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Abstract

Simulation rules have long been used as an effective cortipoéh means to
decide refinement relations in state-based formalisms.e Mer investigate how
they might be amended so as to decide the event-based nétsimgteton fail-
ures refinement of abstract data types or processes thatdpevrations with a
“guarded” interpretation.

As the results presented here and found elsewhere in thatilite are so sen-
sitive to the details of the definitions used, we have maebirexked our results.

1 Introduction

We will review some of the known results about abstract dgte (ADT) refinement
and simulation (and note that we have machine-checked tifdsgerest to us). First,
we need to note (much more is said on this later) state-lifteddata types are those
where the local state of the data type has a special elemeedadisually denoted
by 1), and then the operations of the ADT are given meaning asoekover this
lifted state. In contrasiperation-liftedADTs are those where the state is lifted as
previously, but each operation in the ADT is also lifted bylig) | to its domain and
range and adding, according to various prescriptions tdumsriated later, new pairs to
the relation that gives the meaning of the operation. Intémtdio the above liftings we
can totalise too—this means that in either lifting case vepiire total relations as the
outcome. These subtle differences between lifting opamatiead to important results:

1. Hoare, He and Saunders (HHS)—forward and backward stironlaound and
complete for state-lifted data type refinement [1]

Reeves and Streader—data refinement not equal to sF refin¢2h
Reeves and Streader—backward simulation is not sourtd sErrefinement [3]

Derrick—one complete simulation rule for data refinenidht

o A~ 0D

Derrick and Boiten—forward and backward simulation ravtplete with operation-
lifted data types[5]



The single complete rule of [4], unlike the completenesd fdoes not require the
construction of an intermediate ADT. In [4] the same powadreonstruction as used
in the proof of completeness in [1] appears. But in [4] the "Rbuilt by the power-
set construction is simply a computational step in asasrtgiif one ADT is indeed a
refinement of another. Hence the result of the power-settami®on need not satisfy
the detailed definition of what constitutes an ADT.

As we know that data type refinement is not singleton failefexement we will,
subsequently, apply a similar analysis to singleton faikefinement with an amended
definition of simulation and establish the following result

1. amended forward and backward simulation are sound witheet to sF refine-
ment

2. amended forward and backward simulation not completel&ba types either
with lifted state or lifted operations

3. amended forward and backward simulation are completaldta types with
lifted state and singleton failure refinement

4. one complete simulation rule for singleton failure refirent

These results and those labelled witheorem in the rest of the paper have been
machine checked using Isabell [6].

The standard HHS result of soundness and joint completeféssvard and back-
ward simulation with respect to refinement can be appliecalyjto partial relations
and to total relations (and more specifically, to the totkdtiens that are the outcome
of lifting and totalising). The completeness proof invathae construction of an inter-
mediate data type via a power-set construction.

The construction of the intermediate data type has beenrsfgjwo be very sensi-
tive to the detailed definition of ADTs. Whether the resultief power-set construction
is a valid data type or not depends on the definition of a dqta ypou choose. With
the completely reasonablegical definition chosen in [5] the output of the power-set
construction is not a valid data type. With an alternativd arore liberal definition
(to be given later) the standard HHS result can be applied & have a (machine
checked) completeness proof).

Consequently we have two possibilities: one, we can keepothieal definition
[5] of data type with the consequence that the completeness fails; two, we can
liberalise the definition of data types to include the resaftthe power-set construction
and have a valid completeness proof.

2 Abstract data types with guarded operations

An ADT consists of a set of named operations that act on @istdteStateplus two
special operations:

init that initialises the data type by relating the public statthe private state and



final that terminates the data type by relating the private statk o the public state
All operations will be given a relational semantics.

