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Abstract 

A building integrated photovoltaic thermal (BIPVT) system based on long-run 

metal roofing is being developed at the University of Waikato in partnership with 

Dimond Ltd., a long-run roof product manufacturer.  The concept consists of a 

CNC folded metal roofing sheet with a central channel and a collector plate 

bonded to the roofing sheet to create a sealed channel for thermal fluid flow.  PV 

laminates are bonded to the collector plate and inlet and outlet manifolds attached 

for thermal fluid distribution.  When exposed to solar radiation the system 

generates heat and electricity for domestic and industry use. 

 

BIPVT manufacturing methods were investigated for creating the sealed channel 

for thermal fluid flow.  Adhesives (ADH), resistance seam welding (RSW) and 

autoclaving (ATC) were considered the most suitable.  Processes were designed 

for the three methods and investigated through economic analysis.  ATC was 

found to be the best for production volumes greater than 20,000 BIPVT panels per 

year as it has greater production capacity and lower capital investment payback 

time than ADH and RSW.  ATC had a payback time of 0.26 years for 90,000 

BIPVT panels per year at a 40% mark up.  However ATC has several technical 

challenges that need to be overcome whereas ADH and RSW are proven 

production methods.  ADH is more suitable for low production volumes below 

20,000 panels per year as it has a low capital cost compared to RSW and ATC and 

can be readily optimised when increased production is required.  Cost savings can 

be achieved by reducing material costs as they were 95% of the total operating 

costs for all methods.  ADH and RSW could be readily optimised to increase 

production at lower capital expenditure by installing additional equipment at 

production bottlenecks rather than installing new production lines.  ATC could not 

be as readily optimised as it has high production capacities. 

 

Installing a low volume BIPVT production facility into Dimond Ltd. could 

potentially generate an additional $3.5 million per year in profit, for a process that 

produces 7,680 panels a year.  Payback time for the capital investment including a 

PV laminator would be just over half a year making BIPVT an attractive 

possibility. 
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Chapter 1   Introduction 

1.1  Energy overview 

Since the industrial revolution, mankind has become increasingly dependent on 

technology for many areas of human activity including; food, transport, medicine, 

shelter, light, medicine, communication and entertainment. Technologically 

advanced products and services are associated with improved quality of life and 

accordingly a vast range has been developed to meet the demand.  These products 

and services require energy for their production and use [1]. Consequently, a 

global energy infrastructure has arisen that provides a range of energy systems to 

meet both production and use. The energy comes in a variety of forms such as 

liquid fuels for transport, electricity for services such as water treatment, 

communication or domestic appliances, natural gas for heating or energy stored in 

for example batteries [2]. 

 

Globally, the primary source of energy is fossil fuels, principally, oil, gas and coal 

with 75% of generated energy provided from these non-renewable resources 

(Figure 1.1). Fossil fuels are extensively used because they have a high energy 

density are easily stored, are relatively low cost and in the past have been 

abundant [3].  However, as demand has grown, reserves of fossil fuels, in 

particular oil and gas are being rapidly depleted. There is much debate about when 

demand will become greater than production, but it is generally accepted that oil 

will be first, followed by gas and then coal. The World Resources Institute gives 

the reserves to production (R/P) ratio of oil, gas and coal as approximately 40, 65 

and 155 years respectively. Consequently, alternative energy sources will be 

needed to be developed and put into mass production within a few decades to 

offset the diminishing energy from predominantly oil and gas [2].  

 

In addition to resource depletion, the combustion of fossil fuels for heating, 

electricity generation or transportation, releases carbon dioxide into the 

atmosphere [1, 4].  Over the last 60-70 years carbon dioxide has been steadily 

increasing in the atmosphere.  Carbon dioxide is well known as a greenhouse gas 
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and has been implicated as the main cause of global warming [5].  75% of total 

greenhouse gas emissions come from burning fossil fuels [6].  Depletion of fossil 

fuels and global warming has driven countries to examine alternative sources of 

energy, such as nuclear power, or renewable sources such as hydro electricity, 

solar, biomass and wind [1]. 

 

Crude oil
33%

Coal
25%

Natural gas
17%

Biomass
14%

Hydroelectricity
6%

Nuclear fuels
5%

 

Figure 1.1 Energy sources used today [3]. 

1.2  Renewable energy 

Renewable energy is obtained from sources that are inexhaustible or replaceable 

such as solar, wind, hydro, tidal, geothermal, and biomass [3, 7].  Solar, wind, and 

biomass are accepted as being reliable, widely available, with minimal impact on 

the environment and have the potential to sustainably meet future energy demands 

[3, 8, 9].  According to the IEA (1999), ‘The world is in the early stages of an 

inevitable transition to a sustainable energy system that will be largely dependent 

on renewable sources’[10]. 

 

Consequently, the interest in renewable energy has made it the fastest growing 

sector in the energy market. Approximately US$22 billion was invested in 

renewable energy worldwide in 2003, with 45% invested in solar energy, 38% in 

wind and 17% in biomass, hydro and geothermal energy (Figure 1.2) [9].  The 
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European Commission projects that 95% of all energy will be from renewable 

sources by 2050, of which 40% is expected to come from solar energy [11] 

(Figure 1.3). 

Solar
45%

Wind
38%

Others
17%

 

Figure 1.2 Worldwide investment in Renewable Energy sector in 2003 [9]. 

 

 

Solar energy
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15%

Hydro power
10%

Crude oil
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Figure 1.3 Energy sources used 2050 [11].  
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1.3  Solar energy 

Solar energy is radiated from the sun and earth’s atmosphere is exposed to 1.5 x 

1018 kWh of solar energy annually [7].  Approximately 30% of the energy is 

reflected back to the space by the earth’s atmosphere, 20% is absorbed by clouds, 

atmospheric particles and greenhouse gases and the remainder is absorbed by the 

earth’s surface.  The earth’s surface receives approximately 1.73 x 1014 kW of 

solar power or on average 340W/m2 [1, 7] and the solar energy received by the 

earth’s surface over the year is 14,000 times higher than world’s energy 

consumption (429.4x1018 J) [3, 11]. This highlights why solar energy has received 

more investment than other forms of renewable energy, principally because it has 

the potential to generate all of the world’s energy many times over.  

 

In New Zealand, the energy received from the sun ranges between 2.50 - 4.50 

kWh/m2/day [12, 13] and the total solar energy received by the surface is 3,000 

times more than current energy consumption [14]. Every year, the majority of 

New Zealand houses are exposed to approximately 20-30 times more incident 

solar energy than their current energy consumption (electrical and gas) [13].  

Therefore there is the possibility of converting a proportion of that solar energy 

into useful heat and electricity and subsequently reduce the consumption of 

natural gas and electricity from the grid. 

 

Solar thermal and photovoltaic (PV) technologies are commonly used to harness 

the sun’s energy.  Solar thermal uses the heat radiated from the sun in the form of 

infrared radiation to heat water or air for domestic use such as hot water supply or 

space heating [14]. PV technologies use the sun’s light to generate electricity 

through the photoelectric effect. Solar thermal and PV systems are typically 

installed as separate units on building roofs or walls to supply heat and electricity 

to the building.  However, such units are bulky and often unattractive, so the 

current trend is to integrate these technologies into the building roofing or 

cladding [15] for a more aesthetically pleasing and multifunctional product. 
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1.4  Building integrated energy products 

Building integrated energy products are multifunctional as they not only serve as 

weatherproofing a building, but also generate electrical or thermal energy [16, 17].   

There are currently many building integrated photovoltaic (BIPV) products on the 

market, such as the Sunslate that integrates PV with conventional roof tiles found 

on European houses [18]. Others, such as United Solar’s PV Shingles are 

designed for the US market where many houses have roofs covered with asphalt 

shingles [19]. Most of these products are easy to install, integrate well with 

conventional roof systems and have become an accepted form of PV installation. 

Building integrated solar thermal systems (BIT) are less common due to 

complexities of manufacture and installation. Even though there are potentially 

several advantages to integrate both PV and solar thermal technologies into a 

building product (BIPVT) none have been produced commercially. At the 

University of Waikato a novel BIPVT system is being developed that integrates 

PV and thermal systems into long-run metal roofing. The product is aimed 

predominantly for the New Zealand and Australian markets but could potentially 

be introduced into global markets. 

1.5  Research objective  

The overall aim of this research was to investigate and develop an economically 

viable production system for manufacturing a building integrated photovoltaic 

thermal (BIPVT) product with long-run roofing systems.  Long-run roofing 

systems are common in New Zealand and are made from steel or aluminium.  

They have large flat surfaces suitable for integrating solar technologies. 

1.6  Thesis structure 

An overview of solar energy is presented in Chapter Two, which focuses mainly 

on the types, markets, products, technology and their integration with buildings. 

The different production methodologies for the BIPVT product are discussed in 

Chapter Three. Prototypes constructed by the selected methodologies and their 

results are discussed in Chapter Four. Economic analysis of the selected 
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production methodologies is described in Chapter Five. Conclusions drawn and 

recommendations for future work are detailed in Chapter Six. 
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Chapter 2   Literature review 

2.1  Introduction 

This review covers the PV and solar thermal technologies, their manufacture and 

markets.  Different roofing materials are also reviewed for their suitability for 

integrating PV and solar thermal technology into the product.  From the review, a 

suitable roofing system and PV/T technology for integration will be chosen and 

form the basis for investigation in the thesis. 

2.2  Renewable energy 

Renewable energy contributes 20% to the world’s energy production (Figure 1.1) 

and can be subdivided into three categories: solar energy, tidal energy, and 

geothermal energy. Solar energy is available in the form of hydro, wind, biomass 

and light and heat energy [1].  It is the largest available source of renewable 

energy (Table 2.1) and has the potential to supply the world’s energy needs many 

times over. 

 

Table 2.1 Energy sector and availability [3]. 

Energy Sector Annual energy globally PJ/year 

Solar 3,900,000,000 

Tidal 94,000 

Geothermal 996,000 

 

Solar thermal systems use solar radiation to heat, for example, water or a house 

interior.  Solar electric systems use PV cells to convert light from the sun into 

electricity.  Solar PV/thermal systems produce both heat and electricity by 

combining thermal and PV technology [6]. 

 

Solar energy systems can be passive or active. Passive solar energy systems 

employ natural processes such as space heating utilising incident light through a 

window or heat from a house roof, without any mechanical or electrical 

equipment to facilitate the process.  Active solar energy systems use mechanical 
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and electrical devices such as heat exchangers, thermal collectors and PV cells to 

generate electricity and heating [1].  Solar energy systems are as productive and 

economic as other renewable energy systems, with less environmental effects [20]. 

2.3  Solar thermal 

The main function of a solar thermal collector is to convert the absorbed incident 

solar radiation into heat, and transfer this heat to a fluid such as water, air, or oil 

flowing through the collector system.  The thermal energy in the fluid  is then 

either stored in a thermal storage tank or used for hot water heating or space 

heating [21].  

 

Solar thermal collectors are classified depending on the way in which the surface 

is exposed to the solar radiation.  These types are further classified depending 

upon the thermal fluid used, system design and construction. Non-concentrating 

type collectors have a fixed flat area for absorbing and intercepting solar radiation. 

These include integrated collector storage (ICS) systems, flat plate collectors 

(FPC), evacuated flat plate collectors (EFPC), evacuated tube collectors (ETC), 

and compound parabolic collectors (CPC). Concentrating type collectors often use 

concave reflecting surfaces which focus the sun’s radiation onto the collector.  

These include: parabolic trough collector, linear Fresnel collector, parabolic dish, 

and central receiver. Collectors used in the domestic and commercial applications 

are typically non-concentrating collectors such as FPC and ETC [3, 21, 22]. 

2.3.1  Flat plate collectors 

Flat plate solar thermal collectors as shown in Figure 2.1 consist of a coated 

collector plate that absorbs the incident solar radiation. A thermal fluid flowing 

through tubes attached to the underside of collector plate absorb the heat from the 

collector.  Manifolds provide entry and exit points for the tubes and thermal fluid. 

Insulation is fitted to the back of the collector to reduce thermal losses and a 

housing frame supports the components. Glazing on top of the housing reduces 

the convection heat loss due to wind and provides protection from the 

environment (Figure 2.1).  The glazing may be plastic or glass having a low iron-

oxide content which is thermally tempered and non-reflective [21]. 
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Energy from the thermal fluid is either stored, for example, in domestic hot water 

tanks, or used directly for a given application. These type of collectors can use 

water or air as the thermal fluid [3, 22] and their efficiency is between 66-83% 

with a service temperature between 20-80oC [23]. A typical FPC is shown in 

Figure 2.2. 

 

 

 

Figure 2.1 Schematic view of a glazed flat-plate collector [21]. 

 

  

  

Figure 2.2  Flat plate collector from Haithabu Far East Ltd. [24]. 
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2.3.2  Evacuated tube collectors 

Evacuated tube collectors often use a liquid-vapour phase change material for 

absorbing heat. In this configuration they comprise a metal absorber sheet with a 

heat pipe embedded inside a vacuum-sealed tube as shown in Figure 2.3. A heat 

pipe is a thermal absorber and consists of methanol that acts as heat transfer 

medium that undergoes an evaporating-condensing cycle during operation.  The 

heat pipe is connected  to a black copper fin which fills the tube [3, 21]. 

 

 

Figure 2.3 Evacuated tube collector with heat pipe [3]. 

 

During operation cycle, the incident solar radiation is absorbed by the metal 

absorber sheet which vaporizes the heat pipe fluid i.e. methanol in the heat pipe. 

The vapour rises to the heat exchanger and condenser where it condenses and the 

latent heat is released. The condensed thermal fluid flows back to the bottom of 

collector and the process is repeated. The solar cycle heat carrier used is normally 

water or glycol which absorbs the latent heat and the energy is used as per the 

application [3, 21]. The conversion efficiency for these collectors is between 62-

81% with service temperatures between 50-120oC [23]. A typical ETC product is 

shown in Figure 2.4. 
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Figure 2.4 Evacuated tube collector from SolMaxx-20 [25]. 

2.3.3  Market overview 

Solar thermal collectors are used in solar water heating systems, solar space 

heating and cooling, solar refrigeration, industrial process heat, solar desalination 

systems, solar thermal power systems, solar furnaces, and solar chemistry 

applications [3, 21]. 

 

Since 1998, on average installations have increased by 16% annually worldwide    

from 45,080 MWtherm to 98,416 MWtherm in 2004 (Figure 2.5).   Total collector 

area in 2004 was approximately 141 million m2 [26]. 
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Figure 2.5 Cumulative solar thermal installations worldwide (1998-2004) [26]. 
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99% of all solar thermal systems in 2004 were water based collectors contributing 

about 97,600 MWtherm with the remainder being air based systems which 

contributed about 816 MWtherm  (Table 2.2) [26]. 

 

Table 2.2 Type, percentage, and collector area [26]. 

Based Collector 
Total Installations 

(MWtherm) 

% of total 

installations 

Collector area 

(million m2) 

ETC 40,299 41% 57.57 

Glazed Flat plate 34,184 35% 48.83 Water 

Unglazed 23,117 23% 33.02 

Glazed 175 
Air 

Unglazed 641 
1% 1.16 

 

The major solar thermal markets are countries of the European Union (EU), US, 

China, Japan, India, South Africa and Middle East. The largest single market is 

China which in 2004, accounted for 44% of total installations with the vast 

majority being ETC systems (Table 2.3) [26]. 

 

Table 2.3 Capacity and percentage installations in parts of world [26]. 

Country/ 
Region Total Installations (MWtherm) % of total installations 

China 43,400 44.10% 

United States 20,038 20.36% 

Japan 5,408 5.50% 

Europe 11,857 12.05% 

ROW 17,712 18.00% 

2.3.4  New Zealand market and initiatives 

Solar hot water (SHW) has the largest market share of New Zealand’s solar 

industry using mainly FPC and ETC systems.  60% of the total solar thermal 

collectors have an active heat transfer system such as pumped flow, whereas the 

rest are equipped with passive heat transfer systems such as a thermo siphon [13, 

27, 28]. 
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By 2005, 28,400 SHW systems had been installed nationwide, contributing 

approximately 59GWh or 0.20% of the total energy consumption of New Zealand.  

Presently, the New Zealand SHW industry has grown at approximately 40% per 

annum and aims to install 10,000 m2 of thermal collectors per year by 2008. It 

further plans to install 40,000 SHW systems by 2015 [27, 28]. 

 

Government initiatives and incentives play a major role in promoting SHW 

installation.  The New Zealand government has provided a rebate of $300 per 

SHW installation to offset interest cost on loans [27].  In November 2006, the 

government allocated $15.5 million over 3.5 years in a Green Party initiative to 

increase the number of installations.  Further funding will be reviewed in 2009 

[29]. The market growth, forecasts of the industry associations and Government 

incentives suggest a positive long term future for the solar thermal industry in 

New Zealand. Consequently there is an opportunity for innovative New Zealand 

market specific products to be developed.  

2.4  Solar PV 

Photovoltaics (PV) were first discovered by Edmund Becquerel in 1839 [30, 31].  

PV convert incident solar radiation into electricity [11] and are made from 

semiconductor materials such as silicon, cadmium telluride (CdTe), gallium 

arsenide (GaAs) or indium phosphorus [32]. Silicon is most commonly used as it 

is abundant and easily extractible from silica sand.  During PV cell manufacture, 

silicon is doped with phosphorus or boron to attain semi-conductor properties. 

Silicon has four valence electrons in its outermost orbit with a band gap of 1.12 

eV, which is the energy required for an electron to jump free from an atom [31].  

Electrons orbiting silicon atoms in PV cells absorb photons from light and this 

energy excites the electrons causing them to jump from one atom to another, 

generating a net voltage and current through an external circuit (Figure 2.6) [32]. 

The DC current produced can be used directly, stored in batteries, or fed to the 

grid via an inverter [31]. 
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Figure 2.6 Principle of working of solar cells [33]. 

 

PV technology is modular, silent, emission free during operation and has a service 

life of over 20 years. Silicon cells are classified depending upon their production 

process, being either multi-crystalline, single-crystalline or thin-film [11]. 

2.4.1  Crystalline cells 

Crystalline silicon (single and multi) PV cells are produced as flat wafers having a 

thickness of between 0.2-0.5 mm. These cells are most commonly used in the PV 

industry with a market share of 90% [31, 34]. Single crystalline PV cells are 

manufactured using the Czochralski (CZ) or float-zone (FZ) method, where a 

small seed of solid crystalline silicon is dipped in a crucible of molten pure silicon 

at a temperature of 1400oC.  A large crystalline silicon ingot is grown by 

gradually pulling the seed crystal from the solution. The dopant, usually boron is 

added to the melt and p-type semiconductor ingots are obtained. The rods are 200 

mm in diameter and 1.5-2 m in length. These rods are cut into wafers using a 

slurry-wire-saw (Figure 2.7) [11, 31]. 
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Figure 2.7 Czochralski method of producing single crystalline silicon cells [11, 

31]. 

 

The wafers are cleaned by fine polishing with Al2O3 to remove any damage from 

the cutting process. Texturization is produced on wafers by damage-etching i.e. 

wet-chemical process. This process generates a pyramid like structure acting as an 

optical anti-reflective layer. After texturization, wafers (p-type) are doped using 

phosphorus to create a semiconductive p-n junction that allows electron 

movement. Phosphorus oxide formed during the doping process is removed by 

wet chemical process that etches away the phosphorus oxide at the side and back 

of the cell. After this process, electrical contact is attached at the front and back of 

the cells by a vacuum evaporation process in which aluminium metal is heated in 

a vacuum, evaporated and condensed onto the cooler solar cells. The cells are 

covered in an optical anti-reflective coating produced by sputtering TiO2 on to the 

surface in a vacuum and sintering it at 400oC, after electrical contacts have been 

attached. Finished cells are visually inspected for; anti-reflective layer 

homogeneity, contact bonding, and light-current-voltage characteristics. The 

maximum cell and module efficiency is up to 25% and 23% respectively, under 

standard test conditions but typically the efficiencies of commercial silicon cells 

are approximately 14-17% (Table 2.5)  [11, 31].  

