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Abstract that there are as many distinct, well-defined algebras as
there are ways of varying definitions while still retaining
State-based and process-based formalisms each come sound theory. Equivalence is an important property in any
with their own distinct set of assumptions and properties. algebra, so there are many different possibilities forequi
To combine them in a useful way it is important to be sure alence in the process-based world. In particular we should
of these assumptions in order that the formalisms are com-not be trapped into thinking that the equivalence that we are
bined in ways which have, or which allow, the intended most familiar with, or which is most widely used, is the best
combined properties. Consequently we cannot necessarilyfor a given problem.
expect to take one state-based formalism and one process- To give some idea of how much choice there is, we note
based formalism and combine them and get something senthat in [22] a survey of 155 testing semantics (often used
sible, especially since the act of combining can have subtleto characterize equivalence) can be found (and these only
consequences. deal with atomic actions). So, there is rather a large task to
Here we concentrate on value-passing, how it is treated carry out when choosing the right equivalence even in this
in each formalism, and how the formalisms can be com- simple situation. In this paper, to make matters worse, we
bined so as to preserve certain properties. Specifically, th are interested in value-passing actions.
aim is to take from the many process-based formalisms defi- The usual (failures) value-passing semantics of CSP
nitions that will best fit with our chosen state-based formal treats ‘a?1”, “a?2”,“al1” and “a!2” as distinct atomic ob-
ism, namely Z, so that the fit is simple, has no unintendedservable actions. A consequence of failure (and singleton
consequences and is as elegant as possible. failure) equivalences using the atomic actions in their re-
Keywords: transition systems, Z, value-passing. fusal sets is that an observer can select the value to betpasse
to an actiorbeforethe action is performed. That is to say, a
program can performgop?2” which will only pop a value
off a stack if the value is to be popped is 2.
Z is very expressive but leaves much unformalized Clearly this is not the normal ADT operational seman-
(though this may also be seen, in some lights, as a strength)tics of applying pop to a stack. We claim tithe normal
For example, Z has no formal ability to combine opera- ADT operational semantics for value-passieghat an in-
tion schemas into an abstract data type that encapsulates thput operation cannot use the value to be input to prevent
data. Further, Z has a practical tradition where it is the re- the action being performed (and, of course, we can choose
sponsibility of the specifier not to specify things which do to use Z in exactly this way if we are intending to model
not make sense according to the intended (perhaps inforaspects of ADTs using Z).
mal) model. For example, when intending to bundle opera-  Now, failure and singleton failure equivalences are just
tions together so as to model some of the ideas behind abtwo of very, very many (at least 155!) process equivalences
stract data types (ADTSs, as is often done when discussingand, if we want an equivalence whidoesmeet our claim
data refinement for Z) we would not want to specify input about ADTS, then we can look around and find, eventu-
operations that overly constrain the value to be inpig,a ally, in [7] that they defin@mamed failure equivalence(our
‘pop’ operation which only allows the value 2 to be put read name for it) whichhasthe normal ADT operational seman-
from a stack. tics for value-passing.
Process algebras, on the whole, come from a more for-  Of course, as shown in [2], we can keep CSP’s (singleton
mal, abstract, ‘theoretical’ tradition which tends to mean failure) value-passing semantics and define a denotational
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model for Z ADTSs, but that clearly means we have to de- vergence semantics is “not adequate w.r.t. the operational
lineate a subset of all of CSP as having meaning in this sit- interpretation” of divergence.
uation (and this is exactly what [2] does), since some CSP  Here we define an operational semantics via labelled
(under failure semantics) will not correspond to Z ADTs. transition systems (LTS) for Z, which is essentially the sam
This then leaves open the possibility of that subset losingas in [16]. We then define an isomorphism between the op-
some desirable properties, like being closed under CSP’serational semantics and Z’s partial relation semantics for
operators, which may or may not be seen as a bad thing. operations, defined as sets of bindings [18]. This isomor-
If, as here, we are interested primarily in operational se- phism is no more than a simple syntactic reordering of the
mantics we can then, by standard means, express the operamnderlying set theoretic formalizations.
tional semantics of Z ADTs via ( a subset of) labelled tran-  We postpone considering which equivalence/preorder
sition systems (LTSs, of which more later). On this subset we are interested in until after we have related the two se-
both CSP’s and Z ADT'’s value-passing semantics coincide, mantic models.
but it is a somewhat tortuous route.
To spell the situation out, this approach has severaldraw-1.1  Common operational semantics
backs:

