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Abstract 13 

Asexual Epichloё endophytes colonise agricultural forage grasses in a relationship which is mutually 14 

beneficial and provides the host plant with protection against herbivorous insects. The endophyte 15 

strain AR37 (Epichloё festucae var. lolii) produces epoxy-janthitrem alkaloids and is the only 16 

endophyte known to provide ryegrass with resistance against porina larvae (Wiseana cervinata 17 

(Walker)), a major pasture pest in cooler areas of New Zealand. This study examined the effect of 18 

temperature on concentrations of epoxy-janthitrems in AR37-infected ryegrass and determined how 19 

the resulting variations in concentration affected consumption, growth and survival of porina larvae. 20 

Twenty replicate pairs of perennial (Lolium perenne L.) and Italian ryegrass (Lolium multiflorum 21 

Lam.) plants with and without endophyte were prepared by cloning, with one of each pair grown at 22 

either high (20°C) or low (7°C) temperature. After 10 weeks, herbage on each plant was harvested, 23 

divided into leaf and pseudostem, then freeze dried and ground. Leaf and pseudostem material was 24 

then incorporated separately into semi-synthetic diets which were fed to porina larvae in a bioassay 25 

over 3 weeks. Epoxy-janthitrem concentrations within the plant materials and the semi-synthetic 26 

diets were analysed by HPLC. AR37-infected ryegrass grown at high temperature contained high in 27 

planta concentrations of epoxy-janthitrem (30.6 µg/g in leaves and 83.9 µg/g in pseudostems) that 28 

had a strong anti-feedant effect on porina larvae when incorporated into their diets, reducing their 29 

survival by 25-42% on pseudostems. In comparison, in planta epoxy-janthitrem concentrations in 30 

AR37-infected ryegrass grown at low temperature were very low (0.67 µg/g in leaves and 7.4 µg/g in 31 

pseudostems) resulting in a small anti-feedant effect in perennial but not in Italian ryegrass. Although 32 

alkaloid concentrations were greatly reduced by low temperature this reduction did not occur until 33 

after 4 weeks of exposure. Alkaloid concentrations were slightly lower in Italian than in perennial 34 

ryegrass and concentrations were higher in the pseudostems when compared with the leaves. In 35 

conclusion, epoxy-janthitrems expressed by the AR37 endophyte show strong activity against porina 36 

larvae. However, when ryegrass plants are grown at a constant low temperature for an extended 37 

period of time in planta epoxy-janthitrem concentrations are greatly reduced and are less effective 38 

against this pasture pest. 39 

 40 
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1 Introduction 41 

Cool season grasses of the family Poaceae harbour fungal endophytes of the genus Epichloё. Asexual 42 

Epichloё endophytes grow as unbranched hyphae within the above ground tissues of the host plant 43 

and are transmitted between reproductive generations within the seed of its host. There is an ongoing 44 

debate over the nature of the relationship between endophytes and their host (Saikkonen et al., 1998; 45 

Saikkonen et al., 2010). The relationship between agricultural forage grasses and asexual Epichloё 46 

endophytes, however, is thought to be defensive mutualistic. Defensive mutualism was first proposed 47 

by Clay (1988) and involves both organisms benefiting from the relationship. The endophyte gains 48 

from its host shelter, nutrients and a means of transmission (Saikkonen et al., 2004). In return the 49 

plant gains increased protection from biotic stresses including insects (Prestidge et al., 1982; Ball and 50 

Prestidge, 1992; Pennell et al., 2005; Popay et al., 2012), mammalian herbivores (Edwards et al., 51 

1993; Cosgrove et al., 2002) pathogens (Pańka et al., 2013) and nematodes (Eerens et al., 1997; 52 

Bacetty et al., 2009) as well as increased tolerance to abiotic stresses such as drought and nutrient 53 

stress (Ravel et al., 1997; Kane, 2011; Nagabhyru et al., 2013). 54 

Plants infected with an asexual Epichloё endophyte can have increased resistance against herbivorous 55 

insects due to the production of alkaloids which can have anti-feedant and/or toxic effects (Rowan et 56 

al., 1990; Jensen et al., 2009; Popay et al., 2009). Understanding bioactive alkaloids, their 57 

distribution within the plant and their effects on insects enables endophytes to be used in pest 58 

management strategies in both farming systems and turf. Fungal endophytes have been recognised as 59 

an important part of New Zealand’s pastoral sector since the early 1980s, as New Zealand contains a 60 

number of herbivorous pasture pests which can cause severe pasture damage.  61 

The common toxic endophyte (Epichloё festucae var. lolii) strain found naturally infecting ryegrass 62 

