
1

A Study of Hierarchical and Flat Classification of
Proteins

Arthur Zimek, Institut für Informatik, Ludwig-Maximilians-Universität München, Germany

Fabian Buchwald, Fakultät für Informatik, Technische Universität München, Germany

Eibe Frank, Computer Science Department, University of Waikato, New Zealand

Stefan Kramer, Fakultät für Informatik, Technische Universität München, Germany

Abstract— Automatic classification of proteins using machine
learning is an important problem that has received significant
attention in the literature. One feature of this problem is
that expert-defined hierarchies of protein classes exist and can
potentially be exploited to improve classification performance.
In this article we investigate empirically whether this is the case
for two such hierarchies. We compare multi-class classification
techniques that exploit the information in those class hierarchies
and those that do not, using logistic regression, decision trees,
bagged decision trees, and support vector machines as the
underlying base learners. In particular, we compare hierarchical
and flat variants of ensembles of nested dichotomies. The latter
have been shown to deliver strong classification performance
in multi-class settings. We present experimental results for
synthetic, fold recognition, enzyme classification, and remote
homology detection data. Our results show that exploiting the
class hierarchy improves performance on the synthetic data, but
not in the case of the protein classification problems. Based on
this we recommend that strong flat multi-class methods be used
as a baseline to establish the benefit of exploiting class hierarchies
in this area.

Index Terms— protein classification, hierarchical classification,
multi-class classification

I. INTRODUCTION

PROTEIN classification is a prominent problem in bioinfor-

matics that can be approached using standard multi-class

classification techniques from machine learning. However, in this

domain, there is additional background knowledge in the form

of expert-defined hierarchies of protein classes that can poten-

tially be exploited to improve predictive performance. In fact,

many practical multi-class classification problems are actually

hierarchical classification problems: a set of classes can often

be more appropriately understood as a set of sets of classes,

where subsets comprise classes that are more similar to each

other than to classes in other subsets. Given a hierarchy of

classes, standard machine learning approaches may find it harder

to discern similar classes than classes that are unrelated according

to the classification system. Thus it can be beneficial to apply a

recursive top-down approach to hierarchical classification: first,

discriminate the subsets of classes at the top level of the hierarchy,

and then recursively separate the classes (or sets of classes) in

those subsets.

Hierarchical problems are particularly prevalent in the domain

of biology, due to the evolutionary development of biological

objects: one often finds families of objects that share many prop-

erties with each other but not with objects of other families. This

is also true in the domain of proteins. Although they may differ

widely in their details, they may share some characteristics in their

three-dimensional structure. One of the well-established structural

classifications of proteins, SCOP [1], organizes the class hierarchy

according to various criteria, including secondary structure con-

tent (on the structural class level) and evolutionary relatedness (on

the fold and superfamily level). The task in fold recognition is then

to assign the correct fold to a protein of unknown structure based

on the known sequence of amino acids. Thus, it is essentially a

classification problem, with the classes on the second level of the

SCOP hierarchy. Another established hierarchy of classes of a

subset of proteins, the enzymes, is the enzyme nomenclature [3].

Enzymes are proteins that exhibit specific catalytic functions

(e.g., alcohol dehydrogenase and glycerol dehydrogenase, among

others). A hierarchy is given because enzymes can be classified

into subtypes. At the highest level there is the type of enzyme, for

example, oxidoreductases (EC 1). Considering this group there is

then a certain type of oxidoreductases (EC 1.1: acting on the CH-

OH group of donors), and of these there is a certain subtype with

a particular chemical reaction scheme (EC 1.1.1: with NAD or

NADP as acceptor). Another well-studied problem that is more

complex than fold recognition, remote homology detection, aims

for the classification into the correct superfamily without the help

of sequence similarity.

While the development of machine learning methods for protein

classification has made significant progress [4], [5], many ap-

proaches to fold recognition and remote homology detection have

been tested only in the binary classification setting. However, due

to the existence of expert-defined class hierarchies for proteins,

it is natural to consider hierarchical classification techniques [6],

[7], [8], [9]. Our aim here is to investigate, for several typical

protein classification datasets, whether it is indeed beneficial to

exploit this expert knowledge when applied in conjunction with

a strong multi-class classification technique. As the main tool for

our experiments we use ensembles of nested dichotomies [10], a

method for reducing multi-class problems to binary classification

task that has been shown to be very competitive with other strong

multi-class learning techniques. Nested dichotomies take class

probability estimates of binary classification models built by a

chosen base learner—we use logistic regression, C4.5 decision

trees, bagged C4.5 decision trees, and support vector machines

(SVMs) with Platt scaling [11]—and return probability estimates

for all classes as output. A crucial feature of this method is that

it can be easily adapted to make use of class hierarchies by

constraining the nested dichotomies that are used. Thus we can

perform a fair comparison of hierarchical and flat classification

that enables us to measure the benefit of using a particular

expert-defined class hierarchy. The primary aim of this paper is

to provide such a comparison. Although we obtain results that

Digital Object Indentifier 10.1109/TCBB.2008.104 1545-5963/$25.00 Â© 2008 IEEE

IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

2

are competitive with those we could find in the literature, the

development of new methods for protein classification is not the

focus of this paper. However, the findings of our comparative

study should prove useful in the development and evaluation of

such techniques.

The paper is organized as follows. Section II describes the

hierarchical and flat classification methods that we evaluated in

our experiments. Section III has experimental results for synthetic,

fold recognition, enzyme classification and remote homology

data. Section IV has a discussion of our findings. In Section V

we briefly review related work on hierarchical classification.

Section VI has some concluding remarks.

II. HIERARCHICAL VS. FLAT CLASSIFICATION

WE consider learning problems where we are given a set of

instances as input data that each exhibit a class label. The

class label defines to which group of proteins the corresponding

instance belongs. The aim is to build a classification model

using machine learning techniques that can be used to predict

the class label for a new instance (i.e. protein). With more than

two groups of proteins this is a standard multi-class classification

problem (see Figure 1 (a)). However, the interesting aspect of

protein classification is that protein classes can be organized into

a hierarchy, giving rise to a hierarchical classification problem.

A hierarchical classification problem can be viewed as a

problem involving a large number of classes, where some subsets

of classes are more closely related than others. As an example,

consider the hierarchical classification problem in Figure 1 (b).