We first map a Z specification to a labelled transition sys-
tem (definition below), just as process algebras are mapped
to such systems in [1]. Here we will treat Z and value-
2. it requires syntactic constraints on what CSP termspassing process algebras as alternative styles of specifica

constitute an ADT (process) and what constitutes a tion, not as specifying different kinds of things. Having

program (context) built a LTS, the Z or the process algebra can be forgot-
ten. This allows us to make use of the extensive exist-
3. the definition of ADTs will not be closed under the ing work defining equivalences and refinement relations of
usual CSP operators LTSs. The work includes denotational semantics, testing se
mantics and many full abstraction proofs. See [21, 22, 20]
ffor surveys of many such results. We believe that un-
derstanding the testing characterization of process aguiv
lences/preorders can both guide and inform the definition
of equivalences/preorders for ADTS.

As we will see, choosing a different equivalente. (dif- It has been shown in [20] that failure semantics can be
ferent semantics) for CSP, one where value-passing fits thecharacterized by a testing semantics and that amending this
ADT requirements better, eases the situation. In particula PY the addition of ‘lights’ to show the availability of an ac-
all CSP terms now have the right semantics, so the wholetion results in a testing semantics that characterizesyread
language is “used” and we now have closure under the op-irace semantics. The contexts (tests) of [3] charactemikze f
erators. ure refinement/equivalence. [16] extends these contexts by

We close this introduction with some more comments: &dding a “pre” construct, and all we need to do is show that
Mixing Z specifications with CSP’s internal and exter- the semantics of this constructis the same a;that c_)f a"light
nal choice[5, 3] makes defining an operational semantics@nd we have, forfree_, a proof of full abstraction with ready
quite problematic. Given that as Roscoe said [15] [p.178] trace refinement/equivalence.
“the operational semantics of CSP was created to give an
alternative view to the already existing denotational mede 1.2 Value-passing events
rather that providing the intuition in the original desigh”
should not be surprising that the CSP operational semantics Process semantics is usually built on a transition system,
[15] [Ch. 7] is different to both CCS [14] and ACP [1]. where each transition is labelled with an event and whether
Significantly CSP hiding does not distribute through CSP or not two events synchronize is controlled by the the event
choice, whereas in ACP the renaming of an action as a name. An inpueven@a?v consists of the valuebeing input
action does distribute through ACP choice. The reason be-by a and the outpueventalv consists of the value being
ing that CSP usesto model “nondeterministic state”. This output bya. We will be refer toa as thenameof eventsalv
is not the same as CCS/ACP wherds used to model an  anda?v
unobservable action. A process that calls an output event(it 'demands’
Failure and divergence semantics have been defined fothat something performs output) cannot select the value to
Z specifications in [17, 5, 3]. This we believe to be un- be output: what that is is up to the something performing
fortunate, as we agree with Leduc [12] that failure and di- the output. A program (which is just another process) with

1. it complicates the otherwise very simple operational
interpretation of Z

4. mapping Z directly to a denotational semantics limits
the equality we can use and prevents us making use o
the large amount of work relating operational seman-
tics with testing semantics [21, 22, 20].



event nameg@op that calls the event namgabp from an 2 Terminology

ADT (a stack in this case) must accept the value returned.