(Lolium perenne L. and Lolium multiflorum Lam.) in New Zealand produces alkaloids which provide 63 

the host with protection against a number of important pest insects (Prestidge et al., 1982; Popay and 64 

Baltus, 2001; Pennell et al., 2005). It also however, produces lolitrem B an alkaloid which causes 65 

ryegrass staggers, a neurological impairment (Cunningham and Hartley, 1959; Fletcher and Harvey, 66 

1981; di Menna et al., 2012) and the alkaloid ergovaline which causes vasoconstriction in grazing 67 

livestock (Dyer, 1993; Klotz et al., 2007). Due to these harmful effects on livestock endophyte 68 

research in New Zealand has focused on identifying different E. festucae var. lolii strains from 69 

European grasslands, where there is a greater chemical diversity in an attempt to select those with a 70 

favourable chemical profile. Endophyte strains that are found to produce beneficial alkaloids, to deter 71 

insects, but not the detrimental alkaloids are then inoculated into New Zealand ryegrass cultivars 72 

(Johnson et al., 2013). These strains are known as ‘selected endophytes’. One selected strain of E. 73 

festucae var. lolii is AR37. The only known alkaloids to be produced by AR37 are the epoxy-74 

janthitrems (Tapper and Lane, 2004; Finch et al., 2007; Finch et al., 2012), a group of five 75 

compounds within the indole diterpene class of alkaloids. The epoxy-janthitrems are lipophilic 76 

compounds and are not easily translocated around the plant. Therefore, concentrations are thought to 77 

be highest in the pseudostem where endophyte mycelia are concentrated. AR37 provides ryegrass 78 

with protection against many of New Zealand’s major ryegrass pests including; African black beetle 79 

adults (Heteronychus arator (F.) Coleopetra: Scarabaeidae) (Ball et al., 1994), Argentine stem weevil 80 

larvae (Listronotus bonariensis (Kuschel), Coleoptera: Curculionidae) (Popay and Wyatt, 1995), root 81 

aphid (Aploneura lentisci (Passerini), Aphididae: Fordinae) (Popay et al., 2004; Popay and Gerard, 82 

2007) and porina larvae (Wiseana spp. Hepialidae: Lepidoptera) (Jensen and Popay, 2004).  83 

Porina are a group of seven closely related moth species endemic to New Zealand. The larvae of 84 

many of these species are a pest of cultivated grasses (Dugdale, 1994), particularly in the lower half 85 
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of the North Island and in many parts of the South Island of New Zealand. Temperature is one of the 86 

main environmental factors which influences the location of porina in New Zealand. A study by 87 

Allan et al. (2002) looked at survival of larvae to pupation and then adulthood at four temperatures. 88 

Larval survival was found to be significantly lower when larvae where grown at 20ºC compared to 89 

those grown at both 10ºC and 15ºC. But, survival was higher at 20ºC than 5ºC. Porina larvae are 90 

nocturnal and emerge at night from vertical burrows created beneath the soil surface (Barlow et al., 91 

1986). Larvae can be highly destructive as they feed by cutting ryegrass tillers off at the base of the 92 

plant or by grabbing low lying leaves before dragging the herbage back into their burrow (Harris, 93 

1969). The ‘novel’ endophyte AR37 has been shown to provide ryegrass with resistance against 94 

porina larvae in pot trials (Jensen and Popay, 2004), choice bioassays (Jensen and Popay, 2004) and 95 

field trials (Popay et al., 2012). In addition, when pure and semi-pure epoxy-janthitrem I, produced 96 

by AR37, was incorporated into a semi-synthetic diet and fed to porina larvae, larval diet 97 

consumption and growth were significantly reduced (Finch et al., 2010; Hennessy, 2015). 98 

Several abiotic and biotic factors including plant growth temperature (Ball et al., 1995; Eerens et al., 99 

1998; Salminen et al., 2005) and plant genotype (Adcock et al., 1997; Easton et al., 2002; Faeth et al., 100 

2002) are known to effect alkaloid concentrations within endophyte-infected ryegrass. What effect 101 

these factors have on epoxy-janthitrem concentrations in ryegrass is not known. In this paper, the 102 

results of two experiments, a ryegrass pot trial and a porina larval bioassay, were designed to 103 

investigate the effect of high (20ºC) and low (7ºC) growth temperature on epoxy-janthitrem 104 

concentrations in AR37-infected perennial (Lolium perenne L.) and Italian (Lolium multiflorum 105 