The problem consists of three superclasses, a, b, and c. Each

of these three superclasses contains three subclasses. The given

hierarchy states that the subclasses from one superclass are

more strongly related to each other than to subclasses of other

superclasses. For instance, class 1 is related to class 2, but not

to 4. In the following, we will call the classes without subclasses

leaf classes.1 A class associated with an internal node of a class

hierarchy represents the set of all leaf classes in the tree below.

A. Basic Methods

In this study the aim is to investigate whether predictive

performance can be improved by exploiting the class hierarchy.

An alternative is to discard it and treat the problem as a standard

multi-class classification problem, based on the set-up shown in

Figure 1 (a). The problem can then be tackled with standard multi-

class algorithms.

A straightforward approach to exploiting a given class hierar-

chy is to place a standard multi-class classification model at each

internal node of the tree, built from the corresponding portion

of the training data associated with a node. In the following we

will often refer to these internal classification models as “base

classifiers”. We assume that these base classifiers deliver class

probability estimates, so that we can obtain a probability of class

membership for each of the subclasses at an internal node.

Given class probability estimators for all the internal nodes, it is

straightforward to obtain probabilities for the leaf nodes. Because

the subclasses at a particular node are disjoint and complete, the

base classifiers’ probability estimates along a path from the root to

1We chose the term “leaf class” instead of “base class” to avoid confusion
with the term “base classifiers”, as used below.

a leaf node can be multiplied to obtain class probability estimates

for that leaf class.

To be more specific, consider a class hierarchy, for instance, the

one shown in Figure 1 (b). Then we determine, for each internal

node i, the set of leaf classes in the leafs below that node, and

define the class Ci of that node as the set of its leaf classes. Let

Ci1 to Cimi
be the mi subclasses of class Ci associated with

node i. Moreover, let p(c ∈ Cij |x, c ∈ Ci) be the conditional

probability distribution for the mi classes at node i, given an

instance x, estimated by the base classifier at that node. Then the

estimated class probability for class value c is given by

p(c = C|x) =
∏

i∈ int.
nodes

mi∑

j=1

I(c ∈ Cij)p(c ∈ Cij |x, c ∈ Ci), (1)

where I is the indicator function, and the product is over all

the internal nodes of the tree. Because of the indicator function,

only those probabilities along the path to the corresponding leaf

node for c contribute to the product. For Figure 1 (b), we have,

for instance, p(c = 4|x) = p(c ∈ {4}|x, c ∈ {4, 5, 6}) × p(c ∈
{4, 5, 6}|x). Thus, no other nodes need to be visited when the

product is computed. In the following, this type of probabilistic

hierarchical classifier will be denoted by HClass.

B. Ensembles of Nested Dichotomies

In addition to the above baseline methods for flat and hi-

erarchical classification, we also tested ensembles of nested

dichotomies (ENDs) [10]. ENDs are a general-purpose method

for multi-class classification based on artificial binary hierarchical

decompositions of the original multi-class problem. An example

of an END for three classes is shown in Figure 2. ENDs have been

shown empirically to deliver performance competitive with error-

correcting output codes [12], a prominent binarization technique

for improving classification performance in multi-class settings.

ENDs are closely related to the hierarchical approach dis-

cussed above. The difference is that multiple artificial binary

hierarchies—called “nested dichotomies”—are used instead of an

expert-defined n-ary one. This ensemble of nested dichotomies is

used to form predictions.

Although ENDs are based on artificial hierarchical structures,

they are classified as flat classifiers in the context of this paper

because they do not make use of an expert-defined hierarchy.

However, we can constrain the construction of the binary hier-

archies to be consistent with an expert-defined one, by ensuring

that class-subclass relationships from the original hierarchy are

maintained in the binary hierarchy. This yields a hierarchical

classification method based on ENDs and provides us with a

mechanism for testing the benefit of using a given expert-defined

hierarchy for model building: we can simply compare the predic-

tive performance of ensembles of unconstrained and constrained

nested dichotomies (ENDs and ECNDs respectively).

Figure 1 (c) shows a system of nested dichotomies that is

consistent with the n-ary hierarchy from Figure 1 (b). We learn

an ensemble of these trees for prediction because the given tree

is not the only possible binarization: the original n-ary class

hierarchy can be represented by other binary trees in a valid

manner. Hence we construct an ensemble model with a certain

user-specified number of these trees. At prediction time, class

probability estimates for a particular class are obtained from the

IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

3

Fig. 1. Example of (a) a flat multi-class classification problem, (b) a class hierarchy exhibiting three superclasses a, b, and c, with three subclasses each,
and (c) a valid binarization of the n-ary class hierarchy from (b), where multi-class problems have been replaced by two-class problems. This is one possible
ensemble member for an ensemble of constrained nested dichotomies (ECNDs) for this hypothetical classification problem.

Fig. 2. Example of an ensemble of nested dichotomies (END) for three classes a, b, and c. The first ensemble member contains two probabilistic binary
classifiers, one for {a} vs. {b, c}, and one for {b} vs. {c}.

different trees in the ensemble according to Equation 1 and then

simply averaged.

As there is no a priori reason to prefer one particular bina-

rization, we consider them all to be equally likely. However,

although constraining the set of trees based on a given hierarchy

reduces the number of possible binarizations—from 2,027,025 to

81 in the above example—it is not possible to consider all of

them. The approach we use in this study is to choose randomly

among the possible binarizations with uniform probability. This

approach has been shown to work well on standard multi-class

classification problems from the UCI repository [10]. In that case,

a relatively small number of randomly chosen ensemble members,

namely 10 to 20, was found to be sufficient for close-to-optimum

performance.

In our experiments, we compare standard unconstrained ENDs

and ECNDs. We also consider a third approach, where we use

the standard hierarchical classification approach from the previous

subsection and apply unconstrained ENDs at each internal node

of the n-ary tree. We will refer to this latter approach, where

ensemble construction and model averaging is performed inside

the expert-defined hierarchy, as hierarchies of ensembles of nested

dichotomies (HENDs). It provides us with another method of

evaluating the benefit of a given expert-defined hierarchy. An

overview of the learning schemes compared in this study is given

in Table I.

III. EXPERIMENTS

IN this section we describe experimental results obtained with

the above flat and hierarchical classification methods. The first

part focuses on fold recognition and enzyme classification, the

second part on remote homology detection.

