
State-based and process-based value-passing

Steve Reeves and David Streader
Department of Computer Science

University of Waikato
Hamilton, New Zealand�

dstr,stever�@cs.waikato.ac.nz

Abstract

State-based and process-based formalisms each come
with their own distinct set of assumptions and properties.
To combine them in a useful way it is important to be sure
of these assumptions in order that the formalisms are com-
bined in ways which have, or which allow, the intended
combined properties. Consequently we cannot necessarily
expect to take one state-based formalism and one process-
based formalism and combine them and get something sen-
sible, especially since the act of combining can have subtle
consequences.

Here we concentrate on value-passing, how it is treated
in each formalism, and how the formalisms can be com-
bined so as to preserve certain properties. Specifically, the
aim is to take from the many process-based formalisms defi-
nitions that will best fit with our chosen state-based formal-
ism, namely Z, so that the fit is simple, has no unintended
consequences and is as elegant as possible.

Keywords: transition systems, Z, value-passing.

1 Introduction

Z is very expressive but leaves much unformalized
(though this may also be seen, in some lights, as a strength).
For example, Z has no formal ability to combine opera-
tion schemas into an abstract data type that encapsulates the
data. Further, Z has a practical tradition where it is the re-
sponsibility of the specifier not to specify things which do
not make sense according to the intended (perhaps infor-
mal) model. For example, when intending to bundle opera-
tions together so as to model some of the ideas behind ab-
stract data types (ADTs, as is often done when discussing
data refinement for Z) we would not want to specify input
operations that overly constrain the value to be input,e.g.a
‘pop’ operation which only allows the value 2 to be put read
from a stack.

Process algebras, on the whole, come from a more for-
mal, abstract, ‘theoretical’ tradition which tends to mean

that there are as many distinct, well-defined algebras as
there are ways of varying definitions while still retaining
a sound theory. Equivalence is an important property in any
algebra, so there are many different possibilities for equiv-
alence in the process-based world. In particular we should
not be trapped into thinking that the equivalence that we are
most familiar with, or which is most widely used, is the best
for a given problem.

To give some idea of how much choice there is, we note
that in [22] a survey of 155 testing semantics (often used
to characterize equivalence) can be found (and these only
deal with atomic actions). So, there is rather a large task to
carry out when choosing the right equivalence even in this
simple situation. In this paper, to make matters worse, we
are interested in value-passing actions.

The usual (failures) value-passing semantics of CSP
treats “a?1”, “a?2”,“a!1” and “a!2” as distinct atomic ob-
servable actions. A consequence of failure (and singleton
failure) equivalences using the atomic actions in their re-
fusal sets is that an observer can select the value to be passed
to an actionbefore the action is performed. That is to say, a
program can perform “pop?2” which will only pop a value
off a stack if the value is to be popped is 2.

Clearly this is not the normal ADT operational seman-
tics of applying pop to a stack. We claim thatthe normal
ADT operational semantics for value-passingis that an in-
put operation cannot use the value to be input to prevent
the action being performed (and, of course, we can choose
to use Z in exactly this way if we are intending to model
aspects of ADTs using Z).

Now, failure and singleton failure equivalences are just
two of very, very many (at least 155!) process equivalences
and, if we want an equivalence whichdoesmeet our claim
about ADTs, then we can look around and find, eventu-
ally, in [7] that they definenamed failure equivalence(our
name for it) whichhasthe normal ADT operational seman-
tics for value-passing.

Of course, as shown in [2], we can keep CSP’s (singleton
failure) value-passing semantics and define a denotational



model for Z ADTs, but that clearly means we have to de-
lineate a subset of all of CSP as having meaning in this sit-
uation (and this is exactly what [2] does), since some CSP
(under failure semantics) will not correspond to Z ADTs.
This then leaves open the possibility of that subset losing
some desirable properties, like being closed under CSP’s
operators, which may or may not be seen as a bad thing.

If, as here, we are interested primarily in operational se-
mantics we can then, by standard means, express the opera-
tional semantics of Z ADTs via ( a subset of) labelled tran-
sition systems (LTSs, of which more later). On this subset
both CSP’s and Z ADT’s value-passing semantics coincide,
but it is a somewhat tortuous route.

To spell the situation out, this approach has several draw-
backs:

1. it complicates the otherwise very simple operational
interpretation of Z

2. it requires syntactic constraints on what CSP terms
constitute an ADT (process) and what constitutes a
program (context)

3. the definition of ADTs will not be closed under the
usual CSP operators

4. mapping Z directly to a denotational semantics limits
the equality we can use and prevents us making use of
the large amount of work relating operational seman-
tics with testing semantics [21, 22, 20].

As we will see, choosing a different equivalence (i.e.dif-
ferent semantics) for CSP, one where value-passing fits the
ADT requirements better, eases the situation. In particular
all CSP terms now have the right semantics, so the whole
language is “used” and we now have closure under the op-
erators.