Lam.) ryegrass and to examine how any resulting variations in concentration would affect 106 

consumption, growth and survival of porina larvae.  107 

2 Materials and Methods 108 

2.1 Establishment of ryegrass plants 109 

Diploid perennial (cv ‘Grasslands Samson’) and Italian (cv ‘Grasslands Asset’ (PG255)) ryegrass 110 

plants were germinated from AR37-infected and endophyte-free seed in a Petri dish lined with moist 111 

filter paper. Germinated seedlings were sown into trays filled with potting mix (a commercial potting 112 

mix composed of N.Z. pine bark fines and fibre, pumice, coco fibre, controlled release fertiliser and a 113 

wetting agent (Daltons commercial)) on the 23rd of September (spring) and left to establish in a 114 

glasshouse. After seven and a half weeks plants were tested for endophyte infection using a tissue 115 

print immunoassay technique (Simpson et al., 2012). Thirty plants of each plant/endophyte treatment 116 

(AR37-infected perennial ryegrass, endophyte-free perennial ryegrass, AR37-infected Italian 117 

ryegrass and endophyte-free Italian ryegrass) were cloned (split in two) and planted into individual 118 

pots (12.5 cm by 10 cm) filled with potting mix (Daltons commercial). Plants were left to establish in 119 

a screenhouse for 16 weeks and were maintained with regular watering, trimming and fertilizing 120 

(1.8g/L Thrive® and 1.3g/L urea).  121 

2.2 Establishment and maintenance of a porina larval colony 122 

Forty female porina moths were collected in November-December 2013 from Allanton, near 123 

Mosgiel, in the South Island of New Zealand using an incandescent light as an attractant. Moths were 124 

held in 60 mL specimen vials overnight, to allow female moths to lay their eggs. The bursa 125 

copulatrix of the female moth was examined to determine the species of porina (Dugdale, 1994). 126 

Larvae from eggs laid by Wiseana cervinata moths were selected for this study. Porina eggs were 127 

sent to AgResearch, Ruakura Research Centre, Hamilton, New Zealand where they were surface 128 

sterilized with a copper oxychloride solution (Carpenter, 1983). Sterilized eggs were placed in a Petri 129 
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dish lined with moist filter paper and left to hatch in an 18°C controlled environment (CE) room. 130 

Hatched larvae were placed into plastic rectangular containers (1000 mL) quarter filled with fine 131 

sized bark chips (40 larvae per container). Larvae were fed a semi-synthetic diet (Popay, 2001) which 132 

was cut into small pieces and evenly spread over the surface of the bark. Larvae were initially 133 

maintained at 15°C, but the temperature was later decreased to 7°C to slow larval growth. Larvae 134 

were maintained for 8 months with weekly diet changes. 135 

2.3 Effects of temperature on epoxy-janthitrem concentrations 136 

The ryegrass pot trial contained eight treatments: endophyte (AR37-infected or endophyte-free) x 137 

Temperature (high (20°C) or low (7°C)) x Plant species (Perennial or Italian ryegrass). Twenty 138 

healthy pairs of cloned plants from the original 30 cloned for each treatment were selected for the 139 

experiment. One of each cloned pair was randomly assigned to CE rooms, set at either 20°C or 7°C 140 

with both set at a 12:12 h light:dark cycle. Plants were set up in identical randomised block designs 141 

in each room, with the same proximity to lights. 142 

A herbage sample was taken from each plant at the beginning of the trial and after 4 weeks to 143 

compare changes in epoxy-janthitrem concentrations between treatments. At each of the two time 144 

points (Week 0 and Week 4) two tillers per plant were removed, the leaves and pseudostems (base of 145 

the plant to the first emerging leaf) were separated and material from five replicate plants combined 146 

to produce four replicate composite samples to be analysed for epoxy-janthitrems. Immediately after 147 

samples were harvested they were put into sealed plastic bags and placed inside a chilly bin 148 

containing a cold pack. Samples were then frozen at -20ºC approximately 20 minutes after harvest. 149 

After 10 weeks of growth in the CE rooms all plant material was harvested by replicate over a period 150 

of two weeks. Ryegrass was harvested by cutting all tillers off at the base of the plant; care was taken 151 

to ensure the meristem was included in the sample. Dead material was removed from the sample and 152 

live pseudostems and leaves were separated. All ryegrass samples taken were frozen soon after their 153 

harvest and later freeze dried and ground to a very fine powder. Total epoxy-janthitrem concentration 154 