A. Fold Recognition and Enzyme Classification

First, we present the results for fold recognition and en-

zyme classification, using logistic regression, decision trees, and

bagging as the base learners. In addition to the two protein

classification datasets, we test the approaches on synthetic data to

test hierarchical and flat classifiers under perfect conditions where

the class hierarchy is reflected in the relative distribution of the

classes in the feature space.

1) Datasets:
a) Synthetic Data: The synthetic data was created according

to a predefined hierarchy of classes. This hierarchy consists

of four levels. Each inner node branches into four subclasses,

leading to 256 classes at the leaves. Each class is represented

IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

4

TABLE I

SUMMARY OF DIFFERENT FLAT MULTI-CLASS AND HIERARCHICAL CLASSIFICATION SCHEMES.

Short-hand Hierarchy Full Name

Used?

Multi No Multi-class classifier

Summary

Native multi-class versions of decision trees and logistic regression, and pairwise coupling with Platt scaling

for support vector machines

HClass Yes Hierarchical classifier

Summary

Probabilistic hierarchical classifier, where probabilistic multi-class classifiers reside in each internal node of the given hierarchy

END No Ensembles of nested hierarchies

Summary

Multiple random binary class decompositions of a multi-class problem

ECND Yes Ensembles of constrained nested dichotomies

Summary

Multiple random binary class decompositions of a multi-class hierarchy, i.e., decompositions that respect the order of the classes

in the original hierarchy

HEND Yes Hierarchy of ensembles of nested dichotomies

Summary

One hierarchical classifier with ENDs in the internal nodes

by 40 instances, resulting in 10, 240 instances in total. The

instances are described by 40 numeric features. For each level

of the hierarchy, one of these features is distributed according to

Gaussian distributions with different means, with one Gaussian

for each class. Additionally, there are nine other features per level

that are governed by the same distribution with a probability

of 0.8; but their remaining feature values are scattered across

the complete range of possible values, [0, 1]. Thus, we have 40

features, but only four of them reflect the true class distribution

completely.

b) Ding & Dubchak - Fold Recognition: The second dataset

we use is the fold recognition dataset provided by Ding and

Dubchak [6], which is based on SCOP [1] (see http://www.
nersc.gov/˜cding/protein). It consists of a training set

of 320 proteins and a test set of 385 proteins. For the training

set, Ding and Dubchak selected 27 folds which have at least

seven proteins in the database. These 27 folds represent the

major structural classes α, β, α/β, and α + β. The classification

task is to predict the fold of a protein (level two of SCOP).

For an independent test set, Ding and Dubchak selected 385

representatives from the PDB-40D [13]. This set contains the

SCOP sequences that exhibit less than 40% pairwise sequence

identity. The test sequences represent the same 27 folds as

those in the training set. Proteins were excluded if they had a

sequence identity of greater than 35% with any of the proteins

in the training set. Note that 35% is still relatively high for

fold recognition. Hence the test set contains proteins homologous

to proteins in the training set [14], making it an easier target

for alignment-based methods than for machine learning methods.

Also note that the SCOP classification provided by Ding and

Dubchak for their dataset is partially obsolete. Nevertheless, we

used this data as it enables a comparison with other machine

learning methods and is still used for that purpose [15], [16].

We also used the features introduced by Dubchak et al. [17] to

represent protein domains. In total, the proteins are described by

126 features. This feature set is widely used by other machine

learning approaches and gives remarkably good results [18], [19],

[20], [7].

c) BRENDA - Enzyme Classes: Our third dataset con-

tains 10, 253 enzymes from the BRENDA database (http:
//www.brenda.uni-koeln.de), representing the ratios of

the enzymatic main classes (as they are commonly estimated)

in this subset. The representation is more abstract than in our

second dataset: we only use the distribution of amino acids (the

percentage of each of the 20 amino acids in the complete chain),

and the percentages of three groups of amino acids (hydrophobic,

hydrophilic, and neutral) [21], [22], since the distribution of

hydrophilic and hydrophobic amino acids is characteristic for the

3D structure and the cell compartment. Thus, for this data we

have a total of 26 features [23]. As class hierarchy we utilized

the first three levels of the enzyme hierarchy. The enzyme classes

at EC level 3 are the leaf classes, levels 2 and 1 are used as

super-classes.2 We selected only those classes that contained at

least eight instances. The resulting dataset contains 115 different

classes.

2) Methods: To perform the experiments we used the WEKA

machine learning workbench [24], enhanced by the hierarchical

classification methods discussed above. Ten ensemble members

where used in each method based on ENDs. For the experiments

in this section, we used logistic regression, unpruned C4.5 de-

cision trees and bagged unpruned C4.5 decision trees as stand-

alone classifiers and as base learners for the other methods. For

bagging, we used 10 iterations. In addition to the two groups

of methods discussed earlier—one that does not use the class

2Note that although the suffixes of the third level indicate that classes are
related (e.g., 1.1.1, 1.2.1, ...), the information from the first two levels (e.g.,
1.1, 1.2, ...) is dominant. Therefore, the enzyme classification is in fact a tree
and not a directed acyclic graph (DAG).

IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

5

hierarchy at all and one that does—we also introduce a third

group, namely one based on using an artificial class hierarchy

that is constructed as adversely as possible with respect to the

original hierarchy. In this adverse hierarchy, direct siblings exhibit

the greatest possible distance in the original hierarchy. Details

of the construction method are explained in the appendix of the

paper.

We use two evaluation metrics: plain classification accuracy

and misclassification cost. Both were estimated using stratified

ten-fold cross-validation in the case of the first and third dataset,

where no explicit train/test split was given. A symmetric cost

matrix was defined based on the hierarchy of classes to compute

the misclassification cost, giving higher costs to errors where the

incorrect class is far away from the true class in the hierarchy.

More specifically, the misclassification cost for a pair of classes,

yi and yj , was computed as the minimum number of edges

between the leaves representing yi and yj in the class hierarchy,

and the node representing their smallest common superclass.

Considering the hierarchy depicted in Figure 1 (b), the misclassi-

fication cost for confusing classes 1 and 2 would be 1, for 1 and

4 it would be 2.

3) Results: The results of our experiments are summarized in

Table II. The first two columns contain the results for methods

that do not take the class hierarchy into account: the leaf classes

are used to define a standard multi-class problem. The first

column has results for the native multi-class methods (Multi),

i.e. plain logistic regression, C4.5 decision trees and bagged C4.5

decision trees. The second columns shows results for ENDs,

using the three different techniques as base classifiers. In the next

three columns, results for hierarchical classification can be found.