A program cannot cajpop?1 with the requirement that it In this section we define the notation we will use. Itis a
would only be executed if the value on the top of the stack combination of notation from ACP [1] and Z [19]. We as-

is 1. Similarly, if push?x for somex s required of the ADT  sume a universe of observable event naskeover which
then the ADT must accept the (well-typed) value pushed a will range. Leto % {lv|v:V}Uu{?v|v:V},

and, for examplepush?1 is not allowed as a ‘condition’ in def . . . def
e Events = {aio | a € ActA 0 0}, Events =
the definition of the ADT. {aa | a € A\ ©a € IO}

EventsJ {7}, a € Event$ andp € (Event$)*. Also let
Assumption 1 The value to be output by an eventis under ag; def {a|a € Act}.

local control, i.e. the input event that it synchronizes with We write py, for the sequence of event namespinWe
cannot select or restrict, the value. will write pi, for the sequence of input values built frgsm

This assumption is satisfied by a process algebra ([7]) thatPy regarding output events to have blarikputs. Similarly
has input eventa?x wherex is a variable and where named We write poy; for the sequence of output values. There is
failure semantics (the refusal set is a set of names notclearly an isomorphism betwegrand(pn, pin, pout)-
events) is used. o -
To satisfy this assumption we restrict what we accept as P€finition 1 labelled Transition Systems (LTSs)
a Z specification of an ADT. A % (Nodes, Tram,sa) where Nodes % {
The contexts in which ADTs are placed are the programs Var — Val}, sy € Nodeg, and
that execute them. These programs consist of sequences Tran, % {n—m| n,me Nodes A a € Events}.
of operations (defined by the ADT), whereas processes are
able to be placed in contexts that may have a branchingWe lift “—" to sets of transitions and to labelled transition
structure of operations. systems in the obvious way. Any single labelled transition

Assumption 2 ADTs are placed in contexts that are pro- system will either have transitions labelled fr&wents or
e T . p es .
grams and programs consist of sequences (not trees) of opgransmons labelled fronEvents (i.e. if it is a context or
erations. program).
We writep |, for then" element ofp andp [, for the first

n elements op. We writep [ X for the sequencg with all

elements not in seX removed, sgrefixp) def {p In|

nln:

Assumption 2 is the motivation behind singleton failure
semantics ([2]) which is a variation on failure semantics
where the refusal set must be a singleton set.

Here we are going to combine Assumption 1 and As- n<pl} ) _ i a
sumption 2, which not surprisingly will give a semantics ~ WhereA is obvious fromd ‘?O”teXt' we erten—;ng
which is a variation on failure semantics where the refusal for (n,a,m) € Tram, 7(s) = {a | s=} m(s) =
set must be a singleton set containing the names of actions. {a | s v sﬂ} n—2sm for Fyom (M, 1

We introduce healthiness conditionsonaZ AB%oas m),...(M,p |i,My1) € Trana AN =M A m =
to satisfy Assumption 1 and similar healthiness conditions m_; A| p |=i.
on both the relational semanti§A]r and the operational Assume a set of state variabMar and letn range over
(LTS) semantic§A]g. We then define obvious mappings oyajuations % Var — Val.

g[-]r from LTS to relations and its inversd_]y. We estab- Let Xe(S) C Events— 7(s) , 8(S) € Events— (s
lish that these mappings commute >A<;(s) c Act—_7rn(s) JA(S) € Act— mn(9)

RI[AIR] = [Alg

for anyA. Finally, we will see that refinement being subset 11aC€STr(A) = {p | s=">} and complete traces

of relations corresponds, under our mapping, to refinementTr¢(A) def {plsa=nA (m(n) = @ V| p|=00)}.

being subset of singleton named failures. F(A) = {(p, Xe(9)) | sa—s} failure [9]
We do not see these results as surprising, given that verysg(aA) = {(p, ag(s)) | sa—2+s} singleton failure [2]

similgr resglts were_shown in [2]. Our approach differs (see NF(A) = {(p,XNn(s)) | sAi>s}
Section 8) in that, firstly, we more closely follow Assump- ~ P : .