We close this introduction with some more comments:
Mixing Z specifications with CSP’s internal and exter-

nal choice[5, 3] makes defining an operational semantics
quite problematic. Given that as Roscoe said [15] [p.178]
“the operational semantics of CSP was created to give an
alternative view to the already existing denotational models
rather that providing the intuition in the original design”it
should not be surprising that the CSP operational semantics
[15] [Ch. 7] is different to both CCS [14] and ACP [1].
Significantly CSP hiding does not distribute through CSP
choice, whereas in ACP the renaming of an action as a�
action does distribute through ACP choice. The reason be-
ing that CSP uses� to model “nondeterministic state”. This
is not the same as CCS/ACP where� is used to model an
unobservable action.

Failure and divergence semantics have been defined for
Z specifications in [17, 5, 3]. This we believe to be un-
fortunate, as we agree with Leduc [12] that failure and di-

vergence semantics is “not adequate w.r.t. the operational
interpretation” of divergence.

Here we define an operational semantics via labelled
transition systems (LTS) for Z, which is essentially the same
as in [16]. We then define an isomorphism between the op-
erational semantics and Z’s partial relation semantics for
operations, defined as sets of bindings [18]. This isomor-
phism is no more than a simple syntactic reordering of the
underlying set theoretic formalizations.

We postpone considering which equivalence/preorder
we are interested in until after we have related the two se-
mantic models.

1.1 Common operational semantics

We first map a Z specification to a labelled transition sys-
tem (definition below), just as process algebras are mapped
to such systems in [1]. Here we will treat Z and value-
passing process algebras as alternative styles of specifica-
tion, not as specifying different kinds of things. Having
built a LTS, the Z or the process algebra can be forgot-
ten. This allows us to make use of the extensive exist-
ing work defining equivalences and refinement relations of
LTSs. The work includes denotational semantics, testing se-
mantics and many full abstraction proofs. See [21, 22, 20]
for surveys of many such results. We believe that un-
derstanding the testing characterization of process equiva-
lences/preorders can both guide and inform the definition
of equivalences/preorders for ADTs.

It has been shown in [20] that failure semantics can be
characterized by a testing semantics and that amending this
by the addition of ‘lights’ to show the availability of an ac-
tion results in a testing semantics that characterizes ready
trace semantics. The contexts (tests) of [3] characterize fail-
ure refinement/equivalence. [16] extends these contexts by
adding a “pre” construct, and all we need to do is show that
the semantics of this construct is the same as that of a ‘light’,
and we have, for free, a proof of full abstraction with ready
trace refinement/equivalence.

1.2 Value-passing events

Process semantics is usually built on a transition system,
where each transition is labelled with an event and whether
or not two events synchronize is controlled by the the event
name. An inputeventa�v consists of the valuev being input
by a and the outputeventa �v consists of the valuev being
output bya. We will be refer toa as thenameof eventsa �v
anda�v

A process that calls an output event (i.e. it ’demands’
that something performs output) cannot select the value to
be output: what that is is up to the something performing
the output. A program (which is just another process) with

2



event namedpop that calls the event namedpop from an
ADT (a stack in this case) must accept the value returned.
A program cannot callpop�1 with the requirement that it
would only be executed if the value on the top of the stack
is �. Similarly, if push�x for somex is required of the ADT
then the ADT must accept the (well-typed) value pushed
and, for example,push�1 is not allowed as a ‘condition’ in
the definition of the ADT.

Assumption 1 The value to be output by an event is under
local control, i.e. the input event that it synchronizes with
cannot select or restrict, the value.

This assumption is satisfied by a process algebra ([7]) that
has input eventsa�x wherex is a variable and where named
failure semantics (the refusal set is a set of names not
events) is used.

To satisfy this assumption we restrict what we accept as
a Z specification of an ADT.

The contexts in which ADTs are placed are the programs
that execute them. These programs consist of sequences
of operations (defined by the ADT), whereas processes are
able to be placed in contexts that may have a branching
structure of operations.

Assumption 2 ADTs are placed in contexts that are pro-
grams and programs consist of sequences (not trees) of op-
erations.

Assumption 2 is the motivation behind singleton failure
semantics ([2]) which is a variation on failure semantics
where the refusal set must be a singleton set.

Here we are going to combine Assumption 1 and As-
sumption 2, which not surprisingly will give a semantics
which is a variation on failure semantics where the refusal
set must be a singleton set containing the names of actions.

We introduce healthiness conditions on a Z ADTA so as
to satisfy Assumption 1 and similar healthiness conditions
on both the relational semantics��A��R and the operational
(LTS) semantics��A��g. We then define obvious mappings
g �� ��R from LTS to relations and its inverseR�� ��g. We estab-
lish that these mappings commute

R����A��R��g � ��A��g
for anyA. Finally, we will see that refinement being subset
of relations corresponds, under our mapping, to refinement
being subset of singleton named failures.

We do not see these results as surprising, given that very
similar results were shown in [2]. Our approach differs (see
Section 8) in that, firstly, we more closely follow Assump-
tion 1 and, secondly, we are more able to mix the use of
Z with a process algebra without needing to extend what
could be specified directly in Z, as we shall see.

Because we are interested in combining different for-
malisms at the semantic level we do not wish to restrict the
LTSs we are able to consider hence we use the semantic
mapping from Z to LTSs of [17, 16, 4] .