(all 5 epoxy-janthitrem compounds) was determined by high performance liquid chromatography 155 

(HPLC).  156 

To obtain a representative ryegrass sample of each treatment to be tested on porina larvae in the 157 

larval bioassay an approximate equal amount of ground plant material from the final harvest of each 158 

plant in a treatment (20 plants) was combined and mixed thoroughly. Three samples (3 g each, 1 for 159 

each week of the 3 week porina larval bioassay) of plant material from each treatment were weighed 160 

into separate glass vials and set aside for use in the porina larval bioassay. 161 

2.4 Larval bioassay 162 

Plant material harvested from the eight treatments in the pot trial described above was fed to porina 163 

larvae in a bioassay. Tillers were separated into pseudostems and leaves and were tested separately to 164 

give a total of 16 treatments, with 12 replicate larvae per treatment. Porina larvae (32 weeks old), 165 

weighing between 226 and 692 mg, were selected from 27 parent moths. Larvae were removed from 166 

their containers and starved overnight before being weighed and assigned to a replicate so that larvae 167 

within a replicate were of similar weight. Within each replicate, larvae were randomly allocated to a 168 

treatment. Individual larvae were then placed into specimen containers (150 mL polystyrene) three 169 

quarters full with fine sized bark chips. Larvae were fed plugs (14-15 mm diameter cut with a cork 170 

borer, average weight of 788 mg) of a semi-synthetic diet containing ground plant material from each 171 

of the treatments. Fresh diets were made weekly and diets changed over in each larval container on 172 

days 4 and 7 of each week. Diets were kept at 4ºC between diet changes. Consumption was estimated 173 
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by change in diet weight between diet changes. Larvae were checked for survival at each diet change 174 

and weighed again after 3 weeks at the completion of the trial. Total epoxy-janthitrem concentration 175 

in fresh diets and remnant diets (diets larvae had fed on for 3-4 days) were determined by HPLC.  176 

The insect bioassay was conducted in a CE room at 15ºC. Specimen containers were placed into 177 

polystyrene trays that were covered with black polythene to exclude light. These conditions were 178 

necessary as epoxy-janthitrems degrade when exposed to light.  179 

2.5 Semi-synthetic diet 180 

Fresh carrot (500 g) was blended with Milli-Q water (1000 mL) and strained to obtain carrot juice 181 

(750 mL). Carrot juice was mixed with agar (18 g) and warmed in a microwave until boiling point. 182 

Diet was kept warm in a water bath, to prevent agar setting, while individual diets were made. 183 

Sixteen batches of diet (27 mg) were weighed out separately into warm glass beakers. One of the 184 

ground ryegrass samples (3 g) was added to each beaker, mixed thoroughly and then poured into a 185 

Petri dish and smoothed flat. Petri dishes were wrapped in tin foil to exclude light. 186 

2.6 Alkaloid analyses  187 

Epoxy-janthitrem concentrations in both herbage and diet samples were quantified by high 188 

performance liquid chromatography (HPLC). Epoxy-janthitrems were extracted from ground herbage 189 

(20 mg) or diet samples (50 mg) with water-acetone (1:4, 1 mL) using an over-over mixer at 30 190 

rotations/min for 1 hour. The extract was then centrifuged (1 minute, 5600 g, Eppendorf, Hamburg, 191 

Germany) and analyzed by HPLC.  Epoxy-janthitrems were quantified by comparison with a 192 

reference standard (N-benzyl-1, 8-naphthaleneimide, 5 µg/mL) which had previously been compared 193 

with a pure epoxy-janthitrem I standard (Finch et al., 2012; Finch et al., 2013).  Due to the instability 194 

of epoxy-janthitrems the use of an epoxy-janthitrem standard is not practical for routine analysis. 195 

Samples were protected from light during extraction and analysis. For analysis of extracts a 4.6 x 250 196 

mm ODS C18 column (Phenomenex, Torrance, CA, USA) fitted with a 4 x 3 mm Phenomenex 197 

