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This paper is the first in a series that lays the groundwork for a structure and
classification theory of second-order superintegrable systems, both classical and
quantum, in conformally flat spaces. Many examples of such systems are known,
and lists of possible systems have been determined for constant curvature spaces in
two and three dimensions, as well as few other spaces. Observed features of these
systems are multiseparability, closure of the quadratic algebra of second-order sym-
metries at order 6, use of representation theory of the quadratic algebra to derive
spectral properties of the quantum Schrödinger operator, and a close relationship
with exactly solvable and quasi-exactly solvable systems. Our approach is, rather
than focus on particular spaces and systems, to use a general theoretical method
based on integrability conditions to derive structure common to all systems. In this
first paper we consider classical superintegrable systems on a general two-
dimensional Riemannian manifold and uncover their common structure. We show
that for superintegrable systems with nondegenerate potentials there exists a stan-
dard structure based on the algebra of 232 symmetric matrices, that such systems
are necessarily multiseparable and that the quadratic algebra closes at level 6.
Superintegrable systems with degenerate potentials are also analyzed. This is all
done without making use of lists of systems, so that generalization to higher di-
mensions, where relatively few examples are known, is much easier. ©2005
American Institute of Physics.fDOI: 10.1063/1.1897183g

I. INTRODUCTION AND EXAMPLES

The goal of this series of papers is a structure and classification theory of second-order
superintegrable systems, both classical and quantum, in conformally flat spaces. A classical super-
integrable systemH=oi jg

ij pipj +Vsxd on ann-dimensional local Riemannian manifold is one that
admits 2n−1 functionally independent symmetriessi.e., constants of the motiond Sk, k
=1, . . . ,2n−1 with S1=H. That is,hH ,Skj=0 where

hf,gj = o
j=1

n

ss]xj
f]pj

g − ]pj
f]xj

gdd

is the Poisson bracket for functionsfsx ,pd ,gsx ,pd on phase space.1–8 Note that 2n−1 is the
maximum possible number of functionally independent symmetries and, locally, such symmetries
always exist. The main interest is in symmetries that are polynomials in thepk and are globally
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defined, except for lower dimensional singularities such as poles and branch points. Many tools in
the theory of Hamiltonian systems have been brought to bear on superintegrable systems, such as
R-matrix theory, Lax pairs, exact solvability, quasi-exact solvability, and the Jacobi metric.9–13

However, the most detailed and complete results are obtained from separation of variables meth-
ods in those cases where they are applicable. Standard orthogonal separation of variables tech-
niques are associated with second-order symmetries, e.g., Refs. 14–20 and multiseparable Hamil-
tonian systems provide numerous examples of superintegrability. In these papers we shall
concentrate on second-order superintegrable systems, that is, those in which the symmetries take
the formS=oaijsxdpipj +Wsxd, quadratic in the momenta.

There is an analogous definition for second-order quantum superintegrable systems with
Schrödinger operator

H = D + Vsxd, D =
1
Îg

o
i j

]xi
sÎggijd]xj

,

whereD is the Laplace–Beltrami operator on a Riemannian manifold, expressed in local coordi-
natesxj.

15 Here there are 2n−1 second-order symmetry operators

Sk =
1
Îg

o
i j

]xi
sÎgaskd

i j d]xj
, k = 1, . . . ,2n − 1

with S1=H and fH ,Skg;HSk−SkH=0. Again multiseparable systems yield many examples of
superintegrability. However, as we shall show, not all multiseparable systems are superintegrable
and not all second-order superintegrable systems are multiseparable. There is also a quantization
problem in extending the results for classical systems to operator systems. This problem turns out
to be very easily solved in two dimensions and not difficult in higher dimensions for nondegen-
erate systems.

Superintegrable systems cans1d be solved explicitly, ands2d they can be solved in multiple
ways. It is the information gleaned from comparing the distinct solutions and expressing one
solution set in terms of another that is a primary reason for their interest.

To illustrate some of the main features of superintegrable systems we give a simple example
in real Euclidean space.sTo make clearer the connection with quantum theory and Hilbert space
methods we shall, for this example alone, adopt standard physical normalizations, such as using
the factor −1

2 in front of the free Hamiltonian.d Consider the Schrödinger eigenvalue equation
HC=EC or

−
1

2
S ]2

]x2 +
]2

]y2DC +
1

2
1v2sx2 + y2d +

k1
2 −

1

4

x2 +

k2
2 −

1

4

y2 2C = EC. s1d

This equation separates in three systems:Cartesian coordinatessx,yd; polar coordinatesx
=r cosu, y=r sinu, andelliptical coordinates

x2 = c2su1 − e1dsu2 − e1d
se1 − e2d

, y2 = c2su1 − e2dsu2 − e2d
se2 − e1d

.

The bound states are degenerate with energies given byEn=vs2n+2+k1+k2d for integern. The
corresponding wave functions ares1d Cartesian:

Cn1,n2
sx,yd = 2vs1/2dsk1+k2+2dÎ n1!n2!

Gsn1 + k1 + 1dGsn2 + k2 + 1d
xsk1+1/2dysk2+1/2de−sv/2dsx2+y2dLn1

k1svx2d

3Ln2

k2svy2d, n = n1 + n2, s2d

and theLn
ksxd are Laguerre polynomials.21 s2d Polar:
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Csr,ud = Fq
sk1,k2d

3sudvs1/2ds2q+k1+k2+1dÎ 2m!

Gsm+ 2q + k1 + k2 + 1d
es−vr2/2dr s2q+k1+k2+1dLm

2q+k1+k2+1svr2d,

n = m+ q, s3d

Fq
sk1,k2dsud =Î2s2q + k1 + k2 + 1d

q!Gsk1 + k2 + q + 1d
Gsk2 + q + 1dGsk1 + q + 1d

scosudk1+s1/2dssinudk2+s1/2dPq
sk1,k2d

3scos 2ud, s4d

and thePq
sk1,k2dscos 2ud are Jacobi polynomials.21 s3d Elliptical:

C = e−vsx2+y2dxk1+1/2yk2+1/2p
m=1

n S x2

um − e1
+

y2

um − e2
− c2D

where

x2

u − e1
+

y2

u − e2
− c2 = − c2su1 − udsu2 − ud

su − e1dsu − e2d
s5d

are ellipsoidal wave functions.22,23A basis for the second-order symmetry operators is

L1 = ]x
2 +

S1

4
− k1

2D
x2 − v2x2, L2 = ]y

2 +
S1

4
− k2

2D
y2 − v2y2,

s6d

L3 = sx]y − y]xd2 + S1

4
− k1

2Dy2

x2 + S1

4
− k2

2Dx2

y2 −
1

2
.

sNote that −2H=L1+L2.d The separable solutions are eigenfunctions of the symmetry operators
L1, L3 andL3+e2L1+e1L2 with eigenvalues

lc = − vs2n1 + k1 + 1d, lp = s2q + k1 + k2 + 1d2 + s1 + k1
2 + k2

2d,

le = 2s1 − k1ds1 − k2d − 2e2vsk1 + 1d − 2e1vsk2 + 1d − v2e1e2 − 4o
m=1

q Fe2
k1 + 1

um − e1
+ e1

k2 + 1

um − e2
G ,

respectively. The algebra constructed by repeated commutators is

fL1,L3g = fL3,L2g ; R, fLi,Rg = − 4hLi,Ljj + 16v2L3, i Þ j , i, j = 1,2,

fL3,Rg = 4hL1,L3j − 4hL2,L3j + 8s1 − k2
2dL1 − 8s1 − k1

2dL2,

R2 = 8
3hL1,L2,L3j + 64

3 hL1,L2j + 16v2L3
2 − 16s1 − k2

2dL1
2 − 16s1 − k1

2dL2
2 − 128

3 v2L3

− 64v2s1 − k1
2ds1 − k2

2d. s7d

Note that these relations are quadratic. HerehA,Bj=AB+BA, is a double symmetrizer and there is
a corresponding definition for the triple symmetrizer. The important fact to observe about the
algebra generated byL1,L2,L3, R is that it isclosed under commutation.24,25This is a remarkable
fact, but typical of superintegrable systems with nondegenerate potentials, as we shall show.
Indeed the closure is at level 6, since we have to express the square of the third-order operatorR
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in terms of theLj basis of second-order operators. Note that the degeneracy of the energy eigens-
pace is broken by the alternate separated bases of eigenfunctions. The eigenfunctions of one
separable system can be expanded in terms of the eigenfunctions of another, and this is the source
of nontrivial special function expansion theorems.26 The symmetry operators are in formal self-
adjoint form and suitable for spectral analysis. Also, the quadratic algebra identities allow us to
relate eigenbases and eigenvalues of one symmetry operator to those of another. Indeed the
representation theory of the abstract quadratic algebra can be used to derive spectral properties of
the generatorsLj, in a manner analogous to the use of Lie algebra representation theory to derive
spectral properties of quantum systems that admit Lie symmetry algebras.26–29sNote however that
for superintegrable systems with nondegenerate potential, there is no first-order Lie symmetry.d

A common feature of quantum superintegrable systems, exhibited in the above-given ex-
ample, is that after splitting off a multiplicative functional factor,xsk1+1/2dysk2+1/2de−sv/2dsx2+y2d in the
example, the Schrödinger and symmetry operators are acting on a space of polynomials.30 This is
closely related to the theory of exactly and quasi-exactly solvable systems.11,31,32In the example
the one-dimensional ordinary differential equationssODEsd obtained by separation in the Carte-
sian and polar systems are exactly solvable, in terms of hypergeometric functions, i.e., there is an
infinite set of nested invariant subspaces under the Cartesian or polar separated ODEs, and the
energy eigenvalues are easily obtained. The elliptic system separated equations are quasi-exactly
solvable, i.e., there is a single invariant finite dimensional subspace of a separated ODE and only
for certain parameter choices, and polynomial solutions are obtained for only particular values of
E. However, these values are just the energy eigenvalues obtained in the Cartesian and polar
systems. This characterization of quasi-exactly solvable systems as embedded in PDE superinte-
grable systems provides insight into the nature of these phenomena.