2 Terminology

In this section we define the notation we will use. It is a
combination of notation from ACP [1] and Z [19]. We as-
sume a universe of observable event namesAct over which
a will range. Let io 	
�� ��v 
 v � V� � ��v 
 v � V�,

Events 	
�� �aioa 
 a � Act � ioa � io�, Events� 	
��
Events� �� �, a � Events� and� � �Events� ��. Also let

Act 	
�� �a 
 a � Act�.
We write �n for the sequence of event names in�. We

will write � in for the sequence of input values built from�
by regarding output events to have blankinputs. Similarly
we write �out for the sequence of output values. There is
clearly an isomorphism between� and ��n � � in � �out�.
Definition 1 labelled Transition Systems (LTSs)

A 	
�� �NodesA �TranA �sA� where NodesA 	
�� �� 
 � �
Var �� Val�, sA � NodesA and

TranA 	
�� �n a��m 
 n�m � NodesA � a � Events� �.

We lift “ �” to sets of transitions and to labelled transition
systems in the obvious way. Any single labelled transition
system will either have transitions labelled fromEvents� or
transitions labelled fromEvents� (i.e. if it is a context or
program).

We write� 
n for thenth element of� and�  n for the first
n elements of�. We write�  X for the sequence� with all

elements not in setX removed, soprefix��� 	
�� ��  n 

n ! 
 � 
�"

Where A is obvious from context, we write:n
a��m

for �n�a�m� � TranA, # �s� 	
�� �a 
 s
a�� � #n �s� 	
���a 
 s

a$x�� % s
a&x�� � n '��m for (m) ***mi

"�m+ � � 
+�m, � � " " " �mi � � 
i �mi-+� � TranA � n � m+ � m �
mi-+ � 
 � 
� i.

Assume a set of state variablesVar and let� range over

evaluations 	
�� Var � Val.
Let .XE �s� / Events� # �s� , 0aE �s� � Events� # �s�.Xn �s� / Act � #n �s� , 0a�s� � Act � #n �s�

TracesTr �A� 	
�� �� 
 sA '�� � and complete traces

Trc �A� 	
�� �� 
 sA '��n � �# �n� � 1 % 
 � 
� 2 ��.
F �A� � ��� � .XE �s�� 
 sA '��s� failure [9]
sF�A� � ��� � 0aE �s�� 
 sA '��s� singleton failure [2]
nF�A� � ��� �.Xn �s�� 
 sA '��s� named failure [7]
nsF�A� � ��� �0a�s�� 
 sA '��s� named singleton failure�A�3X 	
�� �NodesA �Tran4A56X �sA� whereTran4A56X

	
���n a��m 
 n
a��m � Tran4A5 � a 7� X�.�A��X 	
�� �NodesA �Tran4A5�X �sA� whereTran4A5�X

	
���n a��m 
 n
a��m � Tran4A5 � a 7� X���n ���m 
 n
a��m � Tran4A5 � a � X�.

3



The synchronization function8X which maps�a�b� �� c
addsc, representing the synchronization ofa andb, wherea
andb could be performed concurrently see [1] for detailed
discussion and Figure 1 for an example.

We treat the synchronization ofy andy as giving the ob-
servabley. In detail (which the reader may skip), in order to
do this, and allow the deletion of unsynchronizedy actions,
we first map them toyo (so 8Y contains�y �v�y�v� �� yo�v
and�y�v�y �v� �� yo �v) then deletey via 3Y and then rename
yo to y via RenY. All this is brought together in the follow-
ing definition (e.g.Figure 1):9

Y 	
�� ��� 9:
Y �3Y�RenY�3Act

P � a ��b�;c �; 9:<
a =c>a��c�;

? @AB //CDABK

K

K

K

%%K

K

K

K

@EB
��

F GEH //@EB
��

F IAJ //@EB
��

F@EB
��F @AB //IEJ

��

F GEH //IEJ
��

F IAJ //IEJ
�� KDAJK

K

K

K

%%K

K

K

K

FIEJ
��F @AB //F GEH //F IAJ //F

Q � �P�3La McN
O PQRSK

K

K

K

%%K

K

K

K

PTS
��

U VTW //PTS
��

UPTS
��

UPTS
��UXTY

��

U VTW //XTY
��

UXTY
��

XQRYK

K

K

K

%%K

K

K

K

UXTY
��U U VTW //U U

R � �Q�RenLa McN 3Act

Z [\]K

K

K

K

%%K

K

K

K ^ _̀ a //

^
b\cK

K

K

K

%%K

K

K

K ^
Figure 1. a ��b�xc �; 9La McN a�yc�x

3 Z and abstract data types

An abstract data type (ADT, defined using Z)A consists
of a state schemaStateA, an initialization schemainitA and
a set of operation schemasOpA. A Z schema can be freely
interpreted as a set of bindingsi.e.mappings from names of
observations to values, or the predicate that defines the set.
We write:

A 	
�� �StateA � initA �OpA�
To match the usual process algebra convention we will

restrict what we regard as data types in two ways. Firstly,
events have either input or output but not both. Secondly,
the initialization schema must define a single state. These
restrictions ease the definitions.

For any operationa we will interpreta anda that do not
pass values as “sugar” fora �d anda�d whered is a special
unreferenced variable of singleton typed � �e�.

We writenameA for the names of the operation schemas
of A and ioa for the input or output value of operationa
of ADT A (using the context to disambiguate if necessary).

