THE UNIVERSITY OF

7 WAIKATO Research Commons

gty 16 Whare Winanga o Waikato

http://researchcommons.waikato.ac.nz/

Research Commons at the University of Waikato

Copyright Statement:

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

The thesis may be consulted by you, provided you comply with the provisions of the
Act and the following conditions of use:

e Any use you make of these documents or images must be for research or private
study purposes only, and you may not make them available to any other person.

e Authors control the copyright of their thesis. You will recognise the author’s right
to be identified as the author of the thesis, and due acknowledgement will be
made to the author where appropriate.

e You will obtain the author’s permission before publishing any material from the
thesis.

http://researchcommons.waikato.ac.nz/

RheaFlow: An Improved Software
Defined Network Router

A thesis
submitted in fulfillment

of the requirements for the degree
of

Master of Science
in
Computer Science
at

The University of Waikato

by
Oladimeji Fayomi

=

'E THE UNIVERSITY OF

% WAIKATO
Te Whare Wananga o Waikato

Department of Computer Science
Hamilton, New Zealand
July 27, 2016

(© 2016 Oladimeji Fayomi

Abstract

An Software Defined Networking (SDN) router translates routing information
from a standard routing control plane into forwarding decisions on an SDN-
enabled device. This thesis presents the design of RheaFlow an SDN router
that uses Internet Protocol (IP) routing control logic to modify forwarding
behaviour on OpenFlow switches. RheaFlow is implemented as a set of network
applications on the Ryu OpenFlow controller platform. It utilises the Ryu
Application Programming Interface (API) to build a modular SDN router

architecture that is easily extendable and simple to configure.

RheaFlow adopts and improves the IP routing via OpenFlow based on the
approach of RouteFlow, an existing SDN router. The RheaFlow design cen-
tralises the routing control plane which is distributed in RouteFlow. It also

removes RFProtocol, an internal control protocol used by RouteFlow.

Acknowledgements

I would like to acknowledge and thank my supervisor Dr. Richard Nelson for
his patience, support and guidance throughout the course of this work. I would
also like to thank Brad Cowie and Richard Sanger for their assistance, inputs

and advice during this project.

To my mom, thanks for your support and encouragement through the years.
It has kept me going during the trying times. I would like to thank my siblings
and Omoniyi Alimi for their support during this project.

Finally, I would like to appreciate Stephen Judd and Lola Bamgbose for their
support during this project. Thank you.

Contents

Abstract

Acknowledgements

List of Acronyms

1

Introduction

1.1

Document Structure

Related Work

2.1
2.2
2.3
24
2.5
2.6

FIBIUM
SoftRouter Architecture
DROP: Distrubuted Software Router Project
SDN-IP
Atrium

Conclusion

Overview of Routeflow

3.1

3.1.1
3.1.2
3.1.3
3.14
3.1.5
3.1.6
3.2

3.2.1
3.2.2
3.2.3

RouteFlow Architecture
RFClient
RFServer
RFProxy
RouteFlow Virtual Switch
RFProtocol
OpenFlow

RouteFlow Configuration and Operation
Starting RouteFlow
Installing a New Network Route
RouteFlow Operation Mode

viii

10
12
13
14
15
16

Contents v
3.3 Identified Flaws in RouteFlow and Possible Optimisations to
the RouteFlow Design 24
4 RheaFlow Design and Implementation 27
4.1 RheaFlow Design Goals 27
4.2 RheaFlow Components 28
4.2.1 Ryu 28
4.2.2 Netlink 31
4.2.3 YAMLo 33
4.2.4 JSON . . o 33
4.2.5 IP Routing Daemon 33
4.2.6 Virtual Switch o000 34
4.3 RheaFlow Implementation 34
4.3.1 RheaController 36
4.3.2 RheaRouteReceiver 45
4.3.3 RheaNLSocket 46
4.4 Intercepting Network Control Traffic 47
4.5 OpenFlow Rules, 50
4.5.1 OpenFlow Entry Creation Process 52
5 Evaluation 59
5.1 RheaFlow Testbed 59
5.2 Evaluation against RouteFlow 63
6 Discussion 67
6.1 Design Experience and Challenges 67
6.2 SDN Router Features in RheaFlow 68
6.3 Future Work 69
7 Conclusion 71
References 73
A Configuration File Sample: config.yaml 76
B BIRD Configuration File: bird.conf 77

List of Figures

3.1 RouteFlow Architecture 19
4.1 Ryu Architecture 30
4.2 Ryu Application Model oL 32
4.3 RheaFlow Application 36
5.1 Diagram of the RheaFlow Test Network 60

5.2 RheaFlow CPU Profile. 62

List of Tables

2.1 Features Supported by SDN Routers 10
3.1 OpenFlow Example Flows 22
4.1 RheaFlow Default Slow Path Flow Entries 53
4.2 RheaFlow Default Fast Path Flow Entries 54
5.1 IP Subnets Connected to br-dpdk 60

6.1 Features Supported by SDN Routers Including RheaFlow 69

List of Acronyms

ACL Access Control List

API Application Programming Interface
ARP Address Resolution Protocol

BGP Border Gateway Protocol

CE Control Element

CSV Comma-separated Values

FIFO First In, First Out

FE Forwarding Element

FIB Forwarding Information Base
ForCES Forwarding and Control Element Separation
ICMP Internet Control Message Protocol
IPC Inter-Process Communication

P Internet Protocol

IPv4 Internet Protocol version 4

IPv6 Internet Protocol version 6

JSON JavaScript Object Notation

MAC Media Access Control

NDP Neighbour Discovery Protocol

NE Network Entity

NETCONF Network Configuration Protocol

OF-CONFIG OpenFlow Configuration and Management Protocol

List of Acronyms

ONOS Open Network Operating System
OVSDB Open vSwitch Database Management Protocol
OSPF Open Shortest Path First

PC Personal Computer

REST Representational State Transfer

RIB Routing Information Base

RIP Routing Information Protocol

SDN Software Defined Networking

TCAM Ternary Content Addressable Memory
TCP Transmission Control Protocol

UDP User Datagram Protocol

VLAN Virtual LAN

VM Virtual Machine

WSGI Web Server Gateway Interface

YAML YAML Ain’t Markup Language

Chapter 1

Introduction

Software Defined Networking (SDN) is a new approach to networking that
enables network operators to manage network services and control the for-
warding decisions of network devices by using applications that are based on
open standard implementations and abstracted from the network devices they
control, while still remaining globally aware of the network topology. The SDN
paradigm is based on the notion that it is faster, cheaper and more flexible to
make configuration changes and scale network resources to meet demands in
a network by re-writing applications that control forwarding decisions on net-
work devices than it is to replace or upgrade network equipment. SDN gives
network operators fine-grained control of their network and enables them to
dynamically provision network devices on the fly in response to changing traf-
fic patterns on the network. Legacy network infrastructure does not provide
the same level of flexibility as SDN, and the scaling of network resources in

response to demand usually happens at great cost in time and resources.

In spite of the benefits offered by SDN, the adoption of SDN by network oper-
ators has been slow. Apart from barriers such as cost, reliability and security
concerns associated with the adoption of a relatively new technology like SDN.
A major obstacle that has slowed SDN’s adoption is the lack of interoperation
and integration with existing network infrastructure and equipment. The cen-
tralised control of SDN-enabled devices often makes them incompatible and
difficult to deploy on an existing network with legacy network devices which
use a mixture of protocols and platforms that decentralise control. Network
operators could adopt a clean slate approach and build a new SDN tailored to
their requirements; however, the costs associated with building a new SDN are

prohibitive. According to [16], migrating a large ISP network to SDN will only

Chapter 1 Introduction 2

be feasible using a step-by-step approach, since replacing the whole network
at once will be too costly. This step-by-step approach in which SDN-enabled
devices are gradually added to an existing network necessitates the need for
an interface between legacy network devices in the network and SDN-enabled

devices.

An SDN-enabled device is a network device that forwards packets and pro-
cesses traffic based on forwarding decisions made by a control plane that is
separate and remote to the device. The forwarding plane of a network device
is responsible for forwarding packets out the interfaces on the device. While
the control plane of a network device builds a map of the network and makes
decisions about how packets are forwarded by the forwarding plane of the de-
vice. In a conventional network device, the forwarding plane and the control
plane are tightly coupled together. A conventional network device can only
forward packets using forwarding decisions made by its control plane. Because
of this, a conventional network device is limited to forwarding packets across
the network based on the knowledge its control plane has about the network
which may limited or faulty. An SDN-enabled device on the other hand is
able to forward packets based on forwarding decisions made by a control plane
that is separate from the device. This enables the SDN-enabled device to re-
ceive forwarding decisions from other devices and applications that may have

a much better knowledge and complete topology of the network than itself.

An SDN router translates routing information from a standard routing control
plane into forwarding decisions on an SDN-enabled device. This ensures that
network traffic is forwarded correctly between legacy network devices and SDN-
enabled devices without the need to define a new protocol. SDN routers allow
SDN-enabled devices to integrate into an existing network. They interact with
legacy protocols and platforms used by existing network devices to control the
network and modify the forwarding behaviour of SDN-enabled devices in the
network based on control decisions received from the legacy protocols. This
intermediate role played by SDN routers enables SDN-enabled devices to be
deployed in legacy networks, interoperate and transparently forward traffic to
legacy network devices without the relying on the protocols and platforms used

by the legacy devices.

Apart from integrating SDN-enabled devices into legacy networks, SDN routers

manage and centralise the routing control plane in a network and delegate

Chapter 1 Introduction 3

packet forwarding functions to SDN-enabled devices they control. In a net-
work, routing is the process of delivering a packet to its destination via the
best path in the network. This involves relaying the packet through routers
along its selected path until it reaches its destination. A conventional router
performs two major functions: it builds a map of the network and forwards
packets to their destination; the router uses routing protocols to exchange
routing information with remote peers and build a topology of the network.
This routing information is maintained in the router’s Routing Information
Base (RIB), this is stored in the form of routes to destinations in the RIB.
Routes specify how the router can reach remote destinations in the network
and each route contains at least the network address of the remote destination,
the next-hop for that destination where the router can forward packets and the
cost associated with sending packets via this route. The entries in Forwarding
Information Base (FIB) are constructed by copying routes from the RIB, re-
solving the next-hop for each route because it requires the next-hop with lowest
cost and computing the interface through which packets should be forwarded
for that route. The router uses the FIB to perform its second function of
forwarding packets. When a router needs to forward a packet, it performs a
lookup in the FIB to select the interface closest to the next-hop for the desti-
nation of the packet. The FIB is optimised for fast lookup of the destination of
a packet. This is usually implemented in special hardware known as Ternary
Content Addressable Memory (TCAM) which is similar to that used in switch-
ing devices for quickly matching Media Access Control (MAC) addresses and
forwarding packet out the connected interfaces. The TCAM is different from
the hardware used by RIB in a router. TCAM is an expensive and power-
hungry component. The requirement of routers to rapidly forward packets to
the their destinations necessitates the inclusion of TCAMs in hardware routers,
this increases the cost associated with acquiring and running these routers in a
network. SDN-enabled devices often use TCAMs for forwarding packets, how-
ever, they may also use a different technology to achieve this. SDN routers
can offload packet forwarding functions to multiple SDN-enabled devices, this
reduces the number of TCAMs dedicated to routing.

The delegation of packet forwarding functions to SDN-enabled devices by an
SDN router also provides a greater level of flexibility and control for the net-
work operator. It enables the operator to rapidly make changes to the network

topology or the routing control plane with minimal disruption to the network.

Chapter 1 Introduction 4

In conventional routers, changes to the RIB require that the FIB is refreshed
so that packets are forwarded to their destination via the best path based on
changes to the RIB. This usually takes time and packet forwarding on the
router is degraded during this period. However, since SDN routers offload
packet forwarding to SDN-enabled devices. These SDN-enabled devices will
continue to forward packets while the FIB is being refreshed thereby minimis-
ing the disruption caused by network changes. Delegation of packet forwarding
functions to SDN-enabled devices by SDN routers enhances these devices by
giving them the capability to forward packets to remote destinations which
is a function normally performed by routers. This reduces the number of
routers required in a network thereby simplifying the network and reduces the
overhead introduced by the routing control plane that would be generated by

routers in a network.

RouteFlow[14] is an open-source SDN router project that provides virtualised
Internet Protocol (IP) routing services over SDN-enabled devices. It uses an
OpenFlow controller application to translate the FIB generated by a software
IP routing engine into OpenFlow flow rules. These rules are installed in the
forwarding plane of OpenFlow switches. Subsequent traffic received by the
OpenFlow switch which matches the rules are forwarded to their destination

by the OpenFlow switch bypassing the routing engine and controller.

An OpenFlow switch is an SDN-enabled device that forwards and processes
packets based on instructions received from a controller application via a con-
trol channel. An OpenFlow controller modifies the forwarding behaviour of an
OpenFlow switch by directly manipulating the forwarding plane of an Open-
Flow switch. It does this by inserting flow entries into the flow table of an
OpenFlow switch via the OpenFlow control channel. A flow entry is an in-
struction to the forwarding hardware of an OpenFlow switch to process and
forward packets based on a set of header fields in the packets. A flow table is
maintained by an OpenFlow switch and it is used to store flow entries received
from an OpenFlow controller. Packets are forwarded on an OpenFlow switch
by comparing their headers against the flow entries in the switch’s flow table

until a match is found. OpenFlow is further discussed in Chapter 2.

RouteFlow allows OpenFlow switches to integrate seamlessly into conventional
networks by collecting Address Resolution Protocol (ARP) tables and FIB gen-
erated by existing routing protocols such as Open Shortest Path First (OSPF)

Chapter 1 Introduction 5

and Border Gateway Protocol (BGP). These route tables are converted into
OpenFlow rules that are installed in the forwarding plane of the OpenFlow
switches. This also allows a set of OpenFlow switches controlled by Route-
Flow to behave as a single logical IP router to the rest of the network because
these switches forward packets to their destination based on the FIB generated
from the RIB maintained by the IP routing engine in the RouteFlow appli-
cation. RouteFlow has matured from an experimental project into a stable
solution that has been deployed in production networks [20][23] and it is still

actively improved and maintained.

While RouteFlow delegates the forwarding of packets to connected OpenFlow
switches, it does not fully centralise its routing control plane. This is because
RouteFlow is unable to build a map of the network by itself rather it depends
on an IP routing engine that is separate and remote to the RouteFlow appli-
cation. Also the lack of centralisation of the IP routing engine with the rest of
the RouteFlow application also prevents the remote routing engine from being
notified of changes in the forwarding plane that would require an update of the
RIB, this makes RouteFlow unable to respond to changes without disrupting
the network. The configuration of RouteFlow is a manual and complicated
process which requires the use of multiple configuration files, this hinders the
flexibility required to make changes in the network and limits the operator’s
control over the network. The RouteFlow application also introduces an inter-
mediate control protocol used to translate FIB entries into OpenFlow rules and
routing protocol traffic to the routing engine, this intermediate control proto-
col increases rather than decrease the overhead introduced into the network

by the routing control plane.

RheaFlow is an SDN router that provides the same capabilities as RouteFlow.
It translates the FIB generated by a software IP routing engine into OpenFlow
rules that are installed on connected OpenFlow switches. However, RheaFlow
addresses the lack of centralisation of the IP routing engine and OpenFlow
controller identified in RouteFlow by implementing a design that situates the
IP routing engine and the RheaFlow application on the same operating sys-
tem. This ensures that the routing engine is able to respond to changes in
the forwarding plane with minimal disruption in the network and optimises
the translation of FIB to OpenFlow rules installed in the forwarding tables of
OpenFlow switches. This is achieved by sending FIB updates received from

the IP routing engine directly to the OpenFlow controller and converting them

Chapter 1 Introduction 6

to OpenFlow rules thereby eliminating the need for an intermediate message
format as used in RouteFlow. RheaFlow also improves upon the complex and
manual configuration process observed in RouteFlow by simplifying the config-
uration process and dynamically responding to changes in configuration state
without user intervention. This thesis presents the design and implementa-
tion of the RheaFlow solution and evaluates it against some of the problems
identified in RouteFlow.

1.1 Document Structure

The rest of the thesis is laid out as follows:

Chapter 2 identifies and discusses the important features in an SDN router.
Different SDN routers are discussed and compared to RouteFlow based

on these features.

Chapter 3 describes the RouteFlow architecture and highlights the issues
identified with it.

Chapter 4 provides a description of the components of the RheaFlow architec-
ture. The RheaFlow implementation is discussed and RheaFlow’s design
goals are highlighted. The process of converting a FIB to OpenFlow

rules is explained.

Chapter 5 describes the testbed for the RheaFlow prototype and discusses
its performance during stress tests. RheaFlow is also evaluated against
RouteFlow to determine whether it addressed the issues identified with
RouteFlow.

Chapter 6 briefly discusses the RheaFlow design experience and challenges
encountered during RheaFlow implementation. RheaFlow is also com-
pared to SDN routers discussed in Chapter 2 based on the SDN router

features identified. Areas of future work are also highlighted.

Chapter 7 summarises the work undertaken for this thesis.

Chapter 2

Related Work

The SDN paradigm is relatively new in the network architecture and engi-
neering field; because of the potentials SDN has to offer, it is an area that
is being actively researched and innovated upon by both academia and the
wider industry. The gap in interoperability with legacy networks has been
identified as a major obstacle slowing down the adoption of SDN [24]. This
is because network operators usually have an obligation to maintain a high
level of availability, reliability and quality of service on their networks and
the introduction of new and untested SDN technologies could be disruptive
thus putting them in breach of service level agreements with their end users.
Hence, the introduction of SDN technologies into an existing network requires
a careful and gradual deployment process. One of the functions of an SDN
router is to enable a gradual migration of segments of a network to SDN while

maintaining backward compatibility with the rest of the network.