The classical analog of the above-given example is obtained by the replacements]x→px,
]y→py. Commutators go over to Poisson brackets. The operator symmetries become second-order
constants of the motion. Symmetrized operators become products of functions. The quadratic
algebra relations simplify: the highest order terms agree with the operator case but there are fewer
nonzero lower order terms. Indeed, the classical algebra has basis

S1 = px
2 +

1

4
− k1

2

x2 − v2x2, S2 = py
2 +

1

4
− k2

2

y2 − v2y2,

s8d

S3 = sxpy − ypxd2 + S1

4
− k1

2Dy2

x2 + S1

4
− k2

2Dx2

y2, − 2H = S1 + S2.

The classical quadratic algebra relations are

hS1,S3j = hS3,S2j ; R, hSi,Rj = 8SiS j + 16v2S3, i Þ j , i, j = 1,2,

hS3,Rj = 8S1S3 − 8S2S3 + s4 − 16k2
2dS1 − s4 − 16k1

2dS2, s9d

R2 = 16S1S2S3 − 16v2S3
2 + s4 − 16k2

2dS1
2 − s4 − 16k1

2dS2
2 + 4v2s1 − 4k1

2ds1 − 4k2
2d.

In the example the potential

Vsx,yd =
1

2
1v2sx2 + y2d +

k1
2 −

1

4

x2 +

k2
2 −

1

4

y2 2
is nondegeneratein the sense that at any pointx0,y0 where the potential is defined and analytic
and the Sk are functionally independent, we can prescribe the values of
V1sx0,y0d ,V2sx0,y0d ,V11sx0,y0d arbitrarily by choosing appropriate values for the parameters
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v ,k1,k2. Here,V1=]V/]x, V2=]V/]y, etc. fAnother way to look at this is to say that

V1sx0,y0d,V2sx0,y0d,V11sx0,y0d

are the parameters.g This is in addition to the trivial constant that we can always add to a potential.
As we shall show, this requirement for a superintegrable system implies that the potential is any
solution of a system of coupled PDEs of the form

V22 = V11 + A22sx,ydV1 + B22sx,ydV2, V12 = A12sx,ydV1 + B12sx,ydV2,

where the functionsAij ,Bij are subject to certain compatibility conditions, so that the solution
space is of dimension four. Innù2 dimensions the analogous nondegenerate potentials depend on
n+2 parameters. Systems with nondegenerate potentials have the most beautiful properties but
there are also superintegrable systems with degenerate potentials depending on,n+2 parameters.
For n=2 we will show that all of these systems depending on two or three parameters are in a
certain sense specializations of the nondegenerate systems.sFor degenerate systems, first-order
symmetries may exist.d However, superintegrable systems with one parametersi.e., constantd
potentials are in general not restrictions of systems with nondegenerate potentials.fNote that in the
classical case the symmetries corresponding to a constant potential are just Killing tensors.15g
Indeed superintegrable systems with constant potential do not necessarily have a closed quadratic
algebra. See Ref. 44 for a counterexample.

Many examples of such systems are known, and lists of possible systems have been deter-
mined for constant curvature spaces in two and three dimensions, as well as a few other
spaces.33–38 Here, rather than focus on particular spaces and systems, we employ a theoretical
method based on integrability conditions to derive structure common to all such systems. In this
paper we consider classical superintegrable systems on a general two-dimensionals2Dd Riemann-
ian manifold, real or complex, and uncover their common structure. We show that for superinte-
grable systems with nondegenerate potentials there exists a standard structure based on the algebra
of 232 symmetric matrices, that such systems are necessarily multiseparable, and that the qua-
dratic algebra closes at level 6. Superintegrable systems with degenerate potentials are also ana-
lyzed. This is all done without making use of lists of such systems, so that generalization to higher
dimensions, where relatively few examples are known,38 is much easier.

In the next paper in this series we will study the Stäckel transform, or coupling constant
metamorphosis,39,40 for 2D classical superintegrable systems. This is a conformal transformation
of a superintegrable system on one space to a superintegrable system on another space. We will
prove that all nondegenerate 2D superintegrable systems are Stäckel transforms of constant cur-
vature systems and give a complete classification of all 2D superintegrable systems. The following
papers will extend these results to three-dimensionals3Dd systems and the quantum analogs of 2D
and 3D classical systems.

II. SECOND-ORDER KILLING TENSORS FOR 2D COMPLEX RIEMANNIAN MANIFOLDS

Before proceeding to the study of superintegrable systems with potential, we review some
basic facts about second-order symmetriesswithout potentiald of the underlying 2D complex
Riemannian spaces, i.e., second-order Killing tensors.15 These were worked out by Koenigs,41

though here we make an alternate presentation suggested by Refs. 42, 43, and 17. It is always
possible to find a local coordinate systemsx,yd;sx1,x2d defined in a neighborhood ofs0,0d on the
manifold such that the metric is

ds2 = lsx,ydsdx2 + dy2d = ldzdz̄, z= x + iy, z̄= x − iy ,

and the Hamiltonian isH0=sp1
2+p2

2d /l. We can consider a second-order Killing tensorssymmetryd
as a quadratic formL=oi,j=1

2 aijsx,ydpipj , aij =aji , that is in involution with the free Hamiltonian
H0: hH0,Lj=0. The conditions are
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ai
ii = −

l1

l
ai1 −

l2

l
ai2, i = 1,2,

s10d

2ai
ij + aj

ii = −
l1

l
aj1 −

l2

l
aj2, i, j = 1,2, i Þ j .

From these conditions we easily obtain the requirements

2a1
12 = − sa11 − a22d2, 2a2

12 = sa11 − a22d1.

From the integrability conditions for these last equations we see that

Da12 = 0, Dsa11 − a22d = 0, D = ]x
2 + ]y

2

and that there exist analytic functionsfszd, gsz̄d such that

2a12 = fszd + gsz̄d, a11 − a22 = isfszd − gsz̄dd.

Substituting these results in the remaining equations we find

sa11ld1 = − 1
2l2sf + gd, sa22ld2 = − 1

2l1sf + gd.

The integrability condition for these last equations is

]12sslsf − gddd +
i

2
]1ssl1sf + gddd −

i

2
]2ssl2sf + gddd = 0

or

f9 + 3f8
lz

l
+ 2f

lzz

l
= − g9 − 3g8

lz̄

l
− 2g

lzz

l
. s11d

If the space admits at least one Killing tensor independent of the Hamiltonian, then we can always
assume that it is of the formsf ,gd=s1,1d, i.e., we can make the change of coordinatesZ

=edz/Îfszd, Z̄=edz̄/Îgsz̄d so thats11d implies

lzz= lzz.

Prescribing the values ofgs0d ,g8s0d ,g9s0d , fs0d , f8s0d, we can uses11d to computef9s0d. Differ-
entiating this equation successively with respect toz andz̄ we can compute all derivatives off and
g. Thus any solutionsf ,gd of the integrability conditions is uniquely determined by the five
prescribed values. Oncef andg are given, the Killing tensoraij is determined to within addition
of an arbitrary multiple of the HamiltonianH0. Thus the maximum dimension of the space of
second-order Killing tensors is six. As is very well known, this maximum is actually achieved for
flat space and spaces of nonzero constant curvature. Recall that a 2D manifold is of constant
curvature if and only ifk=s]zz̄ ln ld /l is a constant. The space is flat if and only ifk;0.