 

Multi-crystalline solar cells are manufactured by cooling and solidifying molten 

silicon in a crucible at a controlled temperature. The ingots obtained by this 

process are made up of many smaller crystals rather than a single crystal and are 
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40 x 40 x 40 cm in size. The ingots are cut into columns with a square base and 

then sliced into wafers (Figure 2.8). Crystal yield is higher and the process less 

costly than manufacturing single crystalline wafers [11, 31, 34]. Processes used in 

manufacturing cells from the wafers is similar to that of single crystalline cells but 

an extra process, grain boundaries passivation, is conducted after removal of 

phosphorus oxide. Maximum cell and module efficiency is up to 20% and 15% 

respectively under standard test conditions (Table 2.5) [11]. Typical efficiencies 

of commercially available multi-crystalline cells range from 10%-15%. 

Commercially available sizes of single and multi-crystalline wafers are shown in 

Table 2.4. 

 

 

 

Figure 2.8  Process for manufacturing multi-crystalline solar cells [11, 31].  

 

Table 2.4 Commercially available single and multi crystalline wafer sizes [35] 

Nominal Size (mm) Dimensions (mm) Diagonal (mm± 1) 

103 103 ± 0.5 146 

125 125 ± 0.5 177 

150 150 ± 0.5 212 

 
There are in excess of 60 companies producing crystalline PV cells worldwide 

[36]. Manufacturing has become very efficient and often module production is 

separate from cell production with module manufacturers sourcing cells from the 

most economic supplier. This situation fits well with an embryonic New Zealand 

BIPVT industry as it too could source PV cells from off-shore suppliers.  As 

production facilities for crystalline cells only become economically viable at over 
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100MWp per annum, this makes cell manufacture in New Zealand currently 

unviable. Therefore it is proposed that for this work the PV cells be sourced 

wholesale from the global market and integrated into the new product. 

2.4.2  Thin-film cells 

Thin-film cells are generally considered better suited to high volume production 

than single and multi-crystalline cells but have a lower efficiency of 5-11% (Table 

2.5) [31]. Whereas silicon wafers have a thicknesses ranging from 0.2-0.5mm, 

thin film cells are between 1-10 µm, or 1/20th to 1/50th that of single and multi-

crystalline wafer cells.  They are produced by depositing layers of semi-conductor 

(PV) material onto a backing material such as glass, stainless steel or plastic. 

Thin-film cells are further classified depending upon the semi-conductor material 

being either, amorphous silicon (a-Si), GaAs, InP, CdTe, or copper indium 

diselenide (CIS). Due to their lower efficiency they require a larger area than 

crystalline cells to produce the same energy and hence they have a lower market 

share of approximately 10%  [31, 34]. 

 

Table 2.5 Efficiency table for PV cells and modules [37-39]. 

Classification 
Cell efficiency 

at STC* (%) 

Module efficiency 

at STC* (%) 

Commercial module 

efficiency (%) 

Single crystalline silicon 24.7 ± 0.5 22.7 ± 0.6 10 – 17 

Multi crystalline silicon 20.3 ± 0.5 15.3 ± 0.5 11 – 15 

Amorphous silicon 16.6 ± 0.4 n/a 5 – 7 

CIS 18.4 ± 0.5 13.4 ± 0.7 9 – 11 

CdTe 16.5 ± 0.5 10.7 ± 0.5 6 – 9 

*Cell and module efficiencies are measured under the global AM1-5 spectrum 

(1000W/m2) at 25oC. 

 

Amorphous silicon (a-Si) cells are manufactured by simultaneously depositing an 

antireflective coating, conducting oxide, semiconducting material, and back 

electrical contacts in a number of layers onto a substrate such as glass. As 

mentioned previously due their low thickness compared to wafer cells, less 

material is required for manufacturing [34, 40]. 
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Copper indium diselenide (CIS) cells are manufactured by evaporation process, in 

which small quantities of copper, indium, and selenide are added and heated 

electrically until they vaporise and condense on a cooler substrate forming the CIS 

layer. Sputtering, spray pyrolysis, electrodeposition, and selenization methods are 

also used for manufacturing these types of cells. In the sputtering process, atoms 

of copper and indium are bombarded by high energy ions of selenium gas which 

condenses on the surface and forms a CIS layer. In the spray pyrolysis process, 

salts of copper, indium and selenide are sprayed onto a hot substrate where they 

react to form a CIS layer and the solvent evaporates. In the electrodeposition 

process, an electric current is passed through an electrode in a solution containing 

ions of copper, indium and selenide which deposit them on the electrode. In the 

selenization process, copper and indium are deposited on the substrate by either 

sputtering or electrodeposition process and selenium is added by hydrogen 

selenide (H2Se) gas.  Selenization and electrodeposition are the most popular 

techniques because of their ease of use and low cost [34, 40]. Maximum cell and 

module efficiency of these cells is up to 18% and 13% respectively when tested 

under standard test conditions (Table 2.5). 

 

Cadmium telluride (CdTe) cells are produced by the similar methods used for 

producing copper indium diselenide (CIS) cells. Spraying and electrodeposition 

are the most common techniques used [40]. Maximum cell and module efficiency 

of these cells is up to 16% and 10% respectively when tested under standard test 

conditions (Table 2.5). 

 

Thin-film PV cell production factories are purpose built for specific PV products 

and cost in the hundred of millions of dollars to install. The cells from these 

factories are not available for the wholesale market and as there is no such 

production facility currently in New Zealand thin-film PV cells are not viable for 

a New Zealand manufactured BIPVT product.  

2.4.3  Sliver solar cells 

Australian National University (ANU) with Origin Energy invented and 

developed sliver solar cell technology which reduces silicon consumption in 
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manufacturing. These cells are more expensive than conventional silicon solar 

cells as 59 processing steps are used in their manufacture.  However, these cells 

have higher cell and module efficiency. The typical dimensions of a sliver solar 

cell are 50-100 mm long, 0.5-2 mm wide and 40-60 µm thick [41].  

2.4.4  PV modules 

Single and multi-crystalline wafer cells are very fragile and need to be 

encapsulated for their protection form physical and environmental damage. The 

encapsulation materials of a typical PV module comprise; low iron glass cover, 

Ethyl Vinyl Acetate (EVA) encapsulant, white Tedlar composite backing sheet 

and electrical junction box [11, 34]. 

 

PV cells are tested, sorted and grouped depending on their performance during 

testing. They are then connected in series using solder tabs to create strings. A 

typical module comprises 4 x 9 strings of cells giving a total of 36 PV cells. This 

module configuration has developed for charging 12V battery systems but is also 

suitable for grid connection via an inverted [11, 34]. 

 

The EVA used is in foil form and has a thickness of between 0.50-0.70 mm. The 

glass sheet used is iron-free, thermally tempered with a thickness of between 2-3 

mm [11].EVA is available in two forms depending on the curing period i.e. 22 

minutes for normal EVA and 4 minutes for fast cure EVA. The back of the 

module usually consists of white Tedlar-Polyester-Tedlar or Tedlar-Aluminium-

Tedlar [11, 34]. 

 

Modules are produced in a purpose built vacuum laminator. During the lamination 

process, the glass-EVA-PV strings-EVA-Tedlar composite, are heated and 

pressurised at temperature of 145oC – 200oC. The EVA melts and cures in an 

irreversible process followed by cooling. For mass production of laminates, curing 

is carried out in separate oven at normal pressure. This reduces the cycle time and 

allows the laminator to be available for the next process, saving energy as the 

laminator can be maintained at a constant temperature rather than cycling from 

hot to cold. [11].  



Chapter 2:  Literature review  20 

 

Thin film modules are produced by assembling single sheets of thin film solar 

cells. These can be encapsulated into a fixed or flexible module by using 

transparent plastic or glass.  Amorphous silicon modules use the Energy 

Conversion Device (ECD) roll-to-roll process and are produced on steel in a 

Tefzel/EVA/Tedlar package, or transparent oxide-coated glass with EVA and 

dielectric backside glass [34, 35]. 

2.4.5  PV system types and applications 

PV systems are mainly classified into off-grid and on-grid.  Off-grid systems store 

electrical energy produced by PV modules in batteries and typically are used in 

applications where electricity from the grid is unavailable, unreliable or 

uneconomic to supply. Typical off-grid applications include telecommunication 

repeater stations in remote areas, lighthouses, marine navigation lights and power 

for remote communities .On-grid systems, supply electricity generated by PV 

modules to the mains electricity network via an inverter. The inverter converts the 

DC current generated by the PV modules to AC and ensures the correct frequency 

modulation as well as safe operation of the system.  The most common 

application of on-grid systems is installation on buildings [34, 42]. 

 

In total, between 1992 and 2004, 2596 MW of both on-grid and off-grid type PV 

systems were installed worldwide of which 2144 MW were on-grid and 452 MW  

off-grid [34, 42].   This highlights that the vast majority of installation are on-grid 

and installed on buildings and explains the growing number of products for 

integrating PV products into building materials. 

2.4.6  Market overview 

The global PV market has experienced high growth over 20% since 2000. For 

example between 2005 to 2006 the total PV installations grew from 1420 MW to 

1744 MW an increase of 22%. This generated US$4 billion in sales worldwide up 

from US$1.8 billion in 2005 [43]. The major PV manufacturers include BP Solar, 

Kyocera, Shell Solar, Sanyo, and RWE Scott Solar, along with Sharp who were 

the leading producer with 27%  of the PV market in 2002 [42].  Germany has the 
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highest number of installations worldwide with a total share of 55%  in 2006 [43] 

(Table 2.6). 

 

Table 2.6 PV installations in 2006 in major parts of world [43]. 

Country/Region Total Installations (MW) % of total installations 

Germany 959 55 

Japan 296 17 

ROE 192 11 

ROW 157 9 

US 140 8 

2.4.7  Government incentives and initiatives 

In 2003 US$5.28 billion was invested worldwide for promoting solar PV energy 

in the renewable energy sector [9].  Countries with government support programs 

include Japan, United States, Germany, Italy and China [42] (Table 2.7). Spain 

has recently introduced legislation for solar installations on buildings but limited 

information is available.  

2.4.8  New Zealand market and initiatives 

In New Zealand, PV systems are mainly used in hybrid or standalone off-grid 

power systems. These systems are used for isolated telecommunications, weather 

monitoring sites, marine safety devices, electric fences and navigation lights.  The 

total installed PV grew from 0.75 MWp in 2001 to 1.4 MWp in 2004 of which 

400 KWp was installed on BP petrol stations.  Currently, no commercial PV cell 

or module manufacture takes place in New Zealand.  All components and 

modules are imported except some batteries and inverters which are made locally 

on a small scale [28, 44].  The New Zealand government has not given any 

incentives to date to promote PV system sales [44]. 
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Table 2.7 Government incentives and initiatives for promotion of PV 

installations in major countries [42, 44]. 

Country Year Program and Details: 

1992 
New Sunshine: For introduction of renewable energy throughout 

the country 

1994 

70,000 Roofs: Subsidy of 50% on PV installations with a annual 

budget allocation of $18.3 million. In 2003, the subsidy was 

reduced to 15% and budget was increased to $186 million. Japan 

2003 

Renewable Power Portfolio Standard: Aims on providing 

renewable energy at a constant rate to the electric supply and 

the targets set by the government are about 3.2% of the total 

energy by 2010. 

1998 

100,000 Roofs: Provided 10-year loans with reduced interest to 

buyers of PV systems. After completing targets the program was 

ended in 2003. Germany 

1999 
Renewable Energy Sources Act: Customer applications receive 

56 per kWh for solar-generated electricity sold back to the grid. 

United 

States 
1997 

Million Solar Roofs: Target of installing solar energy systems on 

1 million buildings in US by the year 2010 

Italy 2001 
10,000 Roofs: Different investment subsidies were offered to 

regions for the promotion of building integrated PV applications. 

China 2004 

$1.21 billion was allocated by the government for the use of 

solar and wind energy for power generation in remote areas of 

West China. 

United 

Kingdom 
 

PV Demonstration: 50% of the cost on purchasing and 

installation on PV systems is claimed. 
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2.5  PV/thermal 

As mentioned in section 2.4, single or multi-crystalline PV cells convert 12-17% 

of the absorbed solar radiation into electricity.  The remaining radiation increases 

the PV cell temperature and reduces its conversion efficiency.  Cooling the PV 

cells by circulating thermal fluid (air or water) past the cell retains its efficiency 

and transfers the energy to the fluid which could be utilized. In a PV/thermal 

(PV/T) module, PV modules are coupled with heat extraction devices. These 

coupled modules are also called combi panels, which convert sunlight into 

electricity, as well as collect excess thermal energy to produce heat [6, 45].  The 

thermal energy can be used to heat the building or water supply [46]. 

 

PV/T collectors generate more energy per unit surface area than PV panels and 

solar thermal collectors mounted in adjacent units.  PV/T collectors require 40% 

less surface area than separate systems to generate the same amount of heat and 

electrical energy and are more efficient and cheaper [26, 47].  

 

PV/T collectors are of two types; flat-plate and concentrating. Flat-plate PV/T 

collectors are similar in appearance to flat-plate thermal collectors in terms of 

glass cover, insulation and housing. The only major difference is the collector 

plate on top of which a PV panel is attached. In concentrating PV/T collectors, 

reflectors are used to concentrate the solar radiation onto the PV modules.  They 

have a similar function to that of concentrating flat plate solar thermal collectors.  

These collectors are further classified by the type of thermal fluid (air or water) 

used [48]. 

 

Common configurations of flat plate (water cooled and air cooled) and 

concentrating PV/T collectors are shown in Figures 2.9 to 2.11 [48]. 
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Figure 2.9 Side view of water cooled PV/T collector [48]. 

 

 
 
 

Figure 2.10 Side view of air water cooled PV/T collector [48]. 

 
 

 
Figure 2.11 Low concentration non-tracking PV/T collector [48]. 

 
In most PV/thermal collectors, PV cells or laminates are joined onto the absorber 

plate.  PV/T collectors are manufactured by using adhesives or by laminating PV 

cells [49, 50]. 

 
PV cells are bonded directly on the absorber (collector) plate of a commercial 

(standard) solar thermal collector using adhesives.  However, this method is not 

used for commercial applications, because if the PV cells are not covered by 
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plastic or glass and properly sealed, they are not protected from moisture and the 

system has insufficient electrical insulation [49, 50]. 

 

Alternatively, PV cells are laminated using glass or plastic, hence protected from 

moisture, and bonded on the collector plate of commercial solar thermal collector 

using adhesives.  However this method is not economic because of the additional 

step of joining the PV laminates with the absorber plate.  Also the thermal 

resistance of the PV laminate between the PV cell and absorber reduces the 

absorber’s ability in removing heat from the PV cell, decreasing the PV cell’s 

electrical efficiency [49, 50]. 

 

Laminating is the most common and advanced methodology for manufacturing of 

PV/T collectors. In this process, all the components including top cover, PV cells, 

electrical insulation and absorber plate are laminated in a single step. Top cover 

material used can be either glass or tedlar [49, 50]. 

 
In both methods discussed, the encapsulating material and adhesive should have a 

high temperature resistance to prevent cell or adhesive delamination when the 

collector reaches temperatures greater than 130oC, the stagnation temperature of 

glazed PV/T collectors. This problem can be avoided by using silicon 

encapsulants that can withstand high temperatures, over 200C, but cure at low or 

room temperature [49, 50]. 

2.5.1  Market 

Commercially, the only available PV/T collectors are air type with unglazed PV 

often known as a ventilated PV façade [51].  These collectors are used commonly 

for space heating.  PV/T concentrators and PV/T liquid collectors (glazed and 

unglazed) are commercially available (Table 2.8) (Figure 2.12 and Figure 2.13); 

however they are not produced on a large scale. In most PV/T panels, the PV 

panels are typically laminated or glued to the surface of the solar thermal collector 

[49]. 
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Table 2.8 Commercially available PV/T products [51]. 

Collector Type Name of product 
Company manufacturing 

the product 

PVTWIN collector PVTWINS 
PVT liquid collector 

Multi Solar Panel Millenium Electric 

SolarVenti Aidt Miljø 

Twinsolar Grammer Solar PV/T air collector 

Solarwall and SolarRoof Conserval Engineering 

Solar8 Arontis Solar Solutions 

Harmony HD211 HelioDynamics PV/T concentrator 

Power Spar Menova Engineering Inc 

Ventilated PV with heat 

recovery unit 
TIS Secco Sistemi 

 

 

A.   B.  

 

Figure 2.12 A) PV/T liquid collector (PVTWIN) from PVTWINS and B) PV/T 

air collector (SolarRoof) from Conserval Engineering [51]. 
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A. B.  

Figure 2.13 A) PV/T concentrator (Solar8) from Arontis Solar Solutions and B) 

Ventilated PV with heat recovery (TIS) from Italian company [51]. 

 

PV/T air collectors have a 1% share of the worldwide PV/T market as they are 

only used in space heating. Glazed PV/T collectors can be used for domestic hot 

water heating and space heating.  Unglazed PV/T liquid collectors could be used 

for pool heating and the potential for this application is relatively good in 

Australia and the US.  With the increase of integration of building walls or 

facades with PV, the market for ventilated PV facades with heat recovery unit is 

also growing. The major area for this application is utility buildings, as heating 

demand and solar radiation are high during daylight working hours [47, 49].  

2.6  Roofing products 

Roofs are classified as low slope roofs and steep slope roofs. Slope is the degree 

of inclination of roof and is the ratio of the rise to the span.  The materials used in 

roofing are shingles (wood, asphalt, glass fiber, fiber-cement, slate), tiles (clay 

and concrete), and metal products [52-54]. 

 

Wood shingles are cut from logs of red cedar, redwood, cypress or pine.  In the 

United States, western red cedar is used in most of the shingles in wall and roof 

applications and has good thermal insulation. These shingles have a cellular 

composition which consists of millions of tiny air-filled cells per cubic inch [52-

54]. 
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Asphalt shingles are made from asphalt flux. Mineral granules are heavily coated 

on the top surface of these shingles which are exposed to the weather. They are 

the most common material used in the roofing industry and have good fire 

resistance, low cost, and good durability. They are available in a wide variety of 

colours and mainly manufactured as strip shingles, interlocking shingles, and 

large individual shingles [52-54]. 

 

Glass fibre shingles are made up of glass fibre material and asphalt flux.  Glass 

fibre is waterproof and acts as reinforcement in the shingles. These shingles have 

good fire resistance and are very lightweight. Slate shingles are natural stone 

products and each stone piece has unique qualities. They are available in form of 

blocks/slabs which are removed from the ground and are further cut and trimmed 

into required sizes [52-54].   

 

Clay tiles are manufactured from fine powder clay and water mixture. This 

mixture is extruded through dies, press formed and cut into required lengths. 

These processes during manufacturing improve their performance, quality, and 

product diversity. Clay tiles are most common roofing material in Europe and are 

available in different colours. Concrete tiles are manufactured from mixture 

consisting appropriate quantities of Portland cement, sand and water. The mixture 

is extruded under high pressure on individual molds. Concrete tiles are most used 

in Europe, Australia and United States and are also available in different colours 

[52-54]. 

 

In this work, the roofing material considered most appropriate for PV/T 

integration is long-run metal roofing as it has large flat surfaces and good heat 

conductivity.  It is durable, lightweight, can be shaped as needed, available in 

different colours and is cheap, quick and easy to install.  Metal roofing is easily 

incorporated into building designs and is compatible with all types of building 

materials.  They are classified as structural or architectural standing-seam roof 

systems. Structural systems are used on both low-slope and steep-slope roofs. 

