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Abstract
Let �(n) denote the sum of divisors function, and let � be Euler’s constant. We
prove that if there is an n � 5041 for which �(n) � e�n log log n, then n must be
divisible by the eleventh power of some prime.

1. Introduction

Let �(n) denote the sum of divisors of n. Robin [8] proved that the Riemann
hypothesis is equivalent to the inequality

�(n) < e�n log log n, (n � 5041), (1)

which we refer to hereafter as Robin’s inequality. We say that a number is t-free if
it is not divisible by the tth power of any prime. Choie et al. [2] showed that (1) is
true for all 5-free integers; Solé and Planat [10] showed that (1) is true for all 7-free
integers. Therefore if there is some n � 5041 for which �(n) � e�n log log n, then n
must be divisible by the seventh power of some prime. The point of this note is to
prove

Theorem 1. If there is some n � 5041 for which �(n) � e�n log log n, then n must
be divisible by the eleventh power of some prime.

It is easy to check that the only two positive integers n  5040 that are divisible
by an eleventh power of a prime, viz. 211 and 212, both satisfy Robin’s inequality.
In other words
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Corollary 1. The Riemann hypothesis is equivalent to Robin’s inequality being
satisfied by all integers greater than 2 that are divisible by the 11th power of at least
one prime.

Robin [8, Prop. 1, p. 192] showed that if Robin’s inequality is true on consecutive
colossally abundant numbers n1 and n2 then it is true for all n 2 [n1, n2]. We say
that n is colossally abundant if there exists a positive ✏ for which �(n)/n1+✏ �
�(k)/k1+✏ for all k > 1. Briggs [1] proved Robin’s inequality for all colossally
abundant numbers n with 5041  n  101010

. This shows that Robin’s inequality
is true for all integers n with 5041  n  101010

.
Solé and Planat prove their results using primorials. Let the nth primorial be

defined as Nn =
Qn

i=1 pi, where pn denotes the nth prime with p1 = 2. For an
integer t � 2 define

 t(n) := n
Y
p|n

✓
1 +

1
p

+ · · · + 1
pt�1

◆
, Rt(n) :=

 t(n)
n log log n

.

Solé and Planat note that on a t-free integer n one has �(n)   t(n). Using their
method, for a fixed value of t we first find an integer n1(t) such that Rt(Nn1(t)) < e�

and Nn1(t) < 101010
. Solé and Planat showed [10, Cor. 9] that for all N > Nn1(t) we

have Rt(N) < e� . It follows from the remark after Corollary 1 that, for our fixed
value of t, Robin’s inequality is true for all t-free integers n � 5041.

The main idea of this article is to use explicit estimates on sums over primes to
bound the primorials. This makes for an easy computation, and one which we use
to verify Theorem 1.

2. Bounds on Primorials

We proceed to estimate the function Rt(n). For t � 2 we have

Rt(Nn) =
1

log log Nn

nY
k=1

1� p�t
k

1� p�1
k

=
Q

p>pn
(1� p�t)�1

⇣(t) log log Nn

Y
ppn

(1� p�1)�1. (2)

We estimate the first product on the right-side of (2) using Lemma 6 of Solé and
Planat, namely, Y

p�pn

(1� p�t)�1  exp(2/pn), (3)

for all n � 2. Although this could be improved, such an improvement has negligible
influence on the final result.

To estimate the second product on the right-side of (2) we use the following result

Y
px

(1� p�1)�1  e� log x

✓
1� 1

5 log2 x

◆�1

, (x � 2973), (4)
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given by Dusart [3, Thm 4]. This improves on a result given by Rosser and Schoen-
feld [9, Thm 8 Cor. 1].

