taste or odorous compounds produced. The factors

generating hazardous blooms can be species and

location dependent (Anderson et al. 2002), however,

analyses that span across multiple lakes and latitudes

offer insights into what trajectories may be observed

with increases in temperature or nutrients. Kosten et al.

(2012), using a one-year data set from 143 lakes in a

latitudinal transect, showed that the relative cyanobac-

terial abundance in the community increased with

FIG. 4. Bayesian network structure including nine nodes: latitude, wind speed (WS), photosynthetically active radiation (PAR),
air temperature (airT), maximum lake depth (Depth), ratio between mixing depth and euphotic depth (zmix : zeu), surface water
temperature (WT), total phosphorus (TP) and cyanobacterial bloom hazard (CyanoHazard) based on cyanobacterial abundance
(cells/mL).

TABLE 2. Sensitivities of cyanobacteria hazard to factors, adopting the four-node networks.

Cyanobacterial hazard sensitivities

Network Parent Nodes WT TP zmix : zeu zmix zeu PAR

A WT, TP, zmix : zeu 12.6 0.753 2.13
B WT, TP, zmix 13.7 1.54 1.7
C WT, TP, zeu 11.9 0.41 1.92
D WT, TP, PAR 13.5 3.06 0.753

Notes: See Table 1 for factor definitions. Values in boldface type show the highest sensitivity values.
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temperature, but temperature variability alone was not

able to explain the variance in cyanobacteria biomass.

Rather, a combination of temperature and nutrient

availability provide some explanatory power. Similarly,

in 18 lakes in Europe over a 23-year period, cyanobac-

terial biomass increase was statistically linked to longer

and stronger stratification (Blenckner et al. 2007).

Water temperature is consistently one of the most

important drivers of cyanobacterial blooms but it is

interrelated with other factors such as seasonal changes

in water column stability, light availability, and nutrient

availability (Anneville et al. 2005, Elliott et al. 2005,

Wagner and Adrian 2009). In our study, the sensitivity

of cyanobacterial abundance to nutrient availability was

lower than might be expected, especially compared with

outcomes from other modelling and statistical studies
(Elliott et al. 2005, Chorus and Schauser 2011). In

particular, it was surprising that abundances in the

‘‘high hazard’’ category occurred even at low TP

concentrations. However, this result was observed also

by Carvalho et al. (2013) analyzing 800 European lakes

and it occurred at high temperatures only, which is

typically associated with stable stratification. Thus,

surface accumulation of blooms may occur at abun-

dances well above those expected from the epilimnetic

TP concentrations and water temperature may be a

proxy for other important aspects leading to major

changes in distribution.

The physical and chemical conditions at the time of

sampling are not necessarily those that give rise to the

instantaneous observed population but rather it is the

immediate past history to which the cyanobacteria have

responded (Reynolds 2006). It was necessary in our case

to select an appropriate lag time that accounted for both

the lagged response of changes in phytoplankton growth

and biomass to the environment and for the temporal

response of community succession. In our study average

meteorological and temperature conditions one week

before the bloom event were used to characterize a

relatively fast response of biomass. The choice of this

time lag could be evaluated in more detail but only with

a highly temporally resolved data set that included

alignment of physicochemical and cyanobacteria mon-

itoring.

Modelling any ecosystem necessarily demands simpli-

fication of the key processes. It is well established that

phytoplankton populations have three major require-

ments for growth: nutrients and light, with temperature

playing a moderating effect and mixing influencing

position of cells in the water column (Ganf and Oliver

1982, Walsby 1994, Bouterfas et al. 2002). While many

physical and chemical processes were not modelled

explicitly in our Bayesian network a reasonable predic-

tion of cyanobacterial occurrence was achieved using the

readily measured variables of total phosphorus concen-

tration and water temperature. The process of recruit-

ment or germination from akinetes or resting stages is

poorly defined and is generally not well represented in

most phytoplankton models, with the exception of

Hense and Beckmann (2006) and Hense and Burchard

(2010). A further compounding factor for predicting

cyanobacteria is the spatial variability that occurs with

site-specific growth or wind-driven accumulations of

cyanobacteria in the leeward part of lakes (Oliver et al.

2012). Despite apparent limitations in representing

temporal dynamics, life cycle components, and spatial

variability, the Bayesian network was able to accurately

predict the probability of cyanobacteria occurring for

the different hazard classes in at least 60% of cases.

The performance of a Bayesian network is highly

dependent on the data set adopted for the network

TABLE 3. Probability table for cyanobacterial bloom hazard
classes in response to different water temperature and total
phosphorus values.