Note that the maximum dimension of six is achieved if and only if the integrability conditions
for s11d are themselves satisfied identically. Applying the operator]zz̄ to both sides of this expres-
sion we find

3]z̄Slz

l
D f9 + S2]z̄Slzz

l
D + 3]zz̄Slz

l
DD f8 + 2]zz̄Slzz

l
D f

= − 3]zSlz̄

l
Dg9 − S2]zSlzz

l
D + 3]zz̄Slz̄

l
DDg8 − 2]zz̄Slzz

l
Dg. s12d
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If dimension six is achieved then this last condition onf andg cannot be independent ofs11d.
Hence, either the coefficients off9 , f8 , f ,g9 ,g8 ,g all vanish identically, in which case]zz̄ ln l
;0 and the space is flat, or]zz̄ ln lÞ0 ands12d is obtained froms11d through multiplication by
]zz̄ ln l. In the second case one can easily see that

]zS ]zz̄ ln l

l
D = ]z̄S ]zz̄ ln l

l
D = 0

so the space is of nonzero constant curvature.
If the dimension of the space of symmetries is less than six thens12d is independent ofs11d.

In this case we can eliminatef9 andg9 between these two equations and obtain a condition relating
only f8 , f ,g8 ,g:

F2Slzz

l
D

z̄
− 9klz + 3Slz

l
D

zz̄
G f8 + F2Slzz

l
D

zz̄
− 6klzzG f

= − F2Slzz

l
D

z
− 9klz + 3Slz

l
D

zz̄
Gg8 − F2Slz̄z̄

l
D

zz̄
− 6klzzGg. s13d

Thus the remaining systems have spaces of symmetries of dimensionsø4. A straightforward
computation shows that this last equation can be rewritten as

f5lkzgf + f2lkzz+ 8lzkzgf8 = − f5lkz̄gg8 − f2lkz̄z̄ + 8lz̄kz̄gg s14d

where 2lkzz+8lzkz=2lkzz+8lz̄kz̄. If the space of symmetries is of dimension four then the inte-
grability conditions for this last equation are satisfied identically. The systems with dimension four
swhich we call the Darboux spacesd were classified by Koenigs and are four in number.41 If the
equations are not satisfied identically, then we can repeat this procedure and find integrability
conditions for the spaces of symmetries of dimension three. These spaces were also classified by
Koenigs. In the next paper in this series we will find an alternate, much simpler derivation of these
spaces that shows that they all admit superintegrable systems with nondegenerate potentials.

Functional independence and functional linear independence of superintegrable systems. Sup-
pose we have a HamiltonianH=H0+V=oi,j=1

2 gij pipj +Vsx,yd and constants of the motionLk

=Lk+Wskd=oi,j=1
2 askd

i j pipj +Wskdsx,yd, for k=1,2. We saythat such a system issuperintegrable
provided the two functionsLh together with H are functionally independent in the four-
dimensional phase space.sHere the possibleV will always be assumed to form a vector space and
we require functional independence for each suchV and the associatedWskd. This means that we
require that the three quadratic formsLk,H0 are functionally independent.d

In the work to follow it will be important that the functionally independent symmetries also be
functionally linearly independent. It is clear that there are no constantsa ,b ,g not all 0 such that
aL1+bL2+gH0;0. However such a relation is possible ifa ,b ,g are functions. Indeed we have
the example

H0 = pzpz̄ + Vsz̄d, L1 = pz
2, L2 = pzszpz − z̄pz̄d,

Ws1d = 0, Ws2d = Ws2dsz̄d, s15d

where −z̄Vz̄=Wz̄
s2d. Here L2=zL1− z̄H0. sThis superintegrable system is in Lie form.41 It is not

multiseparable.d The following result shows that this example is unique.
Theorem 1: The flat space systems15d is the only superintegrable system in a 2D complex

Riemannian space such that the functionally independent symmetries are functionally linearly
dependent.

Proof: SupposeL1,L2,H are functionally independent symmetries that are functionally lin-
early dependent. Without loss of generality we can assume that
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L2 = fsx,ydL1 + gsx,ydH, df Þ 0, dgÞ 0.

SinceL2 is a symmetry we have the conditionhf ,H0jL1+hg,H0jH0=0 or

fxa
11 + gx/l = 0,

fya
22 + gy/l = 0,

s16d
fya

11 + 2fxa
12 + gy/l = 0,

fxa
22 + 2fya

12 + gx/l = 0.

Thusgx=−lfxa
11, gy=−lfya

22 and the remaining conditions take the form

S2a12 a11 − a22

a22 − a11 2a12 DS fx

fy
D = S0

0
D .

SincedfÞ0 the determinant of the 232 matrix must be zero:

4sa12d2 + sa22 − a11d2 = 0.

We consider the casea22−a11=−2ia12. Then fx=−i f y, so f = fszd. From the Killing equationss10d
we see thata2

12= ia1
12 so, a12=a12szd. The symmetry conditions forV,Ws1d,W2 are Wk

s jd=ak1V1

+ak2V2, j ,k=1,2 and theintegrability conditions for these equations are the Bertrand–Darboux
sBDd conditionssW1

s jdd2=sW2
s jdd1, j =1,2, which in this case simplify to

V22 − V11 + 2iV12 = − F3
a2

12

a12 + 2i
l1

l
+ 2

l2

l
GsV2 + iV1d,

V22 − V11 + 2iV12 = − F3
a2

12

a12 + 2i
l1

l
+ 2

l2

l
GsV2 + iV1d − 3

f2

f
sV2 + iV1d.

Subtracting the second BD equation from the first, we findV1− iV2=0 or V=Vsz̄d. The remaining
Killing tensor equations are

sa11ld1 = − l2a
12, sa11ld2 = 2isa12ld2 − l1a

12,

with integrability condition

− sl2a
12d2 = 2isla12d12 − sl1a

12d1.

At this point it is useful to write all equations in terms of the variablesz, z̄. Then the Killing
tensor equations become

lzz= 0, SlFa11 −
i

2
GD

z

= 0 s17d

and the previous integrability condition becomes

s9 + 3s8
lzz

l
+ 2

lzz

l
= 0,

where
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2a12 = sszd, a11 − a22 = isszd.

We can change to new variablesZszd,Z̄sz̄d= z̄ such that this last equation becomesssZd;1, lZZ

=0. From now on, we assume that the original coordinatesz,z̄ were chosen so thatlzz=0, 2a12

=1, a11−a22= i. In the new coordinates we have

H0 = 2
pzpz̄

l
, L1 = 2ipz

2 + 4Sa11 −
i

2
Dpzpz̄, gz̄ = − ilf8szd,

gz = − 2lSa11 −
i

2
D f8szd,

so the integrability equation forg is

− ilz f8 − ilf9 = − 2lz̄ fSa11 −
i

2
D f8 − 2laz̄

11f8,

which simplifies toslf8szddz=0. Froms17d we see that there are functionsMsz̄d,Nsz̄d such that

l = izM8sz̄d + Nsz̄d, a11 −
i

2
=

Msz̄d
izM8sz̄d + Nsz̄d

.

If M8sz̄dÞ0 then we can choose a new variableZ̄sz̄d such thatM8sZ̄d=−i. Assume that we have
made this choice forz̄ from the beginning. Then the equationslf8szddz=0 implies zf8szd
+Nsz̄df8szd=Qsz̄d, soN8sz̄df9szd=0. If f9szd=0 thenf is linear inz and this is impossible unlessf
is constant, a contradiction. ThusL8=0 and we can takel=z, fszd=lnszd, a11− i /2=−iz̄/z which
implies that the space is flat. Further we can introduce a new variableZszd such that in the new
variablesl=1. If on the other handM8sz̄d;0, then again the space is flat and we can introduce a

new variableZ̄sz̄d such thatl=1 with respect to the new variables. In the case thata22−a11

= +2ia12 the argument is the same, but with the roles ofz and z̄ interchanged. Q.E.D.

III. MAXIMUM DIMENSIONS OF THE SPACES OF POLYNOMIAL CONSTANTS IN 2D
FOR TWO-PARAMETER POTENTIALS

In order to demonstrate the existence and structure of quadratic algebras for 2D superinte-
grable systems, it is important to compute the dimensions of the spaces of symmetries of these
systems that are of orders 2, 3, 4, and 6. These symmetries are necessarily of a special type. The
highest order terms in the momenta are independent of the parameters in the potential, while the
terms of order 2 less in the momenta are linear in these parameters, those of order 4 less are
quadratic, and those of order 6 less are cubic. We will obtain these dimensions exactly, but first we
need to establish sharp upper bounds.

