
Working Paper Series
ISSN 1177-777X

Guarded operations, refinement and simulation

Steve Reeves and David Streader

Working Paper: 02/2009
June 10, 2009

c©Steve Reeves and David Streader
Department of Computer Science

The University of Waikato
Private Bag 3105

Hamilton, New Zealand

Guarded operations, refinement and simulation

Steve Reeves and David Streader
Department of Computer Science, University of Waikato,

{dstr,stever}@cs.waikato.ac.nz

June 10, 2009

Abstract

Simulation rules have long been used as an effective computational means to
decide refinement relations in state-based formalisms. Here we investigate how
they might be amended so as to decide the event-based notion of singleton fail-
ures refinement of abstract data types or processes that haveoperations with a
“guarded” interpretation.

As the results presented here and found elsewhere in the literature are so sen-
sitive to the details of the definitions used, we have machine-checked our results.

1 Introduction

We will review some of the known results about abstract data type (ADT) refinement
and simulation (and note that we have machine-checked thoseof interest to us). First,
we need to note (much more is said on this later) thatstate-lifteddata types are those
where the local state of the data type has a special element added (usually denoted
by ⊥), and then the operations of the ADT are given meaning as relations over this
lifted state. In contrast,operation-liftedADTs are those where the state is lifted as
previously, but each operation in the ADT is also lifted by adding⊥ to its domain and
range and adding, according to various prescriptions to be illustrated later, new pairs to
the relation that gives the meaning of the operation. In addition to the above liftings we
can totalise too—this means that in either lifting case we require total relations as the
outcome. These subtle differences between lifting operations lead to important results:

1. Hoare, He and Saunders (HHS)—forward and backward simulation sound and
complete for state-lifted data type refinement [1]

2. Reeves and Streader—data refinement not equal to sF refinement [2]

3. Reeves and Streader—backward simulation is not sound w.r.t. sF refinement [3]

4. Derrick—one complete simulation rule for data refinement[4]

5. Derrick and Boiten—forward and backward simulation not complete with operation-
lifted data types[5]

1

The single complete rule of [4], unlike the completeness of [1], does not require the
construction of an intermediate ADT. In [4] the same power-set construction as used
in the proof of completeness in [1] appears. But in [4] the “ADT” built by the power-
set construction is simply a computational step in ascertaining if one ADT is indeed a
refinement of another. Hence the result of the power-set construction need not satisfy
the detailed definition of what constitutes an ADT.

As we know that data type refinement is not singleton failure refinement we will,
subsequently, apply a similar analysis to singleton failure refinement with an amended
definition of simulation and establish the following results:

1. amended forward and backward simulation are sound with respect to sF refine-
ment

2. amended forward and backward simulation not complete fordata types either
with lifted state or lifted operations

3. amended forward and backward simulation are complete fordata types with
lifted state and singleton failure refinement

4. one complete simulation rule for singleton failure refinement

These results and those labelled withTheorem in the rest of the paper have been
machine checked using Isabell [6].

The standard HHS result of soundness and joint completenessof forward and back-
ward simulation with respect to refinement can be applied equally to partial relations
and to total relations (and more specifically, to the total relations that are the outcome
of lifting and totalising). The completeness proof involves the construction of an inter-
mediate data type via a power-set construction.

The construction of the intermediate data type has been shown [5] to be very sensi-
tive to the detailed definition of ADTs. Whether the result ofthe power-set construction
is a valid data type or not depends on the definition of a data type you choose. With
the completely reasonablelogical definition chosen in [5] the output of the power-set
construction is not a valid data type. With an alternative and more liberal definition
(to be given later) the standard HHS result can be applied (and we have a (machine
checked) completeness proof).

Consequently we have two possibilities: one, we can keep thelogical definition
[5] of data type with the consequence that the completeness proof fails; two, we can
liberalise the definition of data types to include the results of the power-set construction
and have a valid completeness proof.

2 Abstract data types with guarded operations

An ADT consists of a set of named operations that act on private stateStateplus two
special operations:

init that initialises the data type by relating the public state to the private state and

2

final that terminates the data type by relating the private state back to the public state

All operations will be given a relational semantics.