An SDN router translates routing control plane outputs and information used
to modify forwarding behaviour on legacy devices into forwarding decisions on
SDN-enabled devices. This ensures that network traffic is forwarded correctly
and transparently between legacy devices and SDN-enabled devices without
the need to define a new protocol. Decoupling the control plane from an SDN-
enabled device in SDN enables an SDN router to focus solely on centralising the
routing control plane and maintaining an up-to-date topology of the network
while SDN-enabled devices connected to the SDN router handle the forwarding
of packets to their destinations. Apart from forwarding packets, an SDN router
also enables the SDN-enabled devices to redirect control plane traffic to itself

or deliver control plane traffic to a remote control plane.

Chapter 2 Related Work 8

There are varieties of protocols and standards that can be used to implement
SDN. Some of the SDN routers examined in this chapter were implemented
using Forwarding and Control Element Separation (ForCES) protocol, other
SDN routers examined were implemented using OpenFlow protocol. However,
some of these are more widely implemented more than others. ForCES pro-
tocol [5] is an SDN specification that defines a template for separating the
control plane from the forwarding plane in a Network Entity (NE) to enable
flexible processing and forwarding of packets. ForCES enables an SDN ar-
chitecture by allowing network operators to delegate packet forwarding and
per-packet processing functions to specific SDN-enabled devices in a network.
An SDN-enabled device dedicated to packet forwarding and processing is called
a Forwarding Element (FE) in ForCES and the underlying hardware in a FE
is usually dedicated and optimised for per-packet processing and forwarding.
In a ForCES based architecture, control logic is maintained by the Control
Element (CE) which instructs the FE on how to process packets. The ForCES
protocol provides the standard by which the CE must interact and exchange
information with an FE. ForCES enables a network operator to set the num-
bers and combination of CEs and FEs that will form a NE in a network. The
NE appears as single monolithic piece to the rest of devices in the network, it
also ensures that packet can arrive via any FE in a NE and exit via another

FE transparently.

The OpenFlow protocol [13] is a recent SDN specification that defines an
Application Programming Interface (API) and communication interface with
which the forwarding plane of an OpenFlow switch can be manipulated. Since
SDN is the separation of the control plane from forwarding plane to ensure
flexible packet forwarding and greater control over the network. OpenFlow
enables a control plane application which is usually called a controller which
may be remote to the OpenFlow switch to directly send forwarding instructions
to the hardware in an OpenFlow switch. The hardware in the OpenFlow
switches is optimised to perform fast lookups on packets using information
from their header fields against a flow table to determine the interface via
which these packets should be forwarded. OpenFlow enables the controller to
directly modify the flow table as may be needed to forward packets. Compared
to ForCES, OpenFlow is a low-level SDN specification that gives a controller
the ability to directly modify the packet processing pipeline in the hardware

of an OpenFlow switch which gives a network operator great flexibility over

Chapter 2 Related Work 9

packet processing and granular control in a network. On the other hand,
ForCES approaches SDN from a conceptual level as it focuses more on defining
and specifying the functions of the elements in an SDN architecture while
leaving the implementation on the devices to the network operator. ForCES
could be considered a forerunner to the OpenFlow however, OpenFlow is more
widely implemented and adopted than ForCES. This tilts the choice of SDN
specification towards OpenFlow because one of the concerns of this work is
increasing the adoption of SDN by making it easier to add an SDN router
to an existing network. This concern is better addressed by using an SDN

technology that is more widely adopted and implemented.

The SDN routers discussed in this chapter were also considered with respect
to some of the issues identified with RouteFlow and the features provided by
these SDN routers. As mentioned earlier in Chapter 1, an important issue is
the centralised management of the routing control plane, because distributed
management of the routing control plane often complicates the configuration
of an SDN router. It also prevents or delays the SDN router from notifying the
routing control plane of changes or failures in the SDN-enabled devices. An-
other issue that was examined is the complexity of configuring and deploying
an SDN router into a network. The rapidly evolving nature of large networks
requires that network operators are able to quickly modify and deploy resources
in order to meet their obligations. Complex and complicated configurations
or deployments take time and are prone to errors. Hence, SDN routers should
be simple to configure and deploy. Furthermore, the ability for an SDN router
to support multiple SDN-enabled devices is also considered important. Since
an SDN router delegates packet forwarding to the SDN-enabled devices, if the
SDN router can control multiple devices, it greatly increases scalability and
may simplify the network topology for a network operator. Interoperability
and backward compatibility with existing routing control protocols was con-
sidered in this evaluation of SDN routers. This is because SDN routers are
deployed in existing networks and need to exchange routing information us-
ing existing technologies and routing protocols. The SDN routers were also
evaluated on their ability to dynamically discover new SDN-enabled devices,
reconfigure themselves and update their control plane logic so that they can

forward packets with the newly discovered SDN-enabled devices.

Finally, SDN routers were also evaluated based on whether they required new

or separate control protocols and Inter-Process Communication (IPC) channel

Chapter 2 Related Work 10

like RouteFlow. This is because separate control protocols often require that
they are processed differently which increases the overhead associated with

using these SDN routers in a network. Table 2.1 shows the comparison between

the SDN routers evaluated in this chapter.

Multiple Dynamic

SDN-enabled | Centralised Discovery Separate

SDN SDN Device Control and Simple Backward Control

Router | Specification Support Plane Configuration | Configuration | Compatibility | Protocol
FIBIUM OpenFlow No Yes Partial No Yes No
SoftRouter ForCES Yes Yes Yes No Yes Yes
DROP ForCES Yes Yes Yes No Yes Yes
SDN-IP OpenFlow Yes Yes Partial No Limited No
Atrium OpenFlow Yes Yes Partial No Limited No
RouteFlow OpenFlow Yes No No No Yes Yes

Table 2.1: Comparison of SDN Router Features.

The rest of this chapter examines each SDN router and briefly highlights its

features. The limitations and strengths of each SDN router are also discussed.

2.1 FIBIUM

FIBIUM [18] centralises the routing control plane on a cheap commodity
Personal Computer (PC) and partially delegates packet forwarding to an Open-
Flow switch it controls. The FIB used by the OpenFlow switch to forward
packets are constructed from the RIB maintained by an IP routing software on
the PC. An OpenFlow controller application on the PC monitors for changes
to the FIB and selects a few FIB entries to be installed on the OpenFlow
switch. The FIB entries installed on the OpenFlow switch in the FIBIUM
setup are selected based on traffic to the destinations reachable via these FIB
entries. FIBIUM does not install the full forwarding table from the IP routing
software because it was designed to be used with low-end OpenFlow switches
with limited OpenFlow rule capacity. According to [4, 6, 9] a cheap commodity
PC running open source IP routing software does not offer the performance
required for a large carrier network because it lacks the port density and spe-
cialised hardware for forwarding packets. The FIBIUM architecture consists

of three main components which are:

e An OpenFlow switch which provides the port density and packet for-

warding performance that is lacking on a commodity PC.

e An open source IP routing software that enables FIBIUM to receive and

send RIB updates which are used to build the FIB table.

Chapter 2 Related Work 11

e RouteVisor, the main component of the FIBIUM architecture. It serves
as a controller for the OpenFlow switch and determines which set of
forwarding entries from the FIB table populated by the routing protocols
from the IP routing software will be installed on the switch. It does this
by collecting traffic statistics on the most used FIB entries and installing

those on the OpenFlow switch.

Although, FIBIUM aims to achieve similar levels of performance to that ob-
tained from commercial hardware routers by using a low-end OpenFlow switch
and a cheap commodity PC running open source IP routing software. As an
SDN router, its design does not completely offload packet forwarding to the
OpenFlow switch because packets that can not be forwarded using the for-
warding entries on the OpenFlow switch are sent to the PC to look up their
destination using the full FIB maintained on the PC. This is because the
OpenFlow switches targeted by FIBIUM are not capable of storing a large
number of FIB entries that could be generated by BGP in a large network.
This is a good compromise as it ensures that the packets that can not be for-
warded using the forwarding entries on the OpenFlow switch are still delivered
to their destination via the forwarding table maintained on the PC. This is
not a concern considered in RouteFlow or RheaFlow that is being proposed
in this work. This is because the RheaFlow is able to work with a wide range
of OpenFlow switches. In a situation where the OpenFlow switches are not

capable of storing large flow entries, CacheFlow [8] could be used.

The IP routing software and RouteVisor are installed on the PC. RouteVisor
creates virtual interfaces for the interfaces on the OpenFlow switch and uses
Virtual LAN (VLAN) tags to map the virtual interfaces on the PC to the
physical interfaces on the switch thereby making the interfaces on the Open-
Flow switch visible to the IP routing software. Packets are either forwarded
through FIBIUM by the OpenFlow switch or by the PC. Packets forwarded
by the OpenFlow switch already have their destination prefix installed in the
forwarding table of the OpenFlow switch while packets forwarded by the PC
do not have any forwarding entries in the OpenFlow switch. These packets are
delivered to the PC via the OpenFlow control channel between the OpenFlow
switch and RouteVisor on the PC. These packets are checked against the full
FIB table maintained on the PC to determine their destination and forwarded

by the PC.

Chapter 2 Related Work 12

As an SDN router, FIBIUM centralises the routing control plane but partially
delegates forwarding to the OpenFlow switch. It however, provides backward
compatibility with a variety of existing IP routing control protocols by using
an [P routing software capable of running multiple legacy IP routing protocols
like BGP and OSPF to build and maintain its topology and knowledge of the
network. FIBIUM does not require or define a separate control protocol as this
only increases the overhead associated with running the router in a network.
Another issue identified with FIBIUM is that it is unable to support multiple
OpenFlow switches. FIBIUM’s inability to delegate packet to multiple Open-
Flow switches makes it less scalable and could possibly increase the time spent
provisioning and configuring the network. This also relates to the issue of the
simplicity of its configuration and dynamic discovery of an OpenFlow switch.
While, FIBIUM dynamically configures the OpenFlow switch in response to
changes in the FIB maintained on the PC, it is not possible to rapidly ex-
pand the topology by dynamically discovering and adding a new port on the
OpenFlow switch without disrupting forwarding on other ports on the Open-
Flow switch as it requires reloading RouteVisor. Coupled with the lack of
multiple OpenFlow switch support, this configuration could be complex and
time consuming in a network with multiple instances of FIBIUM. However,
the dynamic configuration of virtual interfaces by RouteVisor in FIBIUM was
adopted in RheaFlow to improve the static and manual configuration process

in RouteFlow.

2.2 SoftRouter Architecture

SoftRouter Architecture [12] design applies a ForCES based approach that
enables the centralisation the routing control plane on general purpose server
is known as the CE. The CE is capable of running existing routing protocols
such as BGP or OSPF and it uses the control logic and topology knowledge
to determine forwarding behaviour of SDN-enabled devices associated with it.

The SoftRouter archictecture is made of following entities:

e A NE which comprises of CE and any number of FEs. The FE establishes
a connection with the nearest CE it discovers in a network and proceeds
to forwarding packets on the links to other FEs in the network it has
detected based on the logic supplied by the CE.

e A discovery protocol to be used by FE to find and establish a connection

Chapter 2 Related Work 13

to the nearest CE.

e A FE/CE control protocol for communication between the FE and CE

once a connection has been established.

In SoftRouter, an SDN-enabled device associated to a CE is called a FE. This
FE is usually a commercial router or switch that has been stripped of its con-
trol logic. It forwards packets based on instructions from an associated CE. A
CE may be associated with a set of FEs or just a number of ports on a single
FE, this association is called a NE. A NE makes a combination of CE and
FEs appear as a single monolithic device to the rest of the network. In the
SoftRouter architecture, the NE is the SDN router, the routing control plane
is centralised in the CE while packet forwarding is handled by the FE which
is the SDN-enabled device based on instructions received from the CE. The
routing control plane is centralised in the CE and supports multiple IP legacy
routing protocols while forwarding is handled by the FE in a NE based on the
SoftRouter architecture. This SoftRouter approach ensures a complete sepa-
ration of the control plane from the forwarding plane as specified for an SDN
router. In a SoftRouter NE, multiple FEs may be associated with a CE en-
suring multiple SDN-enabled device support. The discovery and configuration
required to associate FEs to CE for a NE is dynamic and happens with minimal
intervention from the user in the basic configuration. However, association and
subsequent communication between a CE and FE requires a separate control
protocol which increases the overhead associated with a SoftRouter NE in the

network.

2.3 DROP: Distrubuted Software Router Project

DROP [2] uses open source software IP routers to implement a distributed SDN
router architecture. The implementation is based on the ForCES standard, the
open source IP software router is a version of Quagga modified for the DROP
architecture. The DROP architecture is composed of the following building
blocks:

e CEs distributed across the network and dedicated to control, manage-

ment and routing decisions.

e FEs also distributed across the network, dedicated and tuned for for-

warding [P packets.

Chapter 2 Related Work 14

e An internal/private network that connects the CEs and FEs together.

e CE controllers that manage and exchange routing information between
the CEs and FE controllers that maintain and manage FIB states and

configuration across the FEs.

The routing control function is centralised on a Linux machine running the
modified Quagga routing engine. This machine is called the CE and it uses
IP routing protocols like BGP or OSPF to build a topology of the network, it
modifies the forwarding behaviour of the SDN-enabled devices using Netlink
[17]. An SDN-enabled device in DROP is called an FE. It is also a Linux
machine running the version of Quagga modified for DROP and it focuses solely
on forwarding packets and receives forwarding instruction from the CE via the
netlink protocol. A combination of FEs and CE forms a NE in DROP which is
seen as a monolithic routing entity by other devices in the network. DROP[2]
is a distributed SDN router implemented based on ForCES guidelines using
open source IP software routers. DROP architecture enables the distribution
and spread of the CE and FEs that form a NE physically and geographically
across a network while presenting a single logical view to other devices in the
network. This makes DROP a scalable SDN router with a centrally managed
routing control plane that offloads packet forwarding to multiple SDN-enabled
devices distributed physically and geographically across a network. However,
the use of an overlay private network for exchanging forwarding information
between the CE and FE would add unnecessary complexities to a network and
the overhead associated with the private network and its netlink traffic could

degrade the overall performance of the network.

2.4 SDN-IP

SDN-IP [10] forwards packets with OpenFlow switches using a FIB constructed
from the RIB generated by the BGP routing protocol. The routing control
plane is centralised in the SDN-IP application while the OpenFlow switches
forward packets to their destination. SDN-IP is run as an application on Open
Network Operating System (ONOS), an OpenFlow controller that provides a
high level abstraction on top of OpenFlow. SDN-IP also acts as an iBGP peer
to an upstream BGP peer. SDN-IP builds its RIB by receiving BGP route
updates from its upstream peer, it then constructs a FIB for the destinations

reachable via the routes in the RIB. ONOS modifies the packet processing

Chapter 2 Related Work 15

pipeline of the OpenFlow switches via the OpenFlow control channel using
the FIB. This enables the OpenFlow switches to forward packets to their des-
tinations by delivering them to the next-hops of their destination via the ports
on the OpenFlow switch directly connected to the next-hops. The OpenFlow
rules installed on the OpenFlow switches by ONOS also ensures BGP traffic
is delivered to SDN-IP’s iBGP peer. This iBGP peer only receives route ad-
vertisements it does not have the capability to send route updates to remote

peers.

SDN-IP only offers limited backward comptability as it does not support any
IP routing control protocol beyond BGP. According to [10], SDN-IP can
only generate forwarding entries for 15,000 Internet Protocol version 4 (IPv4)
routes and it does not support Internet Protocol version 6 (IPv6). This can
be problematic in a large network and makes it unsuitable for a network that
aims to carry IPv6 traffic. While it is possible to offload packet forwarding to
multiple OpenFlow switches, the application can not dynamically reconfigure
the OpenFlow switches in response to network changes such as a change in the
address of the next-hop to a destination that is directly connected to a port on
an OpenFlow switch. Also, SDN-IP requires an understanding and familiarity

with the ONOS configuration process which is not intuitive.

2.5 Atrium

Atrium [21] also forwards packets with OpenFlow switches using a FIB con-
structed from a RIB generated by the BGP routing protocol. The Atrium
design extends the SDN-IP application by the upgrading the BGP routing con-
trol plane application used to send and receive route updates. This eliminates
the need for a separate upstream BGP peer in a network in which Atrium has
been deployed. Atrium is run by ONOS which converts the FIB constructed

from routing table into OpenFlow instructions for the OpenFlow switch.

Atrium addresses the issues of dynamic reconfiguration of the OpenFlow switch
port in response to network changes and limited translation of the routing table
into OpenFlow rules identified with SDN-IP. However, it still only supports
the BGP routing protocol. The Atrium configuration process is complicated
as it requires that the BGP peers that will be exchanging route updates be
included at configuration time. Subsequent BGP peers that are required to

exchange routes with Atrium after it has been started requires a restart. This

Chapter 2 Related Work 16

disrupts packet processing on the OpenFlow switches. Atrium like RouteFlow

has been deployed in production networks and is still being actively developed.

However, it was discovered halfway through the development of RheaFlow.

2.6

Conclusion

While the SDN routers examined in this chapter are not an exhaustive list,

they were useful in evaluating features important in an SDN router such as:

An SDN implementation that is widely supported, to increase its chances

of adoption by network operators.

Ability to delegate forwarding to multiple SDN-enabled devices for scal-
ability.

A centralised management of the routing control plane in conformance

with the SDN paradigm.

Dynamic discovery of SDN-enabled devices, reconfiguration of SDN-
enabled devices in response to network changes and a simplified con-
figuration that allows for quick changes in response to rapidly evolving

network demands with minimal disruption.
Backward compatibility with existing routing control protocols.