Definition 1 Simple Data Typ®, where Namesis a set of names for the operations
of D, Statg is the local (private) state dD and Statg the global state of a program
which use®, is given by:

(Statey, Opp, initp, finalp)

and

Opp : Nameg — Statg) x State

initp : Statg x Statg

finalp : Statgy x Statg
We view this as saying that the operationBiare named relations, so for the semantics
of the (purely syntactic) operation narae= Namesg from ADTD, which we writeD.a
when we need to disambiguate, we write

[D.a] £ O (a)

For example, for ADTA the relations which give semantics to the operation names
a, b andc are given by the solid lines in Fig. 1 (ignore anything involy L for now).

init A.a Ab A.c final

p = a;b;c

Figure 1: [A.p]" £ inita;[A.a]";[A.b]; [A.c];finala

The simple ADTs captured by Definition 1 are open to seveffarimal interpre-
tations. Their operations could be undefined outside of@rdition (outside of the
domain of the relation they denote) or they could be guardedide of the precon-
dition. In addition the behaviour inside the preconditimultl have a totally correct
interpretation, i.e. the operation will terminate and wétminate in one of the post-
states indicated by the relation or it could have a partiedisrect interpretation, i.e. the
operation might terminate and if it terminates it will termate in one of the post-states
indicated by the relation.

One way to formalise the desired interpretation is to liftl éotalise the (in general,
partial) relation that gives the meaning of an operation @appropriately. A second
way is to keep the original relations as the operations arfth@leefinement that is
consistent with (captures) the desired interpretation.



2.1 Lifting and totalising operations

We can lift and totalise the relations in many ways. Here vedaterested in interpret-
ing the operations:

1. as guarded outside of precondition
2. with a choice of termination interpretation:

(a) thetotal correctness interpretation, i.e. they must terminate
(b) thepartial correctness interpretation, i.e. they may terminate

Point two is often not mentioned but because we are goingeal u® represent
“not terminated” our semantics can explicitly distinguggherations that may terminate
from operations that must terminate.

For example, in Fig. 1, if we consider the relations givendtlythe lines in the
diagram, then we have lifted and totalised our operatiomgve them a guarded, total
correctness meaning.

In contrast, the partially correct interpretation of guedldoperations can be for-
malised by allowing an operation to always be able to terteind@hus the relations
relate all pre-states ta, indicating that termination is never guaranteed and hérnse
always possible to not terminate. For example @ddL ) to operatiora in Fig. 1.

Itis the exclusion of states from which an operation bothtrhigrminate and might
fail to terminate that characterises the total correctirgsspretation and which makes
the the completeness proof of [1] fail.

We will formally define these possibilities for ADTs in thextesection, but for
now we introduce transformations on the semantics of siogkrations, likea, from
some simple ADTD which reflect the above discussion.

First, the semantics that reflects guarded operations that terminateT for “to-
tal”):

[D.a]" £ [D.a] U {(x, L) | x € Statey U L A ~3y.(x,y) € [D.a]}

Secondly, the semantics that reflects guarded operatiahsihy terminateR for
“partial”):

[D.a]® = [D.a] U {(x, L) | x € Statey U L.}

2.2 Lifting and totalising data types

As we have indicated above, we have two ways to define extengiompletions?) of
data types whose operations have a lifted and totalisetiaetd semantics. We now
give formal definitions for these alternatives.

Firstly we deal withdata types over lifted statéThat an ADT has been extended
in this way is indicated by placin§, as a superscript to the ADT name: this indicates
that the relational semantics of the operations of the oaigsimple ADT have been
extended to give a new ADT over a lifted state. In order thatamlift this new value
to whole programs (later) the global space is similarlyelift



Definition 2 Let D be some simple ADTStatey, Opp, initp, finalp). DS+ is a state-
lifted extension oD. The state-space State = State, U { L} of DS+ contains a
special value denoted hy. DS+ has the form

(Statgys, , Opps. , initps, , finalys, )

where

Opps, : Nameg — Statgs, x Statgys,
initys, : (Statg U L) x Statgys,
finalys, : Statgs, x (Statg U L)

and

Opps,. 2 Omp

initDsL ) initD

finalys, 2 finalp

Note that for state-lifted ADTs the operations (followirgetdefinition for simple
ADTSs) are, for any operation nangec Names,

[DS+.a]® £ Opys, (a)

Further note that there are no restrictions as to whichioglatare allowed as oper-
ations, save that they be total, including initialisatiow dinalisation.