Definition 1 Simple Data TypeD, where NamesD is a set of names for the operations
of D, StateD is the local (private) state ofD and Stateg the global state of a program
which usesD, is given by:

(StateD, OpD, initD, finalD)

and
OpD : NamesD → StateD × StateD
initD : Stateg × StateD
finalD : StateD × Stateg

We view this as saying that the operations inD are named relations, so for the semantics
of the (purely syntactic) operation namea ∈ NamesD from ADTD, which we writeD.a
when we need to disambiguate, we write

JD.aK , OpD(a)

For example, for ADTA the relations which give semantics to the operation names
a, b andc are given by the solid lines in Fig. 1 (ignore anything involving⊥ for now).

init
•

p = a;b;c

1

2

3

4

5

⊥

A.a
1

2

3

4

5

⊥

A.b
1

2

3

4

5

⊥

A.c
1

2

3

4

5

⊥

final
•

Figure 1: JA.pKT , initA;JA.aKT;JA.bKT;JA.cK⊥;finalA

The simple ADTs captured by Definition 1 are open to several informal interpre-
tations. Their operations could be undefined outside of precondition (outside of the
domain of the relation they denote) or they could be guarded outside of the precon-
dition. In addition the behaviour inside the precondition could have a totally correct
interpretation, i.e. the operation will terminate and willterminate in one of the post-
states indicated by the relation or it could have a partiallycorrect interpretation, i.e. the
operation might terminate and if it terminates it will terminate in one of the post-states
indicated by the relation.

One way to formalise the desired interpretation is to lift and totalise the (in general,
partial) relation that gives the meaning of an operation name appropriately. A second
way is to keep the original relations as the operations and define refinement that is
consistent with (captures) the desired interpretation.

3

2.1 Lifting and totalising operations

We can lift and totalise the relations in many ways. Here we are interested in interpret-
ing the operations:

1. as guarded outside of precondition

2. with a choice of termination interpretation:

(a) thetotal correctness interpretation, i.e. they must terminate

(b) thepartial correctness interpretation, i.e. they may terminate

Point two is often not mentioned but because we are going to use ⊥ to represent
“not terminated” our semantics can explicitly distinguishoperations that may terminate
from operations that must terminate.

For example, in Fig. 1, if we consider the relations given byall the lines in the
diagram, then we have lifted and totalised our operations togive them a guarded, total
correctness meaning.

In contrast, the partially correct interpretation of guarded operations can be for-
malised by allowing an operation to always be able to terminate. Thus the relations
relate all pre-states to⊥, indicating that termination is never guaranteed and henceit is
always possible to not terminate. For example add(1,⊥) to operationa in Fig. 1.

It is the exclusion of states from which an operation both might terminate and might
fail to terminate that characterises the total correctnessinterpretation and which makes
the the completeness proof of [1] fail.

We will formally define these possibilities for ADTs in the next section, but for
now we introduce transformations on the semantics of singleoperations, likea, from
some simple ADTD which reflect the above discussion.

First, the semantics that reflects guarded operations that must terminate (T for “to-
tal”):

JD.aKT , JD.aK ∪ {(x,⊥) | x ∈ StateD ∪ ⊥ ∧ ¬∃ y.(x, y) ∈ JD.aK}
Secondly, the semantics that reflects guarded operations that may terminate (P for

“partial”):
JD.aKP , JD.aK ∪ {(x,⊥) | x ∈ StateD ∪ ⊥}

2.2 Lifting and totalising data types

As we have indicated above, we have two ways to define extensions (completions?) of
data types whose operations have a lifted and totalised relational semantics. We now
give formal definitions for these alternatives.

Firstly we deal withdata types over lifted state. That an ADT has been extended
in this way is indicated by placingS⊥ as a superscript to the ADT name: this indicates
that the relational semantics of the operations of the original simple ADT have been
extended to give a new ADT over a lifted state. In order that wecan lift this new value
to whole programs (later) the global space is similarly lifted.

4

Definition 2 Let D be some simple ADT(StateD, OpD, initD, finalD). DS⊥ is a state-
lifted extension ofD. The state-space StateDS⊥ , StateD ∪ {⊥} of DS⊥ contains a
special value denoted by⊥. DS⊥ has the form

(StateDS⊥ , OpDS⊥ , initDS⊥ , finalDS⊥)

where
OpDS⊥ : NamesD → StateDS⊥ × StateDS⊥

initDS⊥ : (Stateg ∪ ⊥) × StateDS⊥

finalDS⊥ : StateDS⊥ × (Stateg ∪⊥)
and
OpDS⊥ ⊇ OpD

initDS⊥ ⊇ initD
finalDS⊥ ⊇ finalD

Note that for state-lifted ADTs the operations (following the definition for simple
ADTs) are, for any operation namea ∈ NamesD,

JDS⊥ .aKS , OpDS⊥ (a)

Further note that there are no restrictions as to which relations are allowed as oper-
ations, save that they be total, including initialisation and finalisation.

Next, we deal withdata types with (explicitly) lifted operations. Here the only
relational semantics we admit as valid are those that are theresult of a particular lifting
of the operations of a simple abstract data type which is an example of either of the
formalisations of must or may terminate from Section 2.1.