Since we wish to apply (3) and (4) with x = pn we need an explicit bound on
the nth prime. It is possible to proceed without an explicit bound, though this
increases greatly the computation time when n is large. In fact, if one considers the
function

f(x) =
exp(2/x) log x

(1� 1
5 log2 x )

, (5)

which is increasing for all x � 5, one sees that it is su�cient to consider only an
explicit upper bound on pn. We have

pn  b1(n) := n(log n + log log n� 1
2 ), (n � 20), (6)

and
pn  b2(n) := n(log n + log log n� 0.9484), (n � 39017), (7)

due respectively to Rosser and Schoenfeld [9, (3.11)] and Dusart [4, §4].
We now bound the factor log log Nn in (2). We make use of the function ✓(x) =P
px log p. Since log Nn =

Pn
i=1 log pi = ✓(pn) we can derive bounds on Nn using

bounds on ✓(pn). We present these results in the following

Lemma 1. For k � 198,

k

✓
log k + log log k � 1 +

log log k � 2.1454
log k

◆
 log Nk

 k

✓
log k + log log k � 1 +

log log k � 2
log k

◆
. (8)

Proof. The left inequality follows from Robin [7, Thm 7] and is valid for all k � 3;
the right inequality follows from Massias and Robin [6, Thm B(v)] and is valid for
all k � 198.

We remark that the constant ‘2’ in the right inequality in (8) cannot be improved.
One could reduce the ‘2.1454’ that appears in the left inequality at the expense of
taking a much larger k. As shown in §3, this has very little influence on our problem.

We now use (3)-(7) and Lemma 1 to estimate the right side of (2). We have

Rt(Nn) 
(

e�g1(t, n), (430  n  39016),
e�g2(t, n), (n � 39017),

(9)

where

gi(t, n) =
f(bi(n))

⇣(t) log
n
n

⇣
log n + log log n� 1 + log log n�2.1454

log n

⌘o ,
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for i = 1, 2. We require n � 430 in (9) to ensure that the conditions in (4) and
Lemma 1 are met since p429 = 2971 and p430 = 2999. Following Solé and Planat,
define n1(t) to be the least value of n � 430 for which gi(t, n) < 1. Since gi(t, n)
is decreasing in n we will have gi(t, n) < 1 for all n � n1(t). For such an n1(t) we
consider the size of the associated Nn1(t). We summarise the results in the following
table. Since we have given upper bounds on Nn1(t) the decimals in Table 1 have
been rounded up. We do not give an exact value of Nn1(t) for t = 11, 12 owing to
the computational complexity of calculating the nth primorial exactly.

Table 1: Values of n1(t) and upper bounds on Nn1(t)

t n1(t) Nn1(t) Bound on Nn1(t) using Lemma 1
6 430 3.3⇥ 101273 1.4⇥ 101276

7 1847 3.3⇥ 106836 2.7⇥ 106851

8 39017 4.9⇥ 10202520 2.3⇥ 10202725

9 39017 4.9⇥ 10202520 2.3⇥ 10202725

10 234372 1.2⇥ 101416098 1.8⇥ 101416984

11 48304724 — 2.8⇥ 10411504586

12 162914433505 — > 101012

Given Briggs’ result [1], to prove a statement such as ‘Robin’s inequality holds
for all t-free integers’ we need to show that Nn1(t)  101010

. The last entry in Table
1 shows that, at present, it is impossible to consider t = 12 without a new idea.

3. Conclusion

We discuss briefly the possibility of proving that Robin’s inequality is satisfied by
all 12-free integers. Dusart [5] (unpublished) has considered some finessed versions
of (4) and (8), namely

Y
px

(1� p�1)�1  e� log x

✓
1 +

1
5 log2 x

◆
, (x � 2973),

and
k

✓
log k + log log k � 1 +

log log k � 2.04
log k

◆
 ✓(pk), (pk � 1015).

These results appear respectively as Theorem 6.12 and Proposition 6.2 in [5]. Even
with these improvements one still has Nn1(12) > 101012

. Without injecting new ideas
into the argument one would have to increase the range of Briggs’ computations
beyond 101010

.
To extend the computation one need only check those numbers that are colossally

abundant and are divisible by the 11th power of some prime. Presumably, this is a
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very thin set of numbers. Checking only these numbers may precipitate an extension
of Briggs’ computations and hence the possibility of extending the the results in
this paper to t = 12.
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