Teukolsky-Starobinsky identities for arbitrary spin
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The Teukolsky—Starobinsk;ll identities are proven for arbitrary spin s. A pair of covariant
equations are given that admit solutions in terms of Teukolsky functions for general s. The
method of proof is shown to extend to the general class of space-times considered by Torres del

Castillo [J. Math. Phys. 29, 2078 (1988)].

I. INTRODUCTION

Gravitational and electromagnetic perturbations in
Kerr geometry are known to be intimately connected to Teu-
kolsky functions.' This came about because of investigations
by Teukolsky who showed that in the Newman-Penrose for-
malism? separable solutions were possible for certain Max-
well and Weyl scalars in Kerr geometry. The resulting sep-
arable solutions are known as Teukolsky functions. In
addition to the problem of gravitational and electromagnetic
perturbations these functions reappear when the neutrino®
and Rarita-Schwinger* equations are solved in a back-
ground of Kerr geometry. These functions satisfy what are
known as the Teukolsky-Starobinsky identities. In this work
we prove these identities for any spin s. This result is estab-
lished relatively easily. One of the difficulties with the Kerr
metric is that for s> 2 these functions do not appear to come
from any covariant equation. We rectify this situation by
introducing covariant equations that admit Teukolsky func-
tions for general s as their solutions. No claim is made that
these equations have physical significance. Finally we note
that the method of proof applies to the more general class of
space-time studied by Torres del Castillo® who proved these
results for s<2.

Il. THE TEUKOLSKY-STAROBINSKY IDENTITIES

We consistently use in this article the spinor notation of
Penrose and Rindler® and the null tetrad formalism of Chan-
drasekhar.” Specifically we restrict ourselves to the Kinners-
ley null tetrad of vectors with components

19= (1/28) (P + a*,A,0,a),

n -——(1/\/5 *)(’2+a,—A0a),

The Kerr solution has the line element

ds2=( 2Mr
Po*

((r2+a)+

¥
)d2 P’Z dr* — pp* do?

24? Mriln 6) sin0 dg?

4aMr sin® @

PP
The differential operators & ,,, 4}, £, and .#} are de-
fined as

dt dg. 3)

D, =8, +iK/A+2n[(r— M)/A],
D=3, —iK/A + 2n[(r — M)/A),

(4)
L, =0s+Q+ ncot b,

Ll =03, —Q+ncot,

where
K=(P+a*)o+am and Q=aosin@+mcsch. (5)
Teukolsky functions P, and P_ in the variable r satisfy

AD,_, D! —-2Q2|s| — Dio)P_, = AP, 6

BD!_, Do +20)s| ~ Vienp_, =aP_,,
where s = 1,1,.... The first result proven is the following
theorem.

Theorem 1: If s = L,1,... then
A DF[ADT_, D+ 2(2s — D)ior]
=[AD,_, D} —2(25s— Dior|A* DF. (7
Proof: By induction on s. Noting that for s =}
A2 (A D, D) =(AD ,,, DEA2D,.  (8)

(1 If we now assume the result is true for a given s then
m® = (1/4/2p) (ia sin 6,0,1,i csc 6) AT+ g2+ 1D [A@I_ cr v Do+ 22(s+1) — Dior]
r71"=(1/\/§[)*)(—iasin 60,0,1, —icsc ), As+1/2°@2s+l[A(@l_s (r—M)/A)@0+4siar]
where =A"2G _[MDHAD_, Do+ 2(2s — 1)ior)
A= )’2 — 2Mr+ (12, p2 = I’2 + 02 0082 7] + A® 933(210,’._ (r_M)go)]
and (9
p=r+iacos@. 2) and
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[AZ, _ (i) D —22(s +4) — Dior]|A 2 Z3¢+ V2

=A2AD, _, D, —4sior)D _ N DF

=A"29 _(AD}, D _,—4dsior) N DY + dsioN*+ > D
r—AM - -%;-sﬁ)(.@{, —2s r—AM + %) — 4siar]A‘ DE + dsiohN°+' 2 DY

=A"29 _[(AD,_, D —2(25 — Dion)A” Q¥+ QRior—25— (r—M)D _ N D¥ + 4sich* D5 '].  (10)
Note that
A* D¥Qior — (r— M) D ) = Qior — (r—M)D _ A DE¥ + A(dsio D3~ ' — 25 DY)

=Qior—2s— (r—M)D _ )N D¥ + 4sioh’ D¥~ . (1)

Thus subtracting (10) from (9) and making use of (11) we have
AHV2QUAVDIA DT (1 Do+ 2(2(s +4) — 1)ior]

—[AD,_ (12 D —2A2(s +}) — DiorjAs+ 2 QL+ 1D

=AV’D _ [N DHA D _, Do+ 2(2s— Vior) —(AD,_, D} —2(2s — D)ior)A ¥]. (12)