Consider a Hamiltonian in a general two-dimensional space of the form

H =
p1

2 + p2
2

l
+ a1V

1 + a2V
2. s18d

Here,l and the terms in the potentialVi depend on the coordinatesxi while theai are arbitrary
parameters. We say thatV is a two-parameter potentialif the gradients ofV1 andV2 are linearly
independent, that isV1

1V2
2−V2

1V1
2Þ0. We are free to redefineV1 andV2 by taking linear combina-

tions and so we will also assume thatV1
1Þ0 andV2

2Þ0.
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A. Quadratic constants

We wish to determine how large the space of second-order constants of the motion can be
whenV is a two-parameter superintegrable potential, i.e., it admits three functionally independent
constants of the motion. The general constant of second order in the momenta is

L = a11p1
2 + a22p2

2 + 2a12p1p2 + a1b
1 + a2b

2 s19d

with aij andbi being functions of the coordinates alone.
Since hH ,Lj is polynomial inp1, p2, a1 and a2, and theaij , bi and Vi depend only on the

coordinatesx1 andx2, the vanishing ofhH ,Lj gives eight equations for the derivatives ofaij and
bi. Introducing two new symbols,c1=a1

12 andc2=a2
12, we solve these equations to obtain

a1
11 = −

l1

l
a11 −

l2

l
a12, b1

1 = V1
1la11 + V2

1la12,

a2
11 = − 2c1 −

l2

l
a22 −

l1

l
a12, b2

1 = V1
1la12 + V2

1la22,

a1
22 = − 2c2 −

l1

l
a11 −

l2

l
a12, b1

2 = V1
2la11 + V2

2la12,

a2
22 = −

l2

l
a22 −

l1

l
a12, b2

2 = V1
2la12 + V2

2la22. s20d

Without expressions for the derivatives ofc1 and c2 the system is not involutive. However, the
integrability conditions forb1 andb2 give equationssthe Bertrand–Darboux equationsd that can be
used to expressc1 and c2 entirely in terms of theaij . Calculating each ofb12

1 and b12
2 in two

different ways and replacing derivatives of the formaj
ii with the above-given expressions leads to

two equations forc1 andc2,

− 3V1
1lc1 + 3V2

1lc2 = sV1
1l2 + V2

1l1 + lV12
1 dsa22 − a11d + sV1

1l1 + V11
1 l − V2

1l2 − V22
1 lda12,

s21d
− 3V1

2lc1 + 3V2
2lc2 = sV1

2l2 + V2
2l1 + lV12

2 dsa22 − a11d + sV1
2l1 + V11

2 l − V2
2l2 − V22

2 lda12.

These can be solved forc1 andc2 since the gradients ofV1 andV2 are linearly independent.
Since all of the derivatives ofa11, a22, anda12 can be expressed in terms of theaij , at any

regular point, the second-order part ofL is determined by three numbers.
Theorem 2: The space of second-order constants for a 2D superintegrable potential with two

parameters is exactly three-dimensional.

B. Cubic constants

Theorem 3: The space of third-order constants for a 2D superintegrable potential with two
parameters is at most one-dimensional.

Proof: The general constant of third order in the momenta has the form

L = a111p1
3 + a222p2

3 + 3a112p1
2p2 + 3a122p1p2

2 + sa1b
11 + a2b

12dp1 + sa1b
21 + a2b

22dp2. s22d

As for the second-order constants, we demand that the coefficients ofp1, p2, a1, anda2 vanish.
The terms of zeroth order in the momenta lead to

V1
1b11 + V2

1b21 = 0, V1
2b12 + V2

2b22 = 0,

s23d

053509-10 Kalnins, Kress, and Miller J. Math. Phys. 46, 053509 ~2005!

Downloaded 23 Oct 2008 to 130.217.76.77. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



V1
1b12 + V2

1b22 + V1
2b11 + V2

2b21 = 0.

Since we have chosenV1 andV2 such thatV2
2Þ0, we can solve forb11, b22, andb21 in terms ofb12,

and find

b11 = −
V2

1

V2
2b12, b22 =

V2
1

V2
2b12, b21 = −

V1
1

V2
2b12. s24d

The coefficients inhH ,Lj that are first order in the momenta give the six equations,

3V1
1a111+ 3V2

1a112=
2

l
b1

11 +
l1

l2b11 +
l2

l2b21,

3V1
2a111+ 3V2

2a112=
2

l
b1

12 +
l1

l2b12 +
l2

l2b22,

3V1
2a122+ 3V2

2a222=
2

l
b2

22 +
l1

l2b12 +
l2

l2b22,

s25d

3V1
1a122+ 3V2

1a222=
2

l
b2

21 +
l1

l2b11 +
l2

l2b21,

3V1
1a112+ 3V2

1a122=
2

l
b1

21 +
2

l
b2

11,

3V1
2a112+ 3V2

2a122=
2

l
b1

22 +
2

l
b12.

The first four of these, together withs24d, allow a111, a222, a112, anda122 to be expressed in terms
of b12 and its derivatives, provided that, as assumed,V1

1V2
2−V2

1V1
2Þ0. Then, substituting these

expressions ands24d into the last two equations we obtain two equations forb1
12 and b2

12 of the
form

− V1
1b1

12 + V2
1b2

12 =
f1sl,li,Vk

j d
lsV1

1V2
2 − V2

1V1
2dV2

2b12, s26d

− V1
2b1

12 + V2
2b2

12 =
f2sl,li,Vk

j d
lsV1

1V2
2 − V2

1V1
2dV2

2b12, s27d

where the two functionsfmsl ,li ,Vk
j d are polynomial in their arguments. So the derivatives ofb12

are multiples ofb12 providedV1
1V2

2−V2
1V1

2Þ0 andV2
2Þ0. Hence at any regular point, all of theaijk

and bij are determined by one number and so the space of third-order constants is at most
one-dimensional. Q.E.D.

C. Fourth- and sixth-order constants

Theorem 4: The space of fourth-order constants for a 2D superintegrable potential with two
parameters is at most six-dimensional.

Proof: The general constant of fourth order has the form
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L = o
i,j ,k,l=1,2

aijklpipjpkpl + o
i,j ,k=1,2

bij ,kakpipj + o
i,j=1,2

c,i jaia j . s28d

The vanishing of the coefficients ofpi in hH ,Lj allow all of the derivative of thec,i j to be
expressed in terms of thebij ,k,

c1
,11= lV1

1b11,1+ lV2
1b12,1,

c2
,11= lV1

1b12,1+ lV2
1b22,1,

c1
,12= lV1

1b11,2+ lV2
1b12,2+ lV1

2b11,1+ lV2
2b12,1,

s29d
c2

,12= lV1
1b12,2+ lV2

1b12,2+ lV1
2b11,1+ lV2

2b12,1,

c1
,22= lV1

2b11,2+ lV2
2b12,2,

c2
,22= lV1

2b12,2+ lV1
2b22,2.

The integrability conditions of these equations, that is, equations of the formc12
,i j =c21

,i j , along with
terms fromhH ,Lj that are cubic in the momenta, provide eleven equations for the twelve deriva-
tives of the bij ,k. If we define b=sb1

11,1,b2
11,1,b1

11,2,b2
11,2,b1

12,1,b1
12,2,b2

12,2,b1
22,1,b2

22,1,b1
22,2,b2

22,2d,
i.e., all of the derivatives of theb’s excludingb2

12,1, then when these equations are written in matrix
form as Ab =B, the coefficient matrixA has determinant that is a constant multiple of
l−5V1

1sV1
1V2

2−V2
1V1

2d. Hence all of the derivative of theb’s exceptb2
12,1 can be expressed in terms of

the bij ,k and theaijkl provided thatV1
1Þ0 andV1

1V2
2−V2

1V1
2Þ0. For the remaining derivative, we

defined1=b2
12,1.

Now, the integrability conditions for thebij ,k and the equations obtained from the terms of
hH ,Lj that are of fifth order in the momenta give twelve equations for the ten derivatives ofaijkl ,m

and the two derivativesd1
1 and d2

1. The coefficient matrix of these terms in the equations has
determinant that is a constant multiple ofsV1

1V2
2−V2

1V1
2d3slV1

1d−2, hence these equations can be
solved providedV1

1V2
2−V2

1V1
2Þ0 andV1

1Þ0.
So, the 5aijkl , 6 bij ,k, 3 c,i j andd1 form an involutive system. Each of these symbols can be

specified arbitrarily at a point. The threec,i j give rise to three zeroth-order constants, the sixbij ,k

give rise to six quadratic constantssthree multiplied bya1 and three multiplied bya2d, and so
there are at most5+1=6 genuinely fourth-order constants. Q.E.D.

For the general sixth-order constant

L = o
i,j ,k,l,m,n=1,2

aijklmnpipjpkplpmpn + o
i,j ,k,l,m=1,2

bijkl ,mampipjpkpl + o
i,j ,k,l=1,2

cij ,klakalpipj

+ o
i,j ,k=1,2

d,i jkaia jak s30d

the argument proceeds similarly.
Theorem 5: The space of sixth-order constants for a 2D superintegrable potential with two

parameters is at most ten-dimensional.
We will show that the space is exactly ten-dimensional.

IV. NONDEGENERATE SUPERINTEGRABLE SYSTEMS IN TWO DIMENSIONS

Now we take up our main topic: a nondegenerate superintegrable system on a two-
dimensional manifold. In earlier work we have classified the possible superintegrable systems on
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2D complex flat space, the two-sphere, and on Darboux spaces.44,45,34–36. The theory we present
here applies to all 2D spaces and adds greater understanding of the structure of these systems. The
Hamiltonian system is

H =
p1

2 + p2
2

lsx,yd
+ Vsx,yd s31d

in local orthogonal coordinates. We say that the system issecond-order superintegrablewith
nondegenerate potentialif it admits three functionally independent second-order symmetries and
the potential is three-parametersin addition to the usual additive parameterd. That is, at each point
where the potential is defined and analyticsa regular pointd, we can prescribe the value ofV1, V2

andV11 for some unique choice of parameters. Using the two Bertrand–Darboux equations satis-
fied by the potentialscoming from the two symmetries other than the Hamiltoniand we can solve
for V22−V11 andV12 in terms of the first derivatives ofV.