Next, we deal withdata types with (explicitly) lifted operationsHere the only
relational semantics we admit as valid are those that anethét of a particular lifting
of the operations of a simple abstract data type which is amgke of either of the
formalisations of must or may terminate from Section 2.1.

Definition 3 LetD be some simple AD(Btatg, Opp, initp, finalp ). DOT+ is an operation-
lifted abstract data type with total correctness extensitid. The state-space State, =
State, U { L} contains a special value denoted by DT+ has the form

(Statgyor, , Oppor. ,inity' +, finald"+)

where
Oppor, : Nameg — Statgor, x Statgor,
initS™* : (Statg U {L}) x Statgyor,
finald™* : Statgor, x (Statg U {L})
and
OpDOTL O Opp
initDou = initD U {(J_, J_)}
finalpor, = finalp U {(L, 1)}
and, for any operatiomm from Nameg
[D°T+.a] £ [D.a]"

Definition 4 LetD be some simple AD(Btatg), Opp, initp, finalp). D°P+ is an operation-
lifted abstract data type with partial correctness extensdfD. The state-space State, =
Statg U { L} contains a special value denoted hy DO+ has the form



(Statgyor, , Oppor. , iNitS" +, final3"™+)

where
Oppor, : Nameg — Statgor, x Statgor,
init”+ : (Statg U {L}) x Statgor,
finalo"+ : Statgor, x (Statg U {L})
and
Oppor, 2 Opp
initDOPL = initD U {(J_, J_)}
finalpor, = finalp U {(L, L)}
and, for any operatiomm from Nameg
[DOP+.a] £ [D.a]P

Clearly a data type with lifted operations is an example oatadype over lifted
state. But there are data types over lifted state that arerdsdta type with lifted
operations. Importantly the the data types built by the peset construction, used in
[1] to prove the completeness result are not ADT with liftgemations. The behaviour
of lifted “must terminate” operations is restricted so tiratny state they either can
be performed and must terminate or cannot be performed andlecked. Operations
that from some state may be performed and terminate or mbpferminate and are
blocked do not satisfy the lifted operation definitions infiDiéion 3 and Definition 4.

3 Refinement and Simulation

A programp calls a sequence of operations each from some ADMis sequence must
always start wittinit and end wittfinal. For ease of writingnit andfinal will often be
omitted, but must be assumed to be present.

Definition 5 If {0j}1<i<n are operation names from ADD and p is the program
0i,; Oj; ....; 0j, wherel <jj < nforl < j < mthen we sap is a program oveD
and

D.p £init; D.o;, ; D.0;, ; ...; D.oj, ; final

We also extend the various ways of giving semantics to ojperatames to pro-
grams in the obvious way.

Definition 6 If {0j}1<i<n are operation names from ADD and p is the program
0i,; Ojy; ....; 0j, wherel <ij <nforl <j<mthen

[D.p]* £ initp ; [D.0,]*; [D.0,]*; ...; [D.0;,]*; finalp

whereX can be any of5, T or P and the appropriate extensions of initialisation and
finalisation forX are also used.

1in what follows we allow “ADT” to range over all the possiliiéis for ADTs (simple or extensions) that
we have seen so far.



Definition 7 Data Refinement for guarded operations, writter{and possibly deco-
rated with super- and sub-scripts), is dependent on the séosa(of the operations)
of the two data types which it relates. Afand C are two data types angd is some
program over those ADTSs then

ACXC £ [C.p]* C [Ap]*
whereX can be any 08, T or P.

If we can construct gimulationon a partial relation semantics, eitlferward or
backward between thé\ andC above then we know there is a data refinenfent C
from the well known soundness of simulation.

