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This paper is the first in a series that lays the groundwork for a structure and
classification theory of second-order superintegrable systems, both classical and
quantum, in conformally flat spaces. Many examples of such systems are known,
and lists of possible systems have been determined for constant curvature spaces in
two and three dimensions, as well as few other spaces. Observed features of these
systems are multiseparability, closure of the quadratic algebra of second-order sym-
metries at order 6, use of representation theory of the quadratic algebra to derive
spectral properties of the quantum Schrddinger operator, and a close relationship
with exactly solvable and quasi-exactly solvable systems. Our approach is, rather
than focus on particular spaces and systems, to use a general theoretical method
based on integrability conditions to derive structure common to all systems. In this
first paper we consider classical superintegrable systems on a general two-
dimensional Riemannian manifold and uncover their common structure. We show
that for superintegrable systems with nondegenerate potentials there exists a stan-
dard structure based on the algebra of 2 symmetric matrices, that such systems

are necessarily multiseparable and that the quadratic algebra closes at level 6.
Superintegrable systems with degenerate potentials are also analyzed. This is all
done without making use of lists of systems, so that generalization to higher di-
mensions, where relatively few examples are known, is much easi@0@
American Institute of Physic$DOI: 10.1063/1.1897183

I. INTRODUCTION AND EXAMPLES

The goal of this series of papers is a structure and classification theory of second-order
superintegrable systems, both classical and quantum, in conformally flat spaces. A classical super-
integrable systerm:Eijg” pip;+V(x) on ann-dimensional local Riemannian manifold is one that
admits D-1 functionally independent symmetrie@.e., constants of the motionS,, k
=1,...,2-1 with §;=H. That is,{H,S,}=0 where

n
{f.g} = 2 ( axjfapj g- apj faxjg))
j=1
is the Poisson bracket for functiorféx,p),g(x,p) on phase spadéf3 Note that 2-1 is the
maximum possible number of functionally independent symmetries and, locally, such symmetries
always exist. The main interest is in symmetries that are polynomials ip,taed are globally
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defined, except for lower dimensional singularities such as poles and branch points. Many tools in
the theory of Hamiltonian systems have been brought to bear on superintegrable systems, such as
R-matrix theory, Lax pairs, exact solvability, quasi-exact solvability, and the Jacobi métric.
However, the most detailed and complete results are obtained from separation of variables meth-
ods in those cases where they are applicable. Standard orthogonal separation of variables tech-
nigues are associated with second-order symmetries, e.g., Refs. 14—-20 and multiseparable Hamil-
tonian systems provide numerous examples of superintegrability. In these papers we shall
concentrate on second-order superintegrable systems, that is, those in which the symmetries take
the formS=Xal(x)p;p;+W(x), quadratic in the momenta.

There is an analogous definition for second-order quantum superintegrable systems with
Schrddinger operator

1 —
H=A+V(), A=-=20(gg")d,
Vg ij !
whereA is the Laplace—Beltrami operator on a Riemannian manifold, expressed in local coordi-
natesxj.15 Here there arer2-1 second-order symmetry operators

1 —_
Sc= _52 &xi(\‘"ga?k))ﬂxja k=1,....0-1
Vg ij

with §;=H and[H,S]=HS,-SH=0. Again multiseparable systems yield many examples of
superintegrability. However, as we shall show, not all multiseparable systems are superintegrable
and not all second-order superintegrable systems are multiseparable. There is also a quantization
problem in extending the results for classical systems to operator systems. This problem turns out
to be very easily solved in two dimensions and not difficult in higher dimensions for nondegen-
erate systems.

Superintegrable systems cél) be solved explicitly, and2) they can be solved in multiple
ways. It is the information gleaned from comparing the distinct solutions and expressing one
solution set in terms of another that is a primary reason for their interest.

To illustrate some of the main features of superintegrable systems we give a simple example
in real Euclidean spacé€To make clearer the connection with quantum theory and Hilbert space
methods we shall, for this example alone, adopt standard physical normalizations, such as using
the factor —; in front of the free Hamiltonian.Consider the Schrédinger eigenvalue equation
HV=EV or

Ke-= 5=
>+ ¥ Vv =EV. (1)

1(&2 &

T2\ oy

1
5 )\P+§ 0? (X +y?) +

X
This equation separates in three systei@srtesian coordinates(x,y); polar coordinatesx
=r cos#, y=r sin 6, andelliptical coordinates
2= CZ(U1 - ) (U —€) 2_ Cz(ul - &)(U — &)
(er—e) ’ (&;—e)

The bound states are degenerate with energies give), bw(2n+2+k; +k,) for integern. The
corresponding wave functions af®) Cartesian:

ny!ny!
' X,y) =2 (1/2) (kg +ko+2) \/ 11Ny
nlvﬂg( y) w F(nl + k1 + 1)F(n2 + k2 +1)

XL(wy?), n=ng+ny, 2)

(ky+112)y (11202047 | K1 4y2)
1

and theL'r‘,(x) are Laguerre polynomiai“’&. (2) Polar:
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W(r,0) = DY

2m!
I'm+2q+k;+k,+1)

X (9) w(l/Z)(2q+k1+k2+l) \/ e(—wrzlz)r(2q+kl+k2+1)L2mq+k1+k2+l(wr2) ,

n=m+aq, 3

gq'T(k; +k,+q+1)
F(ky+g+ DIk +q+1)

X (cos ), (4)
and thePg‘l'kZ)(cos %) are Jacobi polynomial?sl. (3) Elliptical:

@gkl’kz)(ﬁ) - \/2(2q +ky + ko + 1) (cos 0)k1+(1/2)(5iﬂ 0)k2+(1/2)ng1,k2)

n 2 2
= e—w(x2+y2)xk1+1/2yk2+l/2H (X— + y _ CZ)
m=1 0m - e]_ Gm - 62

where

X y_z_ 2 2U=6)(uy-6)
e -0 © C (9-e)(0-e) )

are ellipsoidal wave functiorfé:?>A basis for the second-order symmetry operators is

1 1
(34 [i-4
Li=d+ ——5— -, Ly=f+——F— -0,

x? y
(6)

1 v (1 X 1
L3:(Xo7y—yo"x)2+ (Z_k%);*- (Z—kg))?—é

(Note that —H=L,+L,.) The separable solutions are eigenfunctions of the symmetry operators
L., Ly andLs+e,L;+e,L, with eigenvalues

Ne=—w@n+k +1), N\,=(20+k +ko+ D)2+ (1 +Ki+KD),

q

kp+1 ko+1

)\e: 2(1 - kl)(l - kz) - 2e2w(k1 + 1) - 2€1w(k2 + 1) - a)26182 - 42 |:eZ L + el )
Om— €1 b= €

m=1

respectively. The algebra constructed by repeated commutators is

[LyLal=[LaL]=R [L,RI=-4L,L}+16wls i#j, i,j=1.2,
(LRI = 4Ly, L3} - 4{Lp La} +8(1 KLy - 8(1 - k)L,

RP=5{L1, Lo La} + F{Ly Lo} + 160°L5 - 16(1 — k)L - 16(1 —K))L5 — Fu’Ls
— 640’(1 -k (1 - K)). (7)
Note that these relations are quadratic. H&eB}=AB+BA, is a double symmetrizer and there is
a corresponding definition for the triple symmetrizer. The important fact to observe about the
algebra generated Hy;,L,,L3, Ris that it isclosed under commutatid®® This is a remarkable

fact, but typical of superintegrable systems with nondegenerate potentials, as we shall show.
Indeed the closure is at level 6, since we have to express the square of the third-order éberator
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in terms of thel; basis of second-order operators. Note that the degeneracy of the energy eigens-
pace is broken by the alternate separated bases of eigenfunctions. The eigenfunctions of one
separable system can be expanded in terms of the eigenfunctions of another, and this is the source
of nontrivial special function expansion theoreffighe symmetry operators are in formal self-
adjoint form and suitable for spectral analysis. Also, the quadratic algebra identities allow us to
relate eigenbases and eigenvalues of one symmetry operator to those of another. Indeed the
representation theory of the abstract quadratic algebra can be used to derive spectral properties of
the generatorg;, in a manner analogous to the use of Lie algebra representation theory to derive
spectral properties of quantum systems that admit Lie symmetry alg?éﬁ??;\éNote however that

for superintegrable systems with nondegenerate potential, there is no first-order Lie syjnmetry.