Security GuardTM containing two C18 cartridges (Torrance, CA, USA) was used with an eluent of 198 

water-acetonitrile (1:19, 1 mL/min).  Eluting compounds were detected with an Agilent Series 1100 199 

fluorescence detector (excitation at 333 nm, emission detection at 385 nm). 200 

2.7 Statistical analyses 201 

Data on epoxy-janthitrem concentration, larval diet consumption, mortality and growth collected 202 

during the bioassay were analyzed using GenStat 16th and/or 17th edition. Epoxy-janthitrem 203 

concentrations in ryegrass plants at the beginning of the trial, after 4 weeks and after 10 weeks of 204 

growth in the CE rooms were analyzed using 3-way analysis of variance (ANOVA) blocked by 205 

replicate, with treatment factors Temperature, Plant species and Plant part. All variables were natural 206 

log transformed prior to analysis to stabilize the variance. Larval diet consumption data (average diet 207 

consumed per day) were analyzed using a REML linear mixed model, with replicate a random effect, 208 

with fixed effects of Endophyte by Temperature by Species by Plant part. To take into account the 209 

higher variance of data from the AR37 high temperature treatments compared with data from low 210 

temperature treatments, a separate residual variance was defined for the AR37 high temperature 211 

treatments. Larval growth data (not transformed) were analyzed using 4-way ANOVA blocked by 212 

replicate, with treatment factors Endophyte, Temperature, Species and Plant part. In all analyses 213 

differences were compared using protected Fisher’s least significant difference post hoc tests, 214 

conducted at the 5% significance level. 215 
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3 Results 216 

3.1 Effects of temperature on epoxy-janthitrem concentrations 217 

Epoxy-janthitrem concentrations within the leaves and pseudostems of AR37-infected Italian and 218 

perennial ryegrass were determined at the beginning of the trial and then after 4 and 10 weeks to 219 

monitor changes in concentration over time at the different temperatures (Figure 1). When ryegrass 220 

was grown at high temperature (HT) epoxy-janthitrem concentrations were greatly increased. 221 

Concentrations were 2-3 times higher than the initial concentrations after 4 weeks and 3-7 times 222 

higher after 10 weeks. In contrast to this, concentrations declined in ryegrass pseudostems grown at 223 

low temperature (LT) although the decrease was small over the first 4 weeks. 224 

After 10 weeks epoxy-janthitrem concentrations were highly variable among treatments and plants 225 

within a treatment especially in the two high temperature pseudostem treatments, which contained 226 

high epoxy-janthitrem concentrations. 227 

On average, epoxy-janthitrem concentrations at the beginning of the trial were significantly higher 228 

(P<0.05) in perennial ryegrass than in Italian ryegrass and this difference was maintained throughout 229 

the trial (Table 1). Concentrations were also significantly higher (P<0.05) in the pseudostems when 230 

compared with the leaves of ryegrass plants at all three sample points. An interaction between 231 

Species and Plant part was significant at the beginning of the trial. In this interaction epoxy-232 

janthitrem concentrations in perennial ryegrass leaves were significantly higher than those in Italian 233 

leaves. But, there was no significant difference between perennial and Italian pseudostems. 234 

Temperature and the Temperature by Plant part interaction had a highly significant (P<0.001) effect 235 

on epoxy-janthitrem concentration after 4 and 10 weeks, with concentrations significantly higher in 236 

pseudostems grown at high temperature.  237 

3.2 Larval bioassay 238 

There were statistically significant effects of Endophyte, Temperature, Plant species, and Plant part 239 

on both larval diet consumption and larval growth (Table 2). 240 

Larvae fed AR37-infected (E+) ryegrass grown at HT consumed significantly (P<0.05) less diet and 241 

gained significantly less weight than larvae fed E+ ryegrass grown at LT and endophyte-free (E-) 242 

ryegrass at both temperatures (Figure 2). In the LT treatment, however, only larvae fed E+ perennial 243 

ryegrass consumed less diet (P<0.05) and gained less weight (P<0.05) than larvae in the equivalent 244 

E- treatment with no differences for the Italian ryegrass. In E- perennial ryegrass treatments 245 

significantly more diet was consumed and larval growth was higher in the LT treatment than the HT 246 

treatment. No such difference was found in the corresponding Italian ryegrass treatments. When 247 

comparing perennial with Italian treatments grown at LT larvae fed E- ryegrass consumed more and 248 

gained more weight on perennial. In contrast, when fed E+ ryegrass there was no difference (P<0.05) 249 

in consumption but larvae gained significantly more weight on Italian. 250 

Both pseudostems and leaf blades from E+ plants grown at HT caused larvae to lose weight, with 251 

pseudostems having a significantly greater (P<0.05) effect than leaf blades (Figure 3). In comparison, 252 

all larvae fed E+ ryegrass grown at LT gained weight but those fed pseudostems gained less weight 253 