Finally EventsA 	
�� �aioa 
 a � nameA�.
For an example, see Figure 2 wherenameA � �a �b�,

EventsA � �a �e� � �b �v 
 v � V�, ioa � �d andiob � �x.

To satisfy Assumption 1 we require:

Healthiness 1 An operation schema S� �d � D f dg �
Dg f x� � V 
 P�d�dg �x��� with input must satisfyh

d i �( v i ( dg i P�d�dg �v� j h
v i ( dg i P�d�dg �v��.

AZk lmln
stfopol
State

st � sf
aq

State

�st � s � stg � s+ �% �st � s � stg � s, �
bq

State�x�
stg � e ���st � s+ � x� � ��% �st � s, � x� � ;��

BZk lmln
stfopol
State

st � sf
aq

State

�st � s � stg � s+ �
bq

State�x�
�st � s+ � stg � e�� �x� � � % x� � ;�

Figure 2. AZ and BZ

4 Z relational semantics

As is well known, a relational semantics can be given for
Z (see [2]) which gives each operationa a partial relation��a��R / �Stater input� r �Stater output�. From this we
define:��OpA��R 	
�� ��a � ��a��R� 
 a � nameA�

��A��R 	
�� �StateA � initA � ��OpA��R�
Using this we find that, for example in Figure 2,��AZ��R 7���BZ��R although, as we shall see, they are refinement equiv-
alent.

Later on we will need to consider ADTs likeD below,
which looks very odd. In a program likeb the natural ques-
tion is “which b is being called?”. The answer is “it does
not matter”, so we can think ofE as equivalent toD, and so
the question does not arise.

4



D

b
D+ �x�
P+
b
D, �x�
P,

E

b
D+ �D, �x�
P+ % P,

So, thoughD and E are not refinement equivalent un-
der [24, 3] (as their definition of refinement uses an indexed
set of operations), they are semantically equivalent and re-
finement equivalent according to our definitions. (However,
this distinction we do not feel to be important as both def-
initions coincide when a data type has operational schemas
with distinct names.)

4.1 Refinement on relational semantics

Bolton and Davies [2] adopt a ‘guarded outside of
precondition’ interpretation in their construction of a to-
tal relation for each operation. These total relations are
then composed to give a relational semantics ofpro-
grams�n, i.e. sequences of names of ‘called’ events,e.g.
push pop push pop. Data refinementA sR C is defined to
hold if, for any program�n calling operations fromC, its
semantics is a subset of� calling operations fromA.

The semantics of the programs

�n 	
�� init �a1
n a2

n " " "final

on a data type is constructed from the relational seman-
tics of the operations, plus an initialization and finalization
relation.

The semantics of a program is a relation1 input� r
output� from a sequences of inputs to a sequence of out-
puts. For details of this construction see [24, 2, 3] here we
only need the result of the construction.

A ���n��R 	
�� ��� in � �out� 
 �
� in 
� 
�out 
� � � Trc �A�� %�
� in 
t 
�out 
� � 
u'out
u� Trc �A���

A sR C 	
�� h �n "A ���n��R v C ���n��R
The relational semantics of anyprogramcalling opera-

tions forAZ is going to be the same as if it were run calling
operations forBZ (see Figure 3).

5 Operational semantics

The LTS semantics of a Z ADTA is defined by:
1The relation in [2] is actually given onwxy z { |}input~ �}wxy z { |}

output~ � from y or { and a sequence of inputs toy or { and a sequence
of outputs. But the distinction between{ andy is redundant as they can
be inferred from the relative lengths of the input and outputsequences.

������������������� �
O

O

O

O

O

''O

O

O

O

O

�
?

?

?

?

?

?

?

?

��?
?

?

?

?

?

?

?

������ ������������>>>>>>>>
��>

>

>

>

>

>

>

>

����� ������������>>>>>>>>
��>

>

>

>

>

>

>

>

���� ��������� ��������� ��������� �����

������������������� �
O

O

O

O

O

''O

O

O

O

O ������ ������������>>>>>>>>
��>

>

>

>

>

>

>

>�44444444
4

4

4

��4
4

4

4

4

4

4

4

4

4

4

����� ��������������� ��������� ��������� ��������� �����

������������� � ���0

0

0

0

0

0

0

0

0

0

��0
0

0

0

0

0

0

0

0

0

���,,,,,,
,

,

,

,

,

,

,

��,
,

,

,

,

,

,

,

,

,

,

,

,

��������� ������ ����� � ���������� � ������
Figure 3. Z relational semantics

��A��g 	
�� �StateA � initA � ��OpA��g���OpA��g 	
�� �x aioa��y 
 �aioa � Events�A� � x � StateA �
a � y � StategA��.

For an example Figure 4 gives the LTS semantics of the
ADTs in Figure 2.

The relation between��A��R and ��A��g is straightforward.
The nodes of��A��g and the states of��A��R are Z bindings.
The meaning of an operationa ��a��R is a relation between
evaluations, labelled witha, which hence defines a set ofa
transitions of��A��g. The initialization schema is restricted to
a unique evaluation/node.

g ����A��g��R 	
�� �StateA � initA �g ����OpA��g��R�
g ����OpA��g��R 	
�� ��a � ��x� � � �y�v��� 
 x

a$v���� y�� ��a � ��x�v� � �y� ��� 
 x
a&v���� y�

R�� ��g 	
�� �g �� ��R��+
Lemma 1 R����A��R��g � ��A��g andg ����A��g��R � ��A��R
5.1 Refinement on operational semantics

We define data refinement on the operational semantics
as subset of the named singleton failure semantics:

A sg C 	
�� nsF���A��g� v nsF���C��g�
For example,��AZ��g and ��BZ ��g are not singleton failure

equivalent but are named singleton failure equivalent.