A common feature of quantum superintegrable systems, exhibited in the above-given ex-
ample, is that after splitting off a multiplicative functional factelki1/2y(ke* 2 (@204 i the
example, the Schroédinger and symmetry operators are acting on a space of polyﬁ%?ﬁﬁins's
closely related to the theory of exactly and quasi-exactly solvable syéfé*ﬂn?.ln the example
the one-dimensional ordinary differential equatid@DES9 obtained by separation in the Carte-
sian and polar systems are exactly solvable, in terms of hypergeometric functions, i.e., there is an
infinite set of nested invariant subspaces under the Cartesian or polar separated ODEs, and the
energy eigenvalues are easily obtained. The elliptic system separated equations are quasi-exactly
solvable, i.e., there is a single invariant finite dimensional subspace of a separated ODE and only
for certain parameter choices, and polynomial solutions are obtained for only particular values of
E. However, these values are just the energy eigenvalues obtained in the Cartesian and polar
systems. This characterization of quasi-exactly solvable systems as embedded in PDE superinte-
grable systems provides insight into the nature of these phenomena.

The classical analog of the above-given example is obtained by the replaceigengs,
dy— py- Commutators go over to Poisson brackets. The operator symmetries become second-order
constants of the motion. Symmetrized operators become products of functions. The quadratic
algebra relations simplify: the highest order terms agree with the operator case but there are fewer
nonzero lower order terms. Indeed, the classical algebra has basis

1 1
L L

— 12 2,2 — 2\ ,2
Sl_px+ X2 ~ WX, Sz_py+ y2 - Wy,

, , (8)
1 y 1 X
S3=(xp,—yp)* + (Z - %)F + (Z - g)? —2ZH=51+5,.
The classical quadratic algebra relations are
{85153 ={S5, 8} =R, {S,R}=85S5;+ 160%S;, i #j, 1,j=1,2,
{S3, R} = 85,55~ 85,83+ (4 - 16)S; — (4 — 16)S,, (9

R2=165,5,53— 16085+ (4 — 165)S2 — (4 — 160 S5 + 4w (1 — 4k3) (1 — 4K5).
In the example the potential

1 1
K-= k--

+

2

1
Viy) =5 (X2 +y?) + >

X y

is nondegeneraté the sense that at any poirg,y, where the potential is defined and analytic
and the S, are functionally independent, we can prescribe the wvalues of
V1(Xo,Y0)» Va(Xg, Vo) » V11(Xg, Vo) arbitrarily by choosing appropriate values for the parameters
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w,Kq,ky. Here,V;=dV/dx, V,=dV/dy, etc.[Another way to look at this is to say that

V1(Xo,Y0), Va(X0, o) V11(X0, Yo)

are the parametelsThis is in addition to the trivial constant that we can always add to a potential.
As we shall show, this requirement for a superintegrable system implies that the potential is any
solution of a system of coupled PDEs of the form

Voo = Vig + AZ(X,Y)Vy + BEX, )V, Vip= AY(X,Y)V; + B¥(X,y)Vs,

where the functions\l, B are subject to certain compatibility conditions, so that the solution
space is of dimension four. Im= 2 dimensions the analogous nondegenerate potentials depend on
n+2 parameters. Systems with nondegenerate potentials have the most beautiful properties but
there are also superintegrable systems with degenerate potentials depending diparameters.

For n=2 we will show that all of these systems depending on two or three parameters are in a
certain sense specializations of the nondegenerate systearsdegenerate systems, first-order
symmetries may exigt.However, superintegrable systems with one paramgter, constant
potentials are in general not restrictions of systems with nondegenerate potgNtiédsthat in the
classical case the symmetries corresponding to a constant potential are just Killing tehsors.
Indeed superintegrable systems with constant potential do not necessarily have a closed quadratic
algebra. See Ref. 44 for a counterexample.

Many examples of such systems are known, and lists of possible systems have been deter-
mined for constant curvature spaces in two and three dimensions, as well as a few other
space§.3‘38 Here, rather than focus on particular spaces and systems, we employ a theoretical
method based on integrability conditions to derive structure common to all such systems. In this
paper we consider classical superintegrable systems on a general two-dime{2iriRiemann-
ian manifold, real or complex, and uncover their common structure. We show that for superinte-
grable systems with nondegenerate potentials there exists a standard structure based on the algebra
of 2X 2 symmetric matrices, that such systems are necessarily multiseparable, and that the qua-
dratic algebra closes at level 6. Superintegrable systems with degenerate potentials are also ana-
lyzed. This is all done without making use of lists of such systems, so that generalization to higher
dimensions, where relatively few examples are kndfis, much easier.

In the next paper in this series we will study the Stackel transform, or coupling constant
metamorphosi@?‘40 for 2D classical superintegrable systems. This is a conformal transformation
of a superintegrable system on one space to a superintegrable system on another space. We will
prove that all nondegenerate 2D superintegrable systems are Stackel transforms of constant cur-
vature systems and give a complete classification of all 2D superintegrable systems. The following
papers will extend these results to three-dimensi@R) systems and the quantum analogs of 2D
and 3D classical systems.

II. SECOND-ORDER KILLING TENSORS FOR 2D COMPLEX RIEMANNIAN MANIFOLDS

Before proceeding to the study of superintegrable systems with potential, we review some
basic facts about second-order symmetifeithout potential of the underlying 2D complex
Riemannian spaces, i.e., second-order Killing tenSbihese were worked out by Koeniéjs,
though here we make an alternate presentation suggested by Refs. 42, 43, and 17. It is always
possible to find a local coordinate systéxy) = (x;,X,) defined in a neighborhood ¢9,0) on the
manifold such that the metric is

ds? = A(x,y)(dx? + dy?) =\dzdz, z=x+iy, z=x-ly,

and the Hamiltonian iHO:(pif pg)/)\. We can consider a second-order Killing tengymmetry
as a quadratic forrﬁlefj:la”(x,y)pipj, a'=al', that is in involution with the free Hamiltonian
Ho: {Ho,£}=0. The conditions are
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a'=- Mgt &aiz, i=1,2,
A N
(10
L ) VRN VO
2a) +all =-“tall- =232 jj=1,2, i#]j.
a’ +a N N J J

From these conditions we easily obtain the requirements

2al?= - (alt-a%?),, 2a}’=(a''-a?),.
From the integrability conditions for these last equations we see that

Aa?=0, A@@"-a)=0, A=F+7
and that there exist analytic functiofi€), g(z) such that

2a%=1(20+9(z), al'-a?=i(f(2-9(2).
Substituting these results in the remaining equations we find
@)1= = (f+9), (@N),=-3\(f+9).
The integrability condition for these last equations is
i i
d((Mf-g)) + Eﬁl((kl(f +g) - 502((>\2(f +g) =0
or
N, Ny Az Mg
f"+3f —+2f—=-9g"-39'—-2g—. (11
A A N A

If the space admits at least one Killing tensor independent of the Hamiltonian, then we can always
assume that it is of the forntf,g)=(1,1), i.e., we can make the change of coordinaZes

=[dz/ \/@, Z:fd?/ \g/_(ij so that(11) implies

)\ZZ: )\Z_Z

Prescribing the values af(0),g’(0),g"(0),f(0),f’(0), we can usd1l) to computef”(0). Differ-
entiating this equation successively with respeat &amdz we can compute all derivatives dfand
g. Thus any solution(f,g) of the integrability conditions is uniquely determined by the five
prescribed values. Ondeandg are given, the Killing tensoa' is determined to within addition
of an arbitrary multiple of the Hamiltoniakl,. Thus the maximum dimension of the space of
second-order Killing tensors is six. As is very well known, this maximum is actually achieved for
flat space and spaces of nonzero constant curvature. Recall that a 2D manifold is of constant
curvature if and only ikk=(d5In \)/\ is a constant. The space is flat if and onlk# 0.