Definition 3 LetD be some simple ADT(StateD, OpD, initD, finalD). DOT⊥ is an operation-
lifted abstract data type with total correctness extensionofD. The state-space StateDOT⊥ ,

StateD ∪ {⊥} contains a special value denoted by⊥. DOT⊥ has the form

(StateDOT⊥ , OpDOT⊥ , initOT⊥

D , finalOT⊥

D)

where
OpDOT⊥ : NamesD → StateDOT⊥ × StateDOT⊥

initOT⊥

D : (Stateg ∪ {⊥}) × StateDOT⊥

finalOT⊥

D : StateDOT⊥ × (Stateg ∪ {⊥})
and
OpDOT⊥ ⊇ OpD

initDOT⊥ = initD ∪ {(⊥,⊥)}
finalDOT⊥ = finalD ∪ {(⊥,⊥)}
and, for any operationa from NamesD
JDOT⊥ .aK , JD.aKT

Definition 4 LetD be some simple ADT(StateD, OpD, initD, finalD). DOP⊥ is an operation-
lifted abstract data type with partial correctness extension ofD. The state-space StateDOP⊥ ,

StateD ∪ {⊥} contains a special value denoted by⊥. DOP⊥ has the form

5

(StateDOP⊥ , OpDOP⊥ , initOP⊥

D , finalOP⊥

D)

where
OpDOP⊥ : NamesD → StateDOP⊥ × StateDOP⊥

initOP⊥

D : (Stateg ∪ {⊥})× StateDOP⊥

finalOP⊥

D : StateDOP⊥ × (Stateg ∪ {⊥})
and
OpDOP⊥ ⊇ OpD

initDOP⊥ = initD ∪ {(⊥,⊥)}
finalDOP⊥ = finalD ∪ {(⊥,⊥)}
and, for any operationa from NamesD
JDOP⊥ .aK , JD.aKP

Clearly a data type with lifted operations is an example of a data type over lifted
state. But there are data types over lifted state that are nota data type with lifted
operations. Importantly the the data types built by the power-set construction, used in
[1] to prove the completeness result are not ADT with lifted operations. The behaviour
of lifted “must terminate” operations is restricted so thatin any state they either can
be performed and must terminate or cannot be performed and are blocked. Operations
that from some state may be performed and terminate or may fail to terminate and are
blocked do not satisfy the lifted operation definitions in Definition 3 and Definition 4.

3 Refinement and Simulation

A programp calls a sequence of operations each from some ADT1. This sequence must
always start withinit and end withfinal. For ease of writinginit andfinal will often be
omitted, but must be assumed to be present.

Definition 5 If {oi}1≤i≤n are operation names from ADTD and p is the program
oi1 ; oi2 ;; oim where1 ≤ ij ≤ n for 1 ≤ j ≤ m then we sayp is a program overD
and

D.p , init ; D.oi1 ; D.oi2 ; ...; D.oim ; final

We also extend the various ways of giving semantics to operation names to pro-
grams in the obvious way.

Definition 6 If {oi}1≤i≤n are operation names from ADTD and p is the program
oi1 ; oi2 ;; oim where1 ≤ ij ≤ n for 1 ≤ j ≤ m then

JD.pKX , initD ; JD.oi1K
X ; JD.oi2K

X ; ...; JD.oimKX ; finalD

whereX can be any ofS, T or P and the appropriate extensions of initialisation and
finalisation forX are also used.

1In what follows we allow “ADT” to range over all the possibilities for ADTs (simple or extensions) that
we have seen so far.

6

Definition 7 Data Refinement for guarded operations, written⊑ (and possibly deco-
rated with super- and sub-scripts), is dependent on the semantics (of the operations)
of the two data types which it relates. IfA and C are two data types andp is some
program over those ADTs then

A ⊑X C , JC.pKX ⊆ JA.pKX

whereX can be any ofS, T or P.

If we can construct asimulationon a partial relation semantics, eitherforward or
backward, between theA andC above then we know there is a data refinementA ⊑ C
from the well known soundness of simulation.

•

◦

⊆ ⊆ ⊆ ⊆

◦

◦

◦ ◦

◦ ◦

◦

•
JC.initKX

JA.initKX

α α α r

JA.bKXJA.aKX

JC.aKX JC.bKX

α

JC.finalKX

JA.finalKX

Figure 2: Backward simulation

Definition 8 Let A andC be ADTs. There is a backward simulation relation between
them iff there exists someα ⊆ StateC × StateA such that

1. initC;α ⊆ initA
2. ∀o ∈ OpA.JC.oKX;α ⊆ α;JA.oKX

3. finalC;α ⊆ finalA

Further, there is a forward simulation relation betweenA and C iff there exists
someα ⊆ StateC × StateA such that

F1. initC ⊆ α;initA
F2. ∀o ∈ OpA.α;JC.oKX ⊆ JA.oKX;α
F3. finalC ⊆ α;finalA

whereX can be any ofS, T or P and the appropriate extensions of initialisation and
finalisation forX are also used.