_o— [Aa]X —o— [AD]X —o- - o
I T

[A.init]* I 1 [Afinal]X
o~ x\>\ « S« S «a « ' . e
[C.init] \l_ .l _}l_ .ol _}l ..... i/ [C.final]

Figure 2: Backward simulation

Definition 8 LetA andC be ADTs. There is a backward simulation relation between
them iff there exists someC State x State such that

1. initC;Oé - initA
2. Vo e Op.[C.ol%aC a;[A.0]*
3. finalg;a C finalp

Further, there is a forward simulation relation betweénand C iff there exists
somex C State x State such that

F1. initc C a;initp
F2. Vo€ Opa.o;[C.0]* C [A.0]%;c
F3. finalc C «;finala

whereX can be any o5, T or P and the appropriate extensions of initialisation and
finalisation forX are also used.

Thus we have one definition for backward and one for forwamtligation. These
can be applied to both types of ADT tlstate-lifted ADT of Definition 2 and the
operation-lifted ADTs of Definition 3 and Definition 4.

3.1 An aside

Before we move on, we make a remark that looks forward. Thedsta proof of
soundness and completeness is based around the simpt®imtfimodelling oper-
ations as relations and the sequential composition of tipesas relational compo-
sition (as we have done so far). But it is well known that mbdeglsequential com-
position of operations as the relational composition ofsiayg partial relations has a



meaning thatdiffers from the meaning that would be be natural in a progmaing
language”, Spivey [7, p136]. This conceptual problem can be illustdaby looking
back at Fig. 1 and considering the relational composifidra]; [A.b] of the partial
relations, the solid linedA.a];[A.b] is composed only of one element, the {air4);
the possibility of theA.b operation blocking afteA.a performs the movél, 2) is lost
in the construction of the relational composition. Thislgeon clearly disappears if
we restrict ourselves to total relations. Hence the usugl which has been followed
above, to avoid this well known pitfall is to lift and totadighe relational semantics
prior to composition. But this introduces a new “stateto represent non-termination
or not starting. We would note that because non-terminasiamlike other states and
cannot be observed directly it is often thought undesir&blaclude L in the model.

3.2 Soundness and Completeness

We write X for backward simulation andX _, for forward simulation. The Hoare, He
and Saunders soundness result applies to all the variding ldnd totalising regimes
we have looked at above.

Theorem 1 Soundness of forward and backward simulation [1]

1. ACX CimpliesA CX C

2. ACX_, CimpliesAC* C

Definition 9 Forward and backward simulation are jointly complete ifeth exist
ADTSsB; ...B,_1 and there exist relations’ . .. o" such that

AC,B1C,2By...C,n C

The important point is the existence of the intermediata tigies and the relations.
Hence this definition is dependent upon the chosen set af #&iTs and the chosen
set of valid relations.

The standard Hoare He and Saunders result [1] is that forarmaidackward simu-
lation are sound and jointly complete certainly applieh®data types over lifted state.
But as Boiten and Derrick [5] point out the joint completenissnot valid for what we
call operation-lifted data types with the must terminateipretation. It should be
noted that the result fails because of the restriction glaxewhat operations are valid
in the ADT and thus it is not always possible to compute chafrssmulation between
operation-lifted data types that refine each other. In otdeegain the completeness
property all we need to do is relax this restriction.

The power-set construction [8] builds an intermediate AB&g Fig. 3). We have
adopted the usual event-based convention and do not showap#rations that are
blocked; in state-based terminology these are operatimiend atl .

Definition 10 Power-set construction on operation-lifted semantics.
LetA be some operation-lifted must terminate AlBkatg,, Opa, inita, finala ). Let
e be a member of the global state (we assume it is the only ooe &ia need no more).
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1 a A
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_final "
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Figure3: AC CasALCl , p"(A)CL p'(C)CL C

Let RX) = {y | 3x € X.(x,y) € R}. In particular, for any operation name
a € Names:

[a]"(X) £ {y | Ix € X.(x,y) € [a]"}.
Then,

pT(A) £ (@(Stat&), pT(initA)7 @T(OpA)7 @T(ﬁnalA))
where
o' (inita) 2 (e, init(e))
o (Opa) = {(a, (X, [a]"(X))) | X C State, A a € Nameg}
o' (finaly) = {(X,f) | X C State A f € finala(X)}

To show that forward and backward simulation are completé. wlata refinement
we apply the power-set construction to the (lifted, todisA and C thus building
o' (A) andpT(C). A standard result is the existence of a backward simulaiarf _,
o' (A) and a forward simulatiop™ (C) CL C.