The first of these columns has results for the basic hierarchical

approach, using the above three native multi-class classifiers in

the internal nodes (HClass), and the next two columns have

results for the two hierarchical variants of ENDs (ECNDs and

HENDs). The last three columns contain the results of the same

hierarchical methods applied to adversely constructed hierarchies.

Note that, due to the large number of classes in the first and

third dataset, logistic regression failed to terminate in a reasonable

amount of time.

The table has results for plain classification accuracy as well as

the average misclassification cost across all test instances. Cost-

sensitive prediction was employed to generate values for the latter

statistic: instead of predicting the class with maximum probability,

this approach predicts the class with minimum expected mis-

classification cost [24]. Because all the learning schemes we use

produce class probability estimates, we can compute the expected

misclassification cost for each prediction based on these estimated

probabilities, and hence the class with minimum expected cost.

In Table II, we can observe several tendencies: first, hierarchical

classification methods outperform ENDs only on the synthetic

data, regardless of whether we consider classification accuracy

or misclassification cost as the evaluation metric. For all the

base classifiers used, the performance of ENDs on the fold

recognition and enzyme classification problems is consistently

better than the performance of any of the hierarchical classifiers.

The use of a given hierarchy helps only on the synthetic data,

where feature space and class hierarchy were set up to match

perfectly. This finding will be discussed in more detail below.

Logistic regression models are consistently outperformed by

unpruned C4.5 decision trees, which are in turn consistently

TABLE III

COMPARISON OF PREDICTION ACCURACY FOR SEVERAL MACHINE

LEARNING APPROACHES TO FOLD RECOGNITION ON THE DATA OF DING

AND DUBCHAK. THE RESULTS ARE TAKEN FROM DING AND DUBCHAK

[6], CHUNG et al. [19], HUANG et al. [20], CHINNASAMY et al. [18],

OKUN [16], AND SHEN AND CHOU [15]. THE RESULTS BY SHEN AND

CHOU WERE OBTAINED ON A DIFFERENT FEATURE SET.

Approach accuracy

Ding and Dubchak
NN (OvO) 41.8
SVM (OvO) 45.2
SVM (uOvO) 51.1
SVM (AvA) 56.0

Chung et al.
RBFN 49.4
Hierarchical Structure (MLP) 44.7
Hierarchical Structure (RBFN) 56.4
Hierarchical Structure (GRNN) 45.2
Hierarchical Structure (SVM) 53.8

Huang et al. 56.4
Chinnasamy et al. 58.2
Okun (HKNN) 57.4
Shen & Chou 62.1
ENDs (Log.R.) 53.0
ENDs (C4.5) 56.1
ENDs (Bagged C4.5) 60.5

outperformed by bagged C4.5 trees, and the use of adverse hi-

erarchies harms performance in most cases. However, the impact

of using the adverse hierarchy instead of the correct one is quite

small on the enzyme classification problem, suggesting that the

expert-defined hierarchy does not correspond well to the distri-

bution of the data. Among the three hierarchical classification

methods, the use of ENDs in the internal nodes of a class

hierarchy (HENDs) is the best option over a wide range of

settings.

In Table III, we compare our results for the Ding and Dubchak

data with results previously published in the literature. The

approaches by Chung et al. [19], Huang et al. [20], Chinnasamy

et al. [18], and Okun [16] employ the same representation and

test protocol that we adopted from Ding and Dubchak [6]. Shen

and Chou [15] used the same test protocol, but with a different

representation.3 As can be seen in the table, the END results, in

particular with bagged decision trees as base classifiers, are as

good as the best results so far.

B. Remote Homology Detection

In a second batch of experiments on the remote homology

detection data obtained from Rangwala and Karypis [9], we

again used variants of ENDs as an instrument to investigate

hierarchical and non-hierarchical classification of proteins, in this

case using SVMs as base models. The sf95 dataset, introduced

by Ie et al. [25], uses the remote homology detection framework

of Jaakola et al. [26], but applies a high cut-off for sequence

similarity, namely 95%. As a consequence, the dataset should

be expected to contain examples that are nearly “duplicates”.

Therefore, we also tested the methods on the sf40 dataset from

Rangwala and Karypis, where the cut-off was set to 40%. To

3The results from Marsolo et al. [7] are not comparable because both
a different representation and a different test protocol was used. However,
the hierarchical classification method proposed by the authors is similar to
HClass and HENDs.

IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

6

TABLE II

EXPERIMENTAL RESULTS ON THREE DATASETS.

Class. Multi ENDs HClass ECNDs HENDs HClass ECNDs HENDs

adv adv adv

synthetic data

accuracy Log.R. — 32.9 59.3 61.5 63.4 4.8 11.5 11.4

avg cost Log.R. — 1.28 0.52 0.57 0.54 3.51 3.45 3.45

accuracy C4.5 81.4 87.0 88.3 89.4 89.4 67.7 76.9 79.4

avg cost C4.5 0.47 0.32 0.23 0.20 0.20 1.16 0.91 0.87

accuracy Bagged C4.5 86.4 90.0 90.6 91.6 91.7 84.2 87.0 87.1

avg cost Bagged C4.5 0.34 0.25 0.18 0.15 0.15 0.57 0.61 0.60

Ding&Dubchak

accuracy Log.R. 42.6 53.0 40.3 47.3 51.2 34.8 41.3 38.7

avg cost Log.R. 0.93 0.72 0.93 0.83 0.78 1.18 1.06 1.10

accuracy C4.5 38.2 56.1 38.7 52.7 52.7 44.4 46.5 48.6

avg cost C4.5 0.89 0.64 0.87 0.68 0.68 1.01 0.99 0.92

accuracy Bagged C4.5 53.2 60.5 51.4 55.6 58.2 47.8 55.8 54.8

avg cost Bagged C4.5 0.65 0.58 0.72 0.64 0.61 0.90 0.84 0.88

BRENDA

accuracy Log.R. — 51.2 42.2 46.6 47.0 39.2 42.5 42.6

avg cost Log.R. — 1.32 1.62 1.61 1.59 1.80 1.71 1.70

accuracy C4.5 77.9 85.4 77.0 84.2 84.5 77.4 83.9 84.6

avg cost C4.5 0.59 0.39 0.60 0.40 0.40 0.61 0.43 0.42

accuracy Bagged C4.5 85.0 87.0 84.1 86.0 85.8 83.8 85.8 85.8

avg cost Bagged C4.5 0.40 0.35 0.41 0.36 0.36 0.44 0.38 0.38

make the comparison as precise as possible, we used the same

test protocol as Rangwala and Karypis, i.e. the same training and

test sets and the same kernel function for the SVMs.