These systems have load-carrying capacities and do not need a substructure for 

support and are designed to be water resistant. Architectural systems are used on 
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steep slopes and  require a substructure for support and are not used for load-

carrying capacities [52-54]. 

 

The materials used in metal roofing include copper, aluminium, zinc, steel, and 

stainless steel.  The most common roofing systems are made from aluminium or 

coated steel such as painted (Colorcote) or galvanised (Zincalume) [52-54]. 

 

Standing-seam metal roofing systems are made from low-carbon steel processed 

into hot rolled coils. These coils are cleaned with acid to remove surface oxides 

and are reduced to the required thickness (0.5-1mm) in a cold rolling mill. Cold 

rolled coils are further cleaned, annealed and hot dip galvanised. The coated coils 

are then be painted for corrosion protection and aesthetics, then cut, roll-formed 

and pressed into the required profiles for roofing or other products [52-54]. 

2.7  Building integrated energy products 

New technological developments allow PV and solar thermal collectors to be 

integrated into building materials such as roofs, wall cladding and facades.  These 

materials not only serve for weatherproofing a building, but also generate 

electrical or thermal energy. These integrated products show potential cost 

savings in labour and construction materials as compared to installing separate 

energy systems.  Building cladding with integrated PV cells can have a greater 

aesthetic value [55, 56]. 

 

In building integrated photovoltaic (BIPV) technology, PV cells are laminated 

onto various building materials. BIPV products are readily available in the market 

and have been incorporated easily into standard façades and roof structures. 

Examples of BIPV products include crystalline PV modules designed and 

integrated into exterior building cladding such as curtain walls, spandrel panels, 

glazing, PV roofing tiles, shingles, standing seam products and transparent PV 

modules used for skylights, windows and transparent walls [56, 57].  These are 

wired into the building electrical systems with the majority being grid connected 

(on-grid) and have been successfully installed in residential (single-family 

housing), large commercial and industrial buildings [58, 59].  
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The first application of BIPV was in 1991 in Aachen, Germany where PV was 

integrated into an exterior wall cladding [59].  Since then, BIPV systems have 

been successfully installed on numerous commercial and industrial buildings both 

in roofing and cladding. (Table 2.9) (Figure 2.14 and 2.15) [57] Germany has the 

largest installed BIPV capacity of 41.8 MW, followed by Japan with 7.8 MW [60]. 

Some of the major IPV installations in the United States and other countries along 

with the PV module manufacture, type of BIPV system, PV area and power rating 

(size) are shown in Table 2.9. 

 

A  B.  
 
Figure 2.14 A) Building with PV standing seam roofing, Colorado, USA  [61] 

and  B) PV membrane roofing from SIT [62]. 

A   B.  
 
Figure 2.15 A) PV integrated window Germany [61] and B) The PV façade 

ELSA building in Italy [33]. 
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Table 2.9 BIPV installations in US and other countries [57]. 

Year BIPV System Name and location PV module manufacturer PV s/f area (m2) PV size 

1993 Roofing PV Manufacturing Facility, California APS 184 9.5 kWp 

1996 Roofing Thoreau Centre, California 
Solar building systems, 

Atlantis energy 
20 1.25 kWp 

1996 Roofing 
Western Area Power Administration, 

California 
Solarex 502 40 KW DC 

1996 Façade State University, New York Solarex 140 15 kWp 

1998 Roofing 
Western Area Power Administration, 

California 
Solarex and APS 921 38 KW DC 

1998 Façade 
Sun Microsystems Clock Tower, 

Massachusetts 

Pilkington solar 

international 
77 2.5 kWp 

1999 Façade 4 Times Square, New York Energy PVs, Inc. 288 14 kWp 

1999 Roofing Ford island, Hawaii Uni-Solar 53 2.8 KW DC 

1999 Roofing Navajo Reservation, Arizona Energy PVs, Inc. 58 4 kWp 

1999 Roofing General Services Adm., Massachusetts ASE Americans, Inc. 353 37 kW DC 

1999 Roofing Academy of further education, Germany Pilkington solar Int. 10000 1 MWp 

1999 Roofing Discovery science centre, California BP Solarex 403 20 kWp 

2000 Façade Ijsselstein Row Houses, Holland EPV 30/housing unit 1.6 kWp 

2001 Roofing Yosemite Transit Shelters, California Energy PVs, Inc. 10 0.56 kWp 

2002 Roofing Denver Federal House, Colorado Pilkington solar 172 15 kWp 

2002 Roofing Denver Federal House, Colorado Pilkington solar 59 3.4 kWp 
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2.8  Conclusion 

No PV cell production facilities currently exist in New Zealand.  PV cells would 

need to be sourced off shore as production facilities for crystalline cells only 

become economically viable at over 100MWp per annum.  Thin film cells are not 

available for sale as manufacturing facilities are purpose built for specific PV 

products and are expensive to install. 

 

Solar thermal and solar PV installations for domestic and industrial purposes have 

been growing annually by 15% and 25% respectively.  Subsidies and government 

sponsored programmes have helped promote PV and solar thermal use.  Solar 

PV/T technology combines PV and solar thermal into one system that can be 

installed in buildings for providing energy and heating. 

 

PV and solar thermal collectors have been integrated into roofing and wall 

cladding but they have not been integrated into long run roofing.  Building 

integrated photovoltaics (BIPV) has been growing rapidly since 1991 and MW 

scale systems are currently being installed.  Building integrated thermal (BIT) 

systems are used in domestic and commercial applications for hot water heating 

and space heating. 

 

PV/T has not seen large scale integration into building components due to 

problems experienced in producing reliable and robust products.  The majority are 

retrofitted or installed after the building has been completed.  Long-run roofing 

systems typically used in New Zealand were identified as suitable for PV/thermal 

integration because they have standing seam and corrugated seam profiles with 

large flat surfaces suitable for attaching PV and modifying for solar thermal 

collector. 
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Chapter 3   Manufacturing methodologies 

3.1  Introduction 

The BIPVT (Building integrated photovoltaic thermal) concept, materials used, 

components and manufacturing possibilities are discussed in this chapter.  Three 

manufacturing methods are identified as being suitable for BIPVT.  

3.2  BIPVT concept 

Traditionally, commercially available solar thermal, solar PV, and PV/T collectors 

are installed separately on buildings after the building components have been 

installed.  BIPVT components have PV and solar thermal systems integrated into 

building components such as roofing or wall cladding (Figure 3.1) and generate 

electricity and heat from solar radiation (Figure 3.2).  

 

 

 

Figure 3.1 Integration of PV, thermal and building products. 

 

 
 

Figure 3.2 BIPVT system. 
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The building product considered most suitable for BIPVT is long-run steel and 

aluminium roofing systems commonly used in New Zealand.  This is because 

long run roofing products mainly have corrugated and standing seam profiles 

(Figures 3.3) with long flat surfaces suitable for mounting PV. The metal is 

readily shaped to include channels for thermal fluid flow for solar thermal systems.  

Also the roofing is near perpendicular to the radiation from the sun as compared 

to typical vertical building walls so energy generation is greater from roofing 

systems than BIPVT systems in building walls.   

 

A     B   

 

Figure 3.3  A) Standing seam profile [63] and B) Corrugated seam profile [64]. 

 

Major components of the BIPVT product include corrugated sheet, collector 

(absorber) plate, PV laminates, and manifolds.  

 

The corrugated sheet acts as the housing of the BIPVT system and supports the 

collector plate and PV laminates. The sheet has central channels in the troughs 

with inlet and outlet points for the thermal fluid to flow through the system 

(Figure 3.4).  This minimises the use of tubes and pipes for fluid flow.   

 

The collector plate acts as the backing plate for PV laminates, absorbs the heat 

from the laminates and transfers the heat to the thermal fluid.  The collector plate 

is bonded into the trough section of the corrugated sheet and sealed along the 

outside edges and the central channel.  The collector plate covers the central 
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channel which creates a confined passage for thermal fluid flow (Figure 3.4 and 

3.5).  The collector plates are made from the same material as the corrugated 

sheets to keep the appearance and material properties the same.  This prevents one 

material being a sacrificial anode in corrosion processes and avoids the problem 

of having to electrically seal one metal from another.  Inserts seal the central 

channels ends between the corrugated sheet and collector plate to prevent thermal 

fluid leakage from the system. 

 

 

Figure 3.4 Schematic view of BIPVT product. 

 

Manifolds or headers are used to supply and collect the thermal fluid flowing 

through the product and are mounted underneath the corrugated sheet using nut 

and stud bolt fittings. Stud bolt fittings are hollow and carry the thermal fluid 

from the manifolds to the corrugated sheet (Figure 3.5). 
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Figure 3.5 An assembled BIPVT panel with all components. 

 
PV laminates used in BIPVT systems comprise glass sheet, EVA, PV strings and 

EVA layered onto the collector plate and is either glued or pressed together using 

laminators. This minimises the glass sheet or plastic foil compound used in 

standard lamination processes.  A junction box, cable and connector are used for 

the PV system electrical connections. 

 

Incident radiation on the BIPVT system is absorbed by the PV laminate which 

convert 12-17% of the energy into electricity depending on surface PV coverage 

and cell efficiency.  The remainder heats the collector plate which is used to heat 

the thermal fluid which enters at one end of the BIPVT system through a manifold 

and leaves at the other end through another manifold.  The heat in the thermal 

fluid is then used for space or water heating (Figure 3.4 and 3.5). 

Manifold 

Corrugated sheet 

PV cells 

PV encapsulating 
material (transparent) 

Collector plate 
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3.3  BIPVT Manufacture 

BIPVT manufacturing consists of a series of production and quality control steps, 

organised and specific processes selected so manufacture is quick and efficient.  

Eight production and three quality control steps were selected for BIPVT 

manufacture.  These are:   

 

Production steps: 

1. Corrugating flat metal sheet to form the roofing profile including troughs 

and central channel. 

2. Drilling or punching holes in the central channels for thermal fluid inlets 

and outlets. 

3. Bonding the collector plate into the trough sections of the corrugated sheet. 

4. Sealing the central channels at each end of the roofing section. 

5. Mounting fittings for connecting manifold to the central channels inlets 

and outlets on the underside of the corrugated sheet. 

6. Laminating glass sheet, EVA, PV and EVA onto the collector plate and 

installing electrical fittings. 

7. Sealing the edges between collector plate and corrugated sheet are sealed. 

8. Connecting manifolds to the inlet and outlet points. 

 

Quality steps: 

1. Between steps 5-6 the central channel is checked for fluid leakage from 

bonds between collector plate and corrugated sheet, from seals at each end 

of the channel and the inlet and outlet fittings. 

At this point the product is suitable for Building integrated thermal (BIT). 

2. Between steps 6-7 the product is checked for lamination quality and 

electrical properties. 

3. After step 8 the manifolds are checked for leaks and the product for 

heating and cooling efficiency. 

 

Manufacturing and quality control steps are shown in Figure 3.6 and summarized 

in Table 3.1. 
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Figure 3.6 General flow chart for manufacturing BIPVT product. 
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Table 3.1 Operations with functions and details in BIPVT manufacturing. 

P= Production operation and Q= Quality operation 
Oper. 
No. Operation Function Details 

P1 Corrugation of plain 
sheet 

Generating modified long-
run roofing profile 

Corrugation comprising crest and 
troughs along with central 
channels for thermal fluid flow 

P2 Producing holes on 
central channels 

Holes acting as inlet and 
outlet points for thermal fluid 
flow through the system 

Holes produced at a fixed 
distance from the ends on central 
channels act as inlet, outlet and  
limit thermal fluid flow 

P3 
Joining collector 
plate to corrugated 
sheet 

Creating passage for 
thermal fluid flow and acting 
as backing plate for PV 
laminates 

Collector plate is bonded to 
corrugated sheet on trough 
section along the entire length 
sealing the central channel 

P4 
Sealing central 
channels at each 
end 

Sealing central channels 
and limiting thermal fluid 
flow between inlet and outlet 
points 

Fixed distance beyond the inlet 
and outlet points on central 
channel is sealed by special 
inserts 

P5 Mounting fittings to 
corrugated sheet 

Facilitating assembly of 
corrugated sheet with 
manifolds 

Hexagonal nut fittings are joined 
underneath the corrugated sheet 
on inlet and outlet points 

Q1 Quality control # 1 
Monitoring production 
operation number 3, 4, and 
5 results 

Water is used as thermal fluid for 
testing, central channels and inlet 
and outlet points are checked for 
proper sealing 

P6 
Laminating PV 
strings on collector 
plate 

Transforming the product 
into a BIPVT product 

Finished PV strings are 
laminated on collector plate using 
EVA and tedlar for encapsulation 

Q2 Quality control # 2 
Monitoring production 
operation number 6 results 

Quality and electrical 
performance of PV lamination is 
checked 

P7 

Sealing edges 
between bonded 
corrugated sheet 
and collector plate 

Preventing the join from any 
external fluid flow 

Bonded edges across the 
collector plate and corrugated 
sheet are sealed by 
sealants/adhesives 

P8 Attaching manifolds 
to corrugated sheet 

Functioning of BIPVT 
product to generate 
electricity and thermal 
energy 

Manifolds and corrugated sheet 
are assembled by mechanical 
fastening of hexagonal nut and 
stud bolt fittings. Stud bolts are 
hollow and thermal fluid flows 
through them to corrugated sheet 

Q3 Quality control # 3 
Monitoring production 
operation number 8 results 

Performance of BIPVT product 
for thermal/electrical properties 
and also assembly between the 
corrugated sheet and manifolds 
is checked. Water is used as 
thermal fluid for testing. 
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The manifolds and stud bolts would be removed from the BIPVT after testing to 

allow for easy BIPVT product stacking and then reassembled when the BIPVT 

product is installed on location. 

 

In mass production, batch sampling would be used for quality control checks 

where samples from each batch would be taken and tested.  Therefore step 8 in the 

manufacturing process could be omitted. 

 

A range of manufacturing possibilities were considered for each step in BIPVT 

production (Table 3.2).  These are discussed in detail in the following section. 

 

Table 3.2 Manufacturing possibilities for BIPVT production steps. 

 

Step Production step Manufacturing possibilities 

1 Corrugating plain sheet 
Press-brake forming 
Roll forming 

2 Producing holes on corrugated sheet 
Drilling  
Punching 

3 
 
4 
5 

Joining the collector plate to the corrugated 
sheet 
Sealing the central channels at each end 
Mounting fittings to corrugated sheet 

Mechanical fasteners 
Adhesives 

Autoclave 
Welding (Liquid state) 

MIG 
TIG 
Electron beam 

Welding (Solid state) 
Resistance seam 
Friction stir 
Ultrasonic 

Brazing/soldering 

6 
Laminating PV to collector plate and install 
electrical connections 

Laminator 
Integrated 
Passing through 

Autoclave 

7 
Sealing the edges between the 
collector plate and corrugated sheet 

Adhesives 
Sealants 

8 Assembling manifolds with corrugated sheet Mechanical fasteners 
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3.4  Production steps, functions, methods and details 

3.4.1  Step 1, corrugation of plain sheet 

The roofing profile will be made from Zincalume which is zinc and aluminium 

coated mild steel and Colorcote which is colour coated Zincalume, supplied by 

Dimond Ltd..  These are commonly used for roofing products in New Zealand. 

 

Press brake forming and continuous roll forming are two commonly used methods 

for corrugating flat sheet.  Press-brake forming is where pre-cut sheet metal is 

bent to shape often using a computer numerical controlled (CNC) machine.  Press 

brakes can have beds 7 m or greater in length and are commonly used for batch or 

mass production. Roll forming is a continuous production method for shaping 

either pre-cut or long lengths of sheet metal by passing it through a series of 

shaped rollers to achieve the desired shape [65, 66]. 

 

BIPVT roofing profiles will be 6 m in length and it is expected that initially only 

small volumes of product will be made.  Also it is anticipated that there may be 

minor improvements or changes to the roofing profiles as the product develops.  

Therefore press-brake forming is the most suitable method as it allows the profile 

shape to be changed easily by programming the new profile into the CNC 

machine, compared to roll forming which requires the rollers to be replaced.  For 

longer lengths of BIPVT product, i.e. greater than 6 m and for mass production 

roll-forming is the best method [65, 66]. 

 

3.4.2  Step 2, producing holes on central channels 

The central channels need 10 mm diameters holes for the thermal fluid inlet and 

outlet (Figure 3.7).  This can occur before or after the metal sheet used for 

BIPTVT is corrugated.  If the holes are made before corrugation there is a 

possibility the holes may be misaligned on the central channels after corrugation 

has taken place due to misalignment of the sheet, therefore the product would 

need to be discarded.  Producing the holes after corrugation seems more sensible 

as the holes can be correctly aligned with the central channel using a jig. 
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Figure 3.7 Corrugated sheet with inlet and outlet points. 

 

Holes are normally produced in industry using a drill press or hole punch and die 

[65, 66].  Drilling through a plate produces a burr on the bottom edge of the hole.  

Punching also creates a burr but also deforms the metal on the top side of the hole 

because the punch makes a small crater where it enters the material.  The burr 

needs to be removed before any fittings are attached to the plate to ensure a good 

fit.  This can be done using a grinder or sander prior to attaching the fittings.  

When drilling thin sheet, there is a slight chance the plate can climb up the drill 

bit.  This can be avoided by attaching a spring loaded clamp to the drill press 

which holds the plate in position as it is being drilled.  Punching is very fast and 

simple compared to drilling. As the sheet is 0.55 -0.70 mm thick deformation and 

the burr should be small, therefore punching is best method for producing holes. 

Outlet point for 
thermal fluid flow 

Central 
channel 

Corrugated 
sheet 

Inlet point for 
thermal fluid 
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3.4.3  Step 3, joining the collector plate to corrugated sheet 

Joining the collector plate to the corrugated sheet trough sections is an important 

step.  The join should be strong and prevent the collector plate from detaching 

from the corrugated sheet if the sheet is twisted.  Also joining the two forms the 

central channel for thermal fluid flow, therefore the central channel needs to be 

sealed to prevent fluid leakage.  Mechanical fasteners (such as screws, nuts and 

bolts, and rivets), adhesives and welding are possibilities for joining the collector 

plate to the corrugated sheet (Figure 3.8). 

 

 

 

Figure 3.8 Collector plate bonded on corrugated sheet. 

 

Collector plates 

Corrugated sheet 
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Adhesives and welding are mutually exclusive methods for BIPVT manufacture 

unless adhesives are applied after any welding has been completed when the 

product is cool.  Otherwise product heating from welding may cause adhesive 

failure. 

Mechanical fasteners 

Mechanical fasteners need holes drilled or punched [67] in the collector plate and 

corrugated sheet, which would add additional process steps to the manufacturing.  

Also, these fastening points and the central channel must be sealed to prevent 

rainwater leakage through the BIPVT and thermal fluid leakage from the central 

channel.  Therefore mechanical fasteners are not suitable for this step. 

Adhesives 

Adhesives contain a volatile solvent that evaporates causing the adhesive to 

solidify bonding the two surfaces together.  Adhesives are considered to be one of 

the best alternatives for joining parts in industry as it eliminates the need to drill 

or punch holes to fix parts together. They have achieved greater acceptance in 

manufacturing after World War II, where they were used for assembling load-

bearing components in aircrafts [65].  The join between the corrugated sheet and 

the collector plate is a lap joint, considered the best join for adhesive bonding 

(Figure 3.9) [68]. 

  

Adhesives are available commercially in liquid, paste, solution, emulsion, powder, 

tape and film form.  Bonded joint strength depends on the surface preparation of 

the mating substrates. The adhesive must wet the surfaces to be joined and form a 

chemical bond between them.  Surface preparation is where the mating surfaces 

are cleaned and/or chemically treated to facilitate better bonding.  Adhesive is 

applied either manually or automatically to one of the surfaces directly after 

surface preparation before the treated surfaces dry.  Both parts are clamped 

together to prevent movement of parts relative to each other and so the adhesive 

has a thickness of around 0.10 mm.  Curing occurs at room temperature or higher 

in an autoclave depending upon the adhesive type [69, 70]. 
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Figure 3.9 Lap joint in adhesive bonding for two workpieces. 