Thus we have one definition for backward and one for forward simulation. These
can be applied to both types of ADT thestate-lifted ADT of Definition 2 and the
operation-lifted ADTs of Definition 3 and Definition 4.

3.1 An aside

Before we move on, we make a remark that looks forward. The standard proof of
soundness and completeness is based around the simple intuition of modelling oper-
ations as relations and the sequential composition of operations as relational compo-
sition (as we have done so far). But it is well known that modelling sequential com-
position of operations as the relational composition of possibly partial relations has a

7

meaning that“differs from the meaning that would be be natural in a programming
language”, Spivey [7, p136]. This conceptual problem can be illustrated by looking
back at Fig. 1 and considering the relational compositionJA.aK; JA.bK of the partial
relations, the solid lines.JA.aK;JA.bK is composed only of one element, the pair(1, 4);
the possibility of theA.b operation blocking afterA.a performs the move(1, 2) is lost
in the construction of the relational composition. This problem clearly disappears if
we restrict ourselves to total relations. Hence the usual way, which has been followed
above, to avoid this well known pitfall is to lift and totalise the relational semantics
prior to composition. But this introduces a new “state”⊥ to represent non-termination
or not starting. We would note that because non-terminationis unlike other states and
cannot be observed directly it is often thought undesirableto include⊥ in the model.

3.2 Soundness and Completeness

We write⊑X
α

for backward simulation and⊑X
α−1 for forward simulation. The Hoare, He

and Saunders soundness result applies to all the various lifting and totalising regimes
we have looked at above.

Theorem 1 Soundness of forward and backward simulation [1]

1. A ⊑X
α

C impliesA ⊑X C

2. A ⊑X
α−1 C impliesA ⊑X C

Definition 9 Forward and backward simulation are jointly complete iff there exist
ADTsB1 . . . Bn−1 and there exist relationsα1

. . . α
n such that

A ⊑α1 B1 ⊑α2 B2 . . . ⊑αn C

The important point is the existence of the intermediate data types and the relations.
Hence this definition is dependent upon the chosen set of valid ADTs and the chosen
set of valid relations.

The standard Hoare He and Saunders result [1] is that forwardand backward simu-
lation are sound and jointly complete certainly applies to the data types over lifted state.
But as Boiten and Derrick [5] point out the joint completeness is not valid for what we
call operation-lifted data types with the must terminate interpretation. It should be
noted that the result fails because of the restriction placed on what operations are valid
in the ADT and thus it is not always possible to compute chainsof simulation between
operation-lifted data types that refine each other. In orderto regain the completeness
property all we need to do is relax this restriction.

The power-set construction [8] builds an intermediate ADT (see Fig. 3). We have
adopted the usual event-based convention and do not show theoperations that are
blocked; in state-based terminology these are operations that end at⊥.

Definition 10 Power-set construction on operation-lifted semantics.
LetA be some operation-lifted must terminate ADT(StateA, OpA, initA, finalA). Let

• be a member of the global state (we assume it is the only one since we need no more).

8

A1
2

3 4 5 •

⊥ ⊥ ⊥

∈

a
a

b c

b c

final

final

℘
T(A)

{1} {2, 3} {4,⊥} {5,⊥}

•

⊥

a b c
final

final

℘
T(C)

{w} {x, y, z} {s, t,⊥} {r,⊥}

•

⊥

a b c
final

final

C
w

x s

y

z t r •

⊥ ⊥ ⊥

a

a

a

b

b c final

c

b c final

Figure 3: A ⊑ C asA ⊑T
∈−1 ℘

T(A) ⊑T
∈ ℘

T(C) ⊑T
∈ C

Let R(X) , {y | ∃ x ∈ X.(x, y) ∈ R}. In particular, for any operation name
a ∈ NamesA:

JaKT(X) , {y | ∃ x ∈ X.(x, y) ∈ JaKT}.