Thus a nondegenerate potentialVsx,yd obeys

V22 = V11 + A22V1 + B22V2,

s32d
V12 = A12V1 + B12V2.

Here,V1,V2,V11 can be prescribed arbitrarily at a fixed regular point.
A seemingly weaker requirement for a superintegrable system is that, as usual, it admits three

functionally independent constants of the motion, but only for a two-parameter family of poten-
tials Vsx,yd=aVs1dsx,yd+bVs2dsx,yd, where the gradients ofVs1d,Vs2d are linearly independent.

Lemma 1: “Two implies three.” If the system (31) admits three functionally independent
constants of the motion and a two-parameter family of potentials, then it admits a three-parameter
family (32).

Proof: The system admits a symmetryoaij pipj +W if and only if the Bertrand–Darboux
equation is satisfied. This is] jWi =]iWj or

sV22 − V11da12 + V12sa11 − a22d = F sla12d1 − sla11d2

l
GV1 + F sla22d1 − sla12d2

l
GV2.

We can always find a symmetry such thata11,a12,a22 take on any prescribed values at a regular
point x0. Thus we can solve the three Bertrand–Darboux equations for the potential to obtain the
system

V22 = V11 + A22V1 + B22V2,

V12 = A12V1 + B12V2,

0 = A3V1 + B3V2.

Case 1. A3;B3;0. Then the equations ares32d and the system admits a three-parameter
family of potentials.

Case 2. A3ò0. ThenV1=D4V2 so we findV11=D5V2, V22=D6V2, V12=D7V2. ThusV depends
on only one parameter. Impossible!

Case 3. B3ò0. ThenV2=E4V1 so we findV11=E5V1, V22=E6V1, V12=E7V1. ThusV depends
on only one parameter. Impossible! Q.E.D.
fNote added in proof. There is a fourth case to consider. It could be thatV satisfiess32d but that
the integrability conditions are not satisfied indentically, and this yields a further conditionV11

=A11V1+B11V2. The lemma still holds but the proof for this case requires the Stäckel transform
and will be given later in this series.g

To obtain the integrability conditions for Eq.s32d we introduce the dependent variables
Ws1d=V1, Ws2d=V2, Ws3d=V11, the vector
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w = 1Ws1d

Ws2d

Ws3d 2 , s33d

and the matrices

A s1d = 1 0 0 1

A12 B12 0

A13 B13 B12 − A222 , s34d

A s2d = 1A12 B12 0

A22 B22 1

A23 B23 A122 , s35d

where

A13 = A2
12 − A1

22 + B12A22 + A12A12 − B22A12,

B13 = B2
12 − B1

22 + A12B12, s36d

A23 = A1
12 + B12A12, B23 = B1

12 + B12B12. s37d

Then the integrability conditions for the system

]xj
w = A s jdw, j = 1,2, s38d

must hold. These conditions are

Ai
s jd − Aj

sid = AsidAs jd − As jdAsid ; fAsid,As jdg. s39d

If and only if these conditions hold, the system has a solutionV depending on three parameters.
From the conditions that

L = o
k,j=1

2

akjsx,ydpkpj + Wsx,yd, akj = ajk,

be a symmetry of the Hamiltonian and relationss32d we can solve for all of the first partial
derivatives]islajkd to obtain
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]1sla11d = −
l2

l
sla12d, ]2sla22d = −

l1

l
sla12d,

3]2sla12d = sla11 − la22dS− B12 −
l1

l
D + sla12dS− B22 +

l2

l
D ,

3]1sla22d = sla11 − la22dS2B12 −
l1

l
D + sla12dS2B22 +

l2

l
D , s40d

3]1sla12d = sla11 − la22dSA12 +
l2

l
D + sla12dSA22 +

l1

l
D ,

3]2sla11d = sla11 − la22dS− 2A12 +
l2

l
D + sla12dS− 2A22 +

l1

l
D .

This system closes, so the space of solutions is at most three dimensional. However, by the
assumption of superintegrability there are at least three functionally independent symmetries.
Hence the space of second-order symmetries is exactly three dimensional. A symmetry is uniquely
determined by the 232 symmetric matrixsAijsx0dd of its values at a regular pointx0, and any such
matrix corresponds to a symmetry.

To determine the integrability conditions for systems40d we define the vector-valued function

hsx,y,zd = 1a11

a12

a222
and directly compute the 333 matrix functionsAs jd to get the first-order system

]xj
h = As jdh, j = 1,2. s41d

The integrability conditions for this system are

A1
s2d − A2

s1d = As1dAs2d − As2dAs1d ; fAs1d,As2dg. s42d

Now we investigate the space of third-order constants of the motion:

K = o
k,j ,i=1

2

akjisx1,x2dpkpjpi + b,sx1,x2dp,, s43d

which must satisfyhH ,Kj=0. Hereakji is symmetric in the indicesk,j ,i.
The conditions are

2
]aiii

]xi
= − 3S ] ln l

]xi

aiii +
] ln l

]xj

ajiiD, i Þ j ,

3
]ajii

]xi
+

]aiii

]xj
= 3S−

] ln l

]xi

aiij −
] ln l

]xj

aij jD, i Þ j ,

2S ]a122

]x1
+

]a112

]x2
D = −

] ln l

]x1

a122−
] ln l

]x1

a111−
] ln l

]x2

a222−
] ln l

]x2

a112, s44d
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]b1

]x2
+

]b2

]x1
= 3o

s=1

2

las21]V

]xs
,

]bj

]xj
=

3

2o
s=1

2

asjj ]V

]xs
−

1

2o
s=1

2
] ln l

]xs
bs, j = 1,2, s45d

and

o
s=1

2

bs]V

]xs
= 0. s46d

The general solution for the terms third order in thepj is a sum of third-order monomials in thepj

andJ3=x1p2−x2p1. The akji is just a third-order Killing tensor. We require the potentialV to be
superintegrable and nondegenerate, and that the highest order terms, theakji in the constant of the
motion, be independent of the three parameters inV. The b, must depend on these parameters
linearly. We set

b,sx1,x2d = o
j=1

2

f,,jsx1,x2d
]V

]xj
sx1,x2d.

sWe are excluding the purely first order symmetries.d Substituting this expression intos46d we see
that

f,,j + f j ,, = 0, 1ø ,, j ø 2.

Further

b1
1 = f1

1,2V2 + f1,2V12, b2
1 = f2

1,2V2 + f1,2V22,

b1
2 = f1

2,1V1 + f2,1V11, b2
2 = f2

2,1V1 + f2,1V12,

where the subscriptj denotes the partial derivative with respect toxj. Substituting these results and
expressionss32d into the defining equationss45d and equating coefficients ofV1, V2, V11, respec-
tively, we obtain the independent conditions:

la111= 1
3 f1,2s2A12 − sln ld2d,

la222= 1
3 f1,2s− 2B12 + sln ld1d,

s47d
la112= 1

9 f1,2s2A22 + 2B12 + sln ld1d,

la122= 1
9 f1,2s− 2A12 + 2B22 − sln ld2d,

f1
1,2= 1

3 f1,2sA22 − 2B12 − sln ld1d,

s48d
f2
1,2= 1

3 f1,2s− 2A12 − B22 + sln ld2d,

Note thats47d yields expressions for allaijk in terms off1,2 and theAij ,Bij , functions. Similarly
s48d yields expressions forfk

1,2 in terms of f1,2 and theAk,,Bk, functions. Thus we have an
involutive system forf1,2, possibly subject to additional conditions froms45d. Thus any third-order
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constant of the motion defined byf1,2sx,yd is uniquely determined by its valuef1,2sx0,y0d at some
regular pointsx0,y0d. This means that the space of third-order constants of the motion is at most
one-dimensional.

There are two cases to consider.
Case 1:2A12=B22=sln ld2, 2B12=−A22=sln ld1. Then it follows froms47d that all aijk ;0.

The integrability conditions requiresln ld11+sln ld22=0, which is the condition for flat space,
Thus by an appropriate orthogonal change of coordinates we can assume thatl;1. In these new
coordinates we see thatAij =Bij ;0 for all i,j . The general solution is

f1,2= c1,

wherec1, is a constant. This is thehomogeneous isotropic oscillator:

Vsx,yd = ax + by + gsx2 + y2d. s49d

Note that for this very special case a nonzero Poisson bracket of two second-order constants of the
motion must be first order.

Case 2:The conditions for Case 1 do not hold for allAij ,Bij . Now s47d yield expressions for
all aijk in terms of f12 and theAij ,Bij functions and not allaijk vanish. Similarlys48d yields
expressions for allf i

1,2 in terms of f1,2 and theAk,,Bk, functions. We will show that the space of
symmetries is exactly one dimensional.