(P<0.05) than those fed leaf blades. There was no significant difference (P>0.05) in growth between 254 

larvae fed E+ ryegrass grown at LT and the equivalent E- treatment, for both pseudostems and 255 

leaves. Larvae gained more weight (P<0.05) when fed E- ryegrass pseudostems than leaves from 256 

plants grown at HT whereas the opposite occurred for the LT E- plants. 257 
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The greatest larval mortality occurred in the HT pseudostem treatments where larval mortality was 258 

41.7% in the perennial ryegrass treatment and 25% in the Italian. Mortality in all remaining 259 

treatments was less than 8.3%. 260 

3.3 Epoxy-janthitrem concentrations within insect diets 261 

Epoxy-janthitrem concentrations were analyzed by HPLC in freshly prepared diet (day 0), diet added 262 

to containers on day 4 (stored at 4°C from day 0 to day 4) and in remnant diets (recovered from 263 

insect containers on days 4 and 7) to ensure the fresh diet concentrations were similar at each diet 264 

change and to check that the concentrations in the diet were not substantially degraded when diet 265 

plugs were exposed to porina larvae. Epoxy-janthitrem concentrations in diet added to containers on 266 

day 4 were not substantially different (average 10.7%) from fresh diet concentrations (Table 3). 267 

Furthermore, epoxy-janthitrem concentrations were not substantially degraded (average 9.1%) during 268 

the time diets were in the insect trial. At the end of the trial, samples of the endophyte-free diets 269 

(week 3) were analyzed for epoxy-janthitrem to confirm that there was no contamination. No epoxy-270 

janthitrems were found. 271 

4 Discussion 272 

This experiment has shown that when AR37-infected ryegrass was grown at 20ºC epoxy-janthitrem 273 

concentrations were greatly increased, resulting in a strong anti-feedant effect on porina larvae that 274 

led to high weight loss and in the case of pseudostems, increased mortality. In contrast, epoxy-275 

janthitrem concentrations declined markedly in plants grown at 7ºC causing low level deterrence and 276 

a small reduction in weight gain of larvae fed perennial ryegrass. Although epoxy-janthitrem 277 

concentrations were greatly reduced by low temperature this reduction did not occur until after 4 278 

weeks of exposure. 279 

When fed to larvae E+ perennial ryegrass grown at LT reduced larval consumption and growth but 280 

Italian ryegrass did not. This is likely explained by the higher epoxy-janthitrem concentrations in 281 

perennial ryegrass insect diets. Although, this effect was exaggerated by the large increase in 282 

consumption and growth of larvae fed E- perennial ryegrass (cv ‘Grasslands Samson’) that did not 283 

occur in larvae fed E- Italian ryegrass (cv ‘Grasslands Asset’). It is possible that differences in the 284 

ratios of the 5 epoxy-janthitrem compounds between perennial and Italian ryegrass may have 285 

contributed to the differences in bioactivity, particularly if certain compounds, or combinations of 286 

compounds are more bioactive than others. It is also possible that there was an unknown alkaloid 287 

produced in higher concentrations in perennial than Italian ryegrass. 288 

Results from this study have shown an anti-feedant effect of the endophyte AR37 on porina larvae 289 

when ground herbage was incorporated into an insect diet. Epoxy-janthitrems within AR37 are likely 290 

to be responsible for this bioactivity as pure and semi-pure epoxy-janthitrem I have previously been 291 

shown to have an anti-feedant effect on porina when incorporated into semi-synthetic diets (Finch et 292 

al., 2010; Hennessy, 2015).  293 

Although the results from this experiment clearly show an anti-feedant effect of AR37 it could not be 294 

determined whether this endophyte also has a toxic effect on larvae. Here toxicity is defined as an 295 

endophyte which reduces growth and survival of an insect above that which can be attributed to 296 

starvation. Pseudostems of AR37-infected ryegrass grown at HT, which contained the highest epoxy-297 

janthitrem concentrations, reduced larval survival. A reduction in survival could indicate toxicity but 298 

it is also possible that larvae may have died due to starvation caused by the strong anti-feedant effect 299 

of AR37. Further research is required to resolve this. 300 
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Plant growth temperature is known to affect the concentrations of other important endophyte 301 

alkaloids. Seasonal concentrations of lolitrem B, which like the epoxy-janthitrems is in the indole 302 

diterpene class of alkaloids, and peramine were monitored by Ball et al. (1991). Lolitrem B 303 

concentrations where found to be highest during the summer months and lowest during the winter 304 

when rainfall is higher and temperatures are cooler. Peramine concentrations were comparatively 305 

stable, but were also significantly lower during winter when compared to summer and autumn. 306 