: . nsHA) = {(p,a(s)) | sA—s} named singleton failure
tion 1 and, secondly, we are more able to mix the use of dof dof

Z with a process algebra without needing to extend what (A)dx = (Nodeg, Tranays,, Sa) whereTrana);, =
could be specified directly in Z, as we shall see. {n_a)m | n-2sme Trana) A a ¢ X}.

Because we are interested in combining different for-
malisms at the semantic level we do not wish to restrict the a a
LTSs we are able to consider hence we use the semantic {n—M|n—me Tranx) A a ¢ X}U
mapping from Z to LTSs of [17, 16, 4] . {n——m|n-2sme Tranp, A a € X}.

named failure [7]

(A)x def (Nodes, Trany,, Sa) whereTrana), def



The synchronization functiofk which mapga,b) — ¢ To satisfy Assumption 1 we require:
addsc, representing the synchronizatioreodindb, wherea
andb could be performed concurrently see [1] for detailed ] ]
discussion and Figure 1 for an example. Healthiness 1 An operatl_on_schema S [q : D; d
We treat the synchronization pfandy as giving the ob- D5 X : V [ P(d, d',x?)] with input must satisfy
servablg. In detail (which the reader may skip), in orderto Vde (3ve 3d e P(d,d’,v) & Vve 3d e P(d,d,v)).
do this, and allow the deletion of unsynchronizeattions,
we first map them t@° (so~y contains(y!v, y?v) — y°?v
and(y?v, y!v) — ¥°lv) then deletd via dy and then rename
y° toy via Reny. All this is brought together in the follow-

ing definition €.g.Figure 1): A,
def [

~lv- = (¢l dv)Rer)dact _ State________ Bz

. ) ] st __State
_ IS L — st

P = ADb?202 5, a71c72 L Lo o, _init
, c?2 c?2 - c?2 ¢! E‘l2 State _’LnZt
o N — State
i st=s§
I i i=s
Q=(P)aEeg & Nt ) e
LG Astate ~a
¥ R ¥ (Si=snsf—s) AState
o V(st=sAst =s) (st=sAst =g)
R=(QReNagndat oo
[ b b
o tatg x! tatex!
N AStatex! AStatex
Figure 1. al1b?xC!2 || 5,6y a?yc?x st =eA (st=s Ast =¢)
’ ((st=s1AX=1) AX=1vXx=2)
V(st=5 AX =2))

3 Zand abstract data types
Figure 2. Az and By
An abstract data type (ADT, defined using&Xonsists
of a state schem@tate, an initialization schemanit, and
a set of operation schem@gp,. A Z schema can be freely
interpreted as a set of bindings. mappings from names of . .
observations to values, or the predicate that defines the set4 Z relational semantics

We write:
def

A = (State,inita, Opa) _ _ Asiswell known, a relational semantics can be given for
To match the usual process algebra convention we will 7 (see [2]) which gives each operatiama partial relation

restrict what we regard as data types in two ways. Firstly, [a]r C (Statex input) x (Statex outpup. From this we
events have either input or output but not both. Secondly, jefine:

the initialization schema must define a single state. These def
. L O = a,[a a € nam
restrictions ease the definitions. [OPa]r {<d;f[[ e} | a}

For any operatioa we will interpreta anda that do not [Alr = (Stat,inita, [Opa]r)
pass values as “sugar” falle anda?e wheree is a special ~ Using this we find that, for example in Figure [Az]r #
unreferenced variable of singleton type{x}. [Bz]r although, as we shall see, they are refinement equiv-
We writename, for the names of the operation schemas alent.
of A andio, for the input or output value of operatian Later on we will need to consider ADTs like below,
of ADT A (using the context to disambiguate if necessary). which looks very odd. In a program likethe natural ques-
Finally Events, {aio, | a € nama}. tion is “which b is being called?”. The answer is ‘it does
For an example, see Figure 2 wherame = {a,b}, not matter”, so we can think & as equivalent t®, and so
Eventg = {alx} U {blv|v: V}, o, =le andio, =!x. the question does not arise.
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So, thoughD andE are not refinement equivalent un- def o
der [24, 3] (as their definition of refinement uses an indexed ot [Al; = (State,inita, [Opalg)
set of operations), they are semantically equivalent and re [Opa]y = {xZ3y | (aios € Event§) A x € State, A

finement equivalent according to our definitions. (However, a Ay € Staté)}.
this distinction we do not feel to be important as both def-  For an example Figure 4 gives the LTS semantics of the
initions coincide when a data type has operational schemasADTSs in Figure 2.