The absence of a separate control protocol which likely increases over-
head.

As Table 2.1 indicates, RouteFlow lacks some features important to an SDN

router. RouteFlow was chosen for this work and is described in the next

chapter.

Chapter 3

Overview of Routeflow

RouteFlow [14] is an open source SDN routing solution that uses the control
logic and topology knowledge of IP routing protocols to connect separate IP
subnetworks and forward IP traffic over OpenFlow switches. A set of Open-
Flow switches connected to RouteFlow are seen as a single logical router. This
makes the OpenFlow behaviour transparent to the rest of the network. The
new SDN routing solution presented in this thesis was based on improvements
made to RouteFlow. RouteFlow was chosen as the target solution for improve-

ment based on these reasons:

e Unlike other SDN routers examined previously, RouteFlow is backwards
compatible with existing IP routing protocols like BGP, OSPF and
Routing Information Protocol (RIP). It also provides a platform for
supporting other routing protocols while others support at most two IP
routing protocols. RouteFlow’s design ensures it does not depend on any

specific open source routing software unlike other SDN routing solutions.

e RouteFlow is a stable and widely recognised project in the SDN area and

it has been successfully deployed in production networks [20, 23].

e RouteFlow is implemented with OpenFlow, the most recognised specifi-
cation of SDN. Improving solutions that enable OpenFlow switches to
interoperate with legacy network devices would bolster the case for SDN

adoption by reaching a larger audience.

This chapter provides an overview of the RouteFlow architecture, a brief dis-
cussion of the various components used in the design, how the control logic
and knowledge of the network topology obtained from IP routing protocols are

used to modify forwarding behaviour on OpenFlow switches. Finally, compo-

Chapter 3 Overview of Routeflow 18

nents and operations in the RouteFlow architecture that could be improved

are discussed.

3.1 RouteFlow Architecture

RouteFlow is designed to collect routing and topology information from mul-
tiple IP routing engines, and modify the forwarding behaviour of multiple
OpenFlow switches. It achieves this by running the multiple routing engines
in Virtual Machine (VM)s and multiplexing the interfaces used for forwarding
on the multiple OpenFlow switches into virtual interfaces on a single virtual
switch. The virtual switch presents the interfaces from different OpenFlow
switches via the virtual interfaces as being from a single OpenFlow switch to
the controller. In RouteFlow, the RFClient component collects the FIB gener-
ated by the virtualised IP routing engines and sends these to RFServer which
determines how the forwarding entries should be installed on the OpenFlow
switches based on the mappings between the virtualised IP routing engines
and the OpenFlow switches. The forwarding entries are sent to RFProxy, the
OpenFlow controller application that converts the FIB sent by RFServer into
OpenFlow rules and installs them on the OpenFlow switches. RouteFlow com-
ponents communicate with using RFProtocol, an internal RouteFlow message
format over an [PC channel. Figure 3.1 shows the relationship and interaction
between the components in RouteFlow. The components of the RouteFlow

architecture are further outlined in the sections below.

3.1.1 RFClient

RFClient is the RouteFlow component that runs in the virtualised routing
engine which is a Linux VM running an open source IP routing software such
as BIRD or Quagga. The IP routing software uses routing protocols like BGP
and OSPF to exchange routing information with other routers and builds a
RIB from this information. The FIB table is generated from this RIB by the
Linux network stack. RFClient which is implemented in C++, listens and
collects the ARP and FIB tables maintained by the Linux kernel from the VM
using the Netlink Linux API. The FIB table and subsequent updates to the

table are sent via an established IPC channel to RFServer.

Chapter 3 Overview of Routeflow 19

------------ RFProtocol
Virtual Machine
<—> Netlink
Quagga/
BIRD N B O OpenFlow
Linux

5 Routing
= Table o——e Virtual Interface
@ RFClient
IS
=)
E
>
' RFServer
1
1
1
1
1
. :
: RFProxy
1
A OpenFlow
=== mmmm== Controller

2z AY

’ 4 N
P .
’ ‘ >
-, Y
’ N
’ ‘ N
’ \\
OpenFlow OpenFlow
Switch1 Switch2

Figure 3.1: The RouteFlow Architecture

3.1.2 RFServer

RFServer is where the intelligence of the RouteFlow architecture resides. It
manages the mapping of an OpenFlow switch to a virtualised routing en-
gine. Based on this mapping, it determines the OpenFlow switch that will
use the FIB entries from a virtualised IP routing engine to forward packets.
It maps the virtualised IP routing engine running in RouteFlow to interfaces
of the connected OpenFlow switches using the virtual bridge in the architec-
ture. RFServer receives FIB updates sent by RFClient. It may modify these
FIB updates if necessary before sending them to RFProxy via an established
IPC channel. RFServer is also responsible for setting the default OpenFlow
rule-set to be installed on the OpenFlow switches. These rules ensure that
OpenFlow switches forward routing protocol and other network control traffic
to the RouteFlow virtual switch via RFProxy. RouteFlow virtual switch then

forwards these out its virtual interfaces to the virtualised IP routing engine.

Chapter 3 Overview of Routeflow 20

3.1.3 RFProxy

RFProxy is the OpenFlow controller application that modifies forwarding be-
haviour on the OpenFlow switches. It receives FIB updates from RFServer,
converts them to OpenFlow rules and installs them on the required Open-
Flow switches. It notifies RFServer when OpenFlow switches are added to the
topology and configures them using the default OpenFlow rule-set received
from RFServer. The RFProxy component was designed to be replaceable with
different OpenFlow controller platforms. This was to ensure that RouteFlow
is not tied to a particular OpenFlow controller platform. However, this adds
complexity to RouteFlow’s configuration as it requires an internal representa-
tion of OpenFlow rules in the form of the RFProtocol message format, which
does not depend on the OpenFlow controller platform being used. This thesis
focuses on a fork of RouteFlow called Vandervecken [1]. The RFProxy com-
ponent in Vandervecken is run on Ryu, a Python based OpenFlow controller

platform.

3.1.4 RouteFlow Virtual Switch

The virtual switch is used to virtualise the physical interfaces of OpenFlow
switches that will be forwarding IP traffic to the IP routing engine on the
VMs. It is an Open vSwitch instance [15] that is connected to the virtualised
IP routing engine with virtual interfaces. The virtualised IP routing engine
forward and receive control traffic through these virtual interfaces. The vir-
tual switch is configured with OpenFlow rules to forward any control traffic it
receives from its virtual interfaces to the corresponding OpenFlow switch and
vice versa. This makes the OpenFlow protocol traffic transparent to the virtu-
alised IP routing engine on one hand and routing protocol traffic transparent
to the OpenFlow switches on the other hand. From the perspective of the

virtualised IP routing engine, the OpenFlow switches are directly connected.

3.1.5 RFProtocol

RFProtocol is an internal RouteFlow message format used to exchange topol-
ogy change and configuration information between the components of Route-
Flow. RFProtocol messages can be divided into two broad categories. The first
category of RFProtocol messages are used to configure RouteFlow and notify

RFServer of changes to the topology and state of the OpenFlow switches man-

Chapter 3 Overview of Routeflow 21

aged by the OpenFlow controller. Some of these RFProtocol messages are:

e PortRegister: sent by RFClient to RFServer. It is used to notify RF-
Server that a port on the virtualised IP routing engine has been detected

and is ready for use.

e PortConfig: used to modify the configuration of a port on the virtualised

IP routing engine. It is usually sent from RFServer to RFClient.

e DatapathPortRegister: used by RFProxy to notify RFServer that an

interface on an OpenFlow switch is ready for use.

e DatapathDown: used by RFProxy to notify RFServer that an OpenFlow

switch has lost connection with the controller.

e VirtualPlaneMap: notifies RFClient of the mapping between the virtual
switch ports and the ports of the OpenFlow switches.

e DataPlaneMap: notifies RFProxy of the mapping between the ports of

the connected OpenFlow switches and the ports on the virtual switch.

The second category of REProtocol messages are called RouteMod messages.
These are used to deliver updates and changes to the FIB table from RFClient
to RFServer. The OpenFlow rules to forward IP traffic over the OpenFlow

switches are converted from the RouteMod messages received by RFServer.

3.1.6 OpenFlow

OpenFlow is an API used to modify the forwarding behaviour on OpenFlow
switches. It also establishes a communication channel over Transmission Con-
trol Protocol (TCP) between the controller and OpenFlow switches. In Route-
Flow, RouteMod messages received by RFProxy are converted to OpenFlow
messages. These OpenFlow messages are constructed as a set of matches and
actions. The matches are a combination of fields in the header of packets used
to group packets into a flow. The actions are the operations to be performed
on a packet if it matches. Some of the header field matches and actions per-
formed on packets required to enable OpenFlow switches forward IP traffic are
listed in Table 3.1.

Chapter 3 Overview of Routeflow 22

Matches Actions Type
IPv4 Dst=
192.168.0.0/24 Output: Port 1 Forwarding IPv4
IPv6 Dst=
2001:0db8:0:f101:: /64 Output: Port 2 Forwarding IPv6
Ingress Port=3,
IPv4 Dst=192.168.0.1, Set MAC Dst to: 0c:84:dc:54:eb:d6,
MAC Dst=0c:84:dc:54:ab:c6 Output: Port 1 Routing IPv4
Ingress Port=2, Pop MPLS label,
MPLS Label=14 Output: Port 1 MPLS forwarding

Table 3.1: Example of Matches and Actions Performed by OpenFlow to Forward Pack-
ets.

3.2 RouteFlow Configuration and Operation

3.2.1 Starting RouteFlow

A basic RouteFlow setup requires at least one configuration file. This file is
used to specify the mapping between the virtualised IP routing engines and
the physical OpenFlow switches. The format of the configuration file is shown
below:

vm_id,vm_port,ct_id,dp_id,dp_port

12A0A0A0A0A0,1,0,99,1

12A0A0A0A0A0,2,0,99,2

Each row maps the port (vm_port) on a virtualised IP routing engine identified
by vm_id to port (dp_port) of an OpenFlow switch identified by dp-id that
is connected to a controller with ct_id. To start RouteFlow, each of the

components are started separately. The startup sequence is described below:

1. RFServer is started first. It loads the configuration file into memory
and waits for other components to establish a connection via the IPC
channel. The Vandervecken fork has been modified to start the other

components after RFServer is started.

2. RFProxy is started and it establishes a connection to RFServer via the
IPC channel. Once an OpenFlow switch has connected to the controller,
RFProxy notifies RFServer of the ports on the OpenFlow switch with
a RFProtocol DatapathPortRegister message. RFServer responds with
configurations and OpenFlow default rule-sets if a map exists for that

OpenFlow switch port in the configuration file.

3. RFClient is the last component to be started, this is completed alongside

Chapter 3 Overview of Routeflow 23

configuration of the virtual switch. RFClient establishes a connection to
RFServer and notifies it of the ports available on the VM by sending
RFProtocol PortRegister messages. This enables RFServer to complete
the rest of the configuration by notifying RFClient of the OpenFlow
switch ports to RFClient association. Once this is done, RouteFlow is

ready to forward IP traffic.

3.2.2 Installing a New Network Route

Traffic between IP subnets is forwarded on the OpenFlow switches using the
OpenFlow rules installed on them. These OpenFlow rules are generated from
updates to the FIB table in the kernel of the VM by the open source IP
routing software of choice. The process by which a network route is converted

to OpenFlow rules is enumerated below:

1. A remote legacy router sends a route update to the IP routing engine in

the VM using the configured routing protocol of choice.

2. The OpenFlow switch recognises the routing protocol traffic carrying the

route update and forwards the packets to the controller.

3. The route update is sent to the IP routing engine via RFClient. The
IP routing engine makes a decision on whether the new route should be
installed in the routing table of the VM. If the new route is installed
in the VM’s kernel, RFClient sends a RouteMod message containing the
address, prefix, gateway address and MAC address of the gateway to
RFServer.

4. RFServer determines the OpenFlow switch that the route update should
be installed on and forwards the RouteMod message to RFProxy. The
RouteMod message is converted to OpenFlow rules by RFProxy and
installed on the required OpenFlow switch. Subsequent traffic arriving
at the OpenFlow switch that matches the installed route are forwarded

directly to their destination.

3.2.3 RouteFlow Operation Mode

RouteFlow has two modes of operation, namely slow path and fast path. In
slow path mode, all network control traffic received by the OpenFlow switches

for the IP routing engine in the VM are encapsulated as OpenFlow packet-

Chapter 3 Overview of Routeflow 24

in messages and sent to RFProxy. These are sent by RFProxy as OpenFlow
packet-out messages to the virtual switch which forwards them to the IP rout-
ing engine via the virtual interfaces. This adds some latency to the delivery
time of control traffic transiting through the OpenFlow switches. Fast path
mode often requires an extra interface on the machine running RouteFlow and
a port on the OpenFlow switch. An ethernet link is established between the
OpenFlow switch and the machine using extra ports. Essentially, fast path is
a faster way of delivering packets to and from the virtualised IP routing en-
gine by using the physical link between the OpenFlow switch and the machine
running RouteFlow. Two extra configuration files are required for fast path,
these are rffastpath.csv and dpOlinks.csv. Rffastpath.csv maps the OpenFlow
switch port that will be used for fast path to the interface designated for fast
path on the RouteFlow machine. While dp0Olinks.csv defines the OpenFlow
port number to be assigned to the interface designated for fast path on the
RouteFlow machine. RFServer uses this configuration file to configure the
OpenFlow switch and virtual switch to forward network control traffic to the
virtualised IP routing engine bypassing RFProxy. Fast path reduces latency

introduced by network control traffic and increases throughput in the network.

3.3 Identified Flaws in RouteFlow and Possible
Optimisations to the RouteFlow Design

The use of multiple virtualised IP routing engines allows RouteFlow to gather
topology and control plane information from the perspective of many IP rout-
ing engines. This gives RouteFlow a more accurate view of the network. It
also reduces the amount of hardware used in a network. However, the use of
multiple IP routing engines complicates RouteFlow’s configuration and adds
complexity to the network configuration. Complex configuration processes are
error prone and time consuming. This discourages customisations and slows
down network changes and this would be undesirable in a large network with
dynamic network traffic. The use of virtualised IP routing engines in Route-
Flow leads to nested virtualisation. If RouteFlow itself were to be virtualised,
the nested virtualisation could be complex to manage. Nested virtualisation
also introduces potential performance and security issues. The solution pro-
posed to this issue by RheaFlow is to reduce the number of components in-

volved and the amount of configuration required. This is further discussed in

Chapter 3 Overview of Routeflow 25

the next chapter.

Another design flaw that complicates the configuration process in RouteFlow
is the use of multiple configuration files for fast path mode and a single file
for slow path mode. These configuration files are created in Comma-separated
Values (CSV) format, which is not easily readable for humans and increases
the chances of misconfiguration. The virtual interfaces in RouteFlow are also
manually configured and statically mapped during the configuration process.
This prevents failure events on the OpenFlow switch ports from being repli-
cated to the virtualised IP routing engine. This prevents the IP routing engine
from updating its RIB in response to an issue on its forwarding plane which
is the OpenFlow switch port. Also new ports on the OpenFlow switch can
not be added without restarting RouteFlow and configuring a virtual interface
for it. These are addressed in this project by letting RheaFlow configure the
virtual interfaces and dynamically map them to the OpenFlow switch ports.
RheaFlow also adopts the use of YAML Ain’t Markup Language (YAML)
configuration file format to make the configuration readable for humans and

parsable for the application.

The VM identifier vm_id required in RouteFlow’s configuration is the MAC
address of the interface used for RFProtocol IPC between RFClient and RF-
Server. The user has to confirm which interface is being used for RFProtocol
IPC on the virtualised routing engine before starting RouteFlow. This process
is error prone and could be removed from the configuration process. Also,
vm_id has to be included in the configuration file before RouteFlow is started.
It can not changed be while RouteFlow is still in operation as RFClient will be
unable to communicate with RFServer. The RFProtocol IPC channel between
RFClient and RFServer is important for RouteFlow’s proper functioning. A
failure of the IPC channel would render RouteFlow non-functional and cause

disruption in the network.

RFProtocol and the IPC channel used to communicate between the various
RouteFlow components, adds some overhead while performing certain opera-
tions or forwarding control traffic. RFProtocol is an important component of
the RouteFlow design as it connects RFClient which is running in a VM to
RFServer on the host machine running RouteFlow. As mentioned earlier, a
design that moves the IP routing software out of the VM into the same ma-

chine as RFServer makes it easier to eliminate RFProtocol and reduce control

Chapter 3 Overview of Routeflow 26

traffic overhead. This design approach is explored further in RheaFlow.

Fast path mode in RouteFlow improves latency and minimises the overhead
of OpenFlow control channel by sending network control packets to the virtu-
alised IP routing engine directly from the OpenFlow switches. This reduces
the number of packets handled by RFProxy and minimises the risk of over-
whelming RFProxy with many packets. In the proposed RheaFlow design,
network control traffic is delivered directly to the IP routing engine without
any intervention from the controller. An OpenFlow controller platform re-
ceives the route updates from the IP routing engine and listens for network
changes using the Netlink Linux API. These are then converted to OpenFlow

modifications without any intermediate protocol.

Chapter 4

RheaFlow Design and

Implementation

RheaFlow is an SDN routing solution that connects separate IP subnetworks
and forwards IP traffic over OpenFlow switches. This is achieved by converting
the FIB obtained via routing protocols on an open source software IP routing
engine, and ARP tables from the Linux kernel into OpenFlow rules that specify
forwarding actions on OpenFlow switches. The functionalities and capabilities
provided by RheaFlow are similar to those provided by RouteFlow. Also,
RheaFlow’s design, architecture and operations are influenced by RouteFlow.
However, RheaFlow seeks to improve the routing and forwarding of IP traffic
over OpenFlow switches by providing solutions to some of the flaws identified

in RouteFlow in the previous chapter and [16].