A direct consequence of this result is that AZXP __ is a solution of the Teukolsky equation for P ;. Similarly it may be
proven that

A DE[AD, _, Db —2(2s — Dior] = [A DY _, Do+ 2(25 — Dior] &' DI, (13)

ie, A* D P_ , is a solution of the Teukolsky equation for P_,. By suitable choice of the relative normalization of the
functions we can write the following results:

A DEP_ =DP,,,
As 9(1;2:P+: =D:P_S,

=A”29_S[A(@,_S +2s—1)

(14)

where D, is some complex constant. These are the Teukolsky-Starobinsky identities known to be true fors =}, 1, 3, 2. For the
variable @ we can prove a similar result.
Theorem 2: If s = L, 1,... then

L L L L L L +2(25—1)oacos 6]

=[ZL . ZLT—22—-Noacos 0L _ L, ;L1 &, (15)
Proof: Again using induction we note that for s = }
L1 L L) =(Zn L)L (16)

Then
gl—(s+l/2)“g2—(s+l/2).“f(s+l/2)~|fs+l/2[Kr—s L, +22(s+1) —1)oacos 0 ]
=(1/\sin0)S _,F\_, L L (LT L +4s0acos ) sin O
=(INsn0).L L\ L L [L_, L, +2(2s — 1)oacos § — cot 0.7, + 20a cos 6 ]sin a7
and
[—?1—(s+1/2) $Z+1/z —2(2(s +4) — 1)oa cose]gl—(s+l/2)y2—(s+l/2) L v 1L s
=/ sin@)(L _, LI —4soacos )L _,L\_ L LA sinf
=(I\sin0).Y _ (LS _ —dsoacos0).L Ly Ly L\ sind

—4sga\sin@ & _,LH_ L L\ sinb. (18)
Now note that we can write
LY —4dsoacos@ = (L, _, + (25— 1)cot 6 — 2Q) (LT — 25 cot § + 2Q) — 4soa cos §
=%, _, Lt —2(2s—1)oacos @ —cot § L} + 2scsc? § — 2m cot B esc 6 (19)
observing the identities
L oL i Ly 1 Lpeos=c080L, Ly, 1Ly 1 Ly—(b—a+1)sinbL, L, L L, (20)
and
L oL g1 Ly Lycotf=cot0L, Ly Ly 2Ly 1 —b—a+NL, L Ly Ly (21
and noting that
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(INsin8)? _[%,_ Ly oL L (—cotbL, + 20acos b)
—(—cot@ LT+ 2s5csc?0—2mceotbcsc0).8,_, L, L, L, ]/sin

+4soaysin0 L, _ L, L, L sinb

=(1/sinb)L _[—cot0L & L L AL _ Ly L L,
+20acos0L,_ &L, L, L, —4soasinbS,_ L, L. | L,
—(—cotb.?, +2Qcot0+2scsc29—2mcotecsc9).?1_,.2’2_,---.2”5_,fs]\/sine

+4soaysin@ ., _ L, &L, L Jsinb

=(1/ysinf).L _ [ —cot 0.F _, + 25+ 20a cos § + cot 6.%, — 2Q cot 6 — 2s csc? @

+2mcotfOcscb1.?,_ L, L, L\ sinb
=0,
we have established that

"Yl—(s+1/2)$2—(s+1/2) "'g(s+1/2)—1$s+1/2[-g{-s Z, +2(2(s+£) - 1)0'00059]
- [31-—(3+1/2) g;r+1/2 —2(2(5+}) - 1)""“’050]-gl—(s+l/2)-2’2—(s+1/2) "'-S—p(s+x/2)—1f(s+1/2)

= (l/vsme)‘f“‘['Y“S‘YZﬂ"'fs_lfs(f’;_s
—Z, _, L2025~ 1)oacos )L, _, Ly _, L

and the result is proven. In this case the Teukolsky equations
are defined as

(L1, &L +2(2s—1)oacos 6)S,, = — 1S, ,,
(L _ . LT—2(02s—1)oacos §)S_, = —AS_..