Theorem 6: Let K be a third-order constant of the motion for a superintegrable system with
nondegenerate potential V:

K = o
k,j ,i=1

2

akjisx,ydpkpjpi + o
,=1

2

b,sx,ydp,.

Then

b,sx,yd = o
j=1

2

f,,jsx,yd
]V

]xj
sx,yd s50d

with

f,,j + f j ,, = 0, 1ø ,, j ø 2,

and the aijk, b, are uniquely determined by the number f1,2sx0,y0d at some regular pointsx0,y0d of
V.

Let

L1 = o as1d
kj pkpj + Ws1d, L2 = o as2d

kj pkpj + Ws2d

be second-order constants of the the motion for a superintegrable system with nondegenerate
potential and letAsidsx,yd=hasid

kj sx,ydj, i =1,2 be 232 matrix functions. Then the Poisson bracket
of these symmetries is given by

hL1,L2j = o
k,j ,i=1

2

akjisx,ydpkpjpi + b,sx,ydp, s51d

where

fk,, = 2lo
j

sas2d
kj as1d

j, − as1d
kj as2d

j, d. s52d

Thus hL1,L2j is uniquely determined by the skew-symmetric matrix
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fAs2d,As1dg ; As2dAs1d − As1dAs2d, s53d

hence by the constant matrixfAs2dsx0,y0d ,As1dsx0,y0dg evaluated at a regular point.
Corollary 1: Let V be a superintegrable nondegenerate potential. The space of third-order

constants of the motion is one-dimensional and is spanned by Poisson brackets of the second-
order constants of the motion.

Corollary 2: Let V be a superintegrable nondegenerate potential and L1,L2 be second-order
constants of the motion with matricesAs1d,As2d, respectively. Then

hL1,L2j ; 0 ⇔ fAs1d,As2dg ; 0 ⇔ fAs1dsx0d,As2dsx0dg = 0

at a regular pointx0.

A. A standard form for 2D superintegrable systems

For superintegrable nondegenerate potentials there is a standard structure allowing the iden-
tification of the space of second-order constants of the motion with the space of 232 symmetric
matrices, as well as identification of the space of third-order constants of the motion with the space
of 232 skew-symmetric matrices. Indeed, ifx0 is a regular point then there is a 1−1 linear
correspondence between second-order operatorsL and their associated symmetric matricesAsx0d.
Let hL1,L2j8=hL2,L1j be the reversed Poisson bracket. Then the map

hL1,L2j8 ⇔ fAs1dsx0d,As2dsx0dg

is an algebraic isomorphism. Here,L1,L2 are in involution if and only if matricesAs1dsx0d, As2d
3sx0d commute. IfhL1,L2jÞ0 then it is a third-order symmetry and can be uniquely associated
with the skew-symmetric matrixfAs1dsx0d ,As2dsx0dg. Since commutators of second-order con-
stants of the motion span the space of third-order constants, we can identify these 1−1 with 2
32 skew-symmetric matrices. LetEi j be the 232 matrix with a 1 in row i, column j and 0 for
every other matrix element. Then the symmetric matrices

Asi j d = 1
2sEi j + E jid = As ji d, i, j = 1,2 s54d

form a basis for the three-dimensional space of symmetric matrices. Moreover,

fAsi j d,Ask,dg = 1
2sd jkBsi,d + d j,Bsikd + dikBs j,d + di,Bs jkdd s55d

where

Bsi j d = 1
2sEi j − E jid = − Bs ji d, i, j = 1,2.

HereBsii d=0 andBs12d forms a basis for the space of skew-symmetric matrices. Thuss55d gives the
commutation relations for the second-order symmetries. IfV is the isotropic oscillator then there
is no truly third-order symmetry. For any other nondegenerate potential, the space of symmetries
is exactly one dimensional.

To gain a deeper understanding of this structure, it is useful to reformulate the problem of
determining the second-order symmetries ofs31d. We set

Wsxd = f1V1 + f2V2 + f11V11

and substitute this result intoWi =lo j=1
2 aijVj. Additionally we must impose the Killing tensor

conditions

ai
ii = − sln ld1a

1i − sln ld2a
2i, 2ai

ij + aj
ii = − sln ld1a

1j − sln ld2a
2j, i Þ j .

From the expressions forWi we obtain the equations for theaij :
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la11 = f1
1 + f2A12 + f11A13,

la12 = f2
1 + f1A12 + f2A22, s56d

la22 = f2
2 + f1B12 + f2B22

and the condition on the first derivatives of thef i:

f2
1 − f1

2 = − f1A12 + f2sA22 − B12d − f11B13. s57d

Note the expressions forf1
11 and f2

11 in terms of f1, f2, f11:

f1
11 + f1 + f11sB12 − A22d = 0, f2

11 + f2 + f11A12 = 0.

Differentiating s57d with respect to each ofx1 and x2 and substitutings56d into the Killing
equations we see that we can express each of the second derivatives off1,f2 in terms of lower
order derivatives off1,f2,f11. Thus the system is in involution at the second derivative level, but
not at the first derivative level because we have only one condition for the six derivatives
f1
1, f2

1, f1
2, f2

2. We can uniquely determine a symmetry at a regular point by choosing the six param-
eterssf1, f2, f11, f1

1, f2
1, f2

2d. The values off1,f2,f11 at the regular point are analogous to the three
parameters that we can add to the potentials in the three parameter family. For our standard basis,
we fix sf1, f2, f11dx0

=s0,0,0d. Then froms56d and s57d we have

S f1
1 f2

1

f1
2 f2

2D = lSa11 a12

a21 a22D .

Thus we can define a standard set of basis symmetriesSs jkd=oi,has jkd
ih sxdpiph+Ws jkdsxd correspond-

ing to a regular pointx0 by

S f1
1 f2

1

f1
2 f2

2D
x0

= lsx0dSa11 a12

a21 a22D
x0

= lsx0dAs jkd, Ws jkdsx0d = 0.

The condition onWs jkd is actually three conditions sinceWs jkd depends on three parameters.

B. Multiseparability of 2D systems

From the general theory of variable separation for Hamilton–Jacobi equations19,20 we know
that a second-order symmetryL defines a separable system for

H =
px

2 + py
2

lsx,yd
+ Vsx,yd = E

if and only if

1. The symmetriesH, L form a linearly independent set as quadratic forms.
2. The two quadratic forms have a common eigenbasis of differential forms.

This last requirement means that, expressed in Cartesian coordinates, the matrixAsxd can be
diagonalized by conjugacy transforms in a neighborhood of a regular point.

Corollary 3: Let V be a superintegrable nondegenerate potential and L be a second-order
constant of the motion with matrix functionAsxd. If at some regular pointx0 the matrixAsx0d has
two distinct eigenvalues, then H,L characterize an orthogonal separable coordinate system.

Note: Since a generic 232 symmetric matrix has distinct roots, it follows that any superin-
tegrable nondegenerate potential is multiseparable.
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C. The quadratic algebra

Next we investigate the space of fourth-order constants of the motion for 2D systems in some
detail. We already know that the dimension of this space is at most 6. Here a constant of the
motion

F = o
,,k,j ,i=1

2

a,kjisx,y,zdp,pkpjpi + o
m,q=1

2

bmqsx,y,zdpmpq + Wsx,y,zd, s58d

must satisfyhH ,Fj=0. Againa,kji, bmq are symmetric in all indices.
The conditions are

]aiiii

]xi
= − 2o

s=1

2

asiii ] ln l

]xs
, s59d

4
]ajiii

]xi
+

]aiiii

]xj
= − 6o

s=1

2

asiij ] ln l

]xs
, i Þ j , s60d

3
]ajjii

]xi
+ 2

]aiii j

]xj
= − o

s=1

2

asiii ] ln l

]xs
− 3o

s=1

2

asij j ] ln l

]xs
, i Þ j ,

2
]bij

]xi
+

]bii

]xj
= 6lo

s=1

3

asjii ]V

]xs
− o

s=1

2

bsj] ln l

]xs
, i Þ j ,

]bii

]xi
= 2lo

s=1

3

asiii ]V

]xs
− o

s=1

2

bsj] ln l

]xs
, s61d

and

lo
s=1

3

bsi ]V

]xs
=

]W

]xi
. s62d

Note that thea,kji is a fourth-order Killing tensor. We require the potentialV to be superintegrable
and nondegenerate and that the highest order terms, thea,kji in the constant of the motion, be
independent of the three parameters inV. The bmq must depend linearly andW quadratically on
these parameters.

We set

bjk = o
a=1

3

f jk,aWsad, f jk,a = fkj,a,

whereWsad is defined by

1Ws1d

Ws2d

Ws3d 2 = 1 V1

V2

V11
2 .