The components used in RheaFlow’s design and the architecture are described
in this chapter. Some of the considerations and constraints considered during
the design process are also discussed. Finally, the process of converting IP route
information to OpenFlow rules and modifying OpenFlow rules in reaction to

network changes are discussed.

4.1 RheaFlow Design Goals

Some of the considerations and constraints guiding the RheaFlow design are
listed below:

e The configuration and deployment process should be simple and intu-

itive: This is achieved by reducing the number of configuration steps and

Chapter 4 RheaFlow Design and Implementation 28

processes involved in starting the SDN router. This involves hiding the
complexities of the application from the user for simple configurations.
Also, using configuration file formats that are intuitive and readable for

humans on one hand and easily parsable for machines on the other hand.

e Simplifying the architecture: In RouteFlow’s architecture, the IP routing
software that provides the IP control logic used to modify forwarding be-
haviour on the OpenFlow switches is configured in a VM that is a guest
on the machine running the RouteFlow application. The information
provided by IP routing software in the VM could be provided by an IP
routing software running on the same machine as the OpenFlow con-

troller. This simplifies the architecture.

e Reduce overheads associated with the conversion of the FIB into Open-
Flow rules: In RouteFlow, FIB updates are converted into an interme-
diate message protocol on RFClient and sent via an IPC channel before
they are converted to OpenFlow by RFServer. This adds unnecessary

overhead to the conversion process.

e Reduce the number of OpenFlow messages sent to the controller by using
fast path.

e An application and platform independent data-interchange format and
interface that can be easily modified and extended to receive other net-
work control information such as Access Control List (ACL) and firewall

rules from network devices other than routers.

e An SDN router architecture with modular components that are easily

customisable and extended to provide new features and functionalities.

4.2 RheaFlow Components

The tools and components used in the RheaFlow design and how they fit into

the architecture are discussed in this section.

4.2.1 Ryu

Ryu [22] is an open source component-based SDN application development
framework written in Python. It is an OpenFlow controller platform that

provides robust APIs and libraries that can be used to write network control

Chapter 4 RheaFlow Design and Implementation 29

applications. These applications are used to control and manage a network
together with the devices in it. The design of the Ryu framework provides a
platform on which separate SDN applications performing different functions
can cooperate and communicate with each other seamlessly. These applica-
tions can also be integrated with existing components in Ryu. Existing com-
ponents can also be modified to cooperate or interact with the applications.
The components of Ryu relevant to RheaFlow include the OpenFlow controller
which manages the OpenFlow connection to the OpenFlow switches. It sends
OpenFlow messages to the OpenFlow switches and parses the OpenFlow mes-
sages sent by the OpenFlow switches. Ryu-manager is the main executable
within Ryu’s architecture and is used to start and run the needed applica-
tions. By default Ryu-manager sets up the OpenFlow Controller to listen on
the specified address and port for connection from OpenFlow switches when it
is executed. Ryu-manager uses the core processes component to manage the

messaging between the running applications and event notification.

Ryu has multiple northbound protocol libraries for parsing and processing
existing network protocols. It also has multiple southbound protocol libraries
for managing other SDN specifications including OpenFlow. Ryu also has a
Web Server Gateway Interface (WSGI) component and Representational State
Transfer (REST) interfaces for running applications written in Python in server
mode. This functionality provided by the WSGI and REST component of Ryu
was utilised in RheaFlow’s design. The diagram in Figure 4.1 further describes
the Ryu Archictecture. The main component in RheaFlow’s architecture is
the Ryu controller. Other components used in the design of RheaFlow are
totally dependent on Ryu. Ryu is used as the base platform for RheaFlow’s

architecture for these reasons:

e The Ryu framework ensures that new southbound protocols or SDN spec-
ifications are interoperable with existing network technologies. It sup-
ports multiple southbound protocols like Network Configuration Proto-
col (NETCONF) and OpenFlow Configuration and Management Proto-
col (OF-CONFIG) for managing SDN-enabled devices. It also supports
multiple northbound protocols like BGP out of the box. The versatil-
ity offered by the Ryu framework makes it easy to modify RheaFlow to
support other SDN specifications apart from OpenFlow should the need

arise.

Chapter 4 RheaFlow Design and Implementation

30

SDN Applications

F

/ Ryu Framevvork\A

App-Manager e.g

In-built Ryu Apps
BGP Speaker

WSGI and REST
Component

Ryu-Manager

Core Processes:
Messaging, Event and Memory

Figure 4.1: Ryu Framework Architecture

Management
OpenFlow Controller
Libraries

OpenFlow

Protocol OVSDB |[OF-CONFIG|| NETCONF || VRRP || NetFlow

X 7 i i

OpegFlow Sw1tchglfhgeggeNs Using

Switch Implementations and

Protocols

e The Ryu OpenFlow controller has been tested with OpenFlow switches

from different vendors and it supports multiple OpenFlow versions. This

is necessary to prevent a mismatch between the OpenFlow features used

by RheaFlow and those supported by the OpenFlow switches. This en-

sures that OpenFlow instructions sent from the controller are interpreted

uniformly on OpenFlow switches from different vendors.

e Ryu maintains backward compatibility for deprecated features in newer

Chapter 4 RheaFlow Design and Implementation 31

releases. This ensures RheaFlow is not pinned to a specific version of the

Ryu framework.

e The Ryu framework is written entirely in Python. It will also run ap-
plications and scripts written in Python. The use of a single language

greatly increases the ease and speed of development.
Ryu Applications

Applications are used to implement the network control logic and operations
performed by Ryu. They are Python modules that Ryu executes to manage
and control network behaviour. A Ryu application is a Python class object
that is a subclass of the ryu.base.app_manager. RyuApp class specified in the
Ryu API. Applications are run as single-threaded entities in Ryu and multi-
ple applications communicate with each other using events. When applications
are started by Ryu-manager, internal Ryu applications like the OpenFlow con-
troller are also started. Each application is launched in a single thread with
an event queue. Each application responds to events in its queue in First In,
First Out (FIFO) order and performs the necessary action. The Ryu applica-
tion model in Figure 4.2 describes how events are handled by an application.
The event driven programming model used in Ryu makes it possible for ap-
plications to send messages to each other without blocking. The ability to
process messages asynchronously between applications is essential in network-
ing programming because it ensures applications are not starved of of system
resources. The Ryu API provides an event class which can be used by applica-
tions to message other applications. The Ryu API also provides event_handler
objects for applications to receive and process events asynchronously. The
RheaFlow design leveraged the ability to run multiple applications performing
different functions on a single Ryu instance. The event related classes provided
in the Ryu API were extended to fit the requirements of RheaFlow. These are

further discussed and explored in the RheaFlow implementation section.

4.2.2 Netlink

Netlink [17] is a Linux network configuration and management API. It is used
for configuring the network control plane in user space on a Linux operating
system. The netlink API defines a set of protocols that enables the forwarding
plane, which is managed by the kernel in the Linux network stack, to interact

with control plane components, which usually operate in the user space of

Chapter 4 RheaFlow Design and Implementation 32

Ryu-Manager Process

Application

Call

Event Loop Event Handler

Thread

Retrieve an Event

Event

Event Queue

Event

Datapath Thread

Figure 4.2: Ryu Application Model

the Linux operating system. Apart from providing an interface with which
network related applications running in the user space of a Linux operating
system can receive configurations and communicate with the forwarding plane
in the kernel. Netlink is also used as an IPC mechanism between network

applications running in user space in the Linux operating system.

While there are at least nine netlink protocols according to [7], two of these are
relevant to RheaFlow. These two protocols are the NETLINK_ROUTE and
NETLINK_ROUTESG protocols. Each of these protocols have different message
families; however, only the link layer, address and neighbour message families
of both protocols were used in this project. In RheaFlow these messages were
used to obtain neighbour table entries, configure and monitor the interfaces
on the Linux machine. The netlink messages were processed and recieived
by RheaFlow using Pyroute2 [19], a netlink and Linux network configuration
library written in Python. In RheaFlow’s architecture a Ryu application keeps

the link layer, address and neighbour information for the interfaces on the

Chapter 4 RheaFlow Design and Implementation 33

system. These are updated by another application written using the Pyroute2
library. The interaction between netlink and the rest of RheaFlow are further

explained in Section 4.3 of this chapter.

4.2.3 YAML

YAML is a human readable data serialisation language. It enables data struc-
tures to be stored or transmitted across a network in a format which can be
reconstructed by a computer without modifying the data structure. YAML’s
syntax easily maps to the common data types used in Python. It also presents
the data in a format that is familiar and understandable for humans. YAML
was used in RheaFlow to provide a configuration system which is intuitive for
the operator and also provides the configuration data to RheaFlow using the
data types available in the Python language. The configuration process in

RheaFlow is further discussed in Section 4.3.1.

4.2.4 JSON

JavaScript Object Notation (JSON) is an open standard light-weight inter-
change data format that is easy for computers to parse and generate. It is
used in RheaFlow to exchange route information between legacy IP routing
software and RheaFlow without having to specify new protocols and message

format. The details are further discussed in Section 4.3.2.

4.2.5 IP Routing Daemon

BIRD[11] is an open source IP routing engine daemon for Unix like systems.
It is used to run the IP routing protocols that exchange routing and topology
information with other legacy routers. The routing daemon provides the FIB
updates and information used in RheaFlow to modify forwarding behaviour

on OpenFlow switches.

The BIRD used in RheaFlow was modified to send route updates to the rest
of the RheaFlow application as JSON objects over a TCP socket. This is a
modification that could be easily made to other open source routing software.
RheaFlow could also be easily extended to receive other types of network
control logic such as firewall and ACL rules in JSON without the need for an

intermediate protocol.

Chapter 4 RheaFlow Design and Implementation 34

4.2.6 Virtual Switch

The virtual switch is used to replicate the interfaces of the OpenFlow switches
connected to RheaFlow. The virtual switch is an Open vSwitch instance run-
ning on the same machine as the rest of RheaFlow. The interfaces on the
virtual switch are virtual ethernet pairs with one end of each pair connected
to the switch while the other end is not connected. The free end of the virtual
ethernet pair makes packets received by the virtual switch visible to the rest
of the Linux network stack on the machine running RheaFlow. This ensures
network control traffic received by the virtual switch is visible to the rest of
the Linux network stack which will send it to the IP routing engine and other
network applications via netlink. The virtual ethernet pairs and virtual switch

are set up by RheaFlow without any intervention from the user.

4.3 RheaFlow Implementation

RheaFlow’s architecture is implemented on a single Linux machine that has
the components described in Section 4.2 installed. Implementing RheaFlow
in a single Linux machine reduces the complexity that may be introduced by
adding SDN-enabled devices to a legacy IP network. It also gives RheaFlow
a simple architecture which is one of the design goals outlined earlier in this
chapter. This implementation makes RheaFlow a physical as well as logical
router in the network. It can be connected to the other legacy devices in a
network and forward traffic to them. Also, implementing RheaFlow on a single
machine ensures the control plane is logically centralised. This was an issue
identified with RouteFlow by [16] because of the use of distributed routing

protocols running on multiple VMs.

The functionalities in RheaFlow are provided by three main Ryu applications
and auxiliary Python classes. The main applications are RheaController,
RheaRouteReceiver and RheaNLSocket. RheaController is RheaFlow’s core
application. It responds to events from RheaRouteReceiver and RheaNLSocket
by installing OpenFlow rules on the OpenFlow switches using RheaFlowPro-
cessor. RheaFlowProcessor is a Python auxiliary class that generates Open-
Flow messages and sends them to the OpenFlow switches. RheaRouteReceiver
receives route information from the IP routing engine and sends an event to
notify RheaController. RheaNLSocket on the other hand keeps RheaController

updated about interfaces and neighbour tables on the Linux machine running

Chapter 4 RheaFlow Design and Implementation 35

RheaFlow. RheaNLSocket uses NetlinkProcessor, an auxiliary Python netlink
application to listen for netlink messages and push relevant messages to it-
self. The netlink messages pushed to RheaNLSocket could be sent as events to
RheaController or used to update interface and neighbour tables maintained
for RheaController. RheaFlow applications are modular, each application is
dedicated to providing a set of functionalities and interacting with specific
components of the architecture. The modular design of RheaFlow applica-
tions makes it easy to extend their functionalities or customise them in the
future without compromising its stability. RheaFlow applications communi-
cate with each other using the event notification and handling system provided
by Ryu API. The event classes in the API were extended to enable RheaFlow
applications to notify and handle event messages not supported in the Ryu

API. These events are described later in this section.

RheaFlow is designed to support a single IP routing engine, which is on the
same machine as RheaFlow to multiple OpenFlow switches. However, it is also
able to receive route information from additional remote routers in the net-
work. In RheaFlow, the ports on the connected OpenFlow switches represent
a separate IP subnet within the network. These ports are made visible to the
BIRD routing engine on the machine running RheaFlow via virtual ethernet
interface pairs. One end of the virtual ethernet interface pair is connected to
the virtual switch; the other end of the pair is configured with an IP address in
the IP subnet connected to the OpenFlow switch port. This enables the BIRD
IP routing engine to send and receive IP traffic from the OpenFlow switches
via RheaFlow. IP packets destined for the BIRD IP routing engine from an
OpenFlow switch port are sent to RheaFlow, and RheaFlow sends it to the
virtual switch which forwards the packet out the virtual ethernet interface
pair. This makes the packets visible to the Linux network stack which hands
them over to the BIRD IP routing engine. This approach makes it possible
to connect and route multiple IP subnets on a single OpenFlow switch with
the machine running the RheaFlow solution acting as the gateway for each
subnet. Figure 4.3 shows the interaction between RheaFlow applications and
other components used in the architecture. RheaFlow applications and their

functionalities are further discussed below.

Chapter 4 RheaFlow Design and Implementation 36

Kernel Space User Space
Netlink .
" Protocol . TCP Connection
ARP (""E. > Netllnkprocessor
Table : :
Netlink BIRD Routing TCP Connection
Protocol Engine | :
: ngine :
Route (....E)
Table : :
Ryu
o \ 2 v :
1
I RheaRouteReceiver RheaNLSocket :
Virtual Ethernet ! '
Pairs : 1 !
¢ ! Ryu Events :
: :‘Qz) T SRR 1
: = 1 !
¢ 2 ! :
: «© 1
: = 1 RheaController X
: iy]
. e ! Virtual Switch :
5 | Manager]
' Component X
X i
: ! \
' : RheaFlowProcessor '
| R T e] I- - 1
OpenFlow 1 '
\ ! \
_____________ L,
1
1
: OpenFlow
1
OpenFlow
Switch1

Figure 4.3: RheaFlow Architecture

4.3.1 RheaController

RheaController is the central application within RheaFlow’s architecture. The
overall logic of RheaFlow is implemented in the RheaController application.
RheaController is reactive to changes in the state of network, and it is notified
about network changes by the events received from OpenFlow controller in
Ryu and other RheaFlow applications. The Ryu API provides Python deco-
rators which are used to turn methods into event handlers for different types
of events that can be generated by the OpenFlow controller and OpenFlow
switches. The events sent by other RheaFlow applications to RheaController

were created from base event classes and decorators provided by the Ryu API.

Chapter 4 RheaFlow Design and Implementation 37

The RheaController application is a subclass of the ryu.base.app_manager

.RyuApp class provided by the Ryu API. Network control is achieved by means
of the methods defined in the RheaController class. These methods are event
handlers for changes in the state of the network and connected OpenFlow
switches that require a control decision from RheaFlow. Events are handled
asynchronously by RheaController, and the Ryu API enforces an asynchronous
programming style so that the application does not block while responding to
an event. The events monitored and handled by the methods in the RheaCon-

troller application are:

e event.EventSwitchEnter, an internal Ryu OpenFlow related event that
notifies RheaController that an OpenFlow switch has connected to the
controller. This event provides information about the connected Open-
Flow switch such as the unique identifier for the OpenFlow switch called
datapath identifier dpid, the numbers of ports on the device which the
decorated method uses to perform the initial configuration of the Open-
Flow switch and install the initial set of OpenFlow rules required by
the OpenFlow switch to forward traffic from the ports specified in the

configuration file.

e ofp_event.EventOFPPacketIn is an OpenFlow event that notifies Rhea-
Controller that the controller has received a packet-in message from an
OpenFlow switch. The event contains the dpid of the OpenFlow switch,
the port from which it was sent and the packet encapuslated in the event.
This event is sent to the controller when an OpenFlow switch does not
know how to forward a packet to its destination. The RheaController
method handling packet-in events examines the packet header and re-
sponds to the OpenFlow switch with an action to be performed on the

packet.

e cvent.EventPortDelete notifies RheaController that a port on a con-
nected OpenFlow switch has been deleted. The RheaController event
handler for a port deleted event removes all OpenFlow entries related
to that port from the OpenFlow switch. It also modifies the configura-
tion of the virtual switch accordingly and notifies the required RheaFlow

applications.

e cvent.EventPortAdd is sent by the OpenFlow Controller. It notifies

RheaController that a port on a connected OpenFlow switch has been

Chapter 4 RheaFlow Design and Implementation 38

detected or added and is ready to forward packets. This triggers the
RheaController event handler handling newly detected ports to install
the necessary OpenFlow rules required to forward traffic through that

port and modify the virtual switch configuration accordingly.

e cvent.EventSwitchLeave is an internal Ryu OpenFlow event that notifies
RheaController that an OpenFlow switch has been disconnected. The
RheaController method handling OpenFlow switch disconnection initi-
ates a shutdown process if the disconnected OpenFlow switch is the vir-
tual switch. Otherwise it modifies the virtual switch configuration and

notifies other RheaFlow applications.

e RheaFlowEvents.EventRouterConnect is sent by RheaRouteReceiver ap-
plication to notify RheaController that an IP routing engine has con-

nected and is ready to send route update to RheaFlow.

e RheaFlowEvents.EventRouteDisconnect is used by RheaRouteReceiver
to notify RheaController that an IP routing engine has disconnected and

will no longer send route updates.

e RheaFlowEvents.EventRouteReceived is a RheaFlow specific event that
notifies RheaController that the route information for a remote subnet
has been received. The route information received for a remote subnet
consists of the network address, network mask and next-hop for the net-
work. The RheaController method processing route information enlists
auxilliary methods in RheaNLSocket to resolve the next-hop address. It
also installs OpenFlow rules on the necessary OpenFlow switch. This is

further discussed in the RheaFlow operations.

e RheaFlowEvents.EventRouteDeleted is sent by RheaRouteReceiver when
the BIRD IP routing engine sends a message withdrawing the route in-
formation for a remote subnet. It informs RheaController that the route
for a remote subnet has been deleted and the network is no longer reach-
able via the next-hop specified in the route information. The method
handling this event calls on RheaFlowProcessor methods to generate
and send OpenFlow messages to remove OpenFlow rules relevant to the

remote subnet on the necessary OpenFlow switch.

e RheaFlowEvents.EventNeighbourNotify is a RheaFlow specific event that
notifies RheaController of changes to the neighbour or ARP table main-

Chapter 4 RheaFlow Design and Implementation 39

tained by the forwarding table which resides in the kernel of the Linux
machine running RheaFlow. This triggers the neighbour handler method
in RheaController to send the necessary OpenFlow modifications to the

connected OpenFlow switch if required.