 

Using adhesives allows for low temperature manufacture (up to 200oC in an 

autoclave) preventing distortion and heat effects that can occur with techniques 

such as welding.  This allows thin materials (<1 mm thickness) and materials of 

different types to be joined together.  Adhesives also double as a sealant which is 

useful for sealing the central channel between the corrugated sheet and the 

collector plate.  Exterior surface finish is unaffected when adhesives are used as 

compared to welding metals where a seam and heat affected zone remains [66, 71]. 

 

The adhesive bond strength per unit area is not as great as the bond from welding 

[65]. However the collector plate is not under significant load as only the PV 

laminate will be attached to it and the adhesive is applied to a large surface area. 

 

Adhesives need time to cure, so some manufacturing processes use an autoclave 

to decrease curing time by heating the components and extracting the volatile 

solvents in the adhesive using a vacuum. 

 

For BIPVT, the adhesive needs to be resistant to temperatures from -20oC to 

170oC, resistant to moisture and atmospheric/weathering conditions, and bond to 

steel and aluminium. Adhesives suitable for steel and aluminium include Ms 

Polymer™, epoxy, silicone based, and acrylic.  Silicone based adhesives appeared 

to be the most suitable because they have good temperature resistance [72]. 

Mating surfaces 

Adhesive 
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Autoclaving 

Autoclaving is a molding process in which a plastic material is placed on a mold.  

The plastic is heated in an autoclave, a vacuum applied between the mold and the 

plastic, and air pressure increased above the plastic forcing the plastic to take the 

shape of the mold (Figure 3.10).  The autoclaves used are large pressure vessels 

up to 30 m in diameter and 50 m in length [66, 71]. 

 

Figure 3.10 Schematic view of an autoclave [71]. 

 

A similar process can be used for bonding the collector plate to the corrugated 

sheet. Using adhesives only a vacuum would be used to remove air from between 

the surfaces to be joined and heat to decrease adhesive curing time.  An autoclave 

is expensive approximately $200,000 for a 12m3 system [73] but is fast and used 

for high volume production [66, 71]. 

Welding 

Welding is where two materials are joined together and creating a seam by 

melting the mating surfaces or edges together.  Welding includes solid and liquid 

state techniques.  Liquid state techniques, such as tungsten inert gas and metal 

inert gas, use high temperatures to melt the materials where the desired join is to 

be made and create a large heat affected zone which may cause the material to 

distort.  Electron beam welding, also a liquid state technique, while using high 

temperatures, is conducted rapidly under a vacuum creating only a small heat 

affected zone.  Solid-state techniques, such as resistance, friction, and ultrasonic 
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welding, heat the material sufficiently to form a bond without excessive melting.  

They generate a small heat affected zone and material distortion is reduced.  

Welding is rapid, the join is high strength and the process can be automated, but 

specialised techniques such as electron beam, friction stir and ultrasonic welding 

are more expensive than adhesives.  Also any surface coating will need to be 

removed prior to welding to ensure a clean weld.  Resistance seam, ultrasonic, 

friction stir, and electron beam were selected as possible methods for attaching the 

collector plate to the corrugated sheet.  These techniques are suitable for lap joints, 

like the join between the collector plate and the corrugated sheet.  They are also 

suitable for medium to high volume production [65-67]. 

 

Resistance seam welding is a solid-state welding process in which the materials to 

be joined are pressed by rollers or cylindrical tips which act as electrodes.  An 

alternating current is passed through the contact point which heats and melts due 

to the material’s electrical resistance.  The current is stopped after the mating 

surfaces have melted and pressure is released after the weld/joint is solidified [66].  

When rollers are used, a continuous electric current is used, and the material 

melting rate determines the speed at which the materials to be welded are passed 

through the rollers (Figure 3.11).  Welding speeds are around 1.8 m/min and 

equipment capital cost is approximately $40,000 [65-67]. 

 

 

Figure 3.11 Resistance seam welding process [74]. 
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Ultrasonic welding is a solid-state welding process in which the mating surfaces 

to be joined are vibrated at 10-200 kHz by a transducer.  The vibration melts the 

surfaces and allows them to join together.  This process avoids melted material 

pooling, excessive heating and limits temperature distortion effects [65, 68].  In 

ultrasonic seam welding, the transducer tip is replaced with rotating disks which 

runs the length of the material to be welded forming a continuous seam (Figure 

3.12). The temperatures generated are lower than other welding processes. 

Welding speeds are approximately 7 m/min and the equipment capital cost is 

approximately $60,000 [65-67].. 

 

 

 

 

Figure 3.12 Ultrasonic seam welding process [65]. 

 

In friction stir welding, a high speed rotating tool is rubbed against the two 

surfaces to be joined.  The rotating tool has a tip which is plunged into the 

component edges to be joined. The friction melts the material and as the tool 

moves down the join, the molten metal flows together and fuses as it cools (Figure 

3.13). The temperatures are in the range of 230oC to 260oC [65, 67]. 
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Figure 3.13 Friction stir welding process [69]. 

 
This method is suitable for welding aluminium, steel, copper and coated materials. 

It has the advantages of low heat generation and minimal surface distortion.  No 

shielding gas or surface cleaning is needed.  The welding speeds are about 0.5 

m/min which is lower than resistance seam, ultrasonic and electron beam welding. 

Equipment capital costs are approximately $150,000 [65-67]. 

 

Electron beam welding (EBW) is a high-energy process in which high velocity 

electrons fired in a narrow beam under vacuum at the edges of the two materials 

to be joined.  The electrons heat the material causing the edges to melt and fuse to 

form a seam (Figure 3.14).  Heating depth is determined by the extent of vacuum 

and the process can be classified as high, medium or no vacuum EBW [65, 67].  

This method is a liquid state welding process but has a small heat affected zone 

because it is very rapid and operates under a vacuum.  Welding speeds are up to 

12 m/min, higher than previous methods discussed, and high quality welds are 

obtained.  The equipment capital cost is very high, approximately $250,000 

because of the shielding needed to protect against x-ray generated during 

operation and vacuum requirements [65]. 

 

Probe 
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Figure 3.14 Electron beam welding process [65]. 

 

A comparison of welding techniques with advantages and disadvantages is shown 

Tables 3.3 and 3.4.  Resistance seam welding was selected as the most suitable 

method because it has the lowest capital cost and moderate welding speeds and 

energy consumption.  Low capital costs reduce the total investment and payback 

time for the BIPVT process.  It is commonly used as a welding technique for seam 

joints and less complex than other methods.  It does not involve high frequency 

vibrations as in ultrasonic welding or require shielding and vacuum as in electron 

beam welding.  If electron beam welding was to be used special equipment would 

be needed in the manufacturing chain to create a sealed vacuum chamber so the 

beam could operate driving up the capital cost of the manufacturing process. 

 

Table 3.3 Comparison of welding techniques [65-67]. 

Welding techniques 
Parameter 

RSW USW FSW EBW 

Welding speed 1.8 m/min 7 m/min 0.5 m/min 12 m/min 

Capital cost ~$35,000 ~$60,000 ~$150,000 ~$250,000 

Type of production Medium-high Medium-high Low-medium High 

Energy consumption Medium High High Very high 
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Table 3.4 Welding techniques advantages and disadvantages [65-67]. 

 

Brazing and soldering was also considered as a possible method for bonding the 

collector plate with the corrugated sheet.  These are a liquid-solid-state bonding 

process and the temperature generated is lower than previously mentioned 

welding processes.  In brazing, a filler material is positioned between the 

components to be joined. The temperature is raised to above 450oC until the filler 

material melts.  After cooling, the filler material bonds the two surfaces together.  

In soldering, the filler material used is often termed as solder, which melts at 

lower temperatures than used in brazing. After melting, solder fills the joint by 

capillary action between components to be joined. Soldering irons or torches are 

Method Advantages Disadvantages 

Resistance seam 

welding 

(RSW) 

• Best suitable for lap joints of 

thin sheets and plates 

• Moderate capital equipment 

cost ($35,000) 

• High welding speeds (1.8 

m/min 

• Energy consumption varies with 

type of material 

• Not suitable for wide variety of 

materials 

• surface distortion 

 

Ultrasonic seam 

welding 

(USW) 

• Best for lap welding of thin 

sheets 

• Variety of materials can be 

welded 

• Low temperatures are evolved 

• Higher welding speeds 

(7m/min) 

• High capital cost ($60,000) 

• High energy consumption 

• Not suitable for different 

materials 

Friction stir 

welding 

(FSW) 

• Best for lap joints of thin 

sheets and plates 

• Suitable for aluminium, 

copper, steel and other 

materials 

• Low heat input and low 

distortion 

• No shielding gas, flux or 

surface cleaning required 

• High capital equipment cost 

($150,000) 

• Lower welding speeds (0.5 

m/min) 

• Energy consumption more for 

metals other than aluminium 

Electron Beam 

welding 

(EBW) 

• Best for lap joints in thin and 

thick gauges from foil to plate 

• High welding speeds ~12 

m/min 

• High quality welds are 

obtained 

• Best for mass production 

• High capital equipment cost 

($250,000) 

• Process hazardous as X-rays 

are generated 

• Vacuum is required for process 

• Not suitable for job and batch 
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used as heating sources.  These methods are mainly used for soldering electrical 

components and small metal components but are not typically used for large 

surfaces [65, 66] such as the collector plate and corrugated sheet in BIPVT 

product. 

3.4.4  Step 4 and 5, sealing central channels at each end and 

mounting fittings to the corrugated sheet 

The central channels are sealed at each end to prevent fluid leakage by slotting in 

an insert 70 mm long of the same shape as the channel which is 5 mm deep and 20 

mm wide (Figure 3.15).  Then hexagonal nut fittings are attached to the underside 

of the central channel to provide mounting points for hollow stud bolts for the 

thermal fluid inlets and outlets (Figure 3.16).  

 

 

Figure 3.15 Sealing central channels end by inserts. 

 

The inserts can be installed at the same time as the collector plate is being 

attached if adhesives are used.  If the plate is welded to the corrugated sheet, then 

the inserts need to be installed after the plate is attached.  The hexagonal nuts are 

installed after the inserts have been slotted in place.  Brazing, soldering and 

adhesives are equally suitable methods for these steps (Figure 3.16).  However, if 

adhesives are used for the collector plate or installing the inserts, then brazing or 

soldering would not be suitable methods because temperatures can approach 

400oC which may weaken the adhesives [65, 66]. 

Corrugated sheet 

Collector plate 

Inserts 
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Figure 3.16 Mounting fittings to corrugated sheet underside at inlet and outlet 

points. 

 

3.4.5  Step 6, lamination of PV strings on collector plate 

A vacuum laminator is conventionally used for laminating glass sheet, EVA, PV 

strings, and EVA on to a backing plate [11, 34].   As the glass sheet, EVA, PV 

strings, and EVA are layered on to the collector plate, the PV strings are wired to 

a junction box, so when lamination takes place, the EVA seals around the 

electrical wires protruding from the PV cells (Figure 3.17).  This step could be 

carried out prior to attaching the collector plate to the corrugated sheet if 

adhesives where used to join the two.  However a load must be applied to the 

collector plate during attachment to ensure good bonding.  The PV cell laminate is 

delicate and may crack.  Therefore it is better to perform lamination after the 

collector plate has been attached.  If welding was used then lamination must occur 

after the collector plate has been attached because the high temperatures used in 

welding would destroy the laminate.  

 

Inlet/outlet 
point 

Hexagonal 
bolt fittings 
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Figure 3.17 Lamination of PV strings on collector plate. 

 

An integrated or passing-through laminator can be used for lamination [11]. 

Alternatively an autoclave could be used which would potentially allow the 

lamination to occur at the same time as attaching the collector plate to the 

corrugated sheet and installing the inserts in the central channels.  

 

In an integrated laminator, heating and cooling cycles are carried out in the same 

equipment using two methods.  The first is Isovolta which uses normal EVA.  The 

laminate (module) is loaded at 90oC and exposed to 10 mbar vacuum. The 

laminate is heated to 155oC over 10 minutes.  During heating the laminate is 

PV encapsulating 
material (transparent) 

PV cells 

Collector plate 

PV Laminate 

Corrugated sheet 
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compressed to achieve a seal at approximately 120oC.  Temperature is held at 

150oC for 15 minutes after which it is cooled to 90oC over 10 minutes.  The 

laminator is opened when the laminate has reached 100oC.  The total cycle time is 

approximately 35 minutes [11].  

 

The second integrated lamination method is Springborn which can be used for 

normal and fast cure EVA.  First the laminator plates are pre-heated to 75oC.  The 

laminate is covered in silicon or Teflon foil prior to loading.  Three minutes after 

loading, the laminate base is exposed to 1.3 mbar vacuum. After the laminate 

reaches 60oC, the laminate is compressed to 1 bar and is heated to 155oC after 

which curing begins.  Curing is 22 minutes for normal EVA at 155oC and 4 

minutes for fast cure EVA.  After curing, the laminator is opened, cooled to 75oC 

during which the laminate is unloaded.  Total cycle time using normal EVA is 

approximately 33 minutes and 15 minutes for fast cure EVA [11]. 

 

In a passing-through laminator, only the heating cycle and lamination is carried 

out in the laminator.  The laminate is passed from the vacuum laminator to the 

curing oven and to the cooling zone. The temperature cycles are similar to the 

integrated laminator process except the laminate is allowed to cool on the 

conveyor belt or in a separate area.  The total cycle time is ten minutes [11]. 

 

The Springborn method and fast cure EVA was selected for the BIPVT process 

because of the fast processing times and rapid curing.  

3.4.6  Step 7, sealing the edges between bonded collector plate 

and corrugated sheet 

Adhesives or sealants are used for sealing the edges between the collector plate 

and corrugated sheet.  This step does not have any major impact on the 

performance of the product but is important for protecting the join between the 

collector plate and corrugated sheet from rain water which may be acidic and 

corrosive.  The join does not need protection from the thermal fluid however 

because the fluid will contain additives that prevent it from corroding the join or 

interacting with the adhesive. 
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3.4.7  Step 8, attaching manifolds to the corrugated sheet 

The manifolds are used to distribute thermal fluid to and from the inlets and 

outlets on the central channel.  Mechanical fastening is the preferred method for 

this step because it is not permanent [65, 67] and the manifold can be easily 

removed for packaging after the product has been tested .  Hollow stud bolts are 

used to connect the corrugated sheet and manifolds. These bolts have opposite 

threads at each end and a square section in the middle and a channel through the 

axis. The square section and opposite threads allows the bolts to be fixed 

simultaneously to the manifold and fittings on the corrugated sheet using a 

spanner.  The channel through the axis allows thermal fluid to flow to and from 

the manifolds to the central channel in the BIPVT. 

 

Attaching the manifolds to the BIPVT was left until last to avoid difficulties in 

modifying the lamination process to accommodate the manifolds protruding from 

the underside of the BIPVT (Figure 3.18 and Figure 3.19 A and B). 

 

 

 

Figure 3.18 Attaching manifolds to the corrugated sheet. 
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A   

 

B.  

Figure 3.19 A) Front view and B) Underside view of an assembled BIPVT 

panel. 
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3.5  Quality steps 

After the collector plate has been attached to the corrugated sheet and inserts for 

the central channel and fittings for the inlets and outlets from the central channel 

installed, the central channel is checked for fluid leakage from joins between the 

collector plate and corrugated sheet, from seals at each end of the channel and the 

inlet and outlet fittings (Quality control # 1) (Figure 3.6).  This is carried out by 

passing fluid under pressure through the central channel through the inlet and 

outlet points.   If leaks are observed, a “NOT OK” quality certification is given 

and the product is either scrapped or sent for reprocessing depending on where the 

leaks are found.  If no leaks are observed, the product passes and is given an 

“OK” certificate.  It then goes on to the next process step where the PV is 

laminated to the collector plate.    

 

After the PV cells have been laminated to the collector plate the product is 

checked for lamination quality and electrical properties (Quality control # 2) 

(Figure 3.6). The lamination is visually inspected to ensure the EVA has bonded 

to all components in the laminate and to check for air bubbles and other 

imperfections.  The PV cell laminate electrical properties and efficiency are 

measured by shining a light at the surface simulating solar radiation of 1000 W/m2 

at a temperature of 25oC.  The product then is given a rating based on its light 

energy to electrical energy conversion efficiency.  If there are imperfections in the 

laminate or the PV cells do not generate electricity then the product is scrapped or 

sent for reprocessing in which the laminate is removed and lamination repeated. 

 

After the manifolds are installed the stud bolts are checked for leaks and the 

product is tested for thermal heating and cooling efficiency (Quality control # 3) 

(Figure 3.6). A thermal fluid is passed through the system at a set inlet 

temperature while the BIPVT surface is illuminated using the same conditions as 

when the product is checked previously for electricity production and solar to 

electrical energy conversion efficiency.  The product passes if the thermal fluid 

extracts heat from the PV cell laminate reducing its temperature when it is 

exposed to simulated sunlight.          
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3.6  Identification of manufacturing methodologies 

Adhesives, resistance seam welding and autoclaving were identified as the most 

suitable methods of manufacturing BIPVT.  These were categorised based on the 

method used for joining the collector plate to the corrugated sheet   

 

Using adhesives for BIPVT manufacture has the advantage of allowing the 

production steps of joining the collector plate to the corrugated sheet and sealing 

the central channel ends to be achieved in one step.   PV cell lamination would 

occur in a separate step.  Production and quality steps for using adhesives are 

shown in Figure 3.20.  

 

Resistance seam welding has the advantage of being robust, cheap and quick.  

Brazing and soldering would be used for attaching the inserts and fittings to the 

central channel and the PV cells would be laminated in separate steps.   The 

production and quality steps for manufacturing BIPVT when resistance seam 

welding is used is shown in Figure 3.21.  

 

Autoclaving (integrating an autoclave and vacuum laminator into one unit) allows 

bonding the collector plate to the corrugated sheet, sealing the channel ends, 

attaching the fittings to occur at the same time as laminating the PV strings and 

EVA covering to the collector.  In this case vacuum would be used to remove air 

from between the surfaces to be joined and compression to press the laminate 

together.  This has the advantages of reducing production steps, equipment and 

manufacturing time, eliminating a quality control steps, the need for a vacuum 

laminator and mechanisms to transfer material from one point to another.  It is 

also suitable for mass production.  However if this step fails the product cannot be 

reprocessed or diverted to another product type as it could be if separate process 

steps were used as in Table 3.1.  Evidence of an integrated autoclave and 

laminator has not been found during this research.  The production steps and 

quality steps for manufacturing the BIPVT product using an autoclave are shown 

in Figure 3.22.  
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Figure 3.20 Flow chart for manufacturing BIPVT product by adhesives. 
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Figure 3.21 Flow chart for manufacturing BIPVT product by resistance seam 

welding. 
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Figure 3.22 Flow chart for manufacturing BIPVT product by autoclaving. 
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3.7  Material selection 

There is no significant change in the collector efficiency and strength and 

structural properties if either aluminium or steel is used for the BIPVT [75]. 

However if aluminium was used the surface needs to be coated for cosmetic 

appearances.  Aluminium is typically supplied uncoated whereas steel comes pre-

coated with zinc, Zincalume and/or Colorcote so an extra processing step would 

be needed to coat the aluminium. 

 

The material finalized for the BIPVT product is steel and the brands that can be 

used are Zincalume and Colorcote. 

3.8  Production types 

BIPVT production can be categorized according to production volume.  Low, 

medium and large volumes are commonly called jobbing, batch and mass 

production [67, 76]. 