with distinct names.) The relation betweefiA]r and[A]q is straightforward.
The nodes ofA]y and the states dfA]r are Z bindings.
4.1 Refinementon relational semantics The meaning of an operatian[a]r is a relation between

evaluations, labelled with, which hence defines a setaf
Bolton and Davies [2] adopt a ‘guarded outside of transitions offA]y. The initialization schema is restricted to
precondition’ interpretation in their construction of a to a unique evaluation/node.
i i i def .
tal relation for each operation. These total relations are [[Aldr & (State, inita,q [[OPa]]R)

then composed to give a relational semantics pod- def alv
gramspn, i.e. sequences of names of ‘called’ everdsy. ol[Oralalr = {(@ ({x,-), (y, V) | X . y}
pushpop push pop. Data refinemenA Cr C is defined to Uf(a, ((x, v), (y,-)) [ x—=—y}
hold if, for any progranp galling ope_rations frontC, its rI[-Jg def (gl-]r)*
semantics is a subset pttalling operations from.

The semantics of the programs Lemma 1 g[[A]r]lg = [Alg andg[[Alglr = [Alr

o X init,alaZ...final 5.1 Refinement on operational semantics

on a data type is constructed from the relational seman- _ _ _ .
tics of the operations, plus an initialization and finaliaat We define data refinement on the operational semantics
relation. as subset of the named singleton failure semantics:

The semantics of a program is a relafiomput® x ACgC def nsK[A]g) 2 nsK[C]g)

output from a sequences of inputs to a sequence of out-  For example[Az]y and[Bz]4 are not singleton failure
puts. For details of this construction see [24, 2, 3] here we equivalent but are named singleton failure equivalent.
only need the result of the construction.
def
alen]r = {{pin, pour | (| pin =] pout|A p € TI(A)) V Lemma2 ALRC & AL C
(Ipin [>]pout IA Pl jpo € TrE(A))}
def
ACRC = VYpnalemlr2 clpnlr

The relational semantics of ampyogramcalling opera-
tions forAz is going to be the same as if it were run calling
operations foB; (see Figure 3).

Proof seelLemmasb5and6 °

6 Testing semantics

Itis usual, in the process algebra approach, to define con-

5 Operational semantics texts as process terms. We split this into two parts. First we

The LTS semantics of a Z ADA is defined by: S\aﬁsl—bnﬁe a8 bl—>e
1The relation in [2] is actually given of{ T, L} xinput*)x ({T, L} a\ !\
output) from T or L and a sequence of inputs Toor L and a sequence A Sr——ble—e B ¢
of outputs. But the distinction betweenhand T is redundant as they can .
be inferred from the relative lengths of the input and ougguences. Figure4. A= [AZ]]Q and B = [BZ]]Q



will define terms for[_]_ , with a hole for an ADT and a interested in nondeterminism we assume that an observation
hole for a context. This defines the interaction between theconsists of a set of single observations of the same thing and
ADT and the context. Below (Section 6.0.1) we will say context. Such observations are given one of the following

what contexts represent value-passing programs. three interpretationg T }—always succeed;T, L }—may
PlacingT in a contexix is written[T]x and must model  succeed or may fail; anflL }—always fail.