RheaController provides other functionalities in RheaFlow apart from modify-
ing forwarding behaviour in OpenFlow switches in reaction to changes in the
network state or topology. It handles the creation and configuration of the
virtual switch on the machine running RheaFlow. When RheaFlow is started,
RheaController queries the Open vSwitch management database maintained
by Open vSwitch database server to determine if there is an existing instance
of the virtual switch. If the virtual switch instance exists, RheaController
deletes the interfaces attached to it and deletes existing OpenFlow rules; if
the virtual switch does not exist, RheaController creates the virtual switch,
creates the virtual interface pair based on the configuration file and installs
OpenFlow rules on the virtual switch. The virtual switch configuration and
management is handled by an auxiliary Python class called VSManager which
is discussed later in this section. RheaController also creates and maintains a
table that maps the association between the ports used for forwarding traffic
by RheaFlow on the connected OpenFlow switch and virtual interface ports
connected to the virtual switch. These mappings ensure packets are delivered
to the BIRD IP routing engine from ports on the OpenFlow switch via the right
virtual interface pair and vice versa; this prevents the router from the drop-
ping the packets due to a mismatch. RheaController application also depends
on auxiliary python classes and applications to provide other functionalities.

These Python classes are described below:

RheaFlowProcessor

RheaFlowProcessor is a Python class used by RheaController to interact with
OpenFlow switches. It uses the packet libraries provided by the Ryu API to
provide methods that send OpenFlow messages to the OpenFlow switches.
The functions performed by the methods in the RheaController class can be

categorised into three main groups:

1. Initial OpenFlow switch configuration methods: the methods in these
groups are used to send initial OpenFlow configuration messages to the
OpenFlow switches when they connect to RheaFlow. These methods are

usually invoked by RheaController when it recieves an event.EventSwitch

Chapter 4 RheaFlow Design and Implementation 40

Enter. They send OpenFlow messages to initialise the flow table on
the OpenFlow switches and install OpenFlow entries that would enable
the OpenFlow switches to send packets to the BIRD IP routing engine
through fast path or the controller (slow path). These methods usually
require minimal information from RheaController to install these rules
since little is known about the network state when these methods are
called. At most, RheaController provides the dpid of the OpenFlow
switch, MAC address and OpenFlow port number of the virtual interface

on the virtual switch that is mapped to a port on the OpenFlow switch.

2. Flow Modification methods: These methods are called by RheaController
in response to network change events. They send OpenFlow messages
that specify how traffic should be forwarded between the ports on the
OpenFlow switches in response to network events notification received by
RheaController. These methods install OpenFlow rules on the OpenFlow
switch in response to route addition and deletion events, next-hop ad-
dress resolution and neighbour discovery events. The OpenFlow entries
generated by these methods are based on the network context informa-
tion available at the time of generation. RheaController provides most of
the information required to install these while some is obtained from the
OpenFlow switch themselves. RheaController sends all of the association
tables between the virtual switch and the OpenFlow switch, all interface
details on the machine running RheaFlow, the neighbour tables and the

event information received by RheaController.

3. Datapath response methods: These methods are called by RheaCon-
troller’s ofp_event. EventOF PPacketIn handler to process OpenFlow mes-
sages received from the OpenFlow switch. These methods use the packet
libraries provided by the Ryu API to analyse the packet and generate
an appropriate response to the sending OpenFlow switch. The responses
generated by these packets could be OpenFlow rules specifying how the
OpenFlow switch should handle subsequent packets. RheaFlow may also
deliver the packet to its destination in cases where the packet is sent from

the OpenFlow switch to the virtual switch or vice versa.

VSManager

VSManager is a Python class used by RheaController to create and config-

ure the virtual switch. It abstracts the virtual switch configuration away

Chapter 4 RheaFlow Design and Implementation 41

from setup tasks that should be performed by the operator when configur-
ing RheaFlow. This simplifies the RheaFlow configuration and minimises the
chances of misconfiguration while deploying RheaFlow into a network. VSMan-
ager initialises the virtual switch and contains methods to create and connect
virtual ethernet pairs to the virtual switch. It also configures the IP addresses
and OpenFlow port number for the interfaces connected to the virtual switch
based on the configuration file. VSManager also manages the tear down of
the virtual switch configuration and makes changes to the virtual switch in
response to network changes. VSManager performs these tasks by issuing sub-
process calls to the Linux netlink subsystem for interface configuration and
Open vSwitch’s Open vSwitch Database Management Protocol (OVSDB) for

virtual switch configuration.

Association Table

RheaController maintains association tables to map the virtual interfaces on
the virtual switch to ports on the OpenFlow switch. It achieves this using a
table class which stores the tables as Python dictionary objects. The table
class provides methods that are used to modify the tables or add new entries
to the tables. The tables are populated during the initial configuration of the
OpenFlow switches with ports to be used for RheaFlow. The virtual ethernet
pair representing each port is also created and configured. The tables enable
RheaFlow to respond to changes in the port configuration without having
to restart the application. For example, if RheaFlow notices that the MAC
address or OpenFlow port number of a port has changed, it will update the
association tables accordingly using the methods provided in the table class and
make changes to the network if necessary. The tables also enable RheaFlow to
intelligently handle the configuration of a port that is added to an OpenFlow
switch long after the initial configuration of the OpenFlow switch has been
completed without disrupting the OpenFlow switch’s operations. The table

class maintains three association tables.

e The OpenFlow switch to virtual switch map table. The entries in this
table are used to map OpenFlow switch ports to virtual switch ports.
The dpid, OpenFlow port number, port name and port hardware address
for an OpenFlow switch port is mapped to a port name, OpenFlow port
number and port hardware address of the virtual switch port. The Open-

Flow switch details are grouped as a tuple and used as a key to identify

Chapter 4 RheaFlow Design and Implementation 42

a tuple containing the virtual switch details in the Python dictionary.

e [ustpaths table is a dictionary object that is used in fast path operations.
It enables RheaController to associate a fast path label with a particular

OpenFlow switch port to virtual switch port association.

e Inter-switch link table is a dictionary object that is used to install Open-
Flow rules that will handle traffic forwarding on links between multiple
OpenFlow switches without involving the controller. The inter-switch
link table enables RheaController to map an inter-switch label to the

association between ports on different OpenFlow switches.

RheaFlowEvents

The RheaFlowEvents class extends the base event classes provided in the Ryu
API to define new events for RheaFlow. These events are sent to RheaCon-
troller by other RheaFlow applications. The events contain messages about
network events that event handler methods in RheaController use to generate
OpenFlow messages. RheaFlowEvents class eliminates the need for RFProto-
col message format as used in RouteFlow which increases the control traffic
overhead. The events defined in this class and observed by RheaController

methods are:

e EventRouterConnect is used to notify RheaController that an IP routing
engine has connected. It provides the IP address and TCP port num-
ber of the IP routing engine. It is currently only used for logging and

notifications in RheaController.

e EventRouterDisconnect is used to notify RheaController that an IP rout-
ing engine has disconnected. It provides the IP address and TCP port

number of the disconnected IP routing engine.

e EventRouteReceived notifies RheaController that a route to a remote
subnet has been received. The route sent by the event is a Python tuple
that contains the address of the remote network, the subnet mask and
the IP of the next-hop for that network.

e EventRouteDeleted notifies RheaController that a remote network is no
longer reachable via a next-hop. The unreachable route is a tuple that
contains the address of the network, the mask of the network and the

next-hop for that network.

Chapter 4 RheaFlow Design and Implementation 43

e EventNeighbourNotify notifies RheaController of changes to the neigh-
bour table maintained by the Linux network stack of the machine run-
ning RheaFlow. This event indicates that a neighbour has been added
or deleted from the neighbour table. The action performed on the neigh-

bour and the neighbour’s details are sent in the event.

RheaYAML

RheaYAML is a Python class used by RheaController to parse the configura-
tion file which is written in YAML. YAML is a simple annotation language
format used to store data. It is suitable for configuration files and was cho-
sen because it is human-readable. A configuration file that is both human-
readable and easily parsed by the machine minimises misconfigurations. The
RheaYAML class utilises Python YAML libraries to convert the documents in
the configuration file into Python data types that are used by RheaController
to perform initial configuration of the OpenFlow switches and the virtual in-
terfaces on the virtual switch. The configuration file consists of two block
collections. One collection is used to specify the information needed to config-
ure the OpenFlow switches and the other collection specifies the configuration
of the virtual switch for fast path operation. Each node in the OpenFlow
switch collection specifies the details for each OpenFlow switch that will be
connected to RheaFlow. In each OpenFlow switch node, mappings are used to
provide the information required to configure each OpenFlow switch. A sample
of RheaFlow’s configuration file is provided in Appendix A. The mappings in
the node for each OpenFlow switch are used to describe the OpenFlow switch.

The entries in the nodes for each OpenFlow switch are:

e name which is the human-readable name assigned to the OpenFlow

switch.
e type is used to identify the vendor of the OpenFlow switch.
e dp_id is the unique identifier for the OpenFlow switch.

e vs_port_prefix is used to set the interface name for the virtual interfaces
created by RheaController for replicating the OpenFlow switch ports to

the IP routing engine.

e ports specifies the OpenFlow ports on the OpenFlow swith that will be
used by RheaFlow. It also specifies the IP addresses to be assigned to

Chapter 4 RheaFlow Design and Implementation 44

be virtual interfaces mapped to the OpenFlow switch ports. The IP
address assigned to the virtual interface mapped to an OpenFlow switch
port must belong to the IP subnet connected to the OpenFlow switch
port. This is required so that the Linux network stack of the RheaFlow

machine can perform MAC to IP address resolution.

e fastpath_port is used to specify the OpenFlow switch port that will be
used for fast path.

e fastpath_vs is used to specify the OpenFlow port number of the fast path

interface on the RheaFlow machine.

e isl_port is used to specify the designated OpenFlow switch port for inter-

switch link.

e isl_rem_port is used to specify the OpenFlow port to be used for an inter-

switch link with another OpenFlow switch connected to RheaFlow.

e isl_rem_dp_id is used to specify the unique identifier for another Open-

Flow switch undertaking inter-switch connections.

e rem_port is a list used to specify the OpenFlow ports on the remote

OpenFlow switch that will forward traffic over the inter-switch link.

Three of the described mappings in the OpenFlow switch nodes are required
to configure RheaFlow while the others are optional. RheaFlow will fail to
start if any of these three mappings: name, dp_id, and ports are missing.
The fast path related mappings enable fast path mode in RheaFlow if values
are specified for them. The inter-switch related mappings enable inter-switch
operations. The fastpath_interface and fastpath_port mappings in the virtual
switch collection are used to specify the name of the interface on the RheaFlow
machine that will be used for fast path and the OpenFlow port number that
should be assigned to it. Specifying values for the virtual switch connection

are required if RheaFlow is to be operated in fast path mode.

When the RheaFlow application is started, the configuration file is loaded by
RheaController and OpenFlow switch nodes are converted into Python data
types in the application. When an OpenFlow switch connects to RheaFlow,
the OpenFlow switch dpid provided by the switch is checked against the iden-
tifier in the configuration file; if there is a match, RheaController creates and

configures a virtual interface for each of the ports specified in the configuration

Chapter 4 RheaFlow Design and Implementation 45

with the IP addresses. If the dpid supplied by the OpenFlow switch does not
match any of the those provided in the configuration, RheaController does not

complete the rest of the configuration process for the OpenFlow switch.

4.3.2 RheaRouteReceiver

RheaRouteReceiver is a Ryu application that receives route information en-
coded in JSON from the BIRD IP routing engine. It decodes the JSON message
received, verifies the decoded route information and sends the route informa-
tion to RheaController as an EventRouteReceived event. RheaRouteReceiver
application is a ryu.base.app-manager. RyuApp subclass that utilises the WSGI
interfaces provided by Ryu’s API to create a client-server model between Rhea-

Controller and the BIRD IP routing engine running in RheaFlow.

RheaRouteReceiver uses the Python JSON processing library to decode mes-
sages received from the IP routing engine. It listens on TCP port 55650 for
inbound connections from an IP routing engine. Once the IP routing engine
connects to RheaRouteReceiver it sends an EventRouterConnect event which
contains the IP address and TCP port number of the IP routing engine to
RheaController. When the IP routing engine disconnects it sends an Even-
tRouterDisconnect to notify RheaController. When a JSON encoded message
from the connected IP routing engine is received by the application, it calls
methods in the JsonHandler class to verify that the message received is in
JSON format, decodes the message and verifies that information received is
complete. The JsonHandler class contains methods that can be used to fix
up incomplete decoded route information received by the application. How-
ever, if any of the verification steps fail and JsonHandler cannot fix the route
information, it will send an error notification to the IP routing engine that
the route information can not be translated into OpenFlow rules. If the mes-
sage received from the IP routing engine is successfully verified and decoded,
an EventRouteReceived event is generated and sent to RheaController. The
event handler processing the event returns a result depending on the outcome
of the operation performed. This is also delivered to the IP routing engine

over the TCP connection.

The are two events that can be generated based on the message received from
the IP routing engine. EventRouteReceived is generated by RheaRouteRe-

ceiver when the route information received from the IP routing engine indicates

Chapter 4 RheaFlow Design and Implementation 46

a route to a remote subnet should be added. EventRouteDeleted is generated
by RheaRouteReceiver when the route information received from the IP rout-
ing engine indicates a route to a remote subnet has been withdrawn. In both
cases, the route information sent by the IP routing engine contains the address
of the remote subnet, the address mask and the next-hop address for reaching

the network.

4.3.3 RheaNLSocket

RheaNLSocket is the third Ryu application. It maintains information about
the interfaces and neighbour tables on the Linux machine running RheaFlow
applications by listening to netlink messages. It also generates EventNeigh-
bourNotify events which are sent to RheaController when a neighbour is added

or deleted from the neighbour table.

RheaNLSocket also utilises the WSGI interfaces provided by Ryu’s API to cre-
ate a server application that receives updates about interfaces and neighbour
tables from a Python application called NetlinkProcessor. The NetlinkProces-
sor is an auxiliary application that uses the Pyroute2 netlink library to create
a netlink socket to receive and process netlink messages asychronously. It in-
cludes a callback subroutine that sends a message to RheaNLSocket when link
layer, address and neighbour netlink messages are received. The netlink mes-
sages that trigger a callback from the NetlinkProcessor application include:
RTM _NEWNEIGH, RTM_DELNEIGH, RTM_NEWLINK, RTM_DELLINK,
RTM_NEWADDR and RTM_DELADDR.

RheaNLSocket listens on TCP port 55651 for messages generated by the call-
back subroutine in NetlinkProcessor. For RTM_NEWNEIGH and RTM_DEL
NEIGH netlink messages received by NetlinkProcessor. The callback subrou-
tine updates the neighbour table maintained by RheaNLSocket. This also trig-
gers RheaNLSocket to send an EventNeighbourNotify event to RheaController.
The neighbour entries in the neighbour table contain the MAC and IP address
of the neighbour and the index of the interface on which the neighbour was
discovered. RTM_NEWNEIGH netlink messages contain the neighbour entries
and are used to update the neighbour table. The corresponding event sent to
the RheaController contains the neighbour entry and a RTM_NEWNEIGH ac-
tion to signify a new neighbour. RheaController adds OpenFlow entries for

forwarding traffic to the neighbour on the OpenFlow switches if the neigh-

Chapter 4 RheaFlow Design and Implementation 47

bour was discovered on one of the virtual interfaces connected to the virtual
switch. RTM_DELNEIGH netlink messages contain the same details as an
RTM_NEWNEIGH except it indicates a neighbour is no longer reachable and
the neighbour entry is removed for that neighbour. The corresponding event
sent to RheaController contains the neighbour entry and a RTM_DELNEIGH
action which signifies the neighbour is unreachable. This causes RheaCon-
troller to send OpenFlow modification messages to remove flow rules that have
been added for the neighbour. The rest of the netlink messages that trigger
a callback from the NetlinkProcessor generates an interface table containing
all details about the interfaces on the Linux machine running RheaFlow. The
interface table is sent to RheaNLSocket, which replaces its existing interface
table with the newly received table. These messages do not cause an event to
be generated; however, they are part of the network state information used by

RheaController to generate OpenFlow rules.