Then conditionss61d become
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]

]xh

f jk,a +
]

]xk

fhj,a +
]

]xj

fkh,a − 2laahjk = − o
g=1

3

sf jk,gAga
shd + fhj,gAga

skd + fkh,gAga
s jd d

− o
s=1

2

sfsk,adhk + fsj,adkh + fsh,ad jkd
]

]xs

ln l, s63d

where 1ø j ,k,hø2 and we seta3hjk;0. From the integrability conditionss] /]xj
ds]W/]xid

=s] /]xi
ds]W/]xjd, i Þ j for Eq. s62d we obtain the conditions

]xj
fbk,a + ]xj

fak,b − ]xk
fb j ,a − ]xk

fa j ,b = o
s=1

2

sAbs
skdfsj,a + Aas

skdfsj,b − Abs
s jdfsk,a − Aas

s jdfsk,bd

+ o
g=1

3

sfb j ,gAga
skd + fa j ,gAgb

skd − fbk,gAga
s jd − fak,gAgb

s jd d

− sfbk,a + fak,bd
]

]xj

ln l + sfb j ,a + fa j ,bd
]

]xk

ln l, s64d

where j Þk, 1øa , bø3 and we setf3j ,a;0.
There are eight independent equationss63d with aÞ3 and we use five of these to define the

five componentsaihjk as linear combinations ofs] /]xh
df jk,a and f jk,a. We can then eliminate the

aihjk from the remaining three equations to obtain three conditions relatings] /]xh
df jk,a and f jk,a.

There are six terms of the forms] /]xh
df jk,3. Equations64d with a=b=3 is satisfied identically.

There are two equationss64d with b=3, 1øaø2 and four equationss63d with a=3. Thus all six
terms of the forms] /]xh

df jk,3 can be expressed as linear combinations off jk,a. There are a total of
twelve distinct terms of the forms] /]xh

df jk,m, 1øh, j ,k,mø2. We have seen that there are three
conditions on these terms remaining froms63d; there are an additional three such conditions from
s64d with a ,bÞ3. Thus there is a shortfall of six conditions on the first derivativess] /]xh

df jk,m.
There are a total of eighteen distinct terms of the forms]2/]xh

]x,
df jk,m with 1øh, j ,k,, ,m

ø2. Differentiating with respect tox1,x2 the three first-order conditions ofs63d, from which the
aihjk have been eliminated, we obtain six independent conditions on these second derivatives.
Differentiating each of our expressions for theaihjk and substituting into Eq.s59d we find six
additional conditions on the second derivatives. Also, we can differentiate the three equations from
s62d with a ,bÞ3 to obtain six additional conditions on the second derivatives. This allows us to
express each second-order derivative as a linear combination of lower order derivatives, Thus the
system is in involution.

We conclude that any fourth-order symmetry is uniquely determined by the valuesf jk,asx0d
and a subset of six of the valuess] /]xh

df jk,msx0d at a regular pointx0. Note that by adding an
appropriate linear combination of purely second-order symmetries to the fourth-order symmetry
we can achievef jk,asx0d=0 for all j ,k,a, so the maximum possible dimension of the space of
purely fourth-order symmetries is six. However any second-order polynomial in the second-order
symmetries is a fourth-order symmetry, and the subspace of polynomial symmetries is at least five
and at most six. We show that it is exactly six.

Theorem 7: The six distinct monomials

sSs11dd2, sSs22dd2, sSs12dd2, Ss11dSs22d, Ss11dSs12d, Ss12dSs22d,

form a basis for the space of fourth order symmetries.
Proof: Since the three symmetriesSs11d, Ss22d, Ss12d are functionally independent, the six

monomials listed above are linearly independent. Hence they form a basis. Q.E.D.
We can use this result to explicitly expand a general fourth-order symmetry

053509-21 Second-order superintegrable systems. 1 J. Math. Phys. 46, 053509 ~2005!

Downloaded 23 Oct 2008 to 130.217.76.77. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



F = o
,,k,j ,i=1

2

a,kjisx,y,zdp,pkpjpi + o
m,q=1

2

bmqsx,y,zdpmpq + Wsx,y,zd

in terms of the standard basis. Without loss of generality we can assume thats0,0d=0 is a regular
point. ThenF is uniquely determined by the dataa,kjis0d, ]ma,kjis0d, bmqs0d, Ws0d. We can
uniquely match the dataa,kjis0d by taking a linear combination of the basis symmetries

sSs11dd2, sSs22dd2, sSs12dd2, Ss11dSs12d, Ss12dSs22d.

This leaves the symmetrySs11dSs22d−sSs12dd2, whose leading order terms vanish at the regular
point. The expansion coefficient for this term is obtained uniquely from the derivative data
]ma,kjis0d. Now we have matched all of the fourth order terms inF with an expansion of the form
F=oji jk,Ssi j dSsk,d. The differenceF−F is a second-order symmetry. It is uniquely determined by
the databmqs0d,Ws0d, which has not changed sinceWsi j ds0d=0 for all terms in the standard basis,
Thus F−F=obmqs0dSsmqd+Ws0d and we have expanded the original symmetry in terms of
second-order polynomials in the standard basis.

Similarly we see that the maximal dimension of ten sixth-order symmetries is achieved by
monomials in the second order symmetries.

Theorem 8: The ten distinct monomials

sSsii dd3, sSsi j dd3, sSsii dd2Ss j j d, sSsii dd2Ssi j d, sSsi j dd2Ssii d, Ss11dSs12dSs22d,

for i , j =1,2, i Þ j form a basis for the space of sixth-order symmetries.
Proof: Since the three symmetriesSs11d, Ss22d, Ss12d are functionally independent, the ten

monomials listed above are linearly independent. Hence they form a basis. Q.E.D.
These theorems establish the closure of the quadratic algebra for 2D superintegrable poten-

tials: All fourth-order and sixth-order symmetries can be expressed as polynomials in the second-
order symmetries.

Again, we can use these results to explicitly expand a general sixth-order symmetry

G = o
i,j ,k,l,m,n=1,2

aijklmnpipjpkplpmpn + o
i,j ,k,l=1,2

bijklpipjpkpl + o
i,j=1,2

cij pipj + W s65d

in terms of the standard basis. Without loss of generality we can assume thats0,0d=0 is a regular
point. ThenG is uniquely determined by the dataaijklmns0d, ]qa

ijklmns0d, bijkls0d, ]mbijkls0d, Ws0d.
We can uniquely match the dataaijklmns0d by taking a linear combination of the seven symmetries

sSsii dd3, sSsi j dd3, sSsii dd2Ss j j d, sSsii dd2Ssi j d,

for i , j =1,2, i Þ j . This leaves the three symmetries

Ss11dsSs11dSs22d − sSs12dd2d, Ss12dsSs11dSs22d − sSs12dd2d, Ss22dsSs11dSs22d − sSs12dd2d

whose leading order terms vanish at the regular point. The expansion coefficients for these three
terms are obtained uniquely from the derivative data]qa

ijklmn. Now we have matched all of the
sixth order terms inG with an expansion of the formG=oji jklmnSsi j dSskldSsmnd. The differenceG
−G is a fourth-order symmetry. It is uniquely determined by the databijkls0d, Ws0d bmqs0d, Ws0d
fwhich has not changed sinceWsi j ds0d=0 for all terms in the standard basisg, and the data]mb̃ijkls0d
which has changed. Now we can use the argument presented above to expand this fourth-order
symmetry in terms of polynomials in the standard basis.

Example:We indicate, briefly, how the example that we started with,s1d, fits into the present
structure. In the example the potential is
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Vsx,yd =
1

2
1v2sx2 + y2d +

k1
2 −

1

4

x2 +

k2
2 −

1

4

y2 2 ,

where v, k1 and k2 are arbitrary parameters. It is easy to verify that, apart from an additve
constant, this is the general solution of the system

V22 − V11 =
3

x
V1 −

3

y
V2, V12 = 0.

Hence we have a nondegenerate potential with

A22 =
3

x
, B22 = −

3

y
, A12 = B12 = 0.

A natural basis of functionally independent second-order symmetries ishS1,S2,S3j, s8d. To apply
the above results directly, we need to choose a standard basis at a regular point. We choose the
regular pointx0=s1,1d. Then the standard second-order symmetriesSs11d, Ss22d, Ss12d are the
unique symmetries that restrict topx

2, py
2,pxpy, respectively, atx0. Thus

Ss11d = px
2 + S1

4
− k1

2DS 1

x2 − 1D + v2s1 − x2d,

Ss22d = py
2 + S1

4
− k2

2DS 1

y2 − 1D + v2s1 − y2d,

Ss12d =
1

2
spx

2 + py
2 − sxpy − ypxd2d +

1

2
SS1

4
− k1

2D1 − y2

x2 + S1

4
− k2

2DS1 − x2

y2 DD + v2s2 − x2 − y2d.

The bases are related by

S1 = Ss11d + v2 + k1
2 − 1

4, S2 = Ss22d + v2 + k2
2 − 1

4 ,

S3 = Ss11d + Ss22d − 2Ss12d + 1
2 − k1

2 − k2
2.

Using these relations and our theory we can verify the quadratic algebra structure fors8d.