— 8

(24)

Consequently Theorem 2 tells us that we can upon suitable
renormalization, find a constant C, such that

fl—sgz—s'“zs—ljss+x=C_\-S—s' (25)
Similarly one may prove the identity
LN L& &
X[Z_ LI —2(25—1)oacos 6 ]
=[ZL1_, L, +2(25s—1)oacos 6 ]

XXI—-S g;—s.'.fz—lfl (26)
from which we can write
fr—s"f;—-s'“f:-—l“YIS—S=C:S+:' (27)

These are the Teukolsky-Starobinsky identities known to be
true for s = 4,1,3,2. The question we now ask is what if any
significance do the Teukolsky functions have for general s.
Before giving a covariant equation that works for general s
let us recapitulate how things work in the case of the Rarita—
Schwinger field. The Rarita—~Schwinger equation written in
spinor notation is

VAF % =0, (28)

where Fypp. = F (5,5 . We can construct a coupled system
of equations as follows. Let

husc = Viua Fpe, 4 (29)
Then A 4p satisfies a first-order equation as follows:
A 'hABC =y 'V(AB’FBC) -
=§VAA’VAB'FBCBl +§VAA'V(BB’FC)AB'. (30)
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(22)
£ +2(2s— 1)o0a cos 6)
,,_,.Z’S]\/sine (23)

|
Using the Rarita—Schwinger equation and the symmetry in
the indices B and C we write

VY 1 Fpc® = VA4V gy Fy P + V4V 1 A
=4V 55 Fy s (31)
Consequently (30) becomes
N 'h,wc =V 'V(BB'FC)A g
= V(BB'VAA 'FC)AB' + [VAA"V(BB‘ ]FC)AB'
= [V**'Visp 1Fo)®
= - EA’B'\PABCMFMAB,
= Wpc""Fap™" (32)

The pair of equations (29), (32) when written in Newman~—
Penrose notation become

(D—p)hyyy — (8* + 37+ a)hy o= — W,F,y,  (33)
(D_zp)hllo— (6‘+27T'—a)h100=\y2F1w-, (34)
(D —3p)h1go — (6% + T — 3a)hggo = — W, Fpyy,  (35)

(6+38—7)hy, — (A + Y+ 3uwhyo= —V,Fy,,, (36)
6+B-2n)hyo— (A—y+ 2u)hyoo =V, F,,, 37
(6—B—=37 10— (A — v+ 1) hgge = — V,Fy,,., (38)
and

(D —p*)Fo” + (8 —a* — 2B+ T*)Foo" = hooyy  (39)
(8* +2a +B* — t)F,”
+ (A +2y — py* + u*)F,,\" = h,,,, (40)
2[{MD—p* +p)F " + (5 + 7* —a* + T)F"]
+ [(8* +B* —2a — ™ — 2m)F, )"
+ (A +p* —y* =2y — ) Foo] =3y, (41)
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2[(8* +B* — T —mF " + (A — y* + p* — p)Fy"']
+ [(D—P* + 2P)F110'

+ S —a*+2B8+7*+21)F,"] =3h10 42)
Considering Eqgs. (35), (38), and (39) and putting
h100= (l/ﬁ*)Hh hooo':Ho: (43)

Fooo = (1/‘/—2_,5*)(;000', Foor = (1/\/5,02)6’001',
we obtain

(31.— 1/2 21a...S1n 0) Hl + A (g3/2 - ..i*') HO
p* P
= — W,Goor's

2 21a sin 6
(20+ 2 )~ (L3~ 22520, = — WG,

p*
(90 - .._l*)Goo:' - (fT— 172 = w ?1:1 e)Gooo = 2p’H,,.

P P

(44)

These equations imply that H, satisfies the separable equa-
tion
(A@l gg/Z + ff— 172 °f3/2_'4i073)‘[{0=0 (45)

admitting solutions Hy= A~3/?P__,,,S 5/, Similarly if
Eqgs. (33), (36), and (40) are considered then putting

hio= (l/ﬁ*z)Hz’ hyn= (1/,5*3)H3,
Fyo = (1/\[2)5*3)6110" F,, = (1/\/—/3 l"Z)Gm s

we obtain

2
(—@o’ﬁ—*)Hs - (5—1/24”

(46)

2ia sin 6
)Hz = - ‘I’ano"

2
(f:;,z 21a Sin 0)H3 + A(QT 172 +,D )Hz = —¥,Gy,s
1
(f /27 a ST 9>G111’ + A(gf_ 172 — ':;)Gno' = 2P2H3-
P P
(47)
The functions H, satisfies the separable equation
AD Dot L 112 LY +4i0p)H; =0 (48)

admitting solutions H, = P_;,,S_5,,. Two solutions to Egs.
(44) and (47) can be found

(1) hooo= A—3/2P+3/2S+3/2’
1 2iasin 6\, _
000" = \/iﬁ*‘l’ ( 3/2 ;3* )A 3/2P+3/2S+3/2:
2
2 -
o == (78 ) A
2p°¥,
and
(2) hlll - P 3/2S—3/2’
—e( 7 2)
F o = ———P_3285_3/2
110 \/iﬁ*:‘\llz * 3 3
—A 21a sin 6
"y === fg/z - )P 3/2S 3/2-
V2p7p*W
(49)

In the case of each solution we have given only the nonzero
components. It is interesting to note that the spinor F,p,.
satisfies the equation
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VAC'V(AA’FBC)A' = WAMBCFAMC" (50)

However, the above choices do not satisfy the Rarita—
Schwinger equation (28). It is possible to extend these equa-
tions to a set which has solutions in terms of Teukolsky func-
tions for general s. If we consider the equations

¢V(A.A’FA'A,--~AZS) —3(2s— 3)(V(A.A'¢)FA’AZ-~A2S)
=@hy. . 4,5 (51)
VA g, = 25— 1) (s = D, *F* 4 80

where ¢ = 21 = WV 5, V15D (Ref. 8) then these equations
admit analogous solutions, viz.