the synchronization between operationsTofsuch asm) Of the three power domains on the two point latfice>

and operations of contexts (such as calling.e. m). 1 we are only interested in tHgmythpower domain
The resulting synchronized operations may be private,

i.e. 7, actions. Any action of the context that is not private AT

: , (T} ~—2—(T, L} {1}

is observable by an “independent observer”. We are go- S~

ing to quantify over “all” contexts and it is easy to amend

any context by adding actions that make observable any of Figure 5. Smyth

the unobservable synchronizations. Consequently, ajtnou
communication may be unobservable, we will treat it as ob-
servable. We will define the synchronizationyofndy to

bey. In order to allow the deletion of unsynchronizgd ~ Definition2 . [] = {[x| x € Expprog}
actions we usé(_ ||, -)dy)Rery (see Section 2 above). Tel(A)  © 3,congay, -» € TrX) and
We assume that all observable actiong akquire syn- Lel([Al) & 3,congiay -» € PrefiXTre(x)
chronization with some other thing in order to be per- nothing else is in([Alx).
formed. Hence, no observable actiorifatan be performed Obg[Clx) = Obg[Al) def I([Clx) > I(JAlx) V
on its own (formalized by_)dac). So, we have (1([Alx) = I([C]x) A Obg[A]x) D Obg([C]))
T = lv= = (C lhy d9)ReR)dac ACresC ' ¥, ;.0bg[Cl) 2 Obg[AL). e

Further, we assume that we can wait long enough so that
if something observable will eventually happenwe do seeit. Lemma 3 ACrC & A CrestC
We can only view our things via their synchronization with
the context and we can view all synchronization with the Proof —see Lemmas5and 8 .
context. This amounts to an observation beingpenplete
trace (the set of observable traces is not prefix closed). 7 Mixing formalisms

Hence
def
Obg([Tly) = Tre([Ty). In ACP, process terms are given an operational semantics
and the operators are defined on the semantic domain. This
6.0.1 What terms are contexts? is defined so that the semantic mapping distributes through

) the operators and consequently the operators have that same
Contexts are terms that cqrrespond to value-_paSSIng PrOinterpretation whether considering process terms or taeir
grams that satisfy Assumption 1 and Assumption 2. Thesemantics. Similarly operators that could be used to combine
can only use a variable in an expression in an output actiony,g state-based representations or two process-bases repr

if it previously appears in an input action. sentations and had the same interpretation on the undgrlyin

Leta € Actand let us define operations as: semantic model would, we believe, make specifications us-
3?x: 1 P . . .

Oper def {sﬂr} U{s daa;- K<) s} ing both representations easier to understand. ldeally we

would further like to be able to transform state-based and

def
E = e ;
Xp-prog {op: ..o | op € Oper} process-based representations into each other.

Our terms, orexpression programg. € Expprog, ) . .
are quite different to the programs of Section 4.1 In It is easy to see that the finite LTS can be converted into

: : . : terms and into a Z ADT by using an enumerated
the appendix we will defin , the relational seman- process .
PP &lpelr def data type to represent state. It would be desirable tha¢ thes

tics of pe, and hence data refinement a:Cer C = semantic mappings should also distribute through all pro-
V pex-alpe]r 2 cpe]r. Using this we prove thak Cer C cess operators.
ifand only if A Er C (see Lemma 4). With these goals in mind we will next investigate some
of the process operators found in the literature.
6.1 Refinement on testing semantics The schema operatidfy defined in [3] to compose two

operation schemas can be lifted to the composition of two
A single observation of in a contextX is a complete  ADTs by simply composing operation schemas with the
trace of[T]x and will be interpreted as (success) if and same name. The parallel composition of CHBsf) and
only if it is also a complete trace of the context Being Object-Z (|z) have subtly different interpretations. But the



ACP definition of parallel compositior]|{) is parameter-

ized on a synchronization algebyaand we can defing to —AplusB
give either||cspor ||z. Consequently by usinff, in place —_init
of ||cspwe do not need to have different notions of parallel State st
composition in the state and action based approaches. st _