Note that the maximum dimension of six is achieved if and only if the integrability conditions
for (12) are themselves satisfied identically. Applying the operafpio both sides of this expres-

sion we find
A A A A
3&;<f)f” + (2»2(7“) + 3az;<f))f' + 2aﬁ<?zz>f
s A Ay A
sl - (ol ) ol el

Downloaded 23 Oct 2008 to 130.217.76.77. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



053509-7 Second-order superintegrable systems. 1 J. Math. Phys. 46, 053509 (2005)

If dimension six is achieved then this last conditionfaandg cannot be independent ¢E1).
Hence, either the coefficients &f,f’,f,g”,g’,g all vanish identically, in which casé;;In A
=0 and the space is flat, @ In A #0 and(12) is obtained from(11) through multiplication by
dzIn \. In the second case one can easily see that

d7zIN A d7zIN A
d, N =d; N =0

so the space is of nonzero constant curvature.
If the dimension of the space of symmetries is less than six ¢h®nis independent ofl11).
In this case we can eliminafé andg” between these two equations and obtain a condition relating

only f',f,0’,0:
2(32) sl ) Jre] o) -anr
N7 Nz Nz

Nzz Mgl 2]
——[Z(T)Z—Qkxz+3()\)zjg {2()\)22 6k)\ZZ]g. (13)

Thus the remaining systems have spaces of symmetries of dimensibné straightforward
computation shows that this last equation can be rewritten as

[BAK,]F + [2NKy,+ 8K, If" = = [BAK;]g" — [2\kgs+ BAsk;]g (14)

where 2Kk, ,+8\,K,=2\kz+ 8Nk If the space of symmetries is of dimension four then the inte-
grability conditions for this last equation are satisfied identically. The systems with dimension four
(which we call the Darboux spadewere classified by Koenigs and are four in numbdf. the
equations are not satisfied identically, then we can repeat this procedure and find integrability
conditions for the spaces of symmetries of dimension three. These spaces were also classified by
Koenigs. In the next paper in this series we will find an alternate, much simpler derivation of these
spaces that shows that they all admit superintegrable systems with nondegenerate potentials.

Functional independence and functional linear independence of superintegrable sy&tgms
pose we have a__HamiltoniaH=Ho+V=Eszlg” pipj+V(x,y) and constants of the motioby
=L, +WR=32_ al pip;+WH(x,y), for k=1,2. We saythat such a system isuperintegrable
provided the two functiond, together with H are functionally independent in the four-
dimensional phase spadélere the possibl¥ will always be assumed to form a vector space and
we require functional independence for each sudnd the associated/¥. This means that we
require that the three quadratic formig,Hy are functionally independeit.

In the work to follow it will be important that the functionally independent symmetries also be
functionally linearly independent. It is clear that there are no constajsy not all 0 such that
alq+BL,+yHy=0. However such a relation is possibledif 3, y are functions. Indeed we have
the example

Ho=ppz+ V@, Li=p? Lo=pfzp,-2p),

wl=0, W?=w2(7z), (15)

where 2V5=W.. Here £,=2£,~7H,. (This superintegrable system is in Lie foffhit is not
multiseparable.The following result shows that this example is unique.

Theorem 1: The flat space systefi5) is the only superintegrable system in a 2D complex
Riemannian space such that the functionally independent symmetries are functionally linearly
dependent

Proof: Supposel,,L,,H are functionally independent symmetries that are functionally lin-
early dependent. Without loss of generality we can assume that
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Lo=f(x,y)L;+g(x,y)H, df#0, dg#0.

Sincel, is a symmetry we have the conditi¢h, Ho}£1+{g,HgtHo=0 or

f.all+g/\=0,

f,a??+g/N=0,
(16)
f,att+2fat?+g,/\ =0,
fia®?+ 2f,at?+ g/ = 0.

Thusg,=-\f,a't, g,=-\f,a?? and the remaining conditions take the form

o s 5)=(6)
a22_a11 2a12 fy - 0 .
Sincedf # 0 the determinant of the 2 2 matrix must be zero:

4(a12)2 + (a22_ a11)2 =0.

We consider the cas##?-a''=-2ia'? Thenf,=-if,, sof=f(z). From the Killing equation$10)

we see thamj’=ia}’ so, al?=a'%(z). The symmetry conditions fow, WY W2 are W =aklv,

+a?V,, j,k=1,2 and theintegrability conditions for these equations are the Bertrand—Darboux
(BD) conditions(V\/(l”)f(V\/z”)l, j=1,2,which in this case simplify to
12
a A A
V22_V11+ 2iV12: - |:3_52 + 2|_1 + 2_2:|(V2 + iVl),
a A A
12

a N N f
Voo = Vg + 2IVyp=— [3a—i2 + Zif + zf}(vz +iVy) - 3?2(v2+ iV,).

Subtracting the second BD equation from the first, we figdiV,=0 or V=V(z). The remaining
Killing tensor equations are

(@™ =-ra%  (ah),=2i(a\), - \at?,

with integrability condition
- (a9, =2i(\a?) 1, - (\4a9);.

At this point it is useful to write all equations in terms of the varialdes Then the Killing
tensor equations become

A\,=0, (A[all—iéDZ:O 17

and the previous integrability condition becomes

s”+3s’}\—zz+ 2)\—“:0,
A A

where
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2at?=9(2), att-a*?=is(2).

We can change to new variabléSz),Z(ES:?such that this last equation becon®g)=1, A,
=0. From now on, we assume that the original coordinajesvere chosen so that,,=0, 2a%?
=1, at*-a%?=i. In the new coordinates we have

Ho = ZDZTPZ_, L= 2ip§+4(a“— 'E)pzpz g=-ir'(2),

9=~ 2>\<a11— %)f’(Z),

so the integrability equation fay is

—iNf N = - 2>\zf<all_ IE)f - 2nat,
which simplifies to(\ f'(2)),=0. From(17) we see that there are functioM(z),N(z) such that

i M(2)
AzZizM' @) +N(Z), at-—=—FF"——.
@+N@ 2 izM'(2) + N(2)

If M’(2) #+ 0 then we can choose a new varialg) such thatM’(Z)=-i. Assume that we have
made this choice forz from the beginning. Then the equatiqirf’(z)),=0 implies zf'(2)
+N(2)f'(20=Q(2), soN’(2)f"(2)=0. If {"(2)=0 thenf is linear inz and this is impossible unlegs

is constant, a contradiction. Thii$=0 and we can taka =z, f(2)=In(2), al'-i/2=-iz/z which
implies that the space is flat. Further we can introduce a new varb)lesuch that in the new
variables\=1. If on the other han#1’(z) =0, then again the space is flat and we can introduce a

new variableZ(z) such that\=1 with respect to the new variables. In the case #fatall
= +2ia'? the argument is the same, but with the rolez @indz interchanged. Q.E.D.

IIl. MAXIMUM DIMENSIONS OF THE SPACES OF POLYNOMIAL CONSTANTS IN 2D
FOR TWO-PARAMETER POTENTIALS

In order to demonstrate the existence and structure of quadratic algebras for 2D superinte-
grable systems, it is important to compute the dimensions of the spaces of symmetries of these
systems that are of orders 2, 3, 4, and 6. These symmetries are necessarily of a special type. The
highest order terms in the momenta are independent of the parameters in the potential, while the
terms of order 2 less in the momenta are linear in these parameters, those of order 4 less are
quadratic, and those of order 6 less are cubic. We will obtain these dimensions exactly, but first we
need to establish sharp upper bounds.