More specifically, we used SVMs with the SW-PSSM ker-

nel [27], which have been shown to work well on this task before.

To this end we extended the WEKA workbench to enable import

of precomputed kernel matrices.4 To obtain probability estimates

from the SVMs, Platt scaling [11] was performed by fitting

logistic models to their output based on internal 10-fold cross-

validation. Pairwise coupling [28] was applied to obtain multi-

class probability estimates, which involves building an SVM for

each pair of classes and post-processing the probability estimates

obtained from each of these classifiers. For the results presented

here, the complexity parameter C for the SVMs was left at

the value one, the default in the WEKA implementation of the

sequential minimization method [29] for fitting SVMs. As before,

we used 10 ensemble members in each variant of ENDs that we

applied.

Table IV shows the results obtained. The first column has

results for multi-class SVM-based classification using pairwise

coupling. The second column has results for standard uncon-

strained ENDs. The table also has results for ECNDs and

HENDs, as well HClass, in each case used in conjunction with

SVMs to solve the learning problems at the internal nodes of the

hierarchies. For each classifier, we also report the average cost

obtained using cost-sensitive prediction based on the minimum

expected cost approach. Cost matrices were constructed as de-

scribed in the previous subsection to reflect the given hierarchy in

the cost structure. For the hierarchical methods, we report results

4We are grateful to H. Rangwala for providing us with the SW-PSSM
matrices.

for two types of hierarchies, as in [27]: (a) protein classes and

folds, and (b) folds only.

The results shown in Table IV largely confirm the observations

made for the protein classification datasets investigated in the

previous section. There is little, if any, benefit in exploiting

the expert-defined hierarchies. This can be seen by compar-

ing HClass to Multi, and by comparing ENDs to ECNDs

and HENDs. Considering accuracy, there is only one win for

HClass vs Multi, and there are no wins for the hierarchical

variants of ENDs vs plain ENDs. Considering the cost-based

scenario the situation is similar: Multi always achieves lower

costs than HClass. ECNDs and HENDs achieve lower cost

than ENDs on the sf95 data when the fold-based hierarchy is

used, but the outcome is reversed on the sf40 data.

In almost all cases an adversely constructed hierarchy produces

worse results than an expert-defined one; the exception is the

case of HENDs on sf95 when used with hierarchies based on

both protein classes and folds. Considering the expert-defined

hierarchy, we can also see that the performance is always worse

when using classes and folds, rather than using folds only.

Moreover, the results show that using methods based on ENDs

almost always produce a better outcome than pairwise coupling.

Considering accuracy, plain ENDs produce the best results

and Table V compares their performance with results from the

literature [9], [25] that are also based on 0/1 loss.5 We observe

that our estimates are comparable to results that have previously

been obtained on this data. It is interesting to see that the SVM-

Struct-based results do not show an advantage for hierarchy-based

approaches either.

5We compare to the “Scale & Shift” variants from [9] because they appear
closely related to the scaling technique we apply.

IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

7

TABLE V

COMPARISON OF ERROR RATE FOR SEVERAL MACHINE LEARNING

APPROACHES TO REMOTE HOMOLOGY DETECTION ON THE DATA FROM

RANGWALA AND KARYPIS.

Hierarchy sf40 sf95
Ranking Perceptron [25] None - 21.8
SVM-Struct [25] None - 20.7
SVM-Struct [25] Fold - 20.4
MaxClassifier [9] None 21.0 14.7
“Direct K-way Class.” [9] None 20.5 13.5
Ranking Perceptron Sc. & Sh. [9] None 10.9 13.2
SVM-Struct Scale & Shift [9] None 13.4 12.4
SVM-Struct Scale & Shift [9] Fold 14.7 12.4
SVM-Struct Scale & Shift [9] Class + Fold 13.4 11.2
ENDs with SVMs and Platt Scaling None 13.9 15.6

When interpreting any of these results it is instructive to

consider confidence intervals for the estimates. This is important

because the test sets for sf40 and sf95 are both very limited in

size. We calculated 95% confidence intervals for the error rate

of ENDs on the two datasets. For the sf95 data, with a test set

of 346 instances, we obtained a confidence interval of [12.17%,

19.81%] given the observed error rate of 15.61%. For the sf40

data, with a test set of 238 instances, the interval is [10.05%,

18.84%] given the observed error rate of 13.87%. Intervals of

similar size can be obtained based on the other results in Table

V. Considering the substantial overlap in the intervals obtained in

this fashion, it is not clear whether any of the observed differences

actually correspond to genuine differences in performance.

IV. DISCUSSION

OUR results for the artificial data show that recursive hi-

erarchical classification can indeed improve classification

performance, even if an ensemble-based technique is used as

the base learner. However, it appears that strong multi-class

techniques like ENDs eliminate the benefit of using the class

hierarchy on the real-world datasets considered. Considering

ensemble methods like ENDs, there are two possible reasons for

this result. The first is that the restrictive effect of the hierarchy

increases the similarity of the ensemble members and the resulting

increased correlation of errors may outweigh the benefits of

building potentially more accurate individual ensemble members.

The second reason, which is not just applicable to ensemble

methods, is that there is an interaction between the hierarchy and

the data representation. If the hierarchy is meaningful, but not

reflected in the feature space that is employed, it cannot enhance

classification quality. Considering this point it is worthwhile

to note that the hierarchies for proteins are “artificial” to a

certain degree. For example, in SCOP, folds may or may not

have inherited relations that are reflected in the sequence. Also,

enzyme classes categorize functions of proteins, but the same

function is often acquired by proteins of different ancestry. Thus,

although similar function must somehow relate to similarities

among proteins, one functional class, not to mention super-class,

may contain proteins that differ considerably despite the fact

that some subsets exhibit certain small similarities (like active

sites). Although the features used in our experiments—as any

feature space known for the representation of protein sequences—

may reflect overall similarity to some degree, they may not

reflect the relevant patterns specific for certain (super-)classes.