PCL.o'(P)CLP

ThusP andg'(P) are refine equivalent.



We can view the output from the power-set construction asrenabform and it
can be seen that C C if and only if " (A) C "(C). Further we can rename the
nodes used in the power-set construction so gHaf) = o' (C) if and only if when
we ignore all unreachable states the concrete operatiociggdinginit andfinal, are a
subset of the abstract operations with the same name' (A.0) 2 p'(C.0).

Thus both for data types with lifted operations which mustieate and data types
over lifted state forward and backward simulation are scamdiwe havé 0.p* (A.0) D
o (C.0) that act as a complete test for refinement.

3.3 The Logical Style of defining Simulation

There are two basic styles we can take when defining data aiioalbetween ADT,
the relational and the logical styles. The logical stylealljumakes use of pre- and
post-condition predicates (hence our name for it). Theqanmedition defines where
the operation is defined (the image of its relational sersaptind the post-condition
defines the relation between the initial and final state of@aeration. For simulation
on a simple ADT Definition 1 with no particular interpretatiall that is needed in the
logical style is the strengthening of the post-conditien{ember we are dealing with
guarded—blocking—semantics here).

Where the operations are to be interpreted as guarded ewkjorecondition and
totally correct:

Relational style we lift (add 1) and totalise the relational semantics and treas
part of the state space (Definition 8);

Logical style we define simulation as the preservation of the pre-condiiod the
strengthening of the post-condition.

This can be translated into conditions on the relationaleseios and is often done
in such a way that no reference tois needed. For people who are uneasy with the
inclusion of L (“what doesl really mean?”) this is an advantage.

Definition 11 Logical style Let A and C be ADTs. The is a backward simulation
between them iff there exists som& State x State such that

1. initc;a C inity

2. Vo € Opa.dorfC.0] C o~ (donfA.o])
3. Vo € Opa.[C.0];a C «;[A.0]

4. finalc;a C finala

Clause 2 is the preservation of the pre-condition onpplicability condition and
clause 3 is the strengthening of the post-condition cor@ectnessondition.

With data types over lifted operations (Definition 3 and Digifm 4) the logical
and relational styles of simulation are the same. But whenseedate types over lifted
state ( Definition 2) this is no longer true.
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Remember there are data types over lifted state that areatattygpes with lifted
operations. By looking at these extra data types we can s¢®#finition 8 is not the
same as applying Definition 11 to a data type over lifted state

Any logical style of simulation that characterised Defmit8 would, because of the
extended set of relations allowable, require an additierplicit predicate to indicate
that states were related to

From this logical perspective we can say that the cost of howag L to be in-
cluded in the predicates defining the behaviour of an opmragithat the completeness
result has been lost.

Theorem 2 Completeness of simulation with respect to refinement fors¥andC:
[1] If A C C there exists a sequence of simulations between ADTsArtinC
[5] ACC = p"(A) 29'(C)

The lack of completeness of forward and backward simulationdata types with
lifted operations is important as it tells us that we canrahpute all refinements by
constructing intermediate data types (with no explicierehce to non-termination)
and computing forward or backward simulations. If on thesotiend we permitted the
definition of operations to make reference to non-termarathen we would have the
completeness result.

Alternatively tools like B and Event B could be amended toeagate the proof
obligations needed to establishif (A) O ' (C). This one rule is complete but such
proof obligations may not be as easy to satisfy as the humeaitgded forward and
backward simulations.