Consider a Hamiltonian in a general two-dimensional space of the form

2, 2
H:P1 P>

+ oV + a2, (19
Here,\ and the terms in the potenti& depend on the coordinateswhile the a; are arbitrary
parameters. We say th¥tis atwo-parameter potentiaf the gradients oV andV? are linearly
independent, that i91V3-V3V2+ 0. We are free to redefing! andV? by taking linear combina-
tions and so we will also assume th&t+# 0 andV3+0.
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A. Quadratic constants

We wish to determine how large the space of second-order constants of the motion can be
whenV is a two-parameter superintegrable potential, i.e., it admits three functionally independent
constants of the motion. The general constant of second order in the momenta is

L = a™pf +a?%p5 + 2a'%pip, + agb’ + ab? (19

with all andb' being functions of the coordinates alone.

Since{H,L} is polynomial inp;, p,, a; and a,, and thea!l, b' and V' depend only on the
coordinatess; andx,, the vanishing ofH,L} gives eight equations for the derivativesajf and
b'. Introducing two new symbols;lzai2 and czzaﬁz, we solve these equations to obtain

all=- )‘_lall - )\_Za12, bl =Vhall+Vial?,
N N

A A
a%l: _ 2Cl_ )\2a22_ )\la12, b%ZVi)\a12+ V%)\a227
22 _ 2 )\1 11 )\2 12 2 _\/2y 411 2y 12
al——Zc—)\a —)\a . bi=ViNa"+Vona,

A A
—2a2- a2 pZ=VAa'?+ Va2 (20)

22 _
&= N

Without expressions for the derivatives of and ¢ the system is not involutive. However, the
integrability conditions fob* andb? give equationgthe Bertrand—Darboux equatiortsat can be
used to express® and ¢? entirely in terms of theall. Calculating each ob}, and b%, in two
different ways and replacing derivatives of the foag‘nwith the above-given expressions leads to
two equations foc! andc?,

= 3VINC! + BVING? = (VIN, + VaN, + AVE,) (@22 — ath) + (VINg + VI N = Van, — VN )at?,
(21)
= BVANCL + BVANG? = (V2N + VAN, + AV2,) (@22 — ath) + (VAN + VAN — Vah, — Vo \)al?,

These can be solved fat andc? since the gradients of* andV? are linearly independent.

Since all of the derivatives ad'?, a?2, anda'? can be expressed in terms of thg at any
regular point, the second-order partlofs determined by three numbers.

Theorem 2: The space of second-order constants for a 2D superintegrable potential with two
parameters is exactly three-dimensional

B. Cubic constants

Theorem 3: The space of third-order constants for a 2D superintegrable potential with two
parameters is at most one-dimensianal
Proof: The general constant of third order in the momenta has the form

L= a'*p} + a3 + 3 pip, + 381 %pip5 + (arb™ + axb™?)py + (aab™ + ab™)p,.  (22)

As for the second-order constants, we demand that the coefficiepts p§, «;, and «, vanish.
The terms of zeroth order in the momenta lead to

Vib't+Vob?t=0, Vib'+V3h*=0,
(23)
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Vib'2+ V3b?2 + Vbt + Vb2 = 0.

Since we have choséft andV? such that # 0, we can solve fob*, b%?, andb?!in terms ofb!?,

and find
1 1 1
bll - _ i;bﬂ, b22: V_gblZ’ b21: _ V_;blZ_ (24)

The coefficients ifH,L} that are first order in the momenta give the six equations,

2 A A
3Via111+ 3V%a112: _bil"‘ _321bll+ _§b21,

A A A

2 A A
3V§a111+ 3V§a112: Xbiz"' )\_321b12+ )\_gbzzl

3V§a122 + 3V§a222= gbgz + )\_;blz + )‘_§b22,
A A A

(25
A

)\2b21,

2
3via122+ 3V%a222: ngl_'_ %bll +

3vial'?+ 3Vjal?= §b§1+ %b@l,

3V2a112+ 3V2a122: Zb22+ Zblz_
1 2 NN
The first four of these, together wit24), allow a*'!, a??? a''? anda'??to be expressed in terms
of b'? and its derivatives, provided that, as assumép/5—ViV2+0. Then, substituting these
expressions an(24) into the last two equations we obtain two equationstifrand b}? of the
form

f1ON N, V)
MV1IV3 - VIV)V3

- Vi 4 VDt = b2, (26)

£\, V)
MVIV3 - V3VI)V3

- V2b}?+ V232 = b2, (27)

where the two functionff;m()\,)\i,V{() are polynomial in their arguments. So the derivativebf@f

are multiples ob*2 providedV;V3-V3Vi # 0 andV;# 0. Hence at any regular point, all of taé

and b are determined by one number and so the space of third-order constants is at most
one-dimensional. Q.E.D.

C. Fourth- and sixth-order constants

Theorem 4: The space of fourth-order constants for a 2D superintegrable potential with two
parameters is at most six-dimensional
Proof: The general constant of fourth order has the form

Downloaded 23 Oct 2008 to 130.217.76.77. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



053509-12  Kalnins, Kress, and Miller J. Math. Phys. 46, 053509 (2005)

L= > adMpppp+ X bl*aypp+ X claq;. (28)
ijkl=1,2 ijk=1,2 ij=1.2
The vanishing of the coefficients qf in {H,L} allow all of the derivative of thec' to be
expressed in terms of tH# X,

cit= \VApt L+ \V2pt2d
cit= Vb2 L4 \\2p22 L

C,112: )\Vibll‘2+ Avéblz,z_l_ )\Vibll'l'i' )\nglz,l,
(29
C,212: )\V%b12,2+ )\V;b12,2+ )\ngll,lﬁ_ )\ngl&l’

c22= \V2pLL2 4 \\2pt22

cf?= \Vib'22+ \Vip?22

The integrability conditions of these equations, that is, equations of thedfsaey}, along with
terms from{H,L} that are cubic in the momenta, provide eleven equations for the twelve deriva-
tives of theb*. If we define b=(bl"% biM% b2 bih2 b2t bi?2 b3?2 b2?t p32t 222 pa?d),

i.e., all of the derivatives of thi's excludingb%z’ , then when these equations are written in matrix
form as Ab=B, the coefficient matrixA has determinant that is a constant multiple of
ASVEH(VIVE-V3V3). Hence all of the derivative of thes exceptb;® can be expressed in terms of
the b and thea™ provided thatvi+ 0 andViV3-V3V2+0. For the remaining derivative, we
defined!=b3*"

Now, the integrability conditions for the'’* and the equations obtained from the terms of
{H,L} that are of fifth order in the momenta give twelve equations for the ten derivativa' f
and the two derivativesl] and d3. The coefficient matrix of these terms in the equations has
determinant that is a constant multiple @f}V5-V3aV3)3(\V1)™2, hence these equations can be
solved providedviV3-V3V2#0 andVi+#0.

So, the 5a, 6 bk 3 ¢l andd! form an involutive system. Each of these symbols can be
specified arbitrarily at a point. The thred give rise to three zeroth-order constants, thebdik
give rise to six quadratic constanfthree multiplied bya; and three multiplied byr,), and so
there are at mosi+1=6 genuinely fourth-order constants. Q.E.D.

For the general sixth-order constant

L= X aijklmnpipjpkplpmpn+ > bijkl’mampipjpkp|+ > Cij’klakmpipj

ikl mn=1,2 ikl m=1,2 ijkl=1,2

+ E d’ijkai CYJ' ay (30)
i,j,.k=1,2

the argument proceeds similarly.

Theorem 5: The space of sixth-order constants for a 2D superintegrable potential with two
parameters is at most ten-dimensianal

We will show that the space is exactly ten-dimensional.