Lemma 2 A sR C j A sg C

Proof see Lemmas 5 and 6 i
6 Testing semantics

It is usual, in the process algebra approach, to define con-
texts as process terms. We split this into two parts. First we

� �
K

K

K

K

K

%%K

K

K

K

K

�
//�� � � //¡

¢ �£ � ¤ //¡
¥ ¦ //¥§ ¨©§ //¨©ªK

K

K

K

%%K

K

K

K

K

«
¬ «

Figure 4. A � ��AZ��g and B � ��BZ��g
5



will define terms for� � , with a hole for an ADT and a
hole for a context. This defines the interaction between the
ADT and the context. Below (Section 6.0.1) we will say
what contexts represent value-passing programs.

PlacingT in a contextx is written �T�x and must model
the synchronization between operations ofT (such asm)
and operations of contexts (such as callingm, i.e.m).

The resulting synchronized operations may be private,
i.e. � , actions. Any action of the context that is not private
is observable by an “independent observer”. We are go-
ing to quantify over “all” contexts and it is easy to amend
any context by adding actions that make observable any of
the unobservable synchronizations. Consequently, although
communication may be unobservable, we will treat it as ob-
servable. We will define the synchronization ofy andy to
be y. In order to allow the deletion of unsynchronizedy
actions we use�� 9:

Y �3Y�RenY (see Section 2 above).
We assume that all observable actions ofT require syn-

chronization with some other thing in order to be per-
formed. Hence, no observable action ofT can be performed
on its own (formalized by� �3Act). So, we have�T�x 	
�� 9

Y 	
�� �� 9:
Y �3Y�RenY�3Act

Further, we assume that we can wait long enough so that
if something observable will eventually happen we do see it.
We can only view our things via their synchronization with
the context and we can view all synchronization with the
context. This amounts to an observation being acomplete
trace(the set of observable traces is not prefix closed).

Hence
Obs��T�x� 	
�� Trc ��T�x�.

6.0.1 What terms are contexts?

Contexts are terms that correspond to value-passing pro-
grams that satisfy Assumption 1 and Assumption 2. These
can only use a variable in an expression in an output action
if it previously appears in an input action.
Let a � Act and let us define operations as:

Operi 	
�� �s
a&xi�� r � � �s

a$ei
4x) M***xj­i 5������������� r �

Exp prog 	
�� �op+ " " "opn 
 opi � Operi �
Our terms, orexpression programs�e � Exp prog,

are quite different to the programs�n of Section 4.1 In
the appendix we will defineA ���e��R, the relational seman-

tics of �e, and hence data refinement as:A seR C 	
��h �ex"A ���e��R v C ���e��R. Using this we prove thatA seR C
if and only if A sR C (see Lemma 4).

6.1 Refinement on testing semantics

A single observation ofT in a contextX is a complete
trace of �T�X and will be interpreted as® (success) if and
only if it is also a complete trace of the contextX. Being

interested in nondeterminism we assume that an observation
consists of a set of single observations of the same thing and
context. Such observations are given one of the following
three interpretations:�® �—always succeed;�® � ¯ �—may
succeed or may fail; and�¯ �—always fail.

Of the three power domains on the two point lattice® t¯ we are only interested in theSmythpower domain

°±² °±³´²µ
oo µ 88

°´²µ
xx

Figure 5. Smyth

Definition 2 . � � 	
�� � � �x 
 x � Exp prog�® � I ��A�x� j ('¶Obs4·A¸x5 "� � Trc �x�¯ � I ��A�x� j ('¶Obs4·A¸x5 "� � prefix�Trc �x�� and

nothing else is in I��A�x�.
Obs��C�x� ¹ Obs��A�x� 	
�� I ��C�x� t I ��A�x� %�I ��A�x� � I ��C�x� � Obs��A�x� v Obs��C�x��

A sTest C 	
�� h · ¸x¶· ¸ "Obs��C�x� ¹ Obs��A�x�. i
Lemma 3 A sR C j A sTest C

Proof see Lemmas 5 and 8 i
7 Mixing formalisms

In ACP, process terms are given an operational semantics
and the operators are defined on the semantic domain. This
is defined so that the semantic mapping distributes through
the operators and consequently the operators have that same
interpretation whether considering process terms or theirse-
mantics. Similarly operators that could be used to combine
two state-based representations or two process-based repre-
sentations and had the same interpretation on the underlying
semantic model would, we believe, make specifications us-
ing both representations easier to understand. Ideally we
would further like to be able to transform state-based and
process-based representations into each other.

It is easy to see that the finite LTS can be converted into
process terms and into a Z ADT by using an enumerated
data type to represent state. It would be desirable that these
semantic mappings should also distribute through all pro-
cess operators.

With these goals in mind we will next investigate some
of the process operators found in the literature.