However, if the hierarchy is adequate for representing overall

class similarity when expressed in the feature space (as in the

synthetic dataset), the classification performance should at least

not deteriorate. Thus, the relative performance of hierarchical

and flat classification may indicate whether a feature space is

appropriate for a certain class hierarchy and vice versa. Since

the choice of an adequate feature representation is rarely obvious

in practice, this result suggests that strong multi-class methods

should be tested as baseline methods when class hierarchies are

used in protein classification.

V. RELATED WORK

THERE is a significant amount of work on hierarchical

classification in machine learning, particularly in the area

of document classification. We will review some of the relevant

literature in the following. Kiritchenko [30] has an excellent,

comprehensive, review of work in this area.

Koller and Sahami [31] present results for recursive hierarchical

classification with “hard” classifications at the internal nodes.

Bayesian classifiers are built for these nodes, and feature selection

is performed individually for each node. Increased accuracy

compared to a flat classifier is observed for those Bayesian

classifiers that admit modeling dependencies between features,

and this is attributed to the localized feature selection. Note that

decision trees and bagged decision trees perform feature selection

implicitly.

Greiner et al. [32] also use recursive hierarchical classifica-

tion with hard classifications at the internal nodes and present

preliminary results on a text classification problem. They use

pairwise linear classification and a simple probabilistic classifier

as the base learners. They do not observe improved performance

when using the true hierarchy compared to the corresponding

flat classifier or a “bogus” hierarchy. However, they do observe

a small improvement in performance when using the hierarchy

only at training time to smooth the estimates in the probabilistic

classification model. Similarly, McCallum et al. [33] find that

hierarchical smoothing works well when using naive Bayes on

text classification problems.

Ng et al. [34] tackle a hierarchical text categorization problem

by assembling a set of linear classifiers into a hierarchy, but the

hierarchy is not exploited when training the linear classifiers.

Ruiz and Srinivasan [35] extend this approach by using multilayer

perceptrons. They observed improved performance compared to a

flat classifier. Weigend et al. [36] also use multilayer perceptrons

but exploit the hierarchy at training time, and combine predic-

tions probabilistically, as in this paper. They observe improved

performance on a text categorization problem compared to a

corresponding flat neural network.

Dumais and Chen [37] use a hierarchical classifier for web

content, using support vector machines at the internal nodes,

and evaluate both hard classification as well as probabilistic

combination. Both methods perform equally well and result in

small improvements on flat classification. A similar approach is

used by Sun et al. [38]. D’Alessio et al. [39] use heuristic linear

classifiers at the internal nodes and a hierarchical feature selection

scheme. They observe improved performance compared to a flat

classifier.

Chakrabati et al. [40] build a hierarchical collection of

naive Bayes classifiers and combine them probabilistically. This

method is used in conjunction with hierarchical feature selection.

They conclude that the “hierarchy enhances accuracy in modest

IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

8

TABLE IV

EXPERIMENTAL RESULTS ON REMOTE HOMOLOGY DETECTION DATA.

Approach Multi ENDs ECNDs ECNDs HENDs HENDs HClass HClass

Hierarchy None None Class + Fold Fold Class + Fold Fold Class + Fold Fold

sf40

accuracy 84.45 86.13 83.19 84.03 81.93 82.77 81.93 83.19

avg cost 0.31 0.28 0.35 0.30 0.38 0.32 0.38 0.32

sf40 adv.

accuracy - - 74.79 81.51 74.37 81.51 72.27 80.67

avg cost - - 0.52 0.40 0.58 0.39 0.63 0.40

sf95

accuracy 78.90 84.39 79.77 82.95 78.90 83.53 78.61 82.08

avg cost 0.44 0.34 0.44 0.32 0.46 0.31 0.45 0.35

sf95 adv.

accuracy - - 78.03 82.08 79.77 80.35 76.01 74.86

avg cost - - 0.47 0.38 0.42 0.39 0.56 0.51

amounts, but greatly enhances speed”. Larkey [41] investigates

hierarchical classification of patents using naive Bayes and the

k-nearest-neighbor classifier, but found no improvement on flat

classification.

Chung et al. [19] use a hierarchical approach for the classifi-

cation of proteins, similar to the basic method we use, but with

“hard” classifications at the internal nodes instead of probabilistic

assignments. We compared our results to their best results in the

previous section (see Table III). They considered four different

base classifiers (SVMs and three types of neural networks) and

obtained improved accuracy in three cases and a degradation in

one case when using a hierarchical approach instead of a flat one.

Recently, several authors have investigated dedicated algo-

rithms for learning large margin classifiers for hierarchical prob-

lems. Cai and Hofmann [42] find that their generalized algorithm

for training support vector machines improves on a flat multi-class

support vector machine when evaluated on a patent categorization

problem. Dekel et al. [43] present online and batch algorithms

for learning hierarchical classifiers and show that they improve

on “flattened” versions of these algorithms when applied to a text

categorization dataset and a phoneme recognition problem. Rousu

et al. [44] propose an algorithm for learning a maximum margin

Markov network and show that it improves on a flat support vector

machine on two text categorization problems.

Recent work on the hierarchical classification of proteins is

based on the application of margin-based meta-learning schemes

that are used to combine the predictions of one-versus-rest binary

classifiers. Melvin et al. [8] compare this type of technique to

BLAST-based classification and standard one-vs-all classification

and a calibrated version thereof. Rangwala and Karypis [9]

investigate a very similar scheme but consider information from

above and below the target level, as well as the target level

itself. They compare to one-vs-all classification and native multi-

class classification and observe that, when considering plain and

balanced classification error, “the use of hierarchical information

leads to some improvements” on one of the four datasets they

consider, which corresponds to a fold recognition problem.

A “multi-tiered” approach similar to HClass has also been

used to test various feature subsets and native multi-class methods

for hierarchical classification of proteins [7]. Different from a

predecessor paper by a similar group of authors [6], this work

does not consider methods for the reduction of multi-class to

binary classification problems.

VI. CONCLUSION

IN this paper we have studied the relative performance of

hierarchical and flat machine learning schemes for the clas-

sification of proteins based on well-known expert-defined hier-

archies. Our experiments were designed to evaluate the impact

on classification performance when using this additional domain

knowledge. As the main instrument for measuring the effect

of hierarchical information we have used hierarchical and flat

versions of ensembles of nested dichotomies, a technique for

solving multi-class classification problems by binarization. We

evaluated the performance of these methods on real-world protein

classification data sets, as well as an artificial dataset where we

could ensure that the class hierarchy is actually reflected in the

data. We presented results based on (a) using no class hierarchy,

(b) using the expert-defined hierarchy for the dataset at hand, and

(c) using a class hierarchy that has been constructed adversely to

the commonly accepted hierarchy.