(1) hoo=A"P. S,
-1

FO.A.()]' =
V20%(2s — 1) (s — )Y,
xA(@I—(—”:_—ﬁ)A”PHSH,
o*
1
Fy..on =
V2p*(2s — 1) (s — DY,
X(_gs ——‘—ZEM)A”PHSH,
o*
and
1
(2) h1-~-1=Tﬁ—;_)_2TP—sS—s,
Fl- 0 = —1
V2(E*)E(2s — D (s — DY,
p
(2s—1)
X(20- R )p s
F,. —4

BN (s — (s — DY,

X(g;‘ ~W)P-ssw (52)
P

where P S, , are separable solutions of

AD, D+ 77 &L, —2(2s—1)iop)A P, S, , =
and P_,S_
AD2 D, + %, LT+2(25—1)ip)A~P_,S_,=0.

Equation (51) is a generalization of the Rarita~-Schwinger
equation although it does not in itself have obvious physical
significance for s> 3. We also note that the method of proof
for the Teukolsky—Starobinsky identities can be successfully
used in the general context of Torres del Castillo.” Indeed we
have the following result.

Theorem 3: If the operators &, and &, are defined by

(1
g, =i+i5—+nQ—=Q—"@0Q"

ar Q o

s separable solutions of

and
J_.4q v —n n
gt ==_ = D
i 1Q+n 0 Q on

with the functions ¢ and Q polynomials such that ¢ =0
and Q0 = 0, then for all integer s

(53)
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Q' I¥(QD,_. D§— (25— 1)ig" theorem applies to all non-null orbit, type-D vacuum metrics

FUs—D@Rs—1)Q (z>] given as for example by Torres del Castillo.’

= t (1)
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APPENDIX

Here we list the value of the Teukolsky—Starobinsky constant | D, | for a number of values of s, where & = a2 + ma/o:
|D1/2l2 =4,
D, =A% — 402,
|Ds02 =A%(A + 1) — 1607 (A&® — a?),
ID,2 = A2(A + 2)2 — 80*@A(5A + 6) + 960°a’A + 1440°G* + 1440°M?,
[Ds;2]? = A2(A + 3)2(A + 4) — 160°@°A(A + 3) (54 + 8) + 480°a*A(TA + 12) + 10240%@* (A + 1)
—30720%@%° + 1152°M*(4 + 2),
|D3|2 =A2(A + )% + 6)? — 40°F*A(A + 4) (3542 4+ 2524 + 360) + 12802024 (A + 4) (74 +15)
+ 160*@*(2594 2 + 11404 + 900) — 25600*@%a*(114 + 15) + 256000%a* — 144000%&°
+ 5760°M *((34 + 10)? — 1005%&?),
ID7/2]2 =A2(A+5)2(A+8)2(A+9) — 327G A (A +5)(A+8)(TA2+ 631 + 108)
+ 2880%@*A(A + 5) (TA 2 + 654 + 120) + 2560*G* (494 % + 54942 + 17284 + 1296)
— 46080*@%a* (3142 + 1754 + 180) + 576000°a*(54 + 9) — 1474560%°%(A + 3)
+ 8847360°@*a® — 921600*M 2 (7a2A + 30a® — 15a%) + 57600* M 2(34 % + 454 2 + 2204 + 360),
ID4>=A%(A 4+ 6)2(A + 10)%(A + 12)% — 480%G*A (A + 6) (A + 10) (743 4 15442 4+ 9964 + 1680)
+ 5760°a%A(A + 6) (A + 10) (TA 2 4 784 + 168) + 960*@* (3294 * + 737243 + 554844 2 + 1562404 + 117600)
— 46080*@*a® (11542 + 15924 2 + 62164 + 5880) + 92160%a*(1914 2 + 134441 + 1764)
— 2560°%3°(32294 2 + 310104 + 63700) + 645120%*a* (1694 + 630) — 252887040%a%a*
+ 282240000%a® + 282240000°M %&* + 254016000° M *
— 115200°M %(341a°4 ? + 4242a°4 + 12740&% — 1596424 — 82324%)
+ 6300°M 2(754 % + 211243 + 215684 2 + 960004 + 161280).
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