Conditions
Probability of

CyanoHazard class bloom (%)

WT (8C) TP (mg/L) Low Moderate High

,0.02 58.1 26.4 15.5
0.02–0.10 61.5 21 17.5

.0.10 52.4 26.8 20.8
,20 78.4 16.3 5.3
20–24 53.7 27.4 18.9
.24 23.7 35.5 40.8
,20 ,0.02 75.1 18.1 6.8
,20 0.02–0.10 82.2 13.6 4.2
,20 .0.10 67.1 27.8 5.1
20–24 ,0.02 50 34.7 15.3
20–24 0.02–0.10 59.5 22.5 18
20–24 .0.10 28.6 21.4 50
.24 ,0.02 29 35.5 35.5
.24 0.02–0.10 17.2 36.1 46.7
.24 .0.10 46.1 30.8 23.1

Notes: Conditions for the two environmental factors were
modified first separately (first six cases) and then together (final
nine cases). Empty cells indicate that the variable was not
modified.

TABLE 4. Probabilities of bloom development of CyanoHazard classes for (1) initial conditions (state b for WT and TP); (2)
simulated warming by 0.88C (state c for WT); (3) simulated increase in total phosphorus by 0.01 mg/L (state c for TP).

CyanoHazard class

Probability of CyanoHazard class bloom (%)

1) Initial
conditions

2) Simulated warming
by 0.8 8C

Variation between
1 and 2

3) Simulated increase
in TP by 0.01 mg/L

Variation between
1 and 3

High 18.8 41.4 22.6 23.4 4.6
Moderate 42.1 41.4 �0.7 29.9 �12.2
Low 39.1 17.2 �21.9 23.4 �15.7

Note: States b and c refer to Bayesian network in Fig. 3c.
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development. An optimal data set for this study would

have been a collection of observations including physical

variables at daily intervals, and chemical and biological

variables at weekly or fortnightly intervals. The optimal

resolution to account for chemical and biological

variability is difficult to infer and only recently are data

from automatic sensors starting to offer some insights

(Kara et al. 2012). Ideally, the observations for each lake

would also have included several years of observations

and lakes would have been equally distributed in space.

We organized data to have the maximum number of

complete observations to populate the Bayesian net-

work, although the number of complete cases available

decreased rapidly when the network complexity (includ-

ing more variables) was increased. Therefore, the most

complex network with nine nodes, potentially has

limited predictive ability because it is constrained by

the number of suitable observations (271 vs. .1600 used

in the three-node network). As observed by Hamilton et

al. (2009), predictions become more challenging when

few data are available and many variables are included

in the network. In our study, it was necessary to balance

additions of more explanatory power through adding

new variables with the amount of data available.

Bayesian networks are not designed to simulate the

evolution in time of particular processes (Pollino and

Henderson 2010). To analyze the dynamics of processes,

for example how environmental conditions evolve and

affect the succession and timing of phytoplankton

development, deterministic models are more suitable.

By contrast probabilistic models, such as Bayesian

networks, are able to associate a particular combination

of conditions with a specific event, to estimate the

probability of this event occurring. One of their major

advantages is that they account for uncertainty. This

minimizes the risk of applying management strategies

based on incorrect predictions. Accounting for uncer-

tainty in deterministic models is possible, but multiple

simulations are needed with a range of different model

parameters, often requiring considerable experience of

the modeler. To properly express deterministic ecolog-

ical model predictions, evaluation of physical and

biological sources of uncertainty is required (Rigosi

and Rueda 2012). The adoption of Bayesian networks

may provide an additional tool to answer ecological

questions, to evaluate the probability of changes in

water quality, to test future scenarios and to establish

relevant management procedures. Use of Bayesian

networks to analyze and interpret hypotheses and to

support decision making has been highlighted previously

(Ellison 1996, Castelletti and Soncini-Sessa 2007) and

here it has been demonstrated that they can be used to

assist with understanding the probability of cyanobac-

terial hazardous events and potentially supporting

decisions relevant to water quality and health risk

management.

We were able to adapt a Bayesian network model to

account for the effect of climate change when estimating

cyanobacterial risk while also taking into account the

interactions between changes in nutrient availability

(e.g., representing a modification of land use in a

catchment basin) and temperature. A strong dependence

on temperature was shown; an increase of 0.88C for

temperatures between 208 and 248C generated a 5%
increase in the probability of hazardous bloom devel-

opment and a 20% increase in bloom probability

occurred after 100 years considering a trend of warming

of surface water temperature by 0.0378C/yr (Schneider

and Hook 2010). This effect, however, was shown to be

strongly regulated by nutrient availability as previously

suggested by Brookes and Carey (2011) and recently

supported by Rigosi et al. (2014). The Bayesian model

outputs not only suggest that regulating total phospho-

rus availability in the system will help counteract the

outcomes of a warming climate but give a quantitative

outcome to this hypothesis.

In summary, the Bayesian network was a useful

instrument to: explore the interactions between nutrients

and temperature simultaneously; estimate the probabil-

ity of cyanobacterial blooms under warmer conditions

and quantify the degree of nutrient reduction that would

be required to counteract the effect of an increase in lake

water temperature. The simulations provided estimates

of how much the total phosphorus concentration should

be reduced in order to produce a change in the

probability of bloom development equivalent for specific

increases in water temperature.
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