The schema operation
9

Z defined in [3] to compose two
operation schemas can be lifted to the composition of two
ADTs by simply composing operation schemas with the
same name. The parallel composition of CSP (

9
CSP) and

Object-Z (
9

Z) have subtly different interpretations. But the

6



ACP definition of parallel composition (
9:

) is parameter-
ized on a synchronization algebra8 and we can define8 to
give either

9
CSP or

9
Z. Consequently by using

9:
in place

of
9

CSPwe do not need to have different notions of parallel
composition in the state and action based approaches.

We interpret Z ADTs as processes for which the state is
encapsulated and we interpret their operation schemas as a
style of “symbolic transitions”. With CSP and the symbolic
transitions of processes defined in [8, 11] their is no explicit
representation of state, and input variables�x have mean-
ing outside of the symbolic transition in which they appear.
Alternatively, in the input/output automata of [6, 13] and
the objects of [3] their is an explicit representation of state,
and input variables are local to the transition (or operation
schema).Explicit state symbolic transitionsdo not appear
to have been considered in detail in the process algebra liter-
ature but appear to offer a very natural connection between
the state and action based approaches.

In a formalism that has an explicit representation of both
state and actions the process operators can be applied in at
least three distinct ways. One, outside the data encapsula-
tion, between two ADTs with separatelocal statesA º B;
two, inside the data encapsulation between ADTs/operation
schemas that canshare statea º b and three, to build an
operation schema (symbolic transition) from other opera-
tion schemas. All three, to some degree, have been used in
[3].

7.1 Shared-state operators

The schema operations�� � 9Z for choice and parallel com-
position as defined in [3] compose two operation schemas
and return a single operation schema, whereas the process
algebra style of choice and parallel composition [8, 11]
compose two symbolic transitions and return a process not
a single symbolic transition.

The informal interpretation of an ADT (or object) is that
a context can “choose” to execute one of the enabled ac-
tions. InAplusB Figure 6 choosing actiona does not pre-
vent a subsequent choice ofb. This property is not true of
choice as formalized in CSP, CCS or ACP, but the choice
defined in [23] does satisfy this property. Consequently if
we were to formalise operational schema as symbolic tran-
sitions thenAplusB could only equala º b if we uesd the
choice in [23].

Symbolic actions in process algebras can distinguish
successful termination from deadlock and a symbolic tran-
sition is seen as a special type of process. Whereas in state-
based approaches like Object Z an operation schema can-
not distinguish successful termination from deadlock and
on it own is not an object. One way to unify the approaches
would be to add an explicit successful termination to both Z

AplusB

k lmln
st

opol
st

st � sf
aq

State

st � s � stg � s

bq
State

st � s � stg � s+
Figure 6. Is AplusB = a º b ?

ADTs and operation schemas. The importance of this is not
new and can be seen in Unifying Theories of Programming
[10].

7.2 Local state operators

The following definition identifies the initial states ofA
and B. Although this is conceptually simple it is not so
easy to define in Z. To make the definition easier we have
assumed that the state of an ADT islifted over¯.

ACP’s definition of choice requires “root unwinding”
which would have been both messy to define in Z and, we
feel, less natural than the definition from [23] that we have
used.
A º B 	
�� �StateA-B � initA-B �OpA-B� where

StateA-B 	
�� �StateA fStateB 
 initA j initB �» initA ¼ StateB � ¯ �» initB ¼ StateA � ¯�
initA-B 	
�� initA

OpA-B 	
�� OpA � OpB "
For an example ofA º B see Figure 7.

8 Z to CSP in [2]

Bolton and Davies [2] define a CSP semantics for Z
ADTs �� ��CSP.

They build CSP processes by taking the internal choice
between output values. This can be motivated by Assump-
tion 1. But, in [2] their ADTs (their name CDTs) are not
subject to the constraint Healthiness 1 and hence operations
such aspush�1 can be defined, hence their approach does
not completely satisfy Assumption 1. However, their se-
mantic function has a range on which singleton failure and
named singleton failure semantics give the same definition
of refinement/equality.

For example, in the CSP semantics from [2]��AZ��CSP �
A�s� and ��BZ��CSP � B�s� where:

7



CZk lmln
stA f stB

stB � s � stA ��stB � ¯ % stA � ¯�

opol
stA

stA � sf

a
stB �stgB�stB � s � stgB � s+ �

a
stA �stgA�stA � s � stgA � s+ �% �stA � s � stgA � s, �

b
stB �stgB �x�
�stB � s+ � stgB � e�� �x� � � % x� � ;�

b
stA �stgA �x�
stgA � e ���stA � s+ � x� � ��% �stA � s, � x� � ;��

Figure 7. CZ � AZ º BZ

A�s� 	
�� a � A�s1� ½ a � A�s1�
A�s1 � 	
�� b �� � A�e�
A�s2 � 	
�� b �; � A�e�
B�s� 	
�� a � B�s1�
B�s1 � 	
�� b �� � B�e� ½ b �; � B�e� "

The operational semantics ofB�s�, as defined in [15], is
failure equivalent toA notB (from Figure 4).

Choice (º or ¾) is not closedon the range of this CSP
semanticse.g.The operational semantics ofa � �b �� �
nil¾b �; � nil� is B from Figure 4 and this is not the oper-
ational semantics of��XZ ��CSP for any Z specificationXZ.