4 Is L any more unobservable than any other state?

Elsewhere we have discussed, in much more detail, the disibvservations that are
needed to define testing semantics that characterise digiament as opposed to sin-
gleton failure refinement [9]. Here we do not need to be quitalsstract as we are
only considering what can be observed in order to motivagesimulation relations we
use.

Here we define contexts as being the set of states from whicparation can be
called, often called the pre-condition, and observatianbe&ing what can validly be
observed when an operation is executed from any given contex

If we assume that state and only state is observable then giet miake the fol-
lowing set of four observations: initial statexsinitial state isy, final state isx and
final state isy. From this we clearly have not effectively observed the beha of the
operation. But if we observe traces of states then the fatigwet of two observations,
initial state isx followed by final state ix, and initial state iy followed by final state
isy, then we have observed some of the behaviour of the operation

We view the only possible observations of an operation todmepgete tracesIre,
i.e. to be pre-state/post-state traces, or sub-tracesdhemHence the range of the
observation function (which given an operation tells us twh@ can observe of it) is

11



a subset of all possible traces of states that the operatinrbe in, which we write
ranggObg C State. Using these traces observations we are able Viewdded by
lifting, as no more than sugar for the actual observation stiiart trace, i.e. a trace of
length less than two.

The patrtial relation interpretation of some operatibnan be modelled by restrict-
ing the observations to being a single pre-state/post-ptit (i.e. a sequence of length
two) Obs,r = Tr® |staex state@Nd usingStateas the set of contexts. To summarise:

Definition 12

Epr £ {[—]x | Xe Staté} Ob%r = Trc |State<State

For example, a partial relation interpretation of openaficoverState2 {x, y} that
maps the initial statg, to a final statex is represented by the partial relation:

[[Eﬂ (Zpr, Tré| statex statd — {(ya (y, X))}

Clearly the first observation of the initial state is redumits it appears as the context
and hence, without loss of detail or generality, we can dhep from the relational
semantics. So our example can be written

[Elpr = {(y. %)}
the usual partial relational semantics.
By expanding the contexts to includg to representot startedand by not re-
stricting the observations to being traces of length two,aneable to observe more
behaviour:

Definition 13
Eop £ {[x | x € Stateu {()}} Obsop = Tr°
[ ]

Returning to the example operati&which maps initial statg € Stateto a final
statex € State let us assume we want to adapt it to model an operation thesrne
terminates when started ¥and always terminates when startedirmhe empty trace
of observationg) can be made only if the operation never starts, so we(adad the
set of contexts to represent not starting. Hence the relatimemantics of our adapted
example[E] =, ) is {(¥; (¥.X)), (x, (%)), (), )} (see Fig. 4).

We transform our relational semantics into the more usw@ésb-state semantics
in two simple steps. Step 1. the trace of observations is ssfate/post-state pair
whenE terminates and just the pre-state whedoes not terminate. As the pre-state
is known from the domain of the relation it, without loss ohgeality, can be removed
(see[E]steq in Fig. 4). Step two: by conventiof) is represented by. and hence the
semantics of our example becon{gy, x), (x, L), (L, L)}.

In Fig. 4 we have assumed:

12



Y——(y,X) Y. y Y. y
[Elzop ey X——>(X) [Elsten X X [[Eﬂsmmx\x
(O)——0 — )

Figure 4. Semantics of operations

1. that nothing can be observed of an operation that has beeerstarted hence
maps tol and only toL

2. the operation iguarded outside of pre-conditidmencex is mapped tal. and
onlyto L

3. we made a total correctness assumption, i.e.Ehahen started in statg will
terminate in state, hence(y, 1) is not in the semantics.

All-in-all this gives the semantics for an operatiorto be:

[O] £ [Ofpr U{(x. L)) [ ~3r.(x.1) € [Ofpr} U{(L, L)}

which for our example i§(y, x), (x, L), (L, 1)}

From the perspective outlined here an observation is notaté $n isolation but
traces of states and is just sugar for the observation of short traces (length than
two) and these short traces are just as observable as “rotraeés of length two.
Because of this it can be argued that, from the perspectivehat is observable, we
have no pressing reason to exclutidrom a predicate used to define the observable
behaviour of an operation.