In general, one would expect that the learning task becomes

easier for a hierarchical classification scheme if the structure of

the class hierarchy is reflected by the similarity of the instances

from the various classes in feature space. An appropriate class

hierarchy can guide the learning algorithm to a good solution.

Vice versa, an arbitrary structure of classes that is not related to

the similarity of instances can increase the complexity of the clas-

sification problem. This also applies to the hierarchical variants of

ensemble classifiers: if the hierarchy is not sufficiently reflected in

feature space there is little to be gained from exploiting it. In the

case of ensemble classifiers there is the additional problem that

constraining the set of possible ensemble members may simply

result in a higher correlation of errors they make, thus degrading

classification performance.

In our experiments we found that hierarchical classification

improved classification performance on the artificial dataset con-

sidered, but provided no clear benefit on the real-world protein

classification datasets. In particular, ensembles of unconstrained

nested dichotomies outperformed their hierarchical classification

variants in almost all cases, regardless of the base classifier used,

and delivered the best performance overall. Similar conclusions

IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

9

can be drawn from our experiments with remote homology

detection. Based on our observations we recommend that strong

multi-class machine learning algorithms should be used as base-

line methods when investigating the benefit of expert-defined

hierarchies.

REFERENCES

[1] A. G. Murzin, S. E. Brenner, T. Hubbard, and C. Chothia, “SCOP
a structural classification of proteins database for the investigation of
sequences and structures,” J. Mol. Biol., vol. 247, pp. 536–40, 1995.

[2] C. A. Orengo, A. Michie, S. Jones, D. T. Jones, M. B. Swindells, and
J. M. Thornton, “CATH – a hierarchic classification of protein domain
structures,” Structure, vol. 5, no. 8, pp. 1093–108, 1997.

[3] Nomenclature Committee of the Int. Union of Biochemistry and Molec-
ular Biology), Enzyme Nomenclature. Academic Press, 1992.

[4] H. Saigo, J.-P. Vert, N. Ueda, and T. Akutsu, “Protein homology
detection using string alignment kernels,” Bioinformatics, vol. 20, no. 11,
pp. 1682–89, 2004.

[5] C. Leslie, E. Eskin, A. Cohen, J. Weston, and W. Noble, “Mismatch
string kernels for discriminative protein classification,” Bioinformatics,
vol. 20, no. 4, pp. 467–76, 2004.

[6] C. H. Q. Ding and I. Dubchak, “Multi-class protein fold recognition
using support vector machines and neural networks,” Bioinformatics,
vol. 17, no. 4, pp. 349–58, 2001.

[7] K. Marsolo, S. Parthasarathy, and C. Ding, “A multi-level approach to
scop fold recognition,” in Proc. 5th IEEE Symposium on Bioinformatics
and Bioengineering. IEEE Computer Society, 2005, pp. 57–64.

[8] I. Melvin, E. Ie, J. Weston, W. S. Noble, and C. Leslie, “Multi-
class protein classification using adaptive codes,” Journal of Machine
Learning Research, vol. 8, pp. 1557–81, 2007.

[9] H. Rangwala and G. Karypis, “Building multiclass classifiers for remote
homology detection and fold recognition.” BMC Bioinformatics, vol. 7,
no. 1, p. 455, 2006.

[10] E. Frank and S. Kramer, “Ensembles of nested dichotomies for multi-
class problems,” in Proc. Twenty-first Int. Conf. on Machine Learning.
ACM Press, 2004, pp. 84–95.

[11] J. C. Platt, Advances in Large Margin Classifiers. MIT Press, 1999,
ch. Probabilistic outputs for support vector machines and comparison to
regularized likelihood methods.

[12] T. G. Dietterich and G. Bakiri, “Solving multiclass learning problems
via error-correcting output codes,” Journal of Artificial Intelligence
Research, vol. 2, pp. 263–86, 1995.

[13] L. Lo Conte, B. Ailey, T. J. P. Hubbard, S. E. Brenner, A. G. Murzin,
and C. Chothia, “SCOP: a structural classification of proteins database,”
Nucleic Acids Research, vol. 28, pp. 257–9, 2000.

[14] E. Bindewald, A. Cestaro, J. Hesser, M. Heiler, and S. C. E. Tosatto,
“MANIFOLD: protein fold recognition based on secondary structure,
sequence similarity and enzyme classification,” Protein Engineering,
vol. 16, no. 11, pp. 785–9, 2003.

[15] H. Shen and K. Chou, “Ensemble classifier for protein fold pattern
recognition,” Bioinformatics, vol. 22, no. 14, pp. 1717–1722, 2006.

[16] O. Okun, “K-local hyperplane distance nearest-neighbor algorithm and
protein fold recognition,” Pattern Recognition and Image Analysis,
vol. 16, no. 1, pp. 19–22, 2006.

[17] I. Dubchak, I. Muchnik, C. Mayor, I. Dralyuk, and S.-H. Kim, “Recog-
nition of a protein fold in the context of the SCOP classification,”
PROTEINS: Structure, Function, and Genetics, vol. 35, pp. 401–7, 1999.

[18] A. Chinnasamy, W. K. Sung, and A. Mittal, “Protein structure and fold
prediction using tree-augmented naı̈ve Bayesian classifier,” in Proc. Pac.
Symp. Biocomputing. World Scientific, 2004, pp. 387–98.

[19] I.-F. Chung, C.-D. Huang, Y.-H. Shen, and C.-T. Lin, “Recognition of
structure classification of protein folding by NN and SVM hierarchical
learning architecture,” in ICANN/ICONIP. Springer, 2003, pp. 1159–67.

[20] C.-D. Huang, I.-F. Chung, N. R. Pal, and C.-T. Lin, “Machine learning
for multi-class protein fold classification based on neural networks with
feature gating,” in ICANN/ICONIP. Springer, 2003, pp. 1168–75.

[21] D. Voet and J. G. Voet, Biochemistry. John Wiley, 2004.
[22] H. Lodish, A. Berk, and P. Matsudaira, Molecular Cell Biology. W. H.