We interpret Z ADTSs as processes for which the state is St=5
encapsulated and we interpret their operation schemas as a
style of “symbolic transitions”. With CSP and the symbolic _a b
transitions of processes defined in [8, 11] their is no explic AState AState
representation of state, and input variabl®ghave mean- ———— ————
ing outside of the symbolic transition in which they appear. st=sAst =s st=sAst =5

Alternatively, in the input/output automata of [6, 13] and
the objects of [3] their is an explicit representation oteta Figure 6. Is AplusB=a+b ?
and input variables are local to the transition (or operatio

schema).Explicit state symbolic transitiondo not appear ) ) o
to have been considered in detail in the process algebra lite ADTS and operation schemas. The importance of this is not

ature but appear to offer a very natural connection between"®W and can be seen in Unifying Theories of Programming

the state and action based approaches.

In a formalism that has an explicit representation of both
state and actions the process operators can be applied in &-2 Local state operators
least three distinct ways. One, outside the data encapsula-
tion, between two ADTs with separalecal statesA + B; The following definition identifies the initial states Af
two, inside the data encapsulation between ADTs/operationand B. Although this is conceptually simple it is not so
schemas that cashare statea + b and three, to build an  easy to define in Z. To make the definition easier we have
operation schema (symbolic transition) from other opera- assumed that the state of an ADTifted over L.
tion schemas. All three, to some degree, have been used in ACP’s definition of choice requires “root unwinding”

[3]. which would have been both messy to define in Z and, we
feel, less natural than the definition from [23] that we have
7.1 Shared-state operators used.

A+B & (State 4, inita s, Opats) Where
def

The schema operatiofis|| for choice and parallel com- State.ys [State;Statg | inita < initg A
position as defined in [3] compose two operation schemas —inity = Statgg = L A
and return a single operation schema, whereas the process — initg = State, = 1]
algebra style of choice and parallel composition [8, 11] initay g def inita
compose two symbolic transitions and return a process not Opass 4f  Op, U Ops.
a single symbolic transition. For an example oA + B see Figure 7.

The informal interpretation of an ADT (or object) is that
a context can “choose” to execute one of the enabled ac- .
tions. InAplusB Figure 6 choosing actioa does not pre- 8 ZtoCSPin[2]
vent a subsequent choice lof This property is not true of
choice as formalized in CSP, CCS or ACP, but the choice  Bolton and Davies [2] define a CSP semantics for Z
defined in [23] does satisfy this property. Consequently if ADTS [-Jcsp.
we were to formalise operational schema as symbolic tran-  They build CSP processes by taking the internal choice

sitions thenAplusB could only equak + b if we uesd the ~ between output values. This can be motivated by Assump-
choice in [23]. tion 1. But, in [2] their ADTs (their name CDTSs) are not

subject to the constraint Healthiness 1 and hence opesation

Symbolic actions in process algebras can distinguish SUch apush?1 can be defined, hence their approach does
successful termination from deadlock and a symbolic tran- N0t completely satisfy Assumption 1. However, their se-
sition is seen as a special type of process. Whereas in statghantic function has a range on which singleton failure and
based approaches like Object Z an operation schema cantamed singleton failure semantics give the same definition
not distinguish successful termination from deadlock and Of refinement/equality. _
on it own is not an object. One way to unify the approaches ~ For example, in the CSP semantics from [B} Jcsp =
would be to add an explicit successful termination to both z A(S) and[Bz]csp = B(s) where:
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Figure 7. Cz = Az + B

tics was amended into singleton failure. Then we selected
the choice operator from [23] which we believe is closer to
the normal state-based intuition and have shown how the
operator can be defined on Z ADTs. The advantages are:

1. a simpler operational semantics for Z

2. process operators that are closed on the operational se-
mantics of Z

3. hiding distributes through the process operators—this
should ease the definition of a weak congruances
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A Proofs

def

A[Pe]]R {(pin;pout |n) | <pinaﬂout) S Bio(Pe) Ap |n€

Tré(A)}

Lemma4 Vpexalpedr 2 c,[pelr & Vpnalen]r 2
c,[pnlr

Proof Eachpe has a unique underlying, and clearly
alpelr Ca [pn]r. But we can see that:

dom(a[pe]r) € dom(a[pn]r)

The relation formed by [pn]r restricted tadom(a[pe]r)
is identical to

alpe]r from which we can conclude our result. .