RheaNLSocket also includes methods that can be called from RheaController
to initiate a neighbour discovery process for a host. This is usually used when

there is no neighbour entry for the next-hop to a remote network.

4.4 Intercepting Network Control Traffic

RheaFlow controls the forwarding behaviour of OpenFlow switches connected
to it by installing OpenFlow rules on these OpenFlow switches in response
to changes in the network. Some of these changes occur on the connected
OpenFlow switches, some are triggered by traffic forwarded by the OpenFlow
switches which requires that the OpenFlow switches exchange packets with the
IP routing engine and other applications in the network stack of the machine
running RheaFlow. As such OpenFlow switches connected to RheaFlow should
forward routing protocol traffic between a remote router and the IP routing
engine in the RheaFlow environment. This includes control traffic such as
Internet Control Message Protocol (ICMP), ARP and IPv6’s Neighbour Dis-
covery Protocol (NDP) because they are required by the network stack of the
RheaFlow machine to perform diagnostic and neighbour discovery operations.
Apart from that control traffic, the OpenFlow switches should also forward
IP routing protocol traffic like OSPF and BGP between the machine running

RheaFlow and remote routers.

RheaFlow can be operated in two modes. These modes specify the OpenFlow

Chapter 4 RheaFlow Design and Implementation 48

rules that should be installed on the OpenFlow switches and the virtual switch
to enable the forwarding of packets between the RheaFlow machine and remote
hosts connected to the OpenFlow switches. These modes are described in the

following two subsections.

e Slow path: the default operating mode for RheaFlow. The application is
operated in this mode if no valid values are set for the fastpath_port and
fastpath_vs options for an OpenFlow switch or the fastpath_interface and
fastpath_port options for the virtual switch in the RheaFlow configuration
file. When RheaFlow is operated in slow path mode, the virtual switch
is configured with OpenFlow rules that instruct it to send all incoming
packets received from the Linux network stack or IP routing engine on the
virtual interfaces to RheaController via the OpenFlow control channel.
The OpenFlow switches are configured with OpenFlow rules that instruct
them to send all incoming packets received on their interfaces to be de-
livered to RheaController via the OpenFlow control channel. RheaCon-
troller receives inbound packets sent by the OpenFlow switches via the
OpenFlow control channel as ofp_event.EventOFPPacketIn events and
then checks the destination addresses of the packets. If the destination
addresses for the packets match the addresses of the virtual interfaces on
the RheaFlow machine, RheaController sends the packets via the Open-
Flow control channel to the virtual switch which delivers them out the
right interface for the applications listening for the packets. Likewise, in-
coming packets from the network stack of the RheaFlow machine received
by the virtual interfaces are also sent to RheaController via the Open-
Flow control channel which are received as ofp_event. EventOF PPacketIn
events. These events are checked to determine which OpenFlow switch

ports the packets should be delivered to.

The use of the OpenFlow control channel to deliver traffic between the
OpenFlow switches and the RheaFlow machine adds considerable over-
head to the RheaFlow operation. The forwarding of traffic between the
RheaFlow machine and remote devices over the OpenFlow control chan-
nel is slower because of the additional encapsulation that has to be
done by the OpenFlow switches and RheaFlow to deliver the packets.
RheaFlow may also be susceptible to denial-of-service attacks while op-
erating in slow path mode. This may happen if the connected OpenFlow

switches flood the OpenFlow control channel with packets thereby caus-

Chapter 4 RheaFlow Design and Implementation 49

ing RheaFlow to dedicate available resources to responding and process-
ing packet-ins while neglecting other network events. RheaFlow should
be operated in slow path mode only if low amounts of traffic is expected

between the OpenFlow switches and RheaFlow machine.

e Fust path: the recommended mode for operating the RheaFlow applica-
tion. The application is operated in fast path mode if valid values are set
for the fastpath_port and fastpath_vs options for an OpenFlow switch and
the fastpath_interface and fastpath_port options for the virtual switch in
the RheaFlow configuration file. Fast path configuration mode requires
that a designated port on the OpenFlow switch specified by the fast-
path_port option in the configuration file be connected to an interface on
the RheaFlow machine specified by the fastpath_interface, fastpath_port
and fastpath_vs options in the configuration file to create a fast path link.
The fast path link is configured as a VLAN trunk port between the vir-
tual switch and the OpenFlow switches connected to RheaFlow. VLAN
tags are then created for each virtual interface mapped to an OpenFlow
switch port. Packets are exchanged between the virtual interfaces of
RheaFlow and the OpenFlow switch ports by tagging the packets with
the assigned VLAN tag for the virtual interface to OpenFlow switch
port mapping. They are forwarded over the fast path link bypassing the
RheaFlow application.

During initial configuration the fast path interface on the RheaFlow ma-
chine is added to the virtual switch. A fast path label is assigned to the
mapping between a configured virtual interface on the virtual switch and
OpenFlow switch port. These details are stored in the Fastpaths table
maintained by RheaController. The fast path labels are the VLAN tags
added to the packets transiting through the fast path link. The Open-
Flow rules installed on the virtual switch instruct it to tag any outbound
packet on a virtual interface with the VLAN tag assigned to the virtual
interface and forward it via the fast path link to the OpenFlow switch
of the destination port. The OpenFlow rules on the virtual switch also
instruct it to strip inbound packets received over the fast path link of
their VLAN tags and forward the packets out of the virtual interface
assigned to the VLAN tags. The OpenFlow rules installed on the Open-
Flow switches for exchanging packets with the virtual switch instruct

them to tag packets from a port bound for the mapped virtual interface

Chapter 4 RheaFlow Design and Implementation 50

with the assigned VLAN tag for that ingress port and forward it over the
fast path link while packets received from the fast path link are stripped
of their VLAN tags and forwarded out the port the stripped VLAN tags

were assigned to.

RheaFlow operation in fast path mode is efficient as the virtual switch
and the connected OpenFlow switches do not have to send packets to each
other via the slow OpenFlow control channel. This enables RheaFlow
to focus on installing OpenFlow rules in response to network events and
reduce the number of OpenFlow messages exchanged between the Open-
Flow switches and RheaFlow. It also reduces load on the OpenFlow
switch processor as it does not have to encapsulate control packets as
OpenFlow packet-in messages. However, fast path requires a link between
all connected OpenFlow switches and the machine running RheaFlow.
This could be problematic in a RheaFlow configuration with multiple
OpenFlow switches connected as the machine may not have the port
density required to establish a fast path link with the connected Open-
Flow switches. Inter-switch links have been proposed to address this
issue. This requires setting up links between the participating Open-
Flow switches using the isl_port, isl_rem_port, isl_rem_dp_id and rem_port
options specified in the configuration file. One or more of the partici-
pating OpenFlow switches depending on the interfaces available on the
RheaFlow machine would have fast path links to the RheaFlow machine
and inter-switch links will be used to connect the OpenFlow switches
together. VLAN tags are assigned for the inter-switch link configura-
tion. OpenFlow rules are installed on all OpenFlow switches to ensure
OpenFlow switches that do not have fast path links are able to forward
traffic to the RheaFlow machine via the inter-switch links with OpenFlow
switches that have fast path links. The inter-switch link configuration has

not been implemented for this thesis.

4.5 OpenFlow Rules

OpenFlow switches connected to RheaFlow forward packets by matching flow
entries in their flow tables. Flow entries are inserted or removed from the
OpenFlow switches’ flow tables when the OpenFlow switches receive FlowMod

messages from the controller. FlowMod messages consist of a command which

Chapter 4 RheaFlow Design and Implementation 51

is used to indicate if the flow entry should be added, deleted or modified, the
number of the flow table where the entry should be added, a cookie which is
used to identify an entry in the flow table, a priority number used to enforce the
order in which packets are matched against entries in the table, the idle_timeout
and hard _timeout which represents the number of seconds since a packet has
hit the flow entry and the number of seconds before the nety expires and is
deleted by the OpenFlow switch, the match which specifies the headers of the
packet and the ingress port, the action which specifies what operations should
be performed on matched packets and out_port which is used to specify the

egress port for the match packet after the actions have been performed.

FlowMod messages are sent by the RheaFlow application to configure the
OpenFlow switches. They add or delete flow entries in response to network
events such as route addition or deletion and neighbour discovery on the Open-
Flow switch ports. Some OpenFlow switches have multiple flow tables with
multiple flow entries in each table. However, flow entries added by RheaFlow
are limited to a single table. This design choice enables RheaFlow to work with
a range of OpenFlow switches with the lowest common denominator being a

single flow table OpenFlow switch.

The flow entries added to an OpenFlow switch’s flow table by RheaFlow can
be divided into two sets. The first set of flow entries are added by RheaFlow
during the initial configuration of the OpenFlow switch. The matches defined
for these entries are used to catch packets that should be forwarded to the
interfaces on the machine running the RheaFlow application. The actions
performed on packets that match these entries depend on the configuration
mode of RheaFlow. Packets that match flow entries added during the initial
OpenFlow switch configuration in slow path mode are sent to the controller
while packets that match flow entries added during the initial OpenFlow switch
configuration in fast path mode have a VLAN tag added based on their ingress
port and are forwarded out the fast path port on the OpenFlow switch. The
second set of flow entries are added by RheaFlow when it is notified of new
routes or neighbours. The matches defined in these entries catch packets that
should be delivered to the network reachable via the route just received by
RheaFlow or the neighbour that was just discovered. The actions performed
on the packets enable the OpenFlow switches to forward the packets to their
destination without requiring the BIRD IP routing engine on the RheaFlow

machine to perform expensive and time-consuming route lookup operations.

Chapter 4 RheaFlow Design and Implementation 52

The flow entries added to the OpenFlow switch’s flow tables for routes are
the same in most cases in the fast path and slow path mode except when the

next-hop for a route is an interface on the RheaFlow machine.

4.5.1 OpenFlow Entry Creation Process

This section outlines the process of inserting flow entries in the OpenFlow
switch’s flow table by the RheaFlow application. It also describes the matches

and actions performed.

Slow Path Configuration Flow Entries

Flow entries added to the OpenFlow switch’s flow table during configuration
match packets that should be forwarded to the interfaces on the RheaFlow
machine. As mentioned in section 4.3, each port on an OpenFlow switch is
connected to a single IP subnet and carries traffic for that subnet. The virtual
interface created on the RheaFlow machine for each OpenFlow switch port is
assigned an IP address within the subnet connected to the OpenFlow switch
port. Because the BIRD IP routing engine is on the RheaFlow machine, the
IP address assigned to the virtual interface is a gateway address for the subnet
connected to the OpenFlow switch port. Since the virtual interface IP address
is part of a subnet connected to the OpenFlow switch port, the virtual interface
should be able to receive and send ARP requests and responses if the subnet
is an IPv4 network, and receive and send NDP packets for an IPv6 subnet.
It should also be able to receive and send ICMP packets and normal data
packets. Table 4.1 shows an example of the default OpenFlow rules installed
for slow path.

For the OpenFlow switch to match and send most of the packets described
above to the RheaController which then sends it to the virtual switch for for-
warding out the right virtual interface, it needs to know the MAC address
of the virtual interface. The MAC address of the virtual interface is sup-
plied by RheaNLSocket to RheaController during the configuration process.
The RheaFlowProcessor methods then generate flow entries to catch packets
whose destination MAC header field match the MAC address of the virtual
interface for both IPv4 and IPv6 packet types. Entries are generated for the
[Pv6 link-local address of the virtual interface which is created from the MAC
address. Entries are generated for IPv6 link-local multicast addresses and ARP

broadcasts so that these may be sent to the virtual interfaces on the RheaFlow

Chapter 4 RheaFlow Design and Implementation 53

machine. The action performed on packets that match the slow path flow en-
tries is to send them to RheaController as packet-in messages. All slow path
flow entries are assigned a lower priority than flow entries added for routes.
Flow entries for ARP packets have a slightly higher priority than other slow
path entries. However, flow entries for ARP still have a lower priority than

flow entries for routes.

Matches Actions
ARP, Ethernet dst=ff:ff:ff:ff:ff:ff Send to controller
in_port=1, IPv4 type, Ethernet dst=0c:84:dc:54:eb:d6 Send to controller
in_port=1, ICMP type, Ethernet dst=0c:84:dc:54:eb:d6 Send to controller
in_port=1, IPv6 type, Ethernet dst=0c:84:dc:54:eb:d6 Send to controller
in_port=1, IPv6 dst=2001:0db8:0:f101::/64, Ethernet dst=0c:84:dc:54:eb:d6 Send to controller
in_port=1, ICMPv6 Send to controller
in_port=1, ICMPv6, Ethernet dst=0c:84:dc:54:eb:d6 Send to controller

Table 4.1: Example of Default Slow Path Entries

Fast Path Configuration Flow Entries

Flow entries installed on OpenFlow switches for fast path mode perform the
same functions as those installed on the OpenFlow switches for slow path. They
match packets that should be forwarded to the interfaces on the RheaFlow ma-
chine. However, this is done by tagging packets with VLANs that correspond
to the virtual interface to OpenFlow switch port mappings available for the
OpenFlow switch and then forwarding these tagged packets via the fast path
link to the RheaFlow machine. Additionally, some of the fast path flow entries
match the VLAN tagged to packets received via the fast path link from the
RheaFlow machine, strip the packets of the VLAN tags and forward the pack-
ets out the right OpenFlow switch ports based on the VLAN. This ensures
the virtual interfaces on the RheaFlow machine are able to send and receive
traffic from subnets connected to the OpenFlow switch ports without using
the slow OpenFlow control channel between the virtual switch and OpenFlow
switches. Table 4.2 shows an example of the default OpenFlow rules installed
for fast path.

Most of the fast path flow entries for an OpenFlow switch port match packets
whose destination MAC address and IPv6 link-local address are the same as
the MAC and IPv6 link local address of the virtual interface mapped to the
port. All the fast path flow entries require the VLAN tag and the OpenFlow
port number of the designated fast path port on the OpenFlow switch. The
MAC address of the virtual interface is provided RheaNLSocket and VLAN

Chapter 4 RheaFlow Design and Implementation 54

tag is created during the configuration process by RheaController and stored
in the Fastpaths table. The flow entries match for ARP broadcasts, IPv4,
IPv6, ICMP packets with destination MAC addresses that are the same as
the MAC addresses of the virtual interfaces on the RheaFlow machine. These
flow entries also match for IPv6 packets with the link-local address of the
virtual interface as the destination IPv6 address and IPv6 multicasts packets
received on the OpenFlow switch port. Packets that matches these flow entries
then have VLANSs representing OpenFlow switch port to virtual interface map
pushed on their headers and forwarded via the fast path link as actions. The
flow entries for the fast path port match against packets with the VLANs
assigned to that port mapping. These VLANs are popped from the packets
and forwarded the out the OpenFlow switch port. All fast path flow entries
have a higher priority than slow path flow entries. However, these flow entries
still have a lower priority than entries installed for routes. This is mostly to

help an operator differentiate between slow path and fast path flow entries.

Matches Actions

ARP, in_port=1 Push VLAN label, output fast path port
in_port=1, Ethernet dst=0c:84:dc:54:eb:d6 Push VLAN label, output fast path port
in_port=1, IPv4 type, Ethernet dst=0c:84:dc:54:eb:d6 Push VLAN label, output fast path port
in_port=1, ICMP type, Ethernet dst=0c:84:dc:54:eb:d6 Push VLAN label, output fast path port
in_port=1, IPv6 type, Ethernet dst=0c:84:dc:54:eb:d6 Push VLAN label, output fast path port
in_port=1, IPv6 dst=2001:0db8:0:f101::/64, Ethernet dst=0c:84:dc:54:¢b:d6 Push VLAN label, output fast path port
in_port=1, ICMPv6 Push VLAN label, output fast path port
in_port=1, ICMPv6, Ethernet dst=0c:84:dc:54:eb:d6 Push VLAN label, output fast path port

in fast path port, VLAN label Pop VLAN label, output port

Table 4.2: Example of Default Fast Path Entries

Neighbour Discovery and Route Flow Entries

The BIRD IP routing engine on the RheaFlow machine maintains the routing
table for the network. The BIRD IP routing engine populates this table by
exchanging routing protocol information with other routers in the network.
Conventional network switches forward packets out their ports based on data
link layer addresses hence; they can only forward packets between hosts on
the same subnet. Packets to be forwarded between hosts on different subnets
require an IP router, which performs a lookup in its routing table to find a next-
hop to the subnet in which the destination host resides and forward the packets
via the next-hop address. The packet forwarding between different subnets
performed by a router is similar to the forwarding performed by switches.
However, hardware IP routers are usually limited by the number of interfaces

they have. This is because TCAMs which are used to perform fast lookups on

Chapter 4 RheaFlow Design and Implementation 55

the forwarding tables to determine the interface via which packets should be

forwarded, are expensive.

The flow entries added to an OpenFlow switch’s flow table by RheaFlow are
based on routes received from the BIRD IP routing engine or neighbours dis-
covered on the virtual interfaces. These flow entries enable the OpenFlow
switch to forward packets between different subnets connected to the Open-
Flow switch ports without requiring the IP routing engine. This speeds up the
delivery of packets to their destination as packets between different subnets
that would have been sent to the virtual interface on the RheaFlow machine
for the IP routing engine to perform a lookup and forward the packets out
the right interface just have certain headers modified and forwarded between

different ports on the OpenFlow switch.