Then,

℘
T(A) , (℘(StateA), ℘T(initA), ℘T(OpA), ℘T(finalA))

where
℘

T(initA) , (•, initA(•))
℘

T(OpA) , {(a, (X, JaKT(X))) | X ⊆ StateA ∧ a ∈ NamesA}
℘

T(finalA) , {(X, f) | X ⊆ StateA ∧ f ∈ finalA(X)}

To show that forward and backward simulation are complete w.r.t. data refinement
we apply the power-set construction to the (lifted, totalised) A andC thus building
℘

T(A) and℘
T(C). A standard result is the existence of a backward simulationA ⊑T

∈−1

℘
T(A) and a forward simulation℘T(C) ⊑T

∈ C.

P ⊑T
∈−1 ℘

T(P) ⊑T
∈ P

ThusP and℘
T(P) are refine equivalent.

9

We can view the output from the power-set construction as a normal form and it
can be seen thatA ⊑ C if and only if ℘

T(A) ⊑ ℘
T(C). Further we can rename the

nodes used in the power-set construction so that℘
T(A) ⊑ ℘

T(C) if and only if when
we ignore all unreachable states the concrete operations, includinginit andfinal, are a
subset of the abstract operations with the same name∀o.℘

T(A.o) ⊇ ℘
T(C.o).

Thus both for data types with lifted operations which must terminate and data types
over lifted state forward and backward simulation are soundand we have∀o.℘

⊥(A.o) ⊇
℘
⊥(C.o) that act as a complete test for refinement.

3.3 The Logical Style of defining Simulation

There are two basic styles we can take when defining data simulation between ADT,
the relational and the logical styles. The logical style usually makes use of pre- and
post-condition predicates (hence our name for it). The pre-condition defines where
the operation is defined (the image of its relational semantics) and the post-condition
defines the relation between the initial and final state of an operation. For simulation
on a simple ADT Definition 1 with no particular interpretation all that is needed in the
logical style is the strengthening of the post-condition (remember we are dealing with
guarded—blocking—semantics here).

Where the operations are to be interpreted as guarded outside of precondition and
totally correct:

Relational style we lift (add⊥) and totalise the relational semantics and treat⊥ as
part of the state space (Definition 8);

Logical style we define simulation as the preservation of the pre-condition and the
strengthening of the post-condition.

This can be translated into conditions on the relational semantics and is often done
in such a way that no reference to⊥ is needed. For people who are uneasy with the
inclusion of⊥ (“what does⊥ really mean?”) this is an advantage.

Definition 11 Logical style Let A and C be ADTs. The is a backward simulation
between them iff there exists someα ⊆ StateC × StateA such that

1. initC;α ⊆ initA

2. ∀o ∈ OpA.domJC.oK ⊆ α
−1(domJA.oK)

3. ∀o ∈ OpA.JC.oK;α ⊆ α;JA.oK

4. finalC;α ⊆ finalA

Clause 2 is the preservation of the pre-condition or anapplicability condition and
clause 3 is the strengthening of the post-condition or acorrectnesscondition.

With data types over lifted operations (Definition 3 and Definition 4) the logical
and relational styles of simulation are the same. But when weuse date types over lifted
state (Definition 2) this is no longer true.

10

Remember there are data types over lifted state that are not data types with lifted
operations. By looking at these extra data types we can see that Definition 8 is not the
same as applying Definition 11 to a data type over lifted state.

Any logical style of simulation that characterised Definition 8 would, because of the
extended set of relations allowable, require an additionalexplicit predicate to indicate
that states were related to⊥.

From this logical perspective we can say that the cost of not allowing ⊥ to be in-
cluded in the predicates defining the behaviour of an operation is that the completeness
result has been lost.

Theorem 2 Completeness of simulation with respect to refinement for ADTsA andC:

[1] If A ⊑ C there exists a sequence of simulations between ADTs fromA to C

[5] A ⊑ C ⇔ ℘
T(A) ⊇ ℘

T(C)

The lack of completeness of forward and backward simulationfor data types with
lifted operations is important as it tells us that we cannot compute all refinements by
constructing intermediate data types (with no explicit reference to non-termination)
and computing forward or backward simulations. If on the other hand we permitted the
definition of operations to make reference to non-termination then we would have the
completeness result.

Alternatively tools like B and Event B could be amended to generate the proof
obligations needed to establish if℘

T(A) ⊇ ℘
T(C). This one rule is complete but such

proof obligations may not be as easy to satisfy as the human-designed forward and
backward simulations.

4 Is⊥ any more unobservable than any other state?

Elsewhere we have discussed, in much more detail, the distinct observations that are
needed to define testing semantics that characterise data refinement as opposed to sin-
gleton failure refinement [9]. Here we do not need to be quite so abstract as we are
only considering what can be observed in order to motivate the simulation relations we
use.

Here we define contexts as being the set of states from which anoperation can be
called, often called the pre-condition, and observations as being what can validly be
observed when an operation is executed from any given context.