IV. NONDEGENERATE SUPERINTEGRABLE SYSTEMS IN TWO DIMENSIONS

Now we take up our main topic: a nondegenerate superintegrable system on a two-
dimensional manifold. In earlier work we have classified the possible superintegrable systems on
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2D complex flat space, the two-sphere, and on Darboux sf&ée%' = The theory we present
here applies to all 2D spaces and adds greater understanding of the structure of these systems. The
Hamiltonian system is
2 2
H=PP2 iy (31)
A(XY)
in local orthogonal coordinates. We say that the systersersond-order superintegrableith
nondegenerate potenti#l it admits three functionally independent second-order symmetries and
the potential is three-paramet@n addition to the usual additive parametéfhat is, at each point
where the potential is defined and analytcregular point we can prescribe the value ¥, V,
andVy, for some unique choice of parameters. Using the two Bertrand—Darboux equations satis-
fied by the potentialcoming from the two symmetries other than the Hamiltopiare can solve
for V,,—V;1 andV, in terms of the first derivatives of.
Thus a nondegenerate poteniék,y) obeys

Vo= Vi + APV + B?,,
(32
V12 = A12V1 + BlZVZ.

Here,V,,V,,V;4 can be prescribed arbitrarily at a fixed regular point.

A seemingly weaker requirement for a superintegrable system is that, as usual, it admits three
functionally independent constants of the motion, but only for a two-parameter family of poten-
tials V(x,y)=aV(x,y) + BV@(x,y), where the gradients ofY V@ are linearly independent.

Lemma 1: “Two implies three.” If the system (31) admits three functionally independent
constants of the motion and a two-parameter family of potentials, then it admits a three-parameter
family (32)

Proof: The system admits a symmet@a‘jpipj+w if and only if the Bertrand—Darboux
equation is satisfied. This BW,=dW; or

(\a'?), - (Aa“)z}vl . { (\a%); - (xalz)z}vz.

(Vo= Vipal?+ Vi (att-a??) = { N N

We can always find a symmetry such tlzét,a'?a?? take on any prescribed values at a regular
point xo. Thus we can solve the three Bertrand—Darboux equations for the potential to obtain the
system

V22 = Vll + A22V1 + BZZV2,
V1= A%V; + BV,

0=A%, +B3,.

Case 1 A=B3=0. Then the equations af82) and the system admits a three-parameter
family of potentials.

Case 2A35=l_ 0. ThenV1= D4V2 SO we findV11= D5V2, V22=D6V2, V12= D7V2. ThusV depends
on only one parameter. Impossible!

Case 3B3#0. ThenV,=E*V, so we findV,;=EV,, V,,=E%,, V;,=E"V,. ThusV depends
on only one parameter. Impossible! Q.E.D.
[Note added in proof. There is a fourth case to consider. It could bévtisatisfies(32) but that
the integrability conditions are not satisfied indentically, and this yields a further condition
=Al, +Bv,. The lemma still holds but the proof for this case requires the Stackel transform
and will be given later in this serigs.

To obtain the integrability conditions for Ed32) we introduce the dependent variables
wl=v, W?=Vv, W=V, the vector
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e
w=| W2 | (33
e
and the matrices
0O O 1
A(l): AlZ BlZ 0 , (34)

A13 Bl3 Bl2_A22

AlZ BlZ 0
A@=| A2 B22 1|, (35)
A23 BZS AlZ

where

A13: A%Z_ A§2+ BlZA22+ A12A12_ BZZA12,
B'3=B}"~ B+ Al%B™?, (36)

A23= Aiz +B2A12  B23= B%z +BlgL2. (37)
Then the integrability conditions for the system
W= AVw, j=1,2, (39
must hold. These conditions are
AP = Al = ADAD — ADAD = [AD, AD], (39)

If and only if these conditions hold, the system has a soludatepending on three parameters.
From the conditions that

2

L= 2 a9 y)pp; + Wixy), ad=ak,
K,j=1

be a symmetry of the Hamiltonian and relatiof82) we can solve for all of the first partial
derivativesg;(\a) to obtain
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(nath = - %(xa”). Go(Na22) = - %(xa“),

A
zylvf), (40)

This system closes, so the space of solutions is at most three dimensional. However, by the
assumption of superintegrability there are at least three functionally independent symmetries.
Hence the space of second-order symmetries is exactly three dimensional. A symmetry is uniquely
determined by the & 2 symmetric matriXAll (xo)) of its values at a regular poing, and any such
matrix corresponds to a symmetry.

To determine the integrability conditions for systé#®) we define the vector-valued function

all

h(x,y,z) =| a'?

a2 2

and directly compute the 83 matrix functionsA(j) to get the first-order system
%h:Amm j=1,2. (41)
The integrability conditions for this system are

A(12) — -A(zl) = ADA@ - g@ D = [A(l),A(z)]. (42)
Now we investigate the space of third-order constants of the motion:

2
K= X a4 (X1, ) Py by + b’ (X1, X2) Py (43
Kj,i=1
which must satisfy{H,K}=0. Herea¥' is symmetric in the indicek,j,i.
The conditions are

ga" gink i alnn o\
R R A A
i X: X;

dal  gal alnx .. dlnn . o
3—+—=3|-——a"-——=3aV|, i#],
o o &
122 112
2<(9a , ):_aln )\alzz_aln )\am_aln )\am— dln )\a“z "
X X o, oy, o, o,
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abl b? N
—_ 32 Aa s217 "
(9X2 S s’

2
a3 N _ 1gdln
E sil— E —b° j=1,2, (45)
axj 5Xs 23=1 (7Xs
and
2
N
> b>—=0. (46)
s=1 S

The general solution for the terms third order in fjés a sum of third-order monomials in tige
and J;=x,p,—X,p;. Thea' is just a third-order Killing tensor. We require the potentiato be
superintegrable and nondegenerate, and that the highest order terai¥, ithéhe constant of the
motion, be independent of the three parameter¥.iiThe b’ must depend on these parameters
linearly. We set

2

b’ (X1,%2) = 2 f“(xlyxz)_(xlaxz)
=1 J

(We are excluding the purely first order symmetni€ubstituting this expression intd6) we see
that

fll+fil=0, 1=<¢j=<2.
Further
bl = fi'ZVZ + f1’2V12, b% = f%'2V2 + fl'2V22,

bf=fiivy+ 2y, by =13y + 21V,

where the subscrigtdenotes the partial derivative with respecktoSubstituting these results and
expression$32) into the defining equation@b5) and equating coefficients &f;, V,, V34, respec-
tively, we obtain the independent conditions:

Nattt=3fE22A12~ (In)),),

Na?22= 1§12~ 2B12+ (In\),),

112 1£1,205 722 12 (47)
Aal2= $f12(2A%2+ 2B12+ (In\)y),
Nal?2= %f1,2(_ 2A12+ 2B?2—(In \),),
e IV
(48)

f32= 213 2A12- B2+ (In)),),

Note that(47) yields expressions for adl in terms off%? and theAll B, functions. Similarly
(48) yields expressions fofi? in terms of {2 and the A,B functions. Thus we have an
involutive system forf*2, possibly subject to additional conditions fragb). Thus any third-order
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constant of the motion defined By2(x,y) is uniquely determined by its valué%(x,,yo) at some
regular point(xg,Yp). This means that the space of third-order constants of the motion is at most
one-dimensional.

There are two cases to consider.

Case 1:2A=B»?=(In\),, 2B?=-A%??=(In \);. Then it follows from(47) that all alk=0.
The integrability conditions requirén A),;+(In \),,=0, which is the condition for flat space,
Thus by an appropriate orthogonal change of coordinates we can assurhesthaln these new
coordinates we see thatl =B =0 for all i,j. The general solution is

1,2
fre=¢y,

wherec, is a constant. This is theomogeneous isotropic oscillator:

V(X,y) = ax+ By + y(x* +y?). (49

Note that for this very special case a honzero Poisson bracket of two second-order constants of the
motion must be first order.