A neighbour discovered on the virtual interface of the RheaFlow machine has
to be a host directly connected or on the subnet connected to the OpenFlow
switch port mapped to that virtual interface. This requires that flow entries
are added for other ports on the OpenFlow switch so that packets sent by other
hosts from different subnets connected to other ports on the OpenFlow switch
to the discovered host are forwarded to the OpenFlow switch port mapped to
the virtual interface on which the host was discovered. When a neighbour is
discovered on a virtual interface, RheaNLSocket notifies RheaController and
provides the IP and MAC address of the neighbour along with details of the
interface on which it was discovered. The RheaController neighbour-notify
event handler generates flow entries to match for packets that are to be sent
to the neighbour from other OpenFlow switch ports. The fields matched in

the flow entries are:
e Port number of the ingress port on which the packet is received.
e [P version. IPv4 or IPv6.
e [P destination address of the neighbour.

e Destination MAC address which is the address of the virtual interface
mapped to the ingress port as this virtual interface is the gateway of the

subnet connected to the ingress port.
The actions performed on packets that match the flow entries are:

e Source MAC address of the packet is replaced by the MAC address of

Chapter 4 RheaFlow Design and Implementation 56

the virtual interface on which the neighbour was discovered because it is
the next-hop for that neighbour and MAC addresses can not be used for
forwarding packets between different subnets. The original source MAC

address was from the sender.

e Destination MAC address of the packet is set to the MAC address of the

neighbour.

e And, finally, output the packet via the port mapped to the virtual inter-

face on which the neighbour was discovered.

This process is the same for both IPv4 and IPv6 neighbours. These flow entries
have a higher priority than flow entries for sending packets to RheaFlow via

slow path or fast path.

Flow entries for routes received from the IP routing engine are generated
by RheaController in a pattern similar to neighbour flow entries. When a
RouteReceived event is received by RheaController from RheaRouteReceiver,
RheaController checks the neigbour table maintained by RheaNLSocket to
find the next-hop. If the next-hop for the received route is an address reach-
able via a port on an OpenFlow switch, the next-hop would be a neighbour
discovered on the virtual interface mapped to the port; hence the MAC ad-
dress for the next-hop would be available in the neighbour table maintained
by RheaNLSocket. The fields matched by the flow entries to forward packets

that addressed to the network of the received route are:

e Port number of the ingress port on the OpenFlow switch on which the

packet is received.
e [P version.

e Destination MAC address which is the address of the virtual interface
mapped to the ingress port as this virtual interface is the gateway of the

subnet connected to the ingress port.
e the network address which could be either IPv4 or IPv6.
The action performed on packets that matches these entries are:

e Source MAC address of the packet is replaced by the MAC address of

the virtual interface on which the next-hop host was discovered.

e Destination MAC address of the packet is set to the MAC address of the

Chapter 4 RheaFlow Design and Implementation 57

next-hop.

e And, finally, output the packet via the port mapped to the virtual inter-

face on which the next-hop was discovered.

It is possible for the next-hop for the received route to be the address of a
physical interface on RheaFlow machine or a neighbour connected to a physical
interface on the RheaFlow machine. In that case, the fields matched by these
flow entries are the same as flow entries for received routes with next-hops
reachable via a port on an OpenFlow switch. Since the packets are to be
forwarded to their destination via an interface on the RheaFlow machine. The
packets are forwarded to the virtual interfaces on the RheaFlow machine using
the same actions in the either fast path or slow path configuration flow entries.
The Linux network stack then forwards the packets out the right physical

interface.

If the MAC address for a next-hop to a route is not found, RheaFlow ini-
tiates a neighbour discovery process which involves sending User Datagram
Protocol (UDP) packets on port 6666 to the next-hop. This would force the
Linux network stack to perform address resolution. If the MAC for the next-
hop is not resolved, the route is kept in a pending route table maintained
by RheaController. RheaController checks the pending route table every ten
minutes to see if the next-hop MAC address for the pending routes are avail-
able. However, this is unlikely to happen because the Linux network stack
which maintains the forwarding table for routes maintained by the BIRD IP
routing engine in RheaFlow would notify the IP routing engine if a next-hop
is unreachable. This would force the IP routing engine to withdraw the route

or find another to the network.

Removing Flow Entries

When routes are deleted or neighbours are removed, the corresponding flow
entries generated for these events are deleted from the OpenFlow switches by
RheaFlow. The flow entries to be removed are generated by the RheaController
just as they would be if they were being installed, and the FlowMod messages
sent to the OpenFlow switch indicates that the specified entries be deleted from
the OpenFlow switch. If the flow entries exist on the OpenFlow switch, they
will be removed; however, if they don’t exist, the OpenFlow switch ignores the

FlowMod message. The network information needed to delete flow entries for

Chapter 4 RheaFlow Design and Implementation 58

routes and neighbours is the same as the ones need to add them therefore, the

flow entries deleted on OpenFlow switches are for the specific neighbours and

routes.

Chapter 5

Evaluation

In this chapter, the testing methodology used to validate RheaFlow is described
and its performance as a hybrid router is discussed. RheaFlow is also com-
pared against its predecessor RouteFlow to examine its progression towards

the design goals identified in Chapter 4.

5.1 RheaFlow Testbed

A network was setup to test the RheaFlow prototype. Three IPv4 subnets
were connected to three ports on an OpenFlow switch which was managed by
RheaFlow. Additionally, there were routers in these subnets that exchanged
routing protocol information with the BIRD routing software that provides
route information for RheaFlow. Due to time constraints, it was not possible to
test RheaFlow with hardware OpenFlow switches. RheaFlow was tested with
an Open vSwitch instance accelerated with Intel’s Data Plane Development Kit
(DPDK). This enabled the Open vSwitch to provide similar packet forwarding
performance to that obtained on hardware OpenFlow switches. The Open
vSwitch instance is called br-dpdk. 1t is a Dell PowerEdge R530 server with two
Intel Xeon E5-2630 v3 family processors and four quad port Intel 1350 network
interface cards running a Debian 8 operating system with Linux kernel version
3.16.

The RheaFlow prototype was deployed on a Linux machine in the test net-
work that has the modified BIRD IP routing engine daemon, Ryu and Open
vSwitch installed. The machine running RheaFlow is a Dell OptiPlex 755 PC
with Intel Core 2 Duo E6750 processor, four gigabytes of memory and three

ethernet ports. It uses an Ubuntu 14.04 operating system with Linux kernel

Chapter 5 Evaluation 60

version 3.16. The RheaFlow application was executed with Ryu version 4.0.
Each of the three br-dpdk ports used in this setup were multiplexed by a con-
ventional switch device downstream so that multiple hosts could be connected
to each port. The configuration file shown in Appendix A was used to config-
ure RheaFlow in fast path mode to manage br-dpdk. Table 5.1 shows subnets
connected to the ports, and the addresses and names of the virtual interface
created for each port based on the machine running RheaFlow. Figure 5.1

show a diagram of the test network.

br-dpdk port number | IP subnet connected | Virtual interface name | Virtual interface address
5 20.0.0.0/24 br-dpdk-p5 20.0.0.254/24
6 30.0.0.0/24 br-dpdk-p6 30.0.0.254/24
7 40.0.0.0/24 br-dpdk-p7 40.0.0.254/24

Table 5.1: IP subnets Connected to br-dpdk in the Test Network

br-dpdk
OpenFlow
Machine 3 gwitch
Fast Path Link
Port 5 Port 6 Port 7
Y, S =
Y S %
Y S ‘©
Y IS] 2
& S b2
20.0.0.1/24| |20.0.0.2/24| |120.0.0.3/24 30.0.0.1/24| [30.0.0.2/24| [30.0.0.3/24 40.0.0.1/24| |40.0.0.3/24| |140.0.0.3/24
Host 1 Host 2 Host 3 Host 4 Host 5 Host 6 Host 7 Host 8 Host 9

Figure 5.1: Diagram of the RheaFlow Test Network

The hosts in the subnets connected to br-dpdk are configured as BGP routers
that exchange route information via br-dpdk with the BIRD IP routing en-
Ap-
pendix B shows the configuration file used by the BIRD IP routing engine

gine in RheaFlow. These routers are next-hops to remote subnets.
on the RheaFlow machine to setup BGP peering sessions with routers in the
connected subnets. The BIRD configuration file also specifies static routes

to remote subnets reachable via the routers in the connected subnets. The

Chapter 5 Evaluation 61

static routes in the BIRD configuration file are the initial set of routes that
were sent to RheaFlow and converted to OpenFlow entries when the BIRD IP
routing engine is started. Subsequent routes sent to RheaFlow by the BIRD
router are received from the BGP peers. 210,215 routes from the internet’s
BGP routing table were advertised from routers in the connected subnets to
the BIRD routing daemon on the RheaFlow machine. This was a stress test
operation to assess RheaFlow’s performance under load. The BGP routing
table used for this test was the BGP table of the RouteView’s sydney router|[3]
on the first of march 2016. This resulted in over 400,000 flow entries being
installed on br-dpdk for the routes. The routes were advertised from a router
connected to br-dpdk port 5. This meant that each route only required two flow
entries for br-dpdk ports 5 and 6. The average execution time for RheaFlow’s
RouteReceived event handler to generate and install flow entries for a single
route was 8.74ms. The execution time of the RouteReceived event handler
was used to evaluate the speed of the RheaFlow code because more time was
spent by the RouteReceived event handler code processing the received routes
than other RheaFlow components. The time spent by the RheaRouteReceiver
application code on the routes before it raised a RouteReceived event was

insignificant compared to that spent by the RouteReceived event handler.

Figure 5.2 shows a flame graph visualisation generated from the CPU profile of
RheaFlow application after it had received and deleted 210,215 routes. Each
box in the graph represents a function in the RheaFlow code which is called
a stack frame. The y-axis of the graph is used to describe the relationship
between the functions visualised in the graph; the function beneath a function
is its parent. The x-axis of the graph spans all the functions in the application
and the width of a box represents the total time the function indicated by the
box was executed by the CPU. The graph shows the RheaFlow route event
handler functions took the most CPU time.

Chapter 5

Evaluation

62

Flame Graph

Illlll-h

__ .
-

| | msg(ryu.of.

l-l
4__

L
t

| | _init__(ryu.ofproto..

| handler_remove_route(RheaController)

| delete_flows(RheaFlowProcessor)

Figure 5.2: A Flame graph visualisation for the CPU profile of the RheaFlow code

Chapter 5 Evaluation 63

5.2 Evaluation against RouteFlow

In this section, RheaFlow is evaluated against RouteFlow based on issues iden-

tified with RouteFlow in Section 3.3 and design goals discussed in section 4.1.

e Static Configuration Versus Dynamic Configuration

The virtual switch and interfaces connected to RouteFlow are manually
configured and the mapping between the virtual switch interfaces and
the OpenFlow switch ports have to be included in the RouteFlow con-
figuration file before the application is started. This makes it difficult to
make changes to the network without restarting RouteFlow. The static
mapping of the virtual interfaces to OpenFlow switch port in RouteFlow
means failure events on the OpenFlow switch ports are not replicated
to the VMs connected to the mapped virtual interfaces, which would
put the network in an inconsistent state. Furthermore, as stated in Sec-
tion 3.3, RouteFlow requires two configuration files for fast path apart
the default configuration file which is used for slow path. Apart from
that, RouteFlow configuration requires extra tasks such as determining
the identifier of the virtualised routing engine before hand. This iden-
tifier is required in the configuration file because it is used to setup the
RFProtocol IPC channel between RFClient and RFServer. This identi-
fier can not be changed once RouteFlow is in operation. RheaFlow on
the other hand, uses a single configuration file for both fast path and
slow path. It also does not require any extra tasks apart from start-
ing the applications. As mentioned in Section 4.3.1, RheaFlow does the
heavy lifting during the configuration by managing the virtual switch
and maintaining an association table to keep track of OpenFlow switch
port to virtual interface maps. This is something RouteFlow does not
do.

RheaFlow dynamically configures the virtual switch and interfaces con-
nected to it using a combination of the ports’ details specified in the
configuration file and port state information reported by the OpenFlow
switches when they connect to the controller. RheaFlow also performs
the mappings between virtual interfaces and the OpenFlow switch ports
without user intervention. These mappings are only completed if a port
detail exists in the configuration file for each port reported to the con-

troller by the OpenFlow switch when it connects to RheaFlow. The

Chapter 5 Evaluation 64

dynamic configuration used in RheaFlow ensures that it is able to re-
spond to changes in the state of OpenFlow switch ports included in the
configuration file and modify the mappings, the virtual interfaces and
flow entries on the OpenFlow switch accordingly without restarting the
application. However, additional ports that are enabled on the Open-
Flow switch that should be mapped to virtual interfaces after RheaFlow
has been started requires that the configuration file be updated with
details for the new OpenFlow switch port and RheaFlow restarted.

e FEase of Virtualisation

The IP routing engines used in RouteFlow are run in VM instances on
the same machine. While this may reduce the cost of the hardware used
in the network and the size of the physical topology, it complicates the
virtualisation of the RouteFlow application. This is because virtualising
RouteFlow would require nested virtualisation in order to run the virtu-
alised IP routing engines that would be mapped to OpenFlow switches.
The use of nested virtualisation would increase the complexity of the con-
figuration required for RouteFlow and introduce a single point of failure

in the network.

The RheaFlow architecture on the other hand can be easily virtualised
without increasing the complexity of the network or introducing a single
point of failure. The BIRD IP routing engine providing route information
to RheaFlow can be on the same machine as the rest of the RheaFlow
application or on a separate machine, this ensures that the logical and
physical topology between the router and OpenFlow switches are the

same. It also simplifies the deployment of RheaFlow in a network.

o Intermediate Protocol

An intermediate RFProtocol and IPC channel is required for exchanging
messages between RouteFlow components. This is needed because of the
distributed design of the RouteFlow architecture where RFClient is inside
the VM hosting the IP routing engine in the RouteFlow setup. This
increases the overhead to the network because control information being
exchanged between the IP routing engines and the OpenFlow switches

must be converted into RFProtocol.

RheaFlow design completely eliminates the need for an intermediate pro-

Chapter 5 Evaluation 65

tocol to exchange messages between its component. It provides a JSON
based interface to receive control information from IP routing engines
and uses the events provided by the Ryu API to exchange informa-
tion between its various components. This design, however, makes the
RheaFlow application dependent on the stability of the Ryu API which

as noted earlier has a good track record.

e Fase of Customisation

The complexity of the RouteFlow architecture makes modification diffi-
cult. For example, in its default configuration, RouteFlow only delivers
BGP protocol messages from the OpenFlow switches to the virtualised
IP routing engines. To support additional routing protocols, new RFPro-
tocol messages would need to be created. Also, the flow entries generated
by RFServer would require modification to forward the new routing pro-
tocols. RheaFlow is agnostic about the routing protocols supported by
the IP routing engine as it ensures all packets are delivered to the net-
work stack of the machine running RheaFlow. Also, the RheaFlow design
makes it easy to add new features. For example, adding new features re-
quires creating an event handler in RheaController to process the events

generated as a result of the new feature added.

e Fast Path Operations

As mentioned earlier, the virtual switch in RouteFlow is manually config-
ured and the mappings are done statically based on the configuration file
loaded. This requires the virtual switch to still send VirtualPlaneMap
RFProtocol packets to the controller in order to map a virtual router
to an OpenFlow switch for fast path. This increases configuration over-
head for the application. The RheaFlow fastpath configuration does not

require any packets to be forwarded to the controller in fast path.

e Lines of Code Compared to RouteFlow, RheaFlow provided the same

set of functionalities available in RouteFlow with fewer lines of code.
RheaFlow was written entirely in Python with 3540 lines of code. Route-
Flow on the other hand was written in C++ and Python, the RouteFlow
Vandervecken branch examined in this project contained 4527 lines of
C++ code and 3422 lines of Python code. While RheaFlow’s smaller

code base may make it faster than RouteFlow, an analysis comparing

Chapter 5 Evaluation 66

the performance of both applications was not undertaken in this project.
One reason identified for the large size of RouteFlow’s code is the dis-
tributed nature of the architecture in which RFClient is located on a
separate machine from RFServer. Communication between these Route-
Flow components required a separate message format (RFProtocol) and
IPC channel which had to be included in the code. Although RFPro-
tocol and IPC channel increased RouteFlow’s code base, it also enabled
RouteFlow to be agnostic of the OpenFlow controller platform used to
communicate with the OpenFlow switches. This ensures RouteFlow is
not tied to a single OpenFlow controller platform. RheaFlow on other
hand is tied to the Ryu OpenFlow controller platform because its ap-
plications are based on Ryu’s API. However, Ryu is an open source
controller platform that a good track record in terms of stability and
backward compatibility. Utilising the Ryu API in the RheaFlow code
ensured a simple modular SDN router architecture that can be easily

customised in future.

Chapter 6

Discussion

In this chapter, the experience and the challenges encountered during the
RheaFlow implementation are briefly discussed. RheaFlow is compared to
other SDN routers in Chapter 2 based on the features highlighted earlier.

Some areas of RheaFlow identified for future work are also discussed.

6.1 Design Experience and Challenges

The Ryu API enforces an event driven programming approach, as asynchronous
events are the means with which Ryu applications communicate with each
other. This event driven programming approach complicated the receipt and
processing of netlink messages by pyroute2, the Python netlink library used
in this project. The netlink events relevant to the RheaFlow application can
not be processed asynchronously like other events in the RheaFlow applica-
tion. They needed to be processed and responded to immediately. Because of
this, the applications handling netlink messages were given higher priority. It
was, however, discovered during the testing phase that this design approach
exhausted CPU resources on the machine running RheaFlow. Other applica-
tions in RheaFlow were blocked or starved because of the high priority given
to netlink processing applications. This issue was resolved by separating the
processing of netlink messages into a separate Python application using the
pyroute2 libraries. This application receives the relevant messages and sends
them via a callback to the RheaFlow application that generates events for
netlink messages. This challenge provided a good understanding of developing

applications on the Ryu platform.