If we assume that state and only state is observable then we might make the fol-
lowing set of four observations: initial state isx, initial state isy, final state isx and
final state isy. From this we clearly have not effectively observed the behaviour of the
operation. But if we observe traces of states then the following set of two observations,
initial state isx followed by final state isx, and initial state isy followed by final state
is y, then we have observed some of the behaviour of the operation.

We view the only possible observations of an operation to be complete traces,Trc,
i.e. to be pre-state/post-state traces, or sub-traces thereof. Hence the range of the
observation function (which given an operation tells us what we can observe of it) is

11

a subset of all possible traces of states that the operation can be in, which we write
range(Obs) ⊆ State∗. Using these traces observations we are able view⊥, added by
lifting, as no more than sugar for the actual observation of ashort trace, i.e. a trace of
length less than two.

The partial relation interpretation of some operationE can be modelled by restrict-
ing the observations to being a single pre-state/post-state pair (i.e. a sequence of length
two) Obspr = Trc |State×Stateand usingStateas the set of contexts. To summarise:

Definition 12

Ξpr , {[]x | x ∈ State} Obspr = Trc |State×State

For example, a partial relation interpretation of operationE overState, {x, y} that
maps the initial statey, to a final statex is represented by the partial relation:

JEK(Ξpr,Trc|State×State) = {(y, (y, x))}.

Clearly the first observation of the initial state is redundant as it appears as the context
and hence, without loss of detail or generality, we can drop this from the relational
semantics. So our example can be written

JEKpr = {(y, x)}.

the usual partial relational semantics.
By expanding the contexts to include() to representnot startedand by not re-

stricting the observations to being traces of length two, weare able to observe more
behaviour:

Definition 13

ΞOp , {[]x | x ∈ State∪ {()}} ObsOp = Trc

•

Returning to the example operationE, which maps initial statey ∈ Stateto a final
statex ∈ State, let us assume we want to adapt it to model an operation that never
terminates when started inx and always terminates when started iny. The empty trace
of observations() can be made only if the operation never starts, so we add() to the
set of contexts to represent not starting. Hence the relational semantics of our adapted
exampleJEK(ΞOp,Trc) is {(y, (y, x)), (x, (x)), ((), ())} (see Fig. 4).

We transform our relational semantics into the more usual state-to-state semantics
in two simple steps. Step 1: the trace of observations is a pre-state/post-state pair
whenE terminates and just the pre-state whenE does not terminate. As the pre-state
is known from the domain of the relation it, without loss of generality, can be removed
(seeJEKStep1 in Fig. 4). Step two: by convention() is represented by⊥ and hence the
semantics of our example becomes{(y, x), (x,⊥), (⊥,⊥)}.

In Fig. 4 we have assumed:

12

JEK(ΞOp,Trc)

y (y, x)

x (x)

() ()

JEKStep1

y

x

y

()

x

()

JEKStep2

y

x

y

⊥

x

⊥

Figure 4: Semantics of operations

1. that nothing can be observed of an operation that has neverbeen started hence⊥
maps to⊥ and only to⊥

2. the operation isguarded outside of pre-conditionhencex is mapped to⊥ and
only to⊥

3. we made a total correctness assumption, i.e. thatE when started in statey will
terminate in statex, hence(y,⊥) is not in the semantics.

All-in-all this gives the semantics for an operationO to be:

JOK , JOKpr ∪ {(x,⊥)) | ¬ ∃ r.(x, r) ∈ JOKpr} ∪ {(⊥,⊥)}

which for our example is{(y, x), (x,⊥), (⊥,⊥)}
From the perspective outlined here an observation is not of state in isolation but

traces of states and⊥ is just sugar for the observation of short traces (length less than
two) and these short traces are just as observable as “normal” traces of length two.
Because of this it can be argued that, from the perspective ofwhat is observable, we
have no pressing reason to exclude⊥ from a predicate used to define the observable
behaviour of an operation.

With predicates that define both the terminating behaviour,i.e. observations of
length two, and the non-terminating behaviour, i.e. observations of length less than
two (predicates that include⊥), all we need in the logical style of simulation definition
is the weakening of the post-condition.

4.1 Simulation relations and observations

The simulation relationα relates the abstract and concrete state. This state-to-state
relation is then lifted to a relation that takes account of⊥. So, what restrictions, flowing
from the discussion in the previous section, might there be on a simulation relation, if
any?

Recall that we explain⊥ as a “short” trace, i.e. a trace which is either of length
one or of length two: the former indicates a computation thathas not started (and so it
has not finished either), and the latter indicates a computation that has started but not
finished. So, an operation will always map state⊥ to itself, because then we are asking
what the operation does if it does not start, and it clearly does not finish, so the trace is
(). What state should a simulation relate to⊥ when it indicates non-starting? It does
not seem to be sensible for it to relate a non-starting state to anything but a non-starting
state.