V. FINE STRUCTURE FOR 2D SUPERINTEGRABLE SYSTEMS: A ONE-PARAMETER
POTENTIAL

Here we consider a superintegrable system that admits three functionally independent con-
stants of the motion, but only for a one-parameter family of potentialsVsx,yd=aVs0dsx,yd, where
the gradient ofVs0d is nonzero. If the one-parameter family of potentials cannot be extended to a
two-parameter family, then by the proof of Lemma 1 the system must admit a four-dimensional
family of symmetriesoaskd

i j pipj +Wskd, k=1, . . . ,4. The Bertrand–Darboux equations for the poten-
tial are equivalent to a single first-order equation that, without loss of generality, we can write as

V1 + DV2 = 0. s66d

We change variables to a new orthogonal coordinate systemhu,vj so that s66d transforms to
]uV=0. In these coordinates the Bertrand–Darboux equation for a symmetry becomes

− Vvvla12 = fsla12dv − sla22dugVv s67d

where
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− la12Asvd = sla12dv − sla22du

for all symmetriesaij . Thus the equation for the potentialVsvd becomesVvv=AsvdVv.
The equations for a second-order symmetry are now

sla11du = − lva
12,

sla22du = 2
3Asvdla12 + 1

3lva
12 + 1

3lusa22 − a11d,

sla22dv = − lua
12, s68d

sla12dv = − 1
3Asvdla12 + 1

3lva
12 + 1

3lusa22 − a11d,

2sla12du + sla11dv = lua
12 + lvsa11 − a22d.

From the integrability condition]usla22dv=]vsla22du and s68d we can derive an equation of
the form luav

22=¯ where the right-hand side does not depend on the derivatives of theaij . If
luÞ0 then we have an involutory systemau

ij =¯, av
i j =¯ at the first derivative level. Hence the

space of symmetries would be at most three-dimensional. This is a contradiction, so we must have
lu=0. This implies that the system admits the first-order symmetryL=pu as well as a second-order
symmetrypu

2.
Introducing these simplifications intos68d and settingav

11=s we obtain the involutive system

au
11 = −

l8

l
a12,

au
22 =

2

3
Asvda12 +

1

3

l8

l
a12,

av
22 = −

l8

l
a22,

av
12 = − S1

3
Asvd +

2

3

l8

l
Da12, s69d

au
12 = −

1

2
Sl8

l
a22 + sD ,

su = S− Sl8

l
D8

+
1

3

l8

l
S2

l8

l
+ AsvdDDa12,

sv =
1

3
S2

l8

l
+ AsvdDS−

l8

l
a22 − sD + SSl8

l
D2

− Sl8

l
D8Da22,

wherel=lsvd. This system can depend on at most four constantsa11, a12, a22, s at a regular point.
Since the system is at least four-dimensional, we see that it isexactlyfour-dimensional and that the
integrability conditions must be satisfied.sThus the system corresponds to a Darboux
space.41,35,36d The only nontrivial integrability condition is]uav

22=]vau
22 or
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2A8 −
2

3
A2 +

1

3
A

l8

l
+

1

3
Sl8

l
D2

+ Sl8

l
D8

= 0. s70d

In terms of the potential functionV, this condition can be expressed as

l8

l
+ 2

V9

V8
= al−1/3sV8d1/3

for a a constant.
Theorem 9: Every system with a one-parameter potential and three functionally independent

second-order symmetries is the restriction of some three-parameter potential to a single param-
eter, such that the restricted potential is annihilated by some first-order symmetry of the Darboux
space.

Proof: From the discussion above, we can pass to coordinatesu,v such that the system takes
the form

H =
pu

2 + pv
2

lsvd
+ gVsvd.

The Poisson brackethpu,Sj for any second-order symmetryS=oaij pipj +W of our system is also
a second-order symmetryoau

ij pipj +Wu. Thus the linear operation of differentiating with respect to
u leaves the four-dimensional space of second-order symmetries invariant. We can get more
detailed information about this space by choosing a basis in which]u is in Jordan canonical form.
A two-dimensional subspace of the symmetries is spanned byH and pu

2, which are in the null
space of]u. Thus the possible Jordan forms for]u are

sid:1
j1 0 0 0

0 j2 0 0

0 0 0 0

0 0 0 0
2, sii d:1

j 0 0 0

0 0 1 0

0 0 0 0

0 0 0 0
2 ,

siii d:1
0 1 0 0

0 0 1 0

0 0 0 0

0 0 0 0
2, sivd:1

j 1 0 0

0 j 0 0

0 0 0 0

0 0 0 0
2 ,

svd:1
0 1 0 0

0 0 0 0

0 0 0 1

0 0 0 0
2 ,

wherej andj1 are nonzero.
We will use these canonical forms to show that there always exists a three-dimensional

subspace of the four parameter subspace of second-order symmetries and a nondegenerate poten-

tial Ṽ, containing,V as a special case, such that the subspace is spanned byH̃=spu
2+pv

2d /l+Ṽ,

pu
2+W̃1, and oaij pipj +W̃2 where oaij pipj +Wk is one of the symmetries of the one-parameter

system. First note from the Bertrand–Darboux equations and Eq.s69d that the defining equations
for the nondegenerate potential associated to these three symmetries must be
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Ṽvv = Ṽuu + 3sln a12duṼu + AsvdṼv,

s71d

Ṽuv = −
l8

l
Ṽu.

Heresln a12duv=0 andoaij pipj +Wk is the third symmetry. The integrability conditions for Eq.s71d
reduce to the single requirement

ASl8

l
D8

+ A8Sl8

l
D + 2Sl8

l
DSl8

l
D8

− Sl8

l
D9

= 0. s72d

Consider the case where]u acting on the space of second-order symmetries has an eigenvector
S with eigenvaluejÞ0. Then this symmetry must have the form

a11 = b11svdeju, a12 = b12svdeju, a22 = b22svdeju.

Substituting these expressions into Eq.s69d we obtain the conditions

2j2 − Sl8

l
D8

+ Sl8

l
D2

+ A
l8

l
= 0, sln a12du = j s73d

which, together withs70d, implies s72d. Further, the integrability conditions for the three symme-

tries H̃, pu
2+W̃, S to correspond to a nondegenerate potential are

18j2 = 12Sl8

l
D8

− 8Sl8

l
D2

− 8A
l8

l
+ 6A8 − 2A2, 2j2 = Sl8

l
D8

− Sl8

l
D2

− A
l8

l
, s74d

and these are also implied bys73d and s70d.
For the remaining systems there is a second-order symmetry whose quadratic terms areS2

=oaij pipj such that the quadratic terms inS1=]uS2 also correspond to a symmetry, and]uS1;0.
Clearly, there are constantsa,b with uau2+ ubu2.0 and

S1 = a
pu

2 + pv
2

l
+ bpu

2, S2 = uS1 + T2svd,

whereT2 is a quadratic form inpu,pv that depends only onv. From conditionss69d it is straight-
forward to compute that

a12 = b12svd, a22 =
au + b

l
, a11 = −

l8

l
b12svdu + c12svd,

and, finally, that

− Sl8

l
D8

+ Sl8

l
D2

+ A
l8

l
= 0, sln a12du = j. s75d

The integrability conditions for the three symmetriesH̃, pu
2+W̃, S2+W̃2 to correspond to a non-

degenerate potential are

0 = 12Sl8

l
D8

− 8Sl8

l
D2

− 8A
l8

l
+ 6A8 − 2A2, 0 =Sl8

l
D8

− Sl8

l
D2

− A
l8

l
, s76d

and these, as well ass72d are implied bys73d and s70d. Q.E.D.
Remark:It is easy to show using conditionss69d that the Jordan formsivd does not, in fact,

occur.
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VI. CONCLUSIONS AND FURTHER WORK

In this paper we have uncovered the structure of 2D classical superintegrable systems with
nondegenerate potential and verified the existence of a quadratic algebra of symmetries for all
such systems. We have shown how to compute the quadratic algebra relations in general. We have
shown that superintegrable systems with degenerate one and two parameter potentialssin addition
to the trivial added constantd can be considered as restrictions of nondegenerate systems. We have
verified that, with one exception, all nondegenerate superintegrable 2D systems are multisepa-
rable. In the next paper in this series we will develop the properties of the Stäckel transform
between superintegrable systems and verify that all nondegenerate 2D systems are Stäckel trans-
forms of 2D constant curvature systemssalready classified44,45d. This will lead to a simple classi-
fication of all 2D nondegenerate superintegrable systems. Koenigs41 in a remarkable paper has
already classified all 2Dszero potentiald spaces that admit three second-order Killing tensors. Our
classification, considerably simpler than Koenigs’, will show that all of his spaces also admit
nondegenerate potentials. The next papers will extend these results to the casen=3, a prelude to
a treatment for generaln. The casen=2 is very special and new techniques have to be developed
for highern. However the basic conclusions and structure theorems can be generalized. We will
also show how to solve the quantization problem and carry over the structure theory to the
operator case.
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