During the stress test operation to assess RheaFlow’s performance under load,

Chapter 6 Discussion 68

it was discovered that the test OpenFlow switch disconnects from RheaFlow
after the application has been sending lots of FlowMod messages to the Open-
Flow switch. This disconnection from RheaFlow disrupts traffic forwarding
on the OpenFlow switch. Upon further investigation, the cause of the discon-
nection was identified to be the lack of response to OpenFlow echo request
messages sent by RheaFlow to the OpenFlow switch. This causes RheaFlow
to assume the OpenFlow switch is dead and close the TCP socket used to send
OpenFlow messages to the OpenFlow switch. OpenFlow echo request and re-
ply messages are used to verify that the OpenFlow control channel between the
controller and the OpenFlow switch is still open and usable. Further analysis of
this failure showed that the OpenFlow switch disconnects from RheaFlow when
routes are being withdrawn by the IP routing engine which causes RheaFlow
to send FlowMod messages to delete flow entries for the routes. This hap-
pens because the software of the OpenFlow switch used in the test network is
not optimised for finding a specific flow entry in a large flow table with over
100,000 flow entries. The OpenFlow switch was overwhelmed with the search
for flow entries that RheaFlow had requested to be deleted and did not send an
OpenFlow echo reply to RheaFlow. This problem was addressed by increasing
the number of unreplied echo requests that should be sent be RheaFlow before

the OpenFlow switch is disconnected.

6.2 SDN Router Features in RheaFlow

In Chapter 2, the following features were identified as important for an SDN

router to have:

e An SDN implementation that is widely supported, to increase its chances

of adoption by network operators.

e Ability to delegate forwarding to multiple SDN-enabled devices for scal-
ability.

e A centralised management of the routing control plane in conformance
with the SDN paradigm.

e Dynamic discovery of SDN-enabled devices, reconfiguration of SDN-
enabled devices in response to network changes and a simplified con-
figuration that allows for quick changes in response to rapidly evolving

network demands with minimal disruption.

Chapter 6 Discussion 69

e Backward compatibility with existing routing control protocols.

e The absence of a separate control protocol which likely increases over-
head.

RheaFlow is briefly evaluated against these features. Table 6.1 is an updated
version of Table 2.1, it shows the features supported by RheaFlow compared

to the other SDN routers examined. RheaFlow is based on OpenFlow which

Multiple Dynamic

SDN-enabled | Centralised Discovery Separate

SDN SDN Device Control and Simple Backward Control

Router | Specification Support Plane Configuration | Configuration | Compatibility | Protocol
FIBIUM OpenFlow No Yes Partial No Yes No
SoftRouter ForCES Yes Yes Yes No Yes Yes
DROP ForCES Yes Yes Yes No Yes Yes
SDN-IP OpenFlow Yes Yes Partial No Limited No
Atrium OpenFlow Yes Yes Partial No Limited No
RouteFlow OpenFlow Yes No No No Yes Yes
RheaFlow OpenFlow Yes Yes Partial Yes Yes Yes

Table 6.1: An Updated Comparison of SDN Router Features.

increases its chance of adoption by network operators. It is also able to offload
forwarding to multiple OpenFlow switches to ensure scalability and it fully cen-
tralises its routing control plane. RheaFlow uses a YAML configuration file for
simplicity and does not introduce a separate control protocol. RheaFlow is ag-
nostic about the routing control protocol used to provide routing information,
this makes it compatible with existing routing control protocol. RheaFlow is
able to dynamically configure the virtual switch and OpenFlow switch ports
included in its configuration file when it was started, it is able to respond
to changes an OpenFlow switch included in the configuration file long after
RheaFlow has been started. However, it is not able not configure OpenFlow
switches or OpenFlow switch ports not included in its configuration file and

discovered after it has been started.

6.3 Future Work

These are some of the areas of RheaFlow identified for future work:

e Complete the inter-switch configuration and forwarding between multiple

OpenFlow switches connected to RheaFlow.
e Conduct further tests on RheaFlow with hardware OpenFlow switches.

e Ensure new ports on OpenFlow switches that were not included in the

Chapter 6 Discussion 70

configuration file can be configured and mapped to virtual interfaces

without restarting RheaFlow.

e Conduct further research into failover and redundancy options for RheaFlow

application.

Chapter 7

Conclusion

This thesis presents the design and implementation of RheaFlow, an SDN
router that uses IP routing control logic to modify the forwarding behaviour
on OpenFlow switches. It converts IP routing control logic into OpenFlow
entries that are installed on OpenFlow switches enabling them to forward
IP packets to other devices in the network that are not OpenFlow capable.
RheaFlow improves upon RouteFlow, an existing SDN routing solution which
also enables OpenFlow switches to forward IP traffic by translating I[P control
logic into OpenFlow rules. RheaFlow improves the process of translating IP
control logic into OpenFlow rules by addressing issues identified in RouteFlow

design such as:

e The manual configuration and static mapping of virtual interfaces to

OpenFlow switch ports.

e The intermediate RFProtocol for exchanging messages between Route-

Flow components.

e The distribution of routing applications across multiple VMs which can

neither be notified nor respond to failure events on the OpenFlow switches.

The RheaFlow design utilises the Ryu controller platform and API to imple-
ment a modular RheaFlow SDN routing application that can be easily cus-
tomised and extended. Building RheaFlow on the Ryu OpenFlow controller
platform allows the components of the RheaFlow architecture to communicate
with each without defining a separate control protocol. RheaFlow components
communicate with each asynchronously using events classes provided in the

Ryu API.

Chapter 7 Conclusion 72

In RheaFlow, the routing control plane is centrally managed. This is achieved
by moving the IP routing engine that provides routing information in to the
same Linux machine with the rest of the RheaFlow application. This en-
sures that changes in the state of the port of OpenFlow switches connected to
RheaFlow are replicated to the IP routing engine. The RheaFlow design also
provides an application and platform independed data-interchange format to
receive routing information from an IP routing engine. This approach enables
RheaFlow to receive routing information directly from an IP routing engine
using JSON. This makes it easy for RheaFlow to receive routing information
from remote IP routing engines. It also makes it easy to modify RheaFlow to

process other types of network control information.

The RheaFlow configuration and deployment process is simple and intuitive.
It uses a single YAML configuration file that is easy to read and understand for
the user. RheaFlow also hides the complexities of the configuration from the
user. It handles the virtual switch configuration, it also dynamically configures
and maps the virtual interfaces on the virtual switch to OpenFlow switch ports

without user intervention.

References

1]

8]

Josh Bailey. Vandervecken. [Online|. Available: https://docs.google.
com/document/d/1r2QbRRTbq9ilpmPQSwg4MhbBTx3F5I1Jx0E4osqnsro/
mobilebasic?pli=1. [Accessed 20 July 2016].

R. Bolla, R. Bruschi, G. Lamanna, and A. Ranieri. Drop: An open-source
project towards distributed sw router architectures. In Global Telecom-
munications Conference, 2009. GLOBECOM 2009. IEEFE, pages 1-6, Nov
2009.

Advanced Network Technology Center. Routeviews project. [Online].
Available: http://archive.routeviews.org/route-views.sydney/bgpdata/2016.
03/RIBS/rib.20160301.0000.bz2. [Accessed 27 July 2016].

Mihai Dobrescu, Norbert Egi, Katerina Argyraki, Byung-Gon Chun,
Kevin Fall, Gianluca Iannaccone, Allan Knies, Maziar Manesh, and Sylvia
Ratnasamy. Routebricks: Exploiting parallelism to scale software routers.
In Proceedings of the ACM SIGOPS 22Nd Symposium on Operating Sys-
tems Principles, SOSP ’09, pages 15-28, New York, NY, USA, 2009. ACM.

A. Doria, J. Hadi Salim, R. Haas, W. Wang, L. Dong, and R. Gopal. For-
warding and control element separation (ForCES) protocol specification,
2010.

Norbert Egi, Adam Greenhalgh, Mark Handley, Mickael Hoerdt, Felipe
Huici, and Laurent Mathy. Towards high performance virtual routers on
commodity hardware. In Proceedings of the 2008 ACM CoNEXT Confer-
ence, CONEXT 08, pages 20:1-20:12, New York, NY, USA, 2008. ACM.

Neil Horman. Understanding and programming with netlink sockets. [On-
line]. Available: https://people.redhat.com/nhorman/papers/netlink.pdf.
[Accessed 23 June 2016].

Naga Katta, Omid Alipourfard, Jennifer Rexford, and David Walker. In-

https://docs.google.com/document/d/1r2QbRRTbq9ilpmPQSwg4MhbBTx3F5I1Jx0E4osqnsro/mobilebasic?pli=1
https://docs.google.com/document/d/1r2QbRRTbq9ilpmPQSwg4MhbBTx3F5I1Jx0E4osqnsro/mobilebasic?pli=1
https://docs.google.com/document/d/1r2QbRRTbq9ilpmPQSwg4MhbBTx3F5I1Jx0E4osqnsro/mobilebasic?pli=1
http://archive.routeviews.org/route-views.sydney/bgpdata/2016.03/RIBS/rib.20160301.0000.bz2
http://archive.routeviews.org/route-views.sydney/bgpdata/2016.03/RIBS/rib.20160301.0000.bz2
https://people.redhat.com/nhorman/papers/netlink.pdf

References 74

[10]

[11]

[12]

[13]

[14]

[15]

[16]

finite cacheflow in software-defined networks. In Proceedings of the Third
Workshop on Hot Topics in Software Defined Networking, HotSDN 14,
pages 175-180, New York, NY, USA, 2014. ACM.

Eddie Kohler, Robert Morris, Benjie Chen, John Jannotti, and M. Frans
Kaashoek. The click modular router. ACM Trans. Comput. Syst.,
18(3):263-297, August 2000.

Ayaka Koshibe. SDN-IP architecture. [Online|. Available: https://wiki.
onosproject.org/display/ONOS /SDN-IP+Architecture, 2015. [Accessed 8
June 2016].

CZ.NIC Labs. The BIRD internet routing daemon. [Online]. Available:
http://bird.network.cz/. [Accessed 24 June 2016].

T. V. Lakshman, T. Nandagopal, R. Ramjee, K. Sabnani, and T. Woo.
The SoftRouter architecture. In In ACM HOTNETS, November 2004.
[Accessed 5 June 2016].

Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry
Peterson, Jennifer Rexford, Scott Shenker, and Jonathan Turner. Open-
flow: Enabling innovation in campus networks. SIGCOMM Comput.
Commun. Rev., 38(2):69-74, March 2008.

Marcelo R. Nascimento, Christian E. Rothenberg, Marcos R. Salvador,
Carlos N. A. Corréa, Sidney C. de Lucena, and Mauricio F. Magalhaes.
Virtual routers as a service: The routeflow approach leveraging software-
defined networks. In Proceedings of the 6th International Conference on
Future Internet Technologies, CFI ’11, pages 3437, New York, NY, USA,
2011. ACM.

Ben Pfaff, Justin Pettit, Teemu Koponen, Keith Amidon, Martin Casado,
and Scott Shenker. Extending networking into the virtualization layer.
In Proceedings of the 8th ACM Workshop on Hot Topics in Networks
(HotNets-VIII)., New York, NY, USA, October 2009.

Syed Naveed Rizvi, Daniel Raumer, Florian Wohlfart, and Georg Carle.
Towards carrier grade SDNs. Comput. Netw., 92(P2):218-226, December
2015.

J. Salim, H. Khosravi, A. Kleen, and A. Kuznetsov. Linux netlink as an

IP services protocol, 2003.

https://wiki.onosproject.org/display/ONOS/SDN-IP+Architecture
https://wiki.onosproject.org/display/ONOS/SDN-IP+Architecture
http://bird.network.cz/

References 75

[18]

[21]

Nadi Sarrar, Anja Feldmann, Steve Uhlig, Rob Sherwood, and Xin Huang.
Fibium-towards hardware accelerated software routers. FEuroView 2010

(poster session), 9:1-17.

Peter V. Saveliev. Pyroute2. [Online]. Available: http://docs.pyroute?2.
org/general.html. [Accessed 23 June 2016].

Jonathan Philip Stringer, Qiang Fu, Christopher Lorier, Richard Nelson,
and Christian Esteve Rothenberg. Cardigan: Deploying a distributed
routing fabric. In Proceedings of the Second ACM SIGCOMM Workshop
on Hot Topics in Software Defined Networking, HotSDN ’13, pages 169—
170, New York, NY, USA, 2013. ACM.

Open Network Operating system Project. Atrium: A complete SDN
distribution from onf. [Online]. Available: http://onosproject.org/
wp-content/uploads/2015/06/PoC_atrium.pdf, 2015. [Accessed 6 June
2016].

Nippon Telegraph and Telephone Corporation. [Online]. Available: http:
//osrg.github.io/ryu/index.html. [Accessed 2 June 2016].

Allan Vidal, Fébio Verdi, Eder Leao Fernandes, Christian Esteve Rothen-
berg, and Marco Rogério Salvador. Building upon RouteFlow: a SDN
development experience. In 31 Brazilian Symposium on Computer Net-
works and Distributed Systems, SBRC 2013, pages 879-892, May 2013.
[Accessed 02 June 2016].

Stefano Vissicchio, Laurent Vanbever, and Olivier Bonaventure. Oppor-

tunities and research challenges of hybrid software defined networks. SIG-

COMM Comput. Commun. Rev., 44(2):70-75, April 2014.

http://docs.pyroute2.org/general.html
http://docs.pyroute2.org/general.html
http://onosproject.org/wp-content/uploads/2015/06/PoC_atrium.pdf
http://onosproject.org/wp-content/uploads/2015/06/PoC_atrium.pdf
http://osrg.github.io/ryu/index.html
http://osrg.github.io/ryu/index.html

© 00 N O O W N

[NCREE NC R O (O R NI o R i R T e e i e e e e
Gt W N P O © 00 N O Ut b W N = O

Appendix A

Configuration File Sample:

config.yaml

validate file at http://www.yamllint.com/
datapaths:
- name: br-dpdk
type: OpenVswitch
dp_id: 0000a0369f5d0a2c
vs_port_prefix: br-dpdk-p
ports: { 5: [’20.0.0.254/24°],
6: [°30.0.0.254/24°1],
7: [°40.0.0.254/24°] %
fastpath_port: 8
fastpath_vs: 1002
isl_port:
isl_rem_port:
isl_rem_dp_id:

rem_port: [5,6,7]

Settings/Configuration for
the virtual switch dpO
change fastpath interface to eth2

= O H

on prod

Virtual-switch: {
fastpath_interface: eth2,
fastpath_port: 1002

N O Ot s W N

10
11
12

13
14
15
16
17
18
19
20
21
22
23
24
25

Appendix B

BIRD Configuration File: bird.conf

/ *
* RheaFlow BIRD configuration file.
*/

Configure logging
log syslog { info,trace,remote,warning, error, auth,

fatal, bug };

Override router 1ID

router id 172.16.0.45;

This pseudo-protocol watches all interface up/down
events.
protocol device {

scan time 10; # Scan interfaces every 10 seconds

protocol static {

route 20.0.0.0/24 via 20.0.0.254;
route 30.0.0.0/24 via 30.0.0.254;
route 40.0.0.0/24 via 40.0.0.254;
route 46.0.0.0/24 via 20.0.0.2;
route 47.0.0.0/24 via 30.0.0.1;
route 48.0.0.0/24 via 40.0.0.1;

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
o1
92
93
54
95
o6
o7
o8
99
60
61
62
63
64

Appendix B BIRD Configuration File: bird.conf

78

protocol sdn MySDN {

}

protocol bgp {

local as 2;

neighbor 192.168.2.1 as 1;
multihop;

import all;

source address 192.168.2.103;

protocol bgp machine20 {

local as 2;

neighbor 20.0.0.1 as 3;
direct;

import all;

source address 20.0.0.254;

protocol bgp machine21 {

local as 2;

neighbor 20.0.0.2 as 6;
direct;

import all;

source address 20.0.0.254;

protocol bgp machine30 {

local as 2;

neighbor 30.0.0.1 as 4;
direct;

import all;

source address 30.0.0.254;

protocol bgp machine40 {

local as 2;
neighbor 40.0.0.1 as 5;

65
66
67
68

Appendix B BIRD Configuration File: bird.conf

79

direct;
import all;
source address 40.0.0.254;

	Front Matter
	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables

	List of Acronyms
	Introduction
	Document Structure

	Related Work
	FIBIUM
	SoftRouter Architecture
	DROP: Distrubuted Software Router Project
	SDN-IP
	Atrium
	Conclusion

	Overview of Routeflow
	RouteFlow Architecture
	RFClient
	RFServer
	RFProxy
	RouteFlow Virtual Switch
	RFProtocol
	OpenFlow

	RouteFlow Configuration and Operation
	Starting RouteFlow
	Installing a New Network Route
	RouteFlow Operation Mode

	Identified Flaws in RouteFlow and Possible Optimisations to the RouteFlow Design

	RheaFlow Design and Implementation
	RheaFlow Design Goals
	RheaFlow Components
	Ryu
	Netlink
	YAML
	JSON
	IP Routing Daemon
	Virtual Switch

	RheaFlow Implementation
	RheaController
	RheaRouteReceiver
	RheaNLSocket

	Intercepting Network Control Traffic
	OpenFlow Rules
	OpenFlow Entry Creation Process

	Evaluation
	RheaFlow Testbed
	Evaluation against RouteFlow

	Discussion
	Design Experience and Challenges
	SDN Router Features in RheaFlow
	Future Work

	Conclusion
	References
	Configuration File Sample: config.yaml
	BIRD Configuration File: bird.conf