What of the situation where⊥ indicates an operation that did start, but which did
not finish? Again, it does not seem sensible for a simulation to relate a situation in

13

which an operation does not finish when started in a certain state to anything but another
operation starting in that state and also not finishing.

So, we would argue that a simulation can relate⊥, and only⊥, to only⊥.
If we accept the motivation we have just given and restrict the simulation relations

as suggested then the completeness proof of forward and backward simulation fails
even for state-lifted data types. This is because∈ and∈−1 are no longer valid simula-
tion relations. But from this alone we cannot conclude that there is no other sequence of
restricted forward and backward simulation relatingA to C or relatingC to A in Fig. 3.
It should be noted that the simulation relation is not simplya lifted relation, as can be
seen by considering state{5,⊥}. In addition, thefinal operation is non-deterministic.
The point being that if we restrict the simulation relation and/or the relational seman-
tics of the operations (thefinal operation in this case) to being lifted relations,J K⊥,
then the standard completeness proof fails.

Our restricted simulation relations become useful to us in the next section where
we discuss singleton failure semantics, and from the results of the next section we can
see the impossibility of relatingA to C (Fig. 3) by the restricted simulation relations.

5 Singleton Failure semantics

First, a little notation: for ADTA let s
a

−→⊥ be event-based notation short for(s,⊥) ∈

JaKT and whereρ is a sequence of operations letsA
ρ

−→s be notation for(•, sA) ∈
initA ∧ (sA, s) ∈ JρKT (sosA is a start-state andρ is a program).

Definition 14 Singleton failures semantics of ADTA is given by sF where:

sF(A) , {{(ρ, a)} | sA ∈ StateA ∧ sA
ρ

−→s∧ s
a

−→⊥}∪

{(ρ, {}) | sA ∈ StateA ∧ ∃ s.sA
ρ

−→s}

Also, for ADTsA andC,

A ⊑sF C , sF(C) ⊆ sF(A)

Previously, using the processes inA andC,we have shown that backward simula-
tion is not sound with respect to singleton failure semantics [2]. Here we will show
that using the restricted simulation relations we can establish that forward and back-
ward simulation are sound with respect to singleton failuresemantics.

5.1 Sound restricted simulation relations

The definition of singleton failure semantics depends on theexistence of a staten such
thatn 6= ⊥ (the second element of the union in Definition 14) but this property is not
preserved by the unrestricted simulation relations in the previous section, whereas the
restricted simulation relations do preserve the propertyn 6= ⊥, ı.e. if (x, y) ∈ α then
x 6= ⊥ ⇔ y 6= ⊥.

Soundness with respect to singleton failure semantics follows for this restricted set
of simulation relations.

14

Theorem 3 Soundness of restricted simulation relationα between ADTsA andC:

1. A ⊑T
α

C impliesA ⊑sF C

2. A ⊑T
α−1 C impliesA ⊑sF C

From the soundness we can see that any sequence of simulations relate pairs of pro-
cesses that are singleton failures refinements of each otheronly. Given the transitivity
of singleton failure refinement we can see that by restricting the simulation relation we
will never be able to relateA to C by simulation in Fig. 3 as it is easy to verify that
A 6⊑sF C. But A ⊑ C (data refinement)doeshold, hence with the restricted simula-
tion relation forward and backward simulation are not complete with respect to data
refinement, even if we use operation-lifted data types.

5.2 Completeness

To show completeness we apply a “guarded” power-set construction. This is the appli-
cation of the power-set construction to the original states(i.e. not including⊥) only.

Definition 15 Guarded power-set construction of on ADTA , (StateA, initA, OpA, finalA)
restricted to StateA without⊥ is

℘(A) , (℘(StateA \ {⊥}), ℘(initA), ℘(OpA), ℘(final))
℘(initA) , (•, initA(•))
℘(OpA) , {℘(a) | a ∈ NamesA}
℘(a) , {(X, JaK(X)) | X ⊆ StateA \ {⊥}} ∪ {(X,⊥) | ∃ x ∈ X.(x,⊥) ∈ JaKT}
℘(finalA) , {(X, f) | X ⊆ StateA \ {⊥} ∧ f ∈ finalA(X)} ∪ {(⊥,⊥)}

A program using the constructed data types has a deterministic path between el-
ements of℘(State), but with potential non-determinism where one branch ends at ⊥.
Just like for data refinement this construction requires data types from Definition 2 not
Definition 3 or Definition 4. Hence our completeness proof, like that in Section 3 for
ADT, is only correct for state-lifted ADT and is incorrect for operation-lifted ADT.