3.8.1  Jobbing production 

In jobbing production, production volumes, or lot size, are approximately 50-200 

units.  The production process and layout is designed to allow a number of 

different products to be produced using the same equipment.  Jobbing production 

typically requires more skilled labour than batch or mass production because 

product specifications regularly changes and product lines may not be repeated 

[77, 78].  These lots are produced at once or in intervals.  Examples of jobbing 

include space vehicles, aircraft, special tools and equipment [67, 76].  

3.8.2  Batch production 

In batch production, volumes are typically around 200-10,000 units depending on 

product size and complexity.  A batch process will produce several different 

product types using the same equipment and processing may be batch or 

continuous depending on production volume [67, 78].  An example of batch 

production is limited edition high performance car manufacture.  
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3.8.3  Mass production 

In mass production, high volumes of products (10,000 or more) are continuously 

produced using specialised, highly optimised and rapid process lines [67, 76].  

Large capital investment is required for special machinery and the process is 

tailored to maximize machine utilisation [78].  The plant layout is fixed according 

to the flow of material through the production operations [67]. The plant may be 

fully automated or employ low skilled labour which man specific stations in the 

production line.  Special conveyors and transfer devices are used to facilitate rapid 

material and component flow through the process [76].  Examples of mass 

production include steel processing, soft drinks and pharmaceutical manufacture 

[67, 76].    

3.8.4  BIPVT production 

BIPVT production can be defined according to production volume using the 

above definitions.  Custom built BIPVT panels for specific jobs would fall under 

the jobbing category and require a highly flexible manufacturing process.  

Standard types of BIPVT panels of volumes between 200-10,000 panels per year 

would fall under batch production.  Batch production would cover low to medium 

volumes (<50,000 panels per year).  Greater than 50,000 panels per year is 

considered high production (Table 3.5). 

 

Table 3.5  Volume, area, type of production and system for BIPVT product. 

Volume Area* in m2 Type of production Production system 

<10,000 33,840 Low Job 

20,000 67,680 Low-Medium Batch 

30,000 101,520 Medium Batch 

40,000 135,360 Medium Batch 

>50,000 169,200 High Mass 

* Area for a BIPVT panel is 3.384 m2 (6 m long by 0.564 m wide) 
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3.9  Built-to-order BIPVT panels 

Roofing products can be custom built in different profiles, materials and sizes 

according to customer needs, making them easy to install on site.  BIPVT panels 

would also need to be manufactured to customer needs to cater for different 

roofing lengths, material types, % PV coverage, and position of manifolds and 

inlet and outlet points. 

 

For a fixed set-up in a mass production facility custom manufacturing can be 

achieved using integrated systems with a common database shared by all the 

departments in the company.  For a BIPVT product, the customer requirements 

are accepted by the marketing department after consultation with the installation 

department.  Sale orders, with product specifications, are entered into the 

integrated system database which generates a ‘Sales Order’ number for product 

tracking.   

 

The sales order is received by the operations department and passed onto 

production planning control (PPC), quality control (QC) and production 

departments (Figure 3.23).  The QC department specifies the operating parameters 

for each production step during product manufacture to achieve product 

specifications in the sales order.  A production plan is issued by PPC to the 

production department containing detailed specifications set by the QC 

department for BIPVT processing.  After each production step a bar code with the 

sales order number is pasted on the product and the product is passed on for the 

next stage of production.  Machining parameters can be checked by scanning the 

barcode or entering the sales order number into the integrated database.  QC 

checks the product after each major production step to ensure the product meets 

the specifications on the sales order. 
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Figure 3.23   Flow chart for custom built BIPVT orders.
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Chapter 4   Prototype production and evaluation 

4.1  Introduction 

Two BIPVT prototypes were constructed from aluminium and Colorcote using 

silicone based adhesives.  After several attempts a successful prototype was built 

from Colorcote, the method used is described in following section.  Resistance 

seam welding was also attempted by an Australian company for constructing a 

prototype.  Findings from building the prototypes are discussed.            

4.2  Prototype construction and testing 

Colorcote corrugated sheet (2 m long by 0.56 m wide and 0.55 mm thick) and two 

collector plates (2 m long by 0.18 m and 0.55 mm thick), fabricated from 

galvanized steel with acrylic black coating, was supplied by Dimond Ltd..  The 

dimensions and profile of the corrugated sheet are shown in Figure 4.1. 

 

   

 

Figure 4.1 Modified corrugated roofing profile (All dimensions are in mm). 

 

Two 10 mm diameter holes for fluid inlets and outlets were drilled in each central 

channel on the corrugated sheet 90 mm from each end of the sheet using a hand 

held drill (Makita made).  Two additional holes, 5 mm in diameter (Figure 4.2) 

where drilled in the corrugated sheet crests, the first 10 mm and the second 1 m 

from the end of the sheet, for electrical cables.  Any burrs around the holes were 

removed using 40 grit sand paper. 
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Figure 4.2 Corrugated sheet dimensions used for prototypes (All dimensions 

are in mm). 
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Mild steel connector pipes, 70 mm long, 10 mm ID and 12 mm OD with a 22 mm 

diameter and 1 mm thick flange (Figure 4.3), were soldered to the inlet and outlet 

points under the corrugated sheet (Figure 4.4) using acetylene torch. 

 

 

Figure 4.3 Connector pipe (All dimensions are in mm). 

 

 

 

 

Figure 4.4 Connector pipes soldered to inlet and outlet points underside the 

corrugated sheet. 
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Before soldering, the primer and galvanised coating were removed from the area 

around the inlet and outlet holes using sand paper to ensure good bonding 

between the connector pipe and corrugated sheet. 

 

After the connector pipes were soldered to the corrugated sheet, the holes on the 

top side of the sheet were blocked off and water poured into the pipes to check for 

leaks around the joint. 

 

After testing the corrugated sheet was mounted on four hollow mild steel square 

sectioned pipes (80 mm by 80 mm by 2 m long and 5 mm thick) to protect the 

connector pipes.  The central channels in the corrugated sheet sat between the 

pipes. 

 

All surfaces of the corrugated sheet that were to have adhesives applied to were 

cleaned with a cloth.  A bead of Silicon based adhesive (Dow Corning 732 ™) 

was applied to the length of the sheet in the centre of each trough either side of the 

central channel and to the ends of the central channels.  70 mm long, 20 mm wide 

and 5 mm thick inserts were glued to each end of the central channels.  A bead of 

adhesive was then run along each end of the trough and over the insert in the 

central channel.  The collector plate was placed on the trough section covering the 

central channel and inserts and a load of 100 kg was evenly applied over the plate.  

Excess adhesive was wiped off using a cloth.  This was repeated for the second 

trough.  The adhesive was allowed to cure at room temperature over three days, 

after which the weights were removed.  The finished product is shown in Figure 

4.5. 
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Figure 4.5 Prototype comprising corrugated sheet with collector plate made 

from Colorcote steel. 

 

The product was tested to check if the central channels were completely sealed by 

attaching mains water supply to one of the connector pipes and letting water flow 

through the channel and out the other connector pipe.  The pressure was slowly 

increased until the flow rate through the central channel was 2 l/s.  After 

Corrugated sheet 
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confirming that there was no leakage, the corrugated sheet was tilted to 30o, the 

same inclination used for roofing on houses, and the test repeated. 

 

Polycrystalline PV cells (125 mm by 125 mm, 0.5 V, 2 A) were soldered together 

at their contact points to form 2 PV strings, 5 cells long.  Electrical cable was 

attached to the ends of the PV strings.  As mentioned in Section 3.4, EVA is used 

as the encapsulating material for laminating PV cells in a vacuum laminator.  

However no vacuum laminators are currently installed in New Zealand, so PV 

encapsulation for the BIPVT prototypes was carried out using resin.  Degassed 

transparent resin (100 ml volume used), prepared from vinyl ester resin was 

spread on the collector plate so it formed a layer 2 mm thick, by 1 m long and 180 

mm wide.  Stops were used at each end of the collector plate to prevent to resin 

from flowing over the edges.  The PV strings were pressed into the top of the 

resin while it was still wet using a wooden spatula.  The electrical cables were 

passed through the holes in the crests running along each side of the collector 

plate.  Another layer of resin (100 ml) was then evenly spread over the PV strings.  

The resin was allowed to set over 24 hours at room temperature. 

 

After the resin cured, the resin was visually inspected to ensure the PV cells were 

encapsulated (Figure 4.6).  PV cell electrical performance was checked by using 

eight 500 W halogen bulbs positioned 50 cm above the two PV strings.  The 

electrical cables from the PV strings were connected to multi meters (Digitor 

Q1467, 20MΩ, 10A max) to measure the current and voltage across the system. 

 

The BIPVT prototype was then connected to the mains water supply and water 

pumped through the central channels to check for leaks.  Hosepipes were 

connected to the ends of connector pipes and tap water was passed through the 

system. The product was tested for measuring electrical and thermal properties by 

running a flow of 2 l/s for 2 hours under the illumination of eight 500 W halogen 

lights using a digital thermometer with thermocouples connected to the connector 

pipes at the entry point of water and exit point in the corrugated sheet. Thermally 

tempered glass for glazing purpose was positioned on top of panel resting on the 

crests of corrugated sheet. The crests of the sheet were covered by sticking tape 

which facilitates the glass to rest on top of it. After glazing the thermal and 
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electrical properties was measured (the conditions were the same as that for 

unglazed system). 

 

 

 

 

Figure 4.6 Unglazed BIPVT Colorcote prototype produced using adhesives. 
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4.3  Findings from prototype construction 

4.3.1  Aluminium BIPVT 

Several aluminium prototypes were built and were tested for leaks prior to 

bonding the PV strings to the collector plate.  It was found the central channels 

were not sealed completely with leaks observed between collector plate and 

corrugated sheet and from the central channel ends.  It was thought the poor 

sealing was due to incomplete curing of the silicon, and poor contact between the 

bonded surfaces.  This was due to excessive silicon being applied to the bonding 

surface, uneven load distribution on the collector plate resulting in regions of poor 

contact between bonded surfaces and non-uniform silicon distribution, and the 

corrugated sheet not being mounted in a flat fixture which also contributed uneven 

load distribution.  The aluminium BIPVT was discarded. 

4.3.2  Colorcote BIPVT 

A Colorcote BIPVT was built, this time mounting the panel on a fixture and 

evenly distributing the load across the collector plates.  In addition less adhesive 

was applied to the bonding surfaces.  No leaks were observed when the BIPVT 

was tested showing that manufacturing issues had been solved.  PV strings were 

then laminated to the collector plate surface.  When tested for electricity and hot 

water generation, it was found the BIPVT proof of concept worked successfully.  

Detailed testing will be conducted by another student. 

4.3.3  Zincalume BIPVT 

A seam welding specialist in Australia was asked to weld the collector plate to a 

corrugated sheet, both made from Zincalume.  The product showed surface 

distortion which they stated occurred because of the low current used during 

welding (Figure 4.7 A and B).  Therefore the welding speed and current used 

needs to be refined for Zincalume to avoid surface distortion.  The method was 

not tried using Colorcote because a working prototype had already been 

manufactured in the lab using adhesives.  Resistance seam welding would need to 
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be trialled using Colorcote to verify that it is a suitable method for bonding the 

collector plate to the corrugated sheet. 

 

A    
 
 

B     
 

Figure 4.7 (A) Underside view and (B) Top view of surface distortion from 

resistance seam welding of Zincalume corrugated sheet and collector plate. 
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Chapter 5   Economic analysis and discussion 

5.1  Introduction 

From Chapter three, adhesives (ADH), resistance seam welding (RSW), and 

autoclaving (ATC) were chosen as the three methods considered most viable for 

manufacturing BIPVT.  In this chapter the manufacturing costs for unglazed 

Colorcote steel BIPVT production using the three methodologies were analysed 

and discussed in terms of capital, material and operating costs, net profit and 

capital investment payback time.  Different processing conditions were explored 

such as operating hours, production volume, equipment utilization and equipment 

optimisation.  The effect of BIPVT market price and glazed and unglazed 

Zincalume and Colorcote material costs on payback time was investigated.  

Production volumes considered were for the domestic and export market.  A case 

study incorporating ADH in a roofing manufacturing company was also examined.  

Costs associated with quality control steps in the analysis were neglected because 

their contribution to the operating and material costs would not be significant. 

5.2  Capital costs 

Capital costs for BIPVT production using resistance seam welding, adhesives and 

autoclaving methodologies were obtained by finding or estimating the equipment 

purchase costs and multiplying the costs by a Lang factor of 3.06 [79] (Table 5.1).  

The Lang factor takes into account installation, building and utility costs, as well 

as factory start up and contractor fees.  Cost estimations using Lang factors and 

estimated equipment costs have an error of -30% to +60% [80].  Details about the 

different factors are given in Appendix 5.  The installed manufacturing equipment 

has a fixed production capacity (Table 5.3) so more equipment must be installed if 

the production volume increases above the production capacity.  Each process 

step can process 1 BIPVT panel at a time except for autoclaving which can 

process 3 panels at time. 
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Table 5.1 BIPVT capital costs for ADH, RSW and ATC production systems. 

Equipment cost Operation 
no. Production step 

ADH RSW ATC 

1 Corrugation of plain sheet by press-brake $250,000 $250,000 $250,000 

2 Punching holes on corrugated sheet $10,000 $10,000 $10,000 

3 Joining collector plate with corrugated sheet $80,000 

4 Sealing ends on central channel 
$33,500 

$5,000 

5 Mount fittings on corrugated sheet $5,000 $5,000 

6 Laminating PV strings on collector plate $400,000 $400,000 

$600,000 

7 
Sealing the bonded edges between collector 

plate and corrugated sheet 
$5,000 $5,000 $5,000 

8 Attaching manifolds to the corrugated sheet $5,000 $5,000 $5,000 

Total equipment cost (TEC) $708,500 $760,000 $870,000 

Capital investment (CI = TEC x Lang factor 3.06) $2,168,010 $2,325,600 $2,662,200 

 

The press-brake cost was obtained from Dimond Ltd., New Zealand 

approximately as NZ$250,000. The punching machine cost was assumed to be 

$10,000. The equipment cost for bonding corrugated sheet to the collector plate 

and sealing the central channel ends using adhesives was estimated to be $33,500 

(Loctite, New Zealand). Resistance seam welding and cleaning equipment was 

approximately $80,000 (Resistance Seam Welding specialist, Australia) (Table 

5.1)  

 

A PV laminator costs approximately $400,000, and production volume is between 

25,000 to 45,000 modules per year (PV areas 2.74 m2) [11, 81].   This was based 

on a lamination process which includes equipment for sorting PV cells, tabbing, 

testing PV strings, lamination, and assembling the PV string laminates, a total cost 

of NZ$2.4 million (Spire Corporation, USA) [81].  For the proposed BIPVT 

process, production volume is 5,000 to 90,000 panels per year with two laminated 

PV modules (180 mm wide by 6 m long, total PV area at 44% coverage 0.75 m2) 

per panel, so a total of 10,000 to 180,000 PV modules are needed.  Currently no 
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laminators produce PV modules 6 m in length, but Meier Group (Germany) have 

stated they are able to produce laminators capable of manufacturing 6 m PV 

laminates.  Laminator cost estimates are based on the lowest laminate production 

volume of 25,000 per year. 

 

It was assumed that the autoclave made for manufacturing BIPVT would combine 

a vacuum laminator and an autoclave integrated into one unit.  A 12 m3 vacuum 

autoclave that can process three BIPVT panels was valued at $200,000 [73].  

Lamination equipment included inside the autoclave was based on $400,000 given 

previously.  The total equipment cost was estimated to be $600,000. 

 

Any manual processes using custom built equipment such as steps 4, 5, 7 and 8 in 

Table 5.1 was assumed to be $5,000 each, which included working space and 

tooling. 

5.3  Process times and production capacity 

Process times for each BIPVT production step are given in Table 5.2.  Press brake 

cycle times were obtained from Dimond Ltd., adhesive applying equipments were 

obtained from Loctite, resistance seam welding (welding speed of 1.8 m/min, 24 

m total weld length for one panel), autoclaving and laminator cycle times were 

given Chapter 3, section 3.4.3. For steps 2, 4, 5, 7, and 8, the process times were 

estimated from building the prototype and taking into account that skilled 

labourers would be carrying out the operations.  The slowest production steps are 

joining the collector plate to the corrugated sheet, autoclaving and PV lamination.  

Included in the process times is the total time at which the panel is at rest or 

moving between process steps.  RSW had the slowest panel cycle time of 62.5 

minutes due to it having more process steps than ADH (42.5 minutes) and ATC.  

ATC had fastest process cycle time of 32.5 minutes (Table 5.2). 
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Table 5.2 Process times for each BIPVT production step. 

Time per panel (minutes) Operation 
no. Production step 

ADH RSW ATC 

1 Corrugation of plain sheet by press-brake 2 2 2 

2 
Producing holes on corrugated sheet by 

punching 2.5 2.5 2.5 

3 Joining collector plate to corrugated sheet 18 

4 Sealing central channels at each end 
10 

5 

5 Mounting fittings to the corrugated sheet 5 5 

6 Lamination of PV strings on collector plate 15 15 

20* 

7 
Sealing the edges between bonded 
corrugated sheet and collector plate 

4 4 4 

8 Attaching manifolds to corrugated sheet 4 4 4 

Total labour per panel (min) 42.5 55.5 32.5 

Rest time in cycle between steps (min) 5 7 5 

Total panel processing time (min) 47.5 62.5 37.5 

* The cycle time for autoclaving is more than lamination as more steps are 

processed in single set-up. 

 

Process times for each BIPVT production step where then converted to production 

rates in panels per minute (Table 5.3).  The step with the lowest throughput, or 

rate limiting step, was used to determine the total process throughput.  Although 

the autoclave step in the ATC process took 20 minutes per cycle it could process 3 

panels at a time, hence the 0.15 panels per minute.  ATC overall had the greater 

process throughput and for an operating time of 1,920 hrs (8 hour per day, 5 days 

per week for 48 weeks) in a year could produce 17,280 panels. 
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Table 5.3 Process times in terms of panels per minute. 

Panels per minute Operation 
No. Production step 

ADH RSW ATC 

1 Corrugation of plain sheet by press-brake 0.50 0.50 0.50 

2 
Producing holes on corrugated sheet by 

punching 
0.40 0.40 0.40 

3 Joining collector plate to corrugated sheet 0.06 

4 Sealing central channels at each end 
0.10 

0.20 

5 Mounting fittings to the corrugated sheet 0.20 0.20 

6 Lamination of PV strings on collector plate 0.07 0.07 

0.15* 

7 
Sealing the edges between bonded 

corrugated sheet and collector plate 
0.25 0.25 0.25 

8 Attaching manifolds to corrugated sheet 0.25 0.25 0.25 

Process throughput (panels/min) 

based on slowest step 0.07 0.06 0.15 

Panels per year for 1,920 hrs operating time 7,680 6,400 17,280 

Area of panels produced (m2) 25,989 21,658 58,476 

*The autoclave can process three panels every 20 minutes.  

 

Production capacity can be increased by installing additional equipment to 

increase throughput at the rate limiting steps.  For example two seam welders 

could be installed for operation number 3 for RSW raising throughput from 0.06 

to 0.12 panels per minute.  This is discussed in more detail in Section 5.9. 

5.4  Materials costs 

The component costs for the BIPVT (glazed and unglazed) product including PV 

laminates are shown in Table 5.4.  Component costs were estimated from 

Rawlinsons New Zealand Construction Handbook [82] for roofing and 

polycarbonate sheet, fittings costs from EDL [83, 84] and Summitracing (APC) 

[83, 84], and manifolds from Micometals [85] New Zealand. Corrugated sheet and 

collector plate (roofing material) made from Zincalume and Colorcote steel was 

$48.50/m2 and $67.50/m2 respectively.  Polycarbonate sheet was $40/m2.  The 

cost estimated for the nuts and custom built hollow stud bolts was $10 per set and 

$15 for the copper tubing and fittings for each manifold. 
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The typical PV module for a BIPVT panel of 3.384 m2 (0.564m x 6m) has a PV 

area of 1.50 m2 which is evenly spread across two collector plates. For each 

collector plate the PV lamination area is 0.75 m2. On each collector plate, up to 36 

mono or poly-crystalline 150 x 150 mm cells can be attached.  Each cell generates 

a maximum of 3W, therefore each BIPVT can generates approximately 200 W.  