9 Conclusions

We believe that the most understandable and useful
connection between state-based Z and process-based for-
malisms is the simple isomorphism between Z’s relational
semantics and a process algebra’s operational semantics.
Given this, deciding to combine Z with CSP (as commonly
interpreted) we believe to show a poor choice as far as
the process algebra component is concerned because (1) its
equivalences do not have the normal value-passing seman-
tics; and (2) its use of� actions is not based on the simple
operational intuitions found in CCS/ACP; and (3) the oper-
ational interpretation of divergence is not adequate ([12]).

We have amended the named failure semantics of [7] into
named singleton failure following [2], where failure seman-

tics was amended into singleton failure. Then we selected
the choice operator from [23] which we believe is closer to
the normal state-based intuition and have shown how the
operator can be defined on Z ADTs. The advantages are:

1. a simpler operational semantics for Z

2. process operators that are closed on the operational se-
mantics of Z

3. hiding distributes through the process operators—this
should ease the definition of a weak congruances

References

[1] J. C. M. Baeten and W. P. Weijland.Process Algebra. Cam-
bridge Tracts in Theoretical Computer Science 18, 1990.

[2] C. Bolton and J. Davies. A singleton failures semantics
for Communicating Sequential Processes. Research Report
PRG-RR-01-11, Oxford University Computing Laboratory,
2001.

[3] J. Derrick and E. Boiten. Refinement in Z and Object-
Z: Foundations and Advanced Applications. Formal
Approaches to Computing and Information Technology.
Springer, May 2001.

[4] J. Derrick, E. Boiten, H. Bowman, and M. Steen. Specifying
and Refining Internal Operations in Z.Formal Aspects of
Computing, 10:125–159, December 1998.

[5] C. Fischer. CSP-OZ: a combination of Object-Z and CSP.
In H. Bowman and J. Derrick, editors,Proc. 2nd IFIP
Workshop on Formal Methods for Open Object-Based Dis-
tributed Systems (FMOODS), pages 423–438, Canterbury,
UK, 1997. Chapman and Hall, London.

[6] S. Garland, N. Lynch, and M. Vaziri. IOA: A language
for specifying, programming, and validating distributed sys-
tems. Technical report, MIT Laboratory fro Computer Sci-
ence, 1997.

[7] M. Hennessy and A. Ingolfsdottir. A theory of communicat-
ing processes with value passing.Information and compu-
tation, 107:202–236, 1993.

[8] M. Hennessy and H. Lin. Symbolic bisimulation.Theoreti-
cal Computer Science, pages 353–389, 1995. 138.

[9] C. Hoare. Communicating Sequential Processes. Prentice
Hall International Series in Computer Science, 1985.

[10] C. Hoare and H. Jifeng.Unifying Theories of Program-
ming. Prentice Hall International Series in Computer Sci-
ence, 1998.

[11] A. Ingolfsdottir and H. Lin. A Symbolic Approach to Value-
passing Processes. In J. Bergstra, A. Ponse, and S. Smolka,
editors,Handbook of Process Algebra, chapter 7. Elsevier
Science, Amsterdam, The Netherlands, 2001.

[12] G. Leduc. Failure-based Congruences, Unfair Divergences
and New Testing Theory. In S. T. Vuong and S. T. Chanson,
editors,PSTV, volume 1 ofIFIP Conference Proceedings.
Chapman & Hall, 1994.

[13] N. Lynch and M. Tuttle. An introduction to input/output
automata.CWI-Quarterly, pages 2(3):219–246, 1989.

[14] R. Milner. Communication and Concurrency. Prentice-Hall
International, 1989.

8



[15] A. Roscoe.The Theory and Practice of Concurrency. Pren-
tice Hall International Series in Computer Science, 1997.

[16] G. Smith. A Fully Abstract Semantics of Classes for Object-
Z. Formal Aspects of Computing, 7(3):289–313, 1995.

[17] G. Smith. A semantic integration of object-Z and CSP for
the specification of concurrent systems. In J. Fitzgerald,
C. B. Jones, and P. Lucas, editors,FME’97: Industrial Ap-
plications and Strengthened Foundations of Formal Meth-
ods (Proc. 4th Intl. Symposium of Formal Methods Europe,
Graz, Austria, September 1997), volume 1313, pages 62–81.
Springer-Verlag, 1997.

[18] J. M. Spivey. Understanding Z: A Specification Language
and its Formal Semantics, volume 3 ofCambridge Tracts in
Theoretical Computer Science. Cambridge University Press,
1988.

[19] J. M. Spivey.The Z notation: A reference manual. Prentice
Hall, 1989.

[20] R. J. van Glabbeek. Linear Time-Branching Time Spectrum
I. In CONCUR ‘90 Theories of Concurrency: Unification
and Extension, LNCS 458, pages 278–297. Springer-Verlag,
1990.

[21] R. J. van Glabbeek. Full Abstraction in Structural Opera-
tional Semantics (extended abstract). InAlgebraic Method-
ology and Software Technology, pages 75–82, 1993.

[22] R. J. van Glabbeek. The Linear Time - Branching Time
Spectrum II. InInternational Conference on Concurrency
Theory, pages 66–81, 1993.