Case 2:The conditions for Case 1 do not hold for all,Bl. Now (47) yield expressions for
all @i in terms of f12 and the Al Bl functions and not alb® vanish. Similarly(48) yields
expressions for alf2 in terms off%2 and theAX’,BX functions. We will show that the space of
symmetries is exactly one dimensional.

Theorem 6: Let K be a third-order constant of the motion for a superintegrable system with
nondegenerate potential: vV

2 2
K= X av'(x,y)pip;pi + > bi(x,y)pe.
kji=1 =1
Then
2 N
bi(x,y) = 2 f(x,y)—(x,y) (50)
=1 o
with

fli+fl=0, 1<¢,j=<2,

and the #%, b’ are uniquely determined by the numbeér(i,,y,) at some regular pointxy,yo) of
V.
Let

L=, aﬁ)pkpj +Wy, Lp= > a(k£>pkpj + W

be second-order constants of the the motion for a superintegrable system with nondegenerate
potential and Iem(i)(x,y)={at‘i‘>(x,y)}, i=1,2 be 2< 2 matrix functions. Then the Poisson bracket
of these symmetries is given by

2
{Ly,Lob= 2> a9 (xy)pupjpi + b, y)pe (51)
kji=1
where

fkt = 27\2 (adals, - ad)als). (52)
J

Thus{L,,L,} is uniquely determined by the skew-symmetric matrix
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[A,Ap] = A Aw ~ AgAe), (53

hence by the constant matfiXd (X, o) ,.A(1)(Xo0, Yo)] €valuated at a regular point.

Corollary 1: Let V be a superintegrable nondegenerate potential. The space of third-order
constants of the motion is one-dimensional and is spanned by Poisson brackets of the second-
order constants of the motion

Corollary 2: Let V be a superintegrable nondegenerate potential apd,lbe second-order
constants of the motion with matricek),.A,), respectively. Then

{L1,La} =0« [A@), Al =0 = [A)(X0), A (X)] =0

at a regular pointxg.

A. A standard form for 2D superintegrable systems

For superintegrable nondegenerate potentials there is a standard structure allowing the iden-
tification of the space of second-order constants of the motion with the space 2gmmetric
matrices, as well as identification of the space of third-order constants of the motion with the space
of 2X2 skew-symmetric matrices. Indeed,x§ is a regular point then there is a 1-1 linear
correspondence between second-order operhtargl their associated symmetric matricés).
Let{L;,L,}'={L,,L;} be the reversed Poisson bracket. Then the map

{LuLo} = [An)(Xo), A)(Xo)]

is an algebraic isomorphism. Here, L, are in involution if and only if matricesd;)(Xo), A
X (xo) commute. If{L;,L,} # 0 then it is a third-order symmetry and can be uniquely associated
with the skew-symmetric matrik.A;(Xo),.A2(Xo)]. Since commutators of second-order con-
stants of the motion span the space of third-order constants, we can identify these 1-1 with 2
X 2 skew-symmetric matrices. Lét! be the 2< 2 matrix with a 1 in rowi, columnj and 0O for
every other matrix element. Then the symmetric matrices
(ij) = L cij iy = AG) =
AW =2+ =AM, ij=1,2 (54)
form a basis for the three-dimensional space of symmetric matrices. Moreover,
[A(ii)’A(kf)] = %(é‘jklg(if) + 51-(3(”() + 5"(8(](’) + 5i€3(jk)) (55)
where
Bl = %(gij - gji) - _B(J'i)’ ij=1,2.

HereB=0 andB*? forms a basis for the space of skew-symmetric matrices. TBgives the
commutation relations for the second-order symmetrieV. i the isotropic oscillator then there
is no truly third-order symmetry. For any other nondegenerate potential, the space of symmetries
is exactly one dimensional.

To gain a deeper understanding of this structure, it is useful to reformulate the problem of
determining the second-order symmetrieg3f). We set

W(X) = f1V1 + f2V2 + flan

and substitute this result inta/ =\, alV;. Additionally we must impose the Killing tensor
conditions

al =—(n\)al - (Inh)ya?,  2a) +a' =-(Inh)a - (nn)ad, i#]j.

From the expressions foW, we obtain the equations for trad:
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Aalt= f1+ fPALZ 4+ fLIALS
Nal?= i+ fTAT + F2A%2, (56)

)\322: f% + f1812+ .I:ZBZZ

and the condition on the first derivatives of tHe

f% _ fi —-_ f1A12+ f2(A22_ BlZ) _ fllB]'S. (57)

Note the expressions fdi* and f3* in terms of f*, f2, 14

f%l_’_ f1+ fll(BIZ_ A22) - O, f%1+ f2+ fllAlZ: 0.

Differentiating (57) with respect to each ok; and x, and substituting(56) into the Killing
equations we see that we can express each of the second derivatif/e® @i terms of lower

order derivatives of1,f2,f1%. Thus the system is in involution at the second derivative level, but

not at the first derivative level because we have only one condition for the six derivatives
f1,f3,2,f5. We can uniquely determine a symmetry at a regular point by choosing the six param-
eters(f1, 2,111 1,13,f2). The values off,f2 ! at the regular point are analogous to the three
parameters that we can add to the potentials in the three parameter family. For our standard basis,
we fix (f1,2,f1%), =(0,0,0. Then from(56) and(57) we have

(f% f%) _)\(all alZ)

2 12) "\a® a®?)’

Thus we can define a standard set of basis symmegfies =; walfl, () pip+WIK(x) correspond-
ing to a regular poinkg by

0_

fl fl all alz ) )
(1 2) :)\(xo)( ) 22) = Mx0) AW,  WiM(xo) =0.
Xg a~ a Xo

i

The condition oW is actually three conditions sina&¥ depends on three parameters.

B. Multiseparability of 2D systems

From the general theory of variable separation for Hamilton—Jacobi equdti8mee know
that a second-order symmetirydefines a separable system for
2+ 2
H= PPy vy =E
A(XY)

if and only if

1. The symmetrie$l, L form a linearly independent set as quadratic forms.
2. The two quadratic forms have a common eigenbasis of differential forms.

This last requirement means that, expressed in Cartesian coordinates, the At&jrigan be
diagonalized by conjugacy transforms in a neighborhood of a regular point.

Corollary 3: Let V be a superintegrable nondegenerate potential and L be a second-order
constant of the motion with matrix functiof(x). If at some regular poink, the matrix.A(xq) has
two distinct eigenvalues, then,lHcharacterize an orthogonal separable coordinate system

Note: Since a generic22 symmetric matrix has distinct roots, it follows that any superin-
tegrable nondegenerate potential is multiseparable.
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C. The quadratic algebra

Next we investigate the space of fourth-order constants of the motion for 2D systems in some
detail. We already know that the dimension of this space is at most 6. Here a constant of the

motion
2 2
> a™ixy,2pppipi+ 2 bMUX,Y,2)PpmPg + WIX,Y,2), (58
£k,ji=1 m,g=1

must satisfy{H,F}=0. Againa’®, b™ are symmetric in all indices.
The conditions are

sal dln )\
- _ 22 siii ™ (59)
X s
gall aa”” aln
42 2 si NN (60)
X ax, g
aa”” &a"” din 2 0
E siii " ™ 32 asii i # j,
i j S s=1 S
ij ii 1
2& (?b - 6)\2 S]II E ij n )\ | # j,
&Xi aXJ (9XS (9XS
2
ab' dln >\
e O SAAy AL 61
p” 2 axs 2 pot (61)
and
N &W
)\2 bS— (62
i N

Note that thea’™/' is a fourth-order Killing tensor. We require the potentiaio be superintegrable
and nondegenerate and that the highest order termsy‘thén the constant of the motion, be
independent of the three parameters/inThe b™ must depend linearly and/ quadratically on
these parameters.