PV cell prices, including materials for lamination, are $3/W estimated from the 

current module and retail price [86], therefore the materials for PV lamination 

including the cells is $600 per panel. 

 

 Table 5.4 Component costs for BIPVT (glazed and unglazed) made from 

Zincalume and Colorcote steel.   

 

Unglazed BIPVT made from Zincalume had the lowest component costs.  

However process economics were based on Colorcote because it is more 

commonly used in New Zealand and a working prototype had been successfully 

made from that material. 

5.5  Labour, machine and energy costs 

Labour costs were calculated by multiplying the manual labour needed to produce 

a panel (Table 5.2) by the hourly pay rate.  In New Zealand the average pay rate 

for a fitter and turner is $20 per hour [87].  Overheads were included at 100% of 

the hourly pay rate which covers administrative costs.  Labour costs are shown in 

Unglazed Glazed  

Component 

 

Qty. Zincalume Colorcote Zincalume Colorcote 

Corrugated sheet 3.384 m2 $164 $228 $164 $228 

Collector plate 2.16 m2 $105 $146 $105 $146 

PV laminates (total) 1.49 m2 $600 $600 $600 $600 

Nuts and hollow stud bolts 4 $40 $40 $40 $40 

Copper tubes for manifolds 0.6 m $30 $30 $30 $30 

Polycarbonate sheet 3 m2   $120 $120 

Consumables  $6 $6 $6 $6 

Total material cost per panel $945 $1,050 $1,065 $1,170 
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Table 5.5. Machine operating costs per year were estimated at 10% of the 

equipment purchase cost. This includes cost of consumables such as hydraulic 

fluid for the press-brake, repairs, and maintenance (Table 5.5).  This was then 

multiplied by the number of shifts operating each day to reflect the increased 

equipment use if the operation was to be run over, for example, 3x8 hour shifts 

per day instead of 1x8 hour shift per day. 

 

Equipment energy consumption costs per year were not known so it was estimated 

to be 1% of the total equipment purchase cost.  This was multiplied by a factor to 

account for expected energy demand by each methodology: 1 for adhesives, 2 for 

resistance seam welding and 4 for autoclaving.  This was then multiplied by the 

number of shifts operating each day.  Autoclaving was expected to use the most 

energy as it requires a 12 m3 chamber to be heated to 175oC to cure each panel 

under vacuum.  Approximate energy costs are shown in Table 5.5. 

 

Table 5.5 Cost per panel including labour, machine and energy for Colorcote 

unglazed BIPVT. 

Production system 
Parameter 

ADH RSW ATC 

Total equipment cost (TEC) $708,500 $760,000 $870,000 

Panels per year for 1920 hrs operating time (N) 7680 6400 17280 

Labour per panel (min) 42.5 55.5 32.5 

Labour cost per min (including overhead) (LC) $28 $37 $22 

Labour cost per year (A=LC x N) $217,600 $236,800 $374,400 

Machine operating cost per year (B = 10% of TEC) $70,850 $76,000 $87,000 

Equipment energy consumption per year 
(C=1% of TEC x factor*) 

$7,085 $15,200 $34,800 

Material cost per panel Colorcote (Unglazed) (MP) $1,050 $1,050 $1,050 

Material cost per year (D=MP x N)) $8,064,000 $6,720,000 $18,144,000 

Total operating costs per year (TO = A+B+C+D) $8,359,535 $7,048,000 $18,640,200 

Cost per panel (CP = TO/N) $1,088 $1,101 $1,079 

* Factor is 1 for ADH, 2 for RSW and 4 for ATC. 
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ATC had the lowest labour costs per panel because it had the lowest number of 

process steps.  It also had the lowest operating cost per panel because it had the 

greatest production capacity.  Operating cost per panel for ATC was only $29 per 

panel greater than the material costs, whereas ADH was $38 and RSW was $51. 

Labour costs, machine and energy costs combined were 2.6, 3.7 and 4.9% of the 

operating costs for ATC, ADH and RSW respectively.  This showed that the 

major contributor to operating costs were material costs for the panels, therefore 

any savings should be made by trying to reduce material costs.  If only BIT was 

considered without PV then the operating cost per panel would have been 

approximately $500, therefore ways of reducing PV costs should be investigated. 

5.6  Economic analysis 

Net profit per year and payback time were calculated for unglazed Colorcote 

BIPVT using the capital cost, revenue and operating costs per year and 

depreciation (Table 5.6).  Each panel was assumed to have a market value of 

$1,400, a mark-up of approximately 1.3.  The production equipment life time was 

5 years and depreciated 20% each year.  It was assumed that each process would 

be operating at 100% production capacity and that all panels produced each year 

would be sold. 

 

Gross profit before tax was calculated by subtracting the total operating costs per 

year from the revenue per year.  Corporate tax in New Zealand is 33% and is 

taken from the company’s gross profit.  Net profit includes any tax write-offs 

from depreciation.  Gross margin was obtained by dividing gross profit after tax 

by revenue before tax.  Return on investment was calculated by net profit per year 

by the capital investment.  Payback time in years was obtained by dividing the 

capital investment by the net profit per year, assuming that all products 

manufactured could be sold. 

 

RSW generated the lowest net profit per year of $1.75 million and had a payback 

time of 1.3 years (Table 5.6).  ATC despite having the greater capital investment 

had the lowest payback time (7-8 months) and return on investment due it having 

the greatest net profit of $4.25 million per year due to it having the greatest 
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production capacity.  ADH came second because it had the lowest capital cost and 

second highest production capacity. 

 

Table 5.6 BIPVT payback period, net profit analysis for production systems 

using unglazed Colorcote material. 

Production system 
Production step 

ADH RSW ATC 

Capital investment (CI) $2,168,010 $2,325,600 $2,662,200 

Deprecation (D = 20% of CI) $433,602 $465,120 $532,440 

Panels per year for 1920 hrs operating time (N) 7,680 6,400 17,280 

Total operating costs per year (TO) $8,359,535 $7,048,000 $18,640,200 

Cost per panel (CP = TO/N) $1,088 $1,101 $1,079 

Market value per panel (MV) $1,400 $1,400 $1,400 

Revenue before tax (RT = MV x N) $10,752,000 $8,960,000 $24,192,000 

Gross profit before tax (GP = RT – TO) $2,392,465 $1,912,000 $5,551,800 

Gross profit after tax (33%) (GPT = GP x 0.67) $1,602,952 $1,281,040 $3,719,706 

Net profit per year (NP = GPT + DC) $2,036,554 $1,746,160 $4,252,146 

Gross margin (GM = GPT/RT) 14.91% 14.30% 15% 

Return on investment (ROI = NP/CI) 94% 75% 160% 

Payback time (years) (PT = CI/NP) 1.06 1.33 0.63 

 

5.7  Payback time with production volume 

Process payback time was investigated for ADH, RSW and ATC for 1,920, 3,840, 

and 5,760 operating hours per year for different unglazed Colorcote BIPVT 

production volumes.  BIPVT product was sold at $1,400 per panel.  Additional 

production lines were included when production volume was higher than installed 

capacity.  This is reflected in the crests for each plot in Figures 5.1, 5.2, and 5.3.  

As production volume approached installed production capacity (shown as 

machine utilisation in Figure 5.4), payback time decreased until additional 

equipment was installed.  Minimum payback times for 1,920 hrs process in Figure 

5.1 are the same as in Table 5.6 when machine utilisation approaches 100%. 
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Figure 5.1 Payback time vs production volume for unglazed Colorcote BIPVT 

with ADH, RSW and ATC system operating 1,920 hours production time (8 

hours/day, 5 days/week at 48 weeks/year). Appendix 1.A. 
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Figure 5.2 Payback time vs production volume for unglazed Colorcote BIPVT 

with ADH, RSW and ATC system operating 3,840 hours production time (16 

hours/day, 5 days/week at 48 weeks/year).  (Appendix 1.B.) 
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Figure 5.3 Payback time vs production volume for unglazed Colorcote BIPVT 

with ADH, RSW and ATC system operating 5,760 hours production time (24 

hours/day, 5 days/week at 48 weeks/year). (Appendix 1.C.) 
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Figure 5.4 Payback time and machine utilisation vs production volume for 

unglazed Colorcote BIPVT with ADH system operating 1,920 hrs production time 

(8 hours/days, 5 days/week at 48 weeks/year).  (Appendix 1.D.) 
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Increasing process operating time in a year reduces payback because of the 

increased production volume.  The lowest payback time (~3 months) was for ATC 

working for 3 shifts a day (24 hrs per day, 5 days per week and 48 weeks a year) 

producing 50,000 panels a year (Figure 5.3).  Therefore rather than increasing 

production lines, the company could increase the number of shifts the process 

operated over each day to avoid the additional capital costs involved in installing 

additional production lines. 

 
Payback time versus production volume was also explored for unglazed and 

glazed Colorcote and Zincalume BIPVT (material costs shown in Table 5.4), all at 

140% mark-up on material costs.  As material cost increased, payback time 

increased showing that to reduce operating costs and payback it was better to have 

lower material costs (Figure 5.5). 
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Figure 5.5 Payback time vs production volume for unglazed and glazed 

Colorcote and Zincalume BIPVT with ADH system operating 1,920 hrs 

production time (8 hrs/d, 5 d/wk at 48 wks/yr).  (Appendix 1.E.) 

5.8  Payback time vs market value 

Payback times were obtained for set BIPVT market prices for production volumes 

between 5000 to 90,000 panels per year.  BIPVT prices ranged from $1,100 to 
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$1,800.  Lower prices could not be used because the process became unprofitable 

as the operating costs per panel ranged between $1089 to $1101.  Where the 

operating costs were $1101, the process was still profitable because revenue was 

being generated from equipment depreciation. 

 

Payback times were analysed for one 8-hr shift per day for 5 days per week for 48 

weeks per year.  These payback times were averaged for each panel price and 

displayed for ADH, RSW, and ATC in Figures 5.6, 5.7A, and 5.7B.  Payback time 

decreased with increasing panel price asymptoting towards zero.  Variation in 

payback time for each panel price was observed with change in production 

volume (error bars in Figures 5.6, 5.7A, and 5.7B).  Least variation was seen with 

RSW as the 5,000 panel step changes in production volume were within 89% of 

production capacity of an installed production line (6,340 panels per line per year) 

(Figure 5.7A).  Maximum variation was observed with ATC because starting 

production was 5,000 panels, less than one third of installed capacity (17,120 

panels per production line per year) (Figure 5.7B). 
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Figure 5.6 Average payback time vs market value per panel for unglazed 

Colorcote BIPVT using ADH system operating 1,920 hours production time (8 

hours/day, 5 days/week at 48 weeks/year) for 5,000 to 90,000 panels per year.  

(Appendix 2.A.) 
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Figure 5.7 Average payback time vs market value per panel for unglazed 

Colorcote BIPVT using A) RSW and B) ATC system operating 1,920 hours 

production time (8 hours/day, 5 days/week at 48 weeks/yr) for 5,000 to 90,000 

panels per year.  (Appendix 2.B and 2.C.) 
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5.9  Process optimisation to increase throughput 

As an alternative to installing additional production lines individual production 

step throughputs at rate limiting steps can be increased by installing additional 

equipment to increase overall process throughput.  ADH was used as an example 

for process optimisation (Table 5.7).  The slowest step in ADH is PV lamination 

at 0.07 panels per minute.  Installing 6 PV lamination units allows the PV 

lamination throughput to be almost equal to the throughput for the corrugation 

step.  The next slowest step is bonding the collector plate to the corrugated sheet 

at 0.1 panels per minute.  Throughput for this step was increased by installing 4 

units.  Optimisation increased the total number of panels produced over 5,760 

operating hours (3 shifts per day, 5 days a week and 48 weeks a year) from 23,040 

to 138,240 panels per year by increase throughput from 0.07 to 0.40 panels per 

minute (Table 5.7).  In comparison, the unoptimised process needed 6 production 

lines to equal the production volume per year of the optimised process. 

 

Table 5.7 Comparison of individual process step throughput for unoptimised 

(unoptd.*) and optimised (optd.*)ADH BIPVT prod. Values based on Table 5.3. 

Panels 
processed/step Panels/min 

Production step 
Unoptd.* Optd.* Unoptd.* Optd.* 

Corrugation of plain sheet 1 1 0.50 0.50 

Producing holes on corrugated sheet 1 1 0.40 0.40 

Joining collector plate to corrugated sheet 1 4 0.10 0.40 

Mounting fittings to the corrugated sheet 1 2 0.20 0.40 

Lamination of PV strings on collector plate 1 6 0.07 0.40 

Sealing the edges between bonded 

corrugated sheet and collector plate 
1 2 0.25 0.50 

Attaching manifolds to corrugated sheet 1 2 0.25 0.50 

Process throughput (panels/min) 

based on slowest step 
0.07 0.40 

Panels per year per production line 

for 5,760 hrs operating time 
23,040 138,240 

Number of equipment lines needed 6 1 

Panels per year installed capacity 138,240 138,240 
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Process optimisation reduced ADH production capital costs by approximately 

$4.4 million (Table 5.8), by only installing additional equipment where necessary 

rather than installing new production lines.  There was little difference in the 

operating costs per year and net profit per year between the unoptimised and 

optimised systems, but the payback time was reduced from 4.8 to 3.3 months for 

the optimised process (Table 5.9).   

 

Table 5.8 Capital costs for unoptimised and optimised ADH BIPVT 

production. 

Equipment cost 
Production step 

Unoptimised Optimised 

Corrugation of plain sheet by press-brake $250,000 $250,000 

Producing holes on corrugated sheet by punching $10,000 $10,000 

Joining collector plate to corrugated sheet $33,500 $134,000 

Mount fittings on corrugated sheet $5,000 $10,000 

Lamination of PV strings on collector plate $400,000 $2,400,000 

Sealing the bonded edges between collector plate 
and corrugated sheet 

$5,000 $10,000 

Attaching manifolds with the corrugated sheet $5,000 $10,000 

Production line equipment cost $708,500 $2,824,000 

Production lines needed 6 1 

Total equipment cost (TEC) $4,251,000 $2,824,000 

Capital investment (TEC x Lang factor 3.06) $13,008,060 $8,641,440 

 
ATC and RSW was also optimised, and similar results were found except that 

only a ~$0.8 million reduction in capital cost could be achieved for ATC with 

payback time being reduced from 0.23 to 0.19 years (Appendix 3).  This was due 

to the high capital cost of the autoclave and high throughput of the process.  

Approximately $3.4 million reduction in capital cost was achieved for RSW with 

payback time being reduced from 0.54 to 0.39 years (Appendix 4). 
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Table 5.9 Comparison of individual process step throughput for unoptimised 

and optimised ADH BIPVT production. 

Production system (ADH) 
Parameter 

Unoptimised Optimised 

Total equipment cost (TEC) $4,251,000 $2,824,000 

Capital investment (CI = TEC x Lang factor 3.06) $13,008,060 $8,641,440 

Depreciation (20%) (DC=0.20xCI) $2,601,612 $1,728,288 

Panels per year for 5760 hrs operating time (N) 13,8240 138,240 

Labour per panel (min) 0.71 0.71 

Labour cost per min (including overhead) (LC) $28 $28 

Labour cost per year (A=LC x N) $3,916,800 $3,916,800 

Machine operating cost per year (B = 10% of TEC) $1,275,300 $847,200 

Equipment energy consumption per year 
(C=1% of TEC x factor*) 

$42,510 $28,240 

Material cost per panel Colorcote (Unglazed) (MP) $1,050 $1,050 

Material cost per year (D=MP x N)) $145,152,000 $145,152,000 

Total operating costs per year (TO = A+B+C+D) $150,386,610 $149,944,240 

Cost per panel (CP = TO/N) $1,088 $1,085 

Market value per panel (MV) $1,400 $1,400 

Revenue before tax (RT = MV x N) $193,536,000 $193,536,000 

Gross profit before tax (GP = RT – TO) $43,149,390 $43,591,760 

Gross profit after tax (33%) (GPT = GP x 0.67) $28,910,091 $29,206,479 

Net profit per year (NP = GPT + DC) $31,511,703 $30,934,767 

Gross margin (GM = GPT/RT) 14.94% 15.09% 

Return on investment (ROI = NP/CI) 242% 358% 

Payback time (years) (PT = CI/NP) 0.41 0.28 
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5.10  Dimond scenario 

BIPVT production system for ADH system was analysed as a case study with a 

long-run roofing manufacturing company Dimond Ltd., Auckland. The analysis 

was carried out for 1,920 operating hours per year producing 7,680 panels.  

 

Dimond Ltd. has a CNC operated press-brake for producing corrugated roofing 

profiles.  A CNC operated press-brake can process a single corrugated sheet for a 

BIPVT panel in two minutes, including set up time.  The press brake if operated 

continuously can produce up to 172,800 sheets over 5,760 hours a year (Table 

5.26).  Maximum BIPVT production for 5,760 hours a year for ADH, RSW and 

ATC systems is 23,040; 19,200 and 51,840 panels respectively.  Press-brake 

utilisation would be approximately 13% to 30% (Table 5.10) of the total process 

operating time.  The press-brake can be operated independently of the other 

process steps in BIPVT production; therefore it would be free from 87% to 70% 

of the time for other jobs.  If the corrugated sheets were stacked the press brake 

would only need to operate for 5-12 hours per week (for BIPVT production 

running over 1,920 hours a year) to produce sufficient panels to supply the BIPVT 

process. 

 

Table 5.10 Press brake utilisation for panels produced in a year. 

Panels produced per year System/ 
equipment 1,920 hours 3,840 hours 5,760 hours 

% Press brake 
utilisation 

ADH 7,680 15,360 23,040 13% 

RSW 6,400 12,800 19,200 11% 

ATC 17,280 34,560 51,840 30% 

Press-brake 57,600 115,200 172,800 100% 
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5.10.1  Economic analysis for case study 

Two scenarios were considered in the case study. Scenario I was producing 7,680 

panels per year without a laminator and scenario II was with laminator.  In 

scenario I, all the production steps remained the same as the standard production 

system (Table 5.2) except that pre-made PV laminated modules are bonded on 

collector plate using silicone based adhesives. The cost of PV laminates was 

calculated on the basis of price/Wp. The current market price for mono crystalline 

PV module price is about $US 4.30/Wp [86] . The power generated by BIPVT 

panel is about 200 W and the total price for PV laminates is calculated about 

$NZ1074.  For bonding the PV laminates to the collector plate it was assumed 

similar equipment to bonding the collector plate with the corrugated sheet was 

used. The time required for bonding the laminate was assumed to be same as 

joining the collector plate with corrugated sheet.  

 

In scenario II, the PV lamination was conducted in a vacuum laminator in a 

similar way as that of standard production system discussed in Section 5.7.  PV 

material cost was the same as that of a standard production system.  

 

The capital costs for the standard process and scenarios I and II are shown in 

Table 5.11.  The time required for each production step along with panels per 

minute are compared to the standard process in Tables 5.12 and 5.13.  Labour, 

machine and energy costs for all three systems are tabulated in Table 5.14. 

 

In scenario I, excluding the PV laminator means only $282,000 needs to be 

invested in capital costs for the BIPVT process (Table 5.11).  However, the 

materials costs are $500 greater than the standard process or scenario II.  For 

equivalent production volumes of 7,680 panel per year and same panel market 

value, scenario I only generates $800,000 net profit a year (Table 5.15) because 

the operating costs are almost $4 million dollars greater than the other two 

scenarios (Tables 5.13, 5.14).  After 5 years operation scenario I would only 

generate a $3.5 million surplus compared to $15 million for the other two 

scenarios (Table 5.16).  A laminator is therefore essential in the long term to keep 

material costs low and keep margins high. 
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Table 5.11 BIPVT capital cost comparison. 