Although caution must be applied when relating results of pot trials to field conditions the results of 307 

this study suggest that epoxy-janthitrems could respond to temperature in a similar way. However, 308 

for epoxy-janthitrem concentrations to decrease to the low levels observed in this experiment plants 309 

would have to be exposed to constant low temperatures for an extended period of time (at least 4 310 

weeks). Under field conditions temperatures will constantly fluctuate which may mean that epoxy-311 

janthitrem concentrations are not decreased to the extent as that observed in this study. 312 

The reduction in epoxy-janthitrem concentrations in plant material grown at low temperatures 313 

suggests that AR37 may not provide the highest level of protection against porina larvae during the 314 

winter months in parts of New Zealand. Porina are major pasture pests particularly in the southern 315 

areas of both the North and South Island of New Zealand where they are capable of causing severe 316 

pasture damage. Several species of porina are known pasture pests, the moths of which have different 317 

peak flight periods. Moths of W. cervinata, the species tested in this experiment, fly between October 318 

and December in the South Island (Barratt et al., 1990). Young larvae of this species will begin 319 

feeding on ryegrass during the late spring and summer months, when temperatures are warm. Results 320 

from this study suggest that during this period AR37-infected ryegrass is likely to contain relatively 321 

high epoxy-janthitrem concentrations which should provide good control over larvae. Larvae of the 322 

later flying species, W. copularis, which can fly as late as February (Barratt et al., 1990) begin 323 

feeding on AR37-infected ryegrass when temperature and alkaloid concentrations are likely to be 324 

lower and less effective at controlling larval populations. 325 

The mechanisms by which temperature and plant genotype affected alkaloid concentrations in 326 

perennial and Italian ryegrass plants in this study are not known. These factors may have indirectly 327 

affected alkaloid concentrations by influencing the ratio of endophyte mycelial biomass to plant 328 

biomass, resulting in changes in alkaloid concentration (di Menna and Waller, 1986; Breen, 1992; di 329 

Menna et al., 1992; Ju et al., 2006). Alternatively, alkaloid biosynthesis, metabolism or degradation 330 

rates may have been directly affected by temperature or plant genotype (Spiering et al., 2005). 331 

No published information is available comparing epoxy-janthitrem concentrations in the leaves and 332 

pseudostems of AR37-infected ryegrass plants. In this study, concentrations were found to be 333 

markedly higher in the pseudostems than the leaves at both temperatures and for both cultivars. This 334 

distribution is not uncommon and has also been found for lolitrem B (di Menna et al., 1992; Davies 335 

et al., 1993; Keogh et al., 1996; Ball et al., 1997). Alkaloids such as lolitrem B and the epoxy-336 

janthitrems are lipophilic compounds and are not easily translocated around the plant (Ball et al., 337 

1993; Munday-Finch and Garthwaite, 1999; Spiering et al., 2005) thus distribution tends to be similar 338 

to that of the endophyte, which is generally higher in the pseudostem and lower in the leaves  339 

(Musgrave, 1984; Musgrave and Fletcher, 1984; Keogh and Tapper, 1993). Maintaining high 340 

alkaloid concentrations in the pseudostem is advantageous for both the host plant and the endophyte 341 

as the meristem, the tissue containing undifferentiated cells and where growth occurs is located at the 342 

base of the ryegrass plant (Popay, 2009). Tiller death will occur if an insect severely damages the 343 

meristem. Insect damage to the leaves of ryegrass plants is not as harmful to the plant itself, as 344 

ryegrass is adapted to animal grazing (Popay, 2009). However, the more leaf material the insect is 345 
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able to consume the less that is available for both plant photosynthesis and consumption by grazing 346 

livestock, resulting in reduced plant growth and animal productivity. 347 

The endophyte AR37 is very important for the control of porina in New Zealand as although other 348 

endophytes such as AR1 and the common toxic strain provide protection against some pest insects 349 

(Prestidge et al., 1982; Popay et al., 1999; Pennell et al., 2005; Popay and Gerard, 2007; Popay and 350 

Thom, 2009) it is only AR37 which provides ryegrass with protection against porina (Jensen and 351 

Popay, 2004; Popay et al., 2012). Control against porina, which are a major pasture pest in parts of 352 

New Zealand, currently involves an integrated pest management strategy involving planting ryegrass 353 

infected with the AR37 endophyte and the application of insecticides at particular times of the year 354 