ACor C % V.. -Obg[Cla) C Obg([Al).

Lemma5 ACptC& ACRC

Proof 1.ACprC=ALCRC

Aot C & V.1 -Obg[Cla) C Obg[A]a)
v, I€ Obg[C],,) = r € Obg[A],.)

Vv, I € Tr([Cl,.) = 1 € Tre([A].)
Case| pe |=|r | thenr = p

p € Tr([Clye) € {pin; pou) € c,[pelr
Case|pe |>|r | thenr = p ||,

P i1 € Tr([Clye) & (pin, pout [|r]) € ¢, [Pe]r-
From[1] and[2] V pn.X € c,[pelr = X € a,[pe]r
HenceY pe. c, [pelr € A,[pelr
From Lemma 4¥ pn. c,[pn]r C a,[en]r © A CrC;

2. A Cpt C < A Cg Creverse above. .

[2]

Lemma6 ACptC& ACGC

Proof
1.V .1 -ObK[Cla) C Obg[Ala) <ALy C:
Letlda = (late) pn)oacandzn = pinligy

For X € ltsandC € lts then from the construction of
[Clx = (C [la(c) X)dact We can see that:

o €Tr¢([C]x) & o€ Tr*(X)AT fa(c)e Tr¢(C) [1]

¢FromA Cg C we haveo € Tre(C) = 0 € Tre(A). [2]
From[1] and[2] we have

o €Tr¢([C]x) = o€ Tr*(X)AT fa(A)E Tre(A)

henceo € Tr:([Cla) = 0 € Trc([Ala)

henceObs([Cla) C Obs([Ala)

2.ACprC=ALC,C:

(pn,{a}) € nSF(C) & ¥, 7in € ObK[Cl)
AsV, ., Pin € ObY[Cl;=x) = V.., Pin € ObY[A]75x)
thennsHC) C nsFHA). .

from[1]

Lemma 7 1(Cla) > I ([Als) = Obg([Cla) € Obs([Al.).

Proof  From the definition of> see Figure 5 the only
counter example to the lemma could occur wh@A],) =
{L} A 1([Cl,) # {L}. [1]

So we will show that this part of the relatignis empty.
We do this by giving a construction from a context for which
the relation holds and the constrajhtis satisfied to a con-
text for which the relation fails to hold.

Assumel ([A],) = {Ll} thenp ¢ Obg[A],) and as
I((C],) # {L} thenp € ObS([C],). HenceObs(C],) ¢
Obg[A],) i.e. Tr¢([C],) € Tr¢([A],). Select ana such
that pa ¢ Tr([C],a) henceTr®([C],a) = Tr¢([C],). As
I([Al) = {L} = 1([Clsa) andObS([A],.a) 2 ObS([C],a)
we haveObg[A],a) Z Obg[C],a)-

If1([Al,) = {1} A I([C],) # {1} I([C],,)QI([A],,)
thenObg([A],a) Z ObY[C],a) ®

Lemma 8 A C1.stC & A Cp7 C.

Proof

1A ETestC =A EDT C
By definition if Obq[C]a) = Obg[Ala) then!([Cla) >
I([Ala) V (I([Ala) = I([Cla) A Obg[A]a) 2 Obg[Cla))-
As if 1([Cla) > I([A]a) then from Lemma ©Obg[C]a) C
Obg[Ala).
HenceOb([C.) > ObS([Ala) = ObS([Cla) C ObS([AlL).



V. -Ob[Cla) 2 Obg[Ala) = Obg[C]a)
Obg[A]a)

2. Similarly Obg[C]a) C Obg[A]la) = Obg[Cla)
Obg[Ala)

A ETestC <A EDT C
From 1. and 2.

A LC1estC & ACpT C.

N
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