Equipment costs 
Production step 

Standard Scenario I Scenario II 

Corrugation of plain sheet by press-brake $250,000 $0 $0 

Producing holes on corrugated sheet by punching $10,000 $10,000 $10,000 

Joining collector plate to corrugated sheet $33,500 $33,500 $33,500 

Mount fittings on corrugated sheet $5,000 $5,000 $5,000 

Lamination of PV strings on collector plate $400,000 $33,500* $400,000 

Sealing the bonded edges between collector plate 
and corrugated sheet 

$5,000 $5,000 $5,000 

Attaching manifolds with the corrugated sheet $5,000 $5,000 $5,000 

Production line equipment cost $708,500 $92,000 $458,500 

Total equipment cost (TEC) $708,500 $92,000 $458,500 

Capital Investment (CI=TEC x 3.06) $2,168,010 $281,520 $1,403,010 

*Pre made PV laminates are used in this scenario so only equipment needed for 

bonding the laminates onto the collector is needed. 

 

Table 5.12 Process time comparison for each BIPVT production step. 

Time per panel (minutes) 
Production step 

Standard Scenario I Scenario II 

Corrugation of plain sheet by press-brake 2 2 2 

Producing holes on corrugated sheet by punching 2.5 2.5 2.5 

Joining collector plate to corrugated sheet 10 10 10 

Mount fittings on corrugated sheet 5 5 5 

Lamination of PV strings on collector plate 15 10 15 

Sealing the bonded edges between collector plate 
and corrugated sheet 4 4 4 

Attaching manifolds with the corrugated sheet 4 4 4 

Total labour per panel (min) 42.5 37.5 42.5 

Rest time in cycle (min) 5 5 5 

Total cycle time (min) 47.5 42.5 47.5 
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Table 5.13 Process time comparison in terms of panels per minute. 

Time per panel (minutes) 
Production step 

Standard Scenario I Scenario II 

Corrugation of plain sheet by press-brake 0.50 0.50 0.50 

Producing holes on corrugated sheet by punching 0.40 0.40 0.40 

Joining collector plate to corrugated sheet 0.10 0.10 0.10 

Mount fittings on corrugated sheet 0.20 0.20 0.20 

Lamination of PV strings on collector plate 0.07 0.10 0.07 

Sealing the bonded edges between collector plate 

and corrugated sheet 
0.25 0.25 0.25 

Attaching manifolds with the corrugated sheet 0.25 0.25 0.25 

Process throughput(panels/min) 

based on slowest step 0.07 0.10 0.07 

Panels per year for 1,920 operating hours 7,680 11,520 7,680 

Total area for panels produced (m2) 25,989 38,984 25,989 

 

Table 5.14 Comparison of cost per panel including labour, machine and 

energy for all three scenarios. 

Production system 
ADH system 

Standard Scenario I Scenario II 

Total equipment cost (TEC) $2,168,010 $281,520 $1,403,010 

Panels per year for 1920 hrs operating time (N) 7,680 7,680 7,680 

Labour per panel (min) 42.5 37.5 42.5 

Labour cost per min (including overhead) (LC) $28 $25 $28 

Labour cost per year (A=LC x N) $217,600 $236,800 $374,400 

Machine operating cost per year 

 (B = 10% of TEC) 
$70,850 $76,000 $87,000 

Equipment energy consumption per year 
(C=1% of TEC x factor*) 

$7,085 $3,420 $7,085 

Material cost per panel Colorcote 

 (Unglazed) (MP) $1,050 $1,524 $1,050 

Material cost per year (D=MP x N)) $8,064,000 $11,704,320 $8,064,000 

Total operating costs per year (TO = A+B+C+D) $8,359,535 $11,933,940 $8,359,535 

Cost per panel (CP = TO/N) $1,088 $1,554 $1,088 
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Table 5.15 Comparison of payback, net profit analysis for all three systems. 

Production system 
Production step 

Standard Scenario I Scenario II 

Capital investment (CI) $2,168,010 $531,520 $1,653,010 

Deprecation (DC = 20% of CI) $433,602 $106,304 $330,602 

Panels produced per year 

for 1,920 hrs operating time (N) 
7,680 7,680 7,680 

Area of produced panels (m2) 25,989 25,989 25,989 

Total operating costs per year (TO) $8,359,535 $11,933,940 $8,359,535 

Cost per panel (CP = TO/N) $1,088 $1,554 $1,088 

Market value per panel (MV) $1,700 $1,700 $1,700 

Market value per m2 $502 $502 $502 

Revenue before tax (RT = MV x N) $13,056,000 $13,056,000 $13,056,000 

Gross profit before tax (GP = RT – TO) $4,696,465 $1,122,060 $4,696,465 

Gross profit after tax (33%) 

(GPT = GP x 0.67)  
$3,146,632 $751,780 $3,146,632 

Net profit per year (NP = GPT + DC) $3,580,234 $858,084 $3,477,234 

Gross margin (GM = GPT/RT)  24.10% 5.76% 24.10% 

Return on investment (ROI = NP/CI) 165% 161% 210% 

Payback time (years) (PT = CI/NP) 0.61 0.62 0.48 

 

Table 5.16 Net savings per year comparison. 

Net savings per year Standard Scenario I Scenario II 

Year 1 (Y1 = CI - NPY) $1,412,224 $326,564 $1,824,224 

Year 2 (Y2 = Y1 + NPY) $4,992,457 $1,184,648 $5,301,457 

Year 3 (Y3 = Y2 + NPY) $8,572,691 $2,042,733 $8,778,691 

Year 4 (Y4 = Y3 + NPY) $12,152,924 $2,900,817 $12,255,924 

Year 5 (Y5 = Y4 + NPY) $15,733,158 $3,758,901 $15,733,158 

Year 6 (Y6 = Y5 + GPT) $18,879,789 $4,510,681 $18,879,789 

Year 7 (Y7 = Y6 + GPT) $22,026,421 $5,262,461 $22,026,421 
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5.10.2  Conclusions from case study 

Installing a low volume BIPVT production facility into Dimond’s existing could 

potentially generate an additional $3.5 million per year in profit for a process that 

produces 7,680 panels a year.  Payback time for the capital investment would be 

just over half a year making BIPVT an attractive possibility.  However a PV 

laminator would need to be installed to keep operating costs low, otherwise 75% 

of the profits would be lost to covering the PV laminate costs. 

 

5.11  Potential Market 

Currently in New Zealand, 22,000 homes are being built each year [88].  If 10% 

of these homes were equipped with on average 1.5 BIPVT panels, approximately 

3,300 panels would need to be produced each year, which equates to 11,1680 m2.  

In terms of PV capacity, about 660 KW/year as each panel can generate 200 W.  

If all the new homes were equipped with 1-2 BIPVT panels, for example through 

Government initiatives 33,000 panels would be needed each year, which is 

111,680 m2, about 6.6 MW per year.  BIPVT installation in 10% of new homes 

would exceed the SHW association target of 10,000 m2 SHW systems installed 

per year and almost double the current growth of PV systems.  Being a roofing 

product which avoids the problems of installing PV and solar thermal systems 

separately, BIPVT may be an attractive possibility.  If the industry and 

commercial building were also considered in New Zealand, the potential market 

would be much greater.  If the Australian market was also considered, where solar 

thermal and PV markets are greater than New Zealand, then BIPVT would be a 

strong commercial possibility. 
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Chapter 6   Conclusions and Recommendations 

6.1  Conclusions 

Building integrated photovoltaic thermal (BIPVT) production systems were 

investigated to develop an economic and viable method for BIPVT manufacture.  

BIPVT is based on long-run metal roofing and is currently being developed at the 

University of Waikato in partnership with Dimond Ltd, a long-run roof product 

manufacturer.  The concept consists of a CNC folded metal roofing sheet with a 

central channel and a collector plate bonded to the roofing sheet to create a sealed 

channel for thermal fluid flow.  PV laminates are bonded to the collector plate and 

inlet and outlet manifolds attached for thermal fluid distribution.  When exposed 

to solar radiation the system generates heat and electricity for domestic and 

industry use. 

 

BIPVT manufacturing methods were investigated for creating the sealed channel 

for thermal fluid flow.  Adhesives (ADH), resistance seam welding (RSW) and 

autoclaving (ATC) were considered the most suitable.  Processes were designed 

for the three methods and investigated through economic analysis.  ATC was 

found to be the best for production volumes greater than 20,000 BIPVT panels per 

year as it has greater production capacity and lower capital investment payback 

time than ADH and RSW.  ATC had a payback time of 0.26 years for 90,000 

BIPVT panels per year at a 40% mark up.  However ATC has several technical 

challenges that need to be overcome whereas ADH and RSW are proven 

production methods.  ADH is more suitable for low production volumes below 

20,000 panels per year as it has a low capital cost compared to RSW and ATC and 

can be readily optimised when increased production is required.  Cost savings can 

be achieved by reducing material costs as they were 95% of the total operating 

costs for all methods.  ADH and RSW could be readily optimised to increase 

production at lower capital expenditure by installing additional equipment at 

production bottlenecks rather than installing new production lines.  ATC could not 

be as readily optimised as it has high production capacities. 
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Installing a low volume ADH BIPVT production facility into Dimond Ltd. could 

potentially generate an additional $3.5 million per year in profit, for a process that 

produces 7,680 panels a year.  Payback time for the capital investment including a 

PV laminator would be just over half a year making BIPVT an attractive 

possibility. 

6.2  Recommendations 

Silicone based adhesives could be investigated as a replacement for EVA for 

lamination and bonding the collector plate to the corrugated sheet in glazed 

BIPVT as stagnation temperatures in these products are greater than the melting 

temperature of EVA. 

 

Roll forming is suggested for roofing sheet corrugation along with roll bonding of 

collector plate with corrugated sheet for higher BIPVT production volumes. 

 

The possibility of using custom built processing equipment for BIPVT production 

to reduce capital costs instead of purchasing equipment such as resistance seam 

welders and laminators could be researched. 

 

Combining an autoclave and laminator into one process unit for BIPVT 

production has never been done in practice.  It would be worthwhile developing 

such a system as it combines several process steps into one operation. 

 

Sealing the central channel ends in the BIPVT product could be removed from 

BIPVT manufacture by using roll punching or die punching to form the central 

channel in the corrugated sheets, instead of having the central channel run to the 

ends of the sheet. 

 

A resistance seam welded BIPVT prototype should be manufactured for 

comparison to the existing prototype and tested for weld strength and product 

robustness.  This methodology needs to be refined to avoid surface distortion 

when joining the collector plate to the corrugated sheet. 
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Alternative methods for bonding the collector plate to the corrugated sheet such as 

ultrasonic seam welding could be investigated further to overcome surface 

distortion generated by resistance seam welding. 
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Appendix 1 

Appendix 1 contains the payback time verses production volume for ADH, RSW 

and ATC systems operating over 1,920, 3,840 and 5,760 hours production time 

and producing 5,000 to 90,000 BIPVT panels per year with a market value of 

$1,400 per panel for Unglazed Colorcote. It also includes machine utilization for 

ADH system operating 1,920 hours per year. 

 

Table 1.A Payback time vs production volume for ADH, RSW and ATC 

systems operating 1,920 hours (8 hours/day, 5 days/week at 48 weeks/year) 

production time with a market value of $1,400 per panel for Unglazed Colorcote 

BIPVT. (Ref. Figure 5.1) 

Payback time for 

production system Production volume Market value per panel 

ADH RSW ATC 

5,000 $1,400 1.49 1.60 1.72 

10,000 $1,400 1.49 1.60 1.00 

15,000 $1,400 1.09 1.60 0.71 

20,000 $1,400 1.19 1.60 1.00 

25,000 $1,400 1.25 1.36 0.83 

30,000 $1,400 1.09 1.40 0.71 

35,000 $1,400 1.15 1.43 0.88 

40,000 $1,400 1.19 1.45 0.79 

45,000 $1,400 1.09 1.47 0.71 

50,000 $1,400 1.13 1.36 0.65 

55,000 $1,400 1.16 1.38 0.77 

60,000 $1,400 1.09 1.40 0.71 

65,000 $1,400 1.12 1.42 0.66 

70,000 $1,400 1.15 1.34 0.75 

75,000 $1,400 1.09 1.36 0.71 

80,000 $1,400 1.11 1.37 0.67 

85,000 $1,400 1.14 1.39 0.64 

90,000 $1,400 1.09 1.40 0.71 
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Table 1.B Payback time vs production volume for ADH, RSW and ATC 

systems operating 3,840 hours (16 hours/day, 5 days/week at 48 weeks/year) 

production time per year with market value of $1,400 per panel for Unglazed 

Colorcote BIPVT. (Ref. Figure 5.2) 

Payback time for 

production system Production volume Market value per panel 

ADH RSW ATC 

5,000 $1,400 0.98 2.23 1.78 

10,000 $1,400 0.87 1.34 1.03 

15,000 $1,400 0.61 1.68 0.72 

20,000 $1,400 0.87 1.34 0.56 

25,000 $1,400 0.72 1.12 0.45 

30,000 $1,400 0.61 1.34 0.38 

35,000 $1,400 0.76 1.18 0.63 

40,000 $1,400 0.68 1.34 0.56 

45,000 $1,400 0.61 1.22 0.50 

50,000 $1,400 0.72 1.12 0.45 

55,000 $1,400 0.66 1.24 0.41 

60,000 $1,400 0.61 1.16 0.38 

65,000 $1,400 0.69 1.26 0.35 

70,000 $1,400 0.65 1.18 0.48 

75,000 $1,400 0.61 1.12 0.45 

80,000 $1,400 0.68 1.20 0.43 

85,000 $1,400 0.64 1.15 0.40 

90,000 $1,400 0.61 1.22 0.38 
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Table 1.C Payback time vs. production volume for ADH, RSW and ATC 

systems operating for 5,760 hours (24 hours/day, 5 days/week at 48 weeks/year) 

production time per year with market value of $1,400 per panel for Unglazed 

Colorcote BIPVT. (Ref. Figure 5.3) 

Payback time for 

production system Production volume  Market value per panel 

ADH RSW ATC 

5,000 $1,400 1.59 2.34 1.86 

10,000 $1,400 0.89 1.38 1.05 

15,000 $1,400 0.62 0.98 0.73 

20,000 $1,400 0.47 1.38 0.56 

25,000 $1,400 0.73 1.15 0.46 

30,000 $1,400 0.62 0.98 0.38 

35,000 $1,400 0.53 0.86 0.33 

40,000 $1,400 0.47 1.09 0.29 

45,000 $1,400 0.42 0.98 0.26 

50,000 $1,400 0.56 0.89 0.23 

55,000 $1,400 0.51 0.82 0.42 

60,000 $1,400 0.47 0.98 0.38 

65,000 $1,400 0.44 0.91 0.36 

70,000 $1,400 0.53 0.86 0.33 

75,000 $1,400 0.50 0.80 0.31 

80,000 $1,400 0.47 0.93 0.29 

85,000 $1,400 0.45 0.88 0.27 

90,000 $1,400 0.42 0.83 0.26 
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Table 1.D Payback time and machine utilisation for unglazed Colorcote 

BIPVT production volume by ADH system for 1,920 hours (8 hours/day, 5 

days/week at 48 weeks/year) production time. (Ref. Figure 5.4) 

Production volume Market  value per panel Payback time Machine utilization 

5,000 $1,400 1.49 65% 

10,000 $1,400 1.49 65% 

15,000 $1,400 1.09 98% 

20,000 $1,400 1.19 87% 

25,000 $1,400 1.25 81% 

30,000 $1,400 1.09 98% 

35,000 $1,400 1.15 91% 

40,000 $1,400 1.19 87% 

45,000 $1,400 1.09 98% 

50,000 $1,400 1.13 93% 

55,000 $1,400 1.16 90% 

60,000 $1,400 1.09 98% 

65,000 $1,400 1.12 94% 

70,000 $1,400 1.15 91% 

75,000 $1,400 1.09 98% 

80,000 $1,400 1.11 95% 

85,000 $1,400 1.14 92% 

90,000 $1,400 1.09 98% 
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Table 1.E Payback time vs production volume for unglazed and glazed Zincalume and Colorcote using ADH system for 1,920 hours (8 

hours/day, 5 days/week at 48 weeks/year) production time for production of 5,000 to 90,000 panels per year with a market value of 140% over 

material cost per panel. (Ref. Figure 5.5) 

Unglazed Zincalume Unglazed Colorcote Glazed Zincalume Glazed Colorcote Production 

volume MC/P* MV/P* PBT* MC/P MV/P PBT MC/P MV/P PBT MC/P MV/P PBT 

5,000 $945 $1,323 1.40 $1,050 $1,470 1.28 $1,065 $1,491 1.27 $1,170 $1,638 1.17 

10,000 $945 $1,323 1.40 $1,050 $1,470 1.28 $1,065 $1,491 1.27 $1,170 $1,638 1.17 

15,000 $945 $1,323 1.01 $1,050 $1,470 0.92 $1,065 $1,491 0.91 $1,170 $1,638 0.84 

20,000 $945 $1,323 1.12 $1,050 $1,470 1.02 $1,065 $1,491 1.00 $1,170 $1,638 0.92 

25,000 $945 $1,323 1.17 $1,050 $1,470 1.07 $1,065 $1,491 1.06 $1,170 $1,638 0.98 

30,000 $945 $1,323 1.01 $1,050 $1,470 0.92 $1,065 $1,491 0.91 $1,170 $1,638 0.84 

35,000 $945 $1,323 1.07 $1,050 $1,470 0.98 $1,065 $1,491 0.97 $1,170 $1,638 0.89 

40,000 $945 $1,323 1.12 $1,050 $1,470 1.02 $1,065 $1,491 1.00 $1,170 $1,638 0.92 

45,000 $945 $1,323 1.01 $1,050 $1,470 0.92 $1,065 $1,491 0.91 $1,170 $1,638 0.84 

50,000 $945 $1,323 1.06 $1,050 $1,470 0.96 $1,065 $1,491 0.95 $1,170 $1,638 0.87 

55,000 $945 $1,323 1.09 $1,050 $1,470 0.99 $1,065 $1,491 0.98 $1,170 $1,638 0.90 

60,000 $945 $1,323 1.01 $1,050 $1,470 0.92 $1,065 $1,491 0.91 $1,170 $1,638 0.84 

65,000 $945 $1,323 1.05 $1,050 $1,470 0.95 $1,065 $1,491 0.94 $1,170 $1,638 0.86 

70,000 $945 $1,323 1.07 $1,050 $1,470 0.98 $1,065 $1,491 0.97 $1,170 $1,638 0.89 

75,000 $945 $1,323 1.01 $1,050 $1,470 0.92 $1,065 $1,491 0.91 $1,170 $1,638 0.84 

80,000 $945 $1,323 1.04 $1,050 $1,470 0.95 $1,065 $1,491 0.93 $1,170 $1,638 0.86 

85,000 $945 $1,323 1.06 $1,050 $1,470 0.97 $1,065 $1,491 0.96 $1,170 $1,638 0.88 

90,000 $945 $1,323 1.01 $1,050 $1,470 0.92 $1,065 $1,491 0.91 $1,170 $1,638 0.84 

 
MC/P*: Material cost per panel, MV/P*: market value per panel, PBT*: Payback time (years)

A
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Appendix 2 

Appendix 2 comprises average payback time ADH, RSW and ATC systems 

operating over 1,920 hours and producing 5,000 to 90,000 BIPVT panels per year 

with market value from $1,100 to $1,800 per panel for Unglazed Colorcote. 