Freeman, 2003.
[23] B. Wägele, “Feature Transformationen für die Funktionsvorhersage auf

Proteinen mittels Analyse der 3D Struktur,” Master’s thesis, Ludwig-
Maximilians-Universität München/TU München, 2005.

[24] I. H. Witten and E. Frank, Data Mining: Practical Machine Learning
Tools and Techniques (2nd Edition). Morgan Kaufman, 2005.

[25] E. Ie, J. Weston, W. Noble, and C. Leslie, “Multi-class protein fold
recognition using adaptive codes,” in Proc. of the 22nd Int. Conf. on
Machine learning (ICML 2005), L. D. Raedt and S. Wrobel, Eds. ACM
Press, 2005, pp. 329–36.

[26] D. H. T. Jaakkola, M. Diekhans, “A discriminative framework for de-
tecting remote protein homologies,” Journal of Computational Biology,
vol. 7, no. 1-2, pp. 95–114, 2000.

[27] H. Rangwala and G. Karypis, “Profile based direct kernels for remote
homology detection and fold recognition,” Bioinformatics, vol. 21,
no. 23, pp. 4239–4247, 2005.

[28] T. Hastie and R. Tibshirani, “Classification by pairwise coupling,” in
Advances in Neural Information Processing Systems, vol. 10. The MIT
Press, 1998.

[29] J. C. Platt, Fast training of support vector machines using sequential
minimal optimization. MIT Press, 1999, pp. 185–208.

[30] S. Kiritchenko, “Hierarchical text categorization and its application to
bioinformatics,” Ph.D. dissertation, School of Information Technology
and Engineering, University of Ottawa, 2005.

[31] D. Koller and M. Sahami, “Hierarchically classifying documents using
very few words,” in Proc. 14th Int. Conf. on Machine Learning. Morgan
Kaufmann, 1997, pp. 170–8.

[32] R. Greiner, A. Grove, and D. Schuurmans, “On learning hierarchical
classifications,” 1997. [Online]. Available: http://www.cs.ualberta.ca/
∼dale/papers/hier.ps.gz

[33] A. McCallum, R. Rosenfeld, T. M. Mitchell, and A. Y. Ng, “Improving
text classification by shrinkage in a hierarchy of classes,” in Proc. 15th
Int. Conf. on Machine Learning. Morgan Kaufmann, 1998, pp. 359–67.

[34] H. T. Ng, W. B. Goh, and K. L. Low, “Feature selection, perceptron
learning, and a usability case study for text categorization,” in Proc.
20th Annual Int. ACM SIGIR Conf. on Research and Development in
Information Retrieval. ACM Press, 1997, pp. 67–73.

[35] M. E. Ruiz and P. Srinivasan, “Hierarchical text categorization using
neural networks,” Inf. Retr., vol. 5, no. 1, pp. 87–118, 2002.

[36] A. S. Weigend, E. D. Wiener, and J. O. Pedersen, “Exploiting hierarchy
in text categorization,” Inf. Retr., vol. 1, no. 3, pp. 193–216, 1999.

[37] S. Dumais and H. Chen, “Hierarchical classification of web content,” in
Proc. 23rd Annual Int. ACM SIGIR Conf. on Research and Development
in Information Retrieval. ACM Press, 2000, pp. 256–63.

[38] A. Sun, E.-P. Lim, and W. K. Ng, “Personalized classification for
keyword-based category profiles,” in Proc. 6th European Conf. on
Research and Advanced Technology for Digital Libraries. Springer,
2002, pp. 61–74.

[39] S. D’Alessio, M. Murray, R. Schiaffino, and A. Kershenbaum, “Cate-
gory levels in hierarchical text categorization,” in Proc. 3rd Conf. on
Empirical Methods in Natural Language Processing (EMNLP-3), 1998.

[40] S. Chakrabarti, B. Dom, R. Agrawal, and P. Raghavan, “Scalable feature
selection, classification and signature generation for organizing large text
databases into hierarchical topic taxonomies,” VLDB J., vol. 7, no. 3,
pp. 163–78, 1998.

[41] L. Larkey, “Some issues in the automatic classification of U.S. patents,”
in Working Notes AAAI-98 Workshop on Learning for Text Categoriza-
tion, 1998.

[42] L. Cai and T. Hofmann, “Hierarchical document categorization with
support vector machines,” in Proc. 13th ACM Int. Conf. on Information
and Knowledge Management. ACM Press, 2004, pp. 78–87.

[43] O. Dekel, J. Keshet, and Y. Singer, “Large margin hierarchical classi-
fication,” in Proc. 21st Int. Conf. on Machine learning. ACM Press,
2004, pp. 209–16.

[44] J. Rousu, C. Saunders, S. Szedmak, and J. Shawe-Taylor, “Learning
hierarchical multi-category text classification models,” in Proc. 22nd Int.
Conf. on Machine learning. ACM Press, 2005, pp. 744–51.

APPENDIX: CONSTRUCTION OF ADVERSE HIERARCHIES

In this appendix, we sketch how hierarchies that are “maxi-

mally” different from existing hierarchies are constructed. The

problem can be framed as a discrete optimization problem. We

assume that the structure of the new hierarchy is identical to the

structure of the given hierarchy. The goal is then to look for a

new assignment of leaf classes, such that a scoring function is

maximized.

For the definition of the scoring function, we use the same costs

as for the cost-sensitive evaluation of our results (see the end of

Section III.B): The distance between two leaf classes sharing a

IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

10

common super-class in the original hierarchy is one, the distance

between two classes sharing a common super-super-class is two,

etc. A distance matrix is computed up-front for all pairs of leaf

classes in the original hierarchy. The scoring function is then

defined as the sum over all distances between pairs of leaf classes

sharing a superclass in the new hierarchy.

We tested two stochastic approaches for the maximization

of this score by assignments of leaf classes to the original

hierarchical structure. In both cases, the starting point is a random

permutation of the leaf classes. In the first variant, we “fill in”

(i.e., assign) the leaf classes in the order of the random permuta-

tion. In the second variant, the assignment is made greedily and

in a more goal-oriented fashion: We assign the next leaf to the

one super-class where the overall score is maximized. Although

this step is done greedily, the whole procedure is still stochastic

as it is based on a random sorting order of the leaf classes. Both

approaches are repeated multiple times (depending on the dataset

and the setting for 10 to 1,000 runs), and the overall maximum

is chosen.

IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