We set

3

bjk — E fjk,avv(a)’ fjk,a — fkj,a,

a=1
whereW? is defined by
wb \A
Wz) = Vz
we Vi

Then conditiong61) become
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3
I gika . L ghia g e _ oy qahik= S (gkoa® 4 ghivalo 4 pkhoa))
(¢3 a (o7
&xh Xy axj =1 7 7 7

2
. Jd

= > (FSkag + fohag, + fhes)—InX, (63
=1 Ox,

where 1=<j,k,h=<2 and we seta®k=0. From the integrability conditiongd/d, )((9W/07X)
=(al oy )(aW/ax) i #j for Eq. (62) we obtain the conditions

2
Oy TP+ G fKB = g £ = 5, B = 3 (AGIFShe + ACISHE — A — AJFF)
s=1

3
+ 21 (PRl + fai vl — gAkaAl) — fakvall)
'y:

J : p d
— (fARe 4 f"‘kﬁ)&— In X+ (FAhe+ f“Jﬁ)a— Inx, (64)

Xj Xk
wherej #k, 1<, <3 and we sef3:“=0

There are eight independent equati®®3) with o # 3 and we use five of these to define the
five components"* as linear combinations df/d, )f'k“ and f*® We can then eliminate the
a"ik from the remaining three equations to obtain three conditions reléging, ) f« and fik-.
There are six terms of the fori@/ d, )fJk3 Equation(64) with a=8=3 is satlsfled identically.
There are two equation(4) with g= 3 1< a<2 and four equation&3) with «=3. Thus all six
terms of the form(d/ d, )ka 3 can be expressed as linear combination§'af. There are a total of
twelve distinct terms of the forny/ d, )kam 1=<h,j,k,m=<2. We have seen that there are three
conditions on these terms remalnlng fr@@8); there are an additional three such conditions from
(64) with a, 8+ 3. Thus there is a shortfall of six conditions on the first derivatiés, )fl"”‘

There are a total of eighteen distinct terms of the fd@ o, I )flkm with 1<h,j, k £,m
=< 2. Differentiating with respect t&;,X, the three first-order condltlons 063), from which the
a" have been eliminated, we obtain six independent conditions on these second derivatives.
Differentiating each of our expressions for th8 and substituting into Eq(59) we find six
additional conditions on the second derivatives. Also, we can differentiate the three equations from
(62) with «, 8+ 3 to obtain six additional conditions on the second derivatives. This allows us to
express each second-order derivative as a linear combination of lower order derivatives, Thus the
system is in involution.

We conclude that any fourth-order symmetry is uniquely determined by the VEff€z,)
and a subset of six of the valuéslaxh)fik’m(xo) at a regular poink,. Note that by adding an
appropriate linear combination of purely second-order symmetries to the fourth-order symmetry
we can achievd®¥(x,)=0 for all j,k,, so the maximum possible dimension of the space of
purely fourth-order symmetries is six. However any second-order polynomial in the second-order
symmetries is a fourth-order symmetry, and the subspace of polynomial symmetries is at least five
and at most six. We show that it is exactly six.

Theorem 7: The six distinct monomials

(8(11))2, (S(ZZ))Z, (8(12))2, 8(11)8(22), 8(11)8(12>, 8(12)8(22),

form a basis for the space of fourth order symmetries

Proof: Since the three symmetrie$!?, @ S12 gre functionally independent, the six
monomials listed above are linearly independent. Hence they form a basis. Q.E.D.

We can use this result to explicitly expand a general fourth-order symmetry
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2 2
F= X a™xy,2pppipi+ 2 b™AXY,2)pgpg + WXy, 2)
0k,j,i=1 mg=1

in terms of the standard basis. Without loss of generality we can assun@ tbgt 0 is a regular
point. ThenF is uniquely determined by the dat&"/'(0), d,a’™'(0), b™¥0), W(0). We can
uniquely match the data’®i(0) by taking a linear combination of the basis symmetries

(S(ll))Z, (8(22))2, (8(12))2, 8(11)8(12), 8(12)8(22) )

This leaves the symmetrg195@2—-(512)2 whose leading order terms vanish at the regular
point. The expansion coefficient for this term is obtained uniquely from the derivative data
d,a’ii(0). Now we have matched all of the fourth order term&iwith an expansion of the form
F=3&j WS, The differenceF - F is a second-order symmetry. It is uniquely determined by
the datab™¥0),W(0), which has not changed sin¥')(0)=0 for all terms in the standard basis,
Thus F- F=3b™40)SM¥+W(0) and we have expanded the original symmetry in terms of
second-order polynomials in the standard basis.

Similarly we see that the maximal dimension of ten sixth-order symmetries is achieved by
monomials in the second order symmetries.

Theorem 8: The ten distinct monomials

(S<ii))3, (S(ij>)3, (S(ii))ZS(J'J'), (S(ii))ZS(ij), (S(ii))ZS(ii)’ 8(11)8(12>S(22),

fori,j=1,2,i#j form a basis for the space of sixth-order symmetries

Proof: Since the three symmetrie$''?, S?2, S12 are functionally independent, the ten
monomials listed above are linearly independent. Hence they form a basis. Q.E.D.

These theorems establish the closure of the quadratic algebra for 2D superintegrable poten-
tials: All fourth-order and sixth-order symmetries can be expressed as polynomials in the second-
order symmetries.

Again, we can use these results to explicitly expand a general sixth-order symmetry

G= X a"™pppppapet 2 bMpppp+ X clpip +W (65)

i,j,kl,mn=1,2 ihj.kl=1,2 ij=1,2
in terms of the standard basis. Without loss of generality we can assum(@ Bt 0 is a regular

point. ThenG is uniquely determined by the da&d™"(0), 9,2™™"(0), b'(0), d,b"™ (0), W(0).
We can uniquely match the daa#'™"(0) by taking a linear combination of the seven symmetries

(S(ii))S, (S(ii))3, (S(ii))ZS(JJ), (S(ii))ZS(ii)’

fori,j=1,2,i#]. This leaves the three symmetries

S(ll)(s(ll)s(ZZ) _ (8(12))2), 8(12)(8(11)8(22) _ (8(12))2), 8(22)(8(11)8(22) _ (8(12))2)

whose leading order terms vanish at the regular point. The expansion coefficients for these three
terms are obtained uniquely from the derivative daja*™. Now we have matched all of the
sixth order terms irG with an expansion of the for==&;m,SWS WSMY. The differenceG
-G is a fourth-order symmetry. It is uniquely determined by the d4f50), W(0) b™%(0), W(0)
[which has not changed siné'1)(0)=0 for all terms in the standard bakiand the data, b’ (0)
which has changed. Now we can use the argument presented above to expand this fourth-order
symmetry in terms of polynomials in the standard basis.

Example:We indicate, briefly, how the example that we started w(th, fits into the present
structure. In the example the potential is
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1 1
K-= k--
2 i)

1
VY =5 W*(C+y) + ——5— +

X y

where w, k; and k, are arbitrary parameters. It is easy to verify that, apart from an additve
constant, this is the general solution of the system

3 3
Vo=V = ;Vl - ;Vz, Vi,=0.

Hence we have a nondegenerate potential with
A22:§ BZZ:_§ A12=Blz=O.
X! y!