 

Table 2.A Average payback time vs market value per panel for unglazed 

Colorcote by ADH system for 1,920 hrs production time for producing 5,000 to 

90,000 panels per year. (Refer Figure 5.6) 

Market value per panel and payback time (years) Production 

volume 

Material  

cost/panel 

Operating 

cost/panel $1,100 $1,200 $1,300 $1,400 $1,500 $1,600 $1,700 $1,800 

5,000 $1,050 $1,094 4.78 2.75 1.93 1.49 1.21 1.02 0.88 0.77 

10,000 $1,050 $1,094 4.78 2.75 1.93 1.49 1.21 1.02 0.88 0.77 

15,000 $1,050 $1,089 4.42 2.18 1.45 1.09 0.87 0.72 0.62 0.54 

20,000 $1,050 $1,090 4.53 2.34 1.58 1.19 0.96 0.80 0.69 0.60 

25,000 $1,050 $1,091 4.59 2.43 1.66 1.25 1.01 0.84 0.73 0.64 

30,000 $1,050 $1,089 4.42 2.18 1.45 1.09 0.87 0.72 0.62 0.54 

35,000 $1,050 $1,089 4.49 2.28 1.53 1.15 0.92 0.77 0.66 0.58 

40,000 $1,050 $1,090 4.53 2.34 1.58 1.19 0.96 0.80 0.69 0.60 

45,000 $1,050 $1,089 4.42 2.18 1.45 1.09 0.87 0.72 0.62 0.54 

50,000 $1,050 $1,089 4.47 2.25 1.50 1.13 0.90 0.75 0.65 0.57 

55,000 $1,050 $1,090 4.51 2.30 1.55 1.16 0.93 0.78 0.67 0.59 

60,000 $1,050 $1,089 4.42 2.18 1.45 1.09 0.87 0.72 0.62 0.54 

65,000 $1,050 $1,089 4.46 2.23 1.49 1.12 0.90 0.75 0.64 0.56 

70,000 $1,050 $1,089 4.49 2.28 1.53 1.15 0.92 0.77 0.66 0.58 

75,000 $1,050 $1,089 4.42 2.18 1.45 1.09 0.87 0.72 0.62 0.54 

80,000 $1,050 $1,089 4.45 2.23 1.48 1.11 0.89 0.74 0.64 0.56 

85,000 $1,050 $1,089 4.48 2.26 1.51 1.14 0.91 0.76 0.65 0.57 

90,000 $1,050 $1,089 4.42 2.18 1.45 1.09 0.87 0.72 0.62 0.54 

Average 4.50 2.30 1.55 1.17 0.93 0.78 0.67 0.59 

Maximum 4.78 2.75 1.93 1.49 1.21 1.02 0.88 0.77 

Minimum 4.40 2.15 1.42 1.06 0.85 0.71 0.61 0.53 

+ 0.28 0.45 0.38 0.32 0.27 0.24 0.21 0.19 

- 0.10 0.15 0.12 0.10 0.09 0.07 0.06 0.06 
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Table 2.B Average payback time vs market value per panel for unglazed 

Colorcote RSW for 1,920 hours production time for producing 5,000 to 90,000 

panels per year. (Ref: Figure 5.7A) 

Market value per panel and payback time (years) Production 

Volume 

Material 

cost/panel 

Operating 

cost/panel $1,100 $1,200 $1,300 $1,400 $1,500 $1,600 $1,700 $1,800 

5,000 $1,050 $1,105 5.20 2.97 2.08 1.60 1.30 1.10 0.95 0.83 

10,000 $1,050 $1,105 5.20 2.97 2.08 1.60 1.30 1.10 0.95 0.83 

15,000 $1,050 $1,105 5.20 2.97 2.08 1.60 1.30 1.10 0.95 0.83 

20,000 $1,050 $1,105 5.20 2.97 2.08 1.60 1.30 1.10 0.95 0.83 

25,000 $1,050 $1,102 5.07 2.65 1.79 1.36 1.09 0.91 0.78 0.69 

30,000 $1,050 $1,102 5.10 2.71 1.85 1.40 1.13 0.94 0.81 0.71 

35,000 $1,050 $1,103 5.11 2.75 1.88 1.43 1.15 0.97 0.83 0.73 

40,000 $1,050 $1,103 5.12 2.78 1.91 1.45 1.17 0.98 0.85 0.74 

45,000 $1,050 $1,103 5.13 2.80 1.93 1.47 1.19 0.99 0.86 0.75 

50,000 $1,050 $1,102 5.07 2.65 1.79 1.36 1.09 0.91 0.78 0.69 

55,000 $1,050 $1,102 5.09 2.68 1.82 1.38 1.11 0.93 0.80 0.70 

60,000 $1,050 $1,102 5.10 2.71 1.85 1.40 1.13 0.94 0.81 0.71 

65,000 $1,050 $1,102 5.11 2.73 1.86 1.42 1.14 0.96 0.82 0.72 

70,000 $1,050 $1,101 5.06 2.63 1.77 1.34 1.07 0.90 0.77 0.68 

75,000 $1,050 $1,102 5.07 2.65 1.79 1.36 1.09 0.91 0.78 0.69 

80,000 $1,050 $1,102 5.08 2.67 1.81 1.37 1.10 0.92 0.79 0.70 

85,000 $1,050 $1,102 5.09 2.69 1.83 1.39 1.12 0.93 0.80 0.70 

90,000 $1,050 $1,102 5.10 2.71 1.85 1.40 1.13 0.94 0.81 0.71 

Average 5.11 2.75 1.89 1.43 1.16 0.97 0.83 0.73 

Maximum 5.20 2.97 2.08 1.60 1.30 1.10 0.95 0.83 

Minimum 5.06 2.62 1.77 1.33 1.07 0.89 0.77 0.67 

+ 0.08 0.22 0.20 0.17 0.14 0.13 0.11 0.10 

- 0.05 0.14 0.12 0.10 0.09 0.08 0.07 0.06 
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Table 2.C Average payback time vs market value per panel for unglazed 

Colorcote BIPVT for ATC production system operating 1,920 hours production 

time for producing 5,000 to 90,000 panels per year. (Ref. Figure 5.7B) 

Market value per panel and payback time (years) Production 
Volume 

Material  
cost/panel 

Operating 
cost/panel $1,100 $1,200 $1,300 $1,400 $1,500 $1,600 $1,700 $1,800 

5,000 $1,050 $1,096 4.88 3.02 2.19 1.72 1.41 1.20 1.04 0.92 

10,000 $1,050 $1,084 4.16 2.03 1.34 1.00 0.80 0.67 0.57 0.50 

15,000 $1,050 $1,080 3.62 1.53 0.97 0.71 0.56 0.46 0.39 0.34 

20,000 $1,050 $1,084 4.16 2.03 1.34 1.00 0.80 0.67 0.57 0.50 

25,000 $1,050 $1,081 3.87 1.74 1.13 0.83 0.66 0.55 0.47 0.41 

30,000 $1,050 $1,080 3.62 1.53 0.97 0.71 0.56 0.46 0.39 0.34 

35,000 $1,050 $1,082 3.96 1.83 1.19 0.88 0.70 0.58 0.50 0.43 

40,000 $1,050 $1,081 3.78 1.67 1.07 0.79 0.62 0.51 0.44 0.38 

45,000 $1,050 $1,080 3.62 1.53 0.97 0.71 0.56 0.46 0.39 0.34 

50,000 $1,050 $1,079 3.47 1.41 0.89 0.65 0.51 0.42 0.36 0.31 

55,000 $1,050 $1,081 3.74 1.63 1.04 0.77 0.61 0.50 0.43 0.37 

60,000 $1,050 $1,080 3.62 1.53 0.97 0.71 0.56 0.46 0.39 0.34 

65,000 $1,050 $1,079 3.51 1.44 0.91 0.66 0.52 0.43 0.37 0.32 

70,000 $1,050 $1,080 3.72 1.61 1.03 0.75 0.60 0.49 0.42 0.37 

75,000 $1,050 $1,080 3.62 1.53 0.97 0.71 0.56 0.46 0.39 0.34 

80,000 $1,050 $1,079 3.53 1.46 0.92 0.67 0.53 0.44 0.37 0.32 

85,000 $1,050 $1,079 3.44 1.39 0.87 0.64 0.50 0.41 0.35 0.30 

90,000 $1,050 $1,080 3.62 1.53 0.97 0.71 0.56 0.46 0.39 0.34 

Average 3.75 1.67 1.08 0.80 0.64 0.53 0.45 0.39 

Maximum 4.88 3.02 2.19 1.72 1.41 1.20 1.04 0.92 

Minimum 3.42 1.37 0.86 0.63 0.49 0.41 0.34 0.30 

+ 1.12 1.35 1.11 0.91 0.77 0.67 0.59 0.53 

- 0.34 0.30 0.22 0.18 0.15 0.12 0.11 0.09 
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Appendix 3 

Appendix 3 includes the optimisation of ATC production system operating 5,760 

production hours per year and shows comparison of individual process step 

throughput, capital costs, net profit and payback time for unoptimised and 

optimised ATC production systems. 

 

Table 3.A  Comparison of individual process step throughput for optimised 

and unoptimised ATC BIPVT production system operating 5,760 hours per year. 

Panels 

processed/step 
Panels/min 

Production step (ATC) 

Unoptd.* Optd.* Unoptd.* Optd.* 

Corrugation of plain sheet 1 1 0.50 0.50 

Producing holes on corrugated sheet 1 1 0.40 0.40 

Joining collector plate to corrugated 

sheet, sealing central channels end, 

mounting fittings and 

lamination of PV strings 

3 6 0.15 0.30 

Sealing the edges between bonded 

corrugated sheet and collector plate 
1 2 0.25 0.50 

Attaching manifolds to corrugated sheet 1 2 0.25 0.50 

Process throughput (panels/min) 

based on slowest step 0.15 0.30 

Panels per year per production line 

for 5760 hrs operating time 51,840 103,680 

Number of equipment lines needed 2 1 

Panels per year installed capacity 103,680 103,680 

Unoptd*: Unoptimised, Optd.*: optimised 
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Table 3.B Capital cost comparison for optimised and unoptimised ATC 

production system operating 5,760 hours per year. 

Equipment cost 
Production step (ATC) 

Unoptd.* Optd.* 

Corrugation of plain sheet by press-brake $250,000 $250,000 

Producing holes on corrugated sheet by punching $10,000 $10,000 

Joining collector plate to corrugated sheet, 

sealing central channels end, 

mounting fittings and 

lamination of PV strings 

$600,000 $1,200,000 

Sealing the bonded edges between collector plate and 
corrugated sheet $5,000 $10,000 

Attaching manifolds with the corrugated sheet $5,000 $10,000 

Production line equipment cost $870,000 $1,480,000 

Total equipment cost (TEC) $1,740,000 $1,480,000 

Capital investment (TEC x Lang factor 3.06) $5,324,400 $4,528,800 

Unoptd*: Unoptimised, Optd.*: optimised 
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Table 3.C Net profit, payback time and return on investment comparison for 

unoptimised and optimised ATC production system operating 5,760 hours per 

year. 

Production system 
ATC 

Unoptimised Optimised 

Total equipment cost (TEC) $1,740,000 $1,480,000 

Capital investment (CI = TEC x Lang factor 3.06) $5,324,400 $4,528,800 

Depreciation (20%) (DC=0.20xCI) $1,064,880 $905,760 

Panels per year for 5760 hrs operating time (N) 103,680 103,680 

Labour per panel (min) 32.5 32.5 

Labour cost per min (including overhead) (LC) $22 $22 

Labour cost per year (A=LC x N) $2,246,400 $2,246,400 

Machine operating cost per year (B = 10% of TEC) $522,000 $444,000 

Equipment energy consumption per year 

(C=1% of TEC x factor*) 
$69,600 $59,200 

Material cost per panel Colorcote (Unglazed) (MP) $1,050 $1,050 

Material cost per year (D=MP x N)) $108,864,000 $108,864,000 

Total operating costs per year (TO = A+B+C+D) $111,702,000 $111,613,600 

Cost per panel (CP = TO/N) $1,077 $1,077 

Market value per panel (MV) $1,400 $1,400 

Revenue before tax (RT = MV x N) $145,152,000 $145,152,000 

Gross profit before tax (GP = RT – TO) $33,450,000 $33,538,400 

Gross profit after tax (33%) (GPT = GP x 0.67) $22,411,500 $22,470,728 

Net profit per year (NP = GPT + DC) $23,476,380 $23,376,488 

Gross margin (GM = GPT/RT) 15% 15% 

Return on investment (ROI = NP/CI) 441% 516% 

Payback time (years) (PT = CI/NP) 0.23 0.19 
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Appendix 4 

Appendix 4 includes the optimisation of RSW production systems operating 5,760 

production hours per year. Comparison of individual process step throughput, 

capital costs, net profit and payback time for optimised and unoptimised systems 

for RSW are shown in the optimisation. 

 

Table 4.A  Comparison of individual process step throughput for unoptimised 

and optimised RSW production system operating 5,760 hours per year. 

Panels 

Processed/step 
Panels/min 

Production step (RSW) 

Unoptd. Optd. Unoptd. Optd. 

Corrugation of plain sheet 1 1 0.50 0.50 

Producing holes on corrugated sheet 1 1 0.40 0.40 

Joining collector plate to corrugated 

sheet 
1 5 0.06 0.28 

Sealing central channels at each end 1 2 0.20 0.40 

Mounting fittings to the corrugated 

sheet 
1 2 0.20 0.40 

Lamination of PV strings on collector 

plate 
1 5 0.07 0.33 

Sealing the edges between bonded 

corrugated sheet and collector plate 
1 2 0.25 0.50 

Attaching manifolds to corrugated sheet 1 2 0.25 0.50 

Process throughput (panels/min) 
based on slowest step 0.06 0.28 

Panels per year per production line 

for 5760 hrs operating time 19,200 96,000 

Number of equipment lines needed 5 1 

Panels per year installed capacity 96,000 96,000 

Unoptd*: Unoptimised, Optd.*: optimised 
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Table 4.B Capital cost comparison for unoptimised and optimised RSW 

production system operating 5,760 hours per year. 

Equipment cost 
Production step (RSW) 

Unopt.* Optd.* 

Corrugation of plain sheet by press-brake $250,000 $250,000 

Producing holes on corrugated sheet by punching $10,000 $10,000 

Joining collector plate to corrugated sheet $80,000 $400,000 

Sealing central channel ends $5,000 $10,000 

Mount fittings on corrugated sheet $5,000 $10,000 

Lamination of PV strings on collector plate $400,000 $2,000,000 

Sealing the bonded edges between 

collector plate  and corrugated sheet 
$5,000 $10,000 

Attaching manifolds with the corrugated sheet $5,000 $10,000 

Production line equipment cost $760,000 $2,700,000 

Total equipment cost (TEC) $3,800,000 $2,700,000 

Capital investment (TEC x Lang factor 3.06) $11,628,000 $8,262,000 

Unoptd*: Unoptimised, Optd.*: optimised 
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Table 4.C Comparison of net profit, payback time and return on investment 

for unoptimised and optimised RSW production system operating 5,760 hours per 

year. 

Production system 
RSW 

Unoptimised Optimised 

Total equipment cost (TEC) $3,800,000 $2,700,000 

Capital investment (CI = TEC x Lang factor 3.06) $11,628,000 $8,262,000 

Depreciation (20%) (DC=0.20xCI) $2,325,600 $1,652,400 

Panels per year for 5760 hrs operating time (N) 96,000 96,000 

Labour per panel (min) 0.93 0.93 

Labour cost per min (including overhead) (LC) $37 $37 

Labour cost per year (A=LC x N) $3,552,000 $3,552,000 

Machine operating cost per year (B = 10% of TEC) $1,140,000 $810,000 

Equipment energy consumption per year 

(C=1% of TEC x factor*) 
$76,000 $54,000 

Material cost per panel Colorcote (Unglazed) (MP) $1,050 $1,050 

Material cost per year (D=MP x N)) $100,800,000 $100,800,000 

Total operating costs per year (TO = A+B+C+D) $105,568,000 $105,216,000 

Cost per panel (CP = TO/N) $1,100 $1,096 

Market value per panel (MV) $1,400 $1,400 

Revenue before tax (RT = MV x N) $134,400,000 $134,400,000 

Gross profit before tax (GP = RT – TO) $28,832,000 $29,184,000 

Gross profit after tax (33%) (GPT = GP x 0.67) $19,317,440 $19,553,280 

Net profit per year (NP = GPT + DC) $21,643,040 $21,205,680 

Gross margin (GM = GPT/RT) 14.37% 14.55% 

Return on investment (ROI = NP/CI) 186% 257% 

Payback time (years) (PT = CI/NP) 0.54 0.39 
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Appendix 5 

Table 5.A Lang factors in detail for solid, fluid and combination processing 

plants. 

Category 
Solids 

processing 

Solid-fluid 

processing 

Fluid 

processing 

Equipment (delivered) 1 1 1 

Equipment, Installation 0.19-0.23 0.39-0.43 0.76 

Piping 0.07-0.23 0.30-0.39 0.33 

Structural foundations - - 0.28 

Electrical 0.13-0.25 0.08-0.17 0.09 

Instruments 0.03-0.12 0.13 0.13 

Battery-limits building and service 0.33-0.50 0.26-0.35 0.45 

Excavation and site preparation 0.03-0.18 0.08-0.22 - 

Auxiliaries 0.14-0.30 0.48-0.55 included 

Total physical Plant 2.37 2.97 3.04 

Field expenses 0.10-0.12 0.35-0.43  

Engineering - 0.35-0.43 0.41 

Direct plans costs 2.48 3.73 3.45 

Contractor's fees, overhead, profit 0.30-0.33 0.09-0.17 0.17 

Contingency 0.26 0.39 0.36 

Total fixed-capital investment 3.06 4.27 3.98 
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Appendix 6 

Table 6.A Production method advantages and disadvantages [65, 66, 68]. 

 
Method/ 

equipment Advantages Disadvantages 

Press-brake 
forming 

• Tooling is simple 
• Varieties of parts and shapes are 

produced 
• Process can be automated for low-

cost 

• Speed lower than roll-forming 
• Length of the bed is fixed 

Roll forming 

• Sheet produced in thickness range 
of 0.125 – 20 mm 

• High forming speeds about 1.5 m/s 
• Suitable for mass production 
• Length of products is more than 

press brakes 

• Less number of parts and 
components are produced in single 
set up 

• High cost of tooling and set-up 

Using 
Adhesives 

• Lower temperatures generate 
during joining process 

• Joining of dissimilar metals and 
thin gauges 

• Sealing, insulating, and preventing 
electrochemical corrosion of 
dissimilar metals 

• Exterior surfaces of bonded 
components remain smooth and 
unaffected 

• No distortion of bonded surfaces as 
operating temperatures during 
process are from room temperature 
to 200oC 

• Strength of the bond per unit area is 
limited 

• Service temperature range is limited 
• Time for bonding process can be 

long 
• Surface preparation is crucial for 

strength of bond and needs great 
care 

• Reliability is limited as degradation 
of bonds occur due to environmental 
conditions 

Welding 
• High strength joint 
• Process can be automated 
• Quick and energy efficient process 

• Joint cannot be dismantled 
• High initial cost 
• Surface distortion 

Brazing/ 
Soldering 

• Less surface distortion than 
welding 

• Joining of dissimilar metals and 
thin gauges 

• No expensive equipment required 
• Joints produced are fast and at low 

cost 

• Strength of joint lower than welding 
• Within dissimilar metal joints 

galvanic action can occur 
• Environmental operating 

temperatures are limited 

Mechanical 
fastening 

• Dissimilar metals of different 
gauges are easily joined 

• Joints are easily dismantled and 
assembled with simple tools 

• Failure of the mechanical fasteners 
at joint due to localized stresses 

• Within dissimilar metal joints 
galvanic action can occur 

• Joint preparation is required 

 