With predicates that define both the terminating behaviber, observations of
length two, and the non-terminating behaviour, i.e. obstowns of length less than
two (predicates that include), all we need in the logical style of simulation definition
is the weakening of the post-condition.

4.1 Simulation relations and observations

The simulation relatiory relates the abstract and concrete state. This statet®-sta
relation is then lifted to a relation that takes account ofSo, what restrictions, flowing
from the discussion in the previous section, might thererba simulation relation, if
any?

Recall that we explain_ as a “short” trace, i.e. a trace which is either of length
one or of length two: the former indicates a computation tizet not started (and so it
has not finished either), and the latter indicates a comipat#tat has started but not
finished. So, an operation will always map stateo itself, because then we are asking
what the operation does if it does not start, and it clearkysdoot finish, so the trace is
(). What state should a simulation relate_towvhen it indicates non-starting? It does
not seem to be sensible for it to relate a non-starting sted@ything but a non-starting
state.

What of the situation where: indicates an operation that did start, but which did
not finish? Again, it does not seem sensible for a simulatioretate a situation in

13



which an operation does not finish when started in a certate s anything but another
operation starting in that state and also not finishing.

So, we would argue that a simulation can relateand only L, to only L.

If we accept the motivation we have just given and restrietdimulation relations
as suggested then the completeness proof of forward andvhaadlsimulation fails
even for state-lifted data types. This is becagsndc—! are no longer valid simula-
tion relations. But from this alone we cannot conclude thaté is no other sequence of
restricted forward and backward simulation relatigp C or relatingC to A in Fig. 3.

It should be noted that the simulation relation is not singlifted relation, as can be
seen by considering stafé, L }. In addition, thefinal operation is non-deterministic.
The point being that if we restrict the simulation relatiordéor the relational seman-
tics of the operations (thinal operation in this case) to being lifted relatiors]*,
then the standard completeness proof fails.

Our restricted simulation relations become useful to uhenext section where
we discuss singleton failure semantics, and from the restithe next section we can
see the impossibility of relating to C (Fig. 3) by the restricted simulation relations.

5 Singleton Failure semantics

First, a little notation: for ADTA lets—~ 1 be event-based notation short fer L) €
[a]" and wherep is a sequence of operations &t—-s be notation for(e,ss) €
inita A (Sa, S) € [p]" (sosa is a start-state anglis a program).

Definition 14 Singleton failures semantics of AINIs given by sF where:

sF(A) 2 {{(p,a)}| s c State A sa—2osA s 1 U
{(p,{}) | sa € State, A Issp—2>s}

Also, for ADTSA andC,
A Cer C £ sF(C) C sF(A)

Previously, using the processesArandC,we have shown that backward simula-
tion is not sound with respect to singleton failure semanfs}. Here we will show
that using the restricted simulation relations we can distalthat forward and back-
ward simulation are sound with respect to singleton faikemantics.

5.1 Sound restricted simulation relations

The definition of singleton failure semantics depends oretigtence of a statesuch
thatn # L (the second element of the union in Definition 14) but thiggrty is not
preserved by the unrestricted simulation relations in ttewipus section, whereas the
restricted simulation relations do preserve the propergy L, 1.e. if (X,y) € « then
X#1ley# L.

Soundness with respect to singleton failure semanticavialifor this restricted set
of simulation relations.
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Theorem 3 Soundness of restricted simulation relatiotetween ADT4 andC:

1. AC! CimpliesA Csr C
2. AC]_, CimpliesA Cse C

From the soundness we can see that any sequence of simsiiaiate pairs of pro-
cesses that are singleton failures refinements of each otiyerGiven the transitivity
of singleton failure refinement we can see that by restigctie simulation relation we
will never be able to relaté to C by simulation in Fig. 3 as it is easy to verify that
A Zse C. But A C C (data refinementjloeshold, hence with the restricted simula-
tion relation forward and backward simulation are not costglwith respect to data
refinement, even if we use operation-lifted data types.