See Fig. 5 for an example of the use of the definition. Note thathaving restricted the
simulation relations we are able to construct simulation relations between a restricted
set of ADTs only. Although℘T(A) ⊇ ℘

T(C) (Fig. 3) we find that℘(A) 6⊇ ℘(C)
(Fig. 5). This is just what we want asA 6⊑sF C but C ⊑sF A

The ∈ relation betweenA and ℘(A) preserves the singleton failures. From the
Definition 15 it is easy to see that℘(A) ⊇ ℘(C) if and only if ℘(A) ⊑sF ℘(C).

Theorem 4 There are completeness results for singular failures semantics that are
similar to known results for data refinement. LetA andC be ADTs whereA ⊑sF C.
Then:

Similar to [1] If A =sF ℘(A) there exists a sequence of forward and backward simu-
lations fromA to C

Similar to [5] ℘(A) ⊇ ℘(C) if and only if℘(A) ⊑sF ℘(C)

15

A1
2

3 4 5 •

⊥ ⊥ ⊥

∈

a
a

b c

b c

final

final

℘(A)

{1} {2, 3} {4} {5}

⊥ ⊥

•

⊥

a b

b

c

c

final

final

℘(C)

{w} {x, y, z} {s, t} {r}

⊥ ⊥

•

⊥

∈−1

a b

b c

c

c

final

final

C
w

x s

y

z t r •

⊥ ⊥ ⊥

a

a

a

b

b c final

c

b c final

Figure 5: A ⊑∈
L−1 ℘(A) and℘(A) 6⊇ ℘(C) but℘(C) ⊇ ℘(A)

Theorem 4 provides us with a single complete rule for singleton failures semantics.
Althought our completeness proof is applicable to state-lifted ADT only, we are

not asserting that an alternative approach might not provide a completeness proof for
operation-lifted ADTs too. Constructing an intermediate ADT where all nondetermin-
ism appears in theinit operation appears a promising first step in the desigh of sucha
proof.

6 Conclusion

The known results for ADTs with guarded operations and a total correctness interpre-
tation are:

State-lifted ADT have the properties:

1. forward and backward simulation are sound [1]

2. forward and backward simulation are jointly complete [1]

3. there is a single complete refinement rule:A ⊑ C ⇔ ℘
T(A) ⊇ ℘

T(C) [4]

Operation-lifted ADT have the properties:

1. forward and backward simulation are sound [1]

16

2. ℘
T(A) is not a data type with lifted operations and forward and backward

simulation arenot jointly complete [5]

3. there is a single complete refinement rule:A ⊑ C ⇔ ℘
T(A) ⊇ ℘

T(C) [4]

The results for singleton failure semantics that we have machine checked are:

Singleton failures refinement for state-lifted ADT has the properties:

1. amended forward and backward simulation are sound

2. amended forward and backward simulation are jointly complete

3. there is an amended single complete refinement rule:A ⊑sF C ⇔ ℘(A) ⊇
℘(C)

The amendment we have made to the definition of simulation relations has been
motivated simply by considering what can be observed when anoperation is executed
(in Section 4).

References

[1] He, J., Hoare, C., Sanders, J.: Data refinement refined. ESOP 86 LNCS213(1986)
187–196

[2] Reeves, S., Streader, D.: Data refinement and singleton failures refinement are not
equivalent. Formal Asp. Comput20(3) (2008) 295–301

[3] Reeves, S., Streader, D.: Must make seconf facs a tec report. Technical re-
port, University of Waikato (2008) Computer Science Technical Report ??/2008,
http://researchcommons.waikato.ac.nz/cmspapers/??/.

[4] Derrick: A single complete refinement rule for Z. JLC: Journal of Logic and
Computation10 (2000)

[5] Boiten, E., Derrick, J.: Incompleteness of relational simulations in the blocking
paradigm. In ???? (2008)

[6] Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL — A Proof Assistant for
Higher-Order Logic. Volume 2283 of LNCS. Springer (2002)

[7] Spivey, J.M.: The Z notation: A reference manual. 2nd. edn. Prentice Hall (1992)

[8] de Roever, W.P., Engelhardt, K.: Data Refinement: Model-Oriented Proof Meth-
ods and their Comparison. Cambridge Tracts in Theoretical Computer Science 47.
Cambridge University Press (1998)

[9] Reeves, S., Streader, D.: General refinement, part one: interfaces, determinism
and special refinement. In: Refine08 - International Refinement Workshop, Turku,
Elsevier (2008) to appear.

17