(Barratt et al., 1990). The results of this paper support the continued use of integrated pest 355 

management strategies to control porina populations in the field. 356 

Leading on from this study field trials should be conducted to determine how temperature affects 357 

epoxy-janthitrem concentrations in AR37-infected ryegrass in the field and how these concentrations 358 

then impact on porina populations. If concentrations are found to be reduced under certain 359 

environmental conditions the next step could be to identify existing ryegrass cultivars and/or plant 360 

genotypes, from which a new breeding line could be produced, that produce higher alkaloid 361 

concentrations when grown at low temperature.  362 
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 575 

10  Figure legends 576 

Figure 1: In planta epoxy-janthitrem concentrations (µg/g) for each of the AR37-infected ryegrass 577 

treatments at week 0 (sample 1), week 4 (sample 2) and week 10 (final harvest) (±SEM of raw data). 578 

HT = high temperature (20ºC), LT = low temperature (7ºC). 579 

Figure 2: Comparison of average diet consumption (mg) (±SE) and average larval growth (mg) 580 

(±SED) within the Infection (E+ = AR37-infected or E- = endophyte-free) x Temperature (HT = high 581 

(20ºC) or LT = low (7ºC)) x Species (perennial or Italian) interaction. 582 

Figure 3: Comparison of average growth (mg) (±SED) within the Infection (E+ = AR37-infected or 583 

E- = endophyte-free) x Temperature (HT = high (20ºC) or LT = low (7ºC)) x Plant part (pseudostems 584 

or leaves) interaction. 585 
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11 Table legends 597 

Table 1: P-values for the effects of Temperature (high and low), Species (perennial and Italian), Plant 598 

part (pseudostems and leaves) and their interactions from the analysis of epoxy-janthitrem 599 

concentration in ryegrass at the beginning of the trial, after 4 weeks and after 10 weeks of growth in 600 

the controlled environment rooms.  601 

 P-value 

Source of variation Week 0 

(Sample 1) 

Week 4 

(Sample 2) 

Week 10 

(Final harvest) 

Species <0.001 0.029 <0.001 

Plant part <0.001 <0.001 <0.001 

Temperature 0.181 <0.001 <0.001 

Species x Plant part 0.005 0.523 0.429 

Temperature x Plant part 0.205 <0.001 <0.001 

Species x Temperature 0.315 0.884 0.701 

Species x Temperature x Plant part 0.849 0.877 0.089 
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Table 2: Interactions between endophyte Infection (AR37 or endophyte-free), Temperature (high and 618 

low), Species (perennial and Italian) and Plant part (pseudostems and leaves) for larval consumption 619 

and larval growth data within the larval bioassay. 620 

 P-Value 

Source of Variation Diet 

Consumption 

Larval 

Growth 

Endophyte <0.001 <0.001 

Temperature <0.001 <0.001 

Plant part <0.001 <0.001 

Species 0.866 0.994 

Endophyte x Species 0.005 0.006 

Endophyte x Temperature <0.001 <0.001 

Species x Temperature 0.996 0.224 

Endophyte x Plant part 0.056 0.002 

Species x Plant part 0.461 0.597 

Temperature x Plant part 0.006 <0.001 

Endophyte x Species x Temperature 0.033 0.002 

Endophyte x Species x Plant part 0.006 0.022 

Endophyte x Temperature x Plant part 0.316 0.022 

Species x Temperature x Plant part 0.989 0.656 

Endophyte x Species x Temperature x Plant part 0.170 0.112 

 621 

 622 

 623 

 624 

 625 

 626 

 627 

 628 

 629 

 630 

 631 

 632 

 633 

 634 

Provisional



        Influence of Temperature on Epoxy-janthitrem Concentrations in AR37-Infected Ryegrass 

 
18 

This is a provisional file, not the final typeset article 

Table 3: Average epoxy-janthitrem (EJ) concentration (µg/g) in fresh diets, the range and estimated 635 

dry weight concentrations of epoxy-janthitrem (µg/g). Wet weight-dry weight conversion = 8.258. 636 

Ryegrass 

species 

 

Temperature Plant part Average EJ 

Concentration 

(µg/g) 

Range Estimated dry 

weight conc. 

(µg/g) 

Italian Low Leaves 0.08 0.07-0.10 0.66 

Italian Low Pseudostems 0.85 0.82-0.88 7.02 

Perennial Low Leaves 0.10 0.09-0.10 0.83 

Perennial Low Pseudostems 1.62 1.59-1.65 13.38 

Italian High Leaves 2.33 2.27-2.40 19.24 

Italian High Pseudostems 11.14 11.02-11.31 91.99 

Perennial High Leaves 3.78 3.60-3.93 31.21 

Perennial High Pseudostems 13.68 12.89-14.18 112.96 
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