5.2 Completeness

To show completeness we apply a “guarded” power-set castgiru This is the appli-
cation of the power-set construction to the original stéites not includingl) only.

Definition 15 Guarded power-set construction of on ART= (State,, inita, Opa, finals)
restricted to Statgwithout_ L is
p(A) = (p(State \ { L}), p(inita), p(Opa), p(final))
p(inita) = (e, inita(e))
p(Opa) = {p(a) | a € Nameg}
p(a) é {(X, [a](X)) | X C State \ {L}}U{(X, L) | Ixe X.(x, L) e [a]"}
p(finaly) = {(X,f) | X C Statg \ { L} Af € finala(X)} U {(L, 1)}

)

(1> ||l>

A program using the constructed data types has a deterinipsth between el-
ements ofp(Statg, but with potential non-determinism where one branch ends.a
Just like for data refinement this construction requires dgtes from Definition 2 not
Definition 3 or Definition 4. Hence our completeness prodk lihat in Section 3 for
ADT, is only correct for state-lifted ADT and is incorrectrfoperation-lifted ADT.

See Fig. 5 for an example of the use of the definition. Notelthging restricted the
simulation relations we are able to construct simulatidatiens between a restricted
set of ADTs only. Althoughp™(A) O ©'(C) (Fig. 3) we find thatp(A) 2 ©(C)
(Fig. 5). This is just what we want #Zsr C butC Cgsr A

The € relation betweerA and p(A) preserves the singleton failures. From the
Definition 15 it is easy to see thatA) D p(C) if and only if p(A) Csr p(C).

Theorem 4 There are completeness results for singular failures sditsithat are
similar to known results for data refinement. l&etndC be ADTs wheréd Cge C.
Then:

Similar to [1] If A =s¢ p(A) there exists a sequence of forward and backward simu-
lations fromA to C

Similarto [5] p(A) 2 u(C) if and only if o(A) Csr ©(C)
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2 b 1 c 1—final —L

1 A
T3——b—4——Cc——5—final —*
€
{1}—a—{2,3}— b —{4}—c —{5}—final —e
\ . .

l——c——1—final —L

{W}— a —>{x'§y, Z}—b %{é, t}—c '"—,_»}{r}— final —e

b_ - c\ ©(C) -

TSN S final—1

a
—a Yy b 1 c 1—final —L1

\ a
\ b t Cc r-

final —e

Figure 5: ACE, p(A) andp(A) 2 p(C) butp(C) 2 p(A)

Theorem 4 provides us with a single complete rule for sirmgléailures semantics.

Althought our completeness proof is applicable to stdtedi ADT only, we are
not asserting that an alternative approach might not peogidompleteness proof for
operation-lifted ADTs too. Constructing an intermediate PRwhere all nondetermin-
ism appears in thiit operation appears a promising first step in the desigh of auch
proof.

6 Conclusion

The known results for ADTs with guarded operations and d taiaectness interpre-
tation are:

State-lifted ADT have the properties:

1. forward and backward simulation are sound [1]
2. forward and backward simulation are jointly complete [1]
3. there is a single complete refinement rde= C < o' (A) D ' (C) [4]

Operation-lifted ADT have the properties:

1. forward and backward simulation are sound [1]
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2. o"(A) is not a data type with lifted operations and forward and baoki
simulation arenot jointly complete [5]

3. there is a single complete refinement rde= C < o' (A) D ' (C) [4]
The results for singleton failure semantics that we havehimecchecked are:

Singleton failures refinement for state-lifted ADT has the properties:

1. amended forward and backward simulation are sound

2. amended forward and backward simulation are jointly cletep

3. there is an amended single complete refinement Allg;r C < p(A) D
»(C)

The amendment we have made to the definition of simulatiatiogls has been
motivated simply by considering what can be observed whevpanation is executed
(in Section 4).
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