A natural basis of functionally independent second-order symmetrigs i,, S5}, (8). To apply

the above results directly, we need to choose a standard basis at a regular point. We choose the
regular pointx,=(1,1). Then the standard second-order symmet§€d, S@ S12 are the

unique symmetries that restrict pi pf,,pxpy, respectively, aky. Thus

1 1

1 1
S@2 =pl+ (Z - kg)(? - 1) +0’(1-y?),

1 1//1 1-y? (1 1-x2
2= St om -y 5 () 2+ (G (1) e

The bases are related by

S1=8W+0?+K2-3, S=8P+w?+KE-3,

S3=SM + 522 - 2812 4 2 — K212,
Using these relations and our theory we can verify the quadratic algebra structu@. for
V. FINE STRUCTURE FOR 2D SUPERINTEGRABLE SYSTEMS: A ONE-PARAMETER
POTENTIAL

Here we consider a superintegrable system that admits three functionally independent con-
stants of the motion, but only for a one-parameter family of potentitsy) = aV\9(x,y), where
the gradient o is nonzero. If the one-parameter family of potentials cannot be extended to a
two-parameter family, then by the proof of Lemma 1 the system must admit a four-dimensional
family of symmetriesSaj},pip;+W"¥, k=1, ... ,4. The Bertrand—Darboux equations for the poten-

tial are equivalent to a single first-order equation that, without loss of generality, we can write as

V;+DV,=0. (66)

We change variables to a new orthogonal coordinate sy$teot} so that(66) transforms to
da,V=0. In these coordinates the Bertrand—Darboux equation for a symmetry becomes

-V, ,ha?=[(\a'?), - (\aP), ]V, (67)

where
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-\a?A(v) = (Aa'd), - (\a?d),

for all symmetriesall. Thus the equation for the potentid(v) becomesV,,=A(v)V,.
The equations for a second-order symmetry are now

(\alh),=-\,a'?,
(\a?), = 2Aw)rat?+ I at?+ I (a?%-ath),
(\a®?),=-\a", (69)
(\a'?), = - 2A()Aa'?+ 2\ a2+ 2\ (a2 - ath),

2(zat, + (Zath, =z a2+ )\ (att-a?).

From the integrability conditiom,(\a??),=4,(\a??), and (68) we can derive an equation of
the form )\uagzz--- where the right-hand side does not depend on the derivatives af!thié
Ay # 0 then we have an involutory systesf=---, a=--- at the first derivative level. Hence the
space of symmetries would be at most three-dimensional. This is a contradiction, so we must have
\,=0. This implies that the system admits the first-order symmietrg, as well as a second-order
symmetryp?.

Introducing these simplifications in{@&8) and setting:tilzs we obtain the involutive system

)\!
2__ N 2
a A
1 2\
12 _ 12
al?= - ZA@w) + 2= |a2, 69
(3 v) 3)\>a (69

’ ’ r\2 AN
S N

where\=\(v). This system can depend on at most four constattsal? a?2 s at a regular point.
Since the system is at least four-dimensional, we see thagxaistlyfour-dimensional and that the
integrability conditions must be satisfiedThus the system corresponds to a Darboux
space'*>*j The only nontrivial integrability condition ig,a?*=3,a2? or
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2AI_EAZ+EA)\_,+E()\_I>2+<)\_,),—O (70)
37 3 n 3\ N

In terms of the potential functiol, this condition can be expressed as

)\_, + 2V_" — a)\—l/3(vl)l/3
NV
for « a constant.

Theorem 9: Every system with a one-parameter potential and three functionally independent
second-order symmetries is the restriction of some three-parameter potential to a single param-
eter, such that the restricted potential is annihilated by some first-order symmetry of the Darboux
space

Proof: From the discussion above, we can pass to coordingtesuch that the system takes
the form

pa+ pv
Av)

The Poisson brackdp,,S; for any second-order symmetBzSall pip;+W of our system is also

a second-order symmetBa,pp;+W,. Thus the linear operation of differentiating with respect to

u leaves the four-dimensional space of second-order symmetries invariant. We can get more
detailed information about this space by choosing a basis in whighin Jordan canonical form.

A two-dimensional subspace of the symmetries is spanneH layd p2, which are in the null

space ofg,. Thus the possible Jordan forms f@yare

H= +W().

£ 0 00 £000
o 00| (o010
1o 0 00l ™loooof
00 00 0000
0100 £100
looz10| Jotoo
@5 00 0] ™loo0o0o0l
0000 0000
0100
(o000
@500 1]
0000

where ¢ and &; are nonzero.

We will use these canonical forms to show that there always exists a three-dimensional
subspace of the four parameter subspace of second-order symmetries and a nondegenerate poten-
tial V containing,V as a special case, such that the subspace is spannldettgﬁ+p2)/)\+v
pu+W1, and EaJpIpJ+W2 where =all pip;+W is one of the symmetries of the one-parameter
system. First note from the Bertrand—Darboux equations and@®ythat the defining equations
for the nondegenerate potential associated to these three symmetries must be
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’\N/vv = vuu + 3(|n alz)uvu + A(U)vv;
(71
Vo= - 2%
uv )\ u-
Here(In a*?),,=0 andXal p;p;+W is the third symmetry. The integrability conditions for E@1)
reduce to the single requirement

<A,), <A,> <)\,)<A’,>, (A,>"
Al—) +Al—|+2{— || — | -|—| =0. (72)
A A A A A

Consider the case whe#g acting on the space of second-order symmetries has an eigenvector
S with eigenvaluet+# 0. Then this symmetry must have the form

all: bll(v)egu, a12: blZ(v)egu, a22: b22(v)e§u_

Substituting these expressions into E89) we obtain the conditions

1\’ 1\ 2 ’
252_(%) +<)\T) +A)\7:0, (Ina'?),=¢ (73

which, together with(70), implies (72). Further, the integrability conditions for the three symme-
triesH, pﬁ+W, Sto correspond to a nondegenerate potential are

5 N\ ’ N 2 )\/ , 5 5 N ’ N 2 )\/
18¢°=120 —) -8 — | -8A—+6A'-2A°, 2&=|—]| -(—| -A—, (74)
N A A A A N
and these are also implied l9y3) and(70).
For the remaining systems there is a second-order symmetry whose quadratic tei$s are
=2a’p;p; such that the quadratic terms 8=4,S; also correspond to a symmetry, afgb, =0.
Clearly, there are constantsg with |a|2+|g8/2>0 and

P+ P}

Sl=aT+ﬁpﬁ, S,=uS + Tyv),

whereT, is a quadratic form irp,,p, that depends only on. From conditiong69) it is straight-
forward to compute that

+ N
al2=pl%y), a®= “u)\ 13’ all= - Yblz(v)u +c2y),
and, finally, that
VA N 2 N N
- Y + T +AT:0, (Inaz)uzg. (75)

The integrability conditions for the three symmetrﬁs p5+\7v, Sz+\7V2 to correspond to a non-
degenerate potential are

I AK N 2 N ) 5 VAN N 2 N
0=12~] -8/ =) -8A~+6A -282, 0=(~]| -|=] -A~, (76)
A A A A A A

and these, as well d82) are implied by(73) and(70). Q.E.D.
Remark:lt is easy to show using conditior{§9) that the Jordan fornfiv) does not, in fact,
occur.
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VI. CONCLUSIONS AND FURTHER WORK

In this paper we have uncovered the structure of 2D classical superintegrable systems with
nondegenerate potential and verified the existence of a quadratic algebra of symmetries for all
such systems. We have shown how to compute the quadratic algebra relations in general. We have
shown that superintegrable systems with degenerate one and two parameter poteaiiklgion
to the trivial added constantan be considered as restrictions of nondegenerate systems. We have
verified that, with one exception, all nondegenerate superintegrable 2D systems are multisepa-
rable. In the next paper in this series we will develop the properties of the Stackel transform
between superintegrable systems and verify that all nondegenerate 2D systems are Stackel trans-
forms of 2D constant curvature systefadready classifieh*d. This will lead to a simple classi-
fication of all 2D nondegenerate superintegrable systems. Kd"ériiga remarkable paper has
already classified all 20zero potentigl spaces that admit three second-order Killing tensors. Our
classification, considerably simpler than Koenigs’, will show that all of his spaces also admit
nondegenerate potentials. The next papers will extend these results to thre=Gaseprelude to
a treatment for general. The casen=2 is very special and new technigues have to be developed
for highern. However the basic conclusions and structure theorems can be generalized. We will
also show how to solve the quantization problem and carry over the structure theory to the
operator case.
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