[23] G. Winskel and M. Nielsen. Models for concurrency.
Technical Report DAIMI PB 429, Computer Science Dept.
Aarhus Universty, 1992.

[24] J. Woodcock and J. Davies.Using Z: Specification, Refine-
ment and Proof. Prentice Hall, 1996.

A Proofs

A ���e��R 	
�� ��� in � �out 
n� 
 �� in � �out� � ¿ io ��e� � � 
n�
Trc �A��
Lemma 4

h �ex"A ���ex��R v CZ ���ex��R j h �n "A ���n ��R v
CZ ���n��R
Proof Each�e has a unique underlying�n and clearly
A ���e��R /A ���n ��R. But we can see that:

dom�A ���e��R� / dom�A ���n��R�
The relation formed byA ���n��R restricted todom�A ���e��R�

is identical to
A ���e��R from which we can conclude our result. i

A sDT C 	
�� h · ¸a¶· ¸ "Obs��C�a� / Obs��A�a�.
Lemma 5 A sDT C j A sR C

Proof 1. A sDT C ¼ A sR C
A sDT C j h · ¸a¶· ¸ "Obs��C�a� / Obs��A�a�h'e

"r � Obs��C�'e � ¼ r � Obs��A�'e�h'e
"r � Trc ��C�'e � ¼ r � Trc ��A�'e � ���

Case
�e 
� 
r 
 thenr � �

� � Trc ��C�'e� j �� in � �out� � CZ ���e��R
Case
�e 
t 
r 
 thenr � � 
ur u� 
ur u� Trc ��C�'e � j �� in � �out 
ur u� � CZ ���e��R" �;�
From ��� and �;� h �n "x � CZ ���e��R ¼ x � AZ ���e��R
Hence

h �e" CZ ���e��R / AZ ���e��R
From Lemma 4:

h �n " CZ
���n��R / AZ ���n ��R 	
�� AZ sR CZ

2. A sDT C À A sR C reverse above. i
Lemma 6 A sDT C j A sg C

Proof
1.

h · ¸a¶· ¸ "Obs��C�a� / Obs��A�a� À A sg C:

Let � �a 	
�� � 9Á 4C5 � in �3Act andÂ� in 	
�� � in  Á 4C5 .

For X � lts andC � lts then from the construction of�C�X � �C 9Á 4C5 X�3Act we can see that:Ã �Trc ��C�X� j Ã � Trc �X� � Ã  Á 4C5 � Trc �C� ���
¿FromA sg C we haveo � Trc �C� ¼ o � Trc �A�. �;�

From ��� and �;� we haveÃ �Trc ��C�X� ¼ Ã � Trc �X� � Ã  Á 4A5 � Trc �A�
henceo � Trc ��C�a� ¼ o � Trc ��A�a� from ���
henceObs��C�a� / Obs��A�a�
2. A sDT C ¼ A sg C:�� in � �a�� � nsF�C� j h

xÄio � in � Obs��C�' inax�
As

h
xÄio � in � Obs��C�' inax� ¼ h

xÄio � in � Obs��A�' inax�
thennsF�C� / nsF�A� " i
Lemma 7 I ��C�a� t I ��A�a� ¼ Obs��C�a� / Obs��A�a�.
Proof From the definition of¹ see Figure 5 the only
counter example to the lemma could occur whenI ��A�' � ��¯ � � I ��C�' � 7� �¯ �. ���

So we will show that this part of the relation¹ is empty.
We do this by giving a construction from a context for which
the relation holds and the constraint��� is satisfied to a con-
text for which the relation fails to hold.

AssumeI ��A�' � � �¯ � then � 7� Obs��A�' � and as
I ��C�' � 7� �¯ � then� � Obs��C�' �. HenceObs��C�' � 7/
Obs��A�' � i.e. Trc ��C�' � 7/ Trc ��A�' �. Select ana such
that �a 7� Trc ��C�'a� henceTrc ��C�'a� � Trc ��C�' �. As
I ��A�'a� � �¯ � � I ��C�'a� andObs��A�'a� 7v Obs��C�'a�
we haveObs��A�'a� 7¹ Obs��C�'a�.

If I ��A�' � � �¯ � � I ��C�' � 7� �¯ � I ��C�' � Å�� I ��A�' �thenObs��A�'a� 7¹ Obs��C�'a� i
Lemma 8 A sTest C j A sDT C.

Proof
1.A sTest C ¼ A sDT C

By definition if Obs��C�a� ¹ Obs��A�a� then I ��C�a� t
I ��A�a� % �I ��A�a� � I ��C�a� � Obs��A�a� v Obs��C�a�� "
As if I ��C�a� t I ��A�a� then from Lemma 7Obs��C�a� /
Obs��A�a�.
HenceObs��C�a� ¹ Obs��A�a� ¼ Obs��C�a� / Obs��A�a�.

9



h · ¸a¶· ¸A "Obs��C�a� ¹ Obs��A�a� ¼ Obs��C�a� /
Obs��A�a�

2. Similarly Obs��C�a� / Obs��A�a� ¼ Obs��C�a� ¹
Obs��A�a�

A sTest C À A sDT C
From 1. and 2.

A sTest C j A sDT C. i

10


